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Abstract

Bayesian nonparametric modeling for spatial nonhomogeneous and clustered point

pattern data
by
Chunyi Zhao

This work provides a Bayesian nonparametric modeling framework for spatial point processes
to account for the irregular domain over which the resulting point pattern occurs in the model
formulation while balancing flexible inference with efficient implementation. We start with
models for the spatial Poisson process, which assumes independence among points given the
number of occurrences, and progress to models for Hawkes processes over space and space-time
that capture the self-triggering behaviors and relax the independence assumption. We develop
nonparametric Bayesian modeling approaches for Poisson processes using weighted combina-
tions of structured beta densities to represent the point process intensity function. For a regular
spatial domain, i.e., the unit square, the model construction implies a Bernstein-Dirichlet prior
for the Poisson process density, which supports flexible inference about point process func-
tionals with theoretical guarantees. The key contribution is two classes of flexible and compu-
tationally efficient models for spatial Poisson process intensities over irregular domains. We
address the choice or estimation of the number of beta basis densities and develop methods for
prior specification. For the spatial Hawkes process, we develop a semi-parametric modeling
approach, leveraging its clustering representation defined as the superposition of an immigrant
Poisson process and several offspring Poisson clustering processes centered on parent points

X



generated by earlier generations. We apply the model for the Poisson process developed ear-
lier to the latent immigrant Poisson process and complete the hierarchical model for the spatial
Hawkes process with parametric formulations for the offspring Poisson processes and a model
for the latent branching structure that specifies lineage among points. Finally, we develop a
nonparametric model for the spatial offspring Poisson process under the assumption of spa-
tial isotropy, which reduces modeling for the spatial offspring density to that for the spatial
offspring-parent distance density. Such construction allows the model to be free from the im-
plied tail behavior constraints imposed by existing parametric options for the offspring density
kernel. We incorporate such a method to model for space-time Hawkes processes. For all
methods developed in the dissertation, we design posterior simulation algorithms for full infer-
ence on key point process functionals and model checking techniques to examine the model fit.
Model capacity is demonstrated with numerous simulation studies, and we focus on real data

examples using crime point patterns from the city of Boston.
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Chapter 1

Introduction

Spatial point pattern data is a special case of spatial data for which both the number
and locations of events are random. This feature differentiates spatial point pattern data from
spatially referenced data where locations, whether in the form of coordinates or areal units, are
considered fixed as an index for the corresponding response. Modeling spatial point pattern data
from a probabilistic modeling point of view often treats the point pattern as a realization of some
underlying point process, whose stochastic mechanism specifies both the total number of events
in a subset of the domain and the locations of these events. Illian et al. (2008) provides a good
introduction to modeling for various spatial point processes. Specifically, modeling is achieved
via the construction of the key functionals that control the point processes, namely the intensity
functions. The intensity functions are non-negative, locally integrable, and can be informally
interpreted as providing the rate of occurrence in an infinitesimal local neighborhood.

When the timestamps of the events are also available, the space-time point pattern

{xi,vi,t;} is treated as a realization from some space-time point process. Diggle (2017) cov-



ers major methodologies in testing, modeling and estimation approaches for space-time point
patterns and related application in biological science and ecology. The chronological order of
events allows additional assumptions that enable historical events to impact the current rate via
a more general form for the intensity function. When assumed to take an additive form, such
intensity function, referred to as the conditional intensity function, defines a type of point pro-
cess that captures so-called self-exciting or self-triggering behaviors, meaning that the current
rate of the event is higher as a result of earlier events.

Modeling the intensity functions can be done via a parametric or nonparametric ap-
proach, where the main difference is whether to assume a particular functional form for the
intensities or allow the data to inform the functional form by leveraging flexible function struc-
tures. The parametric model can be viewed as a special case for the nonparametric model, as the
latter provides structures that can emulate the pre-specified functional form of the former, given
sufficient support from the data. Notice that both approaches require a finite number of param-
eters that specify the intensities, despite the unfortunate misnomer "nonparametric" suggesting
no parameters or the widespread belief that the nonparametric methods estimate infinitely many
parameters. Learning is achieved by estimating and providing uncertainty quantification for the
intensity parameters either by optimizing a certain loss function, here the likelihood function,
or a Bayesian approach that learns the distributions of these parameters conditional on observed
data.

This work takes a Bayesian approach to achieve inference and prediction. The appeal
of the Bayesian approach is that the posterior distribution, i.e., the joint conditional distribu-

tion of parameters given data, provides both point estimation and uncertainty quantification in



one step. The posterior distribution often does not have closed-form expression, especially for
complex models. Inference is achieved by summarizing samples from the posterior distribution,
obtained using the simulation-based algorithm Markov Chain Monte Carlo (MCMC). Such al-
gorithm sequentially traverses the posterior parameter space in a manner that, once convergent,
the output of each iteration, i.e., a vector of parameter values, is a draw from the posterior distri-
bution. Prediction is done via simulating from the model for each posterior sample to form the
posterior prediction sample, which is then summarized to provide point and interval estimation.
The challenge is getting the posterior sample. The MCMC algorithm is often more compu-
tationally expensive since the convergence of the chain requires a large number of iterations.
The computation demand for Bayesian inference is substantial to the point that it has become a
crucial factor in the model formulation and implementation.

The contribution of this work is a Bayesian nonparametric modeling framework to
achieve flexible inference for important classes of spatial point processes over the irregular
domain. In this chapter, we first introduce the real data example and the substantive questions.
We then present the motivations and objectives for each point process model in this dissertation.

We use the crime point pattern data in Boston as the primary real data example in this
dissertation. The raw data contains the spatial and time information for over 30 types of crimes
from 2017 to 2018 in Boston (Jain, 2018). Fig.1.1 shows the point pattern for vandalism in
certain weeks from April 2017 to June 2017. Each point represents an occurrence of vandalism
at that location, and the blue shaded area is the city boundary of Boston, which has a compli-
cated shape. We want to understand which neighborhoods in the city have higher crime rate

and predict the number of occurrences in a local neighbourhood and a certain time interval. To
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Figure 1.1: Point patterns for Vandalism in certain weeks in the second quarter of 2017 in Boston.

achieve these goals, we develop modeling methodologies for a series of spatial and space-time
point processes with increasingly more general assumptions that suit the application better and
more complex structures.

A common issue for point pattern modeling is accounting for the effect of the compact
observation domain on estimating the intensity. The observation domain D is the region, along
with the time window if event times are recorded, over which the events occur. Spatially, these
domains tend to have highly irregular boundaries, just like that of the Boston city. The irregular
domain poses challenges for both model formulation and computation. A recurring theme of
this dissertation is how to address this issue by constructing models that balance the inference

flexibility and computation efficiency given the constraints posed by the irregular domain and



the computation demands of a Bayesian nonparametric approach.

We begin with a modeling framework for the Poisson point process. Theoretical study
of Poisson point process can be found in Cressie (1993) and Daley and Vere-Jones (2008),
among other reference. In particular, Kingman (1992) provides a more focused study on the
properties of Poisson process in one or more dimensions. The conditional intensity of a tempo-
ral Poisson process is equivalent to its intensity function, since the Poisson assumption implies
independence among the event timestamps given the total number of occurrences. The spatial
Poisson process extends such assumption to the two-dimensional space, where the intensity
function specifies both the number of events in a compact subset of the observation domain via
a Poisson distribution, and the locations of these events via the Poisson process density function
f(s) = A(s)/ [ A(s)ds. The irregular domain D serves as the support for such Poisson den-
sity function. We seek to develop a Bayesian nonparametric prior for the intensity function that
respects the shape of D, meaning that the implied prior model for the Poisson density function
is a proper density over D. More importantly, such intensity prior model avoids the computation
for the normalizing constant, which involves integrating the intensity over D.

The key to achieving these goals is our proposed model for the intensity function as
a weighted combination of fixed Beta densities that function like basis functions, and the struc-
tured Gamma prior distributions for the random weights. Through the connection between the
Poisson density function and the intensity function, our prior for the intensity function suggests
a Bernstein-Dirichlet Prior for the Poisson density function, whose theoretical properties sup-
port recovery of various functional forms in the posterior. We prefer to work with the prior

model for the intensity instead of the density function since the construction leads to a closed-



form expression for the total intensity, which appears in the Poisson process likelihood, and
subsequently resulting in conjugate updates for the weights parameters in the posterior simula-
tion.

In this sense, we achieve computational efficiency via fast and easy parameter up-
dates in the MCMC algorithm while maintaining a connection to a rich and flexible Bayesian
nonparametric model on the density function. Chapter 2 develops this core idea of intensity
modeling for temporal and spatial Poisson processes. We demonstrate how the model handles
the irregular spatial domain in its original form (without spatial approximation such as tak-
ing the convex hull), without adding too much computational overhead to the algorithm, using
synthetic and real data examples.

We apply the spatial Poisson process model to the crime point pattern under the cat-
egory "Vandalism" in the second quarter of 2017, under the assumption that the point pattern
of the same crime in a short time period can be viewed as a realization from a Poisson pro-
cess. Such a assumption can be questioned easily, as criminal activities are known to have
a self-exciting nature, i.e., more crimes tend to happen at locations of previous crimes. This
phenomenon inspires us to model point processes that account for self-exciting behavior in the
form of allowing spatial clustering among points.

Next, we develop a class of models for spatial Hawkes processes. The Hawkes pro-
cess, most commonly used as an example of a self-exciting process, is specified by its con-

ditional intensity function that consists of a background intensity and a triggering function



(Hawkes, 1971). More specifically, the conditional intensity function is defined as
At He) = ult) + ) gt —t;)
it <t
where H; denotes the history of events up to time ¢, y(+) is the background intensity function,
and g(-) is the triggering function. The triggering function depends on events previous to the
current event at ?.

The Hawkes process has an equivalent clustering representation (Hawkes and Oakes,
1974), where additional branching structure among the points suggests that the point pattern can
be thought of as a realization from a sequence of recursive Poisson cluster processes. Specifi-
cally, a Poisson process controlled by the background intensity x(-) generates immigrant points;
subsequent Poisson processes controlled by the triggering function g(-) spawn points centered
on the immigrant points and their offspring points. To model the Hawkes process hierarchi-
cally, we model for the immigrant Poisson intensity, the offspring Poisson intensity, and the
latent branching structure.

The spatial Hawkes (SH) process is well-defined following the clustering representa-
tion as a superposition of several General Shot Noise Cox processes (GSNCPs) with a Poisson
immigrant process (Mgller and Torrisi, 2005), despite of the lack of natural order in space to
imply the order of events. Additional assumptions allow us to model the SH process as the
superposition of a Poisson immigrant process and a sequence of offspring Poisson processes
centered on parent points identified through the more general latent branching structure for
points in space.

We leverage the model for the spatial Poisson process in Chapter 2 as the model for



the immigrant Poisson process intensity, and complete the hierarchical model for the spatial
Hawkes process with parametric models for the Poisson offspring processes and a model for
the branching structure encoded as a set of trees. Chapter 3 develops a Bayesian modeling
framework for a class of SH processes categorized by the immigrant process assumption (ho-
mogeneous vs. nonhomogeneous), the domain assumption (irregular vs. unit-square), and the
parametric form of the offspring intensity function. The irregular domain serves as both the
support for the immigrant and offspring intensities, which poses challenges for the truncation
applied to the offspring Poisson density. We develop an efficient Monte Carlo routine that recy-
cles and reuses random samples and caches the computed normalizing constants to gain signifi-
cant performance improvement. We develop model checking techniques for both the first-order
model fit, via predictive residuals over Voronoi tessellation, and second-order model fit, via
predictive Ripley’s K functions. Finally, we demonstrate the model’s capacity using synthetic
data.

We revisit the Boston crime data example and apply the SH model with a nonhomo-
geneous immigrant Poisson process and a bivariate Gaussian offspring kernel allowing spatial
skewness to the same vandalism point pattern data, modifying the irregular domain to be the
convex hull of the city boundary to speed up computation. We discover a significant amount
of self-triggering effect reflected by the branching ratio, a parameter that controls the aver-
age number of offspring generated in a cluster, far greater than 0. To confirm our discovery,
we implement a model for the space-time Hawkes (STH) process with the same formulation
for the immigrant and offspring spatial intensity, adding additional assumptions for a time-

homogeneous immigrant temporal intensity and an exponentially decaying offspring temporal



intensity. The timestamps facilitate the inference of the branching structure with additional in-
formation on the chronological order, which is latent for the space-only process. The inference
for the branching ratio under the STH process also suggests significant self-triggering. The in-
ferred immigrant intensities under models for the SH and STH process flag similar regions in
Boston to have higher rates of vandalism activities.

We develop models for STH processes focusing on a nonparametric offspring spatial
intensity formulation. Reinhart (2018) provides a review of self-exciting spatial-temporal point
processes and their applications. The STH process is defined via the space-time conditional
intensity:

)\(Cﬂ,y,t ‘ %t) = H(l‘ayat) + Z g(.’E — T Y 7ylat - tz)

it <t

where H; denotes the history of events including both space and time information up to time
t. The background intensity p(z,y,t) controls the rate of occurrence in space and time and is
often assumed to be homogeneous in time. The triggering function is often factored into the
product of time intensity g;(¢t — ¢;) and a spatial intensity gs(x — x;,y — v;) as the result of
the separability assumption, which suggests that the temporal and spatial triggering effects are
independent. Popular parametric methods for gs(x — z;,y — y;) factor it into the product of
a total intensity 5 and a spatial density fs(z,y) and choose the parametric form of f,(z,y)
between the bivariate Gaussian distribution and the Power Law distribution, which differ on
how fast the density function approaches 0 in the tail. In most applications, the two parametric
forms are both applied, and extensive literature focuses on comparing the two. A nonparametric
formulation for gs(x — x;,y — y;) can capture both shapes under the parametric families and
provide more flexible inference without the need to choose between parametric forms.
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To achieve a nonparametric formulation, we make an additional assumption of spatial
isotropy, an assumption taken by most commonly used parametric families, and reduce mod-
eling a spatial density to modeling a univariate distance density. The distance in our model is
that between offsprings and their parent points. The irregular domain here implicitly defines
the support of such distance density. We place a scaled Bernstein-Dirichlet prior on the spa-
tial distance density to capture varying tail behavior, no longer confined to the choice between
Gaussian and Power Law. Chapter 4 develops models for STH processes under the assumption
of offspring spatial isotropy and presents both a parametric formulation under the name ParSTH
and a nonparametric formulation under the name NonparSTH for the offspring spatial process,
while leveraging the model for nonhomogeneous Poisson process developed in Chapter 2 to
model the immigrant Process. We apply both models to the Vandalism data and discover that
the NonparSTH model favors a heavier tail for the spatial distance density compared to the

ParSTH model.
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Chapter 2

Bayesian nonparametric modeling for spatial

Poisson processes

We develop nonparametric Bayesian modeling approaches for Poisson processes, us-
ing weighted combinations of structured beta densities to represent the point process intensity
function. For a regular spatial domain, such as the unit square, the model construction implies a
Bernstein-Dirichlet prior for the Poisson process density, which supports general inference for
point process functionals. The key contribution of the methodology is two classes of flexible
and computationally efficient models for spatial Poisson process intensities over irregular do-
mains. We address the choice or estimation of the number of beta basis densities, and develop
methods for prior specification and posterior simulation for full inference about functionals of

the point process. The methodology is illustrated with both synthetic and real data sets.
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2.1 Introduction

There has been an increasing interest in extracting information from locations in spa-
tial data. For spatial point patterns, both the number and the locations of points are random.
Point pattern data is modelled as a realization, within compact domain D, of a point process
whose finite dimensional distribution defines the stochastic mechanism for the number and
locations of the points. Independent increments along with a Poisson distributional assump-
tion define the Poisson process. A homogeneous Poisson process is equivalent to complete
spatial randomness, that is, the point pattern generated is independently and identically uni-
formly distributed over D. The practically relevant version is the non-homogeneous Poisson
process (NHPP), which allows the point process intensity to differ by location. The NHPP is
characterized by a non-negative, locally integrable intensity function A(s), such that: for any
bounded subset B of the domain, the number of points in B, N(B), is Poisson( [z A(s)ds)
distributed; and, given N (B), the point locations within B are independent and identically dis-
tributed with density A(s)/ [, A(u)du. Therefore, the NHPP likelihood corresponding to point

pattern {sy, ..., S, }, observed in compact domain D, can be expressed as:

P51,y Sn Y A(5)) o exp (—/DA(S) d5> f[l)\(si) 2.1)

where n = N (D). We consider the more common settings where D C R or D C R%. We place
particular emphasis on spatial NHPPs, and more specifically on building flexible, computation-
ally tractable models for spatial intensities defined over domains with irregular shapes.
Theoretical study of NHPPs can be found in Cressie (1993) and Daley and Vere-
Jones (2008), among other references. Diggle (2003) provides background on likelihood and
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classical nonparametric inference for spatial NHPPs. Moller and Waagepetersen (2003) discuss
simulation-based inference for point processes. Regarding model-based methods for NHPPs,
Gelfand and Schliep (2018) categorize the main approaches in two general directions: modeling
the trend surface for the intensity function A(s); and, factorizing the intensity function into the
total intensity, A = [ A(s)ds, and the NHPP density f(s) = A(s)/A, and modeling each
separately.

The early Bayesian nonparametric approaches fall under the first category, focusing
on modeling temporal NHPP cumulative intensity functions, fg A(s)ds, with gamma, beta or
general Lévy process priors (Lo, 1982, 1992). The next stage in this line of research involves
mixture models for NHPP intensities built from non-negative kernels convolved with weighted
gamma processes (Lo and Weng, 1989; Wolpert and Ickstadt, 1998; Ishwaran and James, 2004;
Kang et al., 2014). Also in this direction are modeling approaches based on log-Gaussian Cox
processes (Moller et al., 1998) under which the logarithm of the intensity function is a realiza-
tion of a Gaussian process. Adams et al. (2009) proposed a related approach based on a logistic
instead of logarithmic transformation to link the Gaussian process with the model for the inten-
sity function. Modeling directly the intensity function A(s) brings computational challenges for
full posterior inference due to the likelihood normalizing term, exp(— [ A(s) ds), especially
under methods based on Gaussian process priors. Such challenges have been addressed through
approximations of the stochastic integral (Brix and Moller, 2001; Brix and Diggle, 2001), data
augmentation (Adams et al., 2009), and discretization of the observation domain D (Illian et al.,
2012).

Under the second direction, Kottas (2006) and Kottas and Sansé (2007) proposed an
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approach that connects the NHPP intensity function with the density function supported on the
observation domain, and models the NHPP density with Dirichlet process mixture priors for
density estimation. Taddy and Kottas (2012) extend this modeling approach to marked Pois-
son processes, and Taddy (2010), Kottas et al. (2012), Xiao et al. (2015) and Rodriguez et al.
(2017) develop hierarchical and dynamic models for NHPPs in the context of specific applica-
tions. This modeling approach enables an inference framework that builds from well established
methods for Dirichlet process mixtures, avoiding the computational challenges due to the NHPP
likelihood normalizing component. However, it relies on a potentially restrictive prior structure
that models separately the NHPP density and the total intensity over the observation domain.

Inference methods for irregular domain spatial point process intensities have received
limited attention in the Bayesian nonparametrics literature. We are only aware of the log-
Gaussian Cox process approach of Simpson et al. (2016). Here, the irregular domain adds
an extra level of complexity, which has been handled with an approximation to the Gaussian
random field, an associated approximation to the NHPP likelihood, and using integrated nested
Laplace approximation for fast, but approximate Bayesian inference.

Our main contribution is flexible modeling and computationally efficient inference
for NHPPs over spatial domains with irregular shapes. The proposed models do not rely on
approximations of the NHPP likelihood and they can be efficiently implemented with standard
Markov chain Monte Carlo algorithms for full Bayesian inference and uncertainty quantifica-
tion. Moreover, in the context of the more commonly studied setting of spatial NHPPs over reg-
ular domains, our modeling approach overcomes some of the limitations of existing Bayesian

methods, while retaining the feature of flexible inference for general intensity shapes.
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We build the model for the NHPP intensity function from weighted combinations of
Bernstein polynomial basis functions, that is, beta densities with specified shape parameters.
Such parsimonious mixture representation is the key to achieve computationally tractable infer-
ence. In Section 2.3, we explore two modeling approaches for spatial Poisson process intensities
over irregular domain, taken without loss of generality to be a subset of the unit square. Under
the first approach, the representation for the NHPP intensity is motivated by truncating over the
irregular domain a NHPP density defined as a weighted combination of Bernstein densities on
the unit square. The second approach targets directly the NHPP intensity modeling it as a struc-
tured weighted combination of truncated Bernstein densities. The two models offer different
benefits while sharing the feature that the total intensity, A, can be readily expressed in terms
of model parameters. Thus, both models bypass the challenge brought about from the NHPP
likelihood normalizing term without separating the total intensity and NHPP density in the prior
specification. In the case of regular domain, say the unit square, the two modeling approaches
yield the same form for the NHPP intensity which implies a Bernstein-Dirichlet prior for the
corresponding NHPP density. To highlight this connection and its implications in posterior sim-
ulation, we begin in the next section with the methodology for the simpler setting of temporal

NHPPs.
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2.2 Methodology for temporal Poisson processes

2.2.1 Model formulation

Here, we focus on modeling one-dimensional NHPPs observed over a bounded do-
main, taken without loss of generality to be the unit interval. Motivated by Bernstein polynomial
priors for densities with bounded support, our model for the intensity function A(s) implies a
Bernstein-Dirichlet process prior for the NHPP density, f(s) = A(s)/ fol A(u)du, for s € [0, 1].

The Bernstein polynomial prior model for density f on [0, 1] is given by fx (s | F') =
Zszl wy be(s | k, K — k + 1), where be(- | a,b) is the beta density with mean a/(a + b).
The mixture weights are defined through increments of a distribution function F' with support
on [0,1], such that w, = F(k/K) — F((k —1)/K), fork = 1,..., K. A distribution F' with
flexible shape implies mixture weights that select the appropriate beta basis densities to achieve
general shapes for density f. This motivates assigning a nonparametric prior to F', such as the
Dirichlet process prior (Ferguson, 1973) which results in the Bernstein-Dirichlet prior for den-
sity f (Petrone, 1999a,b). Theoretical support for the Bernstein polynomial model is provided
by the fact that, as K — oo, fx(s | F') converges uniformly to the density of F' (Levasseur,
1984); this result is also key to establishing Kullback-Leibler support and posterior consistency
of the Bernstein-Dirichlet prior for density estimation (Petrone and Wasserman, 2002). Exten-
sions of Bernstein polynomial prior models include density estimation on higher dimensional
spaces (Zheng et al., 2010; Barrientos et al., 2015) and density regression (Barrientos et al.,
2017).

Our modeling approach is motivated by the structure of the distribution for the mix-
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ture weights, (w1, ..., wk ), implied by a Dirichlet process prior, DP(«, F), on F', where « is the
Dirichlet process precision parameter, and F{ the centering distribution with support on [0, 1].
Based on the Dirichlet process definition, (w1, ..., wx ), given «, Fp, and K, follows a Dirichlet
(A, ..., aAg) prior distribution, where Ay, = Fy(k/K) — Fo((k—1)/K),fork =1,..., K.
The key observation for the model is that the prior distribution for (wy,...,wg) can be con-
structed through independent gamma random variables. In particular, denoting by Ga(a, b) the
gamma distribution with mean a/b, we have wy, = Vj,/ {Zf; . Vi}, where, fork =1, ..., K, the
V}; are independently Ga(a Ay, C') distributed, with C' > 0 a constant.

The proposed model for one-dimensional NHPP intensities is given by:

A(s) = f: Vibe(s |k, K —k+1), se€]|0,1]
k=1 (2.2)
Vi | o, Fy % Ga(a{Fy(k/K) — Fo((k —1)/K)},C), k=1,... K.

The total intensity over the domain is A = fol A(u)du = Y4 V4, and thus the NHPP den-
sity is given by f(s) = A(s)/{Jy Mu)du} = S wpbe(s | k, K — k + 1), where wy, =
Vi/{°K | V.}. Hence, the implied model for the NHPP density is the Bernstein-Dirichlet
prior model. Based on the Dirichlet process definition, this connection holds true for any K,
that is, for any partition {S;, = [(k — 1)/K,k/K) : k =1, ..., K'} of the unit interval.

Note that, since A = Zszl Vi, we have E(A | a) = «/C, which justifies using a
general constant C' in the prior for the V, rather than taking C' = 1. That is, we wish to avoid
the conflict of large values of « that would be needed under C' = 1 for large prior expected total
intensity versus small values of « favoring non-standard intensity function shapes.

A Ga(aq, by) prior is assigned to «. In terms of model economy, the uniform distri-

bution is an appealing choice for Fy. This choice is sufficiently flexible in practice, as shown
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with the data examples of Section 2.2.3, and it also yields a form for the average intensity that
facilitates prior specification. With Fy uniform, the prior mean for the intensity is constant,

given by E(«)/C as proved below, and it does not depend on K.

K
E(\(s)le, K) = > E(Vi|a)be(s|k, K — k+ 1)

=
Il
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using the Binomial theorem. Note that the conditional prior expectation does not depend on K.
Finally, E(A(s)) = E(E(A(s) | «)) = E(«a)/C.

To explore posterior simulation under model (2.2), we consider two equivalent hier-
archical model formulations for the observed point pattern {0 < s < ... < s, < 1}. As
discussed above, there is an one-to-one correspondence between parameter vectors (V1, ..., Vi)
and {A, (w1, ...,wk)}, where wy, = F(Sy), fork = 1, ..., K. The prior distribution for (V1, ..., Vi)
in (2.2) corresponds to a DP(«, Fy) prior for F', and a Ga(a, C') prior for A. Moreover, the

NHPP likelihood in (2.1) can be conveniently expressed in terms of either parameterization:

K n K n K
eV 11 {Z Vi be(s; | k,K—k+1)} — A ] {Z F(S)) be(s; | k,K—k+1)}.
k=1

i=1 (k=1 =1 Lk=1
Working with fixed K, the intensity formulation involves parameters {(V1, ..., Vk), a}.
Here, we introduce discrete latent variables {&; : i« = 1,...,n} indicating basis configuration
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for each time event. In a Gibbs sampler setting, the posterior full conditional for each &; is a
discrete distribution with support on {1,..., K'}. Most importantly, given {&; : i = 1,...,n}
and «, each V}, follows a gamma posterior full conditional distribution, independently of {V. :
r # k}. Lastly, o can be sampled using a Metropolis-Hastings step.

Alternatively, the density formulation builds from parameters {A, F, o, K'}. In this
case, we introduce continuous latent variables {6; : i« = 1,...,n} to leverage the Dirichlet

process mixture representation for the NHPP density function:

f(si) = fic(si | F) = [ 350 L 1y (00) be(si | k, K —k+1)dF(6,).  (23)

A practically important feature of this formulation is that the number of basis densities, K,
can be estimated without resorting to trans-dimensional Markov chain Monte Carlo algorithms.
Here, the dimension of the parameter space does not change with K because the posterior distri-
bution does not involve the weights wy, but rather the random distribution F' whose increments
define the mixture weights. Posterior simulation proceeds by first sampling from the marginal
posterior of {(61,...,0,),A, «, K}, using Markov chain Monte Carlo methods for Dirichlet
process mixtures (Escobar and West, 1995; Neal, 2000). We then sample (w1, ..., wk), given
(61,...,6,),a, K, from the Dirichlet distribution implied by the Dirichlet process conditional
posterior distribution for F', given (61, ..., 6,) and a. Finally, posterior samples for the NHPP
density and intensity can be readily obtained, using their expressions under model (2.2).

We provide the full conditionals used in both posterior simulation algorithms below.
Under the intensity formulation given the number of basis K, the Markov Chain Monte Carlo

algorithm consists of Gibbs or Metropolis update from the full conditionals for &;, V;, and .
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1. &|—
S Vibe(sill, K — 14 1)

P& =jl-) =
2. Vk|— fork=1-- -K, Mk = Z?:l 5]6(51)

p(Vi|—) exp(—Vk)VkM’“V/,C(X/K_1 exp(—CVy) o ga(Vi| My, + a/K,C + 1)

K
p(al—) x ga(alaq, ba H sz’ky]aK ,C)

K
o a%Lexp(—baa)COT'(a/K) K H Vka/K
k=1

A Metropolis step is implemented on the log scale with a normal random walk proposal

density to sample from this full conditional.

The Markov Chain Monte Carlo algorithm for the density formulation of the tem-
poral Poisson process consists of either a Metropolis or a Gibbs update from the following

full-conditionals:
Let k(s|0) = > 1, 1 (k=1)/K k/K)(0)be(s|k, K — k + 1)

1. 6;)0_;, —

P(O:10—i, =) = Gate MR - o S R(sil0 )y 8- (61)
go = [ k(sil0) fo(0)d0 = 7L, be(silj, K — j + o/ K
H = z;-i; (sl )y
where n*~ is the number of unique values, {7~ : j = 1---n""} is the vector of unique
values, and {n]_ ,j = 1---n*"} the vector of the number of observations that take value
07" in the vector 6_; = {0, : | # i}.
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2. Al-

Al— ~Ga(la+n,C +1)

where n is the number of points

3. al-

plal=) o (] (a+m—1))""a™ ga(Ala, C)ga(afag, bo)
m=1
x (Pl(oe +m — 1))_1a”*r<:)A°‘_1aa°_1 exp(—bpa)

A Metropolis step is implemented with a normal proposal on the log scale.

4. K|-

n K
p(K|-) < I [ {Z Lpxot xp(0:)be(silk, K — k + 1)} (K { Kmin, -+ Kiaz})

k
K 'K
i=1 (k=1

The full conditional for K is a discrete distribution and can be directly sampled from.

With each draw in the posterior sample for {(6; - - - 0,,), o, K}, we sample {wy, : k =

1--- K} from the following Dirichlet distribution

n
{wp:k=1---K}~Dir({o/K + ;1[%;](@-) k=1---K})
1=
We obtain a draw from the posterior distribution of the intensity function A(s) and the den-
sity function f(s) evaluated at location s respectively, given {w1, -+ ,wk } via the following

functions

f(s) = 30 wpbe(slk, K — k + 1)

A(s) = Aszzl wibe(s|k, K — k + 1)
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2.2.2 Prior specification

The prior for o and the value for C' can be specified using prior guesses at the total
intensity, A, and an average intensity value, )\, over the observation window. We select b, to
provide a wide range for o, and using E(A(s)) = E(a)/C, set E(a) = aa/ba = C\. The
marginal prior for the total intensity is p(A) = [Ga(A | ,C) Ga(a | baC A\, by ) da. We use
this expression to specify C' such that the median of p(A) is equal to A.

Note the connection between o and K in controlling the shape of prior realizations
for the NHPP intensity: for fixed «, increasing K results in intensities with larger number of
modes and more local features; and, for fixed K, decreasing o favors more variability and more
localized structure in the intensities. In practice, it may suffice to estimate only « keeping K
fixed at sufficiently large values. Note that the beta densities in model (2.2) play the role of
basis functions rather than of kernel densities in finite mixture models. Also key is the Dirichlet
process underlying the prior for the weights Vj, which select the subset of beta densities that
contribute more to the intensity representation. As illustrated with simulated data in Section
2.2.3, the discrete nature of the Dirichlet process prior can effectively guard against over-fitting
if one conservatively chooses a larger value for K than may be necessary for a particular point
pattern.

A possible approach to specify K involves prior information on the peak of the in-
tensity, Amax, Without necessarily knowing where in the observation window the peak occurs.

The idea is to find KX such that Xmax matches a percentile of the prior distribution of b* Vi ax,

where Vijax = max{Vj : k = 1,..., K}, and b* is the modal value of the beta(2, K — 1) density,
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Table 2.1: Illustration of the prior specification strategy for K. Q(‘)/fga" denotes the 90th per-
centile of the marginal prior distribution for max{Vj : k = 1,..., K}, and b* the modal value

of the beta(2, K — 1) basis density.

Vmax k * Vmax
K 0.9 b 0" X Qo

20 | 23234 7.56 1755.85

30 | 208.18 11.23 2338.0

50 | 181.36 18.58 3370.34

100 | 167.38 36.97 6188.82

that is, the first member of the Bernstein polynomial basis with a unimodal density. Under the
uniform Fy distribution, the Vj, are independently and identically gamma distributed, and thus
the prior distribution of Vi, is analytically available given «; the marginal prior for Vi« can
also be readily explored through simulation. Table 2.1 provides an illustration, using the 90th
percentile of the marginal prior distribution for Vi, under a Ga(2.53,0.1) prior for «, and
with values for the peak intensity that are relevant to one of the data examples of Section 2.2.3.

As discussed in Section 2.2.1, using the intensity formulation, with fixed K, allows
for a particularly simple and efficient method to implement model (2.2). The more general
version of the model with random K can be implemented at the expense of somewhat more
complex Markov chain Monte Carlo algorithms for Dirichlet process mixtures. A discrete uni-
form or a truncated Poisson distribution with support on [K,in, Kmax] are possible priors for
K.
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2.2.3 Synthetic data examples for the temporal NHPP model

We consider two synthetic data sets generated from NHPPs with bimodal intensities.
For the first example, the intensity is A(s) = 700be(s | 3,18) + 300 be(s | 13, 8); this can be
viewed as a special case of model (2.2) with K = 20, although our prior model does not allow
for zero weights. The second data set is obtained by logit-transforming points generated from a
weighted combination of normal densities, A(s) = 400N(s | —2.2,1.0) + 600 N(s | 0.3,0.8).
We take large sizes for the simulated point patterns — n = 993 for the first, and n = 1037 for
the second example — to ensure a meaningful comparison of posterior estimates with the true
intensities.

We follow the approach of Section 2.2.2 to specify C' = 0.023 and a Ga(2.53,0.1)
prior for «, using for both data examples 1000 as the prior estimate for the total intensity, and
1100 for the average intensity. For the first example, we take K = 20, as well as K = 40
to study the implication of using a number of basis densities that is twice as large as what
should suffice. For the second example, assume we are told that the peak of the intensity has a
value around 2300. Then, referring to Table 2.1, K = 30 can be taken as the number of basis
densities, or, more conservatively, as a lower bound. We consider again a larger value, K = 50,
to check sensitivity of posterior inference results. We also implemented the density formulation
for the second example, with a uniform prior on [20, 60] assigned to K.

As shown in Fig. 2.1, the model is effective in estimating the weights that drive the
bimodal intensity shape of the two-component beta mixture. Under K = 20, it gives most

weight to V3 and V3, that correspond to basis densities be(s | 3, 18) and be(s | 13, 8), whereas
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Figure 2.1: Beta mixture synthetic data example. Results under the intensity formulation with K = 20 (left
column) and K = 40 (right column). Boxplots of posterior samples for the weights V, (first row), the beta basis
densities corresponding to the largest V}, (second row), and posterior mean (blue line) and 95% interval estimates
(light blue shaded bands) for the intensity function (third row). In the second and third rows, the red line denotes
the true density and intensity, respectively. In the third row, the black line indicates the prior mean for the intensity

function.

when K = 40, the model favors 6-7 basis densities with peaks in the same range as the two
modes of the underlying intensity. Hence, the model is able to achieve sparsity in estimation
of the mixture weights when a surplus of basis densities are used, even though Fj is a uniform
distribution. Moreover, with the exception of some increase in the width of posterior uncertainty
bands, inference results for the intensity function are similar under the two different choices for

K.
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Figure 2.2: Logit-normal mixture synthetic data example. From left to right, histogram of the simulated time
points, and posterior mean (blue line) and 95% interval estimates (light blue shaded bands) for the intensity function

under K = 30, K = 50, and K random. The red line in the last three panels denotes the true intensity.

This is also the case with the posterior inference results for the logit-normal mixture
data example; see Fig. 2.2. Under the density formulation, the posterior median for K is 36,
with the 95% credible interval given by [22,56]. The intensity function under random K has

similar point estimate and a slightly tighter uncertainty band compared to that under K = 50.

2.3 Modeling approaches for spatial Poisson processes

We begin with the case of a regular domain for the spatial NHPP, taken without loss
of generality to be the unit square, such that s = (, y) € [0, 1]2. The extension of the Bernstein
polynomial basis consists of products of beta densities. More specifically, the basis density with

index (ky, ky), for ky, ky = 1,..., K, is defined as
Orey ok, (T,y) =be (x| kg, K —ky + 1)be (y | ky, K —ky + 1), (2,9) €[0,1]°. (2.4)

Although the number of basis densities may be different in the z and y dimensions, we use the

more parsimonious form with K, = K, = K.
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Then, we can extend model (2.2) to the following model for spatial NHPP intensities

over [0, 1]%

K
)\(l’, y) = Z Vkm,ky ¢k$,ky (CC, y)v (33, y) € [O’ 1]2
Ea,ky=1 (2.5)

Vi sy | o Fo ™ Ga(aFy(Sk, ), C)s kurky = 1,0, K
where Sy, &, = [(ke — 1)/ K, ks/K) x [(ky — 1)/ K, ky/K), and Fy(Sk, k,) is the probability
of Sk,,k, under a specified distribution F on [0, 1]?; in particular, Fo(Skak,) = 1/K 2 under
the uniform distribution for Fyj.

Again, the total intensity over the domain is readily obtained as A = fol fol Mz, y)dzdy =
Zﬁ,kyzl Vi k,» and the NHPP density is given by f(x,y) = Zka,kyzl Wiy ky Phiaiey (T, 1),
where wi, k, = Viak,/ {th ky=1 Vie .k, }- The implied prior distribution for the mixture
weights {wg, r, } corresponds to constructing them through wy, x, = F'(Sk, k,), Where F' is
a random distribution on [0, 1]? assigned a DP(«, F)) prior.

We thus retain the connection between the intensity prior model in (2.5) and the two-
dimensional Bernstein-Dirichlet prior model for the NHPP density, as well as the equivalent
hierarchical model formulations for the data. Again, the implied Ga(a, C) prior for A ensures
the coherence between the intensity and density prior models, the latter comprising parameters
{A, F,a, K}. Extending the approaches outlined in Section 2.2.1, posterior simulation can
be implemented using either the intensity or density formulation. The prior mean intensity is
E(A(z,y)) = E(«)/C as proved below, and thus the prior specification approach of Section

2.2.2 can be extended to model (2.5).
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K K
EQA(2,9) |0, K) = Y Y E(Viy, | @) be(@|ke, K — ky + 1)be(y|ky, K — ky, + 1)
2=1ky=1
K K
> > be(alke, K — ko + 1be(ylky, K — ky + 1)
kp=1ky=1

o

als Qle
=

using the fact that K1 Zan:1 be(s|m, K —m+ 1) = 1, which is essentially a restatement of
the Binomial theorem.

To achieve our main objective of flexible inference for NHPP spatial intensities recorded
over irregular domain D C [0, 1]2, we propose two different modeling approaches. Under the
first model, presented in Section 2.3.1, the intensity formulation is motivated by truncating
over D the NHPP density f(z,y) defined on [0, 1]2. The second model, developed in Section
2.3.2, builds the basis representation for the intensity through the corresponding density which
is defined as a mixture of truncated beta densities over D with weights induced by a random
distribution ' on D. In both cases, the Bernstein polynomial prior structure is especially at-
tractive to model spatial point process intensities over irregular domains, a practically relevant

problem that, arguably, has not been fully addressed in the Bayesian nonparametrics literature.

2.3.1 The intensity model

Under the first modeling perspective, the representation for the NHPP intensity A\p(x, y)

over irregular domain D is revealed by the expression for fp(x,y), the NHPP density truncated
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on D. In particular,

K

f(z,y) Vi iy B .
fo(z,y) = = Y ko, (T,9), (z,y) €D
[ Jp f(u, v) dudv km%y:zl Zka,kyzl Vo oy Blew iy ’

(2.6)
where By, r, = [ [p Pkak, (2, y) dzdy, Dty iy (T:Y) = Pk ke, (2,Y)/Br, 1, are the basis den-
sities truncated on D, and we have used the fact that wy, &, Bk, ,/ {Zg ey=1 Whe By, ky } =

Viewky Bl by / {Zg k=1 Vi ,ky Bk ky, }- The implied model for the intensity function is:

K
Ap(z,y) = Z Viea oy Bl oy Oy o, (@:9),  (2,y) €D (2.7)
ko hy=1

where Vi, &, | a g Ga(a/K?,C), for kg, ky = 1,..., K, taking the uniform distribution for
Fp, and placing a Ga(aq, by) prior on c.

Evidently, (2.5) and (2.7) agree when D is the unit square. Note that By, x, will be
small for basis densities with significant mass outside D. Hence, although model (2.7) uses all
K? basis densities, the constants Bk, k, provide an additional adjustment to the one applied
by the random coefficients Vi, r,. The overhead cost of computing the normalizing constants
Bk, k, is very small, since, with fixed K, they need to be computed only once.

For posterior simulation, we introduce a pair of latent variables, (;, n;), for each point
in the spatial point pattern, {(x;,y;) : ©« = 1,...,n}, to identify the corresponding basis density.

Then, the hierarchical model for the data can be written as:

[y} | VA(&m)} ~ (T sy 21 XP(=Vert, Brour,)) Ty Ap 67, ()
iid. Viw ey Bhy .
(&i,mi) |V~ Zsz,kyzl %Dkky Oha ky) (i), i=1,.,m

@,V ~ Ga(a | aa;ba) [Tk, 4,1 Ga(Vi b, | aK72,0)
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where V = {V}, ky - ky,ky =1,..., K}, and Ap is the total intensity over the irregular domain,
Ap = [ [ Ap(z,y) dady = Zﬁ’kyzl Vg ky By Ky -

As with models (2.2) and (2.5), the form of the NHPP likelihood normalizing term
implied by the intensity model (2.7) results in efficient posterior simulation with remarkably
simple updates for parameters {V, r, }: given the (£;,7;) and «, the Vi 1, are conditionally
independent and gamma distributed. { By, r,, kz, k, = 1--- K} can be computed given K and
D before running the Markov Chain Monte Carlo algorithm to save computation time.

Given the number of basis K, the Markov Chain Monte Carlo algorithm consists of

Gibbs or Metropolis update from the full conditionals for {&;, 7}, Vi, x, and o

1. The full conditional for {;,7;} are discrete distributions

Vinnbe(zim, K —m + 1)be(y;in, K —n +1)
qu 1 V;? qbe(xl’pv K—-p+ 1)be(yz’% —q+ 1)

p(& =m,m =n|-) =

2. The full conditional for Vi, x,, kz,ky = 1--- K are independent Gamma distributions,
which can be sampled directly from in a vectorized fashion. Let M, ., be the number of

latent variable pairs (;, 7;) in step 1 that take value (k, ky).

n K
Viw by Bl i .
P(Vig ky | —) o< exp(—Vi, by Bro k) HAD Z #&khky)(&,m)(bkz,ky (w4, y3)

i=1 K ky=1

n
oc exp(—Vi, ky Bk k) H (View oy By 1oy ) 2ok ©M g (V4 1o/ K2, C)
=1

o< 8a(Vi, sy [ My i, + 0/ K*,C + By, 1)
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3. The full conditional for « is

K
plal-) o ga(alan,ba) [ ea(Vi,k,laK2,C)
ko ky=1
2 K 2
o o Lexp(—bya)COT () K2) 7K H Vkifi;
kz,ky=1

A Metropolis step is implemented on the log scale with a normal random walk proposal

density to sample from this full conditional.

In contrast to models (2.2) and (2.5), the NHPP density in (2.6) does not follow the
Bernstein-Dirichlet prior. Consequently, we do not have a Dirichlet process mixture repre-
sentation for the hierarchical model for the data, which allows estimating K without trans-
dimensional posterior simulation algorithms. Therefore, practical implementation of model
(2.8) requires specifying K. In practice, we recommend sensitivity analysis for the value of K.
With K selected, the approach of Section 2.2.2 can be used to specify the prior for o and the
value for C. The prior mean of the intensity function is again given by E(Ap(z,y)) = E(a)/C
as shown below, and, although Ap no longer follows a gamma prior distribution, given «, its

marginal prior can be easily developed by simulation.
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2.3.2 The density model

Here, we seek to develop a model for the irregular domain intensity that corresponds
to a Bernstein-Dirichlet prior for the associated density, in the spirit of models (2.2) and (2.5).
To this end, we define directly the density fp(x,y) as a mixture of truncated beta basis densities:

folz,y) = > wig Gho,(@y), (v.y) €D (2.8)
(kx,ky)GJK

where Jx = {(kz, ky) : Sk,k, N D # 0} is the index set for all non-empty intersections,
Szz’ky = Ska,k, N D, of the unit square partitioning sets {Sk, x, : kz, ky = 1,..., K} with D.
The mixture weights are defined as wy, ky = F (SZI ky), where F' is a random distribution on
D following a DP(«, Fp) prior, with F{ taken to be the uniform distribution on D.

We now define the model for the irregular domain spatial intensity as

AD(‘II’,7 y) = Z th“k,u ¢217ky (.’L’, y)? (CU, y) €D
(hosbogyei (2.9)

* ind. *
Vik, la ”L Ga(aFo(Sy, 1, ), C)s (ks ky) € Ji
such that the density fp(x,y) = Ap(x,y)/{/ [p Ap(u,v) dudv} follows the prior model in
(2.8). Again, the key link between parameterizations {V;* | : (kz, ky) € Ji} and {Ap, {wy . -
(kz, ky) € Jx}} is the practical expression for the total intensity Ap = [ [ Ap(z,y) dedy =
Z(kz,ky)eJK Vi i, and its Ga(a, C) prior implied by (2.9).
For a spatial point pattern {(z;,y;) : i = 1, ...,n} recorded over D, we can write the

NHPP likelihood in terms of either the intensity of density formulation:

n

exp (— D (ko ey €T Vk*w,ky) l:[1 {Z(kz,ky)eJK Vi by P e, (T yi)}
= exp(~Ap) Ap [T {Z e irese FOSt ) Gty i) | -
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To explore the posterior distribution for {Ap, F, a, K} under the density formulation, we in-

troduce bivariate continuous latent variables {z; } to write the hierarchical model for the data:

{(zi,vi)} | {2z}, Ap, K ~ exp(—Ap) H?:l Ap ka,kyGJk lszzyky (zi)gbzz,k:y (x4, yi)
(':C'L?yl)7zi€D, zi‘sz/L\JdF7 Z’:l...jn
F | a ~DP(a, Fy) Fy(-) = Unif(D)

Ap | o~ Ga(a,C) a~ Ga(a | ag,be) K ~7(K | {Kmin, " , Kmax})
(2.10)

where Ap | a ~ Ga(a, C), with a Ga(a,, b,) prior placed on «, and with a discrete uniform
or a truncated Poisson prior distribution for K with support on [Kyin, Kmax]. The posterior
simulation method is more involved than the one for the intensity model of Section 2.3.1, but it
allows for estimation of K without trans-dimensional computational techniques.

The Markov Chain Monte Carlo algorithm consists of either Metropolis or Gibbs

update from the following full-conditionals:

1. z;]z—;, a, K, where z; is the bivariate continuous latent variable.

Let k*(sil2i) = 2k, k,)e ]lsiz,ky (z) Wy, g, o Where Wi o o= ¢ (@i i) is a

constant.

33



k* i *— _ _
Plzilzi 81) = el I -l S K (sil2) )0y 6 - (20)

= qobma(z|s;) + aqolJrH Z;ZI k*(si|z;_)nj_5z;_(zi)
qo0 = fk*(si|z)f0(z)dz = Z(kz,ky)eJk Wl;:,ky,i' | S*m,ky | /D]

Q(2]8:) = 2 (ks k) Wgz,ky,iqal]ls,’;wy (2) D]

wr o1SE |
_ Z ka,ky, i kg, ky N (z) | S* ‘—1
(ko ky) €Tk 350 Wy IS T Sk iy ki ky
_ n* 7% | ax— —
H =737 1 k" (sil2] )n;
where n*~ is the number of unique values, {z;f_ : 7 =1---n*"} is the vector of unique

values, and {n;,j = 1---n""} is the vector of the number of observations that take

value 2 in the vector z—; = {z : [ # i}.

. Ap|—

Ap|— ~ Ga(a+n,C +1)

where n is number of points.

. al—

plal—) o ( H (a+m —1))"ta™ ga(Ap|a, C)ga(alag, bo)
m=1
o ( H (a4+m—1))"ta™ IiZ)A%_loﬂol exp(—bo)

m=1

A Metropolis step is implemented with a normal proposal on the log scale.
. K|—

n
pEI=) o [T Do sp,, Wi ki ¢ T {Kmin, -+ s Kinas })
i=1 | kg,ky€JK

The full conditional for K is a discrete distribution and can be directly sample from.
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With each draw in the posterior sample for {Ap, {z;}, o, K'}, we obtain a draw from
the posterior distribution of {w}; ky - (kg, ky) € Ji } by sampling from the following Dirichlet

distribution:

(W, ey =1+ K}~ Dir({af | St g, [+ sy, (20) by =1 K})
=1

We obtain a draw from the posterior distribution of the intensity function A\p(s) and the density
function fp(s) evaluated at location s = (z, y) respectively, given {w;zvky tkpky=1---K},

via the following function

I(, ) = Xtk k) edic Who ey Phia ey (T:Y)
Ap(z,y) = Ap Z(kz,ky)eJK Wy ey Pl oy (z,9)
The marginal prior for the total intensity is p(Ap) = [Ga(Ap | «,C)Ga(a |
Ao, ba ) da. Under model (2.9), there is no closed-form expression for E(Ap(z,y)), but E(«) /C

is an approximate lower bound for the prior mean intensity as illustrated below.

aFo(Sg, k) .
E(A'D(‘r7y) ‘ «, K) = Z T’y ¢kz,ky(x7 y)
(kz,ky)GJK

(07

Q

1 *
Z 2 ¢k1,ky (z,y)

(kzaky)EJK

o 1 N
> 6 Z K2 Bk,c,ky ¢kx,ky (557 y)
(k:x,ky)GJK
K K

%% Z Z %Bkz,kyﬁz,ky(xvy)

K
«
- C Z — be(x|ky, K — ki + 1)be(y|ky, K —k, +1) =

Qle

In step 2, we use the fact that S; ky is the overlap between the K x K unit square partition

set Sk, k, and the irregular domain D, and will have area either exactly equal to 1/K 2. when
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Sp. ky = Sk, k,» OF area that can be approximated by 1/K 2. In step 4, we use the fact that
By, k, = 0 for (ksz, ky) ¢ Ji. With this caveat, the approach of Section 2.2.2 can be used to
specify the prior hyperparameters for a and the value for C. The earlier approach to specify K

can be used here to guide the choice of the support for the prior on K.

2.4 Synthetic data examples

2.4.1 Examples over regular domain

We study the inference results under the intensity model over the unit-square to exam-
ine the model’s capacity to capture the so-called "banana-shaped" spatial density which demon-
strates spatial correlation between the X and Y dimension. The spatial Bernstein density is a
product of two independent univariate beta densities. Therefore, these spatial Bernstein densi-
ties do not account for the spatial correlation when used as basis functions. Our hope is that with
enough such basis functions and random weights informed by the data, our model can capture
spatial correlation using the mixture.

We design a synthetic example where the true NHPP density is a mixture of two
bivariate Gaussian densities with positive correlation coefficient parameters, transformed to the
logit scale. The total intensity over the unit-square is 2000. We apply the intensity model
with a Ga(0.1, 0.005) prior for o, C' = 0.01 and K = 20, 30, 40 respectively. Following the

prior specification strategy in Section 2.2.2, we compare the prior guess for the intensity mode
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A = 16000 to the quantity b*?QF'4* to calibrate the value for K. We conclude that a good prior
guess for K is 30.

The model is capable of capturing the banana shape overall but performs best when
K = 30. Fig. 2.3 shows the comparison between the posterior mean estimate for the density
function and the true density used in simulation under different values of K. The point estimate
under K = 20 does not capture the elliptical contour near (0.25,0.25) well but shows great
improvement under K = 30. Under K = 40, we observe clear diagonal elliptical contour near
(0.25,0.25) in the point estimate. However it also includes additional local modes that might
suggest over-fitting. Following our prior specification strategy, we conclude that K = 30 is

enough to capture the spatial correlation in the NHPP density shown in this example.

2.4.2 Examples over irregular domain

We study inference results under both the intensity and density model, using point
patterns generated under three different scenarios for the irregular shape of the spatial NHPP.
The synthetic point patterns are plotted in Fig. 2.4, and the true intensities, as well as their corre-
sponding polygonal domain, are shown in Fig. 2.5. For cases (a) and (b), the true NHPP density
is a mixture of two bivariate logit-normal densities, truncated over the respective domain, which
results in a unimodal intensity. Case (c) arises from truncating a mixture of bivariate beta den-
sities that accumulates most of its mass at the (0, 1) and (1, 0) corners of the unit square.

For all three cases, the intensity model (2.8) is implemented with C = 0.05, a
Ga(2,0.01) prior for «, and with K = 20. The posterior mean and uncertainty estimates

reported in Fig. 2.5 demonstrate that the model recovers well the underlying intensity shapes

37



True A(D/A Density posterior mean; K = 20 Density posterior range; K = 20

1.00
0.75
> 0.50
0.25
0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X
2 4 6 8 2 4 6 8 03 06 09
True A(D/A Density posterior mean; K = 30 Density posterior range; K = 30
1.00 1.00 1.00
0.75 0.75
> 0.50 > 0.50
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X
2 4 6 8 2 4 6 8 04 08 12 16
True A(D/A Density posterior mean; K = 40 Density posterior range; K = 40
1.00 1.00 1.00
0.75 0.75 0.75
> 0.50 > 0.50 > 0.50
0.25 0.25 @ 0.25
0.00 0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X
2 4 6 8 2 4 6 8 05 1.0 15 2.0

Figure 2.3: Results for synthetic data example over regular domain with K = 20 in the first row, K = 30 in the
second row and K = 40 in the third row; the first column shows the true NHPP density, second column the posterior

mean for the NHPP density and third column the 95% credible interval length.
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Figure 2.4: Synthetic spatial point patterns for the irregular domain simulation study. The size of each point

pattern is shown in the corresponding panel.

over the different polygons.

We also applied the density model (2.10), using for all three data sets, a Ga(5,0.1)
prior for a, C' = 0.01, and a discrete uniform prior on [5,25] for K. The posterior probability
for K at its posterior mode was: Pr(K = 13 | data) = 0.89 in case (a), Pr(K = 12 | data) =
0.99 in case (b), and Pr(K = 9 | data) = 0.81 in case (c). The posterior mean and uncertainty
estimates under the density model were similar to the ones reported in Fig. 2.5 under the
intensity model.

As an additional illustration, we consider a point pattern of size n = 303 drawn from
a NHPP with density 0.7be(z | 4,17)be(y | 10,11) + 0.3be(x | 12,9)be(y | 4,17) truncated
to the triangle with vertices {(0.01,0.01), (0.2,0.9), (0.9,0.1)}, and with total intensity 300.
Here, the truth is designed to resemble the intensity model with K = 20, and we test the
performance of the density model in estimating K and other NHPP functionals.

Model (2.10) is implemented with a Ga(2, 0.01) prior for o, C' = 0.01, and a discrete

uniform prior for K with support on [15, 25]. The posterior mean and uncertainty estimates in
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Figure 2.5: Results for the data in Fig. 2.4 under the intensity model. The left panel shows the true intensity
function, the middle panel the posterior mean intensity estimate, and the right panel a posterior uncertainty estimate
in the form of the difference between the 95th and 5th percentiles of the posterior distribution for the intensity

function.
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Figure 2.6: Results for the synthetic spatial point pattern generated from NHPP density 0.7 be(z | 4,17)be(y |
10,11) + 0.3be(z | 12,9)be(y | 4, 17) truncated to the triangle with vertices {(0.01,0.01), (0.2,0.9),(0.9,0.1)}.
The left panel includes the true density. Based on the density model, the middle panel plots the posterior mean
density estimate, and the right panel an uncertainty estimate given by the difference between the 95th and 5th

percentiles of the posterior distribution of the density function.

Fig. 2.6 show that the underlying bimodal density shape is recovered well, taking into account
the moderate size of the point pattern. The posterior mean for the total intensity is 301.1, and the
95% posterior credible interval is given by (267.3,334.3). The 95% posterior credible interval
for K is [19,25], and the posterior mode is 20, with Pr(K = 20 | data) = 0.46. We note that
increasing the size of the simulated point pattern results in posterior distributions for K that are

more concentrated around K = 20.

2.5 Boston crime data analysis

For an illustration with real data, we consider the point pattern of n = 1251 locations
in the city of Boston where vandalism occurred during the second quarter of year 2017; see the

top left panel of Fig. 2.7. In general, spatial point patterns of crime depict more clustering than
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what a NHPP can model. However, we use such data here to illustrate the spatial NHPP model
over a non-trivial irregular domain, including model checking of the NHPP assumption.

The Boston City crime data and the Boston city boundary shape file in longitude
and latitude format are publicly available online (Jain, 2018; BostonGIS, 2018). We use the
R rmapshaper package (Teucher et al., 2021) to smooth this complicated boundary while
retaining its key spatial topology. The simplified boundary in the form of Multipolygons is
then mapped to a subset of the unit square. To process the raw data, we remove entries with
geo-location as NAs, project the vandalism incidence locations from longitude and latitude into
Northing and Easting, and finally map the crime locations and city boundary points to the unit
square.

We focus on inference results under the density model, implemented with C' = 0.01,
a Ga(5,0.1) prior for «, and a truncated Poisson prior for K with mean 20 and support on
[20, 60]. Fig. 2.7 plots posterior mean and uncertainty estimates for the intensity of vandalism
incidences. The posterior mean for the total intensity of vandalism in the second quarter of
2017 is 1234, with the 95% posterior credible interval given by (1167,1303). The posterior
distribution for K has effective support on [36, 52] and posterior mode at 40 with Pr(K = 40 |
data) = 0.34.

For graphical model checking, we consider predictive residuals (Leininger and Gelfand,
2017a), defined as Npred(B) — Nops(B), where Nops(B) and Npreq(BB) are respectively the ob-
served and predicted number of points in B, a subset of the spatial point process domain D. To
sample from the posterior distribution of Nyreq(13), we draw from the Poisson( [ f,; Ap(z,y) dzdy)

distribution for each posterior realization of A\p(x,y).
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Figure 2.7: Boston crime data: vandalism in the second quarter of 2017. The observed point pattern is shown
in the top left panel. Under the density model, the top right panel plots the posterior mean intensity estimate, and
the bottom left panel the difference between the 95th and 5th percentile of the posterior distribution for the intensity

function. The bottom right panel plots the posterior mean estimates for the predictive residuals.

We use the predictive residuals mainly as a graphical diagnostic tool to identify re-
gions with potential misfit, and provide only qualitative comparison between models. Baddeley
et al. (2005) defines a class of classical residuals for spatial point process and provides the cor-
responding means and variances, which can be used to calibrate such residuals. They define

the raw residual, referred to later as the realized residual by Leininger and Gelfand (2017a),
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as Nopbs(B) — [5 A(z,y)dxdy. We follow the advice by Leininger and Gelfand (2017a) and
use the predictive residuals defined above instead of the realized residuals, since the credible
interval for the latter is not expected to achieve empirical coverage of 0. Notice that the raw
residual essentially compares the observed count to the expectation of it in 5 and does not ac-
count for the additional variation from sampling. The predictive residuals however achieves
an apples-to-apples comparison between observed counts and predicted counts and provides
natural interpretation.

In general, lack of fit may be due to the NHPP assumption for the point process that
generates the particular point pattern and/or the model used for the NHPP intensity. A flexible
prior probability model for the NHPP intensity is practically useful in that it allows focusing
discrepancies in the residuals on the NHPP assumption.

To implement model checking with predictive residuals, we create a 20 x 20 grid over
the unit square and select the subset of these 400 square regions that overlap with the Boston
city boundary D as the target regions to cover the entire Boston city. The bottom right panel
of Fig. 2.7 plots the posterior mean estimates for the predictive residuals. The residuals in
regions near the city boundary are evaluated based on only the subsets that overlap with D.
This residual analysis suggests a decent fit of the NHPP model. It is perhaps not surprising
that the sub-regions with the more pronounced non-zero residual estimates correspond to parts
of the city where the data suggest clustering, for which a more general point process than the

NHPP would be expected to provide better model fit.
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2.6 Discussion

We have presented two models for spatial NHPP intensities over domains with irreg-
ular shapes. To our knowledge, this is the first treatment of this practically relevant problem
with methodology that supports general intensity function shapes and allows for full Bayesian
inference, while avoiding any type of approximation of the NHPP likelihood.

In the more commonly studied setting of a regular domain, the two modeling ap-
proaches result in the same formulation for the NHPP intensity, which corresponds to a Bernstein-
Dirichlet prior for the associated NHPP density. Hence, as a useful byproduct of the method-
ology, we establish a connection between density and intensity estimation under Bernstein-
Dirichlet priors. Relative to existing approaches that model directly the intensity function over
regular domain, the proposed method arguably offers a substantially more practical inference
framework. The prior model for the intensity function can be equivalently represented in terms
of a prior for the total intensity over the observation domain and a prior for the density function.
In contrast with related existing methods, the priors for the NHPP density and the total intensity
are guaranteed to be compatible with the prior for the NHPP intensity.

The two proposed models for spatial NHPPs over irregular domains D, the intensity
model (2.7) and density model (2.9), arise from different perspectives. The former model builds
from truncating the Bernstein-Dirichlet density model over D, whereas the latter constructs the
irregular domain density as a mixture of truncated beta basis densities. The intensity model
uses all K2 basis densities {gbzz ky} and relies on random weights, further adjusted by the nor-

malizing constants By, . to select appropriate basis members in constructing the intensity
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functional form. The density model is generally more efficient in the intensity representation,
as it utilizes a subset of the K basis densities {gb;; ky }, the size of such subset determined by
the particular domain D. For settings where a value for K can be specified, possibly appealing
to empirical experience with synthetic data examples, the intensity model offers the benefit of
particularly simple and efficient model fitting. The density model affords more generality in
the inference scheme by allowing uncertainty with respect to the number of basis densities, at
the cost of a more involved posterior simulation method, which however does not require com-
plex trans-dimensional computational techniques. For both models, the intensity representation
through beta densities with specified parameters is essential for the practicality and computa-
tional efficiency of the inference methods for spatial NHPPs over irregular domains.

The two proposed models for the spatial NHPPs use only the event point pattern data
and can be extended to incorporate extra information. Here we focus on two types of additional
variables that potentially enrich the modeling: covariates and marks. The covariates under the
context of point process modeling are often spatially dependent, but are treated as fixed variable
within a pre-specified tract. For example, the population density varies over the country but is
fixed for a given county. A general approach to incorporate covariates for NHPP models is to
let the intensity function be dependent on the covariates, such that the new intensity function

takes the following form:

Mp(s,z(s) | B) = Ap(s) exp(z(s)" B)

where z(s) is a set of spatially varying covariates and 3 is the corresponding regression coef-

ficients. Ap(s) can be formulated using either the intensity or density model introduced in this
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chapter. On the log-scale, the nonparametric intensity function Ap(s) can be thought as an er-
ror term that accounts for spatial heterogeneity while the mean level of occurrence is specified
by the regression term. This approach is similar to the log Gaussian Cox process where the
intensity on the log scale has a mean dependent on the covariates and an error controlled by the
Gaussian process.

The challenge with this approach is to compute the normalizing constants. Certain
approximation is required for such computation since the total intensity, now defined as Ap =
Jp Ap(s) exp(xz(s)” B)ds, no longer has a closed-form expression. One could discretize the
nonparametric intensity Ap(s) over a fine grid over D and use Monte Carlo integration by
evaluating Ap(s) exp(z(s)”3) at the centroids of the grid cells.

A mark can be thought of as a random variable that is only generated because the
event occurs. It can be modeled with a distribution whose density factors into the NHPP in-
tensity function. For the spatial Poisson process, consider random marks y; = y,;, € M
associated with events at s;. The marked NHPP is then characterized by the intensity function
X5 (84, yi) = Ap(si)ms(yi), where my(+) is the density function for the marks. The likelihood

for the observed point pattern {(s;,y;) : @ = 1,--- ,n} can be written as

n n
Ll{(siv) 1= 1+ n}) = expl [ Ao(s)ds) [ ro (o) [ (o)
D i=1 i=1
where the normalizing constant is a result of simplification since [, [ M Ap(s, u)duds =
Jp Ap(s)ds, since mg(ys) is a density. One can combine our proposed nonparametric model

for the NHPP intensity Ap(s) and a model for the marks distribution to model marked NHPP,

as discussed in Taddy and Kottas (2012).
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The intensity model proposed in this chapter serves as the building block in models
for the more general spatial point processes, the spatial Hawkes and space-time Hawkes process.
From now on, we will refer to the intensity model for NHPP as BPNHPP. The next two chapters
explore Bayesian semiparametric modeling for the spatial and space-time Hawkes processes to

account for potential self-triggering effects of the criminal activities.
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Chapter 3

Bayesian semi-parametric modeling for spatial

Hawkes processes

3.1 Introduction and motivation

The temporal Hawkes process, first introduced by Hawkes (1971) as a self-exciting
process, is characterized by the conditional intensity function, which represents the rate of event
at time ¢ as the sum of the rate of background events and rates of events triggered by previous
events up to time t. Let H; denote the history of events up to time ¢, the intensity function
at time ¢ conditional on the history is A\(t|H:) = u(t) + >, 4 9(t — ti), where pu(t) is the
background event intensity function, and g(¢ — ¢;) is the trigger function that depends on events
prior to t.

The temporal Hawkes process has an equivalent representation as the superposition of

many generations of Poisson cluster processes conditional on the branching structure (Hawkes
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and Oakes, 1974). The Poisson cluster process, which is a special case of the general Cox
process, is defined by a parent Poisson process that describes the point pattern that serves as
the cluster centers, and an offspring Poisson process that describes the point pattern within
each cluster that is centered on points from the parent process (Daley and Vere-Jones, 2003).
The Hawkes process takes a step further and allows the offspring in each cluster to generate
their own offspring as a new Poisson cluster process. The resulting point pattern taken as the
superposition of point patterns across all generations is equivalent to a realization from a point
process defined by the Hawkes process conditional intensity function.

Specifically, the hierarchical model starts with a Poisson process with intensity z(t)
that generates the first generation of points that serve as the initial cluster centers. Then offspring
points are generated according to offspring Poisson processes with intensity function g(¢ — t;),
for each parent point ¢;. Such intensity function is often referred to as the triggering function.
The branching structure, which describes the generation and parentage for each point, can be
modeled as augmented variables in the hierarchical model. These latent variables indicate the
index for each point’s parent and represent the full branching information. Introducing these
latent variables reduces modeling the Hawkes process through the conditional intensity function
to modeling a series of Poisson processes.

Certain restriction on the triggering function is required for the Hawkes process to
have finite realization, or from the simulation point view, to stop generating further offsprings
and not to blow up. In particular, the triggering function is required to satisfy the following
condition: 0 < v = fooo g(u)du < 1, where + is referred to as the branching ratio and controls

the average number of offspring points generated in a family.
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The space-time self-exciting process provides an intermediate step to extend the Hawkes
process from temporal to spatial applications; see the review by (Reinhart, 2018). The space-
time Hawkes process is defined via a conditional intensity function

As tHy) = p(s,t) + > gls — sit —ta).
iiti<t

The background intensity function pu(s,t) controls the immigrant Poisson process; the trig-
gering function ¢(s, t) controls the offspring Poisson processes for events triggered by previous
events. Such conditional intensity function incorporates spatial proximity in the triggering func-
tion in a fashion that only partially impacts the branching structure. Just like in the temporal
Hawkes process, the order of event time in the space-time Hawkes process defines the parame-
ter space of the branching structure since only the events prior to time ¢ can serve as parent for
event at ¢. This class of model has limitations therefore in a spatial applications where the time
of event is not available, or spatial proximity directly impacts the branching structure.

Such limitations inspire the study of the spatial Hawkes process, where the branching
structure is purely based on spatial proximity without information on event time. The lack of
temporal information makes it less obvious how to define the #; in the conditional intensity,
though later we will explain that certain constraints on the branching structure still exist.

The clustering representation of the spatial Hawkes process provides better under-
standing of the process and naturally inspires a Bayesian hierarchical modeling approach. Pro-
posed by Mgller and Torrisi (2007) when modeling a general form of clustering Point pro-
cess, the General Shot Noise Cox Process (GSNCP), the clustering representation of the spatial

Hawkes process is formalized to be a superposition of a Poisson process and many later gener-
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ations of GSNCPs clustering on points in previous generations.

To our knowledge, there is no work in the literature on modeling and inference for the
spatial Hawkes processes. There is however, such literature for space-time Hawkes process. The
frequentist inference methods for space-time Hawkes processes utilize the conditional intensity
function that leads to either the likelihood (e.g. Veen and Schoenberg, 2008; Peng et al., 2005)
or the partial likelihood (e.g. Diggle, 2006). A technique called stochastic declustering infers
and labels each point as either from the immigrant process or an offspring process in an iterative
fashion. This technique has inspired a series of methods that construct nonparametric estima-
tors for the immigrant process intensity function from the immigrant points and a parametric
estimator for the offspring density (Zhuang et al., 2002; Chiodi and Adelfio, 2011), or model
the offspring density with a data-driven approach (Marsan and Lengliné, 2008). The likelihood
computation involves an integral with respect to the conditional intensity function that can be
numerically unstable, as suggested by Veen and Schoenberg (2008). Instead they propose an
Expectation maximization (EM) algorithm with the complete data likelihood defined by the hi-
erarchical formulation with the latent branching structure which proves to be numerically more
stable than maximum likelihood estimation. Rasmussen (2013) proposed two Bayesian estima-
tion methods for the temporal Hawkes process, using MCMC on the complete data likelihood,
with a Metropolis update on the branching structure within a Gibbs sampler, and a model with
augmented parameters to apply a Gibbs sampler step to the latent branching structure. From this
brief review, we notice that most approaches avoid using the conditional intensity directly due
to computation complexity and instead utilize the clustering representation to achieve inference

in a hierarchical or at least iterative fashion.
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We show that the clustering representation also exists for the spatial Hawkes process
conditional on the latent branching structure with modified constraints on its parameter space
due to the lack of natural order in space. We obtain a hierarchical formulation of the spatial
Hawkes process using its connection to the GSNCP to propose a Bayesian model framework
that incorporates the latent branching structure as part of the model to provide easy updates
in the posterior simulation (Section 3.2). Under this Bayesian framework, we present a class
of models that are permuted from three aspects of modeling choices: the shape of observation
window, the type of immigrant process, and the functional form of the parametric offspring
density (Section 3.3). We discuss model checking and model comparison techniques (Section
3.4) and demonstrate model capacity with synthetic data (Section 3.5, Section 3.6) and a real

data example on crime in Boston city (Section 3.7).

3.2 Spatial Hawkes Processes

The spatial Hawkes process (Mgller and Torrisi, 2007) is defined as the superposition
of countable generations of point processes, X = (J;~,Gn,Gpn € R2, such that the point
process for generation GG,,+1, conditional on the previous generation G, is a Poisson process

on R? with the following intensity function:

Anyr(s) = 20 (s —s5) 3.1)

s;€Gnp
where s is the location for a point in Gi,,41 and s; is the location of a point in G,,. Here, ~(+) is
a spatial intensity function for any location shift s — s;. The points in G are referred to as the
immigrants, and those in later generations, G,,,n > 1, as the offsprings. The point process that
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generates (i, called the immigrant process, is a Poisson process on R? with intensity function
1(s).

Just like the temporal Hawkes process defined as a multi-generation Poisson cluster
process, the spatial Hawkes process can be considered as the superposition of a series of Cox
processes. The Cox process is a Poisson process with a random intensity function. Mgller and
Torrisi (2005) defines the point process with intensity function in the form of (3.1) as a special
case of the GSNCP. In GSNCP, the random intensity function \(e) is defined through a point
process ® on R? x (0, 00), x (0, 00). Let v; be the set of points in ®, and € be the location of
a point from a realization from the GSNCP. The random intensity function \(€) is defined as

follows

Ae)= > iky(vie) 3.2)

(vi,7i,bi) €D

where 7; > 0 is the total intensity for the Poisson process and k, (-, ) is a kernel density
function with bandwidth b;.

The GSNCP can be viewed as a Cox process where each point v; generates offspring
independently following a Poisson point process with intensity ~;kp, (v, €). Mgller and Tor-
risi (2005) establish the connection between the spatial Hawkes Process and the GSNCP by
recognizing that G,,1|G,, in a spatial Hawkes process is a GSNCP where the bandwidth pa-
rameter b; is fixed and identical for all 4, and ® is the point process for GG, in (3.2). We follow
such construction and assume that the offspring density kernel is controlled by the same set of
parameters 6,. We thus omit the subscript b; from the offspring density function and rewrite
it as k(e|lv;,0,). We assume that the total intensity -y; is the same for all offspring Poisson
processes and denote this shared parameter as . This total offspring intensity is also known
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as the branching ratio and it directly controls how many sub-branches are spawn from a single
parent point. We change notation such that s denotes the location of a point in G, 11 and s; the
location of the j-th point in G,,. Under these assumptions, the intensity function of G,,11|Gp,

in (3.1) is simply

Ar1(s) = D Aslsji7,00) = > vk(s|s;,00) (3.3)

SjEGn SjGGn

Furthermore, by the superposition theorem for Poisson processes (Kingman, 1992), G, 1 with
the intensity A\, is the superposition of N,, independent Poisson processes, where IV, is the
number of points in G,.

Let 7 be the full branching structure that specifies the family tree across all genera-
tions. Let @ = {01, 0,} be the vector of parameters for the immigrant and offspring Poisson
process intensities. The hierarchical formulation for the spatial Hawkes process X given the

branching structure is the following:

X|T = Ufzozo Gn
Gn|Gpn-1,T = Uj NHPP(s € Oj0,) s € Gp,sj € Gr—1 (3.4)

Go = NHPP(0y)
where O is the set of points in &, generated by the Poisson process centered on location s;
in G—1. Conditional on the latent parent label j for each point in G4, the complete data
likelihood for GG, is the product of N, Poisson process likelihoods terms, each with intensity
vk(s | s4,0,), where s; € G,,. Recall that the spatial Poisson process likelihood, based on

point pattern {s1, - - - , Sp } observed in D, is fully specified by the intensity function \(s). We
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denote such likelihood by PP(- | A(s)),

PP({sy, - ,sn};)\(s))mexp(—/lDA(s)ds)ﬁ)\(si)
=1

We then obtain the likelihood for points in GG, as a product of Poisson process likelihoods as

follows:

P(Grs1, Gn) = p(Gra|Gu)p(C) = {HG PP( {3 € 0, A(5) = vh(sls; ) }p(Gn>
] (3.5)
We use this formulation to obtain the complete-data likelihood for the spatial Hawkes
process conditional on the latent branching structure constructed in a similar fashion as in the
temporal case (Rasmussen, 2013). The key is to recognize that the branching structure infor-
mation required by the likelihood is fully specified by the parent label of each point, with the
special case of immigrants with no parents. Therefore, we use [i] to denote the index for the
parent point of ¢, which indicates that point ¢ is generated from the Poisson process centered on
point [¢], and let [:] = 0 for immigrant points. Let the spatial point pattern data be denoted as the
set of locations S = {s1,---,8n}. By applying (3.5) recursively, and using O to denote the

collection of all offspring points such that O = U’_, O;, we obtain the complete-data likelihood

conditional on parent label [i] as the following

3

J

p(S| [i]) = { 1PP<{sz- [l = 5} A(ss) = vk(sirs[,-],e(,))} PP({s; ¢ [i] = 0): p(ss))

(3.6)

Notice that the last generation of points, which are the leaf nodes in the branching trees, will
have no children in reality, meaning that the offspring Poisson processes centered on these

56



points only contribute their normalizing constants to the likelihood.

There is a subtle difference between the branching structure in the spatial Hawkes
process and that in the temporal one. In the temporal case, there exists a natural order of events
implied by the timestamp of the points, since only points that occurred prior to time ¢ can be
the parent for point at ¢. Such natural order of events makes it easy to determine the valid
parent set for a given point according to chronological order, but it does not exist in spatial
point processes. The issue is that the spatial location of an event does not directly restrict
the lineage among points, which makes the parameter space for the branching structure more
complex compared to its counterpart in the temporal case. However, some restrictions on the
valid parent set of point ¢ still exist when we represent the lineage using a set of trees. Each tree
starts with a specific immigrant point as the root node and branches off hierarchically to a set of
offspring points as the descendants of such immigrant point until reaching the leaf nodes which
have no children. Based on this representation, the parent of an offspring point is the point one
generation closer to the immigrant on the same branch in the latent family tree set 7. And the
immigrant points have no parent.

Inference on this latent structure requires a valid proposal to mutate the tree structure.
Conditional on the current branching structure, such proposal needs to satisfy the following
condition: a point in the proposed tree structure cannot be the parent of any points that descend
from itself in the current structure. Fig 3.1 illustrates a comparison of valid proposal for branch-
ing structures in the temporal and spatial Hawkes processes. The observed point locations for
the temporal Hawkes process are the timestamps over the positive real line. Here the times-

tamp is indexed by point index, not by chronological order. The coordinates of nodes in the
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right panel are the locations for the observed realization from the spatial Hawkes process. The
nodes and arrows illustrate the current latent branching structures. In the temporal case, a valid
proposal for the branching structure needs to respect the chronological order. For example, the
node 2 cannot be the offspring of node 6, since t2 < tg. In the spatial case however, node 2 can
be proposed to be the offspring of point 6, since point 6 is not a descendent of point 2 based
on the current branching structure. In the temporal case, we can easily get the available parent
set for a point 4 as the set of points j with ¢£; < ¢;. In the spatial case, we need the complete
family tree 7 for each point in GGy and choose parents for ¢ from the points that are not direct

descendants from z.

t, bty ts oty tg

NN .

N

Figure 3.1: Branching structure in temporal (left panel) and spatial (right panel) point processes. In both panels,
the node’s color indicates generation (gray = Go, yellow = G1, blue = (2); the arrows suggest parent-children

relationship. The left panel shows the node location over the positive real line; the right panel over the unit square.

To sample from the spatial Hawkes process, we will follow the hierarchical model

formulation and sample G, conditional on G,, from independent Poisson processes. The
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simulation follows steps as follows:

1. Sample G from a Poisson process with intensity function p(s). We first sample Ny,
the total number of points in G, from a Poisson distribution with mean A, where A =
Jp 1e(s)ds for NHPP or simply 4 | D | for HPP. Next, we sample Ny points i.i.d from

the density function fy(s) = u(s)/A.

2. Sample GG+ conditional on points in GG, from N,, independent Poisson processes for
n = 0,1,---. The Poisson process centered on s;,7 = 1,--- , N,, has total intensity vy
and density k(s|s;, 0,). The union of realizations from the INV,, Poisson processes forms

Gp41 with size Ny 1.

3. Repeat step 2 until no further offspring is generated. For the Hawkes process to be sta-
ble, or stop generating offspring within finite generations, the branching ratio -y needs to

satisfy the condition 0 < v < 1.

3.3 Bayesian semi-parametric modeling framework for spatial Hawkes

processes

We provide model formulations for a class of spatial Hawkes processes that are as-
sumed to have strict support over some compact domain D. Such assumption implies that all
parents generate offspring points only within D. Equivalently, the parent of any offspring point
is among the observed point. Such assumption is valid for most applications where the self-

exciting behavior is effective in a small range from the parent event. For application in crime
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forecast, we can safely assume that similar crimes tend to occur in specific neighborhoods and
have limiting effects outside the city boundary.

In this section, we discuss modeling choices from the following three aspects: the
shape of the support D, the type of the immigrant process, and the choice of offspring density.
We describe the model formulation under each configuration and the corresponding posterior

simulation details.

3.3.1 Modeling for point patterns over an irregular domain D

The default choice for the domain D for a spatial point pattern is the unit square.
However, for most applications, events only occur in bounded regions within the unit square,
and such regions’ boundaries are often highly irregular. We refer to the unit-square as the
regular domain and any strict subset of the unit-square as the irregular domain. The shape of D
has significant implications for modeling the spatial Hawkes process since taking D to be the
unit-square in specific applications may violate the strict support assumption. One example is
modeling tree locations in a forest, which often has a boundary that maps to a subset of the unit
square. Choosing the boundary to be the unit-square allows offspring points to occur outside
of the forest boundary where no trees can survive in reality. On the contrary, the crime pattern
in certain cities can have support over the unit square, especially when the city boundary is
almost rectangular. From the modeling perspective, the choice of D poses constraints for the
immigrant and offspring processes model, since both immigrant and offspring Poisson densities
have the same support D. We will address how our models account for irregular domain D as a

key contribution of this work.
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3.3.2 Model for the immigrant process

The choice of the immigrant process intensity largely depends on the application. The
homogeneous Poisson process is suitable for applications where the inhomogeneity in the point
pattern is assumed to be mainly driven by offspring clustering. In these cases, it is reasonable
to assume that the immigrant point pattern is simple and sparse, whereas the offspring point
pattern is a complex result of the evolution of many generations. One example of such a use
case is the point pattern of a forest. The first generation of trees may have appeared in the
forest in a completely random fashion. The clusters of trees as observed today result from many
generations of reproduction centered on parent trees that have appeared earlier.

Alternatively, the NHPP is more suitable when the immigrant point pattern is com-
plex, and the offspring process consists of fewer generations with sparse patterns to account for
a small amount of local clustering. A good example is the locations of crimes in a city in a
given period since it is a common practice to profile crime patterns via hot spot analysis, which
suggests varied levels of crime rate dependent on location. The initial crimes are treated as a
realization from a NHPP whose intensity function captures these hot spots well. Furthermore,
the triggering effect of these initial crimes tends to fade quickly and therefore it produces fewer
generations of triggered crimes as offspring.

The ideal NHPP model for the immigrant process in a spatial Hawkes process should
provide both flexible inference and computational efficiency while accounting for the irregular
observation window in the model construction. The computational requirements come from

the fact that the NHPP serves as a latent layer in the full hierarchical model that relies on
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the Markov Chain Monte Carlo algorithm for posterior inference. Fast posterior sampling for
the latent NHPP parameters reduces the computational cost for each iteration of the posterior
simulation. Based on these considerations, we choose the intensity formulation from the model
proposed in Section 2.3.1. The model is constructed on the connection between a simple prior
placed on a representation of the intensity function as a weighted sum of beta density functions
to a Bernstein-Dirichlet process prior placed on the NHPP density function. Such connection
is the key for the model to achieve efficient posterior simulation for full Bayesian inference
while providing rich prior support for the intensity function. Lastly, the model accounts for the
irregular domain as part of the model construction at minimal additional computation cost.
Under the intensity formulation, we represent the immigrant intensity function as a
weighted combinations of the spatial Bernstein densities, ¢, &, (7,y) = be(z|ky, K — kyz +
1)be(y|k,, K —k,+1), where (k;, k) € {(1,1),(1,2),--- , (K, K)}.The model for the NHPP

intensity function is the following:

w(w,y) = Zkavkyzl Viea by Dhea ey (T, ), (2,) € [0,1]2
3.7
Vie syl ™ Ga(a/K2,C), ky ky =1+ K

This intensity model implies the following mixture representation for the NHPP den-
sity function f(w,y) = u(x,y)/ [ fig. 12 1w, y)dady = SO0 o ) wh, b, Ok, , (, 1), Where
{wk, b, } ~ Dir({ay, = a/K? k = 1--- K?}). The particular Dirichlet distribution connects
this mixture representation to a Bernstein-Dirichlet prior placed directly on the NHPP density
function. This connection achieves flexible inference using the corresponding intensity model
(3.7), since the Bernstein-Dirichlet prior has nice properties such as uniform convergence (Lev-

asseur, 1984) and posterior consistency for density estimation (Petrone and Wasserman, 2002).
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To accommodate for the irregular domain, we truncate the NHPP density function
. K -1
over the unit-square to D: fp = f(z,y)/ [ [p f(u,v)dudv =370\ Vi, k, Br, i, Ap O, 1, (T:9),
where Ap = ZkKl ky Ve ky Bk, k, and ¢* denotes the truncated Bernstein densities with nor-
malizing constants By, . Conditional on the parent label [i], we model the collection of im-

migrant points for which [i] = 0 with the following NHPP intensity function
K
(i, vi) = Z Via by Blo oy Orp e, (Tir ¥i) - (w3,93) € D, [i] =0 (3.8)
kg ky=1

Incorporating this formulation to model the immigrant intensity in the spatial Hawkes
process is straightforward. The only difference between modeling the immigrant Poisson pro-
cess and an actual Poisson process is that the observed locations in the former come from a
random subset of a larger point pattern and can change in the posterior simulation depending
on the current latent branching structure. The varying number of observations across MCMC
iterations means that the number of latent index parameters (&;,7;) also changes. This does
not cause issue for the intensity formulation, since (;,7;) are independent for ¢ conditional on
Vi, k, 10 the posterior. Alternatively, applying the density formulation becomes problematic
because the latent parameters z; are conditionally dependent in the posterior. Sampling z; from
the posterior full conditional depends on values for all z_;. There is no default value for z; in
the current posterior sample when i is not an immigrant in this iteration but becomes an immi-
grant in the next. As a result, we apply the intensity formulation to the subset of point patterns

with immigrant identity in each posterior simulation iteration and define immigrant parameter

set 01 to be {Vi, x,, @} and specify values for K and C.
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3.3.3 Offspring density choices

We consider two parametric forms for the offspring density: a bivariate beta den-
sity over the unit-square or a bivariate normal density truncated to D. Given the strict support
assumption, the bivariate beta density is only suitable for regular domain D, whereas the trun-
cated bivariate normal density can be applied to any compact domain D when proper truncation
is enforced.

The bivariate beta distribution is constructed as a product of two independent beta
densities in the  and y dimensions, each parameterized by a mode and a dispersion param-
eter. Such parameterization allows the offspring density to be centered at its parent location
(7[;), yji)) by defining the modes of the two univariate beta densities accordingly: k(s;|s[;), 7) =
beta(z;|zf;), T) beta(y;|yy;), 7) where the density function beta(-|m, 7) has mode m and disper-
sion parameter 7. The new parameters m and 7 map to the conventional beta parameterization
beta(a, b) with expectation a/(a + b) viaa = m(t —2) + 1,b = (1 — m)(7 — 2).

The offspring density under such formulation has variance dependent on the parent
location. The variance of the marginal beta distribution, V(z) = m(1 — m)(t — 2)2 + 7 —
1/(72(7+1)), depends on the parent’s location which defines the mode m. The variance of the
marginal density in the x or y dimension achieves a maximum at m = 0.5 and decreases as m
approaches 0 or 1. Thus, the effective density range is small near the boundary but large at the
center. Simulation suggests that given a small dispersion parameter, the shape of the offspring
density does not vary significantly across space.

More generally, we adopt a bivariate normal density centered at the parent location
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and truncated to the compact domain D for the offspring density. We specify the covari-
ance matrix X with three parameters, o, 0y, p, to control the spread in the x and y direc-
tion and the spatial correlation. The offspring kernel conditional on the parent location is thus
k(sils), 2) o< Ijg,ep|Na(8ils[s), X). Computing the normalizing constant in this truncated
distribution can be expensive, especially because such computation happens for all families at
each iteration of the posterior simulation. We design a special Monte Carlo routine to cache
some of the computations, which improves the algorithm’s speed remarkably. We will discuss

the details of such implementation in Section 3.3.5.

3.3.4 Model formulations

We first describe the complete data likelihood for the spatial Hawkes process condi-
tional on the branching structure. Let {[i]} be the set of latent variables to denote the index
of parent for point 7, i = 1---,n. Let k(s;|s[;,00) be the general form of a parametric off-
spring density function for observation ¢ with mode at its parent location s[; and the offspring
parameter vector 8,. Let v denote the branching ratio, i.e., the total intensity for any individual
offspring Poisson process. The complete data likelihood conditional on parent information [¢]
is given by

L(s|{[i]},01,60)
N
—exp(- [ n(sl6nds 2" [ Kuls;,0a)u) [T ntsi|6n) T] vk(silsis. 0
D —1 /D o -
J i:[i]=0 1:8,€0
(3.9

where D is the observation window, and O is the set of offspring points.
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Immigrant Process Offspring Kernel D Model Name
HPP bivariate beta unit-square HPP-Bibeta
HPP truncated bivariate Normal | irregular domain HPP-Tbinorm
NHPP bivariate beta unit-square BPNHPP-Bibeta
NHPP truncated bivariate Normal unit-square BPNHPP-Tbinorm
NHPP truncated bivariate Normal | irregular domain | BPNHPP-Ireg-Tbinorm

Table 3.1: Model configurations for SH processes.

The permutation of domain shape, immigrant process type, and offspring kernel choice
render five models as listed in Table 3.1. The following section will describe the hierarchical
model under each configuration and discuss their posterior simulation details. We will start with
a simple model, HPP-Bibeta, to demonstrate posterior updates for the latent branching struc-
ture, then proceed to describe the similar model HPP-Tbinorm with the alternative offspring
kernel. Next, we describe the augmented hierarchical model BPNHPP-Bibeta with the immi-
grant process modeled as an NHPP and the offspring kernel as a bivariate beta density. Lastly,
we describe the most complicated but most general model, BPNHPP-Ireg-Tbinorm. Notice that
when D is the unit-square, the BPNHPP-Ireg-Tbinorm is equivalent to BPNHPP-Tbinorm. We
thus skip details on this model since the immigrant and offspring process components appear in
previous configurations.

The complete data likelihood suggests that we can model the immigrant points and
offspring points separately conditional on [i] since the contributions from both processes are
separable as multiplicative terms in the likelihood. The hierarchical model can be therefore

decomposed into three parts: the model for immigrant points with [{] = O controlled by the
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immigrant intensity function u(s) with immigrant parameter 6, the model for offspring points
with [i] # 0 controlled by branching ratio v and offspring kernel parameter 6,, and lastly,
the prior for the latent variables [i]. Notice that updating [¢] for i = 1--- | N is equivalent to
sampling from the posterior full-conditional of the branching structure since the full branching
structure 7 can be mapped one-to-one to the set of latent variables [i].

For models with homogeneous Poisson immigrant processes, we focus on the third
part of the hierarchical model since the immigrant process is simple and controlled by one
parameter j(s) = pu. We now describe the prior for the branching structure 7 in terms of
summaries of [i]. Let C; denote the set of points that descend from point ¢ according to the
branching structure 7; let C denote the complement of Cj, i.e., the set of valid parent points
for point 7. A discrete uniform prior on the union of valid parent point set and 0, {0, C;},
ensures a proper prior for the branching structure, which assumes an equal chance for a point ¢
to be an immigrant point or a child of points in set C5.

The hierarchical model for a spatial Hawkes process with homogeneous Poisson im-
migrant process follows the form below with k(s;|s(;), 8) as the general form for any offspring
kernel, and F’,(ag, by) as the prior for the branching ratio  and Fg,, as the prior for the immi-

grant parameters 0,:

{sa}llil, oy, {lil} ~ exp(=p | D | =Nv) TI pUnif(s;[D) [T ~k(sils), 60)
{i:[i]=0} {i:s;,€0}

.1 ind. .
v~ Fy(ag,by), 6o~ Fp,, [i] ~ Uniform({0,Cs}).
(3.10)

The nature of the branching ratio requires its prior support to be [0, 1] for the spatial

Hawkes process to be stable. We consider two choices for F, (ag, by): the beta distribution and
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the truncated gamma distribution, where a4 and b, are the two shape parameters for the former,
and shape and rate parameter for the latter. The following section presents the MCMC detail
under each prior. We use the truncated gamma distribution in the simulation study and the real
data example due to better mixing behavior under such prior.

We now describe the parametric model for the offspring density k(s;|s;, 6,) under
the bivariate beta kernel and the truncated bivariate Normal kernel. The domain D is restricted
to the unit-square when using the bivariate beta kernel controlled by 6, = {7}. We place
a gamma prior on the dispersion parameter 7. Alternatively, the truncated bivariate Normal
kernel applies to any compact observation window D and is controlled by 8, = {0, 0y, p}.
We place inverse-Gamma priors on o, and o, with hyperparameters a,, b., a,,b,. We place
a beta prior on the transformation of the correlation coefficient p, h(p) = (p + 1)/2 to map p
from [—1,1] to [0, 1].

The posterior full conditional for the latent variable [¢] is the following discrete distri-

bution:

’Yk(si|3j790) . c
> Rsieite) I € Ci
lec¢

m([i] = j|-) = : (3.11)

M s
s kEmes J =0
leciC

Sampling from such discrete distribution can be easily achieved by evaluating both
the immigrant intensity x and offspring intensity vk (s;|s;, 0,) for all valid parents with index
J € C% fori. Concretely for each [4], a routine will first define C; by tracing down the branching
structure recursively and adding point located above ¢ in the tree structure until reaching the

node that contains ¢. Notice that 7 is included in Cj;, and CY is the complement taken with
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respect to the entire point pattern. The offspring intensity function is then evaluated at s; given
parent points indexed by elements in C. We leave the posterior updates for p,y and 6, to the
next section where we discuss implementation details.

Next we describe the models with nonhomogeneous Poisson immigrant processes.
We will use the intensity model discussed in Section 3.3.2 with parameter set {{ V%, x, }, o} and
pre-specified constants C' and K. We augment the parameter space to achieve easy posterior
updates with the set of latent variables {{;,7;} as the basis index pair for point with index
Jj € {Jj: [j] = 0}. We use ¢(s;) to denote ¢(z;,y;), where s; = {x;,y;}. The hierarchical

model for the BPNHPP-Bibeta configuration is the following:

{8}V {&mib, v Alil} ~exp(=A = Nv) [T Adgm,(ss) TI vk(silsp),7)
{i:[7]=0} 1:8; €0
m(& = Koyt = ky K, V,[i] = 0) = Vi g, /A [i] " Uniform({0, C¢})

Vi iy lo, K ~ Ga(o/ K?,C)  a ~ Ga(aa,ba) 7~ Fy(ag,by) 7 ~ Ga(ag,by)
(3.12)

where V' = {Vj, 1}, and A = ff[o’l]g p(z,y)dzdy = Zkazl Z,iizl Vi ey -

The posterior updates for {Vj, r, } and {&;,7;} conditional on the immigrant index
set {i : [i]] = O} are simple: given {&;,7;} and a, the V}, r, are conditionally independent
and gamma-distributed; given {V}, x, } and point location s;, the full-conditional for the latent
variables {&;,n;} is a discrete distribution. The update for the branching structure is again
achieved by updating [i] for ¢ = 1---, N sequentially. Here the full conditional for [7] is
also a discrete distribution with the same form as (3.11) with the immigrant intensity p(s;) =
Zsz Fy=1 Via,k, #(83) in the place of 1. The updates for o, y and 7 will be discussed in the next

section.

69



Finally we describe the most general model BPNHPP-Ireg-TBinorm, where ‘Ireg*
in the configuration name emphasizes that the domain D can be of any shape. We skip the
BPNHPP-TBinorm configuration, which can be considered either as similar to (3.12) with
modified offspring kernel, or the special case for BPNHPP-Ireg-TBinorm applied to the reg-
ular domain. To accommodate the irregular observation window D, we represent the intensity
function as a weighted sum of truncated Bernstein densities ¢f, , (s;) = B, ,lm beim;(83) and
adjust the weights Vj,_ . by normalizing constant By, k, for the Bernstein density with index

kz, ky). The hierarchical model is given below:
Y

{si}HV, {&.mit v Ali]} ~ exp(=Ap — Nv) {4_[1.]_[_0} Apdg, ,,(si) 110 SLACHEIR DY)

. 4 ind. .
7(& = koo = ky| K, {Vig i, 1, [i] = 0) = Vi i, /Ap  [i] "~ Uniform({0, C§})
Vi oy |K ~ Ga(a/K?,C) o~ Ga(aa,ba) 7~ Fy(ag,by)

¥ = {0},07,p} ~ inv-Ga(ay, b, )inv-Ga(ay, b,)Be((p + 1)/2|a,, b,)
(3.13)

where Ap = [ [, pu(x,y)dzdy = Z£7ky:1 Vis by Bho k,- The updates for V' and {&;,7;} are
again simple with conditionally independent gamma full-conditionals for V_ x, and discrete
full-conditionals for {&;,n;}. The updates for [i] assumes the same form as (3.11) with the
modification of replacing p everywhere with the nonhomogeneous immigrant intensity j(s) =
> kg Vo ey Bl ¢zz7ky(s). The updates for the offspring parameters {02, O'Z, p} will be

discussed in the next section.
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3.3.5 Posterior simulation

In this section, we first discuss the posterior full-conditional updates for the branching
ratio « and offspring parameter(s) 6,, where 6, = 7 for the bivariate beta kernel and 8, =
{02, 05, p} for the truncated bivariate Normal kernel.

The posterior update for the branching ratio requires a Metropolis step under a beta
prior and a rejection sampling step under a truncated Gamma prior. The full-conditional un-

der beta prior is 7w(y|—) o exp {—N7} 41Oy =1(1 — 7)bs—1

, where |O] is the number of
offspring points. Sampling can be achieved by a Metropolis step with proposal for the logit-
transformed + or introducing an auxiliary variable ¢ such that 7 (7, ¢|—) o< I(¢cexpi— Nﬁ/})'y‘m
4?9~ 1(1 — ~)%s~1 The full conditional for ¢ is w({|y) ~ Uniform(0, exp(—N+)) and the new

full-conditional for «y is 7(7y|(, —) ~ beta(|O] + ag,bg)I, _ 10() I We sample ¢ from a uni-
N

[y<
form distribution and « conditional on ¢ from a truncated beta distribution. We obtain poor
mixing for v with such sampling approach. Alternatively, the full conditional under truncated
Gamma prior is 7(y|—) oc 7%~ exp{—(N + bg)v}H|ye0,1)) Which can be sampled by
rejecting samples from the Gamma distribution with shape |O| + a4 and rate N + b, that do not
fall in [0, 1].

The updates for offspring kernel parameters are achieved by Metropolis steps. For bi-
variate beta kernel, the dispersion parameter 7 has full-conditional 7(7|—) o< [[;co k(8i|s[3, 7)-
gamma(T|a,b;). The update is achieved through a Metropolis step with proposal distribu-

tion as a normal centered on the current log-transformed 7 value. For the truncated bivariate

Normal density, we jointly update {02, o, p} through the transformation {log(c?),log(c7),
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logit((p + 1/2)} with a normal proposal density with covariance matrix Syne = I302,,,

The normalizing constant for the bivariate Normal density is computed numerically
using Monte Carlo approximation and therefore poses a significant computational challenge.
When evaluating the offspring density, computing the normalizing constant occurs and requires
updates when the parent location and the offspring parameters change. Two types of compu-
tation require computing the normalizing constant by Monte Carlo approximation: 1) when
updating the parent index [¢] for point 7, the offspring kernel is evaluated N — |C;| times with
parent locations in C¥; 2) when updating the offspring kernel parameter >, with fixed parent
locations, the offspring kernel is evaluated for all points with current and proposed X. We im-
plement two tricks to reduce computational cost in these two situations: in 1), we create only
one Monte Carlo sample when X is given from a bivariate Normal distribution centered at O
with covariance matrix X. For a kernel with parent location s(;}, we shift the entire MC sample
by such parent location. In 2), we cache the normalizing constant for points with the same
parent, so the normalizing constant is only computed once. These tricks turn out to be neces-
sary and efficient. Together they lead to a 300 times speed up compared to an algorithm that
computes the normalizing constant on the fly using a naive MC implementation.

Next, we describe the posterior updates for parameters of the NHPP model {Vj, x, },
and the latent variables &;,7; for [j] = 0. In the most general case where D is a subset of
the unit square, the full-conditional for {V%, r, } is a gamma distribution with shape parame-
ter Zfil D¢i—ky 7=k, [i]=0] T a/K? and rate parameter C' + By, k,- Notice that when D is
the unit-square, the normalizing constant By, k, is 1 for the corresponding spatial Bernstein

density, thus we obtain the simplified posterior update for BPNHPP over unit square with-
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out using By, x,. The full conditional for {;,7; are independent discrete distributions with
p(§ = m,n; = n|—) X Vipndmn(s;) for [j] = 0. And finally, « is updated by a Metropolis

step with Normal proposal on the log-scale.

3.4 Model checking and comparison

3.4.1 Predictive residuals over the Voronoi tessellation

We perform the posterior predictive residual check in the simulation study as the
primary method to examine the first moment inference. The predictive residual is defined as the
difference between the actual number of observations and the predicted number of observations
over a partition of the domain D. Leininger and Gelfand (2017b) suggests that the predictive
residual is preferable to the raw residual since the credible interval of the latter is not expected
to cover 0. We obtain a sample from the posterior distribution of the predictive residual by
simulating a point pattern replicate for each posterior sample. For each replicate, we compute
the predictive residual with the bth posterior sample of the model parameters forb =1--- | B
and obtain a posterior sample of predictive residual of size B.

As recommended by Bray et al. (2014), we apply the Voronoi tessellation to partition
the observation window for residual inference to avoid bias introduced by an arbitrary grid:
the distribution of the expected number of events per grid cell is skewed if the grid cell is
too small, but the over- and under-estimation can cancel out if such cell is too large. The
Voronoi tessellation partitions the observation window using a set of points such that each subset

contains only one of these points which has the shortest distance to any points in the subset. We
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report the posterior mean of the predictive residuals in each Voronoi tessellation partition in a
map. For synthetic data, the choice of points to perform the Voronoi tessellation can simply be
the immigrant points that are available through simulation. For real data where the identity of

immigrant point is unknown, we can use a clustering algorithm to identify local cluster centers.

3.4.2 Ripley’s K Function

We use the Ripley’s K function (Ripley, 1976) to examine the second moment infer-
ence under the proposed models. More specifically, we use the estimate of the generalization of
the original K function for inhomogeneous point patterns developed by Baddeley et al. (2000)
as a summary statistic to perform model checking and comparison. The inhomogeneous K
function is defined as

[llss—s;l/<r]
Kinhom(r) < Z Z )\(Si))\(sj))’r >0

8;€SNB s;€S\{s;}

for any subset B C D, where 1y is the indicator function, |B] is the area of B and A(-) is the
non-constant first-order intensity function for the finite point pattern § = {s1,--- ,s,} C R%.
We obtain a posterior sample for such K function by simulating a point pattern replicate for
each posterior sample of model parameters, and apply the inhomogeneous K function estima-
tor to the replicate. We use the inhomogeneous K function estimate using the observed point
pattern as the "truth” to benchmark the posterior mean and interval estimate of the K function.
Additionally, we examine data variability by simulating multiple point pattern replicates based
on the posterior mean estimate of the model parameters, and obtain K function estimates for

these replicates. We check whether the posterior credible interval for the K function covers the
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"truth" for goodness of fit, and compare such coverage across multiple models applied to the
same data to select the better performing model.

We use the K function more as a summary statistic than a hypothesis testing tool.
The goal for such comparison between K function estimates using real data vs. simulated
replicates is not to test whether the HPP or NHPP assumption is valid for the point process, but
rather how similar these estimates are under the same assumption. The K function estimates
of the point pattern replicates serve as summaries of the second moment inference for different
models and can be compared against the summary based on the observed data to examine model
fit. The reasons that lead to difference in K function estimates between the replicated data
under a certain model and the observed data may come from different aspects of modeling: the
model assumes the wrong stochastic process; the model assumes the right stochastic process
but performs the estimation poorly, etc. Thus, we do not use such comparison to test whether
the observed data is generated from the point process assumed by the model. The K function
is implemented through accessing the Kest . £ft and Kinhom function from the spatstat

package in R (Baddeley and Turner, 2005).

3.5 Simulation Study for the BPNHPP-Bibeta model

In this section, we present two simulation studies: the first one with HPP as the true
G, and the second one with NHPP as the true Gy with a unimodal logit-transformed bivari-
ate Gaussian immigrant density. The true offspring densities in both cases take the form of

aforementioned bivariate beta centered on the parent location with parameter 7 that controls
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dispersion. We consider three models: BPNHPP , HPP-Bibeta model, and BPNHPP-Bibeta
formulated in (3.12). The BPNHPP model refers to the intensity formulation for the spatial
