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Cooperative Phosphine-Photoredox Catalysis Enables N–H 
Activation of Azoles for Intermolecular Olefin Hydroamination

Kassandra Sedillo1, Flora Fan2, Robert R. Knowles1, Abigail G. Doyle2

1Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States

2Department of Chemistry and Biochemistry, University of California, Los Angeles, California 
90095, United States

Abstract

Catalytic intermolecular olefin hydroamination is an enabling synthetic strategy that offers direct 

and atom-economical access to a variety of nitrogen-containing compounds from abundant 

feedstocks. However, despite numerous advances in catalyst design and reaction development, 

hydroamination of N–H azoles with unactivated olefins remains an unsolved problem in synthesis. 

We report a dual phosphine and photoredox catalytic protocol for the hydroamination of numerous 

structurally diverse and medicinally relevant N–H azoles with unactivated olefins. Hydroamination 

proceeds with high anti-Markovnikov regioselectivity and N-site selectivity. The mild conditions 

and high functional group tolerance of the reaction permit the rapid construction of molecular 

complexity and late-stage functionalization of bioactive compounds. N–H bond activation is 

proposed to proceed via polar addition of the N–H heterocycle to a phosphine radical cation, 

followed by P–N α-scission from a phosphoranyl radical intermediate. Reactivity and N-site 

selectivity are classified by heterocycle N–H BDFE and nitrogen-centered radical (NCR) spin 

density, respectively, which can serve as a useful predictive aid in extending the reaction to unseen 

azoles.
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INTRODUCTION

The prevalence of nitrogen heterocycles in natural products, pharmaceuticals, and 

agrochemicals, has fueled a demand for new methodologies that enable their synthesis 

and diversification.1–3 While strategies for N-arylation of azoles have been extensively 

developed, fewer modern catalytic methods exist for N-alkylation.4–7 N-Aryl azoles are 

much more common in pharmaceuticals than N-alkyl azoles, which may in part be due 

to the challenge of achieving mild, efficient, and selective azole alkylation. Regardless, 

given the growing recognition of the importance of C(sp3) incorporation in new drugs and 

agrochemicals,8–10 the development of broadly applicable methods for N-alkylation of N–H 

azoles represents an important goal.

Well-established approaches for N–C(sp3) bond formation rely on nucleophilic addition of 

N-centered nucleophiles to an electrophile, such as an alkyl (pseudo)halide or carbonyl 

compound.11 However, the low nucleophilicity of N–H azoles often necessitates harsh 

reaction conditions that are incompatible with incorporation of secondary or tertiary 

aliphatic substituents and are not applicable in complex settings.12, 13 Recently, photo- 

and electrochemical methods have emerged as a powerful alternative approach toward azole 

N-alkylation with a diverse set of electrophiles, providing regioselective product formation 

under mild conditions.14–16 These strategies typically rely on the formation of C-centered 

radicals or carbocation intermediates from abundant precursors, such as alkyl halides, alkyl 

carboxylic acids, alkanes, or redox-active esters (Figure 1A). Even with the development 

of these important synthetic technologies, there is a need for mechanistically distinct 

approaches that show tolerance across many medicinally relevant heterocycle classes, enable 

access to products with complementary chemo- and regioselectivity, and engage different 

classes of feedstocks.

Intermolecular olefin hydroamination represents an attractive strategy for the alkylation of 

N–H azoles due to its atom-economy and the availability of olefin feedstocks.17 However, 
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because most N–H substrates and olefins are nucleophilic, a catalyst is necessary to 

mediate their reaction.18 Numerous advances have been made in transition metal-catalyzed 

intermolecular hydroamination, but only a single report describes the reaction of an 

N–H azole class, N–H indoles, with unactivated olefins.19 Although remarkable, the 

scope is limited to indoles and only accommodates terminal olefins with Markovnikov 

selectivity. Similarly, important progress has been made in photocatalytic hydroamination 

with heterocycles via nucleophilic addition to an olefin radical cation, but no reports 

demonstrate formation of N-alkylazole products using unactivated olefins (Figure 1B).20 

A complementary approach involves the formation of electrophilic N-centered radicals 

(NCRs), since their reaction with unactivated olefins is polarity matched.21, 22 The Knowles 

group, amongst others, has contributed new photocatalytic approaches to N–H activation 

of a variety of classes of amines and (sulfon)amides.23 However, N–H azoles have not 

been reported. Recent work by the groups of Zhang24 and Chen25 have demonstrated the 

feasibility of alkene hydroamination via heterocylic NCRs using N-functionalized azoles, 

such as N-pyridinium salts and hydroxybenzotriazoles, respectively. Thus, identification of 

a mild and general strategy for N–H bond activation of azoles could prove highly enabling 

in the development of this and numerous other reactions that deliver medicinally relevant 

heterocyclic products.

The Doyle group recently reported a phosphine-photoredox catalytic platform that activates 

N–H bonds of primary sulfonamides (BDFE ~105 kcal/mol) and delivers NCRs via α-

scission of the P–N bond of a phosphoranyl radical intermediate.26 We questioned whether 

this strategy could be extended to N–H azoles and selected to evaluate substrates with a 

wide range of N–H BDFEs (68‒117 kcal/mol) (Figure 1C). Nevertheless, the ambident 

reactivity of many N–H azoles and their low nucleophilicity presents a potential challenge 

to their use under this protocol; nucleophilic addition to a phosphine radical cation affords 

the phosphoranyl radical intermediate and we had previously found that this step was 

sensitive to the steric hindrance of sulfonamide substrates, where primary sulfonamides 

reacted selectively over secondary sulfonamides. Despite this concern, we anticipated that 

the modularity of the dual catalytic system would offer an opportunity to identify an 

efficient protocol. Here we demonstrate a general method for N-alkylation of a variety of 

azoles by intermolecular anti-Markovnikov hydroamination of unactivated olefins using the 

combination of phosphine and photoredox catalysts under visible light irradiation (Figure 

1D).

RESULTS AND DISCUSSION

Reaction Development.

We commenced reaction optimization using benzimidazole (1) and methylenecyclopentane 

as model substrates. On the basis of our previously disclosed sulfonamide hydroamidation, 

we first explored the use of tricyclohexylphosphine (PCy3), [Ir(dF(Me)ppy)2(dtbbpy)]PF6 

(*IrIII/IrII = +0.97 V vs SCE in MeCN), and triisopropylbenzenethiol (TRIP-SH) as catalysts 

for the transformation. Hydroamination product 2 was formed in 55% yield using 2.5 mol% 

PCy3, 2 mol% photocatalyst, and 10 mol% TRIP-SH with a 427 nm lamp (34 W) at 50% 

intensity (Table 1, entry 1). While an increase in product yield was observed when the 
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phosphine loading was increased from 2.5 to 10 mol%, increasing the loading further led 

to a decrease in product formation, presumably due to competitive addition of phosphine 

to the phosphine radical cation (Table 1, entries 2–5). Alternative commercially available 

trialkylphosphines also provided N-alkylated product in good yield (Table 1, entries 6–

7). Although dicyclohexylphenylphosphine (PCy2Ph) afforded 2 in 58% yield, phosphines 

with more complex aryl substituents, such as BrettPhos and DavePhos, were essentially 

unreactive (Table 1, entries 8–10). Moreover, triphenylphosphine (PPh3) formed product 

in only 8% yield (Table 1, entry 11). Examining photocatalysts with various excited-state 

oxidation potentials demonstrated that PC 1 is optimal for this method, presumably because 

it delivers a strong driving force for the generation of the phosphine radical cation (Table 1, 

entries 12–13). Product formation was improved to 82% yield when the light intensity of the 

427 nm lamp (34 W) was increased from 50% to 100% (Table 1, entry 14). Finally, control 

experiments indicated that no product formation occurs in the absence of phosphine catalyst, 

photocatalyst, hydrogen atom transfer (HAT) catalyst, or irradiation (Table 1, entries 15–18).

Azole Scope.

With the optimized protocol in hand, we investigated the scope of N-alkylation with 

various azole classes. Notably, we found that for certain N–H azoles, use of 20 mol% 

PPh3 instead of PCy3 under otherwise identical reaction conditions was necessary to 

achieve efficient hydroamination (See SI for details). Moreover, results employing PPh3 

as the catalyst were reproducible using Schlenk technique, as indicated in Scheme 1. We 

first examined substituted benzimidazoles and discovered that substituents at numerous 

positions around the ring are compatible with the method. A 93% yield of 3 was obtained 

using 2-chlorobenzimidazole, a common precursor for the synthesis of antihistaminic 

norastemizole. Fluorinated substrates substituted at the 4- and 5-positions, such as 4-

trifluoromethylbenzimidazole and 5-fluoro-benzimidazole, provided N-alkylated products 

4 and 5 in 99 and 42% yield, respectively. Moreover, 4- and 5-azabenzimidazoles have been 

shown to have medicinal significance due to their biophysical and biochemical properties 

among a multitude of diseases.27 We found that these N–H azoles delivered products 6 and 

7 in excellent yield. Unfortunately, low N-site selectivity is observed for the hydroamination 

of unsymmetric benzimidazoles. However, we found that the regioisomers are separable 

by chromatography and thus offer an opportunity to access a library of N-alkylated 

benzimidazoles from readily available precursors. With the success of benzimidazoles, we 

set out to explore the compatibility of our method with other privileged N–H azoles.

Purines are the most abundant nitrogenous azoles in nature, serving as constituents of 

nucleic acids.28 Current approaches to N7-alkylated purines rely on laborious synthetic 

manipulations or methods that provide the N9-alkylated isomer as the major product.29, 30 

Therefore, we were excited to find that purines were not only competent substrates for the 

phosphine/photoredox hydroamination protocol, but they also delivered high N7-alkylation 

selectivity as confirmed by X-ray structure determination. For example, readily available 

6-chloropurine afforded 8 in 70% yield with nearly exclusive N7 selectivity (>20:1 N7:N9). 

Derivatives of adenine, guanine, and 6-mercaptopurine also afforded products in high yields 

(9–11).
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As triazoles, pyrazoles, and indazoles have been frequently employed in medicinal 

chemistry, we investigated these N–H azole classes as well. Although these azoles tend 

to be plagued with ambident reactivity, where multiple N- and C- atoms are reactive, the 

hydroamination reaction of these nucleophiles delivered exclusive N1-alkylated isomers. 

Unsubstituted 1,2,4-triazole and 3-phenyltriazole were converted to products 12 and 13 in 

high yields. Moreover, pyrazoles bearing phenyl (14), carbamate (15), and ester (16–17) 

substituents were well-tolerated. Unsubstituted indazole (18) and 3-substituted indazoles 

19 and 20 also underwent hydroamination in good yields. Finally, as a testament to the 

mild conditions and complementary functional group tolerance of this method compared to 

polar chemistry and transition metal catalysis for N-alkylation, we found that an aldehyde-

functional group was tolerated, delivering indazole derivative 21, albeit in 20% yield.

We then turned our attention to 7-azaindole, a well-established motif within various 

anti-cancer agents, and benzotriazoles, which are also important building blocks for 

drug discovery.31 Both heterocycles are competent substrates under the hydroamination 

conditions. 7-azaindoles deliver exclusive N- rather than C-alkylated products 22 and 

23. Benzotriazole was found to react with 2-methylheptene to provide 24 in 92% yield 

with exclusive N1-alkylation. However, modest N1 and N3 selectivity was observed when 

using substituted benzotriazoles as substrates (25 and 26). Additionally, 5-pinacol boronic 

ester-benzotriazole formed product 27 in 30% yield, demonstrating compatibility of labile 

functionality to the reaction conditions and delivering a product with a modular handle 

for further diversification. Finally, to highlight the versatility of the method for late-stage 

synthesis, we tested N-alkylation of the Boc-protected heterocyclic core of ibrutinib. The 

hydroamination protocol could enable the generation of a library of N1-alkylated ibrutinib 

derivatives at a late-stage as highlighted by the synthesis of 28, which was formed in 95% 

yield, and features an N1-tetrahydropyran whereas ibrutinib possesses an N1-piperidine. 

It was found that protecting the amino group on the ibrutinib fragment is necessary for 

efficient alkylation of the azole due to functional group incompatibility of the free aniline 

(See SI for details).

Olefin Scope.

Next, we evaluated the scope of the olefin partner using benzotriazole,32 a useful 

heterocyclic building block with applications in pharmaceuticals,33 corrosion inhibitors,34 

materials,35 and supramolecular ligands (Scheme 2).36 Both linear and cyclic 1,1-

disubstituted olefins are highly reactive in this system providing 24 and 29 in 92% and 

96% yield, respectively. Cyclohexene and cyclooctene afforded 30 and 31, demonstrating 

that internal olefins of various ring sizes are competent coupling partners. Additionally, 

cyclic and acyclic trisubstituted olefins afforded the desired hydroamination products 32–34 
in 78–95% yield and tetramethylethylene reacted to give 35 in excellent yield. Notably, 

34 was obtained as separable regioisomers, delivering anti-Markovnikov and Markovnikov 

products in a 9:1 ratio. DFT computations were consistent with the experimental ratio and 

support that the product selectivity is dependent on the rate of NCR addition to the olefin 

(See SI for details).
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We also observed that a wide variety of functional groups were well-tolerated on the olefin 

partner, including carbamates (36), lactams (37), acyclic (38) and cyclic ethers (39), as well 

as esters (40) and unprotected primary alcohols (41). (±)-Linalool underwent regioselective 

hydroamination favoring reaction at the more electron-rich trisubstituted olefin in the 

presence of the monosubstituted olefin (42). Nootkatone, an insect repellant, also reacts 

in good yield with exclusive addition of benzotriazole to the 1,1-disubstituted olefin over 

the α,β-unsaturated ketone (43). Although this reaction is applicable to a variety of alkene 

partners, monosubstituted terminal aliphatic and styrenyl olefins represent limitations of the 

current protocol. Overall, this method offers a new strategy to access a diverse array of 

valuable products from N–H azoles and unactivated or electron-rich olefins.

Mechanistic Investigation.

On the basis of our prior mechanistic work on sulfonamide hydroamination and the 

similarity in reaction conditions between the N–H azole and sulfonamide hydroaminations, 

we envisioned the catalytic cycle depicted in Figure 2A. Blue light irradiation of the 

iridium photocatalyst, followed by single-electron transfer (SET) between the excited 

photocatalyst and phosphine A delivers a reduced photocatalyst and phosphine radical 

cation B. Subsequent nucleophilic addition of azole D would form phosphoranyl radical 

intermediate C. α-Scission of the P–N bond of C regenerates the phosphine catalyst A 
and liberates an N-centered radical E. C–N bond formation be tween E the olefin partner 

furnishes a C-centered radical F that undergoes HAT with the thiol catalyst. SET of thiyl 

radical I with the reduced photocatalyst, followed by proton transfer (PT) regenerates the 

HAT catalyst and completes the catalytic cycle.

In addition to phosphorus-mediated α-scission, we considered two other mechanistic 

scenarios: 1) direct oxidation of the N–H azole substrate by the excited photocatalyst and 

2) N–H activation via a proton-coupled electron transfer (PCET) pathway. We conducted 

Stern–Volmer studies to assess both pathways using the photocatalyst and four azole classes: 

benzimidazole, benzotriazole, indazole, and 7-azaindole. In all cases, we observed that 

the photocatalyst is not quenched by the azole substrate alone nor when combined with 

the corresponding phosphine at a constant concentration, as showcased for benzimidazole 

(Figure 2B, left). In contrast, the excited photocatalyst undergoes concentration-dependent 

quenching by PCy3 and PPh3, which is consistent with the formation of a phosphine radical 

cation, a key intermediate in the proposed mechanism (Figure 2B, right). Altogether, the 

studies support the proposed catalytic cycle.

During the course of our scope studies, we collected reactivity data on the hydroamination 

of cyclohexene or methylene cyclopentane with 105 substituted N–H azoles, some of which 

showed limited or no reactivity under the standard reaction conditions (see SI for full list). 

We therefore sought to build a model that could identify unreactive substrates ahead of 

experimental evaluation and offer mechanistic insight into the factors governing reactivity 

and selectivity. We posited nucleophilicity of the azole could dictate the rate of addition 

to the phosphine radical cation and pKa may influence the deprotonation step necessary 

to form the phosphoranyl radical intermediate. Additionally, the N–H BDFE relates to the 

thermodynamics of the α-scission step and the N-atom charge could be responsible for the 
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rate of olefin addition to generate the C–N bond.37 To investigate these hypotheses, we used 

DFT computations on the N–H azoles to extract molecular and atomic properties such as 

pKa, atomic charge, and N–H BDFE.

After removing substrates bearing incompatible functional groups (amides, anilines, 

bromides, and iodides), we observed a reactivity threshold with the BDFE of the N–H azole, 

where substrates with BDFEs below ~90 kcal/mol are unreactive (Figure 3). This threshold 

explains the inefficient product formation from some common azoles, such as carbazole and 

indole (Figure 3B). Due to the relation of N–H BDFE values and NCR stability, it is likely 

that azoles with BDFEs below the threshold have high concentrations of the NCR relative 

to phosphoranyl radical; reversible or slow addition of these NCRs to the alkene could 

lead to unproductive back-electron transfer (BET) or other decomposition pathways. One 

false negative is found in this classification. This substrate, 3-phenylindazole, is structurally 

similar to other reactive azoles and possesses stronger concentration of the HOMO and 

spin density on nitrogen, which may make up for the low BDFE. Conversely, the false 

positive examples in the classification have HOMOs that are not concentrated on the N-atom 

expected to undergo alkylation (See SI for details). Thus, while it is likely a combination of 

multiple factors that lead to productive reactivity, this simple BDFE classification can serve 

as a predictive tool for pre-screening N–H azoles that are likely to be effective under the 

catalytic protocol.

Finally, we questioned the origin of regioselectivity for ambident azoles. We posited that 

high concentration of spin density relates to the favorable site of reactivity. Indeed, NCR 

spin density calculations are consistent with this proposal, wherein the major isomer of 

N-alkylation corresponds to the N-atom with highest spin density in the NCR. However, 

differences in spin density do not capture the magnitude of the experimental selectivity 

observed (Figure 4) (See SI for details).

CONCLUSION

In conclusion, we have showcased the application of phosphine-photoredox catalysis to the 

generation of N-centered radicals from a variety of azole classes via activation of N–H 

bonds. The catalytic protocol was applied to the chemo- and regioselective synthesis of 

valuable N-alkylated azoles via the intermolecular anti-Markovnikov hydroamination of 

unactivated olefins. Mechanistic studies support the azole radical generation proceeds via 

α-scission of a phosphoranyl radical intermediate. A threshold was identified for reactivity 

which correlates well with N–H BDFEs. Moreover, regioselectivity corresponds with NCR 

spin density. This study expands the synthetic utility of the phosphoranyl radical α-scission 

activation mode.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Synthesis of N-alkylazoles and limitations.
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Figure 2. 
Mechanism and Stern–Volmer studies.
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Figure 3. 
N–H BDFE corresponds with reactivity. Calculations performed at the (U)M06-2X/Def2-

TZVP/SMD(Toluene) level of theory.
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Figure 4. 
NCR spin densities and regioselectivity.

Calculations performed at the (U)M06-2X/Def2-TZVP/SMD(Toluene) level of theory.
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Scheme 1. 
Azole Scope.

Reactions were performed on a 0.5 mmol scale reacting 1.0 equiv of azole with 3.0 equiv 

of olefin using PCy3 (10 mol%) or PPh3 (20 mol%) with [Ir(dF(Me)ppy)2dtbbpy]PF6 (2 

mol%), and TRIP-SH (10 mol%) irradiating with a 427 nm lamp at 50% intensity for 16 

hours. Isolated yield reported as an average of two runs. aPCy3 was used as phosphine 

catalyst. b427 nm lamp light intensity was set to 100%. cPPh3 was used as the phosphine 

catalyst. dYields are reflective of reactions set-up using Schlenk technique instead of in 

a glovebox. eYield determined by 1H NMR with comparison to internal standard. fAr = 

p-Ph–O–Ph.
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Scheme 2. Olefin Scope.
Reactions were performed on a 0.5 mmol scale reacting 1.0 equiv of benzotriazole with 

3.0 equiv of olefin using PCy3 (10 mol%) with [Ir(dF(Me)ppy)2dtbbpy]PF6 (2 mol%), and 

TRIP-SH (10 mol%) irradiating with a 427 nm lamp at 50% intensity for 16 hours. Isolated 

yield reported as an average of two runs. aYield reproduced after 2 hours using standard 

conditions.
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Table 1.

Optimization Studies

Entrya Phosphine (P mol%) Photocatalyst Yield (%)b

1 PCy3 2.5 PC 1 55

2 PCy3 5 PC 1 59

3 PCy3 10 PC 1 71

4 PCy3 20 PC 1 38

5 PCy3 40 PC 1 32

6 PAd2n-Bu 10 PC 1 45

7 PAd3 10 PC 1 45

8 PCy2Ph 10 PC 1 58

9 BrettPhos 10 PC 1 2

10 DavePhos 10 PC 1 0

11 PPh3 10 PC 1 8

12 PCy3 10 PC 2 32

13 PCy3 10 PC 3 16

14c PCy3 10 PC 1 82

Entrya Deviation from optimal conditions (Entry 3) Yield (%)b

15 No Phosphine 0

16 No Photocatalyst 0

17 No TRIP-SH 0

18 No Light 0

PC 1: [lr(dF(Me)ppy)2(dtbbpy)]PF6; *lrIII/lrII = +0.97 V vs SCE

PC 2: [lr(ppy)2(dtbbpy)]PF6; *lrIII/lrII = +0.66 V vs SCE

PC 3: [lr(dF(CF3)ppy)2(4,4’-dCF3bpy)]PF6; *lrIII/lrII = +1.65 V vs SCE

a
Reactions were performed on a 0.1 mmol scale with 1.0 equiv of benzimidazole and 3.0 equiv of methylenecyclopentane under irradiation with 

427 nm lamp (34 W) at 50% light intensity.

b
Yield was determined by 1H NMR spectroscopic analysis against 1,3,5-trimethoxybenzene as an internal standard.

c
427 nm lamp intensity set to 100% instead of 50%.
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