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Abstract

Bayesian nonparametric modeling for spatial nonhomogeneous and clustered point

pattern data

by

Chunyi Zhao

This work provides a Bayesian nonparametric modeling framework for spatial point processes

to account for the irregular domain over which the resulting point pattern occurs in the model

formulation while balancing flexible inference with efficient implementation. We start with

models for the spatial Poisson process, which assumes independence among points given the

number of occurrences, and progress to models for Hawkes processes over space and space-time

that capture the self-triggering behaviors and relax the independence assumption. We develop

nonparametric Bayesian modeling approaches for Poisson processes using weighted combina-

tions of structured beta densities to represent the point process intensity function. For a regular

spatial domain, i.e., the unit square, the model construction implies a Bernstein-Dirichlet prior

for the Poisson process density, which supports flexible inference about point process func-

tionals with theoretical guarantees. The key contribution is two classes of flexible and compu-

tationally efficient models for spatial Poisson process intensities over irregular domains. We

address the choice or estimation of the number of beta basis densities and develop methods for

prior specification. For the spatial Hawkes process, we develop a semi-parametric modeling

approach, leveraging its clustering representation defined as the superposition of an immigrant

Poisson process and several offspring Poisson clustering processes centered on parent points

ix



generated by earlier generations. We apply the model for the Poisson process developed ear-

lier to the latent immigrant Poisson process and complete the hierarchical model for the spatial

Hawkes process with parametric formulations for the offspring Poisson processes and a model

for the latent branching structure that specifies lineage among points. Finally, we develop a

nonparametric model for the spatial offspring Poisson process under the assumption of spa-

tial isotropy, which reduces modeling for the spatial offspring density to that for the spatial

offspring-parent distance density. Such construction allows the model to be free from the im-

plied tail behavior constraints imposed by existing parametric options for the offspring density

kernel. We incorporate such a method to model for space-time Hawkes processes. For all

methods developed in the dissertation, we design posterior simulation algorithms for full infer-

ence on key point process functionals and model checking techniques to examine the model fit.

Model capacity is demonstrated with numerous simulation studies, and we focus on real data

examples using crime point patterns from the city of Boston.
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Chapter 1

Introduction

Spatial point pattern data is a special case of spatial data for which both the number

and locations of events are random. This feature differentiates spatial point pattern data from

spatially referenced data where locations, whether in the form of coordinates or areal units, are

considered fixed as an index for the corresponding response. Modeling spatial point pattern data

from a probabilistic modeling point of view often treats the point pattern as a realization of some

underlying point process, whose stochastic mechanism specifies both the total number of events

in a subset of the domain and the locations of these events. Illian et al. (2008) provides a good

introduction to modeling for various spatial point processes. Specifically, modeling is achieved

via the construction of the key functionals that control the point processes, namely the intensity

functions. The intensity functions are non-negative, locally integrable, and can be informally

interpreted as providing the rate of occurrence in an infinitesimal local neighborhood.

When the timestamps of the events are also available, the space-time point pattern

{xi, yi, ti} is treated as a realization from some space-time point process. Diggle (2017) cov-

1



ers major methodologies in testing, modeling and estimation approaches for space-time point

patterns and related application in biological science and ecology. The chronological order of

events allows additional assumptions that enable historical events to impact the current rate via

a more general form for the intensity function. When assumed to take an additive form, such

intensity function, referred to as the conditional intensity function, defines a type of point pro-

cess that captures so-called self-exciting or self-triggering behaviors, meaning that the current

rate of the event is higher as a result of earlier events.

Modeling the intensity functions can be done via a parametric or nonparametric ap-

proach, where the main difference is whether to assume a particular functional form for the

intensities or allow the data to inform the functional form by leveraging flexible function struc-

tures. The parametric model can be viewed as a special case for the nonparametric model, as the

latter provides structures that can emulate the pre-specified functional form of the former, given

sufficient support from the data. Notice that both approaches require a finite number of param-

eters that specify the intensities, despite the unfortunate misnomer "nonparametric" suggesting

no parameters or the widespread belief that the nonparametric methods estimate infinitely many

parameters. Learning is achieved by estimating and providing uncertainty quantification for the

intensity parameters either by optimizing a certain loss function, here the likelihood function,

or a Bayesian approach that learns the distributions of these parameters conditional on observed

data.

This work takes a Bayesian approach to achieve inference and prediction. The appeal

of the Bayesian approach is that the posterior distribution, i.e., the joint conditional distribu-

tion of parameters given data, provides both point estimation and uncertainty quantification in

2



one step. The posterior distribution often does not have closed-form expression, especially for

complex models. Inference is achieved by summarizing samples from the posterior distribution,

obtained using the simulation-based algorithm Markov Chain Monte Carlo (MCMC). Such al-

gorithm sequentially traverses the posterior parameter space in a manner that, once convergent,

the output of each iteration, i.e., a vector of parameter values, is a draw from the posterior distri-

bution. Prediction is done via simulating from the model for each posterior sample to form the

posterior prediction sample, which is then summarized to provide point and interval estimation.

The challenge is getting the posterior sample. The MCMC algorithm is often more compu-

tationally expensive since the convergence of the chain requires a large number of iterations.

The computation demand for Bayesian inference is substantial to the point that it has become a

crucial factor in the model formulation and implementation.

The contribution of this work is a Bayesian nonparametric modeling framework to

achieve flexible inference for important classes of spatial point processes over the irregular

domain. In this chapter, we first introduce the real data example and the substantive questions.

We then present the motivations and objectives for each point process model in this dissertation.

We use the crime point pattern data in Boston as the primary real data example in this

dissertation. The raw data contains the spatial and time information for over 30 types of crimes

from 2017 to 2018 in Boston (Jain, 2018). Fig.1.1 shows the point pattern for vandalism in

certain weeks from April 2017 to June 2017. Each point represents an occurrence of vandalism

at that location, and the blue shaded area is the city boundary of Boston, which has a compli-

cated shape. We want to understand which neighborhoods in the city have higher crime rate

and predict the number of occurrences in a local neighbourhood and a certain time interval. To

3
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Figure 1.1: Point patterns for Vandalism in certain weeks in the second quarter of 2017 in Boston.

achieve these goals, we develop modeling methodologies for a series of spatial and space-time

point processes with increasingly more general assumptions that suit the application better and

more complex structures.

A common issue for point pattern modeling is accounting for the effect of the compact

observation domain on estimating the intensity. The observation domain D is the region, along

with the time window if event times are recorded, over which the events occur. Spatially, these

domains tend to have highly irregular boundaries, just like that of the Boston city. The irregular

domain poses challenges for both model formulation and computation. A recurring theme of

this dissertation is how to address this issue by constructing models that balance the inference

flexibility and computation efficiency given the constraints posed by the irregular domain and
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the computation demands of a Bayesian nonparametric approach.

We begin with a modeling framework for the Poisson point process. Theoretical study

of Poisson point process can be found in Cressie (1993) and Daley and Vere-Jones (2008),

among other reference. In particular, Kingman (1992) provides a more focused study on the

properties of Poisson process in one or more dimensions. The conditional intensity of a tempo-

ral Poisson process is equivalent to its intensity function, since the Poisson assumption implies

independence among the event timestamps given the total number of occurrences. The spatial

Poisson process extends such assumption to the two-dimensional space, where the intensity

function specifies both the number of events in a compact subset of the observation domain via

a Poisson distribution, and the locations of these events via the Poisson process density function

f(s) = λ(s)/
∫
D λ(s)ds. The irregular domain D serves as the support for such Poisson den-

sity function. We seek to develop a Bayesian nonparametric prior for the intensity function that

respects the shape of D, meaning that the implied prior model for the Poisson density function

is a proper density overD. More importantly, such intensity prior model avoids the computation

for the normalizing constant, which involves integrating the intensity over D.

The key to achieving these goals is our proposed model for the intensity function as

a weighted combination of fixed Beta densities that function like basis functions, and the struc-

tured Gamma prior distributions for the random weights. Through the connection between the

Poisson density function and the intensity function, our prior for the intensity function suggests

a Bernstein-Dirichlet Prior for the Poisson density function, whose theoretical properties sup-

port recovery of various functional forms in the posterior. We prefer to work with the prior

model for the intensity instead of the density function since the construction leads to a closed-
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form expression for the total intensity, which appears in the Poisson process likelihood, and

subsequently resulting in conjugate updates for the weights parameters in the posterior simula-

tion.

In this sense, we achieve computational efficiency via fast and easy parameter up-

dates in the MCMC algorithm while maintaining a connection to a rich and flexible Bayesian

nonparametric model on the density function. Chapter 2 develops this core idea of intensity

modeling for temporal and spatial Poisson processes. We demonstrate how the model handles

the irregular spatial domain in its original form (without spatial approximation such as tak-

ing the convex hull), without adding too much computational overhead to the algorithm, using

synthetic and real data examples.

We apply the spatial Poisson process model to the crime point pattern under the cat-

egory "Vandalism" in the second quarter of 2017, under the assumption that the point pattern

of the same crime in a short time period can be viewed as a realization from a Poisson pro-

cess. Such a assumption can be questioned easily, as criminal activities are known to have

a self-exciting nature, i.e., more crimes tend to happen at locations of previous crimes. This

phenomenon inspires us to model point processes that account for self-exciting behavior in the

form of allowing spatial clustering among points.

Next, we develop a class of models for spatial Hawkes processes. The Hawkes pro-

cess, most commonly used as an example of a self-exciting process, is specified by its con-

ditional intensity function that consists of a background intensity and a triggering function
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(Hawkes, 1971). More specifically, the conditional intensity function is defined as

λ(t | Ht) = µ(t) +
∑
i:ti<t

g(t− ti)

where Ht denotes the history of events up to time t, µ(·) is the background intensity function,

and g(·) is the triggering function. The triggering function depends on events previous to the

current event at t.

The Hawkes process has an equivalent clustering representation (Hawkes and Oakes,

1974), where additional branching structure among the points suggests that the point pattern can

be thought of as a realization from a sequence of recursive Poisson cluster processes. Specifi-

cally, a Poisson process controlled by the background intensity µ(·) generates immigrant points;

subsequent Poisson processes controlled by the triggering function g(·) spawn points centered

on the immigrant points and their offspring points. To model the Hawkes process hierarchi-

cally, we model for the immigrant Poisson intensity, the offspring Poisson intensity, and the

latent branching structure.

The spatial Hawkes (SH) process is well-defined following the clustering representa-

tion as a superposition of several General Shot Noise Cox processes (GSNCPs) with a Poisson

immigrant process (Møller and Torrisi, 2005), despite of the lack of natural order in space to

imply the order of events. Additional assumptions allow us to model the SH process as the

superposition of a Poisson immigrant process and a sequence of offspring Poisson processes

centered on parent points identified through the more general latent branching structure for

points in space.

We leverage the model for the spatial Poisson process in Chapter 2 as the model for
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the immigrant Poisson process intensity, and complete the hierarchical model for the spatial

Hawkes process with parametric models for the Poisson offspring processes and a model for

the branching structure encoded as a set of trees. Chapter 3 develops a Bayesian modeling

framework for a class of SH processes categorized by the immigrant process assumption (ho-

mogeneous vs. nonhomogeneous), the domain assumption (irregular vs. unit-square), and the

parametric form of the offspring intensity function. The irregular domain serves as both the

support for the immigrant and offspring intensities, which poses challenges for the truncation

applied to the offspring Poisson density. We develop an efficient Monte Carlo routine that recy-

cles and reuses random samples and caches the computed normalizing constants to gain signifi-

cant performance improvement. We develop model checking techniques for both the first-order

model fit, via predictive residuals over Voronoi tessellation, and second-order model fit, via

predictive Ripley’s K functions. Finally, we demonstrate the model’s capacity using synthetic

data.

We revisit the Boston crime data example and apply the SH model with a nonhomo-

geneous immigrant Poisson process and a bivariate Gaussian offspring kernel allowing spatial

skewness to the same vandalism point pattern data, modifying the irregular domain to be the

convex hull of the city boundary to speed up computation. We discover a significant amount

of self-triggering effect reflected by the branching ratio, a parameter that controls the aver-

age number of offspring generated in a cluster, far greater than 0. To confirm our discovery,

we implement a model for the space-time Hawkes (STH) process with the same formulation

for the immigrant and offspring spatial intensity, adding additional assumptions for a time-

homogeneous immigrant temporal intensity and an exponentially decaying offspring temporal
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intensity. The timestamps facilitate the inference of the branching structure with additional in-

formation on the chronological order, which is latent for the space-only process. The inference

for the branching ratio under the STH process also suggests significant self-triggering. The in-

ferred immigrant intensities under models for the SH and STH process flag similar regions in

Boston to have higher rates of vandalism activities.

We develop models for STH processes focusing on a nonparametric offspring spatial

intensity formulation. Reinhart (2018) provides a review of self-exciting spatial-temporal point

processes and their applications. The STH process is defined via the space-time conditional

intensity:

λ(x, y, t | Ht) = µ(x, y, t) +
∑
i:ti<t

g(x− xi, y − yi, t− ti)

where Ht denotes the history of events including both space and time information up to time

t. The background intensity µ(x, y, t) controls the rate of occurrence in space and time and is

often assumed to be homogeneous in time. The triggering function is often factored into the

product of time intensity gt(t − ti) and a spatial intensity gs(x − xi, y − yi) as the result of

the separability assumption, which suggests that the temporal and spatial triggering effects are

independent. Popular parametric methods for gs(x − xi, y − yi) factor it into the product of

a total intensity γs and a spatial density fs(x, y) and choose the parametric form of fs(x, y)

between the bivariate Gaussian distribution and the Power Law distribution, which differ on

how fast the density function approaches 0 in the tail. In most applications, the two parametric

forms are both applied, and extensive literature focuses on comparing the two. A nonparametric

formulation for gs(x − xi, y − yi) can capture both shapes under the parametric families and

provide more flexible inference without the need to choose between parametric forms.
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To achieve a nonparametric formulation, we make an additional assumption of spatial

isotropy, an assumption taken by most commonly used parametric families, and reduce mod-

eling a spatial density to modeling a univariate distance density. The distance in our model is

that between offsprings and their parent points. The irregular domain here implicitly defines

the support of such distance density. We place a scaled Bernstein-Dirichlet prior on the spa-

tial distance density to capture varying tail behavior, no longer confined to the choice between

Gaussian and Power Law. Chapter 4 develops models for STH processes under the assumption

of offspring spatial isotropy and presents both a parametric formulation under the name ParSTH

and a nonparametric formulation under the name NonparSTH for the offspring spatial process,

while leveraging the model for nonhomogeneous Poisson process developed in Chapter 2 to

model the immigrant Process. We apply both models to the Vandalism data and discover that

the NonparSTH model favors a heavier tail for the spatial distance density compared to the

ParSTH model.
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Chapter 2

Bayesian nonparametric modeling for spatial

Poisson processes

We develop nonparametric Bayesian modeling approaches for Poisson processes, us-

ing weighted combinations of structured beta densities to represent the point process intensity

function. For a regular spatial domain, such as the unit square, the model construction implies a

Bernstein-Dirichlet prior for the Poisson process density, which supports general inference for

point process functionals. The key contribution of the methodology is two classes of flexible

and computationally efficient models for spatial Poisson process intensities over irregular do-

mains. We address the choice or estimation of the number of beta basis densities, and develop

methods for prior specification and posterior simulation for full inference about functionals of

the point process. The methodology is illustrated with both synthetic and real data sets.
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2.1 Introduction

There has been an increasing interest in extracting information from locations in spa-

tial data. For spatial point patterns, both the number and the locations of points are random.

Point pattern data is modelled as a realization, within compact domain D, of a point process

whose finite dimensional distribution defines the stochastic mechanism for the number and

locations of the points. Independent increments along with a Poisson distributional assump-

tion define the Poisson process. A homogeneous Poisson process is equivalent to complete

spatial randomness, that is, the point pattern generated is independently and identically uni-

formly distributed over D. The practically relevant version is the non-homogeneous Poisson

process (NHPP), which allows the point process intensity to differ by location. The NHPP is

characterized by a non-negative, locally integrable intensity function λ(s), such that: for any

bounded subset B of the domain, the number of points in B, N(B), is Poisson(
∫
B λ(s)ds)

distributed; and, given N(B), the point locations within B are independent and identically dis-

tributed with density λ(s)/
∫
B λ(u)du. Therefore, the NHPP likelihood corresponding to point

pattern {s1, ..., sn}, observed in compact domain D, can be expressed as:

p({s1, ..., sn};λ(s)) ∝ exp

(
−
∫
D
λ(s) ds

) n∏
i=1

λ(si) (2.1)

where n ≡ N(D). We consider the more common settings where D ⊂ R or D ⊂ R2. We place

particular emphasis on spatial NHPPs, and more specifically on building flexible, computation-

ally tractable models for spatial intensities defined over domains with irregular shapes.

Theoretical study of NHPPs can be found in Cressie (1993) and Daley and Vere-

Jones (2008), among other references. Diggle (2003) provides background on likelihood and
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classical nonparametric inference for spatial NHPPs. Moller and Waagepetersen (2003) discuss

simulation-based inference for point processes. Regarding model-based methods for NHPPs,

Gelfand and Schliep (2018) categorize the main approaches in two general directions: modeling

the trend surface for the intensity function λ(s); and, factorizing the intensity function into the

total intensity, Λ =
∫
D λ(s)ds, and the NHPP density f(s) = λ(s)/Λ, and modeling each

separately.

The early Bayesian nonparametric approaches fall under the first category, focusing

on modeling temporal NHPP cumulative intensity functions,
∫ t

0 λ(s)ds, with gamma, beta or

general Lévy process priors (Lo, 1982, 1992). The next stage in this line of research involves

mixture models for NHPP intensities built from non-negative kernels convolved with weighted

gamma processes (Lo and Weng, 1989; Wolpert and Ickstadt, 1998; Ishwaran and James, 2004;

Kang et al., 2014). Also in this direction are modeling approaches based on log-Gaussian Cox

processes (Moller et al., 1998) under which the logarithm of the intensity function is a realiza-

tion of a Gaussian process. Adams et al. (2009) proposed a related approach based on a logistic

instead of logarithmic transformation to link the Gaussian process with the model for the inten-

sity function. Modeling directly the intensity function λ(s) brings computational challenges for

full posterior inference due to the likelihood normalizing term, exp(−
∫
D λ(s) ds), especially

under methods based on Gaussian process priors. Such challenges have been addressed through

approximations of the stochastic integral (Brix and Moller, 2001; Brix and Diggle, 2001), data

augmentation (Adams et al., 2009), and discretization of the observation domainD (Illian et al.,

2012).

Under the second direction, Kottas (2006) and Kottas and Sansó (2007) proposed an
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approach that connects the NHPP intensity function with the density function supported on the

observation domain, and models the NHPP density with Dirichlet process mixture priors for

density estimation. Taddy and Kottas (2012) extend this modeling approach to marked Pois-

son processes, and Taddy (2010), Kottas et al. (2012), Xiao et al. (2015) and Rodriguez et al.

(2017) develop hierarchical and dynamic models for NHPPs in the context of specific applica-

tions. This modeling approach enables an inference framework that builds from well established

methods for Dirichlet process mixtures, avoiding the computational challenges due to the NHPP

likelihood normalizing component. However, it relies on a potentially restrictive prior structure

that models separately the NHPP density and the total intensity over the observation domain.

Inference methods for irregular domain spatial point process intensities have received

limited attention in the Bayesian nonparametrics literature. We are only aware of the log-

Gaussian Cox process approach of Simpson et al. (2016). Here, the irregular domain adds

an extra level of complexity, which has been handled with an approximation to the Gaussian

random field, an associated approximation to the NHPP likelihood, and using integrated nested

Laplace approximation for fast, but approximate Bayesian inference.

Our main contribution is flexible modeling and computationally efficient inference

for NHPPs over spatial domains with irregular shapes. The proposed models do not rely on

approximations of the NHPP likelihood and they can be efficiently implemented with standard

Markov chain Monte Carlo algorithms for full Bayesian inference and uncertainty quantifica-

tion. Moreover, in the context of the more commonly studied setting of spatial NHPPs over reg-

ular domains, our modeling approach overcomes some of the limitations of existing Bayesian

methods, while retaining the feature of flexible inference for general intensity shapes.
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We build the model for the NHPP intensity function from weighted combinations of

Bernstein polynomial basis functions, that is, beta densities with specified shape parameters.

Such parsimonious mixture representation is the key to achieve computationally tractable infer-

ence. In Section 2.3, we explore two modeling approaches for spatial Poisson process intensities

over irregular domain, taken without loss of generality to be a subset of the unit square. Under

the first approach, the representation for the NHPP intensity is motivated by truncating over the

irregular domain a NHPP density defined as a weighted combination of Bernstein densities on

the unit square. The second approach targets directly the NHPP intensity modeling it as a struc-

tured weighted combination of truncated Bernstein densities. The two models offer different

benefits while sharing the feature that the total intensity, Λ, can be readily expressed in terms

of model parameters. Thus, both models bypass the challenge brought about from the NHPP

likelihood normalizing term without separating the total intensity and NHPP density in the prior

specification. In the case of regular domain, say the unit square, the two modeling approaches

yield the same form for the NHPP intensity which implies a Bernstein-Dirichlet prior for the

corresponding NHPP density. To highlight this connection and its implications in posterior sim-

ulation, we begin in the next section with the methodology for the simpler setting of temporal

NHPPs.

15



2.2 Methodology for temporal Poisson processes

2.2.1 Model formulation

Here, we focus on modeling one-dimensional NHPPs observed over a bounded do-

main, taken without loss of generality to be the unit interval. Motivated by Bernstein polynomial

priors for densities with bounded support, our model for the intensity function λ(s) implies a

Bernstein-Dirichlet process prior for the NHPP density, f(s) = λ(s)/
∫ 1

0 λ(u)du, for s ∈ [0, 1].

The Bernstein polynomial prior model for density f on [0, 1] is given by fK(s | F ) =∑K
k=1 ωk be(s | k,K − k + 1), where be(· | a, b) is the beta density with mean a/(a + b).

The mixture weights are defined through increments of a distribution function F with support

on [0, 1], such that ωk = F (k/K) − F ((k − 1)/K), for k = 1, . . . ,K. A distribution F with

flexible shape implies mixture weights that select the appropriate beta basis densities to achieve

general shapes for density f . This motivates assigning a nonparametric prior to F , such as the

Dirichlet process prior (Ferguson, 1973) which results in the Bernstein-Dirichlet prior for den-

sity f (Petrone, 1999a,b). Theoretical support for the Bernstein polynomial model is provided

by the fact that, as K → ∞, fK(s | F ) converges uniformly to the density of F (Levasseur,

1984); this result is also key to establishing Kullback-Leibler support and posterior consistency

of the Bernstein-Dirichlet prior for density estimation (Petrone and Wasserman, 2002). Exten-

sions of Bernstein polynomial prior models include density estimation on higher dimensional

spaces (Zheng et al., 2010; Barrientos et al., 2015) and density regression (Barrientos et al.,

2017).

Our modeling approach is motivated by the structure of the distribution for the mix-
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ture weights, (ω1, ..., ωK), implied by a Dirichlet process prior, DP(α, F0), on F , where α is the

Dirichlet process precision parameter, and F0 the centering distribution with support on [0, 1].

Based on the Dirichlet process definition, (ω1, ..., ωK), given α, F0, and K, follows a Dirichlet

(αA1, ..., αAK) prior distribution, where Ak = F0(k/K)− F0((k − 1)/K), for k = 1, ...,K.

The key observation for the model is that the prior distribution for (ω1, ..., ωK) can be con-

structed through independent gamma random variables. In particular, denoting by Ga(a, b) the

gamma distribution with mean a/b, we have ωk = Vk/{
∑K

r=1 Vr}, where, for k = 1, ...,K, the

Vk are independently Ga(αAk, C) distributed, with C > 0 a constant.

The proposed model for one-dimensional NHPP intensities is given by:

λ(s) =
K∑
k=1

Vk be(s | k,K − k + 1), s ∈ [0, 1]

Vk | α, F0
ind.∼ Ga(α{F0(k/K)− F0((k − 1)/K)}, C), k = 1, ...,K.

(2.2)

The total intensity over the domain is Λ =
∫ 1

0 λ(u)du =
∑K

k=1 Vk, and thus the NHPP den-

sity is given by f(s) = λ(s)/{
∫ 1

0 λ(u)du} =
∑K

k=1 ωk be(s | k,K − k + 1), where ωk =

Vk/{
∑K

r=1 Vr}. Hence, the implied model for the NHPP density is the Bernstein-Dirichlet

prior model. Based on the Dirichlet process definition, this connection holds true for any K,

that is, for any partition {Sk = [(k − 1)/K, k/K) : k = 1, ...,K} of the unit interval.

Note that, since Λ =
∑K

k=1 Vk, we have E(Λ | α) = α/C, which justifies using a

general constant C in the prior for the Vk, rather than taking C = 1. That is, we wish to avoid

the conflict of large values of α that would be needed under C = 1 for large prior expected total

intensity versus small values of α favoring non-standard intensity function shapes.

A Ga(aα, bα) prior is assigned to α. In terms of model economy, the uniform distri-

bution is an appealing choice for F0. This choice is sufficiently flexible in practice, as shown
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with the data examples of Section 2.2.3, and it also yields a form for the average intensity that

facilitates prior specification. With F0 uniform, the prior mean for the intensity is constant,

given by E(α)/C as proved below, and it does not depend on K.

E(λ(s)|α,K) =
K∑
k=1

E(Vk | α) be(s|k,K − k + 1)

=
α

C

K∑
k=1

1

K

K!sk−1(1− s)K−k

(k − 1)!(K − k)!

=
α

C

K−1∑
m=0

(K − 1)!sm(1− s)K−1−m

m!(K − 1−m)!

=
α

C

K−1∑
m=0

(
K − 1

m

)
sm(1− s)K−1−m

=
α

C

using the Binomial theorem. Note that the conditional prior expectation does not depend on K.

Finally, E(λ(s)) = E(E(λ(s) | α)) = E(α)/C.

To explore posterior simulation under model (2.2), we consider two equivalent hier-

archical model formulations for the observed point pattern {0 < s1 < ... < sn < 1}. As

discussed above, there is an one-to-one correspondence between parameter vectors (V1, ..., VK)

and {Λ, (ω1, ..., ωK)}, where ωk =F (Sk), for k = 1, ...,K. The prior distribution for (V1, ..., VK)

in (2.2) corresponds to a DP(α, F0) prior for F , and a Ga(α,C) prior for Λ. Moreover, the

NHPP likelihood in (2.1) can be conveniently expressed in terms of either parameterization:

K∏
k=1

e−Vk
n∏
i=1

{
K∑
k=1

Vk be(si | k,K − k + 1)

}
= e−Λ Λn

n∏
i=1

{
K∑
k=1

F (Sk) be(si | k,K − k + 1)

}
.

Working with fixedK, the intensity formulation involves parameters {(V1, . . . , VK), α}.

Here, we introduce discrete latent variables {ξi : i = 1, . . . , n} indicating basis configuration
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for each time event. In a Gibbs sampler setting, the posterior full conditional for each ξi is a

discrete distribution with support on {1, . . . ,K}. Most importantly, given {ξi : i = 1, . . . , n}

and α, each Vk follows a gamma posterior full conditional distribution, independently of {Vr :

r 6= k}. Lastly, α can be sampled using a Metropolis-Hastings step.

Alternatively, the density formulation builds from parameters {Λ, F, α,K}. In this

case, we introduce continuous latent variables {θi : i = 1, ..., n} to leverage the Dirichlet

process mixture representation for the NHPP density function:

f(si) ≡ fK(si | F ) =
∫ ∑K

k=1 1[ k−1
K

, k
K

)(θi) be(si | k,K − k + 1) dF (θi). (2.3)

A practically important feature of this formulation is that the number of basis densities, K,

can be estimated without resorting to trans-dimensional Markov chain Monte Carlo algorithms.

Here, the dimension of the parameter space does not change withK because the posterior distri-

bution does not involve the weights ωk, but rather the random distribution F whose increments

define the mixture weights. Posterior simulation proceeds by first sampling from the marginal

posterior of {(θ1, . . . , θn),Λ, α,K}, using Markov chain Monte Carlo methods for Dirichlet

process mixtures (Escobar and West, 1995; Neal, 2000). We then sample (ω1, . . . , ωK), given

(θ1, . . . , θn), α,K, from the Dirichlet distribution implied by the Dirichlet process conditional

posterior distribution for F , given (θ1, . . . , θn) and α. Finally, posterior samples for the NHPP

density and intensity can be readily obtained, using their expressions under model (2.2).

We provide the full conditionals used in both posterior simulation algorithms below.

Under the intensity formulation given the number of basis K, the Markov Chain Monte Carlo

algorithm consists of Gibbs or Metropolis update from the full conditionals for ξi, Vk and α.
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1. ξi|−

p(ξi = j|−) =
Vjbe(si|j,K − j + 1)∑K
l=1 Vlbe(si|l,K − l + 1)

2. Vk|− for k = 1 · · ·K, Mk =
∑n

i=1 δk(ξi)

p(Vk|−) ∝ exp(−Vk)VMk
k V

α/K−1
k exp(−CVk) ∝ ga(Vk|Mk + α/K,C + 1)

3. α|−

p(α|−) ∝ ga(α|aα, bα)
K∏
k=1

ga(Vkx,ky |αK−1, C)

∝ αaα−1 exp(−bαα)CαΓ(α/K)−K
K∏
k=1

V
α/K
k

A Metropolis step is implemented on the log scale with a normal random walk proposal

density to sample from this full conditional.

The Markov Chain Monte Carlo algorithm for the density formulation of the tem-

poral Poisson process consists of either a Metropolis or a Gibbs update from the following

full-conditionals:

Let k(s|θ) =
∑K

k=1 1((k−1)/K,k/K)(θ)be(s|k,K − k + 1)

1. θi|θ−i,−

p(θi|θ−i,−) = αq0
αq0+H

k(si|θ)f0(θ)
q0

+ 1
αq0+H

∑n∗−

j=1 k(si|θ∗−j )n−j δθ∗−j
(θi)

q0 =
∫
k(si|θ)f0(θ)dθ =

∑K
j=1 be(si|j,K − j + 1)α/K

H =
∑n∗−

j=1 k(si|θ∗−j )n−j

where n∗− is the number of unique values, {θ∗−j : j = 1 · · ·n∗−} is the vector of unique

values, and {n−j , j = 1 · · ·n∗−} the vector of the number of observations that take value

θ∗−j in the vector θ−i = {θl : l 6= i}.
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2. Λ|−

Λ|− ∼ Ga(α+ n,C + 1)

where n is the number of points

3. α|−

p(α|−) ∝ (

n∏
m=1

(α+m− 1))−1αn
∗
ga(Λ|α,C)ga(α|a0, b0)

∝ (
n∏

m=1

(α+m− 1))−1αn
∗ Cα

Γ(α)
Λα−1αa0−1 exp(−b0α)

A Metropolis step is implemented with a normal proposal on the log scale.

4. K|−

p(K|−) ∝
n∏
i=1

{
K∑
k=1

1[ k−1
K

, k
K

](θi)be(si|k,K − k + 1)

}
π(K|{Kmin, · · · ,Kmax})

The full conditional for K is a discrete distribution and can be directly sampled from.

With each draw in the posterior sample for {(θ1 · · · θn), α,K}, we sample {ωk : k =

1 · · ·K} from the following Dirichlet distribution

{ωk : k = 1 · · ·K} ∼ Dir({α/K +

n∑
i=1

1[ k−1
K

, k
K

](θi) : k = 1 · · ·K})

We obtain a draw from the posterior distribution of the intensity function λ(s) and the den-

sity function f(s) evaluated at location s respectively, given {ω1, · · · , ωK} via the following

functions

f(s) =
∑K

k=1 ωkbe(s|k,K − k + 1)

λ(s) = Λ
∑K

k=1 ωkbe(s|k,K − k + 1)
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2.2.2 Prior specification

The prior for α and the value for C can be specified using prior guesses at the total

intensity, Λ̂, and an average intensity value, λ̂, over the observation window. We select bα to

provide a wide range for α, and using E(λ(s)) = E(α)/C, set E(α) = aα/bα = Cλ̂. The

marginal prior for the total intensity is p(Λ) =
∫

Ga(Λ | α,C) Ga(α | bαCλ̂, bα) dα. We use

this expression to specify C such that the median of p(Λ) is equal to Λ̂.

Note the connection between α and K in controlling the shape of prior realizations

for the NHPP intensity: for fixed α, increasing K results in intensities with larger number of

modes and more local features; and, for fixed K, decreasing α favors more variability and more

localized structure in the intensities. In practice, it may suffice to estimate only α keeping K

fixed at sufficiently large values. Note that the beta densities in model (2.2) play the role of

basis functions rather than of kernel densities in finite mixture models. Also key is the Dirichlet

process underlying the prior for the weights Vk, which select the subset of beta densities that

contribute more to the intensity representation. As illustrated with simulated data in Section

2.2.3, the discrete nature of the Dirichlet process prior can effectively guard against over-fitting

if one conservatively chooses a larger value for K than may be necessary for a particular point

pattern.

A possible approach to specify K involves prior information on the peak of the in-

tensity, λ̂max, without necessarily knowing where in the observation window the peak occurs.

The idea is to find K such that λ̂max matches a percentile of the prior distribution of b∗Vmax,

where Vmax = max{Vk : k = 1, ...,K}, and b∗ is the modal value of the beta(2,K−1) density,
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Table 2.1: Illustration of the prior specification strategy for K. QVmax
0.9 denotes the 90th per-

centile of the marginal prior distribution for max{Vk : k = 1, ...,K}, and b∗ the modal value

of the beta(2,K − 1) basis density.

K QVmax
0.9 b∗ b∗ ×QVmax

0.9

20 232.34 7.56 1755.85

30 208.18 11.23 2338.0

50 181.36 18.58 3370.34

100 167.38 36.97 6188.82

that is, the first member of the Bernstein polynomial basis with a unimodal density. Under the

uniform F0 distribution, the Vk are independently and identically gamma distributed, and thus

the prior distribution of Vmax is analytically available given α; the marginal prior for Vmax can

also be readily explored through simulation. Table 2.1 provides an illustration, using the 90th

percentile of the marginal prior distribution for Vmax, under a Ga(2.53, 0.1) prior for α, and

with values for the peak intensity that are relevant to one of the data examples of Section 2.2.3.

As discussed in Section 2.2.1, using the intensity formulation, with fixed K, allows

for a particularly simple and efficient method to implement model (2.2). The more general

version of the model with random K can be implemented at the expense of somewhat more

complex Markov chain Monte Carlo algorithms for Dirichlet process mixtures. A discrete uni-

form or a truncated Poisson distribution with support on [Kmin,Kmax] are possible priors for

K.
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2.2.3 Synthetic data examples for the temporal NHPP model

We consider two synthetic data sets generated from NHPPs with bimodal intensities.

For the first example, the intensity is λ(s) = 700 be(s | 3, 18) + 300 be(s | 13, 8); this can be

viewed as a special case of model (2.2) with K = 20, although our prior model does not allow

for zero weights. The second data set is obtained by logit-transforming points generated from a

weighted combination of normal densities, λ(s) = 400 N(s | −2.2, 1.0) + 600 N(s | 0.3, 0.8).

We take large sizes for the simulated point patterns – n = 993 for the first, and n = 1037 for

the second example – to ensure a meaningful comparison of posterior estimates with the true

intensities.

We follow the approach of Section 2.2.2 to specify C = 0.023 and a Ga(2.53, 0.1)

prior for α, using for both data examples 1000 as the prior estimate for the total intensity, and

1100 for the average intensity. For the first example, we take K = 20, as well as K = 40

to study the implication of using a number of basis densities that is twice as large as what

should suffice. For the second example, assume we are told that the peak of the intensity has a

value around 2300. Then, referring to Table 2.1, K = 30 can be taken as the number of basis

densities, or, more conservatively, as a lower bound. We consider again a larger value, K = 50,

to check sensitivity of posterior inference results. We also implemented the density formulation

for the second example, with a uniform prior on [20, 60] assigned to K.

As shown in Fig. 2.1, the model is effective in estimating the weights that drive the

bimodal intensity shape of the two-component beta mixture. Under K = 20, it gives most

weight to V3 and V13, that correspond to basis densities be(s | 3, 18) and be(s | 13, 8), whereas
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Figure 2.1: Beta mixture synthetic data example. Results under the intensity formulation with K = 20 (left

column) and K = 40 (right column). Boxplots of posterior samples for the weights Vk (first row), the beta basis

densities corresponding to the largest Vk (second row), and posterior mean (blue line) and 95% interval estimates

(light blue shaded bands) for the intensity function (third row). In the second and third rows, the red line denotes

the true density and intensity, respectively. In the third row, the black line indicates the prior mean for the intensity

function.

when K = 40, the model favors 6-7 basis densities with peaks in the same range as the two

modes of the underlying intensity. Hence, the model is able to achieve sparsity in estimation

of the mixture weights when a surplus of basis densities are used, even though F0 is a uniform

distribution. Moreover, with the exception of some increase in the width of posterior uncertainty

bands, inference results for the intensity function are similar under the two different choices for

K.
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Figure 2.2: Logit-normal mixture synthetic data example. From left to right, histogram of the simulated time

points, and posterior mean (blue line) and 95% interval estimates (light blue shaded bands) for the intensity function

under K = 30, K = 50, and K random. The red line in the last three panels denotes the true intensity.

This is also the case with the posterior inference results for the logit-normal mixture

data example; see Fig. 2.2. Under the density formulation, the posterior median for K is 36,

with the 95% credible interval given by [22, 56]. The intensity function under random K has

similar point estimate and a slightly tighter uncertainty band compared to that under K = 50.

2.3 Modeling approaches for spatial Poisson processes

We begin with the case of a regular domain for the spatial NHPP, taken without loss

of generality to be the unit square, such that s ≡ (x, y) ∈ [0, 1]2. The extension of the Bernstein

polynomial basis consists of products of beta densities. More specifically, the basis density with

index (kx, ky), for kx, ky = 1, ...,K, is defined as

φkx,ky(x, y) = be (x | kx,K − kx + 1) be (y | ky,K − ky + 1) , (x, y) ∈ [0, 1]2. (2.4)

Although the number of basis densities may be different in the x and y dimensions, we use the

more parsimonious form with Kx = Ky = K.
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Then, we can extend model (2.2) to the following model for spatial NHPP intensities

over [0, 1]2:

λ(x, y) =
K∑

kx,ky=1

Vkx,ky φkx,ky(x, y), (x, y) ∈ [0, 1]2

Vkx,ky | α, F0
ind.∼ Ga(αF0(Skx,ky), C), kx, ky = 1, ...,K

(2.5)

where Skx,ky = [(kx − 1)/K, kx/K)× [(ky − 1)/K, ky/K), and F0(Skx,ky) is the probability

of Skx,ky under a specified distribution F0 on [0, 1]2; in particular, F0(Skx,ky) = 1/K2 under

the uniform distribution for F0.

Again, the total intensity over the domain is readily obtained as Λ =
∫ 1

0

∫ 1
0 λ(x, y) dxdy =∑K

kx,ky=1 Vkx,ky , and the NHPP density is given by f(x, y) =
∑K

kx,ky=1 ωkx,ky φkx,ky(x, y),

where ωkx,ky = Vkx,ky/{
∑K

kx,ky=1 Vkx,ky}. The implied prior distribution for the mixture

weights {ωkx,ky} corresponds to constructing them through ωkx,ky = F (Skx,ky), where F is

a random distribution on [0, 1]2 assigned a DP(α, F0) prior.

We thus retain the connection between the intensity prior model in (2.5) and the two-

dimensional Bernstein-Dirichlet prior model for the NHPP density, as well as the equivalent

hierarchical model formulations for the data. Again, the implied Ga(α,C) prior for Λ ensures

the coherence between the intensity and density prior models, the latter comprising parameters

{Λ, F, α,K}. Extending the approaches outlined in Section 2.2.1, posterior simulation can

be implemented using either the intensity or density formulation. The prior mean intensity is

E(λ(x, y)) = E(α)/C as proved below, and thus the prior specification approach of Section

2.2.2 can be extended to model (2.5).
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E(λ(x, y) | α,K) =
K∑

kx=1

K∑
ky=1

E(Vkx,ky | α) be(x|kx,K − kx + 1)be(y|ky,K − ky + 1)

=
α

C

1

K2

K∑
kx=1

K∑
ky=1

be(x|kx,K − kx + 1)be(y|ky,K − ky + 1)

=
α

C

using the fact that K−1
∑K

m=1 be(s|m,K −m+ 1) = 1, which is essentially a restatement of

the Binomial theorem.

To achieve our main objective of flexible inference for NHPP spatial intensities recorded

over irregular domain D ⊂ [0, 1]2, we propose two different modeling approaches. Under the

first model, presented in Section 2.3.1, the intensity formulation is motivated by truncating

over D the NHPP density f(x, y) defined on [0, 1]2. The second model, developed in Section

2.3.2, builds the basis representation for the intensity through the corresponding density which

is defined as a mixture of truncated beta densities over D with weights induced by a random

distribution F on D. In both cases, the Bernstein polynomial prior structure is especially at-

tractive to model spatial point process intensities over irregular domains, a practically relevant

problem that, arguably, has not been fully addressed in the Bayesian nonparametrics literature.

2.3.1 The intensity model

Under the first modeling perspective, the representation for the NHPP intensity λD(x, y)

over irregular domainD is revealed by the expression for fD(x, y), the NHPP density truncated
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on D. In particular,

fD(x, y) =
f(x, y)∫ ∫

D f(u, v) dudv
=

K∑
kx,ky=1

Vkx,kyBkx,ky∑K
kx,ky=1 Vkx,kyBkx,ky

φ∗kx,ky(x, y), (x, y) ∈ D

(2.6)

where Bkx,ky =
∫ ∫
D φkx,ky(x, y) dxdy, φ∗kx,ky(x, y) = φkx,ky(x, y)/Bkx,ky are the basis den-

sities truncated onD, and we have used the fact that ωkx,kyBkx,ky/{
∑K

kx,ky=1 ωkx,kyBkx,ky} =

Vkx,kyBkx,ky/{
∑K

kx,ky=1 Vkx,kyBkx,ky}. The implied model for the intensity function is:

λD(x, y) =
K∑

kx,ky=1

Vkx,kyBkx,ky φ
∗
kx,ky(x, y), (x, y) ∈ D (2.7)

where Vkx,ky | α
ind.∼ Ga(α/K2, C), for kx, ky = 1, ...,K, taking the uniform distribution for

F0, and placing a Ga(aα, bα) prior on α.

Evidently, (2.5) and (2.7) agree when D is the unit square. Note that Bkx,ky will be

small for basis densities with significant mass outside D. Hence, although model (2.7) uses all

K2 basis densities, the constants Bkx,ky provide an additional adjustment to the one applied

by the random coefficients Vkx,ky . The overhead cost of computing the normalizing constants

Bkx,ky is very small, since, with fixed K, they need to be computed only once.

For posterior simulation, we introduce a pair of latent variables, (ξi, ηi), for each point

in the spatial point pattern, {(xi, yi) : i = 1, ..., n}, to identify the corresponding basis density.

Then, the hierarchical model for the data can be written as:

{(xi, yi)} | V , {(ξi, ηi)} ∼
(∏K

kx,ky=1 exp(−Vkx,kyBkx,ky)
)∏n

i=1 ΛD φ
∗
ξi,ηi

(xi, yi)

(ξi, ηi) | V
i.i.d.∼

∑K
kx,ky=1

Vkx,kyBkx,ky
ΛD

δ(kx,ky)(ξi, ηi), i = 1, ..., n

α,V ∼ Ga(α | aα, bα)
∏K
kx,ky=1 Ga(Vkx,ky | αK−2, C)
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where V = {Vkx,ky : kx, ky = 1, ...,K}, and ΛD is the total intensity over the irregular domain,

ΛD =
∫ ∫
D λD(x, y) dxdy =

∑K
kx,ky=1 Vkx,kyBkx,ky .

As with models (2.2) and (2.5), the form of the NHPP likelihood normalizing term

implied by the intensity model (2.7) results in efficient posterior simulation with remarkably

simple updates for parameters {Vkx,ky}; given the (ξi, ηi) and α, the Vkx,ky are conditionally

independent and gamma distributed. {Bkx,ky , kx, ky = 1 · · ·K} can be computed given K and

D before running the Markov Chain Monte Carlo algorithm to save computation time.

Given the number of basis K, the Markov Chain Monte Carlo algorithm consists of

Gibbs or Metropolis update from the full conditionals for {ξi, ηi}, Vkx,ky and α:

1. The full conditional for {ξi, ηi} are discrete distributions

p(ξi = m, ηi = n|−) =
Vm,nbe(xi|m,K −m+ 1)be(yi|n,K − n+ 1)∑K
p,q=1 Vp,qbe(xi|p,K − p+ 1)be(yi|q,K − q + 1)

2. The full conditional for Vkx,ky , kx, ky = 1 · · ·K are independent Gamma distributions,

which can be sampled directly from in a vectorized fashion. Let Mkx,ky be the number of

latent variable pairs (ξi, τi) in step 1 that take value (kx, ky).

p(Vkx,ky |−) ∝ exp(−Vkx,kyBkx,ky)
n∏
i=1

ΛD

K∑
kx,ky=1

Vkx,kyBkx,ky
ΛD

δ(kx,ky)(ξi, ηi)φ
∗
kx,ky(xi, yi)

× ga(Vkx,ky |α/K2, C)

∝ exp(−Vkx,kyBkx,ky)
n∏
i=1

(Vkx,kyBkx,ky)
δ(kx,ky)(ξi,ηi)ga(Vkx,ky |α/K2, C)

∝ ga(Vkx,ky |Mkx,ky + α/K2, C +Bkx,ky)
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3. The full conditional for α is

p(α|−) ∝ ga(α|aα, bα)

K∏
kx,ky=1

ga(Vkx,ky |αK−2, C)

∝ αaα−1 exp(−bαα)CαΓ(α/K2)−K
2

K∏
kx,ky=1

V αK−2

kx,ky

A Metropolis step is implemented on the log scale with a normal random walk proposal

density to sample from this full conditional.

In contrast to models (2.2) and (2.5), the NHPP density in (2.6) does not follow the

Bernstein-Dirichlet prior. Consequently, we do not have a Dirichlet process mixture repre-

sentation for the hierarchical model for the data, which allows estimating K without trans-

dimensional posterior simulation algorithms. Therefore, practical implementation of model

(2.8) requires specifying K. In practice, we recommend sensitivity analysis for the value of K.

With K selected, the approach of Section 2.2.2 can be used to specify the prior for α and the

value for C. The prior mean of the intensity function is again given by E(λD(x, y)) = E(α)/C

as shown below, and, although ΛD no longer follows a gamma prior distribution, given α, its

marginal prior can be easily developed by simulation.

E(λD(x, y) | α) =
K∑

kx=1

K∑
ky=1

Bkx,kyE(Vkx,ky | α)
(
B−1
kx,ky

be(x|kx,K − kx + 1)be(y|ky,K − ky + 1)
)

=

K∑
kx=1

K∑
ky=1

E(Vkx,ky | α) be(x|kx,K − kx + 1)be(y|ky,K − ky + 1)

=
α

C
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2.3.2 The density model

Here, we seek to develop a model for the irregular domain intensity that corresponds

to a Bernstein-Dirichlet prior for the associated density, in the spirit of models (2.2) and (2.5).

To this end, we define directly the density fD(x, y) as a mixture of truncated beta basis densities:

fD(x, y) =
∑

(kx,ky)∈JK

ω∗kx,ky φ
∗
kx,ky(x, y), (x, y) ∈ D (2.8)

where JK = {(kx, ky) : Skx,ky ∩ D 6= ∅} is the index set for all non-empty intersections,

S∗kx,ky = Skx,ky ∩ D, of the unit square partitioning sets {Skx,ky : kx, ky = 1, ...,K} with D.

The mixture weights are defined as ω∗kx,ky = F (S∗kx,ky), where F is a random distribution on

D following a DP(α, F0) prior, with F0 taken to be the uniform distribution on D.

We now define the model for the irregular domain spatial intensity as

λD(x, y) =
∑

(kx,ky)∈JK
V ∗kx,ky φ

∗
kx,ky

(x, y), (x, y) ∈ D

V ∗kx,ky | α
ind.∼ Ga(αF0(S∗kx,ky), C), (kx, ky) ∈ JK

(2.9)

such that the density fD(x, y) = λD(x, y)/{
∫ ∫
D λD(u, v) dudv} follows the prior model in

(2.8). Again, the key link between parameterizations {V ∗kx,ky : (kx, ky) ∈ JK} and {ΛD, {ω∗kx,ky :

(kx, ky) ∈ JK}} is the practical expression for the total intensity ΛD =
∫ ∫
D λD(x, y) dxdy =∑

(kx,ky)∈JK V
∗
kx,ky

, and its Ga(α,C) prior implied by (2.9).

For a spatial point pattern {(xi, yi) : i = 1, ..., n} recorded over D, we can write the

NHPP likelihood in terms of either the intensity of density formulation:

exp
(
−
∑

(kx,ky)∈JK V
∗
kx,ky

) n∏
i=1

{∑
(kx,ky)∈JK V

∗
kx,ky

φ∗kx,ky(xi, yi)
}

= exp(−ΛD) ΛnD
n∏
i=1

{∑
(kx,ky)∈JK F (S∗kx,ky)φ

∗
kx,ky

(xi, yi)
}
.
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To explore the posterior distribution for {ΛD, F, α,K} under the density formulation, we in-

troduce bivariate continuous latent variables {zi} to write the hierarchical model for the data:

{(xi, yi)} | {zi},ΛD,K ∼ exp(−ΛD)
∏n
i=1 ΛD

∑
kx,ky∈Jk 1S

∗
kx,ky

(zi)φ
∗
kx,ky

(xi, yi)

(xi, yi), zi ∈ D, zi | F
i.i.d∼ F, i = 1 · · · , n

F | α ∼ DP(α, F0) F0(·) ≡ Unif(D)

ΛD | α ∼ Ga(α,C) α ∼ Ga(α | aα, bα) K ∼ π(K | {Kmin, · · · ,Kmax})
(2.10)

where ΛD | α ∼ Ga(α,C), with a Ga(aα, bα) prior placed on α, and with a discrete uniform

or a truncated Poisson prior distribution for K with support on [Kmin,Kmax]. The posterior

simulation method is more involved than the one for the intensity model of Section 2.3.1, but it

allows for estimation of K without trans-dimensional computational techniques.

The Markov Chain Monte Carlo algorithm consists of either Metropolis or Gibbs

update from the following full-conditionals:

1. zi|z−i, α,K, where zi is the bivariate continuous latent variable.

Let k∗(si|zi) =
∑

(kx,ky)∈Jk 1S
∗
kx,ky

(zi)W
∗
kx,ky ,i

, where W ∗kx,ky ,i = φ∗kx,ky(xi, yi) is a

constant.
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p(zi|z−i, si) = αq0
αq0+H

k∗(si|z)f0(z)
q0

+ 1
αq0+H

∑n∗−

j=1 k
∗(si|z∗−j )n−j δz∗−j

(zi)

= αq0
αq0+H q(z|si) + 1

αq0+H

∑n∗−

j=1 k
∗(si|z∗−j )n−j δz∗−j

(zi)

q0 =
∫
k∗(si|z)f0(z)dz =

∑
(kx,ky)∈JkW

∗
kx,ky ,i

· | S∗kx,ky | / | D |

q(z|si) =
∑

(kx,ky)∈JkW
∗
kx,ky ,i

q−1
0 1S∗kx,ky

(z) | D |−1

=
∑

(kx,ky)∈Jk
W ∗kx,ky,i|S

∗
kx,ky

|∑
m,nW

∗
m,n,i|S∗kx,ky |

1S∗kx,ky
(z) | S∗kx,ky |

−1

H =
∑n∗−

j=1 k
∗(si|z∗−j )n−j

where n∗− is the number of unique values, {z∗−j : j = 1 · · ·n∗−} is the vector of unique

values, and {n−j , j = 1 · · ·n∗−} is the vector of the number of observations that take

value z∗−j in the vector z−i = {zl : l 6= i}.

2. ΛD|−

ΛD|− ∼ Ga(α+ n,C + 1)

where n is number of points.

3. α|−

p(α|−) ∝ (

n∏
m=1

(α+m− 1))−1αn
∗
ga(ΛD|α,C)ga(α|a0, b0)

∝ (
n∏

m=1

(α+m− 1))−1αn
∗ Cα

Γ(α)
Λα−1
D αa0−1 exp(−b0α)

A Metropolis step is implemented with a normal proposal on the log scale.

4. K|−

p(K|−) ∝
n∏
i=1

 ∑
kx,ky∈JK

1S∗kx,ky
(zi)W

∗
kx,ky ,i

π(K|{Kmin, · · · ,Kmax})

The full conditional for K is a discrete distribution and can be directly sample from.
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With each draw in the posterior sample for {ΛD, {zi}, α,K}, we obtain a draw from

the posterior distribution of {ω∗kx,ky : (kx, ky) ∈ JK} by sampling from the following Dirichlet

distribution:

{ω∗kx,ky : kx, ky = 1 · · ·K} ∼ Dir({α/ | S∗kx,ky | +
n∑
i=1

1S∗kx,ky
(zi) : kx, ky = 1 · · ·K})

We obtain a draw from the posterior distribution of the intensity function λD(s) and the density

function fD(s) evaluated at location s = (x, y) respectively, given {ω∗kx,ky : kx, ky = 1 · · ·K},

via the following function

fD(x, y) =
∑

(kx,ky)∈JK ω
∗
kx,ky

φ∗kx,ky(x, y)

λD(x, y) = ΛD
∑

(kx,ky)∈JK ω
∗
kx,ky

φ∗kx,ky(x, y)

The marginal prior for the total intensity is p(ΛD) =
∫

Ga(ΛD | α,C) Ga(α |

aα, bα) dα. Under model (2.9), there is no closed-form expression for E(λD(x, y)), but E(α)/C

is an approximate lower bound for the prior mean intensity as illustrated below.

E(λD(x, y) | α,K) =
∑

(kx,ky)∈JK

αF0(S∗kx,ky)

C
φ∗kx,ky(x, y)

≈ α

C

∑
(kx,ky)∈JK

1

K2
φ∗kx,ky(x, y)

≥ α

C

∑
(kx,ky)∈JK

1

K2
Bkx,kyφ

∗
kx,ky(x, y)

≈ α

C

K∑
kx=1

K∑
ky=1

1

K2
Bkx,kyφ

∗
kx,ky(x, y)

=
α

C

K∑
kx=1

K∑
ky=1

1

K2
be(x|kx,K − kx + 1)be(y|ky,K − ky + 1) =

α

C

In step 2, we use the fact that S∗kx,ky is the overlap between the K × K unit square partition

set Skx,ky and the irregular domain D, and will have area either exactly equal to 1/K2, when
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S∗kx,ky = Skx,ky , or area that can be approximated by 1/K2. In step 4, we use the fact that

Bkx,ky ≈ 0 for (kx, ky) /∈ JK . With this caveat, the approach of Section 2.2.2 can be used to

specify the prior hyperparameters for α and the value for C. The earlier approach to specify K

can be used here to guide the choice of the support for the prior on K.

2.4 Synthetic data examples

2.4.1 Examples over regular domain

We study the inference results under the intensity model over the unit-square to exam-

ine the model’s capacity to capture the so-called "banana-shaped" spatial density which demon-

strates spatial correlation between the X and Y dimension. The spatial Bernstein density is a

product of two independent univariate beta densities. Therefore, these spatial Bernstein densi-

ties do not account for the spatial correlation when used as basis functions. Our hope is that with

enough such basis functions and random weights informed by the data, our model can capture

spatial correlation using the mixture.

We design a synthetic example where the true NHPP density is a mixture of two

bivariate Gaussian densities with positive correlation coefficient parameters, transformed to the

logit scale. The total intensity over the unit-square is 2000. We apply the intensity model

with a Ga(0.1, 0.005) prior for α, C = 0.01 and K = 20, 30, 40 respectively. Following the

prior specification strategy in Section 2.2.2, we compare the prior guess for the intensity mode
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λ̂ = 16000 to the quantity b∗2Qmax0.9 to calibrate the value for K. We conclude that a good prior

guess for K is 30.

The model is capable of capturing the banana shape overall but performs best when

K = 30. Fig. 2.3 shows the comparison between the posterior mean estimate for the density

function and the true density used in simulation under different values of K. The point estimate

under K = 20 does not capture the elliptical contour near (0.25, 0.25) well but shows great

improvement under K = 30. Under K = 40, we observe clear diagonal elliptical contour near

(0.25, 0.25) in the point estimate. However it also includes additional local modes that might

suggest over-fitting. Following our prior specification strategy, we conclude that K = 30 is

enough to capture the spatial correlation in the NHPP density shown in this example.

2.4.2 Examples over irregular domain

We study inference results under both the intensity and density model, using point

patterns generated under three different scenarios for the irregular shape of the spatial NHPP.

The synthetic point patterns are plotted in Fig. 2.4, and the true intensities, as well as their corre-

sponding polygonal domain, are shown in Fig. 2.5. For cases (a) and (b), the true NHPP density

is a mixture of two bivariate logit-normal densities, truncated over the respective domain, which

results in a unimodal intensity. Case (c) arises from truncating a mixture of bivariate beta den-

sities that accumulates most of its mass at the (0, 1) and (1, 0) corners of the unit square.

For all three cases, the intensity model (2.8) is implemented with C = 0.05, a

Ga(2, 0.01) prior for α, and with K = 20. The posterior mean and uncertainty estimates

reported in Fig. 2.5 demonstrate that the model recovers well the underlying intensity shapes
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Figure 2.3: Results for synthetic data example over regular domain with K = 20 in the first row, K = 30 in the

second row andK = 40 in the third row; the first column shows the true NHPP density, second column the posterior

mean for the NHPP density and third column the 95% credible interval length.
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Figure 2.4: Synthetic spatial point patterns for the irregular domain simulation study. The size of each point

pattern is shown in the corresponding panel.

over the different polygons.

We also applied the density model (2.10), using for all three data sets, a Ga(5, 0.1)

prior for α, C = 0.01, and a discrete uniform prior on [5, 25] for K. The posterior probability

for K at its posterior mode was: Pr(K = 13 | data) = 0.89 in case (a), Pr(K = 12 | data) =

0.99 in case (b), and Pr(K = 9 | data) = 0.81 in case (c). The posterior mean and uncertainty

estimates under the density model were similar to the ones reported in Fig. 2.5 under the

intensity model.

As an additional illustration, we consider a point pattern of size n = 303 drawn from

a NHPP with density 0.7 be(x | 4, 17)be(y | 10, 11) + 0.3 be(x | 12, 9)be(y | 4, 17) truncated

to the triangle with vertices {(0.01, 0.01), (0.2, 0.9), (0.9, 0.1)}, and with total intensity 300.

Here, the truth is designed to resemble the intensity model with K = 20, and we test the

performance of the density model in estimating K and other NHPP functionals.

Model (2.10) is implemented with a Ga(2, 0.01) prior for α, C = 0.01, and a discrete

uniform prior for K with support on [15, 25]. The posterior mean and uncertainty estimates in
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Figure 2.5: Results for the data in Fig. 2.4 under the intensity model. The left panel shows the true intensity

function, the middle panel the posterior mean intensity estimate, and the right panel a posterior uncertainty estimate

in the form of the difference between the 95th and 5th percentiles of the posterior distribution for the intensity

function.
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Figure 2.6: Results for the synthetic spatial point pattern generated from NHPP density 0.7 be(x | 4, 17)be(y |

10, 11) + 0.3 be(x | 12, 9)be(y | 4, 17) truncated to the triangle with vertices {(0.01, 0.01), (0.2, 0.9), (0.9, 0.1)}.

The left panel includes the true density. Based on the density model, the middle panel plots the posterior mean

density estimate, and the right panel an uncertainty estimate given by the difference between the 95th and 5th

percentiles of the posterior distribution of the density function.

Fig. 2.6 show that the underlying bimodal density shape is recovered well, taking into account

the moderate size of the point pattern. The posterior mean for the total intensity is 301.1, and the

95% posterior credible interval is given by (267.3, 334.3). The 95% posterior credible interval

for K is [19, 25], and the posterior mode is 20, with Pr(K = 20 | data) = 0.46. We note that

increasing the size of the simulated point pattern results in posterior distributions for K that are

more concentrated around K = 20.

2.5 Boston crime data analysis

For an illustration with real data, we consider the point pattern of n = 1251 locations

in the city of Boston where vandalism occurred during the second quarter of year 2017; see the

top left panel of Fig. 2.7. In general, spatial point patterns of crime depict more clustering than
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what a NHPP can model. However, we use such data here to illustrate the spatial NHPP model

over a non-trivial irregular domain, including model checking of the NHPP assumption.

The Boston City crime data and the Boston city boundary shape file in longitude

and latitude format are publicly available online (Jain, 2018; BostonGIS, 2018). We use the

R rmapshaper package (Teucher et al., 2021) to smooth this complicated boundary while

retaining its key spatial topology. The simplified boundary in the form of Multipolygons is

then mapped to a subset of the unit square. To process the raw data, we remove entries with

geo-location as NAs, project the vandalism incidence locations from longitude and latitude into

Northing and Easting, and finally map the crime locations and city boundary points to the unit

square.

We focus on inference results under the density model, implemented with C = 0.01,

a Ga(5, 0.1) prior for α, and a truncated Poisson prior for K with mean 20 and support on

[20, 60]. Fig. 2.7 plots posterior mean and uncertainty estimates for the intensity of vandalism

incidences. The posterior mean for the total intensity of vandalism in the second quarter of

2017 is 1234, with the 95% posterior credible interval given by (1167, 1303). The posterior

distribution for K has effective support on [36, 52] and posterior mode at 40 with Pr(K = 40 |

data) = 0.34.

For graphical model checking, we consider predictive residuals (Leininger and Gelfand,

2017a), defined as Npred(B) − Nobs(B), where Nobs(B) and Npred(B) are respectively the ob-

served and predicted number of points in B, a subset of the spatial point process domain D. To

sample from the posterior distribution ofNpred(B), we draw from the Poisson(
∫∫
B λD(x, y) dxdy)

distribution for each posterior realization of λD(x, y).
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Figure 2.7: Boston crime data: vandalism in the second quarter of 2017. The observed point pattern is shown

in the top left panel. Under the density model, the top right panel plots the posterior mean intensity estimate, and

the bottom left panel the difference between the 95th and 5th percentile of the posterior distribution for the intensity

function. The bottom right panel plots the posterior mean estimates for the predictive residuals.

We use the predictive residuals mainly as a graphical diagnostic tool to identify re-

gions with potential misfit, and provide only qualitative comparison between models. Baddeley

et al. (2005) defines a class of classical residuals for spatial point process and provides the cor-

responding means and variances, which can be used to calibrate such residuals. They define

the raw residual, referred to later as the realized residual by Leininger and Gelfand (2017a),
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as Nobs(B) −
∫
B λ(x, y)dxdy. We follow the advice by Leininger and Gelfand (2017a) and

use the predictive residuals defined above instead of the realized residuals, since the credible

interval for the latter is not expected to achieve empirical coverage of 0. Notice that the raw

residual essentially compares the observed count to the expectation of it in B and does not ac-

count for the additional variation from sampling. The predictive residuals however achieves

an apples-to-apples comparison between observed counts and predicted counts and provides

natural interpretation.

In general, lack of fit may be due to the NHPP assumption for the point process that

generates the particular point pattern and/or the model used for the NHPP intensity. A flexible

prior probability model for the NHPP intensity is practically useful in that it allows focusing

discrepancies in the residuals on the NHPP assumption.

To implement model checking with predictive residuals, we create a 20×20 grid over

the unit square and select the subset of these 400 square regions that overlap with the Boston

city boundary D as the target regions to cover the entire Boston city. The bottom right panel

of Fig. 2.7 plots the posterior mean estimates for the predictive residuals. The residuals in

regions near the city boundary are evaluated based on only the subsets that overlap with D.

This residual analysis suggests a decent fit of the NHPP model. It is perhaps not surprising

that the sub-regions with the more pronounced non-zero residual estimates correspond to parts

of the city where the data suggest clustering, for which a more general point process than the

NHPP would be expected to provide better model fit.
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2.6 Discussion

We have presented two models for spatial NHPP intensities over domains with irreg-

ular shapes. To our knowledge, this is the first treatment of this practically relevant problem

with methodology that supports general intensity function shapes and allows for full Bayesian

inference, while avoiding any type of approximation of the NHPP likelihood.

In the more commonly studied setting of a regular domain, the two modeling ap-

proaches result in the same formulation for the NHPP intensity, which corresponds to a Bernstein-

Dirichlet prior for the associated NHPP density. Hence, as a useful byproduct of the method-

ology, we establish a connection between density and intensity estimation under Bernstein-

Dirichlet priors. Relative to existing approaches that model directly the intensity function over

regular domain, the proposed method arguably offers a substantially more practical inference

framework. The prior model for the intensity function can be equivalently represented in terms

of a prior for the total intensity over the observation domain and a prior for the density function.

In contrast with related existing methods, the priors for the NHPP density and the total intensity

are guaranteed to be compatible with the prior for the NHPP intensity.

The two proposed models for spatial NHPPs over irregular domains D, the intensity

model (2.7) and density model (2.9), arise from different perspectives. The former model builds

from truncating the Bernstein-Dirichlet density model over D, whereas the latter constructs the

irregular domain density as a mixture of truncated beta basis densities. The intensity model

uses all K2 basis densities {φ∗kx,ky} and relies on random weights, further adjusted by the nor-

malizing constants Bkx,ky , to select appropriate basis members in constructing the intensity
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functional form. The density model is generally more efficient in the intensity representation,

as it utilizes a subset of the K2 basis densities {φ∗kx,ky}, the size of such subset determined by

the particular domain D. For settings where a value for K can be specified, possibly appealing

to empirical experience with synthetic data examples, the intensity model offers the benefit of

particularly simple and efficient model fitting. The density model affords more generality in

the inference scheme by allowing uncertainty with respect to the number of basis densities, at

the cost of a more involved posterior simulation method, which however does not require com-

plex trans-dimensional computational techniques. For both models, the intensity representation

through beta densities with specified parameters is essential for the practicality and computa-

tional efficiency of the inference methods for spatial NHPPs over irregular domains.

The two proposed models for the spatial NHPPs use only the event point pattern data

and can be extended to incorporate extra information. Here we focus on two types of additional

variables that potentially enrich the modeling: covariates and marks. The covariates under the

context of point process modeling are often spatially dependent, but are treated as fixed variable

within a pre-specified tract. For example, the population density varies over the country but is

fixed for a given county. A general approach to incorporate covariates for NHPP models is to

let the intensity function be dependent on the covariates, such that the new intensity function

takes the following form:

λD(s, x(s) | β) = λD(s) exp(x(s)Tβ)

where x(s) is a set of spatially varying covariates and β is the corresponding regression coef-

ficients. λD(s) can be formulated using either the intensity or density model introduced in this
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chapter. On the log-scale, the nonparametric intensity function λD(s) can be thought as an er-

ror term that accounts for spatial heterogeneity while the mean level of occurrence is specified

by the regression term. This approach is similar to the log Gaussian Cox process where the

intensity on the log scale has a mean dependent on the covariates and an error controlled by the

Gaussian process.

The challenge with this approach is to compute the normalizing constants. Certain

approximation is required for such computation since the total intensity, now defined as ΛD =∫
D λD(s) exp(x(s)Tβ)ds, no longer has a closed-form expression. One could discretize the

nonparametric intensity λD(s) over a fine grid over D and use Monte Carlo integration by

evaluating λD(s) exp(x(s)Tβ) at the centroids of the grid cells.

A mark can be thought of as a random variable that is only generated because the

event occurs. It can be modeled with a distribution whose density factors into the NHPP in-

tensity function. For the spatial Poisson process, consider random marks yi ≡ ysi ∈ M

associated with events at si. The marked NHPP is then characterized by the intensity function

λ∗D(si, yi) = λD(si)ms(yi), where ms(·) is the density function for the marks. The likelihood

for the observed point pattern {(si, yi) : i = 1, · · · , n} can be written as

L({(si, yi) : i = 1, · · · , n}) = exp(

∫
D
λD(s)ds)

n∏
i=1

λD(si))
n∏
i=1

ms(yi)

where the normalizing constant is a result of simplification since
∫
D
∫
M λ∗D(s,u)duds =∫

D λD(s)ds, since ms(ys) is a density. One can combine our proposed nonparametric model

for the NHPP intensity λD(s) and a model for the marks distribution to model marked NHPP,

as discussed in Taddy and Kottas (2012).

47



The intensity model proposed in this chapter serves as the building block in models

for the more general spatial point processes, the spatial Hawkes and space-time Hawkes process.

From now on, we will refer to the intensity model for NHPP as BPNHPP. The next two chapters

explore Bayesian semiparametric modeling for the spatial and space-time Hawkes processes to

account for potential self-triggering effects of the criminal activities.
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Chapter 3

Bayesian semi-parametric modeling for spatial

Hawkes processes

3.1 Introduction and motivation

The temporal Hawkes process, first introduced by Hawkes (1971) as a self-exciting

process, is characterized by the conditional intensity function, which represents the rate of event

at time t as the sum of the rate of background events and rates of events triggered by previous

events up to time t. Let Ht denote the history of events up to time t, the intensity function

at time t conditional on the history is λ(t|Ht) = µ(t) +
∑

i:ti<t
g(t − ti), where µ(t) is the

background event intensity function, and g(t− ti) is the trigger function that depends on events

prior to t.

The temporal Hawkes process has an equivalent representation as the superposition of

many generations of Poisson cluster processes conditional on the branching structure (Hawkes
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and Oakes, 1974). The Poisson cluster process, which is a special case of the general Cox

process, is defined by a parent Poisson process that describes the point pattern that serves as

the cluster centers, and an offspring Poisson process that describes the point pattern within

each cluster that is centered on points from the parent process (Daley and Vere-Jones, 2003).

The Hawkes process takes a step further and allows the offspring in each cluster to generate

their own offspring as a new Poisson cluster process. The resulting point pattern taken as the

superposition of point patterns across all generations is equivalent to a realization from a point

process defined by the Hawkes process conditional intensity function.

Specifically, the hierarchical model starts with a Poisson process with intensity µ(t)

that generates the first generation of points that serve as the initial cluster centers. Then offspring

points are generated according to offspring Poisson processes with intensity function g(t− ti),

for each parent point ti. Such intensity function is often referred to as the triggering function.

The branching structure, which describes the generation and parentage for each point, can be

modeled as augmented variables in the hierarchical model. These latent variables indicate the

index for each point’s parent and represent the full branching information. Introducing these

latent variables reduces modeling the Hawkes process through the conditional intensity function

to modeling a series of Poisson processes.

Certain restriction on the triggering function is required for the Hawkes process to

have finite realization, or from the simulation point view, to stop generating further offsprings

and not to blow up. In particular, the triggering function is required to satisfy the following

condition: 0 < γ =
∫∞

0 g(u)du < 1, where γ is referred to as the branching ratio and controls

the average number of offspring points generated in a family.
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The space-time self-exciting process provides an intermediate step to extend the Hawkes

process from temporal to spatial applications; see the review by (Reinhart, 2018). The space-

time Hawkes process is defined via a conditional intensity function

λ(s, t|Ht) = µ(s, t) +
∑
i:ti<t

g(s− si, t− ti).

The background intensity function µ(s, t) controls the immigrant Poisson process; the trig-

gering function g(s, t) controls the offspring Poisson processes for events triggered by previous

events. Such conditional intensity function incorporates spatial proximity in the triggering func-

tion in a fashion that only partially impacts the branching structure. Just like in the temporal

Hawkes process, the order of event time in the space-time Hawkes process defines the parame-

ter space of the branching structure since only the events prior to time t can serve as parent for

event at t. This class of model has limitations therefore in a spatial applications where the time

of event is not available, or spatial proximity directly impacts the branching structure.

Such limitations inspire the study of the spatial Hawkes process, where the branching

structure is purely based on spatial proximity without information on event time. The lack of

temporal information makes it less obvious how to define the Ht in the conditional intensity,

though later we will explain that certain constraints on the branching structure still exist.

The clustering representation of the spatial Hawkes process provides better under-

standing of the process and naturally inspires a Bayesian hierarchical modeling approach. Pro-

posed by Møller and Torrisi (2007) when modeling a general form of clustering Point pro-

cess, the General Shot Noise Cox Process (GSNCP), the clustering representation of the spatial

Hawkes process is formalized to be a superposition of a Poisson process and many later gener-
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ations of GSNCPs clustering on points in previous generations.

To our knowledge, there is no work in the literature on modeling and inference for the

spatial Hawkes processes. There is however, such literature for space-time Hawkes process. The

frequentist inference methods for space-time Hawkes processes utilize the conditional intensity

function that leads to either the likelihood (e.g. Veen and Schoenberg, 2008; Peng et al., 2005)

or the partial likelihood (e.g. Diggle, 2006). A technique called stochastic declustering infers

and labels each point as either from the immigrant process or an offspring process in an iterative

fashion. This technique has inspired a series of methods that construct nonparametric estima-

tors for the immigrant process intensity function from the immigrant points and a parametric

estimator for the offspring density (Zhuang et al., 2002; Chiodi and Adelfio, 2011), or model

the offspring density with a data-driven approach (Marsan and Lengliné, 2008). The likelihood

computation involves an integral with respect to the conditional intensity function that can be

numerically unstable, as suggested by Veen and Schoenberg (2008). Instead they propose an

Expectation maximization (EM) algorithm with the complete data likelihood defined by the hi-

erarchical formulation with the latent branching structure which proves to be numerically more

stable than maximum likelihood estimation. Rasmussen (2013) proposed two Bayesian estima-

tion methods for the temporal Hawkes process, using MCMC on the complete data likelihood,

with a Metropolis update on the branching structure within a Gibbs sampler, and a model with

augmented parameters to apply a Gibbs sampler step to the latent branching structure. From this

brief review, we notice that most approaches avoid using the conditional intensity directly due

to computation complexity and instead utilize the clustering representation to achieve inference

in a hierarchical or at least iterative fashion.
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We show that the clustering representation also exists for the spatial Hawkes process

conditional on the latent branching structure with modified constraints on its parameter space

due to the lack of natural order in space. We obtain a hierarchical formulation of the spatial

Hawkes process using its connection to the GSNCP to propose a Bayesian model framework

that incorporates the latent branching structure as part of the model to provide easy updates

in the posterior simulation (Section 3.2). Under this Bayesian framework, we present a class

of models that are permuted from three aspects of modeling choices: the shape of observation

window, the type of immigrant process, and the functional form of the parametric offspring

density (Section 3.3). We discuss model checking and model comparison techniques (Section

3.4) and demonstrate model capacity with synthetic data (Section 3.5, Section 3.6) and a real

data example on crime in Boston city (Section 3.7).

3.2 Spatial Hawkes Processes

The spatial Hawkes process (Møller and Torrisi, 2007) is defined as the superposition

of countable generations of point processes, X =
⋃∞
n=0Gn, Gn ∈ R2, such that the point

process for generation Gn+1, conditional on the previous generation Gn, is a Poisson process

on R2 with the following intensity function:

λn+1(s) =
∑

sj∈Gn
γ(s− sj) (3.1)

where s is the location for a point in Gn+1 and sj is the location of a point in Gn. Here, γ(·) is

a spatial intensity function for any location shift s− sj . The points in G0 are referred to as the

immigrants, and those in later generations, Gn, n > 1 , as the offsprings. The point process that
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generates G0, called the immigrant process, is a Poisson process on R2 with intensity function

µ(s).

Just like the temporal Hawkes process defined as a multi-generation Poisson cluster

process, the spatial Hawkes process can be considered as the superposition of a series of Cox

processes. The Cox process is a Poisson process with a random intensity function. Møller and

Torrisi (2005) defines the point process with intensity function in the form of (3.1) as a special

case of the GSNCP. In GSNCP, the random intensity function λ(ε) is defined through a point

process Φ on Rd × (0,∞),×(0,∞). Let νi be the set of points in Φ, and ε be the location of

a point from a realization from the GSNCP. The random intensity function λ(ε) is defined as

follows

λ(ε) =
∑

(νi,γi,bi)∈Φ

γikbi(νi, ε) (3.2)

where γi > 0 is the total intensity for the Poisson process and kbi(·, ·) is a kernel density

function with bandwidth bi.

The GSNCP can be viewed as a Cox process where each point νi generates offspring

independently following a Poisson point process with intensity γikbi(νi, ε). Møller and Tor-

risi (2005) establish the connection between the spatial Hawkes Process and the GSNCP by

recognizing that Gn+1|Gn in a spatial Hawkes process is a GSNCP where the bandwidth pa-

rameter bi is fixed and identical for all i, and Φ is the point process for Gn in (3.2). We follow

such construction and assume that the offspring density kernel is controlled by the same set of

parameters θo. We thus omit the subscript bi from the offspring density function and rewrite

it as k(ε|νi,θo). We assume that the total intensity γi is the same for all offspring Poisson

processes and denote this shared parameter as γ. This total offspring intensity is also known
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as the branching ratio and it directly controls how many sub-branches are spawn from a single

parent point. We change notation such that s denotes the location of a point in Gn+1 and sj the

location of the j-th point in Gn. Under these assumptions, the intensity function of Gn+1|Gn

in (3.1) is simply

λn+1(s) =
∑
sj∈Gn

λ(s|sj , γ,θo) =
∑
sj∈Gn

γk(s|sj ,θo) (3.3)

Furthermore, by the superposition theorem for Poisson processes (Kingman, 1992), Gn+1 with

the intensity λn+1 is the superposition of Nn independent Poisson processes, where Nn is the

number of points in Gn.

Let T be the full branching structure that specifies the family tree across all genera-

tions. Let θ = {θI ,θo} be the vector of parameters for the immigrant and offspring Poisson

process intensities. The hierarchical formulation for the spatial Hawkes process X given the

branching structure is the following:

X|T ≡
⋃∞
n=0Gn

Gn|Gn−1, T ≡
⋃
j NHPP(s ∈ Oj |θo) s ∈ Gn, sj ∈ Gn−1

G0 ≡ NHPP(θI)

(3.4)

where Oj is the set of points in Gn generated by the Poisson process centered on location sj

in Gn−1. Conditional on the latent parent label j for each point in Gn+1, the complete data

likelihood for Gn+1 is the product of Nn Poisson process likelihoods terms, each with intensity

γk(s | sj ,θo), where sj ∈ Gn. Recall that the spatial Poisson process likelihood, based on

point pattern {s1, · · · , sn} observed in D, is fully specified by the intensity function λ(s). We
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denote such likelihood by PP(· | λ(s)),

PP({s1, · · · , sn};λ(s)) ∝ exp
(
−
∫
D
λ(s)ds

) n∏
i=1

λ(si)

We then obtain the likelihood for points in Gn+1 as a product of Poisson process likelihoods as

follows:

p(Gn+1, Gn) = p(Gn+1|Gn)p(Gn) =

{ ∏
sj∈Gn

PP
(
{s ∈ Oj};λ(s) = γk(s|sj ,θo)

)}
p(Gn)

(3.5)

We use this formulation to obtain the complete-data likelihood for the spatial Hawkes

process conditional on the latent branching structure constructed in a similar fashion as in the

temporal case (Rasmussen, 2013). The key is to recognize that the branching structure infor-

mation required by the likelihood is fully specified by the parent label of each point, with the

special case of immigrants with no parents. Therefore, we use [i] to denote the index for the

parent point of i, which indicates that point i is generated from the Poisson process centered on

point [i], and let [i] = 0 for immigrant points. Let the spatial point pattern data be denoted as the

set of locations S = {s1, · · · , sn}. By applying (3.5) recursively, and using O to denote the

collection of all offspring points such thatO = ∪nj=1Oj , we obtain the complete-data likelihood

conditional on parent label [i] as the following

p(S| [i]) =

{
n∏
j=1

PP
(
{si : [i] = j};λ(si) = γk(si|s[i],θo)

)}
· PP({si : [i] = 0};µ(si))

(3.6)

Notice that the last generation of points, which are the leaf nodes in the branching trees, will

have no children in reality, meaning that the offspring Poisson processes centered on these
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points only contribute their normalizing constants to the likelihood.

There is a subtle difference between the branching structure in the spatial Hawkes

process and that in the temporal one. In the temporal case, there exists a natural order of events

implied by the timestamp of the points, since only points that occurred prior to time t can be

the parent for point at t. Such natural order of events makes it easy to determine the valid

parent set for a given point according to chronological order, but it does not exist in spatial

point processes. The issue is that the spatial location of an event does not directly restrict

the lineage among points, which makes the parameter space for the branching structure more

complex compared to its counterpart in the temporal case. However, some restrictions on the

valid parent set of point i still exist when we represent the lineage using a set of trees. Each tree

starts with a specific immigrant point as the root node and branches off hierarchically to a set of

offspring points as the descendants of such immigrant point until reaching the leaf nodes which

have no children. Based on this representation, the parent of an offspring point is the point one

generation closer to the immigrant on the same branch in the latent family tree set T . And the

immigrant points have no parent.

Inference on this latent structure requires a valid proposal to mutate the tree structure.

Conditional on the current branching structure, such proposal needs to satisfy the following

condition: a point in the proposed tree structure cannot be the parent of any points that descend

from itself in the current structure. Fig 3.1 illustrates a comparison of valid proposal for branch-

ing structures in the temporal and spatial Hawkes processes. The observed point locations for

the temporal Hawkes process are the timestamps over the positive real line. Here the times-

tamp is indexed by point index, not by chronological order. The coordinates of nodes in the
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right panel are the locations for the observed realization from the spatial Hawkes process. The

nodes and arrows illustrate the current latent branching structures. In the temporal case, a valid

proposal for the branching structure needs to respect the chronological order. For example, the

node 2 cannot be the offspring of node 6, since t2 < t6. In the spatial case however, node 2 can

be proposed to be the offspring of point 6, since point 6 is not a descendent of point 2 based

on the current branching structure. In the temporal case, we can easily get the available parent

set for a point i as the set of points j with tj < ti. In the spatial case, we need the complete

family tree T for each point in G0 and choose parents for i from the points that are not direct

descendants from i.

1 4

2 3 5 6

● ● ●● ● ●

t1 t2 t3t4 t5 t6

1

3

4

2

7

5

6

Figure 3.1: Branching structure in temporal (left panel) and spatial (right panel) point processes. In both panels,

the node’s color indicates generation (gray = G0, yellow = G1, blue = G2); the arrows suggest parent-children

relationship. The left panel shows the node location over the positive real line; the right panel over the unit square.

To sample from the spatial Hawkes process, we will follow the hierarchical model

formulation and sample Gn+1 conditional on Gn from independent Poisson processes. The
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simulation follows steps as follows:

1. Sample G0 from a Poisson process with intensity function µ(s). We first sample N0,

the total number of points in G0, from a Poisson distribution with mean Λ, where Λ =∫
D µ(s)ds for NHPP or simply µ | D | for HPP. Next, we sample N0 points i.i.d from

the density function f0(s) = µ(s)/Λ.

2. Sample Gn+1 conditional on points in Gn from Nn independent Poisson processes for

n = 0, 1, · · · . The Poisson process centered on si, i = 1, · · · , Nn, has total intensity γ

and density k(s|si,θo). The union of realizations from the Nn Poisson processes forms

Gn+1 with size Nn+1.

3. Repeat step 2 until no further offspring is generated. For the Hawkes process to be sta-

ble, or stop generating offspring within finite generations, the branching ratio γ needs to

satisfy the condition 0 < γ < 1.

3.3 Bayesian semi-parametric modeling framework for spatial Hawkes

processes

We provide model formulations for a class of spatial Hawkes processes that are as-

sumed to have strict support over some compact domain D. Such assumption implies that all

parents generate offspring points only within D. Equivalently, the parent of any offspring point

is among the observed point. Such assumption is valid for most applications where the self-

exciting behavior is effective in a small range from the parent event. For application in crime
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forecast, we can safely assume that similar crimes tend to occur in specific neighborhoods and

have limiting effects outside the city boundary.

In this section, we discuss modeling choices from the following three aspects: the

shape of the support D, the type of the immigrant process, and the choice of offspring density.

We describe the model formulation under each configuration and the corresponding posterior

simulation details.

3.3.1 Modeling for point patterns over an irregular domain D

The default choice for the domain D for a spatial point pattern is the unit square.

However, for most applications, events only occur in bounded regions within the unit square,

and such regions’ boundaries are often highly irregular. We refer to the unit-square as the

regular domain and any strict subset of the unit-square as the irregular domain. The shape of D

has significant implications for modeling the spatial Hawkes process since taking D to be the

unit-square in specific applications may violate the strict support assumption. One example is

modeling tree locations in a forest, which often has a boundary that maps to a subset of the unit

square. Choosing the boundary to be the unit-square allows offspring points to occur outside

of the forest boundary where no trees can survive in reality. On the contrary, the crime pattern

in certain cities can have support over the unit square, especially when the city boundary is

almost rectangular. From the modeling perspective, the choice of D poses constraints for the

immigrant and offspring processes model, since both immigrant and offspring Poisson densities

have the same support D. We will address how our models account for irregular domain D as a

key contribution of this work.
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3.3.2 Model for the immigrant process

The choice of the immigrant process intensity largely depends on the application. The

homogeneous Poisson process is suitable for applications where the inhomogeneity in the point

pattern is assumed to be mainly driven by offspring clustering. In these cases, it is reasonable

to assume that the immigrant point pattern is simple and sparse, whereas the offspring point

pattern is a complex result of the evolution of many generations. One example of such a use

case is the point pattern of a forest. The first generation of trees may have appeared in the

forest in a completely random fashion. The clusters of trees as observed today result from many

generations of reproduction centered on parent trees that have appeared earlier.

Alternatively, the NHPP is more suitable when the immigrant point pattern is com-

plex, and the offspring process consists of fewer generations with sparse patterns to account for

a small amount of local clustering. A good example is the locations of crimes in a city in a

given period since it is a common practice to profile crime patterns via hot spot analysis, which

suggests varied levels of crime rate dependent on location. The initial crimes are treated as a

realization from a NHPP whose intensity function captures these hot spots well. Furthermore,

the triggering effect of these initial crimes tends to fade quickly and therefore it produces fewer

generations of triggered crimes as offspring.

The ideal NHPP model for the immigrant process in a spatial Hawkes process should

provide both flexible inference and computational efficiency while accounting for the irregular

observation window in the model construction. The computational requirements come from

the fact that the NHPP serves as a latent layer in the full hierarchical model that relies on
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the Markov Chain Monte Carlo algorithm for posterior inference. Fast posterior sampling for

the latent NHPP parameters reduces the computational cost for each iteration of the posterior

simulation. Based on these considerations, we choose the intensity formulation from the model

proposed in Section 2.3.1. The model is constructed on the connection between a simple prior

placed on a representation of the intensity function as a weighted sum of beta density functions

to a Bernstein-Dirichlet process prior placed on the NHPP density function. Such connection

is the key for the model to achieve efficient posterior simulation for full Bayesian inference

while providing rich prior support for the intensity function. Lastly, the model accounts for the

irregular domain as part of the model construction at minimal additional computation cost.

Under the intensity formulation, we represent the immigrant intensity function as a

weighted combinations of the spatial Bernstein densities, φkx,ky(x, y) = be(x|kx,K − kx +

1)be(y|ky,K−ky+1), where (kx, ky) ∈ {(1, 1), (1, 2), · · · , (K,K)}.The model for the NHPP

intensity function is the following:

µ(x, y) =
∑K

kx,ky=1 Vkx,kyφkx,ky(x, y), (x, y) ∈ [0, 1]2

Vkx,ky |α
ind.∼ Ga(α/K2, C), kx, ky = 1 · · ·K

(3.7)

This intensity model implies the following mixture representation for the NHPP den-

sity function f(x, y) = µ(x, y)/
∫ ∫

[0,1]2 µ(x, y)dxdy =
∑K

kx,ky=1 ωkx,kyφkx,ky(x, y), where

{ωkx,ky} ∼ Dir({αk = α/K2, k = 1 · · ·K2}). The particular Dirichlet distribution connects

this mixture representation to a Bernstein-Dirichlet prior placed directly on the NHPP density

function. This connection achieves flexible inference using the corresponding intensity model

(3.7), since the Bernstein-Dirichlet prior has nice properties such as uniform convergence (Lev-

asseur, 1984) and posterior consistency for density estimation (Petrone and Wasserman, 2002).
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To accommodate for the irregular domain, we truncate the NHPP density function

over the unit-square toD: fD = f(x, y)/
∫ ∫
D f(u, v)dudv =

∑K
kx,ky

Vkx,kyBkx,kyΛ
−1
D φ∗kx,ky(x, y),

where ΛD =
∑K

kx,ky
Vkx,kyBkx,ky and φ∗ denotes the truncated Bernstein densities with nor-

malizing constants Bkx,ky . Conditional on the parent label [i], we model the collection of im-

migrant points for which [i] = 0 with the following NHPP intensity function

µ(xi, yi) =
K∑

kx,ky=1

Vkx,kyBkx,kyφ
∗
kx,ky(xi, yi) (xi, yi) ∈ D, [i] = 0 (3.8)

Incorporating this formulation to model the immigrant intensity in the spatial Hawkes

process is straightforward. The only difference between modeling the immigrant Poisson pro-

cess and an actual Poisson process is that the observed locations in the former come from a

random subset of a larger point pattern and can change in the posterior simulation depending

on the current latent branching structure. The varying number of observations across MCMC

iterations means that the number of latent index parameters (ξi, ηi) also changes. This does

not cause issue for the intensity formulation, since (ξi, ηi) are independent for i conditional on

Vkx,ky in the posterior. Alternatively, applying the density formulation becomes problematic

because the latent parameters zi are conditionally dependent in the posterior. Sampling zi from

the posterior full conditional depends on values for all z−i. There is no default value for zi in

the current posterior sample when i is not an immigrant in this iteration but becomes an immi-

grant in the next. As a result, we apply the intensity formulation to the subset of point patterns

with immigrant identity in each posterior simulation iteration and define immigrant parameter

set θI to be {Vkx,ky , α} and specify values for K and C.
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3.3.3 Offspring density choices

We consider two parametric forms for the offspring density: a bivariate beta den-

sity over the unit-square or a bivariate normal density truncated to D. Given the strict support

assumption, the bivariate beta density is only suitable for regular domain D, whereas the trun-

cated bivariate normal density can be applied to any compact domainD when proper truncation

is enforced.

The bivariate beta distribution is constructed as a product of two independent beta

densities in the x and y dimensions, each parameterized by a mode and a dispersion param-

eter. Such parameterization allows the offspring density to be centered at its parent location

(x[i], y[i]) by defining the modes of the two univariate beta densities accordingly: k(si|s[i], τ) =

beta(xi|x[i], τ) beta(yi|y[i], τ) where the density function beta(·|m, τ) has mode m and disper-

sion parameter τ . The new parameters m and τ map to the conventional beta parameterization

beta(a, b) with expectation a/(a+ b) via a = m(τ − 2) + 1, b = (1−m)(τ − 2).

The offspring density under such formulation has variance dependent on the parent

location. The variance of the marginal beta distribution, V(x) = m(1 − m)(τ − 2)2 + τ −

1/(τ2(τ + 1)), depends on the parent’s location which defines the mode m. The variance of the

marginal density in the x or y dimension achieves a maximum at m = 0.5 and decreases as m

approaches 0 or 1. Thus, the effective density range is small near the boundary but large at the

center. Simulation suggests that given a small dispersion parameter, the shape of the offspring

density does not vary significantly across space.

More generally, we adopt a bivariate normal density centered at the parent location
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and truncated to the compact domain D for the offspring density. We specify the covari-

ance matrix Σ with three parameters, σx, σy, ρ, to control the spread in the x and y direc-

tion and the spatial correlation. The offspring kernel conditional on the parent location is thus

k(si|s[i],Σ) ∝ I[si∈D]N2(si|s[i],Σ). Computing the normalizing constant in this truncated

distribution can be expensive, especially because such computation happens for all families at

each iteration of the posterior simulation. We design a special Monte Carlo routine to cache

some of the computations, which improves the algorithm’s speed remarkably. We will discuss

the details of such implementation in Section 3.3.5.

3.3.4 Model formulations

We first describe the complete data likelihood for the spatial Hawkes process condi-

tional on the branching structure. Let {[i]} be the set of latent variables to denote the index

of parent for point i, i = 1 · · · , n. Let k(si|s[i],θo) be the general form of a parametric off-

spring density function for observation i with mode at its parent location s[i] and the offspring

parameter vector θo. Let γ denote the branching ratio, i.e., the total intensity for any individual

offspring Poisson process. The complete data likelihood conditional on parent information [i]

is given by

L(s|{[i]},θI ,θo)

= exp(−
∫
D
µ(s|θI)ds− γ

N∑
j=1

∫
D
k(u|sj ,θo)du)

∏
i:[i]=0

µ(si | θI)
∏

i:si∈O
γk(si|s[i],θo)

(3.9)

where D is the observation window, and O is the set of offspring points.
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Immigrant Process Offspring Kernel D Model Name

HPP bivariate beta unit-square HPP-Bibeta

HPP truncated bivariate Normal irregular domain HPP-Tbinorm

NHPP bivariate beta unit-square BPNHPP-Bibeta

NHPP truncated bivariate Normal unit-square BPNHPP-Tbinorm

NHPP truncated bivariate Normal irregular domain BPNHPP-Ireg-Tbinorm

Table 3.1: Model configurations for SH processes.

The permutation of domain shape, immigrant process type, and offspring kernel choice

render five models as listed in Table 3.1. The following section will describe the hierarchical

model under each configuration and discuss their posterior simulation details. We will start with

a simple model, HPP-Bibeta, to demonstrate posterior updates for the latent branching struc-

ture, then proceed to describe the similar model HPP-Tbinorm with the alternative offspring

kernel. Next, we describe the augmented hierarchical model BPNHPP-Bibeta with the immi-

grant process modeled as an NHPP and the offspring kernel as a bivariate beta density. Lastly,

we describe the most complicated but most general model, BPNHPP-Ireg-Tbinorm. Notice that

when D is the unit-square, the BPNHPP-Ireg-Tbinorm is equivalent to BPNHPP-Tbinorm. We

thus skip details on this model since the immigrant and offspring process components appear in

previous configurations.

The complete data likelihood suggests that we can model the immigrant points and

offspring points separately conditional on [i] since the contributions from both processes are

separable as multiplicative terms in the likelihood. The hierarchical model can be therefore

decomposed into three parts: the model for immigrant points with [i] = 0 controlled by the
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immigrant intensity function µ(s) with immigrant parameter θI , the model for offspring points

with [i] 6= 0 controlled by branching ratio γ and offspring kernel parameter θo, and lastly,

the prior for the latent variables [i]. Notice that updating [i] for i = 1 · · · , N is equivalent to

sampling from the posterior full-conditional of the branching structure since the full branching

structure T can be mapped one-to-one to the set of latent variables [i].

For models with homogeneous Poisson immigrant processes, we focus on the third

part of the hierarchical model since the immigrant process is simple and controlled by one

parameter µ(s) = µ. We now describe the prior for the branching structure T in terms of

summaries of [i]. Let Ci denote the set of points that descend from point i according to the

branching structure T ; let Cc
i denote the complement of Ci, i.e., the set of valid parent points

for point i. A discrete uniform prior on the union of valid parent point set and 0, {0,Cc
i},

ensures a proper prior for the branching structure, which assumes an equal chance for a point i

to be an immigrant point or a child of points in set Cc
i .

The hierarchical model for a spatial Hawkes process with homogeneous Poisson im-

migrant process follows the form below with k(si|s[i],θo) as the general form for any offspring

kernel, and Fγ(ag, bg) as the prior for the branching ratio γ and Fθo as the prior for the immi-

grant parameters θo:

{si}|[i], µ, γ, {[i]} ∼ exp(−µ | D | −Nγ)
∏

{i:[i]=0}
µUnif(si|D)

∏
{i:si∈O}

γk(si|s[i],θo)

γ ∼ Fγ(ag, bg), θo ∼ Fθo , [i]
ind.∼ Uniform({0,Cc

i}).
(3.10)

The nature of the branching ratio requires its prior support to be [0, 1] for the spatial

Hawkes process to be stable. We consider two choices for Fγ(ag, bg): the beta distribution and
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the truncated gamma distribution, where ag and bg are the two shape parameters for the former,

and shape and rate parameter for the latter. The following section presents the MCMC detail

under each prior. We use the truncated gamma distribution in the simulation study and the real

data example due to better mixing behavior under such prior.

We now describe the parametric model for the offspring density k(si|sj ,θo) under

the bivariate beta kernel and the truncated bivariate Normal kernel. The domain D is restricted

to the unit-square when using the bivariate beta kernel controlled by θo = {τ}. We place

a gamma prior on the dispersion parameter τ . Alternatively, the truncated bivariate Normal

kernel applies to any compact observation window D and is controlled by θo = {σx, σy, ρ}.

We place inverse-Gamma priors on σx and σy with hyperparameters ax, bx, ay, by. We place

a beta prior on the transformation of the correlation coefficient ρ, h(ρ) = (ρ + 1)/2 to map ρ

from [−1, 1] to [0, 1].

The posterior full conditional for the latent variable [i] is the following discrete distri-

bution:

π([i] = j|−) =



γk(si|sj ,θo)
µ+γ

∑
l∈Cc

i

k(si|sl,θo) j ∈ Cc
i

µ
µ+γ

∑
l∈Cc

i

k(si|sl,θo) j = 0

(3.11)

Sampling from such discrete distribution can be easily achieved by evaluating both

the immigrant intensity µ and offspring intensity γk(si|sj ,θo) for all valid parents with index

j ∈ Cc
i for i. Concretely for each [i], a routine will first defineCi by tracing down the branching

structure recursively and adding point located above i in the tree structure until reaching the

node that contains i. Notice that i is included in Ci, and Cc
i is the complement taken with
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respect to the entire point pattern. The offspring intensity function is then evaluated at si given

parent points indexed by elements in Cc
i . We leave the posterior updates for µ, γ and θo to the

next section where we discuss implementation details.

Next we describe the models with nonhomogeneous Poisson immigrant processes.

We will use the intensity model discussed in Section 3.3.2 with parameter set {{Vkx,ky}, α} and

pre-specified constants C and K. We augment the parameter space to achieve easy posterior

updates with the set of latent variables {ξj , ηj} as the basis index pair for point with index

j ∈ {j : [j] = 0}. We use φ(sj) to denote φ(xj , yj), where sj = {xj , yj}. The hierarchical

model for the BPNHPP-Bibeta configuration is the following:

{si}|V , {ξj , ηj}, γ, {[i]} ∼ exp(−Λ−Nγ)
∏

{i:[i]=0}
Λφξj ,ηj (si)

∏
i:si∈O

γk(si|s[i], τ)

π(ξi = kx, ηi = ky|K,V , [i] = 0) = Vkx,ky/Λ [i]
ind.∼ Uniform({0,Cc

i})

Vkx,ky |α,K ∼ Ga(α/K2, C) α ∼ Ga(aα, bα) γ ∼ Fγ(ag, bg) τ ∼ Ga(ag, bg)

(3.12)

where V = {Vkx,ky}, and Λ =
∫ ∫

[0,1]2 µ(x, y)dxdy =
∑K

kx=1

∑K
ky=1 Vkx,ky .

The posterior updates for {Vkx,ky} and {ξi, ηi} conditional on the immigrant index

set {i : [i] = 0} are simple: given {ξi, ηi} and α, the Vkx,ky are conditionally independent

and gamma-distributed; given {Vkx,ky} and point location si, the full-conditional for the latent

variables {ξi, ηi} is a discrete distribution. The update for the branching structure is again

achieved by updating [i] for i = 1 · · · , N sequentially. Here the full conditional for [i] is

also a discrete distribution with the same form as (3.11) with the immigrant intensity µ(si) =∑K
kx,ky=1 Vkx,kyφ(si) in the place of µ. The updates for α, γ and τ will be discussed in the next

section.

69



Finally we describe the most general model BPNHPP-Ireg-TBinorm, where ‘Ireg‘

in the configuration name emphasizes that the domain D can be of any shape. We skip the

BPNHPP-TBinorm configuration, which can be considered either as similar to (3.12) with

modified offspring kernel, or the special case for BPNHPP-Ireg-TBinorm applied to the reg-

ular domain. To accommodate the irregular observation window D, we represent the intensity

function as a weighted sum of truncated Bernstein densities φ∗ξi,ηi(si) = B−1
ξi,ηi

φξi,ηi(si) and

adjust the weights Vkx,ky by normalizing constant Bkx,ky for the Bernstein density with index

(kx, ky). The hierarchical model is given below:

{si}|V , {ξj , ηj}, γ, {[i]} ∼ exp(−ΛD −Nγ)
∏

{i:[i]=0}
ΛDφ

∗
ξi,ηi

(si)
∏

i:si∈O
γk(si|s[i],Σ)

π(ξi = kx, ηi = ky|K, {Vkx,ky}, [i] = 0) = Vkx,ky/ΛD [i]
ind.∼ Uniform({0,Cc

i})

Vkx,ky |K ∼ Ga(α/K2, C) α ∼ Ga(aα, bα) γ ∼ Fγ(ag, bg)

Σ ≡ {σ2
x, σ

2
y , ρ} ∼ inv-Ga(ax, bx)inv-Ga(ay, by)Be((ρ+ 1)/2|aρ, bρ)

(3.13)

where ΛD =
∫ ∫
D µ(x, y)dxdy =

∑K
kx,ky=1 Vkx,kyBkx,ky . The updates for V and {ξi, ηi} are

again simple with conditionally independent gamma full-conditionals for Vkx,ky and discrete

full-conditionals for {ξi, ηi}. The updates for [i] assumes the same form as (3.11) with the

modification of replacing µ everywhere with the nonhomogeneous immigrant intensity µ(s) =∑
kx,ky

Vkx,kyBkx,kyφ
∗
kx,ky

(s). The updates for the offspring parameters {σ2
x, σ

2
y , ρ} will be

discussed in the next section.
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3.3.5 Posterior simulation

In this section, we first discuss the posterior full-conditional updates for the branching

ratio γ and offspring parameter(s) θo, where θo ≡ τ for the bivariate beta kernel and θo ≡

{σ2
x, σ

2
y , ρ} for the truncated bivariate Normal kernel.

The posterior update for the branching ratio requires a Metropolis step under a beta

prior and a rejection sampling step under a truncated Gamma prior. The full-conditional un-

der beta prior is π(γ|−) ∝ exp {−Nγ} γ|O|γag−1(1 − γ)bg−1, where |O| is the number of

offspring points. Sampling can be achieved by a Metropolis step with proposal for the logit-

transformed γ or introducing an auxiliary variable ζ such that π(γ, ζ|−) ∝ I(ζ<exp{−Nγ})γ
|O|

γag−1(1 − γ)bg−1 The full conditional for ζ is π(ζ|γ) ∼ Uniform(0, exp(−Nγ)) and the new

full-conditional for γ is π(γ|ζ,−) ∼ beta(|O| + ag, bg)I[γ<− log(ζ)
N

)]
. We sample ζ from a uni-

form distribution and γ conditional on ζ from a truncated beta distribution. We obtain poor

mixing for γ with such sampling approach. Alternatively, the full conditional under truncated

Gamma prior is π(γ|−) ∝ γ|O|+ag−1 exp{−(N + bg)γ}I[γ∈[0,1]], which can be sampled by

rejecting samples from the Gamma distribution with shape |O|+ag and rate N + bg that do not

fall in [0, 1].

The updates for offspring kernel parameters are achieved by Metropolis steps. For bi-

variate beta kernel, the dispersion parameter τ has full-conditional π(τ |−) ∝
∏
i∈O k(si|s[i], τ)·

gamma(τ |aτ , bτ ). The update is achieved through a Metropolis step with proposal distribu-

tion as a normal centered on the current log-transformed τ value. For the truncated bivariate

Normal density, we jointly update {σ2
x, σ

2
y , ρ} through the transformation {log(σ2

x), log(σ2
y),
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logit((ρ+ 1/2)} with a normal proposal density with covariance matrix Σtune = I3σ
2
tune.

The normalizing constant for the bivariate Normal density is computed numerically

using Monte Carlo approximation and therefore poses a significant computational challenge.

When evaluating the offspring density, computing the normalizing constant occurs and requires

updates when the parent location and the offspring parameters change. Two types of compu-

tation require computing the normalizing constant by Monte Carlo approximation: 1) when

updating the parent index [i] for point i, the offspring kernel is evaluated N − |Ci| times with

parent locations in Cc
i ; 2) when updating the offspring kernel parameter Σ, with fixed parent

locations, the offspring kernel is evaluated for all points with current and proposed Σ. We im-

plement two tricks to reduce computational cost in these two situations: in 1), we create only

one Monte Carlo sample when Σ is given from a bivariate Normal distribution centered at 0

with covariance matrix Σ. For a kernel with parent location s[i], we shift the entire MC sample

by such parent location. In 2), we cache the normalizing constant for points with the same

parent, so the normalizing constant is only computed once. These tricks turn out to be neces-

sary and efficient. Together they lead to a 300 times speed up compared to an algorithm that

computes the normalizing constant on the fly using a naive MC implementation.

Next, we describe the posterior updates for parameters of the NHPP model {Vkx,ky}, α

and the latent variables ξj , ηj for [j] = 0. In the most general case where D is a subset of

the unit square, the full-conditional for {Vkx,ky} is a gamma distribution with shape parame-

ter
∑N

i=1 I[ξi=kx,τi=ky ,[i]=0] + α/K2 and rate parameter C + Bkx,ky . Notice that when D is

the unit-square, the normalizing constant Bkx,ky is 1 for the corresponding spatial Bernstein

density, thus we obtain the simplified posterior update for BPNHPP over unit square with-
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out using Bkx,ky . The full conditional for ξj , τj are independent discrete distributions with

p(ξj = m, ηj = n|−) ∝ Vm,nφm,n(sj) for [j] = 0. And finally, α is updated by a Metropolis

step with Normal proposal on the log-scale.

3.4 Model checking and comparison

3.4.1 Predictive residuals over the Voronoi tessellation

We perform the posterior predictive residual check in the simulation study as the

primary method to examine the first moment inference. The predictive residual is defined as the

difference between the actual number of observations and the predicted number of observations

over a partition of the domain D. Leininger and Gelfand (2017b) suggests that the predictive

residual is preferable to the raw residual since the credible interval of the latter is not expected

to cover 0. We obtain a sample from the posterior distribution of the predictive residual by

simulating a point pattern replicate for each posterior sample. For each replicate, we compute

the predictive residual with the bth posterior sample of the model parameters for b = 1 · · · , B

and obtain a posterior sample of predictive residual of size B.

As recommended by Bray et al. (2014), we apply the Voronoi tessellation to partition

the observation window for residual inference to avoid bias introduced by an arbitrary grid:

the distribution of the expected number of events per grid cell is skewed if the grid cell is

too small, but the over- and under-estimation can cancel out if such cell is too large. The

Voronoi tessellation partitions the observation window using a set of points such that each subset

contains only one of these points which has the shortest distance to any points in the subset. We
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report the posterior mean of the predictive residuals in each Voronoi tessellation partition in a

map. For synthetic data, the choice of points to perform the Voronoi tessellation can simply be

the immigrant points that are available through simulation. For real data where the identity of

immigrant point is unknown, we can use a clustering algorithm to identify local cluster centers.

3.4.2 Ripley’s K Function

We use the Ripley’s K function (Ripley, 1976) to examine the second moment infer-

ence under the proposed models. More specifically, we use the estimate of the generalization of

the original K function for inhomogeneous point patterns developed by Baddeley et al. (2000)

as a summary statistic to perform model checking and comparison. The inhomogeneous K

function is defined as

Kinhom(r) =
1

| B |
E
( ∑
si∈S∩B

∑
sj∈S\{si}

1[||si−sj ||≤r]

λ(si)λ(sj)

)
, r ≥ 0

for any subset B ⊂ D, where 1[·] is the indicator function, |B| is the area of B and λ(·) is the

non-constant first-order intensity function for the finite point pattern S = {s1, · · · , sn} ⊂ R2.

We obtain a posterior sample for such K function by simulating a point pattern replicate for

each posterior sample of model parameters, and apply the inhomogeneous K function estima-

tor to the replicate. We use the inhomogeneous K function estimate using the observed point

pattern as the "truth" to benchmark the posterior mean and interval estimate of the K function.

Additionally, we examine data variability by simulating multiple point pattern replicates based

on the posterior mean estimate of the model parameters, and obtain K function estimates for

these replicates. We check whether the posterior credible interval for the K function covers the
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"truth" for goodness of fit, and compare such coverage across multiple models applied to the

same data to select the better performing model.

We use the K function more as a summary statistic than a hypothesis testing tool.

The goal for such comparison between K function estimates using real data vs. simulated

replicates is not to test whether the HPP or NHPP assumption is valid for the point process, but

rather how similar these estimates are under the same assumption. The K function estimates

of the point pattern replicates serve as summaries of the second moment inference for different

models and can be compared against the summary based on the observed data to examine model

fit. The reasons that lead to difference in K function estimates between the replicated data

under a certain model and the observed data may come from different aspects of modeling: the

model assumes the wrong stochastic process; the model assumes the right stochastic process

but performs the estimation poorly, etc. Thus, we do not use such comparison to test whether

the observed data is generated from the point process assumed by the model. The K function

is implemented through accessing the Kest.fft and Kinhom function from the spatstat

package in R (Baddeley and Turner, 2005).

3.5 Simulation Study for the BPNHPP-Bibeta model

In this section, we present two simulation studies: the first one with HPP as the true

G0, and the second one with NHPP as the true G0 with a unimodal logit-transformed bivari-

ate Gaussian immigrant density. The true offspring densities in both cases take the form of

aforementioned bivariate beta centered on the parent location with parameter τ that controls
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dispersion. We consider three models: BPNHPP , HPP-Bibeta model, and BPNHPP-Bibeta

formulated in (3.12). The BPNHPP model refers to the intensity formulation for the spatial

NHPP model. The first scenario with HPP G0 truth is designed to explore the identifiability of

the BPNHPP-Bibeta under a HPP-Bibeta truth where the offspring density functionals are the

same in the truth and model specification. The fact that BPNHPP-Bibeta is able to recover the

homogeneous G0 would provide empirical evidence to the model’s identifiability since it can

distinguish between the immigrants and the offspring. In the second scenario, we want to test

the BPNHPP-Bibeta model capacity against a BPNHPP model and compare the inference of

the target point pattern’s first and second moment properties. We choose the BPNHPP model as

a reference model since our previous research showed that such model provides a flexible prior

to capture the variety of intensity shapes of a NHPP.

3.5.1 True immigrant process as HPP

In the first scenario, we simulate three synthetic datasets by specifying Λ the intensity

of G0, γ the branching ratio, and τ the offspring dispersion parameter: 1) Λ = 800, γ =

0.2, τ = 200.0, 2) Λ = 500, γ = 0.5, τ = 200.0 , 3) Λ = 500, γ = 0.5, τ = 300.0, shown

in Fig 3.2. The number of immigrants and total observations in the three cases are 833/1062,

526/1127, 526/1099 respectively.

We recognize that the model will have significant difficulty in distinguishing the im-

migrants from the offspring if weakly informative prior is given. We first fix the constant C

used in the BPNHPP specification for G0 to be 1, which drives the dispersion parameter α for

the underlying DP prior to be close the number of immigrants in expectation. A larger value
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Figure 3.2: Simulated point pattern data in case a), b) and c) under the HPP-Bibeta process; the shape of the point

indicates generation; points with the same color belong to the same family.

for α leads to the realized G0 density to be closer to the baseline uniform density. We then give

α an informative prior, α ∼ gamma(8000, 10), with prior 95% range [782, 817] in case 1) and

gamma(5000, 10) with prior 95% range [485, 513] in case 2) and 3). K is set to 10 so that we

use 100 basis functions in all three cases for the inference of G0. Lastly τ is given informative

prior gamma(200.0, 1) with prior 95% range [173, 226] and gamma(300.0, 1) with prior 95%

range [260, 333].

Fig. 3.3 shows the posterior mean estimate of the G0 intensity function, which can be

compared to the total intensity Λ everywhere in the unit square given the HPP truth. In case a),

the posterior mean intensity appears to be close to 800 except for some local variations with an

uncertainty band with width 200 almost everywhere except for the boundaries. Similar patterns
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Figure 3.3: Posterior intensity point and interval estimation for G0: posterior mean intensity function in the first

row, the difference between the 90th and 10th percentile of the posterior distribution for the intensity function on the

second row; The constant G0 intensity Λ is 800 for case and 500 for case b) and c).

appear in case b) and c) as well. These observations indicate that with an informative prior on

DP precision parameter α, the model is able to capture the homogeneous nature of G0.

3.5.2 True immigrant process as NHPP

In the second scenario, we simulate three cases by varying the total intensity Λ, the

branching ratio γ and the offspring density dispersion parameter τ . a) Λ = 500, γ = 0.4, τ =

200.0 b) Λ = 80, γ = 0.7, τ = 100.0 c) Λ = 80, γ = 0.7, τ = 200.0, shown in Fig 3.4.

The immigrants vs total observations in the three scenarios are 526/863, 90/373 and 90/334

respectively.
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Figure 3.4: Simulated data for case a), b) and c) under NHPP-Hawkes truth; the immigrant density function is

a logit-transformed bivariate normal density that is independent in x and y dimension; the point shape indicates its

generation; points with the same color belong to the same family.

We set C = 0.1 for all cases, as we expect the immigrant intensity function to deviate

from uniform drastically. α is given weakly informative prior gamma(25, 1) in case a) and

gamma(10, 1) in case b) and c). K is set to 20 so that we use 400 basis functions to infer G0. τ

is given informative priors gamma(200, 1) in case a) and c) and gamma(100, 1) in case 2) . The

Gibbs sampler in all cases were run for 10000 iterations with the first 5000 discarded as burn-in

and the rest thinned by 3.

The first moment inference for the three scenarios is illustrated in Fig. 3.5. Across

the three cases, the posterior mean residual results appear to be similar under BPNHPP and
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Case b) NHPP−Hawkes
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Case c) NHPP−Hawkes

Figure 3.5: Posterior predictive residuals mean estimate over Voronoi tessellation based on true immigrant points:

the red dots are immigrant points under the simulated truth.

BPNHPP-Bibeta, with the latter showing more local variance. These results are consistent

across other simulated truth with the same G0 density function and different branching ratio γ.

Comparing case a) to case b) and c), we aim to detect the relationship between immigrants and

offspring ratio and the accuracy of capturing the first moment property under the two models.

However, based on the point estimate of the first moment shown in Fig. 3.5, the two models

seem to capture the first moment equally well even under the scenarios where the ratio between

offspring and immigrant counts is high.

We use Ripley’s K function to examine the second moment inference under the BPNHPP

and BPNHPP-Bibeta model. Fig. 3.6 shows the posterior mean and 95 % credible interval of K

function estimate with border correction. BPNHPP-Bibeta provides wider uncertainty band for

the K function estimates and is able to capture the truth in all three cases. BPNHPP provides
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Figure 3.6: Empirical (black solid line), posterior mean (blue solid line), and 95% credible interval (blue dotted

line) estimation for HPP K function with boarder correction.

similar point estimates with smaller credible interval that may miss the truth occasionally (espe-

cially in case c) ). These differences could be due to stochastic variations caused by simulation,

since in this analysis only one copy of data is simulated under each posterior sample. We then

use bootstrap method to examine data variation: Fig 3.7 shows the inhomogeneous K function

estimates applied to 40 data sets simulated under the posterior mean estimates of parameters un-

der BPNHPP and BPNHPP-Bibeta. In case a), both models failed to capture the truth when the

offspring to immigrants ratio is low, while in b) and c), BPNHPP-Bibeta performs noticeably

better than BPNHPP when the offspring to immigrants ratio is higher.

Lastly, we show the inference for G0 intensity function under the BPNHPP-Bibeta

model that can be compared to the simulation truth in Fig. 3.8. The intensity point estimate for
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Figure 3.7: K functions realizations for point pattern replicates based on posterior mean estimates of the model

parameters: 40 replicates are simulated using the posterior mean parameter estimates for each model and the K

function estimates for each are shown as separate curves. The black solid curve is the K function estimated based

on the observed point pattern.

Case a) in panel (2, 1) compared to the true intensity in panel (1, 2) is able to capture the overall

unimodal shape of the intensity function albeit missing the mode location slightly. When the

immigrants are fewer, capturing the immigrant intensity is much harder as shown in case b)

(panel 2, 2) and c) (panel 2,3). A less dispersed offspring intensity helps the model to capture

the immigrant intensity better since in case c) the posterior mean intensity function captures

the shape better than in case b). Looking at the simulated data under Case b) in Fig. 3.4, we

notice that there is a big cluster near (0.8, 0.5) that causes the skewness in the posterior intensity

estimate of the immigrant intensity. The model also misses the mode intensity in case b) by a

lot. These two observations together suggest that higher dispersion in offspring locations makes

it more difficult for the model to identify the immigrants.
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Figure 3.8: Posterior intensity mean and 95% credible interval length estimates for the immigrant generation

G0: the first row shows simulation truth; the second row shows posterior mean estimate of density/intensity func-

tions, and the third row shows the difference between 95th and 5th percentile of the posterior distribution for the

density/intensity function.

3.6 Simulation study for the BPNHPP-Ireg-Tbinorm model

3.6.1 Simulation over synthetic irregular domain

The simulation study is designed to demonstrate the model’s capacity under situa-

tions where the immigrant intensity functional form, the branching ratio and offspring density

differ. We use two densities to simulate the immigrant density: 1) a mixture of bivariate beta

independent in x, y dimension with five well separated modes 2) a mixture of logit normal.

The irregular domains are designed to take significant area of the unit square (otherwise one
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can imagine re-scaling the point pattern and the boundary to fit the unit square). Finally, these

densities are chosen such that the density mass over the irregular domain is greater than 0.96

since we assume the event that drives the point pattern mainly happen over the irregular domain

and is not impacted by events outside the boundary. For case 1), the irregular domain is a spade

in the unit square; for case 2), the irregular domain is a diamond shape polygon.

The main levers of tuning the model are the choice of constants K and C, whether to

fix α or model α as random and the choice of hyper-parameters for the prior distributions for

α, γ, and ρ. The specification for α and C are jointly determined with a prior understanding of

the total immigrant intensity. By construction, E(α)/C is the expected total intensity for the

immigrant process over the unit square. One practical way to specify the total intensity for the

immigrant process is to come up with a prior guess of the proportion of immigrant points in the

point pattern in order to estimate the number of immigrant points |G0|. The prior expectation

of |G0| is E(α)/(C) × |D|, where D is the area of the irregular domain. We can therefore

estimate the ratio E(α)/C. In the simulation study, we observe that larger value of α leads to

poor model fit where the immigrant process dominates and drives the branching ratio to 0, thus

underestimating the K function as a result. We discover that fixing α at the prior expectation

can facilitate the convergence of the MCMC algorithm, since the chain for α is usually sticky

and can get stuck at higher values. The key then is to choose an appropriate C value so that α

can be fixed at a relatively small value while matching α/C to the prior guess.

We adopt three sets of priors for the branching ratio: a uninformative prior as a uni-

form distribution over [0, 1], a weakly informative prior with decreasing density over [0, 1], and

a informative prior with density mass concentrated around the true value for γ. Specifically, the
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uniform distribution is approximated by a truncated gamma distribution with both shape and

rate parameters close to 0. The informative priors are truncated gamma distribution with the

prior expectation set equal to the true γ and different variance to control the density function.

We place priors on the transformation of the offspring parameter ρ: (1 + ρ)/2. The

uninformative prior is set to be the uniform distribution and the informative prior is set to have

prior expectation at the truth.

In the first scenario, we focus on comparing the inference results where a) both pri-

ors for γ and ρ are informative and b) both are uniform while keeping the priors for other

parameters the same. The conclusion is that the model is not sensitive to the prior specifica-

tion in this case and recovers the truth in both cases. The posterior mean and 95% credible

intervals for model parameters are presented in Table 3.2, where γ is the branching ratio, ΛD

is the total immigrant intensity over the irregular domain, and (σx, σy, ρ) is the truncated nor-

mal covariance parameters. Specifically, ΛD is computed via ΛD =
∑K

kx,ky=1Bkx,kyVkx,ky

and is interpreted as the expected average number of immigrant points over the irregular do-

main. ΛD is negatively correlated with γ since fewer immigrant points would lead to more

offspring points to achieve the overall population. The simulation truth used in the first scenario

is γ = 0.3,ΛD = 290.34, σx = σy = 0.02, ρ = 0, which are covered by the credible interval in

both cases. The point and interval estimation for most parameters are similar under both prior

specifications except for ρ. Under informative prior for ρ, the credible interval is smaller and

the point estimate is closer to truth.

We present posterior inference on predictive residuals over the Voronoi partition based

on immigrant points, predictive K function, and posterior immigrant density for model under
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Figure 3.9: Posterior inference under informative priors for data simulated with a bivariate beta mixture as the

true immigrant density.

informative prior in Fig. 3.9. The inferences under the uninformative prior are similar to the

those in Fig. 3.9 and are skipped here. The posterior predictive K function inference suggests

that the estimation captures the second-moment property of the underlying point process well.

The residuals shows largest over-estimation in area around (0.8, 0.5) where there is no points

simulated and largest under-estimation near (0.5, 0.45) where a couple of immigrant points

partition a small region. Overall, the residuals are close to 0 as suggested by the dominating

light orange color in the residual plots. Finally, the density estimation recovers the five modes

in the immigrant density function in terms of both magnitude and position. The posterior 95%

credible intervals for the immigrant densities cover the truth in both cases.

The second scenario is particularly challenging for the parametric form of the BPNHPP-

Ireg-TBinorm model since in the simulation truth both the immigrant and offspring density ker-
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Cases γ ΛD σx σy ρ

pbeta a) 0.363 (0.3) 254.794 (290.34) 0.019 (0.02) 0.019 (0.02) -0.136 (0)

(0.230, 0.524) (189.347, 315.857) ( 0.012, 0.029) ( 0.013, 0.029) ( -0.479, 0.213)

pbeta b) 0.362 (0.3) 252.919 (290.34) 0.019 (0.02) 0.021 (0.02) -0.340 (0)

( 0.227, 0.559) (173.350, 316.723) ( 0.012, 0.032) ( 0.013, 0.034) ( -0.801, 0.292)

snail a) 0.169 (0.3) 349.162 (288.81) 0.018 (0.02) 0.018 (0.02) 0.001(0)

(0.066 , 0.322) (281.708, 410.757) (0.010 , 0.036) (0.010 , 0.037) (-0.417 , 0.430)

snail b) 0.162 (0.3) 355.692 (288.81) 0.016 (0.02) 0.019 (0.02) 0.248 (0)

( 0.059, 0.342) (281.005, 413.633) ( 0.010, 0.035) ( 0.010, 0.037) ( -0.554, 0.951)

snail c) 0.125 (0.3) 371.192 (288.81) 0.017 (0.02) 0.017 (0.02) -0.014 (0)

( 0.0002, 0.356) (282.026, 441.546) ( 0.009, 0.035) ( 0.009, 0.045) ( -0.449, 0.404)

Table 3.2: Simulation study results for point patterns simulated over synthetic boundaries: pbeta

refers to an immigrant density as a mixture of four bivariate beta densities, snail refers to an

immigrant density as a mixture of bivariate normal densities on the logit scale. Each entry

shows the posterior mean, the true values in bold and parenthesis on top, and the posterior 95%

credible interval at the bottom.
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nel are Gaussian (or a transformation of a Gaussian density) and are therefore difficult for the

model to distinguish apart. We adopt a weakly informative prior Ga(0.3, 1) for the branching

ratio γ with true γ = 0.3 so that the prior expectation matches with the truth. However, such

prior has median at 0.053 and prior 95% credible interval [2.39 × 10−6, 0.839] and therefore

favors a process with few offspring generations. The informative prior Ga(3, 10) also has prior

expectation matching the truth, a mode at 0.2, and a tighter prior credible interval [0.061, 0.7].

We find the model converges to a process where γ = 0 when using a uniform prior for γ. We

suspect the particular functional form of the immigrant density function is the culprit since the

model is able recover γ under uniform prior in the first scenario.

We report the inference under the following three cases: a) both informative prior on

γ and ρ, b) informative prior on γ and uniform prior on ρ, and c) weakly informative prior on

γ and informative prior on ρ. The comparison between case a), b) and case a), c) show model

sensitivity with respect to prior specification of ρ and γ respectively. The posterior inferences

for case a)-c) under the second scenario are presented in the last three rows in Table 3.2. The

truth for model parameters in this scenario is γ = 0.3,ΛD = 288.81, σx = σy = 0.02, ρ = 0.

Comparing a) and b) suggests that the point estimation is closer to truth and the credible interval

is tighter under the informative prior for γ. Comparing a) and c) suggests that the informative

prior has limited impact on the posterior point and interval estimates for γ. We notice that the

point estimates tend to be lower than the truth for γ and higher than the truth for ΛD across three

cases. This confirms that the model has difficulty distinguishing the immigrant points from the

offspring points and favors a process with more immigrant points and fewer offspring points

than the truth in the posterior. The posterior credible intervals cover the truth for all parameters
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Figure 3.10: Posterior inference under informative priors for data simulated with a logit Normal mixture as the

true immigrant density.

across the three cases.

We present the posterior inference for the predictive residuals, predictive K functions

and point and interval estimation for the immigrant density under case a) in Fig.3.10. The results

for all three cases are very similar.

3.6.2 Simulation over Boston city boundary

We process the Boston city boundary using the sf package in R. We took the Boston

city boundary shape file and simplify it using the standard method in sf, and exclude the East

Boston area from our study since it is disconnected from the rest of the city by water. The

result is a concave polygon consisting of 31 points, referred to as Boston concave boundary

(see the shaded areas in the second row of Fig. 3.12) . This boundary is further simplified by
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Cases γ ΛD σx σy ρ

qbeta a) 0.331 (0.3) 336.652 (382.92) 0.017 (0.02) 0.021(0.02) -0.010 (0)

( 0.188, 0.495) (251.892, 418.118) ( 0.012, 0.026) ( 0.012, 0.033) ( -0.368, 0.345)

qbeta b) 0.325(0.3) 338.001 (382.92) 0.018 (0.02) 0.021 (0.02) 0.121 (0)

( 0.168, 0.524) (247.390, 424.505) ( 0.011, 0.028) ( 0.012, 0.035) ( -0.573, 0.711)

hnorm 0.395(0.3) 564.4 (654.88) 0.045 (0.05) 0.036 (0.05) 0.328 (0.3)

(0.290, 0.509) (445.46, 683.83) (0.032, 0.065) (0.024, 0.056) (-0.137, 0.809)

Table 3.3: Posterior inference for model parameters for synthetic data over simplified Boston

boundaries. Each entry shows the posterior mean, the true values in bold and parenthesis on

top, and the posterior 95% credible interval at the bottom.

taking the convex hull which results in a concave polygon, referred to as the Boston convex

boundary (see the shaded areas in second row of Fig. 3.11). We notice that the run speed of the

algorithm depends on the irregular domain shape mainly due to the Monte Carlo computation of

the normalizing constant for the offspring normal kernel. We therefore prefer simpler boundary

to realistic ones to reduce computation cost. In this simulation study, we present two simulated

cases using these two boundaries respectively for a comparison in run speed.

We design the first case to have a truth close to the model over the simpler Boston

convex boundary and aim to test prior sensitivity. The data generating process for the G0 is a

mixture of 4 bivariate beta densities outside of the Bernstein polynomial family, such that the

mixture has 3 well separated modes. The branching ratio is 0.3, the total intensity over the

irregular domain is 382.92, and the offspring kernel parameters is (σx, σy, ρ) = (0.02, 0.02, 0).

We apply the model with the following two sets of priors: a) both informative prior on the
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Figure 3.11: Posterior inference under informative priors for data simulated with a mixture of four bivariate beta

density as the true immigrant density over Boston convex hull.

branching ratio and the correlation, and b) weakly informative prior on the branching ratio

and uniform prior on the correlation. The inference on model parameters are presented in

Table 3.3 under case names qbeta a) and qbeta b). All parameters are covered by the posterior

95% credible interval. The branching ratio is not sensitive to the prior, since the point and

interval estimates are similar under informative and weakly informative priors. The correlation

is sensitive to the prior, with a much wider interval under the uniform prior. The posterior

predictive inference for the Voronoi residuals, K function and point and interval estimation for

the immigrant density is presented in Fig. 3.11.

We design the second case to test the limit of the model’s capacity with a truth as

a mixture of six bivariate log-normal distributions that results in highly localized immigrant

density pattern over the more complex Boston concave boundary. The mixture density has five
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well-separated modes that resembles the potential local hot spots for crime application. We

discover that an informative prior for the branching ratio leads to better inference of the K-

function and proper coverage of the true branching ratio value in the posterior 95% credible

interval. Under uninformative prior for γ, the model tends to overestimate the branching ratio

and underestimate the total immigrant intensity. We suspect such behavior is a result of the

similar Gaussian functional form of the immigrant and offspring density and the highly localized

immigrant density which makes it difficult for the model to distinguish between immigrants and

offsprings. We also discover that fixing the precision parameter α of the Dirichlet process prior

leads to faster and more stable convergence. We choose α based on prior knowledge on the

total immigrant intensity over the unit-square according to prior expectation results in ??. The

posterior inference on model parameters are presented in Table 3.2 with row name hnorm and

the 95% credible intervals cover the true parameter values. The posterior predictive inference

on K-function and the immigrant density inference in presented in Fig. 3.12.

3.7 Real data example: Boston city crime

We apply the model for spatial Hawkes process with truncated Bivariate Normal off-

spring kernel to the same Boston city crime data used in Section 2.5, with some modifications

to satisfy additional modeling assumptions. Based on the assumption that the point process is

defined over a compact irregular domain, we choose to exclude the points from the north east

region and the islands in the east that are disconnected from the rest of the city by water. We

choose to simplify the main city boundary to a concave polygon since the simulation study in
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Figure 3.12: Posterior inference for mixture of six log-normal densities over Boston concave boundary.
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Figure 3.13: Vandalism point pattern in Boston city from April to June 2017 over original Boston city boundary

on the left, mapped to the unit-square defined by the bounding box of the simplified boundary on the right.
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Section 3.6 suggests that the model run-time scales with the complexity of the irregular bound-

ary. We use the bounding box of the main city region as reference for the map between Northing

and Easting to x, y in the unit square. We again focus on modeling vandalism in 2017 from April

to June. Fig. 3.13 shows the 1251 raw data points over the original city boundary in the left

panel. We treat the point pattern in the three month time period as a realization from a spatial

Hawkes process defined over the main city region shown in the right panel in Fig. 3.13. When

fitting the model, we exclude points outside of the simplified irregular domain and obtained

1180 points.

We fit the model assuming low branching ratio and high background intensity and

assign informative priors according to these assumptions. We start with an uninformative prior

for the offspring kernel parameters and run the MCMC for 1000 iterations for a warm start.

The result suggests σx, σy smaller than 0.03 and a ρ around 0.15. We propose two priors for

the branching ratio concentrated at 0.3, referred to as prior a), and 0.1, referred to as prior b)

respectively. The prior expectation for the total intensity for the immigrant process over the unit-

square is set to 1700. We incorporate these information in the prior specification and start the

chain at (0.03, 0.03, 0.15) for the offspring kernel parameters for a final run of 15000 iterations.

The posterior inference contradicts our prior assumption that the branching ratio is

high and the background intensity is low, despite informative prior that suggests the opposite.

The posterior means for the branching ratio are larger than the prior mean in both prior scenar-

ios: 0.67 compared to 0.3 in case a) and 0.522 compared to 0.1 in case b). The spatial kernel

parameters suggests a small positive correlation between the y and x coordinates and very small

triggering range with σx, σy close to 0.01 in both cases. Fig 3.14 and Fig 3.15 present the pos-
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Figure 3.14: Posterior predictive inference on the K function and posterior inference on the immigrant process

density under the SH model with E(γ) = 0.3.
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Figure 3.15: Posterior predictive inference on the K function and posterior inference on the immigrant process

density under the SH model with E(γ) = 0.1.
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Figure 3.16: Comparison of the Posterior predictive inference on the K function under the two prior scenarios for

the SH model.
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Figure 3.17: NHPP density under the BP-NHPP model applied to the vandalism point pattern in Q2 2017.
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Figure 3.18: Posterior inference for the G0 immigrant density under the ParSTH model.
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Figure 3.19: Posterior mean estimate for the G0 density under the NHPP, spatial Hawkes process and the space-

time Hawkes process from left to right.
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terior predictive K function, the Poisson density posterior mean for the immigrant process, and

its posterior range for case a) and b). At a closer look, Fig 3.16 suggests better fit under the

case b), as the posterior predictive K function mean tracks the truth more closely. Recall that

the true estimation here is a nonparametric estimation for the K function based on the observed

data, and is the same across the two prior scenarios. We observe that under both priors, the 95%

posterior predictive intervals for the K function cover the "truth".

We find such findings less surprising after fitting the same data augmented with tem-

poral information over the same boundary to the space time Hawkes process with the same spa-

tial offspring kernel and an exponential kernel for the time component. We will discuss in more

detail the space-time Hawkes process and the parametric offspring intensity model in the next

chapter. The key difference between the space-time Hawkes process (referred to as ParSTH)

and the spatial Hawkes process models is that ParSTH poses constraints on the branching struc-

ture following the event time. The conditional intensity function for the space-time Hawkes

process is λ(x, y, t) = µ(x, y) +
∑

ti:ti<t
h(x− xi, y − yi, t− ti), where µ(x, y) is the immi-

grant intensity function, which constant over time and h(·, ·, ·) is the triggering function. We

use the intensity formulation over the irregular domain for the immigrant process. Here we

treat the ParSTH as the golden standard for model validation since with additional information

on event time, ParSTH model has the best chance to distinguish between offsprings and immi-

grants. The result from ParSTH also suggests a high branching ratio and low immigrant total

intensity scenario. Notice that here the branching ratio and the immigrant intensity are only

meaningful qualitatively and are not directly comparable between SH and ParSTH.

We present a comparison of G0 density based on NHPP, SH and ParSTH. The NHPP
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model applied to the entire point pattern can be viewed as a special case of the spatial Hawkes

process where the branching ratio is 0. The NHPP model assumes independence among points

given the total number of occurrences, which can be restrictive especially in potentially self-

exciting activities such as crimes and earthquakes. We relax such assumption with a model

for the spatial Hawkes process, which captures the dependence among points through the self-

exciting behavior captured by the offspring processes, thus effectively leading to local clustering

patterns. We can also compare the spatial Hawkes process and the space-time Hawkes process

since they both capture the self-exciting behavior based on information in different dimensions.

With additional information on event time, the space-time Hawkes process model explores a

smaller parameter space for the latent branching structure since the natural order in time puts

clear restriction on the available parent for any given point. We discover that despite the dif-

ferent assumptions in each model, the inferences on the immigrant density show very similar

pattern as suggested by the comparison of the posterior mean estimate for the immigrant density

in Fig. 3.19: all suggest two modes in the main city area and one additional mode in the top

left corner. We notice that the uncertainty band for G0 density is the smallest for the BPNHPP

model (shown in Fig. 3.17) and become larger for the STH (see Fig. 3.18) and SH model. Such

finding aligns with the model assumption, since the immigrant point pattern is latent for the

latter two models; the STH model has smaller uncertainty with additional information from the

time dimension.
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Model γ ΛD σx σy ρ

SH 0.67 371.90 0.016 0.012 0.160

E(γ) = 0.3 (0.58, 0.75) (260.41, 494.5) ( 0.013, 0.020) ( 0.010, 0.015) ( -0.076, 0.32)

SH 0.522 522.19 0.012 0.010 0.222

E(γ) = 0.1 (0.44, 0.62) (401.20, 627.28) ( 0.0095, 0.0154) ( 0.0079, 0.012) ( -0.071, 0.473)

ParSTH 0.55 46.43 0.015 0.013 0.111

by Week ( 0.464 , 0.630) ( 39.698 , 53.121) ( 0.012 , 0.019) ( 0.010 , 0.015) (-0.095 , 0.311)

Table 3.4: Posterior inference for model parameters in the real data example.

3.8 Conclusion

We proposed a Bayesian hierarchical model for the spatial Hawkes process, leverag-

ing its clustering representation and the flexible and efficient nonparametric Bayesian model

for the Poisson process developed in Chapter 2 as an important building block. We explored

options for both the immigrant Process and the parametric forms for the offspring triggering

function, and provided strategies to choose the appropriate immigrant-offspring process com-

bination given context of the application. We discovered the additional computation overhead

introduced by truncating the offspring density function to the irregular domain, and developed

algorithm routines to improve performance. Finally, we discovered that the crime point pattern

in Boston presents significant self-exciting tendencies by applying the most flexible SH model

to the Vandalism point pattern. The model for SH process developed in this chapter accounts

for more general assumptions for the underlying point process, and contains the model for the

NHPP as a special case for γ = 0. Meanwhile, we acknowledge its limitation brought by
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the parametric form of the offspring density and the related computation dependency on the

irregular domain D. We address these issues in the next chapter.
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Chapter 4

Bayesian semi-parametric modeling for

space-time Hawkes Processes

The STH process can be viewed as the extension of the original self-triggering process

proposed by Hawkes (1971) that incorporates spatial information in the conditional intensity

to describe the self-triggering behavior of the point process. Such extension leads to useful

modeling development in applications such seismology (Ogata, 1988, 1998), crime analysis

(Mohler et al., 2011), network analysis (Linderman and Adams, 2014) and finance (Bacry et al.,

2015).

Earlier space-time self-triggering models, especially the Epidemic Type Aftershock

Sequence models in seismology proposed by Ogata (1988), assume a homogeneous background

process and certain families of parametric triggering functions that entail certain density func-

tion tail behaviors. Both assumptions are restrictive under the context of broader application

scenarios. Later methods relax one or both assumptions by either proposing a nonparamet-
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ric background intensity and parametric triggering function (Adelfio and Chiodi, 2015; Mohler

et al., 2011), a constant background intensity with a nonparametric histogram estimator for

the triggering kernel (Marsan and Lengliné, 2008), or fully nonparametric forms for both (Fox

et al., 2016; Yuan et al., 2018). Specifically, popular models for the background intensity in-

clude kernel smoothing (Ogata and Katsura, 1988; Zhuang et al., 2002); the triggering function

is estimated using histogram estimator for the distance between parent and offspring points

identified by the latent branching process (Marsan and Lengliné, 2008; Fox et al., 2016; Yuan

et al., 2018). Estimation is achieved via Maximum Likelihood Estimation (MLE) (Reinhart,

2018) or EM-type algorithm (Marsan and Lengliné, 2008; Fox et al., 2016). A comprehen-

sive review of frequentist approach for modeling space-time Hawkes process can be found in

Reinhart (2018).

Bayesian methods for space-time Hawkes process address the uncertainty quantifi-

cation issue that posed challenge under the frequentist scheme. Many Bayesian methods were

proposed for modeling the univariate or multivariate Hawkes process over time with either para-

metric formulation for the conditional intensity (Rasmussen, 2013; Ross, 2016; Linderman and

Adams, 2014) or nonparametric versions (e.g., Linderman and Adams, 2015). Recent develop-

ment starts to focus on modeling for space-Hawkes process and tackle the related computation

issues. Holbrook et al. (2021) develops a scalable and parallelizable Bayesian inference scheme

based on approximated likelihood using a conditional intensity formulation, which consists of

a kernel smoother for the background intensity and a triggering function that’s exponential in

time and Gaussian in space. Alternatively Kolev and Ross (2020) and Molkenthin et al. (2022)

both utilize the clustering representation of the space-time Hawkes process with augmented la-
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tent branching structure and a semi-parametric conditional intensity function. Kolev and Ross

(2020) factors the background intensity as the product of a total intensity term and spatial den-

sity, modelled as a Dirichlet Process mixture model with bivariate Gaussian kernels. Molkenthin

et al. (2022) models the background intensity with a Sigmoidal-Cox Gaussian process Adams

et al. (2009) with proper augmentation schemes to account for the finite spatial domain. Our ap-

proach is similar to this line of work in the sense that we also deploy augmented latent branching

structure and nonparametric immigrant intensity.

Our contribution in this work is a Bayesian nonparametric prior for the spatial trig-

gering function that improves the existing nonparametric approaches by explicitly incorporating

the irregular domain in the model formulation and providing full inference for the point process

functionals. We focus on modeling STH processes over compact yet irregular domains, with

assumptions motivated directly by crime point pattern modeling and forecasting. We choose to

model the triggering function as the product of separable intensity functions for the spatial and

temporal components. We present two formulations for the spatial triggering function: a para-

metric bivariate Gaussian model that accounts for spatial skewness and a nonparametric model

in spatial distance assuming spatial isotropy. Both models incorporate the irregular domain ex-

plicitly in the model formulation with proper truncation in the spatial distributions. We achieve

inference by augmenting the parameter space with latent branching structure in the hierarchical

model that allows easy updates in the posterior simulation.

In this chapter, we first introduce the STH process and the hierarchical modeling ap-

proach utilizing the clustering representation of the STH process. Throughout the chapter, we

model the immigrant intensity nonparametrically with the intensity formulation for NHPP intro-
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duced in Chapter 2. We then present the model formulation for the fully parametric triggering

function and the semiparametric triggering function with a parametric temporal component and

nonparametric spatial component. The chapter concludes with a real data example based on

crimes in Boston city.

4.1 Space-time Hawkes process

We assume that the space-time point pattern {(si, ti) : i = 1 · · · , N} where si =

(xi, yi) is a realization from the underlying space-time Hawkes process X over the compact

domain D × (0, T ] ⊂ R2 × R. The irregular spatial domain D is often a subset of the unit-

square as the spatial coordinates of (xi, yi) can be mapped to the unit-square without loss of

generality. A space-time point process is defined via the conditional intensity function that

characterizes the intensity at time t given the history prior to t. Let Ht be the history up to

time t that includes information on the location and time for events prior to t, the conditional

intensity function λ(s, t | Ht) is defined as

λ(s, t | Ht) = µ(s, t) +
∑
i:ti<t

g(s− si, t− ti)

The clustering representation of the STH process consists of an immigrant or back-

ground process and many offspring processes triggered by prior events. The immigrant process

is defined by the background intensity function µ(s, t) that controls the occurrence rate for im-

migrant points. The immigrant points then trigger follow-up events with a rate defined by the

triggering function g(s − si, t − ti) that temporarily increases the rate of occurrence at time t

depending on events prior to t. Often referred to as the offspring points, these follow-up points
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continue to spawn further offspring points. Each point in the Hawkes process belongs to either

an immigrant or offspring process that depends on its parent point. Such identity of immigrant

vs. offspring and the parent index of offspring points are encoded in the latent branching struc-

ture, which is a realization from a branching process.The triggering function g(s − si, t − ti)

controls how the self-exciting behavior decays in time and relative spatial location. The nat-

ural order of events implied by the time dimension of the point pattern restricts the branching

structure by only allowing points prior to t to trigger point at t.

Conditional on the latent branching structure [i] that identifies the immigrant points

and the parents of offspring points, the space-time Hawkes process can be represented by a

superposition of a immigrant Poisson process that generates the subset of points {(si, ti) :

[i] = 0} with intensity µ(s, t) and offspring Poisson processes {(si, ti) : [i] = j} with intensity

g(si−sj , ti−tj). We use θI to denote the set of parameters for the immigrant intensity function

and θo the set of parameters for the triggering function. Such representation naturally inspires a

Bayesian hierarchical modeling approach since the immigrant and offspring processes are inde-

pendent Poisson processes conditional on the latent branching structure. By taking a Bayesian

approach, we avoid a computationally intensive routine to evaluate the likelihood function de-

fined via the conditional intensity but rather update parameters in simpler models for Poisson

processes iteratively. The conditional independence leads to separable contribution from the

immigrant and offspring processes in the complete-data likelihood. Let I be the collection of

immigrant points where [i] = 0 and Oj be the collection of points that are offspring of a point

j, j = 1 · · ·N . Notice that many Oj will be empty since each point has a nonzero probability

of generating 0 offspring. The complete data likelihood is
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L({si, ti} | [i],θI ,θo) = p(I | [i] = 0, µ(si | θI))
n∏
i=1

p(Oj | [i] = j, g(si − sj , ti − tj | θo)

= exp(−
∫
D

∫ T

0
µ(s | θo)dsdt)

∏
i∈I

µ(si | θI)×

n∏
j=1

exp(−
∫
D

∫ T

0
g(s− sj , t− tj | θo)dsdt)

∏
i∈Oj

g(s− sj , t− tj | θo) (4.1)

Bayesian inference can be achieved by modeling the latent branching structure as part

of the hierarchical model that includes a model for the immigrant Poisson process and a model

for the offspring Poisson process. The latent branching structure is fully specified by [i] and we

can treat [i] to be the missing data and estimate [i] and parameters (θI ,θo) together. Estimating

[i] involves identifying a set of possible parent points for point i, which is readily available since

the chronological order of the events dictates that only points before point i can be the parent

of point i. We complete the hierarchical model with priors on the immigrant and offspring

parameters.

Two sets of assumptions about the underlying point process can be made to simplify

the modeling approach: the immigrant intensity function µ(s, t) can be assumed to be time-

homogeneous, i.e. µ(t, x, y) = µ(x, y); the triggering function g(t− tj , x− xj , y − yj) can be

assumed to be separable such that g(t− tj , x−xj , y−yj) = gt(t− ti)gs(x−xi, y−yi), where

gt(·) and gs(·, ·) are intensity functions for the time and space. These two assumptions are

almost always made in applications with STH processes. Additional assumptions are required

depending on whether to model either the immigrant intensity function, the offspring intensity

function, or both nonparametrically.

We propose to model a class of space-time Hawkes processes that have background
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intensity µ(s, t) that is homogeneous in time but nonhomogeneous in space, i.e. µ(s, t) = µ(s),

and an triggering function that is separable in time and space. Our key contribution is explicitly

incorporating the observed point pattern’s irregular domain in the point process model and han-

dles truncation properly in the space dimension for both the immigrant and offspring processes.

Motivated by applications in crime forecasting, we assume that the underlying point process

occurs strictly over the compact irregular domain D such as the boundary of a city and ignore

potential triggering from and toward points unobserved outside of the irregular domain. It is

a reasonable assumption for the crime application since the triggering effect wears off quickly

as offspring shift further away from their parents.We propose two models for the triggering

functions with a parametric form for gt(t) in both and a parametric and a nonparametric model

for gs(s) respectively. The fully parametric offspring model makes no approximation in the

proposed process and allows anisotropy in the spatial kernel at a high computational cost that

scales with the complexity of the irregular domain shape. The semi-parametric offspring model

assumes spatial isotropy, proposes a stochastic process close but not identical to the space-time

Hawkes process, and gains an advantage in computational speed up and flexible inference for

the gs(·).

4.2 Model for the immigrant process

The immigrant Poisson process can be modeled independently conditional on the

branching structure. Specifically, the branching structure identifies the immigrant point set I

as the points with [i] = 0 as the observations for the immigrant Poisson process. Under the
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modeling assumption that the immigrant process is time-homogeneous, the immigrant Poisson

process can be viewed as a spatial Poisson process overD with intensity function µ(s | θI) and

each spatial location is augmented with a timestamp uniformly distributed over [0, T ]. The chal-

lenge for modeling the immigrant process is capturing the spatial inhomogeneity among points

in set I , the elements in which vary across the MCMC iterations depending on the estimation

of the parent label [i].

We propose to model the immigrant Poisson process with the BPNHPP model under

the intensity formulation. As discussed in Chapter 2, this model can capture local trends in the

point pattern over an irregular domain in a spatial NHPP with efficient use of beta densities as

basis functions that lead to fast posterior updates. More importantly, the conditional indepen-

dence of the latent parameters (ξi, ηi) in the posterior bypasses the issue that there is a varying

number of immigrant points across MCMC iterations and retains the conditional independence

between the immigrant parameters and the branching structure.

We adapt the BPNHPP model for a NHPP over space to a model for the time-homogeneous

space-time Poison process, with the following formulation for the intensity function µ(s):

µ(s | {Vkx,ky}) =

K∑
kx=1

K∑
ky=1

Vkx,kyBkx,kyφ
∗
kx,ky(x, y) (4.2)

where {Vkx,ky} are structured weights, {φ∗kx,ky(x, y)} are the Bernstein spatial basis functions

over the irregular domain D such that
∫
D φ
∗
kx,ky

(x, y)dxdy = 1, and Bkx,ky is the normalizing

constant for the Bernstein spatial basis function with index (kx, ky) over D. The total intensity

over the space-time domain D × (0, T ] is∫
D

∫ T

0
µ(s | {Vkx,ky})dsdt = T

K∑
kx=1

K∑
ky=1

Vkx,kyBkx,ky (4.3)
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The space-time Poisson process likelihood then can be written as

p(I | {Vkx,ky}) = exp(−T
K∑

kx=1

K∑
ky=1

Vkx,kyBkx,ky)
∏
i∈I

µ(si | {Vkx,ky})

We place structured Gamma prior on Vkx,ky ∼ Ga(α/K2, C) where K is the number

of basis and C is a constant. We discussed the connection between such structured Gamma

prior to a Bernstein-Dirichlet Prior on the Poisson process density in Chapter 2. We augment

the parameter space with latent basis label (ξi, ηi) for each immigrant point i such that its

prior follows a discrete distribution that depends on {Vkx,ky}. The hierarchical model for the

immigrant Point process conditional on I = {i : [i] = 0} is then:

{(xi, yi, ti)} | Vkx,ky , {ξi, ηi} ∼ exp(−T
∑K

kx,ky=1 Vkx,kyBkx,ky)
∏n
i=1 Λφ∗ξi,ηi(xi, yi)

(ξi, ηi) | Vkx,ky
i.i.d∼

∑K
kx,ky=1

Vkx,kyBkx,ky
Λ δkx,ky(ξi, ηi)

Vkx,ky
ind.∼ Ga(α/K2, C) α ∼ Ga(αa, αb)

(4.4)

The posterior updates for {Vkx,ky}, {(ξi, ηi)} and α are similar to those described in

Chapter 2. The modification brought by the change in likelihood presents in the full-conditionals

for {Vkx,ky}, the posterior full conditionals for which become Ga(α/K2 + Mkx,ky , C + T ·

Bkx,ky), where Mkx,ky is the number of immigrant points with (ξi, ηi) = (kx, ky).

4.3 A fully parametric model for offspring processes

Conditional on the latent parent label [i], the set of offspring points is a superposi-

tion of realizations from N offspring processes, each centered on the observed point i. In the

branching process, every point in the observed point pattern has a nonzero probability to gener-
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ate offspring points. In reality, many points have zero offspring points. We model the offspring

processes via a triggering function specified by the same set of offspring parameters and the lo-

cations of the parent points respectively over the spatial support D and temporal support (0, T ].

The triggering function controls the branching ratio, the total intensity of the offspring process,

and the distribution of offspring points over space and time relative to their parents. We first

present a parametric model for the triggering function. Let γ be the branching ratio of any off-

spring process, and j be the latent parent index, we assume that the offspring spatial location

follows a truncated bivariate Gaussian distribution centered on the parent location sj with co-

variance Σ; the offspring time location follows an exponential distribution with mean 1/ω. The

triggering function is

g(s− sj , t− tj) = γ TN2(s− sj | 0,Σ,D) Exp(t− tj | ω)

LetO be the collection of points for which [i] 6= 0, Ft(·) is the c.d.f. of the exponential

distribution, the likelihood for the offspring processes is given below:

p(O | Σ, ω) = exp{−
N∑
j=1

γ · Ft(T − tj)}
∏
i∈O

γ TN2(si − s[i] | 0,Σ,D) Exp(ti − t[i] | ω)

Notice that no approximation is required to evaluate the likelihood since we assume

the spatial density to be a truncated density overD, meaning that
∫
D TN2(s−sj | 0,Σ,D)ds =

1. The advantage of such an approach is that the normalizing constant for the Poisson process

becomes easy to compute; the disadvantage is that we need to evaluate the normalizing constant

for a bivariate Gaussian density over the irregular domain D. We continue to use the computa-

tion tricks introduced in Section 3.3.5 to speed up the evaluation of these normalizing constants

via Monte Carlo.
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We use the variances in the x and y dimension, σ2
x and σ2

y , and the correlation ρ to

specify the covariance matrix Σ = [σ2
x σxσyρ;σxσyρ σ2

y ]. We place inverse-gamma priors on

σ2
x and σ2

y , and a beta prior on the transformation of ρ, h(ρ) = (1 + ρ)/2. We place a gamma

prior on the exponential distribution parameter ω. Inference for {σ2
x, σ

2
y , ρ} and ω is achieved

via separate metropolis-hasting updates in the Gibbs sampler for the full model.

4.4 A Semi-parametric model for the offspring Processes

We present a separable triggering function model with a nonparametric formulation

for the spatial component and a parametric formulation for the temporal component. In addi-

tion to separability, we assume that the offspring spatial density is isotropic, meaning the density

only depends on the spatial distance between the parents and their children. The isotropy as-

sumption allows us to model the spatial component in the triggering function via a univariate

offspring-parent distance distribution instead of a bivariate offspring spatial density centered on

the parent. More crucially, such a dimension reduction largely reduces the computation cost of

the MCMC algorithm since the normalizing constants based on the univariate densities can be

directly evaluated using integration instead of Monte Carlo approximation.

The most commonly used isotropic kernel is the bivariate Gaussian kernel with a

covariance matrix I2σ2 centered on the parent location (xj , yj). The kernel can be re-written as

a function of the distance r =
√

(xi − xj)2 + (yi − yj)2 between the offspring location (xi, yi)

and parent location (xj , yj). Another widely-used spatial kernel for self-exciting processes is

the Power Law distribution, which specifies the spatial distribution in terms of distance directly.
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Choosing between the Gaussian and the Power Law kernel relies on a prior understanding of

the tail behavior of the offspring process, which is difficult to acquire in practice since the

offspring processes are latent. As a result, extensive discussion on model comparison between

the different parametric spatial kernels is unavoidable.

More crucially, the spatial distance distribution within the compact irregular domain

D is usually not analytically available due to truncation even when a certain family of the

spatial kernel is assumed. These two factors motivate us to place a flexible nonparametric

prior on the spatial distance density to capture its varying functional form while respect the

irregular domain D as its support. Given our strict assumption of the compact domain D,

we conclude that any parent-offspring distance arising from the observed point pattern should

be bounded from above. Such bounded support for the spatial distance distribution allows us

to represent the spatial distance density as a mixture of scaled univariate Bernstein densities.

Chapter 2 introduced a model for the univariate Poisson process with a prior model for the

intensity function that implies a Bernstein-Dirichlet prior for the NHPP density function. Here

we borrow this idea to model the offspring spatial intensity, with modified Bernstein densities

scaled to a support over (0, Rmax), whereRmax is the upper bound for possible parent-offspring

distances.

4.4.1 Spatial distance distribution

For an isotropic spatial distribution centered on a given location (xi, yi), we define

the distribution for the distance between any point that follows such spatial distribution and

the center location (xi, yi) as the spatial distance distribution. The isotropy assumption allows
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us to express the spatial distribution fs(x, y) in terms of the distance of the spatial shift r =√
(x− xi)2 + (y − yi)2 such that fs(x, y) = fs(r). The spatial distance distribution f∗s (r) is

the marginal distribution in polar coordinates for the point-center distance under the assumption

that the distribution for the angle is uniform over [0, 2π].

The map between f∗s (r) and fs(r) is f∗s (r) = 2πrfs(r). To see this, notice that since

fs(r) is a proper density, i.e.,
∫ 2π

0

∫∞
0 fs(r)rdrdθ = 1, the joint distribution for (r, θ) in polar

coordinates can be factored as

f∗(r, θ) = 2πrfs(r) ·
1

2π
1(0,2π)(θ)

Therefore, the marginal distribution for r is

f∗s (r) = 2πrfs(r)

Here we discuss two classes of parametric isotropic spatial distributions and their

corresponding spatial distance distributions. For the isotropic Gaussian distribution centered on

(xi, yi), the spatial density fs(x, y) = N(x|xi, σ2)N(x|yi, σ2) can be equivalently expressed

as fs(r) = (2πσ2)−1 exp{−r2/(2σ2)} in terms of r =
√

(x− xi)2 + (y − yi)2. The spatial

distance distribution has the following density f∗s (r) = r/σ2 exp(−r2/(2σ2)), which is the

density for a Weibull distribution with shape parameter 2 and scale parameter σ
√

2. Another

popular isotropic spatial distribution is the Power Law distribution which allows the tail of

the distribution to decay at polynomial rate. Under the Power Law distribution, fs(x, y) =

π−1αβα(β+x2 +y2)−(α+1), and the spatial distance density is f∗(r) = 2αβαr(β+r2)−(α+1).

The spatial distance distribution provides another way to simulate from the corre-

sponding isotropic spatial distribution. We first generate the distance to center r according to
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f∗(r), then the angle θ in polar coordinates from a uniform distribution over [0, 2π], and finally

derive the spatial location as (x, y) = (xi + r cos(θ), yi + r sin(θ)). We use the inverse-c.d.f.

method to sample from f∗(r) in the case of the Power Law distribution. The c.d.f. of the spatial

density distribution is F ∗(r) = 1− βα(r2 + β)−α

4.4.2 A nonparametric spatial distance intensity model

Under the separable assumption, the triggering function g(s− si, t− ti) can be fac-

tored into two intensity functions in space and time respectively:

g(s− si, t− ti) = hs(s− si, t− ti)ht(t− ti) = hs(r)ht(t− ti)

Instead of assuming a parametric functional form for the space intensity function hs(s−si), we

rely on the isotropy assumption and model the spatial component via the spatial distance density

f∗s (r). Specifically we propose a nonparametric model for the spatial distance intensity function

h∗s(r). Such intensity function is the spatial distance density function f∗s (r) scaled by a total

intensity γs, i.e., h∗s(r) = γsf
∗
s (r). The prior model we propose for h∗s(r) implies a Bernstein-

Dirichlet prior scaled to a support of (0, Rmax) for the spatial distance density f∗s (r). It follows

that h∗s(r) = 2πrhs(r) since f∗s (r) = 2πrfs(r). We model the spatial component hs(r)

nonparametrically via a prior on its scaled form h∗s(r). The time intensity function ht(t − ti)

follows the parametric form such that ht(t− ti | γt, ω) = γtExp(t− ti | ω), where ω is the rate

parameter for the exponential distribution.

Given the strict support assumption that the point process occurs over a compact do-

main D, the support for the spatial distance intensity function is bounded from above by some
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real value Rmax that depends on the shape of the irregular domain D. The default choice of

Rmax is the largest pair-wise distance among any point inD. (0, Rmax] is the shared support for

any offspring process that occurs within D. The actual observed distance interval for a certain

offspring process depends on the parent location. Similar to the parametric model, the offspring

points are centered on the location of the parent point. Depending on the specific parent loca-

tion (xj , yj), the offspring-parent distance can be only observed on a truncated interval (0, Rj)

where Rj , Rj < Rmax, is the maximum distance between the parent location (xj , yj) to the

boundary D. Given its bounded support, we propose to model the spatial intensity function

h∗s(r) as a weighted combination of beta densities scaled to (0, Rmax) with structured gamma

priors for the weights {Vl}:

h∗s(r) =
∑L

l=1 Vl
1

Rmax
be(r/Rmax | l, L− l + 1) r ∈ (0, Rmax]

Vl
ind.∼ Ga(αL/L,CL)

(4.5)

Such construction implies a Bernstein-Dirichlet Prior scaled to (0, Rmax] for the spatial distance

density f∗s (r). The spatial distance density f∗s (r) as the result of the prior model for h∗s(r) is a

mixture of the same set of beta densities. The normalized weights ωl =
∑

l Vl/(
∑

p Vp) have a

Dirichlet distribution with concentration parameters (αL/L, · · · , αL/L).

f∗r (r) =
∑L

l=1 ωl
1

Rmax
be(r/Rmax|l, L− l + 1)

{ωl : l = 1 · L} ∼ Dir({αo/L, · · · , αL/L})
(4.6)

These results are equivalent to a Bernstein-Dirichlet prior for f∗s (r) scaled to [0, Rmax], which

has a uniform baseline distribution F0 over [0, Rmax] and scaled Bernstein beta densities.

Under such prior model for h∗s(r), and hs(r) = h∗s(r)/2π, the offspring Poisson

process intensity function, .i.e. the triggering function for an offspring process with parent
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location (xj , yj , tj) is defined as the follows:

g(ri,j , ti,j) =
1

2πri,j
γtExp(ti,j | ω)

L∑
l=1

Vlφl(r,Rmax) (4.7)

where φl(r,Rmax) = R−1
maxbe(r/Rmax | l, L− l+1) is the l-th Bernstein basis function scaled

to (0, Rmax].

To evaluate the normalizing constants for offspring Poisson processes, we use the

following approximation to simplify the evaluation:∫
D
g(s− sj ,t− tj)ds ≈

∫ Rj

0

∫ 2π

0
γsfs(r)γtft(t− tj)rdrdθ

=

∫ Rj

0
2πrhs(r)γtft(t− tj)dr =

∫ Rj

0
h∗s(r)γtft(t− tj)dr

= γtft(t− tj)
L∑
l=1

VlBl,j

where Bl,j =
∫ Rj

0 φl(r,Rmax)dr. We use the circle centered on (xj , yj) with radius Rj as the

region for integration, which always covers D, as an approximation for the integration region

D. Fig. 4.1 shows the relationship between Rj and Rmax over a hypothetical irregular domain

D. Such approximation works well when the effective range of h∗s(r) is way smaller than Rj ,

and the integrand is effectively 0 outside of D.

The complete data likelihood for the offspring points O conditional on the latent par-

ent label [i] is approximately

p(O | {Vl}, γt, ω) ≈ exp(−
N∑
j=1

γtFt(T − tj | ω)
L∑
l=1

VlBl,j)
∏
i∈O

g(ri,[i], ti,[i])

where the approximation comes from the approximation in the integral term.

To achieve easier inference, we introduce latent basis label li for every offspring point

i ∈ O to indicate the Bernstein basis function that the offspring-parent distance ri,[i] is associ-
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Figure 4.1: Illustration of Rj and Rmax over D: the orange circle is centered on a point sj with radius Rj .

ated with. The hierarchical model for the offspring process is therefore

{(xi, yi, ti)} | {Vl}, {li} ∼ exp(−
∑N

j=1 γtHj
∑L

l=1 VlBl,j)
∏
i∈O

1
2πri,[i]

γsφli(ri,[i])γtExp(ti,[i])

li | [i] = j
i.i.d.∼

∑L
l=1

Vl
γs
δl(li) Vl

ind.∼ Ga(αL/L,CL)

(4.8)

where Hj =
∫ T−tj

0 Exp(u | ω)du and φli(ri,[i]) implicitly depends on Rmax.

4.4.3 Specification for Rmax and Rj

Rmax is the maximum distance between any possible pair of points in D. The com-

plexity of computing Rmax is mostly determined by the complexity of the irregular domain

boundary. We find that such computation can be much simplified when D is a convex polygon

for which Rmax is achieved at the largest distance among any pair of boundary nodes. When

D is convex, the line that connects any pair of boundary points is located inside of D and is

longer than any lines that connect the points along with it. Therefore, Rmax should be achieved
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Figure 4.2: Illustration of Rmax when D is a convex polygon.

at the distance of a line that connects boundary points. Fig. 4.2 demonstrates how the orange

lines (l1, l2, l3, l4) that connect general boundary points will be shorter than some blue lines

(v1, v2, v3, v4) that connects the boundary nodes. The right panel illustrates two possible sce-

narios. We can prove that || l1 ||<|| v1 || by adding v′1, a line that starts with one end of l1 and

is parallel to v1. It is easy to see that || v1 ||>|| v′1 ||>|| l1 ||. Similarly adding v′3 parallel to

v3 makes it easy to see that || v3 ||>|| v′3 ||>|| l3 ||. Such a method applies in general, and we

can always find a line connecting two nodes longer than the line connecting a certain pair of

boundary points.

Rj is the maximum distance between a point sj and the boundaryD. Rj can be easily

computed when D is convex. Fig. 4.3 shows that for any orange line that goes from sj to a

boundary point that’s not the node, some blue line that connects such point and a node will be

longer than such orange line. Therefore,Rj can be computed as the maximum distance between

sj and boundary nodes given D.

Notice that the definitions of Rmax and Rj only depend on D and can be computed
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Figure 4.3: Illustration for Rj when D is a convex polygon.

as constants once given D. The normalizing constants in the Bernstein basis functions for the

offspring spatial distance density Bl,j =
∫ Rj

0 φl(u,Rmax)du depends both on Rj and Rmax

and can be computed before the posterior simulation. Thus, the computation in the MCMC

algorithm is not dependent on the shape of the irregular domain shape once these constants

are computed using D. Such a feature is an improvement compared to the parametric model,

where the complexity ofD directly determines the cost of computing normalizing constants that

occurs multiple times in each MCMC iteration. For the semi-parametric model, as long as these

constants can be computed before the running the MCMC algorithm, the model scales well to

point patterns over more complex boundaries.

4.4.4 Posterior simulation

The posterior simulation for the full model involves the following three steps: update

the latent parent label [i] for each point and identify the set of immigrants I and offspring points

O, update the immigrant parameter θI with points in I as data and then update the offspring
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parameter θo based on points in O. We skip the posterior updates for the immigrant parameters

since they are slight modifications to those shown in Chapter 2. We focus on the updates for the

parent label and offspring parameters.

The full-conditional for the latent parent label is a discrete distribution with support

as the union of all available parent set Ci and 0 which suggests that the point is an immigrant.

The available parent set Ci is the index of points that occurs prior to point i such that Ci =

{j : tj < ti}. The full-conditional of [i] = j is proportional to either the immigrant intensity

evaluated at (si, ti) when j = 0 or the triggering function evaluated at (si, ti) given the parent

of i is j.

p([i] = j | −) ∝


∑K

kx,ky=1 Vkx,kyBkx,kyφ
∗
kx,ky

(xi, yi) j = 0

1
2πri,j

γtExp(ti,j | ω)
∑L

l=1 Vlφl(r,Rmax) j 6= 0

The offspring parameter set θo = {{Vl}, {li}, γt, ω} is updated in the following

steps: first update {li} from a discrete full-conditional distribution where p(li | [i] = j) ∝

Vlφl(rij , Rmax); update {Vl} from conditionally independent Gamma distribution Ga(αo/L+

Ml, Co + γt
∑n

j=1HjBl,j), where Ml is the number of offspring-parent distances associated

with basis l; then update γt from a truncated Gamma distribution over [0, 1] with shape parame-

terαγt+|O|, where | O | is the number of offspring points, and rate parameter
∑N

j=1Hj
∑L

l=1 VlBl,j ;

finally update ω with a Metropolis-Hastings step.
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4.5 Forecast

We present two kinds of forecast approaches for the space-time Hawkes model: the

marginal forecast and the conditional forecast. Let the point pattern be observed in the time

window (0, T ] and let h be the forecast period length. The marginal forecast simulates a real-

ization from the underlying process over D × (0, T + h] without using observed data points in

such simulation. Alternatively, the conditional model uses the set of inferred immigrant points

in (0, T ] under each posterior sample and combines them with forecast immigrant points in

(T, T + h] to be the complete immigrant sets in (0, T + h]. These immigrant points then con-

tinue to produce offspring points until no more offspring is generated. Both approaches rely on

a routine to simulate the immigrant point locations under the BPNHPP model overD and times-

tamps uniformly in a specific time window, and a routine to simulate offspring points based on

a set of immigrant points. The subset of simulated point patterns that fall in the time window

(T, T + h] is the forecast point pattern under both approaches.

For the marginal model, the immigrant points are simulated as a realization from

the BPNHPP model over irregular domain D over (0, T + h]. We simulate the total number

of immigrant points from a Poisson distribution with mean (T + h)
∑

kx,ky
Vkx,kyBkx,ky , the

basis labels (ξi, ηi) associated with each observation from {(1, 1), · · · , (K,K)} with weights

proportional to Vkx,kyBkx,ky for kx, ky = 1 · · · ,K, and finally the actual locations (xi, yi)

according to the Bernstein spatial basis function φ∗ξi,ηi(x, y). For the conditional model, the

immigrant points in (0, T ) are observed points with parent label [i] = 0. Then the immigrant

points in (T, T + h) are a realization from the BPNHPP model over D in (T, T + h).
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Given a certain immigrant point, the offspring points are then generated recursively

centered on the initial immigrant and all its offsprings. A particular family given the parent

point (tj , xj , yj) is generated from a Poisson process with intensity defined as the triggering

function. We first generate the number of children nj from a Poisson process with mean

γtHj
∑L

l=1 VlBl,j . To obtain offspring’s timestamps, we simulate nj time shifts δt from a

truncated exponential distribution with mean 1/ω. The offspring location shifts (δx, δy) are

obtained by first simulating nj spatial distances r, nj polar coordinate angles θ uniformly

over (0, 2π), and mapping (r, θ) to (δx, δy) via δx = r cos θ and δy = r sin θ. To simu-

late from the nonparametric spatial distance density, we first sample nj basis label li from

{1, · · · , L} with weights proportional to Vl and then the distances r from the Bernstein density

over (0, Rmax) indexed by li. We map these location and time shifts to the offspring locations

via (xi, yi, tj) = (xj + δx, yj + δy, tj + δt). In the process of generating offspring points, We

ensure proper truncation by rejecting sampling. Specifically, we obtain a sample of (xi, yi) of

size 5 to 10 times of nj , and keep only the first nj of them that are inside D.

The simulation stops when no more offspring points are generated. The subset of the

resulting point pattern which occurs in (T, T + h] is the forecast point pattern.

4.6 Simulation study

We simulate the synthetic data from parametric space-time Hawkes processes with

Gaussian and Power Law offspring densities to demonstrate the model’s capacity to capture

different tail behaviors introduced by the parametric form of the offspring density.
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We first describe the simulation algorithm for the space-time Hawkes process, given

the irregular domain D, the total immigrant intensity Λ over space and time, the observed time

window T , the branching ratio γ < 1, the immigrant spatial density function fI(x, y), and the

offspring density function fo(x, y, t) = fs(x, y)ft(t). Notice that fs(x, y) and fI(x, y) are both

proper densities defined over D.

1. SimulateNo immigrants locations (xi, yi), whereN0 ∼ Poi(Λ), i.i.d. from the immigrant

spatial density function fI(x, y); simulate their timestamps ti uniformly over (0, T ].

2. For each immigrant point j, generate nj offspring points, where nj ∼ Poi(γ), with lo-

cation (xi, yi) following the offspring spatial density fs(x, y) centered on their parent

locations (xj , yj) and time increment δt following the offspring temporal density ft(t)

truncated over (0, T − tj). The event time for the offspring ti = tj + δt.

3. Repeat step 2 for each offspring point and their offspring points until no more offspring

points are generated.

4. The simulated point pattern is the union of all immigrant points and offspring points.

4.6.1 Sensitivity analysis

We design the following simulation study where the point pattern is generated over

the unit-square with an immigrant density fo(x, y) as a mixture of four bivariate beta densi-

ties, which together produce three distinct density modes, an offspring temporal density of an

exponential distribution with mean 0.2, and a branching ratio γ = 0.3. The simulation sce-

narios are created based two time horizons T = 20, 400 and the following offspring densities:
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N(0, I20.052), N(0, I20.12), and PL(2, 0.05). The total immigrant intensity over space and

time is set to 800 for all cases, resulting in point patterns with around 800 immigrant points and

300 offspring points. The goal here is to examine whether the model can recover the spatial dis-

tance density from different parametric families and test the prior sensitivity for hyperparameter

values.

The model configuration consists of the following aspects: immigrant hyperparame-

ters α and C, offspring hyperparameters αL, CL, and prior for the temporal branching ratio γt.

For the immigrant parameters, we set C to value (0.1, 0.5), and choose α by setting α/C to the

total intensity at any time, i.e. Λ/T . Additionally, we set α to be Λ/T ∗ C ∗ 0.9 to create a

scenario where the prior total intensity over space at any time is under-estimated. We set the

ratio between offspring hyperparameters αL/CL to 1 in the hope that γt will be centered on

γ. The prior for the spatial branching ratio γs =
∑

l Vl is Ga(αL, CL), and has expectation

αL/CL. The model can only jointly identify the the total branching ratio γ = γt ∗
∑

Vl
. By

setting αL/CL to 1, we can specify the prior for γt according to the prior knowledge of γ. We

choose αL, CL values from (0.01, 0.01) and (1.0, 1.0) with the latter suggesting stronger prior

belief that the spatial branching ratio γs is centered around 1. We choose the prior for γt from

two truncated Gamma distributions centered on the branching ratio γ with varying amounts of

prior precision. In total, there are 16 model configurations initially.

We apply these 16 configurations to data simulated from space-time Hawkes pro-

cesses with PL(2, 0.05) over the time horizon T = 800 and T = 1000. The extended time-

line makes it easier for the model to identify the latent branching structure, since the clus-

ters of points are well separated in the time dimension. We discover that when offspring hy-
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perparameters (αL, CL) is set to (1.0, 1.0), the model produces 95% credible intervals that

cover the true branching ratio γ = 0.3 across other aspects of model configuration. When

(αL, CL) = (0.01, 0.01), the model tends to under-estimate the branching ratio and over-

estimate the total immigrant intensity over space-time.

We then fix (αL, CL) = (1.0, 1.0) and apply eight configurations to data generated

with isotropic Normal densities with standard deviations of 0.05 and 0.1, and time horizons

T = 20 and T = 400. Together we have 32 cases across these 4 data sets. Fig.4.4 presents

the posterior mean and 95% credible interval for the number of offspring points, the branching

ratio, and the total immigrant intensity over space-time across these 32 cases. One noticeable

trend is that when the time horizon is closer, i.e., T = 20 in case 1 to 16, the credible inter-

val tends to be wider, suggesting more uncertainty. Such behavior suggests difficulties for the

model to distinguish between immigrant and offspring points when the points are dense in the

time dimension. With a further time horizon, i.e., T = 400 case 17-32, the inference for the im-

migrant total intensity and number of offspring points is relatively stable across different model

configurations. Therefore we conclude that the model is not sensitive to immigrant hyperpa-

rameter miss-specification and prior choice for γt. In all 32 cases, the 95% credible interval

covers the actual immigrant total intensity of 800 and branching ratio of 0.3, and in most cases,

covers the true number of offspring points of 330.

We then apply the eight configurations to data simulated with offspring from PL(2, 0.05)

over time horizons T = 20 and T = 400, which leads to 16 cases. We observe a similar trend

that a shorter time horizon produces larger credible intervals. The estimation of the total im-

migrant intensity and number of offspring points are similar across the 16 cases. We observe a
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Figure 4.4: Posterior inference for the number of offspring points, the branching ratio and the immigrant total

intensity across model configurations using synthetic data with Gaussian offspring kernel.

systematic overestimation of the total intensity and underestimation of the number of offspring.

Further investigation suggests that the model tends to misidentify offspring points further away

as immigrant points since such Power Law offspring density results in a long tail for the spatial

distance density.

Additionally, we study the model performance under the PL truth with the following

offspring densities: PL(2, 0.01), PL(4, 0.05) and PL(3, 0.1) within time window (0, 20] and

(0, 400]. The total intensity over space and time is again set to 800, resulting in point patterns

around 1200 points. We apply the model under the default setting: informative prior on the

branching ratio γt, (αL, CL) = (1.0, 1.0) and C = 0.1. We observe that the model performs

better in inference in these scenarios. The 95% credible intervals for the branching ratio and

total intensity cover the truth in all six scenarios. The 95% credible intervals for the number

of offspring cover the truth in all scenarios except when T = 20 and offspring density truth is

PL(3, 0.1).
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4.6.2 Inference on the spatial distance density

Section 4.4.1 derives the spatial distance density f∗s (r) for the isotropic Gaussian

and Power Law distribution without any spatial truncation. Here we emphasize that given our

simulation method, we generate the offspring points from a parametric spatial density truncated

over the domain D. Therefore, the corresponding f∗s (r) over D depends on D and does not

have a tractable analytical form. Instead, we use the histogram of the actual offspring-parent

distance as the benchmark to examine the inference of the spatial distance density. Given the

offspring set O and parent label [i], the distances ri,[i], i ∈ O can be easily computed. We plot

the true offspring-parent distance histograms and present the posterior mean and 95% interval

of the offspring spatial distance density for Gaussian cases in Fig. 4.5 - Fig. 4.6, and for Power

Law cases in Fig. 4.7. We observe that the model performs better when the timeline is longer

(T = 400), especially at capturing the tail behavior when the effective range of the offspring

spatial density is large. The model captures the mode and tail of the spatial densities from both

Gaussian and Power Law families with varying levels of success depending on the time horizon.

4.6.3 Forecast

We examine the model capacity to forecast in a future time window that is of 0.5

length of the observed timeline for the following spatial distance density truth: N(0, 0.05I2),

N(0, 0.1I2), PL(2, 0.05), PL(2, 0.01), PL(4, 0.05, PL(3, 0.1) over two time horizons T =

20, T = 40. To compare the model forecasts, we simulate the observed data in the time window

(0, 1.5T ), fit the model on the training point pattern in (0, T ), and hold out the point pattern

in (T, 1.5T ) to provide the forecast truth for validation. In the training and holdout data, we
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(a) T = 20 (b) T = 400

Figure 4.5: Posterior inference for the offspring spatial distance density under Normal(0, 0.05) truth.

(a) T = 20 (b) T = 400

Figure 4.6: Posterior inference for the offspring spatial distance density under Normal(0, 0.1) truth.

129



0.0

2.5

5.0

7.5

10.0

12.5

0.0 0.2 0.4 0.6
distance

de
ns

ity

PL(2, 0.05)

0.0

2.5

5.0

7.5

10.0

12.5

0.0 0.1 0.2 0.3 0.4 0.5
distance

de
ns

ity

PL(2, 0.01)

0.0

2.5

5.0

7.5

10.0

12.5

0.0 0.1 0.2 0.3 0.4 0.5
distance

de
ns

ity

PL(4, 0.05)

0.0

2.5

5.0

7.5

10.0

12.5

0.0 0.2 0.4 0.6
distance

de
ns

ity

PL(3, 0.1)

mean

LB

UB

raw data

Figure 4.7: Posterior inference for the offspring spatial distance density under Power Law distributions

PL(2, 0.05), PL(2, 0.01), PL(4, 0.05), PL(3, 0.1) when T = 400.
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Truth Full Forecast Conditional Forecast

Immigrant 399 418.65 (361, 478) 420.08 (362, 477.75)

Offspring 170 144.71 (95, 204.75) 144.76 (97.25 206)

Total 569 563.36 (490, 645) 564.84 (490.25, 642)

Table 4.1: Forecast result for data simulated under Gaussian offspring kernel N(0, 0.05I2) and

T = 20. The forecast columns shows posterior mean and 95% forecast interval.

compute the number of immigrants, the number of offspring, and the total number of points as

metrics for comparison. To obtain the posterior forecast interval for these metrics, we perform

both the full and conditional forecasts based on each posterior sample and count the number

of immigrants, offspring, and total points in the forecast point patterns. Table 4.1 shows the

forecast results for data simulated with Gaussian offspring density with standard deviation 0.05

and over time horizon (0, 20). The forecast is performed over the time window (20, 30), and

the true counts are shown in the first column. We observe that the full and conditional forecasts

result in similar counts for the three metrics.

We examine the forecast performance across the simulation truth and time horizon.

Fig 4.8 presents the point estimates and 95% credible intervals for the immigrant, offspring,

and total counts across simulation scenarios with both Gaussian and PL offspring truth. The

actual counts in the holdout point pattern are marked with triangles and the posterior mean with

circles. We label the Gaussian cases in the format of "σ - T ", e.g., "05-20" refers to the case

where the Gaussian offspring kernel has a standard deviation of 0.05 and the time horizon T is

20. Similarly, we label the PL cases in the format of "α-β-T ", e.g., "2-05-20" is the case with
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Figure 4.8: Posterior point and interval forecasts for immigrant, offspring, and total event counts in the holdout

period under different simulation scenarios.

PL(2, 0.05) offspring density and time horizon 20.

We observe that the forecast intervals cover the true counts for immigrants, offspring,

and total counts in almost all Gaussian cases. The offspring count for the scenario "0.1-20"

(σ = 0.1, T = 20) is underestimated with the true count slightly larger than the forecast

upper bound. The forecasts for the PL cases have mixed results depending on the truth and time

horizon. We observe that for the PL(2, 0.01), PL(4, 0.05) and PL(3, 0.01) cases, the forecasts

under longer timeline T = 400 recover the truth for all three metrics. Under a shorter timeline,

the model underestimates the offspring counts for all four cases.

4.7 Real data example: Boston city crime revisited

We apply the space-time Hawkes process models, the nonparametric offspring spatial

model (NonparSTH), and the isotropic Gaussian offspring model (ParSTH) to the crime point

pattern data in Boston city. We choose to model the Vandalism point pattern from April to
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June in 2017, taking the first ten weeks to be the training set, and holding out the last three

weeks as the testing set. We compare the spatial distance inference under the two models and

their forecasting performance in both the temporal and spatial aspects. We perform both full

and conditional forecasts with the NonparSTH and ParSTH models. Under each approach, we

obtain a replicated point pattern over 13 weeks for each posterior sample and filter such point

pattern to the last three weeks for validation. We compare the predicted number of events to

the observed counts in the hold-out period to check temporal forecast accuracy. We obtain

predictive residuals by filtering the predicted point pattern in the validation set to 9 by 9 grid

cells over the unit square to subtract the observed counts from the predicted counts per cell.

Finally, we use the Posterior predictive loss criteria treating the count of events in each grid cell

as the observation unit to perform an informal model comparison.

Self-exciting point process model have been applied to crime modeling and forecast.

The substantive problem is as follows: given the history of past events’ location and time, rank

a set of pre-specified spatial regions in a city according to the risk of future crimes. The spatial

map that are color coded based on risk of criminal activity is called the crime hotspot map.

To achieve this goal using a point process modeling approach, Mohler et al. (2011) developed

a fully-nonparametric model for space-time Hawkes process to forecast burglary and it was

later extended to a marked point process model that incorporate multiple crime types in Mohler

(2014). Both compare point process based approach and other hotspot maps approaches based

on a predictive accuracy measure using hotspot ranking. We adopt this approach to perform

model comparison between NonparSTH and ParSTH.

We choose the central city region (excluding the northeast region and islands in the
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east) to be the irregular domain D, the same region we used in Chapter 3. We further simplify

the domain to be the convex hull, making it easier to define Rmax and Rj for the NonparSTH

model. Spatially, we map the locations of points to the unit square and exclude any points

outside the convex hull. We take the timestamp of each point and convert it to the number of

weeks since 00:00:00 04-01-2017. The test period is the first ten weeks and the testing period is

weeks 11 to 13. We discover some edge cases where the spatial locations of the point patterns

are identical while the timestamps are different. This is potentially due to multiple crimes in

the small vicinity of a specific location at different times, and the logging protocol registers the

location to the same longitude and latitude. Such edge cases introduce estimation issues for

the NonparSTH model. The first Bernstein density function in the offspring spatial distance

density mixture, be(r | 1, L), is a monotonic decreasing density with an asymptote at 0. Having

multiple points at the same location in the data causes the NonparSTH model always to favor the

first basis and results in biased estimations of the offspring spatial distance shape. To address

this data issue, we identify pairs of points with a pair-wise distance equal to 0 and remove the

point with a later timestamp. Such procedure removes about 15% of the points, and we obtain

a point pattern of size 1018 over 13 weeks.

We apply the NonparSTH model with configurations consists of four prior on γt, two

centered on 0.6 (Ga(7, 10) and Ga(61, 100)) and another two centered on 0.2 (Ga(2, 10) and

Ga(21, 100), three choices for number of offspring Bernstein densities used L: L = 80, 100 or

120. The inference for γt is not sensitive to the prior specification: posterior inference for γt

are similar under the four priors with posterior mean for γt around 0.6, 2.5 posterior percentile

around 0.5, and 97.5 percentile around 0.8. The offspring spatial density shows similar trend
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under different choice of L with a density mode around 30 near r = 0.02. We show result under

the NonparSTH model with prior Ga(61, 100) for γt, Ga(11, 10) for ω, and L = 120 here. We

apply the ParSTH model with a Ga(7, 10) prior on γ and Ga(11, 10) prior on ω. We fix the

offspring Gaussian parameter ρ to be 0 and set σ = σx = σy under the isotropic assumption.

We place a IG(2, 0.0001) prior on σ2. In both NonparSTH and ParSTH model, we set K = 40

and C = 0.0005 for the immigrant NHPP model with a fixed value for α. The MCMC chain

for both models is run for 10,000 iterations, with the first 2000 iterations discarded and the rest

of the chain thinned by 4.

We compare the inference for the offspring spatial distance density under the two

models by summarizing the empirical density of the inferred parent-offspring distances. For

each posterior sample of the latent branching structure, we compute the parent-offspring dis-

tances and apply a histogram estimator to such distances sample with 30 equally spaced bins

over (0, 0.15). We summarize the posterior empirical densities with posterior mean and 95%

credible interval for the density in each bin. We then plot the posterior mean and interval esti-

mate for both NonparSTH in blue and ParSTH in red in the right panel in Fig. 4.9. We observe

that both models have a similar estimate for the offspring spatial density mode around 0.025.

However, the NonparSTH model has a heavier tail. The left panel shows the inference for

spatial distance density under the NonparSTH model. The middle panel shows the posterior

inference of Weibull density functions with shape parameter two and scale parameter σ(b)
√

2

for b = 1 · · ·B in the posterior sample of σ. Such Weibull density is the spatial distance den-

sity for isotropic Gaussian kernel over R2 with standard deviation σ. Since we cannot obtain

the closed-form expression for the spatial distance density over the irregular domain D, these
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Figure 4.9: Posterior inference of offspring spatial distance density.

Weibull densities serve as crude approximations.

We compare the inference for the immigrant spatial density under the two models

shown in Fig.4.10. The two point estimates for the density share a similar mode around (0.75,

0.5), and differs slightly on the location for the other mode around (0.6, 0.7). The difference

is likely induced by different immigrant set I under the two models. Overall, these trends are

consistent with what we see from results in Chapter 2 and Chapter 3.

We compare the two models in terms of forecast performance in the hold-out period.

Temporally, we compare the forecast number of points in the hold-out period under both mod-

els to the truth. Such counts, simulated via the branching process that decides the number of

generations and points in each family, are controlled by the total intensity of the immigrant pro-

cess and the branching ratio. Since we do not have the information on immigrant vs. offspring

identity in the hold-out set, we can only compare the total forecast counts. Fig. 4.11 shows the
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Figure 4.10: Posterior inference for G0 spatial density under NonparSTH (first row) and ParSTH (second row).
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comparison among the two NonparSTH models and the ParSTH model. NonparSTH achieves

a slightly better forecast with point estimates closer to the truth for both the full and conditional

forecasts.

Spatially, we use the posterior predictive residuals over grid cells to compare local

forecast accuracy. Fig. 4.12 shows the predictive mean residuals for NonparSTH in the first

row and ParSTH in the second row, the full forecast in the first column, and the conditional

forecast in the second column. Table 4.2 shows the summary of the predicted residuals across

grid cells, mean (min, max), for both models under both forecast methods. The average residual

for the NonparSTH model is closer to 0 than that for the ParSTH model, with a smaller range

using both the full and conditional forecast methods.

To come up with a comprehensive comparison metrics, we summarize the spatial

forecasts with the predictive loss criterion. We treat the number of points in each of the 9

by 9 grid cells as individual observations, and use the sum of squares of difference between

posterior mean estimates and observations as a measure for goodness of fit and the sum of

posterior variance for each observation as a measure of penalty. Together these two terms

provide a holistic comparison between models. We use this measure only as an informal model

comparison scheme, since the independent observations assumption for posterior predictive

loss criterion does not hold under the underlying space-time Hawkes process, which allows

dependence among points located in different grid cells.

Table 4.2 shows the posterior predictive loss criterion using the full and conditional

forecasts in the last column. The conditional forecast achieves lower loss for both models,

and the NonparSTH performs better than the ParSTH under this criterion. Overall, we observe
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Figure 4.11: Forecast number of points in the hold out period under the two models.

Model Full forecast Conditional forecast Predictive loss criterion

NonparSTH 0.314 (-7.369 , 7.542) 0.219 (-6.780, 6.954) 770.58 / 696.00

ParSTH 0.472 (-8.471,7.446) 0.327 (-7.727, 6.569) 894.70 / 776.28

Table 4.2: Posterior predictive performance of NonparSTH and ParSTH using full and condi-

tional forecast method.

that the conditional forecast method shows better performance both temporally and spatially.

NonparSTH achieves a better forecast.

We produce crime hotspot visualizations based on the posterior forecast in the holdout

period under NonparSTH using the conditional forecast method to demonstrate the practical

utility of our proposed methods. In each map from Fig. 4.13, the color for grid cells correspond

to the observed event counts in the holdout period that are positive and the red highlights indicate

the cells with top M forecast counts predicted by the model. Comparing the hotspot cells

flagged by the model against those flagged by observed counts provides an informal check for
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Figure 4.12: The posterior mean for the predictive residuals over a 9×9 grid in the unit square under NonparSTH

(first row) and ParSTH (second row).
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Figure 4.13: Vandalism hotspot maps under NonparSTH conditional forecast over 9 × 9 partition of the unit-

square where the cells are colored by observed number of events in the holdout period, and the cells highlighted by

red are chosen by the model with the most forecast number of events.
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prediction accuracy. We observe that the model is able to flag the high risk areas with 10 cells,

and is able to capture the second local mode in the north-west region with 15 cells. This map

can be used to advice police intervention, as highlighted areas represent regions with higher

risks for future crimes. Our approach can provide more information since the rank is based on

actual forecast counts instead of an abstract measure of risks and is therefore more informative

of the real-world consequences.

Finally, we compare two models using an empirical accuracy measure of a hotspot

ranking method, which computes the percentage of observed crimes in the holdout period that

fall into areas flagged for intervention according to predicted risk of future crimes. This metric is

adopted by Mohler et al. (2011) and Mohler (2014) to compare models and resembles an ROC

curve in the sense that larger area under the curve means higher prediction accuracy overall.

Specifically, we rank the 81 cells based on the posterior mean predicted number of events within

each cell over the holdout period and take the top M cells to flag as regions for intervention.

Then we compute the fraction of actual crimes over the city in the holdout period that fall in

the flagged regions. Fig. 4.14 shows such fraction against the corresponding percentage of

cells flagged. The NonparSTH performs slightly better than the ParSTH model with larger area

under the curve. Notice that the top 1/4 cells captures more than 75% of actual crimes in the

holdout period, which provides evidence for accurate prediction under both models.
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Figure 4.14: Percentage of crimes predicted over holdout period against percentage of cells flagged for interven-

tion

4.8 Conclusion

We propose a semi-parametric space-time Hawkes process model with augmented

branching structure that allows flexible inference and efficient simulation. Our approach for the

immigrant intensity has the following comparative advantage compared to existing approaches:

no approximation in the likelihood with proper treatment of the normalizing constants for both

the immigrant and offspring Poisson processes; simple augmentation scheme compared to a

Gaussian Process based approach. It is common to assume the spatial region of observation to be

R2 for both the immigrant process and offspring process, which greatly simplify the intractable

normalizing constants in the Poisson process likelihood. Such treatment for the offspring pro-

cess introduces small often negligible bias, especially when the spatial triggering effect decays

within short range. However, for the immigrant process this simplification often introduces
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bias that requires boundary correction. Without such approximation, the DPMM-based ap-

proach for the immigrant process Kolev and Ross (2020) will be computationally intractable

when evaluating the random normalizing constant that depends on the Dirichlet Process mix-

ture. Molkenthin et al. (2022) avoids such approximation for the immigrant process by creating

an augmented Poisson process realization Ĩ , so that the union of Ĩ and the original immigrant

process realization I comes from a homogeneous Poisson process over the finite domain D.

The computational cost of such augmentation is high, partially due to the intrinsic cost of the

Gaussian process prior, which results in a O((NI∪Ĩ)
3) complexity, where NI∪Ĩ is the number

of points in both observed and latent immigrant processes. Our approach has a computation

complexity ofO(K2 ·NI), where K is the number of Bernstein densities no greater than 60 for

practical purpose and NI is the number of observed immigrant points. Our approach therefore

can be much more efficient.

Incorporating covariates in the space-time Hawkes process model is an important ex-

tension, especially under the context of crime modeling where covariate such as population

density is known to impact criminal activity. Incorporating covariates in Hawkes process is less

straightforward, since the covariates can impact the immigrant process, the offspring process

and the branching structure based on different assumption of the underlying data generating

process. For crime modeling, one could argue that the covariates have larger impact on the

immigrant intensity since the rate of occurrence for immigrant events are mainly driven by

external factors such as population density and demographic information. Reinhart and Green-

house (2018) formulates the immigrant intensity in a space-time Hawkes process as a piece-wise

constant function, where the constant intensity within a region is defined via a regression form

144



depending on the spatial varying covariates. Based on this approach, we can apply the extension

for NHPP model with spatially varying covariates discussed in Section 2.6 for the immigrant

Poison process and allow the nonparametric term in the intensity function to explain the spatial

heterogeneity not captured by the covariates. Liang et al. (2014) took this approach for the mod-

eling of a space-time Poisson process that incorporates both spatial and temporal covariates into

the intensity function, where the baseline intensity is modelled nonparametrically via process

convolution. The challenge of this approach, however, is the computational cost due to the lack

of closed-form expression for the total intensity.

Here we discuss a particular approach to incorporate spatial covariates such as the

population density in the STH process model under the context of crime modeling. Population

density often comes in as summary statistics at the county or zip code level. Here we treat

population density, denoted by p(s), as a discrete variable whose levels p = 1, · · · , P map

one-to-one to a set of regions {B1, · · · ,BP } which forms a partition of D. We formulate the

immigrant Poisson intensity such that points within a partition share the same set of random

weights Vkx,ky(s) ≡ V
(p(s))
kx,ky

, indexed by the population density level within that partition:

µ(x, y, t) =
K∑

kx=1

K∑
ky=1

V
(p(s))
kx,ky

φ∗kx,ky(x, y)

This is similar to a spatial fixed effect model that uses the covariates as spatial index and fits a

mean to each region. In our formulation we still allow local heterogeneity within the region but

implicitly assume the weights within region are on the same level of magnitude which reflects

the impact of the population density. One might want to impose some structures in the priors for

these P sets of weights to induce smoothness, such that weights in adjacent regions are more
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similar to each other.

The nice feature of this formulation is that we can still have tractable normalizing

constant for the immigrant Poisson process. The total intensity over space-time is the following

∫
D

∫ T

0
µ(x, y, t)dxdydt = T ·

P∑
p=1

K∑
kx=1

K∑
ky=1

V
(p)
kx,ky

∫
Bp
φ∗(x, y)dxdy

where the integral in the right hand side is easy to compute.

Finally, we discuss how to account for the type of crime in the STH process model.

Unlike the approach in Reinhart and Greenhouse (2018) that treats the type of crime as a discrete

covariate that informs the immigrant intensity, we prefer to formulate the problem as modeling

for a multivariate STH process where the subprocesses are indexed by the type of crime. Let

the multivariate STH process be denoted as a collection of subprocesses {N1, · · · , NU} where

each subprocessNu, i.e., the point process for crime type u, has conditional intensity λu(t, s) =

µu(t, s) +
∑

tk<t
Guk,u(t − tk, s − sk). The observed N points can be labeled (tk, sk, uk)

for k = 1, · · · , N , where uk indicates to which subprocess point k belongs. Guk,u(·, ·) is the

triggering function defined by the parent point k that belongs to subprocessNuk . The triggering

matrix K ∈ RU×U such that Ku,v is the branching ratio defined according to Gu,v(·, ·). Yuan

et al. (2021) provides a fast and accurate estimation method for such multivariate STH process.

One could consider extending the definition of the triggering function defined in this

chapter to the multivariate case by formulating Guk,u(t− tk, s− sk) = htuk,u(t− tk)hsuk,u(s−

sk) as product of separable time and space intensity functions. Specifically the time intensity

function htuk,u(t − tk) can be factored into a branching ratio Kt
uk,u

and a temporal density

ft(t − tk), where Kt
uk,u

is the (uk, u) element of the temporal triggering matrix Kt. The
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spatial intensity can be modeled via the spatial distance intensity hruk,u(r) = Vuk,u,lφl(r) as

weighted combination of scaled Bernstein densities as discussed in this chapter. The weights

Vuk,u,l are indexed by the subprocesses to which the parent and offspring points belongs. The

(u, v) element in the spatial triggering matrix Ks is the branching ratio between subprocess

Nu and Nv, and is expressed as
∑L

l=1 Vu,v,l. For the multivariate STH process to be stationary,

K ∈ RU×U needs to satisfy || K ||< 1, where || K || is the spectral norm of K. In this

formulation, K = Kt ⊗ Ks, where ⊗ denotes element-wise product. One can center each

element in Ks around 1 and impose constraints on Kt such that || Kt ||< 1.
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Chapter 5

Conclusion

We conclude this dissertation with discussions of the unifying theme of the three

projects and some possible extension from both methodology and application perspectives. In

this dissertation we carefully handled the issue of spatial irregular domain and its implication

for both inference and computation. In the intensity model for NHPP, we obtain a closed-form

expression for total intensity over D, ΛD, the evaluation of which relies on accurate numerical

approximation of the normalizing constants Bkx,ky . Such computation is more numerically sta-

ble and therefore introduce less bias than the numerical integration required under a model such

as the log Gaussian Cox process where there are two folds of approximation. It first requires

a discretization of the underlying Gaussian process over an finite grid, and then Monte Carlo

integration which evaluating the intensity function at the centroids of the grid cells. More impor-

tantly, the computational complexity of our proposed model is independent from the complexity

of the irregular domain boundary, since the irregular domain D only enters the computation via

the evaluation of the Bkx,kys. Inference-wise, our construction leads to a proper NHPP density

148



over the irregular domain, which does not require bias correction to account for boundary effect

when using a maximum likelihood estimation approach (Reinhart, 2018). Such theme extends

to the modeling for the SH and STH processes, where the model needs to respect D in both the

immigrant and offspring processes.

For a SH process model, the parametric offspring kernel has a support over D and

requires truncation when the kernel is bivariate Gaussian. Such truncation is necessary as ear-

lier exploration suggests unavoidable bias in the kernel parameter estimation when fitting a

untruncated kernel to the observed point pattern. The implication of such truncation is the eval-

uation of the normalizing constants, which is sped up by the efficient Monte Carlo routines we

designed. For prediction, the truncated offspring kernel leads to rejection sampling for the off-

spring locations which have support over D instead of R2. The computation bottleneck for both

routine is an algorithm that detects whether a location is inside of the irregular domain D and is

implemented using a Julia package Luxor. As a result, the computational complexity depends

on the irregular domain boundary, which imposes prohibitive computational cost when using a

boundary in its raw form consisted of thousands of boundary points. The Boston city boundary

in chapter 3 is simplified using sf package in R to reduce the number of boundary points while

preserving its geometry. We suspect that the computational efficiency of the posterior simula-

tion algorithm will be improved if more efficient implementation of the "point-inside-boundary"

algorithm is used.

Such computational dependency on the boundary complexity motivates the develop-

ment of the nonparametric distance-based offspring kernel in Chapter 4. Here the truncation is

handled withRj as the realized range for a cluster of offspring points centered on sj . The irreg-
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ular domain D therefore enters the computation via both the Bkx,kys for the immigrant process

and the Bl,js for the offspring process. Both sets of constants can be computed efficiently with

high accuracy. We acknowledge the approximation in the domain shape introduced by mod-

eling a univariate density instead of a spatial kernel, but want to emphasize the computation

gain from such approximation. In Chapter 4, we defined the constant Rmax and Rj based on a

simplified boundary scenario with polygon approximation ofD by taking its convex hull, where

the specification of Rj and Rmax is straightforward. More complex boundary can be used at

the cost of more computational costly algorithms to define these constants.

We developed a Bayesian modeling framework for spatial point process by leveraging

a flexible representation of the intensity function for the NHPP as a building block and build-

ing hierarchical models for the more general SH and STH processes, while accounting for the

irregular domain with extra care in both model formulation and computation. Such framework

is designed to be applicable to a variety of problems where point pattern data tends to be non-

homogeneous and clustered. All models inference, prediction and forecast are implemented in

Julia and will be made available as an open-source software maintained by me in the future.
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