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1. ABSTRACT 

Colloidal self-assembly combined with templated surfaces holds the promise of fabricating large area 
devices in a low cost facile manner. This directed assembly approach improves the complexity of assemblies that 
can be achieved with self-assembly while maintaining advantages of molecular scale control. In this work, 
electrokinetic driving forces, i.e., electrohydrodynamic flow, are paired with chemical crosslinking between 
colloidal particles to form close-packed plasmonic metamolecules. This method addresses challenges of obtaining 
uniformity in nanostructure geometry and nanometer scale gap spacings in structures. Electrohydrodynamic flows 
yield robust driving forces between the template and nanoparticles as well as between nanoparticles on the surface 
promoting the assembly of close-packed metamolecules.  Here, electron beam lithography defined Au pillars are 
used as seed structures that generate electrohydrodynamic flows.  Chemical crosslinking between Au surfaces 
enables molecular control over gap spacings between nanoparticles and Au pillars. An as-fabricated structure is 
analyzed via full wave electromagnetic simulations and shown to produce large magnetic field enhancements on the 
order of 3.5 at optical frequencies. This novel method for directed self-assembly demonstrates the synergy between 
colloidal driving forces and chemical crosslinking for the fabrication of plasmonic metamolecules with unique 
electromagnetic properties. 

2. INTRODUCTION 

 Metal architectures using colloidal nanoparticles as meta-molecule building blocks have shown great 
promise as a scalable self-assembly method to control light matter interactions in large area devices. The magnetic 
interaction of light and matter at optical frequencies is negligible compared to its electric counterpart1–4 as natural 
magnetism fades away at infrared and optical frequencies. By forming discrete sub-wavelength clusters, devices that 
rely on narrow-band resonances — i.e., Fano resonances — based on dark (i.e., low scattering) electric and magnetic 
resonances can be realized.5,6 Conventional split-ring resonators, that in principle could provide narrow band 
resonances, are prohibitively difficult to scale down to optical wavelengths,7 whereas coupled nanospheres can be 
scaled.8 As these architectures are composed of subwavelength building blocks, traditional optical lithography 
methods cannot be utilized for large area device fabrication. Optical magnetic resonators composed of nanoparticle 
building blocks have shown that large magnetic dipoles, and suppression of electric dipoles are achievable.9,10 These 
systems lead to highly confined, extremely large magnetic fields which are designed to probe magnetic transitions in 
molecules at optical frequencies.11 Optical frequency magnetic resonator structures are of special interest for 
templated self-assembly (directed assembly) because they can be composed of close-packed nanoparticles.12 Still, 
control of gap spacings and particle geometries within metamolecules is an ongoing challenge in directed assembly. 
 
 In this work, in order to assemble plasmonic metamolecules, chemical crosslinking, using carbodiimide 
based chemistry, between nanoparticles and templates is selectively performed on surface using 
electrohydrodynamic (EHD) flow as a driving force. Templates are composed of Au pillars on the substrate’s 
surface. These pillars serve as perturbations that drive EHD flow and electrophoresis, directing the assembly of 

Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XV, 
edited by Din Ping Tsai, Takuo Tanaka, Proc. of SPIE Vol. 10346, 103461M  

© 2017 SPIE · CCC code: 0277-786X/17/$18 · doi: 10.1117/12.2274554

Proc. of SPIE Vol. 10346  103461M-1



Spin and Expose
Photoresist

Ma-N

Au

Piranha Clean and

on Mill Etch Cr

11- amino- altkane-
thiol Treatment

Trimethoxy
(octyl)silane

H, Treatment
H;

Cr

Deposition

¡Au
N,NP

-ta Au
NP

_

Cr

 

 

nanoparticles around the pillars. Induced by an electric field in colloidal solution, EHD flow promotes lateral motion 
and close-packing of particles in colloid at an electrode surface, thereby, assembling transient close-packed 
structures.13,14 We freeze in transient structures with local carbodiimide15–17 crosslinking. The EHD flow increases 
the nanoparticle residence time at small interparticle spacings; this is necessary to enable the O-acylisourea – lipoic 
acid pathway of the carbodiimide crosslinking to occur in high yields. This chemical pathway leads to an anhydride 
bridge between ligands on Au nanoparticles, yielding permanent close-packed nanoparticle oligomers.18 The 
metamolecules produced with this technique are simulated and shown to deliver large magnetic resonances at optical 
frequencies. This work represents a step forward for directed assembly of nanoarchitectures to create metasurfaces 
by demonstrating the influence of both the template and physical driving forces in assembly to control oligomer 
morphology and uniformity of gap spacing. Close-packed plasmonic metamolecules fabricated using the EHD – 
anhydride assembly method have already been demonstrated as effective biosensors using their electric field 
enhancements,19 now we pave the way forward to their use in sensing magnetic transitions in biomolecules. 
 
3. METHODS 
 

 
 

Figure 1: Schematic of the fabrication process for seeded growth of close-packed metamolecules 

3.1 Chemically functionalized Template Fabrication 
 
 Arrays of Au nanopillars on silicon are prepared using electron beam lithography (EBL), depicted in Figure 
1. First, a highly doped Si wafer (0.004 ohm-cm) is cleaned via a standard cleaning protocol: 1) Piranha acid 
treatment for 15 minutes 2) Sonication in Acetone for 5 minutes 3) Sonication in IPA for 5 minutes 4) Nitrogen 
drying 5) Vacuum baking at 200 0C for 5 minutes. 45 nm of Au with a 5 nm Cr adhesion layer is electron-beam 
evaporated (Angstrom) onto the clean Si wafer. The Au on Si wafer is diced and cleaned again. Ma-N 2400 negative 
tone photoresist (Microchem) is spin-coated onto the clean Au on Si substrates and baked at 900C for 1 minute. 
Pillars are defined by exposing the photoresist with an electron beam (FEI) and a 1 minute development in Ma-D 
525 (Microchem). The Ma-N pillars are used as a mask for ion milling (IntIvac), where the samples are etched until 
reaching the Cr layer, leaving Ma-N on Au pillars. The Cr layer is etched with Cr etchant (Sigma Aldrich) to avoid 
any overetching of the pillars with ion milling. The Ma-N is removed via piranha cleaning and samples are rinsed 
with deionized water and dried with nitrogen. Next two self-assembled monolayers are formed on the substrate. The 
Au pillars are selectively functionalized with Amine terminated ligands by overnight treatment of 0.5 mMol 11-
Amino-alkane-thiol (Sigma Aldrich) in ethanol overnight. Samples are vigorously rinsed in methanol and dried with 
nitrogen. The Si wafer is then selectively functionalized via a vapor phase with trimethoxy(octyl)silane (Sigma 
Aldrich) by placing a wafer in a desiccator with an open vial of trimethoxy(octyl)silane under low vacuum for three 
hours. The substrates are then sequentially rinsed with toluene, acetone, and isopropyl alcohol and dried with 
nitrogen. 
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substrate is compatible with the assembly method outlined above. With excitation from two oblique plane waves at 
+/- 450 we observe, in Figure 4 b, circular currents that give rise to an orthogonal magnetism. This effect is a result 
of the six fold rotational symmetry where electric dipoles in individual Au nanoparticles hybridize with their 
neighbors to generate current distributions with the continuous symmetry of the metamolecule. 

 The magnetic field enhancement is defined as the ratio of the magnitude of the total magnetic field in 
presence of nanoparticles and pillar, to the magnitude of the incident magnetic field in their absences at the same 
location. Figure 4 c shows the magnetic field enhancement versus wavelength in visible and NIR region, for the 
structure shown in Figure 3b.  Two gap spacings are analyzed to demonstrate the efficacy of using molecular linkers 
to build magnetic resonators. While artificial magnetism is an inductive effect and small gap spacings are typically 
used as capacitors in the context of metamolecules, we still observe a large increase from ~1.6 to ~2.1 of the 
magnetic field enhancement in the gaps between nanoparticles. This effect is due to the field confinement. Smaller 
gap spacings yield more strongly hybridized modes and thus lower energy, larger wavelength resonances. With the 
mode volume reduced somewhat with the smaller gap spacings and the wavelength made larger, the field confines 
more than compensates for the increased capacitance leading to larger magnetic field enhancements. In either case, 
one can observe a Fano lineshape of the response due to interference between the narrow magnetic resonance and 
the broad electric resonance. The narrow Fano-type magnetic resonance demonstrates the necessity of fine control 
over gap spacings between nanoparticles and the pillar, the small deviation from 0.9 nm to 2 nm leads to low 
overlap between the modes which would reduce device performance if the two metamolecules coexisted on the 
same surface.  

Magnetic field enhancement profile, in the transverse cross section of the structure for 0.9 nm gap, has been 
shown in Figure 4 d. As it is clear from the figure, in the all gap spacings between nanoparticles and the pillar, 
magnetic field enhancement is strong. Unlike metamolecules for enhancing electric fields, we see that the magnetic 
field enhancement occurs over a large fraction of the metamolecule area. This enables sensors based on this 
technique to probe a significantly greater number of molecules than electric field enhancing resonators which may 
help compensate for the somewhat smaller field enhancements achieved by magnetic resonators. 

5. CONCLUSION 

In this work, we have demonstrated the importance of combining short range and long range driving forces 
in self-assembly of Au nanospheres from colloid. Nanoantenna surfaces composed of oligomers are formed using 
local chemical reactions and EHD flow that drives nanospheres together for the formation and retention of 
anhydride bridges. The anhydride linker is observed with surface enhanced Raman scattering spectroscopy and also 
shown to be cleavable via nucleophilic substitution. The process by which anhydride linkers are selectively 
promoted between particles on a substrate surface is elucidated via molecular dynamics simulations that demonstrate 
long residence times at small nanoparticle gap distances are necessary. The EHD flow – anhydride crosslinking 
directed assembly method is then used on Au nanopillar arrays to control the deposition of close-packed plasmonic 
metamolecules. The magnetic resonance of an individual metamolecule is investigated and shown via full wave 
electromagnetic simulations to enhance the local electric field by a factor of 3.5. These results represent a step 
towards sensing of molecules with optical magnetic moments over a large area. 
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