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Abstract Development and aging of the cerebral cortex show similar topographic organization

and are governed by the same genes. It is unclear whether the same is true for subcortical regions,

which follow fundamentally different ontogenetic and phylogenetic principles. We tested the

hypothesis that genetically governed neurodevelopmental processes can be traced throughout life

by assessing to which degree brain regions that develop together continue to change together

through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify

five clusters of coordinated development, indexed as patterns of correlated volumetric change in

brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain

development, suggesting continuity from prenatal stages, and correlated with cognition. Across

independent longitudinal datasets, we demonstrated that developmental clusters were conserved

through life. Twin-based genetic correlations revealed distinct sets of genes governing change in
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each cluster. Single-nucleotide polymorphisms-based analyses of 38,127 cross-sectional MRIs

showed a similar pattern of genetic volume–volume correlations. In conclusion, coordination of

subcortical change adheres to fundamental principles of lifespan continuity and genetic

organization.

Introduction
Cortical development follows a topographic organization through childhood and adolescence

(Fjell et al., 2019; Krongold et al., 2017; Raznahan et al., 2011). This means that regions of the

cortex with similar structural and functional properties tend to develop together (see Eickhoff et al.,

2018 for a discussion of cortical topography in the context of neuroimaging). This topography is

conserved through later development and aging (Fjell et al., 2019; Tamnes et al., 2013) and follows

the genetic organization of the cortex, i.e. is controlled by overlapping sets of genes (Fjell et al.,

2015). It is not known whether the same is true for subcortical structures. In contrast to the mono-

tone thinning of the cerebral cortex (Storsve et al., 2014), lifespan trajectories of subcortical struc-

tures are more diverse and complex (Allen et al., 2005; Narvacan et al., 2017; Raznahan et al.,

2014; Walhovd et al., 2005). This may be due to fundamental ontogenetic and phylogenetic differ-

ences between cortical and subcortical regions. The embryonic origin of the cortex is the pallium,

while cerebellar and subcortical structures originate from the hindbrain, diencephalon, or subpallium

(Tuller et al., 2008). These structures can be placed according to their position along the cranial ver-

tical axis (see Table 2). Although the subcortex is evolutionary older than the cortex, it has a higher

proportion of evolutionarily more recent genes, and a higher evolutionary rate, which is a basic mea-

sure of evolution at the molecular level (Tuller et al., 2008). It has also been argued that genes

expressed in the subcortex generally are more region specific (Tuller et al., 2008; Zhang and Li,

2004). These mechanisms may be seen in human development and aging, with higher plasticity and

potential for change in response to environmental impacts in phylogenetically older structures

(Walhovd et al., 2016b), especially the hippocampus (Engvig et al., 2014; Eriksson et al., 1998).

This combination of plasticity and vulnerability could contribute to the larger diversity in the lifespan

trajectories of subcortical structures (Walhovd et al., 2005). On the other hand, a hypothesis is that

genetically governed neurodevelopmental processes can be traced in the brain later in life

(Chen et al., 2011; Satizabal et al., 2019). This would for instance entail that brain regions under

shared genetic control in development continue to be influenced by the same genes and change

together through life. This has been shown for the comparably less plastic cortex (Fjell et al., 2015).

In light of the diverse age trajectories and high plasticity of subcortical structures, it is not known

whether patterns of subcortical maturation in childhood can be traced back to principles of embry-

onic development, how developmental organization sets constraints on subcortical aging, and the

degree to which this organization of change is under common genetic control. The aim of the pres-

ent study was to address these unresolved issues about the organization of subcortical change

across the lifespan. Specifically, we tested how subcortical developmental volumetric change clus-

tered across different structures, how similar this organization was in development versus aging, and

whether clusters of change were influenced by shared genetics. We hypothesized that volumetric

changes in the developmental structures would tend to cluster according to embryonic principles,

i.e. placement along the cranial vertical axis, that the pattern of change in aging would be similar to

the pattern of change detected in childhood, and that structures changing together throughout the

life would be governed by the same sets of genes.

Results

Clusters of change in development
First, we determined which regions showed correlated change in development. A single-center lon-

gitudinal dataset (Center for Lifespan Changes in Brain and Cognition [LCBC]), comprising 974

healthy participants from 4.1 to 88.5 years with a total of 1633 MRI examinations, was used. The

sample was divided into development and adulthood/aging (development [<20 years], n = 644,

1021 MRIs, follow-up interval = 1.7 years [1.0–3.2]; adulthood/aging [�20 years], n = 330, 612 MRIs,

follow-up interval = 1.6 years [0.2–6.6]), see Fjell et al., 2015 for details (sample descriptives are
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provided in Table 1). Annual symmetrized percent change (APC) was calculated for each participant

for each brain region, averaged over hemispheres, using the formula APC = (Vol Tp2 – Vol Tp1) /

(Vol Tp2 + Vol Tp1) � 100. If more than two time points were available, the first and the last were

used to calculate APC. These APCs were correlated across participants between each pair of brain

regions. The Louvain algorithm for detecting communities in networks (Blondel et al., 2008a) was

applied to derive clusters in the correlation matrix from the development sample, and the Mantel

test run to compare the different matrices. Five clusters of coordinated developmental change were

identified (Figure 1) (see Cluster stability analyses and Validation analyses below for a more detailed

discussion and justification of the cluster solution). The optimized community-structure statistic Q,

the so-called modularity, ranges between �1 and 1, and measures the relative density of connec-

tions within communities as compared to links between communities (Girvan and Newman, 2002).

We compared the cluster solution’s Q value with the Q from 10,000 randomized networks preserv-

ing the signed degree distribution and rewiring each edge approximately five times using the rand-

mio_und_signed function in the BCT. The community-structure solution was significantly more

clustered than in the random networks (p<0.001, developmental change Q=0.44, the 2.5 and 97.5

percentile of the random Q distribution=0.36–0.40). Three large clusters consisted of the ventricles

(Cluster 1); the brain stem, cerebellum white matter (WM) and cerebellum cortex, cortical WM, thala-

mus and hippocampus (Cluster 2); and cortex, putamen, amygdala, and nucleus accumbens (Cluster

3). Caudate (Cluster 4) and pallidum (Cluster 5) were represented by separate clusters.

Pattern of subcortical change in adulthood and aging can be predicted
from development
Next, we wanted to test whether the topographical organization of change detected in develop-

ment was conserved in adulthood and aging. To this end, the pairwise change–change correlations

between regions were calculated for the adult and aging sample (Figure 2), and the Mantel test was

run to compare the developmental and the adult/aging matrices. The change–change matrices were

more similar than expected by chance, r = 0.72 (p<0.0001), demonstrating substantial overlap of

clusters of change in development and aging. The results were replicated using longitudinal data

from the Lifebrain consortium (total n = 756, 1512 MRIs, mean follow-up interval = 2.3 years, age

19–89 years, mean 59.8 years), yielding almost identical results (r = 0.71, p<0.0001).

Cluster stability analyses
We tested the stability of the identified developmental clusters. As different clustering approaches

often yield different results, we ran a series of post hoc analyses to confirm the validity of the cluster

solution. In our main analysis, we decomposed the correlation matrices into clusters or modules,

where each module comprised regions that were more densely connected to each other – based on

its correlation value – and sparsely connected to regions in other modules, by means of the com-

monly employed Louvain modularity algorithm (Blondel et al., 2008a). We proceeded to assess the

stability and validity of the identified clusters using alternative approaches. As a sensitivity analysis,

we performed consensus clustering (Lancichinetti and Fortunato, 2012; Romero-Garcia et al.,

2018) combined with the versatility metric to aid selection of the resolution parameter g for the Lou-

vain algorithm (Shinn et al., 2017). In the main analysis, we used the default resolution parameter g

Table 1. Sample overview.

Sample N N longitudinal Observations
Age
Mean (range)

Sex
Female/Male

Interval years
Mean (range)

LCBC 974 635 1633 25.8 (4.1–88.5) 508/466 2.3 (0.2–6.6)

VETSA* 331 331 662 56.3 (2.6) 0/331 5.5 (0.5)

Lifebrainx 756 756 1512 59.0 (19.3–89.0) 330/426 2.2 (0.3–4.6)

UKB 38,127 na 38,127 63.6 (44–81) 20,026/18,101 na

UKB long 1337 1337 2674 62.5 (46–80) 663/674 2.3 (2–3)

*75 complete monozygote (MZ)/53 complete dizygote (DZ) pairs of male twins.
xNot including LCBC.
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= 1, and using this for the consensus clustering yielded an identical solution. As the g value increases

from 0, the decomposition yields a progressively larger number of modules. Versatility provides an

objective function to guide the choice of the resolution parameters. Specifically, the mean versatility

across regions depends on how consistently the region affiliate with a specific module. An ‘optimal’

value of g is therefore defined as a value for which the versatility is lowest, i.e. for which the decom-

position is the least ambiguously defined. The mean versatility does not provide an objective global

optimum of the resolution parameter g ; instead, it serves to guide optimization of g to local minima

within neighborhoods corresponding to the desired spatial resolution of the modules. Here, we cal-

culated mean versatility across a range of resolution values, by re-running the Louvain algorithm (via

the find_optimal_gamma_curve function from Shinn et al., 2017 and the consensus function therein)

across the resolution range 0.01 � g � 4.00, with increments of 0.01, and 1000 runs per g value.

Seven local minima of mean versatility were identified (g = 0.66, 0.84, 0.93, 1.03, 1.12, 1.17, and

1.45). The final community partition at each g was defined as a consensus across another 1000 runs

of the Louvain modularity algorithm at the selected value of the resolution parameter. The results

showed that beyond the local minima of g � 0.64, yielding � three clusters, and g � 1.91 yielding

50% singleton modules (� eight clusters), the g of 1.17–1.21 had the lowest versatility (versatility =

0). These g levels all yielded the five-cluster solution of the main analysis. Also, g = 0.7 and y = 0.96

yielded the same five-cluster solution. g = 1.32 and g = 1.35, the latter which also had a very low

Figure 1. Volumetric change–change relationships. Heatmaps represent pairwise correlation coefficients between volume change (annualized percent

change) of the brain structures in development in the LCBC sample (left), aging in the LCBC sample (middle), and aging in the Lifebrain replication

sample (right). The five clusters, delineated by the black lines, were derived from the developmental sample.

Figure 2. Genetic correlations. Left: Change–change correlations in development used to generate clusters. Middle: Genetic change–change

correlations, i.e.the genetic contribution to the relationships between change among any two structures, based on twin analysis (VETSA). Right: SNP

genetic correlations from the UKB cross-sectional data. The five clusters, delineated by the black lines, were derived from the developmental sample.
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versatility of 0.001, yielded a six-cluster solution. g = 1.60 and g = 1.78 yielded a seven-cluster solu-

tion. Thus, the five-cluster solution was the most frequent and showed the lowest versatility over sev-

eral g levels. Specifically, the five-cluster solution appeared seven times compared with once for the

three- and eight-cluster solutions and twice for the six- and seven-cluster solutions. This supported

the stability of the initial solution. In the three-cluster solution, one cluster consisted of the

ventricles and one consisted of pallidum, amygdala, and accumbens, while the remaining structures

were included in the last cluster. Finally, we tested the similarities of the community structure (cluster

solution) of the developmental and the adult/aging change–change matrices (Betzel and Bassett,

2017). We calculated the normalized mutual information (NMI) (Lancichinetti and Fortunato, 2009),

variation of information (VI) (Meilă, 2003), and the z-score of the Rand coefficient (Red et al., 2011)

using the Network Community Toolbox (http://commdetect.weebly.com). Null distributions were

constructed by comparing the community structure of the developmental change–change matrix

with the community structure derived from 10,000 randomized networks preserving the signed

degree distribution of the adult/aging matrix. All of these metrics supported the conclusion that the

developmental and the adulthood/ aging change matrices were more similar than expected by

chance (NMI = 0.65, p=0.003; VI = 0.96, p=0.0002; zRand = 5.33, p<0.0001). Due to the nature of

the research questions and data, which included gray matter (GM) and WM compartments as single

structures, the null models generated were not spatially constrained (Alexander-Bloch et al., 2018;

Burt et al., 2020). This may have increased the similarities between change matrices and partitions.

Patterns of change adhere to principles of genetic organization
An important part of the study was to assess whether regions within the same clusters showed

shared genetic influences. Using multivariate latent change score models, we calculated the differen-

ces in subcortical volumes from baseline to follow-up in the Vietnam Era Twin Study of Aging (n =

331, mean follow-up interval = 5.5 years) and computed pairwise genetic correlations of the slope

factor (i.e., change) between all regions (see Brouwer et al., 2017 for details on the statistical twin

model). This yielded an estimate of how much of the change–change relationship between any two

brain structures is due to common genetic influence. The latent change score model accounts for

the relatedness between the twins. As the model is genetically informative, the relationship between

the twins is fundamentally built into the model. The latent change score model was preferred over

the simpler difference score model for the twin analyses, as it utilizes multiple sources of information

within time to estimate change, restricts measurement error to the level of the observed variables,

and allows for the estimation of covariance with intercept. The result is possibly a more precise esti-

mation of change over the assessment window.

The matrix of shared genetic influences on change between each pair of brain structures (Fig-

ure 2) was tested against the developmental and the adult/aging change–change correlation matri-

ces. The Mantel test confirmed that the shared genetic influences on the change–change

relationships were statistically more similar to the pattern of correlated changes during development

(r = 0.46, p=9.999e�05) and aging (r = 0.37, p<0.0002) than expected by chance. Replication was

again run using Lifebrain data, yielding r = 0.37 (p<0.0004) between the matrix of shared genetic

influences on change and the Lifebrain aging change–change correlation matrix.

In order to further explore the genetic contributions to coordinated subcortical change, we first

attempted to calculate the pairwise single-nucleotide polymorphism (SNP)-based genetic correlation

between change in each pair of structures by running a mega-analysis on 1337 participants with lon-

gitudinal MRIs from UK Biobank and 508 from LCBC. However, this initial analysis showed that statis-

tical power – as could be expected – was too low to yield valid estimates. Thus, we instead based

the SNP genetic analyses on the cross-sectional UKB data where power is much greater (n = 38,127,

age 40–69 years), using age, sex, and the first 10 components of the genetic ancestry factor as cova-

riates. A detailed overview of the pairwise genetic correlations is presented in Supplementary file 1

– SNP-based heritability estimates (Legend: pairwise co-heritability between brain structures derived

from 38,127 participants from UKB). The Mantel test (r = 0.57, p<0.0005) demonstrated that the

SNP genetic correlation matrix was more similar to the developmental change matrix than expected

by chance. This showed that the genetic organization of subcortical structures in middle-age can be

predicted from the organization of change during brain development in childhood. For complete-

ness, we also compared the SNP genetic correlation matrix to the aging change matrix (r = 0.56,

p<0.0003) and the heritability of coordinated change matrix from the VETSA sample (r = 0.38,
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p<0.0003), in both cases showing significantly higher similarity than expected by chance. The UKB

SNP genetic correlation matrix also showed excellent coherence with the Lifebrain replication sam-

ple (r = 0.47, p<0.0006) and with the change–change matrix derived from the 1337 UKB participants

with longitudinal MRI (r = 0.46, p<0.0002).

Embryonic origins of subcortical organization
We tested the hypothesis that development in childhood mimics the organization of earlier embry-

onic development. An overview of the clusters and their embryonic developmental origins is given in

Table 2. Although a one-to-one correspondence between embryonic development and clustering of

change in childhood was not expected, there were clear tendencies to conservation of embryonic

developmental principles in later childhood development. The regions of Cluster 2 mainly emerged

from rhombencephalon or the posterior prosencephalon, making up structures placed low on the

cranial vertical axis, including brain stem (myelencephalon), cerebellum cortex and WM (metenceph-

alon), and the thalamus (diencephalon). The exception to this was that the hippocampus and the cor-

tical WM were also included in Cluster 2. The extensive connectivity between cerebellum and

cerebrum, and the similarities in development of WM in cerebellum and cerebrum, may explain the

latter finding. Clusters 3–5 comprised structures developed from subpallium/ventral telencephalon

(caudate, pallidum, putamen) and pallium/dorsal encephalon (amygdala, cortex), also showing con-

sistency with the major principles from embryonic development and placement along the cranial ver-

tical axis.

Directly to explore the relationship between principles of embryonic development and adult

genetics, we applied the Louvain algorithm on the UKB SNP genetic correlation matrix. This allowed

us to detail how shared genetic influences were distributed across structures in the cross-sectional

UKB data. The results were then mapped according to the main stages of early brain development,

from the primary brain vesicles through the secondary brain vesicles and to the developed struc-

tures. A two cluster solution yielded a trivial divide between a ventricular cluster and one cluster con-

taining the remaining structures. Thus, we ran a separate analysis on the non-ventricular structures.

This revealed a match between the adult genetic clusters and their embryonic origins (Figure 3). Pal-

lidum, putamen, nucleus accumbens, and caudate clustered together, all originating from the sub-

pallium (ventral telencephalon), which is the developmental origin of the basal ganglia. Amygdala,

hippocampus, and the cerebral cortex clustered together, having the pallium (dorsal telencephalon)

as common embryonic origin. Brainstem, cerebellum WM, and cerebellum cortex, all from the

Table 2. The embryonic origins of the clusters and placement along the cranial vertical axis.

Brain structure Cluster Embryonic development Cranial vertical axis

Third ventricle 1 Prosencephalon (posterior) Diencephalon

Fourth ventricle 1 Rhombencephalon

Lat ventricle 1 Prosencephalon (anterior) Telencephalon

Inf lateral ventricle 1

Brainstem (medulla oblongata) 2 Rhombencephalon Myelencephalon 0

Cerebellum cortex 2 Rhombencephalon Metencephalon 1

Cerebellum WM 2 Rhombencephalon Metencephalon 1

Thalamus 2 Prosencephalon (posterior) Diencephalon 2

Hippocampus 2 Prosencephalon (anterior) Telencephalon (dorsal) Pallium (medial) 4

Cortical WM 2 Prosencephalon (anterior) Forebrain WM

Caudate 4 Prosencephalon (anterior) Telencephalon (ventral) Subpallium 3

Pallidum 5 Prosencephalon (anterior) Telencephalon (ventral) Subpallium 3

Putamen 3 Prosencephalon (anterior) Telencephalon (ventral) Subpallium 3

Accumbens 3 Prosencephalon (anterior) Telencephalon (ventral) Subpallium 3

Amygdala 3 Prosencephalon (anterior) Telencephalon (dorsal) Pallium (lateral) 4

Cortex 3 Prosencephalon (anterior) Telencephalon (dorsal) Pallium (dorsal) 4
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rhombencephalon, formed a third cluster, while thalamus (diencephalon) and the cerebral WM con-

stituted the last. Although this analysis is auxiliary to the main change-analyses reported above, it

demonstrates a common fundamental principle of close correspondence between embryonic brain

development and the brain’s genetic architecture decades later.

Age trajectories
Each cluster and regional volume was expected to yield unique age trajectories during development

and adulthood. To detail these, we fitted the developmental trajectory of each cluster by using the

total volume of the structures within each cluster, with sex and intracranial volume (ICV) as covari-

ates, by generalized additive mixed models (GAMM) (Wood, 2006; Figure 4, Table 3). Both Akaike

information criterion (AIC) and Bayesian information criterion (BIC) were calculated to select among

models and guard against over-fitting. These analyses were done to assess differences in the trajec-

tories between clusters. Since the total volume was used, large structures would potentially influence

the cluster trajectories more than would smaller structures. Cluster 1 increased linearly, although the

rate of increase was modest. Cluster 2 showed a decreasing exponential function with volume

increase leveling off after 15 years. Cluster 3 mimicked a cubic relationship, with a slight increase in

volume until about 8 years, then steeper reductions, which were gradually smaller from 15 years.

Cluster 4 (caudate) showed an inverted U-shaped trajectory with a sharp increase until about 9 years,

and Cluster 5 (pallidum) showed a cubic trajectory with similarities to Cluster 3. Next, we calculated

aging-trajectories for each of the clusters defined in the developmental sample and. The trajectories

across the adult age-range differed qualitatively between clusters in terms of steepness and shape.

The trajectory for each cluster represented a continuation of the developmental trend seen in child-

hood and adolescence. Cluster 1 showed an exponential increase, Cluster 2 an inverted U-shaped

trajectory, Clusters 3 and 4 almost linear reductions, while Cluster 5 showed reductions until about

50 years and little or no change after that. For completeness, the age trajectories of the clusters

were also fitted across the full age-range from 4.1 to 88.5 years (numeric results in SI).

Finally, we also estimated the age trajectories of each volume of 16 brain regions (Figure 5,

Table 4).

Figure 3. Correspondence between SNP heritability and embryonic brain development. Clustering of the non-ventricular structures was used to test

how shared genetic variance were organized in the UKB sample, and the clusters were compared to the main organization of embryonic brain

development. The heatmap shows the pairwise genetic correlations. The flow chart shows the main features of embryonic brain development and how

the genetic clusters obtained from middle-aged and older adults follow the same organization.
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Auxiliary analyses were done relating the clusters to general cognitive function (GCA) as mea-

sured by the Wechsler’s Abbreviated Scale of Intelligence (Wechsler, 1999) in the full LCBC sample,

using sex and age as covariates. Corrected for five comparisons, two clusters showed significant

(p<0.01) relationships to GCA, that is Cluster 1 (t = 3.74, p=0.00018) and Cluster 3 (t = 2.75,

p=0.006). Low GCA score was associated with lower volumes. The relationships survived including

intracranial volume (ICV) as covariate. ICV was not controlled for in the initial analyses since it is

expected to follow brain volume development in the first part of life. For Cluster 1 was a significant

interaction between GCA and age found (F = 4.59, p=0.01), while for Cluster 3, age trajectories did

not differ significantly as a function of GCA (all p’s>0.46), thus showing stable relationships across

life.

Validation analyses
A cluster solution will ultimately depend on which brain regions that are included and how different

parameters for the clustering algorithm are defined. To test the validity of using the clusters defined

in development across the adult and genetic samples, we ran two-sample Student’s t-tests to assess

whether the mean intra-cluster correlation was larger than the mean extra-cluster correlation. The

Figure 4. Cluster age trajectories for each cluster, for development (left), adulthood (middle), and the full lifespan (right). The trajectories are fitted with

GAMM, and the shaded areas represent 95% CI. Note that the y-axes scales vary for easier viewing. The trajectories were estimated for development

and adulthood separately to ensure that the analyses were fully independent.

Table 3. Cluster age trajectories.

Numeric results for the trajectory analyses in Figure 4. Edf: effective degrees of freedom (signifying the complexity of the trajectory,

where the value two approximates a quadratic shape, 3 a cubic shape, etc). The p-value is associated with the null hypothesis that

there is no relationship to age.

Development Adulthood and aging Lifespan

Edf F p Edf F p Edf F p

Cluster 1 1.1 51.0 0.23e�12 6.0 67.1 2e�16 7.5 176.6 2e�16

Cluster 2 6.5 363.5 2e�16 6.8 16.0 2e�16 8.7 214.3 2e�16

Cluster 3 5.4 37.4 2e�16 6.7 85.5 2e�16 8.6 206.7 2e�16

Cluster 4 5.7 18.1 2e�16 1.0 79.4 2e�16 8.3 45.9 2e�16

Cluster 5 3.7 16.9 3.33e�12 3.8 15.8 1.23e�11 7.9 171.0 2e�16
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intra-cluster correlations were significantly higher than the extra-cluster correlations in all the tested

samples, except for Cluster 3 in the VETSA sample (Table 5). As the cluster solution was defined in

an independent dataset, this outcome supports the validity of each cluster, and complements the

Mantel test which is based on the full correlation matrix. Second, as changes in different parts of the

ventricular system were expected to be highly correlated, we re-ran the Mantel tests excluding the

ventricles. As expected, the coherence between matrices was reduced, but was still significant for all

comparisons, except UKB (Dev vs LCBC adulthood and aging r = 0.44, p<0.009; Lifebrain r = 0.41,

p<0.0008; VETSA r = 0.44, p<0.0009; UKB r = �0.06, p=0.63). This was in line with the higher

within-cluster than between-cluster correlations reported above for the non-CSF(cerebrospinal fluid)

clusters. Finally, we ran the Mantel test comparing the patterns of developmental to adult and aging

changes in 12 genetically defined cortical regions from the same LCBC participants (see Chen et al.,

2013; Fjell et al., 2015). This yielded a correlation of r = 0.83, which suggests that the organization

of developmental subcortical change is conserved through life, but to a somewhat lesser extent than

the organization of cortical change.

Discussion
The results demonstrate that volumetric change of subcortical structures in development forms

meaningful clusters. These clusters tend to follow the main cranial vertical axis from embryonic brain

development, suggesting continuity from earlier to later stages of development. Although the life-

span trajectories of subcortical structures are more divergent than those for cortical regions

Figure 5. Lifespan trajectories of brain volumes. Age on the x-axis, volume in units of milliliters on the y-axis. The trajectories are fitted with GAMM,

using both longitudinal and cross-sectional data, and the shaded areas represent 95% CI. Y-axis is in units of 1000 mm3. Ventricular volumes not shown.
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(Fjell et al., 2014; Walhovd et al., 2011), the clusters were conserved through life. Thus, similar to

what has been shown for the cerebral cortex (Fjell et al., 2015), regional subcortical volumetric

changes in aging follow a similar pattern as developmental changes in childhood. This makes a

strong case for the theory that early life sets the stage for aging (Jagust, 2016; Walhovd et al.,

2016a; Yeatman et al., 2014). Importantly, the volumetric correlations within each cluster and the

coordinated volumetric change of each cluster tended to be governed by common sets of genes.

This conclusion was supported by the similarity of the volumetric change pattern during develop-

ment with the pattern of genetic change–change correlations in the VETSA twin study and the cross-

sectional UKB SNP co-heritability. Thus, coordination of volumetric change across subcortical struc-

tures adheres to similar principles of lifespan continuity and genetic organization previously seen for

the cortex. This supports the hypothesis that genetically governed neurodevelopmental processes

can be traced in subcortical structures throughout life.

Table 4. Generalized additive mixed model fits LCBC lifespan.

Generalized additive mixed models (GAMM) were run with each neuroanatomical volume as depen-

dent variable, and age, estimated total intracranial volume, and sex as covariates. Separate models

were run with a linear age (age) term or a slope function (s(Age)). Except for cortex and caudate, the

slope function yielded the lowest IC values. GM: Gray matter. WM: White matter. AIC: Akaike infor-

mation criterion. BIC: Bayesian information criterion.

AIC BIC Effect of sex

Age S(Age) Age S(Age) p

Accumbens 18,324 18,335 18,357 18,367 0.57

Amygdala 20,360 20,048 20,392 20,081 0.13

Brainstem 27,514 26,805 27,546 26,837 0.11

Caudate 22,636 23,558 22,669 23,591 0.75

Cerebellum cortex 30,079 29,946 30,111 29,979 0.94

Cerebellum WM 27,430 27,017 27,463 27,050 0.16

Cortex 37,525 37,895 37,557 37,927 0.72

Cortical WM 36847 36,258 36,879 36,290 0.31

Hippocampus 22,494 22,235 22,526 22,268 0.22

Pallidum 20,937 20,741 20,969 20,774 0.17

Thalamus 23,841 23,669 23,874 23,701 0.06

Total GM 38,130 37,849 38,163 37,881 0.78

Lateral ventricles 30,276 30,147 30,308 30,174 0.33

In flat vent 21,081 20,931 21,113 20,964 0.23

Table 5. Within- vs. outside cluster correlations.

Two-sample Student’s t-tests were run to test whether the mean correlation within the developmentally defined clusters (ri) was larger

than the mean correlation between the variables in the cluster and the variables outside the cluster (re). Note that the clusters were

defined in the developmental sample, which is independent from the other four samples.

Cluster 1 Cluster 2 Cluster 3

Dataset ri re p< ri re p< ri re p<

UKB cross-sectional 0.52 �0.10 1e�8 0.30 0.05 1e�7 0.28 0.06 9e�7

VETSA (TWIN heritability) 0.57 �0.11 1e�8 0.40 �0.05 3e�7 0.16 �0.02 0.17

Lifebrain (Aging) 0.47 �0.16 1e�8 0.14 �0.05 0.0002 0.14 �0.01 0.004

LCBC (Aging) 0.45 �0.20 1e�8 0.30 �0.06 1e�8 0.28 0.05 1e�7

ri: intra-cluster correlation. re: extra-cluster correlation.
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Superordinate structures of change in childhood mimic embryonic brain
development
The topographical development of cortical thickness is well described, with regional variability that

follows certain functional, anatomical, and genetic principles of organization (Chen et al., 2013;

Fjell et al., 2019; Fjell et al., 2015; Raznahan et al., 2011; Tamnes et al., 2010). Compared to the

cerebral cortex, subcortical structures show highly divergent lifespan trajectories (Fjell et al., 2013;

Ostby et al., 2009; Raznahan et al., 2014) and follow fundamentally different ontogenetic and phy-

logenetic principles (Tuller et al., 2008; Zhang and Li, 2004). On this background, the present

results are intriguing. Meaningful clusters of developmental volumetric change were identified, with

divergent developmental trajectories. Importantly, the different regions tended to cluster according

to their embryonic origins. For instance, the majority of Cluster 2 structures emerged from rhomben-

cephalon or the posterior prosencephalon, which is the origin of structures placed low on the cranial

vertical axis. This included the brain stem (myelencephalon), cerebellum cortex, and cerebellum WM

(metencephalon) and the thalamus (diencephalon). Clusters 3–5 comprise structures developed from

subpallium/ ventral telencephalon (caudate, pallidum, putamen) and pallium/dorsal encephalon

(amygdala, cortex). There were also departures from this principle, i.e. the inclusion of the hippo-

campus and the cortical WM in the same cluster. Hippocampus is part of the cerebral cortex, but

develops from the medial pallium in contrast to the neocortex. Compared to many regions in the

cerebral cortex, hippocampus has a more similar appearance across the range of mammal species

(Bingman and Salas, 2009). Cortical WM was placed in the same cluster. Cortical WM originates

from the anterior prosencephalon, but the major part of myelination occurs postnatally, so this com-

partment of the brain is not easily placed within the same embryonic developmental context. In

addition, the WM label is anatomically gross with substantial regional differences in development

(Tamnes et al., 2010). This cluster is also characterized by relatively high myelin content among sev-

eral of its constituents, which may have contributed to the inclusion of hippocampus and cortical

WM. Nevertheless, at a general level, change in the structures tended to cluster according to trends

from embryonic development and placement along the cranial vertical axis. It must be noted as a

limitation that the coherence between the developmental clusters and embryonic brain development

is based on a qualitative judgment.

Consistency in patterns of change across the lifespan
We found that subcortical structures that developed together during childhood tended to change

together in adulthood and aging. Mapping the developmental clusters to the adult part of the sam-

ple yielded highly different change trajectories. Except for Clusters 3 and 4, which were character-

ized by mostly linear reductions, differences in the shapes of the slopes were observed. This

suggests that clusters identified in development continued to show independent trajectories of

change through the rest of life. The lifespan trajectories showed expected shapes, with accelerated

increases for the ventricular system (Cluster 1) and an inverse U-shape for cluster 2, consisting of

structures such as WM, hippocampus, and the brain stem (Fjell et al., 2013; Walhovd et al., 2005).

Clusters 3, 4, and 5 showed different variants of initial increase in childhood, followed by relatively

linear decline through most of adulthood that leveled off at high age, with variations between clus-

ters in terms of break points. Clusters 4 (caudate) and 5 (pallidum) consisted of only one structure

each. Cluster 3, however, consisted of four structures (cortex, putamen, amygdala, and nucleus

accumbens), mimicking the known trajectory of cortical volume with more or less linear decline after

the peak is reached in late childhood or early adolescence.

Genetic organization of subcortical structure and change
We found that longitudinal volumetric change in regions that cluster together tend to show overlap-

ping genetic influences. This conclusion was supported by the twin analysis, yielding higher genetic

change–change correlations within versus than between clusters. This suggests that regions that

develop and change together through life to a certain degree are influenced by shared sets of

genes. Furthermore, the SNP analysis showed that also the cross-sectional volumetric relationships

followed a similar organization. Thus, there seems to be a genetic basis for the consistent pattern of

change in subcortical structures from development through the rest of life. It must be noted that

although significant heritability estimates for brain changes have been demonstrated in ENIGMA,
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evidence for genetic variants specific for brain change was found for cerebellar GM and the lateral

ventricles only (Brouwer et al., 2017). Although limited statistical power prevented strong conclu-

sions, genetic influence on volumetric change rates and baseline volume tended to overlap for most

structures. Thus, we used cross-sectional data to further explore the genetic contribution to subcorti-

cal volumetric organization. Although these data do not reflect change, they increased sample size

for these analyses from 6000 to more than 38,000 MRIs. Using the expanded sample for the

SNP analyses, we found further evidence that regions within each developmental cluster tended to

show overlapping genetic influences. A previous multi-sample GWAS also reported significant

genetic correlations between some of the subcortical structures tested in the present study

(Satizabal et al., 2019). The similarity of the developmental volumetric change–change matrix and

the SNP genetic volume–volume correlation matrix from middle-aged adults thus yielded further

support for the hypothesis that genetically governed neurodevelopmental processes can be traced

through life. Moreover, the results revealed close correspondence between the genetic organization

of subcortical structures and their embryonic origins, which suggest a link from embryonic brain

development to the brain’s genetic architecture in adulthood and aging. It must also be mentioned

that high genetic correlations were identified between some structures from different clusters. This

was especially true for hippocampus and amygdala, which showed high genetic change–change cor-

relations in VETSA and genetic cross-sectional correlations in UKB.

Limitations: Caveats in interpreting brain changes from MRIs and
further research
Similar to all studies based on in vivo imaging methods, this study provides approximations of the

underlying neurobiology. The MRI-derived measures are estimations, and the segmentations are

based on signal intensities and contrast properties that are prone to the influence of multiple factors

(Walhovd et al., 2017). Underlying mechanisms of volume differences and change are complex and

may involve events such as aborization of axons and dendrites, axonal sprouting and loss, dendritic

degeneration, vascular elaboration, synaptic pruning, as well as growth and reductions of myelina-

tion (see Fjell and Walhovd, 2010 for a discussion of these issues). Many of these likely affect both

contrast, signal intensity and volumetric estimations, but the relative effect of each is challenging to

tease apart. We have previously shown age differences in cortical GM–WM contrast (Westlye et al.,

2009) and T1w signal intensities (Westlye et al., 2010), which can also be detected longitudinally

(Vidal-Piñeiro et al., 2016). The present results thus reflect effects of various neurobiological events

on signal intensities and contrast. For instance, as mentioned above, myelin content has a major

impact on T1w intensities, and myelin content is strongly related to age in development and aging

(Grydeland et al., 2019). Thus, the clustering results will likely partly reflect different myelin content

in the structures analyzed, as changes in myelin may be correlated across regions in the brain. A

promising avenue for further research is to use multi-modal neuroimaging with different MRI sequen-

ces and analysis methods to yield more insight in the foundations for the volumetric changes. A sec-

ond caveat is that although the clustering of regions is based on pairwise change–change

correlations, this does not imply that each cluster consists of homogenous regions. Still, regions

within a cluster showed more correlated volumetric change and higher genetic correlations with

other regions within the cluster than with regions outside the cluster.

Conclusion
Subcortical childhood development can be described according to meaningful clusters, which are

stable through life, tend to follow gradients of embryonic brain development, and tend to be influ-

enced by shared sets of genes. Thus, the pattern of change in subcortical regions may best be

understood in a lifespan perspective.

Materials and methods

Samples
Multiple independent samples were used (Table 1). Details for all samples are found in SI.
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LCBC lifespan sample
A total of 1633 valid scans from 974 healthy participants (508 females/466 males), 4.1–88.5 years of

age (mean visit age 25.8, SD 24.1), were drawn from studies coordinated by the Research Group for

Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Nor-

way (Fjell et al., 2015). For 635 participants, one follow-up scan was available, while 24 of these had

two follow-ups. Mean follow-up interval was 2.30 years (0.15–6.63 years, SD 1.19). Sample density

was higher in childhood/ adolescence than adulthood, since we expected more rapid changes dur-

ing that age period (1006 observations < 10 years, 378 observations � 20 and < 60 years, and 249

observations 60–88.5 years). All participants’ scans were examined by a neuroradiologist and

deemed free of significant injuries or conditions. The studies were approved by the Regional Com-

mittee for Medical and Health Research Ethics South, Norway (2010/2359; 2010/3407; 2009/200).

Written informed consent was obtained from all participants older than 12 years of age and from a

parent/guardian of volunteers under 16 years of age. Oral informed consent was obtained from all

participants under 12 years of age.

VETSA
Three hundred and thirty-one male twins (150 MZ/106 DZ paired twins/75 unpaired) were randomly

recruited from the Vietnam Era Twin Registry and had imaging data at two time points. The study

was approved by the Institutional Review Board at the University of California, San Diego. Written

informed consent was obtained from all participants. Average age at baseline was 56.3 (2.6) years

and follow-up interval 5.5 (0.5) years (see Kremen et al., 2013; Kremen et al., 2006). Based on

demographic and health characteristics, the sample is representative of US men in their age range

(Kremen et al., 2013; Schoeneborn and Heyman, 2009).

The Lifebrain Consortium
Seven hundred and fifty-six participants with longitudinal MRI were included from the European Life-

brain project (1672 scans, baseline age 19–89 [mean = 59.8, SD = 16.4], mean follow-up interval 2.3

years, range 0.3–4.9, SD = 1.2) (https://www.lifebrain.uio.no/) (Fjell et al., 2019), including major

European brain studies: Berlin Study of Aging-II (BASE-II) (Bertram et al., 2014; Gerstorf et al.,

2016), the BETULA project (Nyberg et al., 2020), the Cambridge Centre for Ageing and Neurosci-

ence study (Cam-CAN) (Shafto et al., 2014), and University of Barcelona brain studies (Abellaneda-

Pérez et al., 2019; Rajaram et al., 2016; Vidal-Piñeiro et al., 2014). The study was approved by

the Regional Committee for Medical and Health Research Ethics South, Norway (2017/653). Partici-

pants were screened to be cognitively healthy and in general not suffer from conditions known to

affect brain function, such as dementia, major stroke, multiple sclerosis, etc. Exact screening criteria

were not identical across sub-samples (see Fjell et al., 2021 for details).

UK Biobank
Thirty-eight thousand one hundred and twenty-seven participants with available MRIs and quality

checked (QC) genetic information were included in the final analyses from UKB (40–69 years), see

https://biobank.ndph.ox.ac.uk/. UKB has approval from the North West Multi-centre Research Ethics

Committee (MREC). We received called genotypes for 488,377 subjects, of whom 40,055 had avail-

able MRIs pre-processed by FreeSurfer v6.0. We performed quality control of the genotype data at

the participant level by removing participants failing genotyping QC (n = 550) or with abnormal het-

erozygosity values (n = 969). In addition, we removed 481 participants suggested to be removed for

genetic analysis by the UK Biobank team. Ninety-one of these 481 participants had abnormal hetero-

zygosity values, and the remaining were flagged out as outliers in heterozygosity/missing rate from

the current QC files (ukb_sqc_VZ.csv) provided the most recent UK Biobank team. After excluding

these subjects, we further remove related subjects by computing kinship coefficients using the pro-

gram PLINK (Chang et al., 2015), with the option –kinship 0.0625. This amount to remove one

subjects that are within the third degree of relatedness to any other participant. At variant level, we

removed SNPs having minor allele frequency less than 0.01 or Hardy–Weinberg equilibrium test

p-value < 10�6. In total, 784,356 SNPs were used in the subsequent analysis. We used the bivariate

linear mixed model with genome-based restricted maximum likelihood methods implemented in the

program GCTA (Yang et al., 2011) to compute genetic correlations for the volume measures for
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each pair of the 16 brain subcortical structures. The principal components were computed using the

above quality-controlled genotypes, after removing correlated SNPs with the option –indep-pairwise

100 50 0.1 from PLINK. In addition, 1331 participants with genotyping and longitudinal MRIs avail-

able were used as an additional replication sample to test stability of the phenotypic change–change

pattern.

Cognitive testing
GCA was assessed by WASI (Wechsler, 1999) for participants aged 6.5–89 years of age, while

scores for corresponding subtests (Vocabulary, Similarities, Block design, and Matrices) from the

Wechsler Preschool and Primary Scale of intelligence – III (WPPSI-III) (Wechsler, 2008) were used for

the youngest participants (<6.5 years) (see Walhovd et al., 2016a). All participants scored within

normal IQ range (82–145) or normal range of scaled scores (mean of subtests, s = 6.67–17.33).

MRI data acquisition and analysis
Imaging data for the LCBC sample were acquired using a 12-channel head coil on a 1.5-Tesla Sie-

mens Avanto scanner (Siemens Medical Solutions, Erlangen, Germany) at Oslo University Hospital

Rikshospitalet and St. Olav’s University Hospital in Trondheim (see Walhovd et al., 2016a). See

Table 6 for details regarding scanners and sequences.

For all samples, subcortical volumes were obtained by use of FreeSurfer (http://surfer.nmr.mgh.

harvard.edu/) (Dale et al., 1999; Dale and Sereno, 1993; Fischl et al., 2002), processed with the

longitudinal stream (Reuter et al., 2012). Specifically an unbiased within-subject template space and

image (Reuter and Fischl, 2011) is created using robust, inverse consistent registration

(Reuter et al., 2010). Several processing steps, such as skull stripping, Talairach transforms, atlas

registration as well as spherical surface maps and parcellations are then initialized with common

information from the within-subject template, significantly increasing reliability and statistical power

(Reuter et al., 2012). For children, the issue of movement is especially important, as it could poten-

tially induce bias in the analyses (Reuter et al., 2015). All children MRIs were manually rated for

movement on a 1–4 scale, and only scans with ratings 1 and 2 (no visible or only very minor possible

signs of movement) were included in the analyses, reducing the risk of movement affecting the

Table 6. Scanner and acquisition parameters.

Sample Scanner
Field strength
(Tesla) Sequence parameters

LCBC Avanto
Siemens

1.5 TR: 2400 ms, TE: 3.61 ms, TI: 1000 ms, flip angle: 8˚, slice thickness: 1.2 mm, FoV: 240 � 240 m, 160
slices, iPat = 2

Avanto
Siemens

1.5 TR: 2400 ms, TE = 3.79 ms, TI = 1000 ms, flip angle = 8, slice thickness: 1.2 mm, FoV: 240 � 240 mm,
160 slices

Barcelona Tim Trio
Siemens

3.0 TR: 2300 ms, TE: 2.98, TI: 900 ms, slice thickness 1 mm, flip angle: 9˚, FoV: 256 � 256 mm, 240 slices

BASE-II Tim Trio
Siemens

3.0 TR: 2500 ms, TE: 4.77 ms, TI: 1100 ms, flip angle: 7˚, slice thickness: 1.0 mm, FoV: 256 � 256 mm, 176
slices

Betula Discovery
GE

3.0 TR: 8.19 ms, TE: 3.2 ms, TI: 450 ms, flip angle: 12˚, slice thickness: 1 mm, FoV: 250 � 250 mm, 180 slices

Cam-CAN Tim Trio
Siemens

3.0 TR: 2250 ms, TE: 2.98 ms, TI: 900 ms, flip angle: 9˚, slice thickness 1 mm, FoV: 256 � 240 mm, 192 slices

UKB Skyra
Siemens

3.0 TR: 2000 ms, TI: 880 ms, slice thickness: 1 mm, FoV: 208 � 256 mm, 256 slices, iPAT = 2

VETSA baseline Siemens 1.5 TR = 2730ms, TI = 1000 ms, TE = 3.31ms, slice thickness = 1.33 mm, flip angle = 7˚, voxel size 1.3 � 1.0
� 1.3 mm. Acquisition in Boston and San Diego.

VETSA follow-up
(Boston)

Siemens
Tim Trio

3.0 TE = 4.33 ms, TR = 2170 ms, TI = 1100 ms, flip angle = 7˚, pixel bandwidth = 140, number of slices =
160, slice thickness = 1.2 mm. Acquisition in Boston.

VETSA follow-up
(San Diego)

GE
Discovery
750x

3.0 TE = 3.164 ms, TR = 8.084 ms, TI = 600 ms, flip angle = 8˚, pixel bandwidth = 244.141, FoV = 24 cm,
frequency = 256, phase = 192, number of slices = 172, slice thickness = 1.2 mm. Acquisition in San
Diego.

TR: Repetition time, TE: Echo time, TI: Inversion time, FoV: Field of View, iPat: in-plane acceleration.
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results. Also, all reconstructed surfaces were inspected and discarded if they did not pass internal

quality control. This led to the exclusion of 46 participants from MoBa-Neurocog and nine from ND,

reducing the total LCBC sample to the reported 1633 scans. FreeSurfer 5.3 was used for the LCBC

and VETSA analyses, while Lifebrain and UKB MRI data were processed with FreeSurfer 6.0. UKB

scans were QC by the UKB imaging team. Further details of the UKB imaging protocol (http://bio-

bank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367) and structural image processing are provided on the

UK Biobank website (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977).

Genetic correlations
Genetic change correlations were obtained by latent change score analyses on the VETSA one and

VETSA two subcortical data (see Brouwer et al., 2017). All subcortical volumes were adjusted for

site and ICV. Left and right volumes at baseline and follow-up for each subject were included in a

variant of the ‘latent change model’ to characterize baseline subcortical volume and change in sub-

cortical volume across the two assessments (McArdle and Plassman, 2009), with the extension of

modeling genetic and environmental effects on the phenotypes (Panizzon et al., 2015). The model

allows for the estimation of the means and variances of the intercept and slope factors, the relative

genetic (i.e., heritability) and environmental contributions to those variances, as well as the pheno-

typic, genetic, and environmental correlations between the latent factors. A genetic correlation

matrix was generated by estimating genetic correlations of slope factors between all pairwise combi-

nations of subcortical structures in bivariate latent change models.

For the UKB SNP analyses, the volume measures of the 16 subcortical structures were corrected

for ICV and normalized to have zero mean and one standard deviation, separately, before estimating

genetic correlations. We used the bivariate restricted maximum likelihood methods implemented in

the program Genome-wide Complex Trait Analysis (GCTA, Yang et al., 2011) to compute the

genetic correlation for the volume measures for each pair of the 16 brain subcortical structures,

including the first 10 principal components, sex and age as covariates. The likelihood ratio test from

GCTA testing whether a genetic correlation is zero was used to compute p-values for estimated

genetic correlations.

Experimental design and statistical analysis
GAMM implemented in R (http://www.r-project.org) using the package ‘mgcv’ (Wood, 2006) was

used to derive age trajectories for all structures based on the 1633 LCBC MRIs. Annual symmetrized

percent change (APC) in volume was correlated across structures in each sample separately (devel-

opment and adult/aging from LCBC and Lifebrain). To identify clusters of correlations that could be

compared across matrices, the community structure or modules in the matrices were obtained using

the Louvain algorithm (Blondel et al., 2008b), part of the Brain Connectivity Toolbox (http://www.

brain-connectivity-toolbox.net Rubinov and Sporns, 2010). The optimal community structure is a

subdivision of the network into non-overlapping groups of regions in a way that maximizes within-

group connection strength and minimizes between-group strength. The community structure may

vary from run to run due to heuristics in the algorithm pertaining to the order in which the nodes are

considered, so 10,000 iterations of the algorithm were run, and each region assigned to the module

it was most often associated with (by taking the mode of the module assignment across iterations).

Negative values were treated asymmetrically (Rubinov and Sporns, 2011). To account for global

brain changes, between-regional correlations were de-meaned before they were entered into the

clustering analyses.
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Vidal-Piñeiro D, Walhovd KB, Storsve AB, Grydeland H, Rohani DA, Fjell AM. 2016. Accelerated longitudinal
gray/white matter contrast decline in aging in lightly myelinated cortical regions. Human Brain Mapping 37:
3669–3684. DOI: https://doi.org/10.1002/hbm.23267, PMID: 27228371

Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, Quinn BT, Salat D, Makris N, Fischl B.
2005. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging 26:
1261–1270. DOI: https://doi.org/10.1016/j.neurobiolaging.2005.05.020, PMID: 16005549

Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale
AM, Fjell AM. 2011. Consistent neuroanatomical age-related volume differences across multiple samples.
Neurobiology of Aging 32:916–932. DOI: https://doi.org/10.1016/j.neurobiolaging.2009.05.013, PMID: 195705
93

Walhovd KB, Krogsrud SK, Amlien IK, Bartsch H, Bjørnerud A, Due-Tønnessen P, Grydeland H, Hagler DJ,
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