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Joint Association Testing of Common and Rare Genetic Variants 
Using Hierarchical Modeling

Niall J. Cardin, Joel A. Mefford, and John S. Witte*

Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of 
California, San Francisco, California

Abstract

New sequencing technologies provide an opportunity for assessing the impact of rare and common 

variants on complex diseases. Several methods have been developed for evaluating rare variants, 

many of which use weighted collapsing to combine rare variants. Some approaches require 

arbitrary frequency thresholds below which to collapse alleles, and most assume that effect sizes 

for each collapsed variant are either the same or a function of minor allele frequency. Some 

methods also further assume that all rare variants are deleterious rather than protective. We expect 

that such assumptions will not hold in general, and as a result performance of these tests will be 

adversely affected. We propose a hierarchical model, implemented in the new program CHARM, 

to detect the joint signal from rare and common variants within a genomic region while properly 

accounting for linkage disequilibrium between variants. Our model explores the scale, rather than 

the center of the odds ratio distribution, allowing for both causative and protective effects. We use 

cross-validation to assess the evidence for association in a region. We use model averaging to 

widen the range of disease models under which we will have good power. To assess this approach, 

we simulate data under a range of disease models with effects at common and/or rare variants. 

Overall, our method had more power than other well-known rare variant approaches; it performed 

well when either only rare, or only common variants were causal, and better than other approaches 

when both common and rare variants contributed to disease.

Keywords

cross-validation; multi-SNP; gene based

INTRODUCTION

Complex diseases are likely to arise from both common and rare genetic variants. For the 

latter, recent work has developed new analysis methods that help address the issue of data 

sparsity. However, using methods designed only for rare variants may miss important 

signals. Running separate methods for rare and common variants can lead to problems of 
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interpretation, especially when rare variants tested with one method are in linkage 

disequilibrium (LD) with common variants tested by another.

Many methods exist for finding disease associations with rare variants. Morgenthaler and 

Thilly [2007] suggest collecting variants (e.g., the variants from the exons and splice sites of 

genes) and then comparing the counts of cases and controls that carry at least one mutation 

in that group of variants. Morris and Zeggini [2010] take the sum of the mutations in each 

individual, rather than the indicator of presence or absence of mutation. When using such 

approaches, removing all variants above a certain minor allele frequency (MAF) threshold is 

necessary, so that the signal is not overwhelmed by common variants. However, no 

frequency threshold is perfect. If the threshold is too high, the signal from rare variants will 

be swamped by noise from common variants; while if the threshold is too low, true causal 

variants may be missed.

To overcome this problem, Madsen and Browning [2009] propose collapsing all variants, 

but weighting rare variants more highly than common variants. This method, designed for 

continuous traits, assumes that rare variants have stronger effects than common variants. If 

the causal variants are not rare then this method will have reduced power compared to more 

agnostic methods. Furthermore, it is unknown how much larger the effect sizes of rare 

variants will be compared to common variants. If the true effects do not correspond to the 

weighting scheme used, then the weights may decrease power compared to the unweighted 

approach.

Alternatively, Price et al. [2010] suggest exploring all frequency thresholds and choosing the 

threshold that gives the most power. Unfortunately even in this case, the signal from causal 

rare variants may be drowned out by variants with no effect on disease. To focus specifically 

on causal variants, Hoffmann et al. [2010] propose collapsing over variants that show signal. 

The step-up procedure successively adds the variant that most improves the P-value of the 

collapsed score. By summing alleles over a set of variants, all of the methods described so 

far make the implicit assumption that the effect sizes are equal or have some specific 

relationship with MAF.

Li and Leal [2008] suggested jointly testing rare and common variants by collapsing variants 

below an MAF threshold and then testing the collapsed variants and remaining common 

variants, using Hotelling's T-squared test. By thresholding and collapsing rare variants, this 

method suffers from many of the problems discussed above, though it does allow for 

evaluating common variants above the rare variant threshold.

Any collapsing method must address the fact that variants are not inherited independently. 

LD invalidates the assumption of independence used to calculate the null distribution of test 

statistics. One might account for LD using permutation testing, producing a valid test. 

However, multiple noncausal variants in LD might mask causal signals.

To address these limitations of existing methods, we propose a novel approach called Cross-

Validated Hierarchical Aggregated Regression Method, or CHARM. CHARM 

simultaneously analyzes all variants within a region, while allowing different effect sizes for 

each variant and accounting for LD. We use a multiple logistic regression model with a 
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hierarchical structure that captures the joint signal from multiple effects within a region. 

CHARM avoids the need for collapsing variants by using a likelihood-based approach to 

assess the overall evidence of association within a region. We use cross-validation to 

provide a computationally efficient means of comparing our multiple regression with the 

null model of no genetic association. CHARM allows each variant to have a different effect 

size but we do not perform variable selection within a genomic region. Instead, we fit a joint 

model with separate effect sizes for each single nucleotide polymorphism (SNP), drawn 

from a smooth prior distribution. To capture the considerable uncertainty regarding likely 

genetic effects, we average over multiple models, i.e. prior distributions of effect sizes. 

While previous methods have used hierarchical models for genetic association studies, e.g. 

[Chen and Witte, 2007; Hung et al., 2007; Heron et al., 2011], these methods used the 

hierarchy as a means of incorporating prior information on the location or likely locations of 

associations. Here, the hierarchical structure is used as a means of providing a richer model 

and pooling the evidence for association across multiple SNPs.

We compare CHARM to existing methods using simulated data reflecting a range of disease 

models. In each of the scenarios, the best performing approach is one of three: CHARM, 

min-p, or Step Up. Uniquely, CHARM has either the most power, or at least 90% of the 

power of the best performing method in all simulated scenarios.

METHODS

OUTLINE

Our method jointly tests all of the SNPs in a region for association with a disease or other 

dichotomous trait. The underlying model is a multiple logistic regression, with a separate 

odds ratio for each SNP. We place independent prior distributions on the effect size of each 

SNP, the properties of which are controlled by hyperparameters. To increase flexibility, we 

average over multiple disease models, and inference is performed by comparing the 

likelihood under this model to the likelihood under the null. To overcome the computational 

difficulty in calculations of marginal likelihood, we use a likelihood based on cross-

validation.

LOGISTIC REGRESSION

Assume we type S SNPs (rare and common) in N individuals:

(1)

where Y denotes the phenotype, and G denotes a matrix of genotypes, Gi being the data at 

the ith SNP, (the Gi are coded additively). Finally, β is a vector of logistic regression 

coefficients (log odds ratios) for disease, where the ith element corresponds to the ith SNP.

HIERARCHY

Inference of individual odds ratios can be challenging under such a model. Sparsity at rare 

variants, and LD at common variants, can lead to great uncertainty in effect estimates. 

Nevertheless, the joint distribution of odds ratios may indicate strong evidence for 
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association in the region as a whole and we assess this using a hierarchical model (see, e.g. 

Gelman and Hill, 2007). To assess this, we place a hierarchical prior on the log odds ratios, 

β, in this model, see Figure 1. We then compare the likelihood (using cross-validation) of the 

data under the hierarchical model with the likelihood under the null.

We use a prior distribution of effect sizes centered on zero, but with a hierarchical parameter 

that controls the degree to which effect sizes can vary from zero. In particular:

(2)

for i ≥ 1. In this paper, the distribution, F , indicates either a Cauchy or normal distribution 

and we ultimately average over models that use either of these. For normally distributed log 

odds ratios, the parametrization uses a mean and variance. For the purposes of clarity, we 

refer to the term scale only in the rest of the paper. The value of β0 is described in the 

supplementary materials.

The scale parameter, δ, controls the strength of effects that may be observed in the region of 

interest. While one might place a prior on the center parameter, we prefer to focus inference 

on the scale, δ, because controlling the scale provides the flexibility to allow for causative 

and protective effects. For example, if one SNP has an log odds ratio equal to 0.3 and 

another equal to −0.3, then both provide evidence of deviation from the null model. In 

contrast, if one only controls the mean effect size in a region then, given a certain SNP 

coding, only multiple effects that point in the same direction will provide evidence for the 

alternative model.

We include a Cauchy prior on effect sizes for the following two overlapping reasons. First, a 

Cauchy distribution better reflects our expectation that most variants will have modest effect 

sizes. Indeed, it is implausible, given current genome wide association studies (GWAS) 

results, that multiple common SNPs would independently have strong effects . We would 

like to have most effect sizes close to zero while allowing for effect sizes relatively far from 

zero; a Cauchy distribution fits this description better than a normal distribution. Second, 

given a causal SNP, we have little idea of what effect sizes to expect, especially at rare 

SNPs. With much heavier tails, the Cauchy distribution better reflects that uncertainty than a 

normal distribution.

MODEL AVERAGING

One of the primary motivations for our approach is the uncertainty about the genetic 

architecture of complex traits. Possibilities for a given region range from clusters of very 

rare and large-effect variants, through collections of weaker effect variants across all 

frequencies, to a single common causal variant. It therefore makes sense to account for a 

range of possibilities when modeling the effect of our genetics on disease.

In the presence of uncertainty, the natural approach is to integrate out our uncertainty. While 

the full space of disease models, including interactive effects, pathways, etc. is too large a 

space to explore at this stage, we can still account for a range of possibilities. For 

computational reasons, we pick a fixed set of plausible disease submodels and then take the 

Cardin et al. Page 4

Genet Epidemiol. Author manuscript; available in PMC 2015 February 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



average of the likelihoods (equation [8]) from these submodels to assess the evidence for 

association. Each sub-model consists of a different prior on the effect size of each SNP, and 

we include all the SNPs from the predefined region in the submodel.

MODEL SPECIFICS

Each submodel has a different prior on the log odds ratios of the SNPs in the region. Given 

Cauchy (or normally) distributed log odds ratios, the distribution is specified by the scale (or 

variance) parameter of the distribution. We specify this scale in terms of numbers of SNPs at 

certain relative risks. This is meant to ease interpretation of these priors on log odds ratios, 

and to facilitate user specification of new models. An expected number of causal SNPs, n, 

and a relative risk, r, are chosen. The scale of the distribution is set to give an expected n 

SNPs with either a relative risk of at least r, or less than  , symmetrically. The values of n 

and r used by default are given in Table I.

Under some models (Table I), the effect size priors are a function of MAF. There are many 

choices for how to achieve this, and it is not possible to derive a “best” method without 

making assumptions about the unknown disease models that we hope to uncover. We 

describe one possible approach here. We first note that the main reason why rare variants 

should have stronger effects is the action of natural selection. However, for common 

diseases, selection cannot act effectively at very rare SNPs, and the frequency of a causative 

allele will be dominated by drift. We therefore allow only a moderate increase in the spread 

of the effect size distribution at rarer SNPs and below a MAF of ~0.002 we do not further 

increase this.

First, a canonical frequency, fc, is chosen (this was set to 25%). Variants at this frequency 

use the scale defined for models with no MAF dependence. Call the scale given to canonical 

frequency variants sc, this corresponds to a median absolute relative risk of rc. Then, the 

prior is set so that the median absolute relative risk for another variant is

(3)

where f is the frequency of that variant. A maximum multiplier, , of 12 is also 

imposed due to the argument given above, although this is unlikely to have a substantial 

effect on results.

For very small regions, this prior on effect sizes would be very wide. As a result, the scale of 

the prior on effect sizes for any SNP is capped at 0.5, which gives a median absolute odds 

ratio of 1.6.

INFERENCE

Given the data in a genomic region, we are interested here in evaluating evidence for at least 

one disease associated variant in this region. This contrasts with the conventional approach 

of testing each variant for association. Suppose, for now, that we have some fixed value of δ. 

We want to compare the model described above, M1, with the null model M0. Under the null 
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model, the case phenotype, Y, is drawn from N independent and identical Bernoulli 

distributions where the probability of being a case, P(Y = 1), is the proportion of cases in the 

data.

In principle, we could then calculate a Bayes Factor

(4)

where

(5)

Unfortunately, this becomes computationally difficult or intractable for large numbers of 

SNPs, even using numerical or stochastic methods such as Markov Chain Monte Carlo 

(MCMC).

We might also want to place a prior on δ, and integrate over that prior under M1. However, 

this also entails a high computational cost. Thus, we explore a range of fixed values, as 

explained in the section on model averaging.

USING CROSS-VALIDATION

To perform inference, we compare how well the model of genetic effect on disease 

compares to a model of no genetic effect. One might use maximum likelihood-based 

methods, but these have the problem that more complex models get higher likelihoods than 

less complex models. This problem becomes much more severe when multiple SNPs are 

jointly analyzed. Marginal likelihoods are “honest,” in that model complexity confers no 

inherent advantage, but these are difficult to compute. There are many methods that can be 

used to approximate marginal likelihoods; unfortunately most of these do not respond 

appropriately to changes in the degree of parameter shrinkage, but rather to the number of 

parameters in the model. Other approaches, such as those based on MCMC give the correct 

answer in principle, but are unstable and it can be difficult to know when they have 

converged.

Nevertheless, likelihoods are a powerful tool when performing inference, so we use a 

likelihood based on cross-validation (see, e.g. Hastie et al., 2009). The motivation is that 

good models will accurately predict outcomes in new samples, and models that overfit the 

data will less accurately predict outcomes in new samples. We describe a statistic motivated 

by Bayes Factors, but which is computationally tractable for large data sets.

We randomly partition the sample into  groups. We then take each of these groups in turn, 

calculate the maximum a posteriori estimate of β given δ on those individuals not in that 

group (training set). Then, we calculate the probability of sampling the case status of the 

remaining individuals (test set) from the predictions of that model. We repeat this until each 

group has been picked once, hence every individual has been included in the test set exactly 

once. The procedure is stochastic, so we perform this procedure multiple times and combine 

results. Let  denote the product of these individuals’ predicted sampling probabilities in 
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the ith iteration of cross-validation (the c subscript denotes that this is a likelihood derived 

using cross-validation, rather than more familiar maximization or marginalization):

(6)

where Gi j and Yi j, respectively, denote the genotypes and outcomes for test set j, and Mi j 

denotes the model fit acquired from training set j. We use  fold cross-validation that 

is computationally reasonable and allows the model to be fitted on 90% of the data.

We then take the average of the log-likelihoods over k replicates of this procedure:

(7)

which we found performed well.

Although the cross-validated likelihoods, Lc, are distinct from the commonly used marginal 

and maximized likelihoods, for ease of exposition, we will refer to them as “likelihoods” 

hereafter. We could have different likelihoods under different submodels, let  denote the 

likelihoods for a specific submodel m, and let  denote the likelihood averaged over these 

submodels, then:

(8)

We use these likelihoods to compute a cross-validation-based analog to the Bayes Factor. 

That is

(9)

where LN denotes the likelihood under the null model, M0.

Unfortunately, as this overall procedure does not produce a true Bayes Factor, we cannot 

perform full Bayesian inference without further research into the properties of this approach. 

Instead, the BFc values can be treated as test statistics and permutation methods can then be 

used to calculate a P-value for the BFc statistic. For whole-genome analyses, or with a large 

number of regions, i, we can be more efficient. By permuting the case-control labels across 

the whole-genome j times, we can produce a set of i j approximate Bayes Factors under the 

null. The Bayes Factors for the original data can then be compared with these to assess the 

signal. The null distribution of Bayes Factors varies slightly by region size, so greater 

accuracy can be achieved by stratifying according to region size. In the simulation study 

section, we assess the performance of CHARM using this approach.
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SIMULATION STUDY

We compared the proposed hierarchical model with four existing approaches using 

simulated case-control data under a range of disease models. The existing approaches were 

min-p, Step Up [Hoffmann et al., 2010], variable MAF (VMAF) thresholding [Price et al., 

2010], and combined multivariate collapsing (CMC) [Li and Leal, 2008].

THE GENOTYPES

We used a simulated set of 10,000 haplotypes over a stretch of 4.7 mega bases (Mb) of 

chromosome 17. These data were produced using the program SFS CODE [Hernandez, 

2008] using parameters derived from the Seattle SNPs project. All SNPs are simulated, 

taking into account empirical results about the patterns of diversity as a function of 

estimated recombination rates, genes, and other genetic annotations (see [Hernandez, 

2008]). To simulate 10,000 haplotypes over 4.7 Mb with SFS CODE is computationally 

intensive, and it is not currently possible to use it to produce whole-genome data on this 

scale. The 10,000 haplotypes were taken in pairs to produce 5,000 diploid individuals.

Using the UCSC Genome Browser, we downloaded the positions of genes in this region and 

a nonoverlapping subset was used to define 15 genic regions (including introns). In addition, 

we defined 23 arbitrary nongenic regions, fixing the number of SNPs in each to represent a 

range of region sizes and placing them evenly across the 4.7 Mb simulated region.

The majority of SNPs in this data were rare, with 31.4% of variants being singletons or 

doubletons, and ~80.3% of all variants having an MAF less than 1%. Table II summarizes 

the number of SNPs at different minor allele frequencies in each of the 38 regions used in 

the simulation study. The third column gives the total number of SNPs among the 5,000 

simulated individuals; the other columns give the average number of remaining SNPs after 

the cases and controls were sampled, and singletons removed. Removing singletons has little 

effect on power under our models and is a substantial computational saving. Columns 4–7 

give the number of SNPs structured by minor allele frequency. The genes are numbered in 

the order that they appear in the genome, and ordered by size.

DISEASE MODELS

The disease models used by CHARM allow for relatively straightforward inference; 

however, reality may be somewhat different. For these simulations, we use a different 

disease model structure and different specific disease models from those used by default in 

CHARM. Our disease simulations use a more flexible model, with specific causal SNPs 

having random effect sizes, and remaining SNPs having zero effect. In total, a set of eight 

different disease models were used to explore the properties of the different methods (see 

Table III). These were designed to cover a range of relative contributions from rare and 

common variants.

The framework is that of logistic regression with additive noninteracting effects. The 

variants were categorized as rare (MAF < 1%), uncommon (1% ≤ MAF < 5%), and common 

(MAF > 5%). In each region, a fixed number of each category of variants were chosen 

uniformly at random, without replacement, to be causal (see Table III).
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The baseline probability of disease was 0.01, and the effect sizes for the causal SNPs were 

chosen according to the MAF categorization (see Table III). Effect sizes were partially 

stochastic, with an attempt to reflect plausible values given previous studies. For a given 

disease model, each causal variant has an effect size independently assigned in the following 

way:

(1) Take the relative risk, r, associated with this allele frequency category and 

disease model from Table III.

(2) Simulate a relative risk of

(where a is a predefined constant).

(3) With probability 0.5 take the reciprocal of this effect size, giving it a protective 

effect.

The values of a used were 4, 2.5, and 1.5 for common, uncommon, and rare variants, 

respectively. One exception to this is disease model B, where the relative risks were fixed at 

exactly 1.5. The purpose of this disease model was to favor simple collapsing tests by using 

many causal SNPs each with exactly the same effect size.

For each of 38 regions, and eight disease models, 30 replicates were simulated by 

resampling causative SNPs, effect sizes, and case-control labels. This gives 9,120 data sets 

under alternative models. Under the null, 100 replicates of each region were simulated, for 

3,800 null data sets. In each replicate, 1,000 cases and 1,000 controls were drawn from the 

population of 5,000 with replacement, according to the probability of case status. We 

restricted to 30 replicates under the alternative models for computational reasons.

Note that somewhat weak effects have been chosen here, so no method will have close to 

complete power under these scenarios. This may well be realistic, and is also practically 

useful as some of the methods require permutation testing, limiting our ability to calculate 

relative power for strong effects. For example, to discern the difference between P-values of 

10−4 and 10−5 would require more than 105 permutations. To address this, power was 

calculated at the 0.01 significance level, and the models were designed to give a power of 

roughly 0.5 on each data set, to maximize our ability to calculate relative power between the 

methods.

COMPARISON WITH EXISTING METHODS

The simplest approach to testing for association, even with rare variants, is to test each SNP 

individually. Thus far, there has been implicit agreement that such an approach would 

provide little power when the signal is comprised of clusters of rare variants. However, we 

are unaware of any previous publications that examine this hypothesis, and thus we include 

min-p to compare its performance with collapsing methods.
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There is a complication with the single SNP approach, in that it provides multiple test 

statistics for each region. We take the simple approach of using the smallest P-value as the 

statistic for each region. This makes the results of the single SNP directly comparable with 

collapsing methods. To calculate a single P-value, we compare this smallest P-value to a 

null distribution generated by permuting the case-control labels.

Hoffmann et al. [2010] propose a step-wise collapsing method. The SNP, Gi, with the 

smallest P-value is taken as a starting point, giving the score at each individual of Xj = Gji . 

The step-wise procedure then tries adding each remaining SNP to X, the model is fit with 

this new collapsed variable, and the SNP that gives the smallest P-value is added. SNPs are 

added until no SNP that decreases the P-value can be found. We try a version with a 

uniform weighting on each SNP, and also one weighted by allele frequency using the 

scheme proposed in [Madsen and Browning, 2009].

The VMAF threshold approach method sums the alleles from rare variants in each 

individual to create a single score which is then tested for association. The procedure 

explores all possible allele frequency thresholds and uses permutation to correct for the 

inflation in test statistics. This is one of the methods from Price et al. [2010], Price also 

suggests weighting variants according to MAF (see Madsen and Browning, 2009) and we 

implement both a weighted version and one where a uniform weighting is used.

The CMC method [Li and Leal, 2008] collapses variants below a certain threshold, but then 

performs a joint test of all remaining common variants and the collapsed signal from the rare 

variants. Here, we adjust this method slightly to suit our disease model more closely. First, 

we use an “additive” version, so the collapsed score, Xj, in each individual, j, has the form

(10)

summed over SNP genotypes Gi. This is in contrast to the indicator variable in the original 

formulation [Li and Leal, 2008] that denotes presence or absence of a rare variant in the 

region. CMC uses a Hotelling's T2 test, and when the genotype matrix is singular this fails to 

give a test statistic. We attempted to solve this iteratively, by numerically estimating the 

rank of the matrix, and filtering SNPs at with lower r2 values, starting from 0.95; 

unfortunately this did not always succeed. Furthermore, because CMC often fails to run, it 

was very hard to create an accurate permutation test. Instead, the values of the un-permuted 

test statistic on a set of null data sets is used, and this empirical null distribution (stratified 

by region size) was used to calculate power at various significance levels.

For all of the rare variant tests that do not allow for protective effects, we first change the 

sign of variants with more rare alleles in the controls. This does not invalidate the test as this 

procedure is also used when creating the empirical null distributions of test statistics.

To increase computational efficiency, we use the empirical null distribution of test statistics 

for all of the methods from the simulated null data sets. Then, the proportion of test results 

that are greater than (1 − α) of the results from the matched null data sets are defined to be 

significant at the α level.
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RESULTS

To assess the power (at α = 0.01) of CHARM relative to other approaches, we ran a 

simulation study using a range of disease models (see Table III). We stratify results by the 

size of the region (small, medium, large) to give a total of 24 different scenarios. We 

compare CHARM to min-p, VMAF thresholding, with and without weighting by MAF 

[Price et al., 2010], Step Up, with and without weighting by MAF [Hoffmann et al., 2010], 

and CMC [Li and Leal, 2008] (see Methods for details).

In each of the scenarios, the best performing approach is one of three: CHARM, min-p, or in 

one case, unweighted Step Up. Overall CHARM has either the highest, or close to the 

highest power in all simulated scenarios. Absolute power is low by design, so the focus here 

is on relative power (Fig. 2 and Table IV).

CHARM has a high power relative to the other methods in each of the 24 scenarios. Under 

models A and B (Table III), only rare variants (MAF < 1%) are causal and the power of 

CHARM is at least 95% of that of any other method. Under models C to F , the causal 

contribution from uncommon (1% ≤ MAF < 5%) and common (MAF ≥ 5%) variants 

increases, and CHARM is consistently the most powerful method. Under model G, where all 

causal variants have an MAF ≥ 1% min-p is just as powerful as CHARM. Finally, under 

model H, where all causal variants have an MAF ≥ 5%, min-p is the most powerful, though 

CHARM has at least 90% of the power of min-p in all cases, even when only a single 

common variant is causal. CHARM is also less affected by the number of SNPs in a region 

than the collapsing methods and is always more powerful than collapsing methods for 

medium and large regions.

Min-p has the most power when only common variants are causal. However, relative power 

decreases for small regions when rare variants play a substantial role, with 82– 90% of the 

power of CHARM under models A to F . Min-p also had more power than the collapsing 

methods for all scenarios with medium and large regions.

We tried versions of Step Up both weighted by MAF and unweighted. Step Up weighted by 

MAF had consistently lower power than unweighted Step Up (see Table IV). Un-weighted 

Step Up has the highest power under model Aand with small regions (fewer than 30 SNPs). 

Unweighted Step Up also has the highest overall power among all collapsing methods. 

However, unweighted Step Up is particularly sensitive to the number of SNPs in a region 

and has less than 69% of the power of CHARM for large regions (more than 100 SNPs). 

Also, the power of unweighted Step Up decreases progressively as the contribution from 

rare variants diminishes, with 21–89% of the power of CHARM under models G and H.

We also ran VMAF both weighted by MAF and un-weighted. Weighted VMAF showed 

patterns similar to those of Step Up, though weighted VMAF had a lower power than Step 

Up overall. Unweighted VMAF performed better under models with no causal rare variants, 

but power was low when rare variants were causal, with only 3–61% of the power of 

CHARM under models A to F . The power of VMAF also decreases more than CHARM as 

region size increases, for large regions (at least 100 SNPs) power was 3 –76% and 38–57% 

of that of CHARM for unweighted and weighted VMAF, respectively.
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CMC did not perform well in this study. The power of CMC was less than 80% of the power 

of CHARM in all cases and less than 71% for medium regions. When applied to large 

regions, Hotelling's test failed due to singular matrices for hundreds of data sets and this was 

not solved by our LD filtering approach (see Methods). The test also reported 77 P-values 

less than 10−6 under the null, due to this and the number of data sets with no result we 

cannot report reliable power estimates for large regions.

To assess the sensitivity of CHARM to the specific models used, we also repeated the above 

analyses leaving each of the models given in Table I out in turn. Power relative to CHARM 

with all models included, averaged across all regions and disease models, lay between 0.96 

and 0.99. In the worst case, when model ii was not included, the relative power of the 

reduced model was on average 0.96, with a range for the relative power from 0.88 to 1.02 in 

analyses of particular genomic regions.

In the current R implementation of CHARM, with the simulated data presented here, a 

single core from a 2.26GHz Quad-Core Intel Xeon processor took approximately 1 min per 

SNP with regions between 20 and 100 SNPs long. The average time for regions with an 

average of 43 SNPs was ~ 47 sec per SNP and regions with an average of 300 SNPs took ~ 

108 sec per SNP. Thus, under these settings and using the current implementation, a genome 

of 5 million SNPs and with 2,000 individuals can be analyzed in approximately a week on a 

cluster of 500 nodes.

DISCUSSION

We introduce a hierarchical modeling method for detecting common and rare genetic 

associations. In our simulation study, the method always had close to as much, and often 

more, power than the other approaches evaluated here. Having a generally powerful 

approach is important. The next generation of genome-wide association studies will 

investigate rarer variants and we will soon have association scans using whole exome chips 

and resequencing, and even whole-genome resequencing. CHARM allows us to make 

powerful inference about associations in the presence of clustering of rare variant signals 

while maintaining power when associations come from common variants.

The power of min-p was unexpectedly high compared to existing rare variant methods, 

especially when testing more than 30 SNPs at once. This likely reflects the fact that min-p 

focuses only on the strongest association, whereas the other rare variant methods collapse 

over causal and null associations, and may exclude more common causal variants.

However, CHARM did often outperform the min-p approach. This is probably because 

CHARM accounts for LD between SNPs and multiple effects in a single region. By jointly 

modeling the SNPs, the method avoids double counting causal SNPs due to correlations 

with linked markers. However, when multiple causal SNPs truly are present, CHARM can 

gain power—both by detecting the signal of multiple effects and because accounting for the 

effect of one causal SNP reduces noise when estimating the effect of others. As an 

illustration of this, it is worth considering the following two distinct scenarios: (1) three 

SNPs in LD with only one causal variant, and (2) three SNPs not in LD when all three are 
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causal (with the same effect size). Methods, such as min-p or collapsing methods, do not 

distinguish between these quite different cases. CHARM will see a considerably bigger 

signal in the latter case as the data will explain a considerably higher proportion of disease 

here than with only one causal variant.

As with any multiparameter method, our hierarchical model requires the specification of a 

reasonable set of tuning parameters. Here, we specified values based on expected effect 

sizes from previous studies and adjusted these using results from early and simple test data 

sets. The models mostly use Cauchy distributed log odds ratios; here it was clear from an 

early stage that Cauchy distributions performed better than normal distributions. However, 

performance was better still when averaging over a larger set of models, including a 

contribution from models with normally distributed log odds ratios (data not shown). There 

may be concerns that CHARM is sensitive to parameter choice, in particular that it may be 

overly tuned to the setting described here. However, we note that the disease models used in 

the simulations were constructed differently from the model used in CHARM. Furthermore, 

CHARM was run using the same settings for different region sizes and a range of disease 

models, and performed well in all of these cases. This demonstrates that CHARM is not 

sensitive to being highly tuned for a particular situation.

There are a number of improvements that we hope to make to CHARM, and release in 

future versions of the software. At present, the method does not automatically account for 

missing data and even with imputation there may still be significant uncertainty in some 

individuals, especially at rare SNPs. When the patterns of missing data are confounded with 

case-control status then almost any test will suffer from bias and inflated test statistics. 

When the proportion of missing data is low, and is not thought to be confounded with case-

control status, then we suggest using the “expected” genotype. The model does not require 

integer genetic types and this reflects a reasonable approximation to integration over 

possible genotypes.

CHARM does not yet implement any form of pathway analysis, or explicitly allow models 

with increased probability/strength of association at predicted functional sites (or e.g. 

nonsynonymous sites). These are natural developments and due to the model averaging 

approach these can be implemented, and hence tested for, in a coherent framework. This 

avoids complications with multiple tests that have similar hypotheses, which could be 

important when marginally significant findings arise.

Covariates can naturally be taken into account in this framework. Additionally, if there is 

existing information about the effect of these covariates then this can easily be incorporated 

by placing priors on their effect sizes. Genetic interactions can, in principle be accounted 

for, though the computational cost of including all pairwise interactions would, in the 

present framework, be computationally intractable for regions with much more than ~50 

SNPs.

Our approach can be extended from binary phenotypes to continuous phenotypes. The 

current method uses the probability of predicting exactly the right outcome. With continuous 

phenotypes, the density function could be used, and the product of densities could be 
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compared to the analogous product under the null model. However, this would then require 

careful thought as to the best null model, and its relationship with the alternative. For 

example, a normal error distribution around the sample mean could perform worse than a 

more flexible noise model under the alternative, even in the absence of a genetic effect.

CHARM assesses the evidence for association between a genomic region and disease. It is 

possible to run CHARM genome wide by breaking the genome up into multiple regions. 

However, it is not clear how to best break the genome outside genes. Although in exon 

resequencing studies, the genome is naturally broken into genes, in whole genome analyses, 

there is the question of how to define the regions between genes. We suggest an approach of 

tiling the genome with overlapping regions, e.g. as in [Su et al., 2009]. While this approach 

complicates interpretation as tests are not independent, this is no more severe than 

interpreting the familiar nonindependence due to LD of single SNP tests in a standard 

genome-wide association study.

We do not expect that larger genes are more likely to be associated with disease, or to have 

larger total effects. Our prior places the same weight on the probability of some effect in 

each gene. However, this scheme produces tighter priors, hence greater shrinkage, on 

individual SNPs in larger regions. As we do not know what disease models to expect this 

decision may turn out to be suboptimal. In principle, one could try multiple approaches and 

use further model averaging. However, there are many such possibilities, and one must be 

wary of attempting a complete exploration of such possibilities as the resulting exponential 

increase in the model space quickly leads to computationally intractable approaches.

In summary, the challenge of testing for associations in the presence of rare variants is upon 

us. We propose a flexible new method that will allow researchers to test for rare variant 

associations while maintaining power if common variants have a role in disease. Software 

for applying this method is available from the authors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Outline of the hierarchical model structure: the middle column represents the logistic 

regression model. The effect sizes (log odds ratios), β, and the genotypes define the risk of 

disease for each individual. The parameter δ controls the prior distribution of effect sizes on 

the SNPs, β. Model averaging is used, so that multiple values of δ are explored. Also we 

explore whether effect sizes should depend on the MAF of the SNP, IM, and whether to use 

a Cauchy or normal distribution, F.
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Fig. 2. 
Power by region size and disease model: each panel gives the power of five methods under a 

specific disease model at a significance level of 0.01. The 38 regions of the simulation study 

were split into three categories, to highlight the different performance of methods with 

different region sizes. The category small denotes regions with fewer than 30 SNPs, medium 

represents regions with 30 100 SNPs, and large represents regions with more than 100 

SNPs. Models A and B use only rare causal variants; models C through H−add progressively 

more uncommon and common variants, with the contribution from rare variants reduced 

until, under model H, all causal variants are common. See Table III for full disease model 
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details. As noted, the results for CMC were problematic for very large regions, so these are 

not shown here.
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TABLE I

Details of the seven models that CHARM averages over under the default settings. The models used here are 

chosen to reflect a reasonable range of effect sizes that we might encounter. For simplicity, each model shown 

here is given equal weight, though variable model weights are possible in CHARM

Model n: number causal r: relative risk Normal or Cauchy MAF dependent

i 2 1.2 Cauchy No

ii 4 1.5 Cauchy No

iii 8 3 Cauchy No

iv 3 1.5 normal No

v 6 2 normal No

vi 2 1.1 Cauchy Yes

vii 6 1.3 Cauchy Yes
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TABLE II

Region type and SNPs at different minor allele frequencies for 38 loci used in simulation study.

Region number Region type No. of SNPs total No. of SNPs used MAF < 1% 1% ≤ MAF< 5% MAF ≥ 5%

1 Intergenic 61 15.3 11.8 1.4 2

2 Intergenic 61 8 6.9 0.1 1

3 Intergenic 61 12.7 9.3 3.3 0

4 Intergenic 61 15.4 13.2 0.8 1.4

5 Intergenic 61 13.4 11.3 1.2 0.9

6 Intergenic 101 16.7 11.6 1.1 4

7 Intergenic 101 27.2 19.4 2.9 5

8 intergenic 101 22.1 13.9 4 4.3

9 Intergenic 101 26.6 19.4 3 4.2

10 Intergenic 101 26.6 18 2.4 6.2

11 Intergenic 201 39.9 29.7 3.3 6.8

12 Intergenic 201 45.4 29.4 6 10

13 Intergenic 201 55.6 40.6 7.1 7.9

14 Intergenic 201 44.3 30 2.3 12

15 Intergenic 201 40.7 33.4 5.1 2.2

16 Intergenic 301 86.4 55.3 16.6 14.4

17 Intergenic 301 88.3 63.3 3 22

18 Intergenic 301 76.2 54 8.2 14

19 Intergenic 301 62.8 42.2 12.5 8

20 Intergenic 301 65.2 35 15.2 15

21 Intergenic 601 150.3 86.5 41.1 22.6

22 Intergenic 601 133 88.1 12.4 32.5

23 Intergenic 601 135.4 96 14.5 25

14 Gene 37 12.2 7.2 2.6 2.3

16 Gene 37 9.5 5.4 1 3

20 Gene 47 11.6 7.8 0.7 3.1

4 Gene 90 26.4 20.4 1.3 4.7

25 Gene 106 24.5 17.2 3.2 4.1

11 Gene 259 68.9 47.4 11.3 10.2

24 Gene 339 81.6 52.3 5.2 24.2

5 Gene 484 108.2 65.5 10.7 32.1

13 Gene 531 118.5 74 31.9 12.5

6 Gene 680 115 85.8 17.2 12

23 Gene 712 133.5 88.9 8.5 36

18 Gene 1,069 287.1 178.4 40.6 68.2

21 Gene 1,090 244.8 171.2 21.9 51.7

19 Gene 1,328 302.7 213.6 31.2 57.9

15 Gene 1,401 346.2 230.9 54.7 60.7

Genet Epidemiol. Author manuscript; available in PMC 2015 February 24.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Cardin et al. Page 21

TABLE III

Description of eight disease models in the simulation study. The columns give the number of causal variants in 

each allele frequency category, with the target odds ratio in parentheses.

Model Common MAF ≥ 5% Num (OR) Uncommon 1% ≤ MAF < 5% Num (OR) Rare MAF < 1% Num (OR)

A 0 0 15 (3.06)

B
a 0 0 20(1.51)

C 0 2 (1.35) 13 (2.54)

D 2 (1.09) 3 (1.15) 15 (2.54)

E 1 (1.2) 2 (1.3) 15 (2.28)

F 2 (1.1) 3 (1.15) 8 (2.54)

G 3 (1.15) 3 (1.3) 0

H 3 (1.15) 0 0

a
Disease model B uses a relative risk of exactly 1.5 (hence an odds ratio of 1.51) for each causal variant. For all other models, simulated odds 

ratios are random and centered on the given values, as described (Methods).
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TABLE IV

Power of the methods under a specific disease model at a significance level of 0.01. Table III gives the details 

of the disease models A through H for small, medium, and large numbers of SNPs. Weighted VMAF and Step 

Up are represented by VMAFW and Step UpW, respectively

Scenario CHARM Min-p Step Up Step UpW VMAF VMAFW CMC

A small 0.58 0.48 0.61 0.55 0.17 0.51 0.36

A medium 0.56 0.49 0.47 0.38 0.12 0.35 0.23

A large 0.36 0.32 0.25 0.21 0.06 0.14 NA

B small 0.24 0.20 0.24 0.17 0.05 0.17 0.12

B medium 0.13 0.14 0.10 0.08 0.02 0.08 0.05

Blarge 0.09 0.10 0.06 0.05 0 0.04 NA

C small 0.64 0.55 0.63 0.58 0.29 0.52 0.42

C medium 0.46 0.44 0.43 0.36 0.14 0.32 0.26

C large 0.37 0.34 0.22 0.18 0.10 0.17 NA

D small 0.72 0.63 0.71 0.68 0.43 0.68 0.58

D medium 0.50 0.47 0.38 0.36 0.26 0.36 0.35

D large 0.44 0.43 0.23 0.18 0.20 0.21 NA

E small 0.66 0.59 0.63 0.58 0.39 0.59 0.50

E medium 0.57 0.53 0.41 0.39 0.31 0.41 0.42

E large 0.46 0.43 0.18 0.17 0.21 0.24 NA

F small 0.59 0.53 0.53 0.42 0.36 0.48 0.47

F medium 0.46 0.46 0.32 0.26 0.27 0.31 0.28

F large 0.38 0.37 0.16 0.14 0.19 0.21 NA

G small 0.61 0.61 0.54 0.49 0.45 0.43 0.45

G medium 0.52 0.54 0.32 0.24 0.39 0.35 0.37

G large 0.48 0.46 0.17 0.10 0.35 0.27 NA

H small 0.42 0.46 0.34 0.32 0.44 0.33 0.31

H medium 0.36 0.38 0.19 0.18 0.32 0.26 0.27

H large 0.38 0.39 0.08 0.07 0.29 0.21 NA
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