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Application of the Firefly Algorithm to Optimal Operation
of Reservoirs with the Purpose of Irrigation Supply

and Hydropower Production
Irene Garousi-Nejad, S.M.ASCE1; Omid Bozorg-Haddad2; Hugo A. Loáiciga, Ph.D., P.E., F.ASCE3;

and Miguel A. Mariño, Ph.D., P.E., Dist.M.ASCE4

Abstract: Population growth and socioeconomic changes in developing countries over the past few decades have created severe stresses on
the available water resources across the world, particularly in arid and semiarid regions, which are predominant in Iran. Hence, the optimal
management of water resources is imperative. Reservoir operation is a challenging problem that involves complexities in terms of nonlinear
functions, larger numbers of decision variables, and multiple constraints. Evolutionary or metaheuristic algorithms have become an attractive
alternative to the classical methods for solving complex reservoir problems. This paper applies a metaheuristic algorithm named the firefly
algorithm (FA) to reservoir operation and demonstrates the superiority of this algorithm against the genetic algorithm (GA), a commonly used
optimization algorithm, using (1) five mathematical test functions, (2) the operation of a reservoir system with the purpose of irrigation
supply, and (3) the operation of a reservoir system with the purpose of hydropower production. The results demonstrate the superior per-
formance of the FA in terms of the convergence rate to global optima and of the variance of the results about global optima when compared
with the results of the GA. DOI: 10.1061/(ASCE)IR.1943-4774.0001064. © 2016 American Society of Civil Engineers.

Author keywords: Optimization; Reservoir operation; Irrigation supply; Hydropower production; Genetic algorithm; Firefly algorithm;
Aydoghmoush Reservoir; Karun-4 Reservoir.

Introduction

Among the various recent studies dealing with newly developed
optimization algorithms in several fields of water resources
systems analysis, such as reservoir operation (Ashofteh et al.
2013a; Ahmadi et al. 2014; Bolouri-Yazdeli et al. 2014; Ashofteh
et al. 2015a), groundwater resources (Fallah-Mehdipour 2013a;
Bozorg-Haddad et al. 2013), conjunctive use operation (Fallah-
Mehdipour 2013a), design operation of pumped storage and hydro-
power systems (Bozorg-Haddad et al. 2014a), flood management
(Bozorg-Haddad et al. 2015b), water project management (Orouji
et al. 2014), hydrology (Ashofteh et al. 2013b), qualitative manage-
ment of water resources systems (Orouji et al. 2013; Shokri et al.
2014; Bozorg-Haddad et al. 2015a), water distribution systems
(Soltanjalili et al. 2013; Seifollahi-Aghmiuni et al. 2013; Beygi

et al. 2014), agricultural crops (Ashofteh et al. 2014), sedimentation
(Shokri et al. 2013), and algorithmic developments (Ashofteh et al.
2015b), none has focused on the application of the firefly algorithm
(FA) to the optimal operation of reservoir systems with the
purposes of irrigation supply and hydropower production.

Optimization methods are classified in two major groups,
named classic algorithms and evolutionary or metaheuristic
algorithms (EAs). Some of the classic algorithms are linear pro-
gramming (LP), nonlinear programming (NLP), and dynamic pro-
gramming (DP), which have been widely applied to water resources
optimization problems. However, various limitations of the classic
optimization methods encouraged researchers to use EAs, which do
not have the typical shortcomings of classic algorithms. Some of
the EAs include the genetic algorithm (GA) (Holland 1975), the
simulated annealing algorithm (SA) (Kirkpatrick et al. 1983), ant
colony optimization algorithm (ACO) (Dorigo 1992), the differen-
tial evolution algorithm (DE) (Storn and Price 1995), particle
swarm optimization algorithm (PSO) (Kennedy and Eberhart
1995), the honeybee mating optimization algorithm (HBMO)
(Bozorg-Haddad et al. 2006), the intelligent water drops algorithm
(IWD) (Shah-Hosseini 2007), the imperialist competitive algorithm
(ICA) (Atashpaz-Gargari and Lucas 2007), the cuckoo search al-
gorithm (CS) (Yang and Deb 2009), and the water cycle algorithm
(WCA) (Eskandar et al. 2012). The application of some of the
aforementioned algorithms to reservoir operation is summarized
next.

Tospornsampan et al. (2005) proposed SA for the operation of a
10-reservoir system by maximizing the total efficiency of produc-
ing hydropower energy during 12 periods of operation. Results
showed the better performance of SA over GA. Jothiprakash and
Shanthi (2006) used GA to develop optimal operation rules of a
reservoir system in India. The objective function of this study
was to minimize the sum of the annual squared differences between
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the calculated release and the designed irrigation release. Results
showed the superiority of using the GA solution compared with
the actual operation program. Jalali et al. (2007) introduced a
multicolony ant algorithm (MCAA) to solve for the operation of
a 10-reservoir system by maximizing the total efficiency of produc-
ing hydropower energy during 12 periods of operation. The MCAA
performed better than the continuous differential dynamic program-
ming (CDDP) method employed by Murray and Yakowitz (1979)
to solve the same problem. However, the MCAA performance was
inferior to the GA used by Wardlaw and Sharif (1999) for the same
problem. In some cases, classical methods fail to solve specific op-
timization problems due to their complexity. Thus, EAs become an
alternative option. For example, Bozorg-Haddad et al. (2008) pro-
posed the HBMO algorithm to maximize the hydropower produc-
tion in a multireservoir system. The NLP method was unable to
achieve a solution to the problem under consideration. Yin and
Liu (2009) employed the DE optimization algorithm to maximize
hydropower production in a reservoir system. Their results were
superior to those calculated by DP from the standpoint of computa-
tional efforts. More recently, Ghimire and Reddy (2013) used PSO
to calculate optimal operation policies of a hydropower reservoir
system by minimizing the sum of the annual squared differences
between produced and target hydropower energy. Their policies in-
creased hydropower production by 3% when compared with the
energy produced by a conventional operation program.

Ashraf Vaghefi et al. (2012) introduced the ICA in the water
resources field to optimize the operation of the Sefidroud Reservoir
with the objective of controlling reservoir sediments. The studies of
Bozorg-Haddad et al. (2014b, c) exemplify the successful applica-
tion of newly developed EAs to optimal hydropower production.

The FA was introduced by Yang (2008). Yang (2009) applied
the FA to solve 10 multiobjective optimization test problems whose
results compared favorably with the GA and the PSO algorithm.
Yang (2010) merged the levy flight (LF) approach searching with
the FA and solved once more the 10 multiobjective optimization
test problems by applying the proposed hybrid algorithm. The re-
sults indicated that the success rate of FAwith levy flight LF algo-
rithm was better than that of the standard FA. Yang (2011) used
chaos for autotuning of the parameters of the algorithm. The results
of the cited study compared favorably with those of the standard FA
for the well-known problem of the welded beam. Yan et al. (2012)
developed the adaptive FA (AFA) to cope with large-dimensional-
ity optimization problems. The latter authors showed that the AFA
performed better with the 10 test problems than the standard FA,
DE, and PSO algorithms. Many studies have been devoted to im-
proving the searching accuracy of the FA and have shown its better
convergence rate than other algorithms. The advantage of FA from
the standpoint of speed of convergence has led to its adoption in
solving complex and nonlinear problems in different scientific
fields. In this context, the study of Abdullah et al. (2012) is note-
worthy because they introduced a new hybrid FA named hybrid
evolutionary FA (HEFA) in order to improve the searching
accuracy. This approach was a combination of the FA and the
DE algorithm with the goal of estimating the parameters of a non-
linear and complex biological model of large dimensionality. The
results showed that HEFA has an improved searching accuracy
compared with the GA, the PSO algorithm, and evolutionary pro-
gramming (EP).

Santos et al. (2013) calculated the amount of precipitation of a
region in South America. They computed the precipitation using
six different methods. In each of these methods, different effective
parameters were used to calculate the precipitation. The FA was
applied to find the optimal weights for the various methods. In
a comprehensive review of the FA, Fister et al. (2013) concluded

that the FA’s solving efficiency is explained by its capacity to solve
multimodal, nonlinear optimization problems. The FA is a gener-
alization of SA, PSO, and DE and has been proven to be an efficient
optimization tool in various fields of engineering.

The aim of this study is to implement the FA for solving two real
reservoir operation problems with the purposes of irrigation supply
and hydropower production. The FA was first employed herein to
solve five mathematical test functions and its superior performance
was confirmed comparing it with the GA, arguably the most
commonly used algorithm in many fields of optimization. There-
after, the performance of the FAwas evaluated by solving two real
reservoir operation problems with the purposes of (1) irrigation
supply, and (2) hydropower production. The former case study’s
objective function and constraints are nonlinear and complex. The
latter case study has a more complex simulation structure and a
larger operational period than the first case study. One reason
for evaluating the FA with hydropower optimization is the in-
creased demand for non-greenhouse-gas-emitting technology.
The results calculated with the FA were compared with the results
of NLP and the GA to assess its relative efficiency and effectiveness
in solving reservoir operation problems.

Methodology

This section is divided into five subsections. “Mathematical Test
Functions” introduces the mathematical test functions used to
validate the FA. “Reservoir Operation Model with Irrigation Supply
Purpose” and “Reservoir Operation Model with Hydropower
Production Purpose” present different reservoir operation models.
The former is related to irrigation supply purpose and the latter
is associated with hydropower production purpose. Thereafter,
“Firefly Algorithm” explains the FA and its optimization process.
Finally, “Penalty Functions” introduces the approach of penalty
functions, which are mainly used in the constrained optimization
problems.

Mathematical Test Functions

Several test functions were chosen to test the FA. These test func-
tions are (1) sphere, introduced by De Jong (1975), which is the
simplest of De Jong’s functions, and (2) Ackley reported (Ackley
1987), Styblinski-Tang reported by Styblinski and Tang (1990),
Rosenbrock defined by Rosenbrock (1960), and the Holder table
function. Table 1 shows the details of these test functions, where
fðx1; : : : ; xdÞ = objective function for x1 to xd decision variables;
di = counter for dimension; and d = total number of dimensions.

Reservoir Operation Model with Irrigation Supply
Purpose

The objective function of the reservoir operation model whose
purpose is irrigation supply and is expressed as follows:

Minimize OFIS ¼
XT
t¼1

�
Det − Ret
Demax

�
2

ð1Þ

in which OFIS = objective function for reservoir problem with ir-
rigation supply purpose; t = counter of periods; T = total number of
operation periods; Demax = maximum downstream agricultural
water demand during an operation period; Det = downstream agri-
cultural demand during period t; and Ret = reservoir release during
period t.

© ASCE 04016041-2 J. Irrig. Drain Eng.
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The reservoir storage equation is expressed is given by

Stþ1 ¼ St þQt − Losst − Ret − Spt ð2Þ

in which Stþ1 = reservoir storage volume at the beginning of oper-
ation period tþ 1; St = reservoir storage volume at the beginning of
operation period t; Qt ¼ monthly inflow volume to the reservoir
during period t; Losst = loss volume of water during period t;
and Spt = volume of spilled water during period t.

Eqs. (3) and (4) show the calculation of Losst and Spt,
respectively

Losst ¼ At × Evt; At ¼ g½St� ð3Þ

Spt ¼
�

0 if St ≤ Smax

Smax − St if St > Smax
ð4Þ

in which At = area of the reservoir lake at the beginning of oper-
ation period t and is a function of St; Evt ¼ depth of loss during the
period t; and Smax ¼ maximum allowable reservoir storages during
period t.

Constraints on reservoir storages and releases are respectively
expressed as follows:

0 ≤ Ret ≤ Det ð5Þ

Smin ≤ St ≤ Smax ð6Þ

in which Smin = minimum allowable reservoir storages during
period t.

Reservoir Operation Model with Hydropower
Production Purpose

The chief objective of hydropower reservoir operation problems is
to maximize the hydropower production or minimize the hydro-
power deficits. Eq. (7) expresses the objective function that min-
imizes hydropower production deficits

Minimize OFHP ¼ 1

T

�XT
t¼1

�
1 − Pt

PPC

�
2
�

ð7Þ

in which OFHP = objective function for reservoir problem with hy-
dropower production purpose; Pt = power generated by power
plant during period t; and PPC = total installed capacity of the
power plant.

The storage in the reservoir, the loss of water, and the water
spilled from reservoir are computed using Eqs. (2)–(4). Moreover,
constraints on reservoir storages are given by Eqs. (5) and (6).
Reservoir problems with hydropower production purpose have
other constraints.

The power generated by the power plant during period t is
computed as follows:

Pt ¼
γ 0 × η ×ΔHt × DisRet

106 × n
ð8Þ

in which γ 0 = specific weight water; η = efficiency of the power
plant; ΔHt = difference between the average level of water surface
and the tailwater at the beginning and the end of period t, which
is a function of DisRet and is assumed constant in this study;
DisRet = discharge of the water through power plant during period
t; and n = performance coefficient of the power plant.T
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The computations for ΔHt and DisRet are as follows:

ΔHt ¼
�
Htþ1 þHt

2

�
− TR; Ht ¼ k½St� ð9Þ

DisRet ¼
Ret
CFt

ð10Þ

in whichHt = water level at the beginning of period t;Htþ1 = water
level at the end of period t; TR = tailrace level; and CFt = conver-
sion factor from million cubic meters to cubic meters per second
during period t, and is calculated as follows:

CFt ¼
24 × 3,600

1,000,000
dayt ð11Þ

in which dayt = number of days in the operation period t.
Constraints on releases and generated powers are respectively

expressed as follows:

0 ≤ Pt ≤ PPC ð12Þ

Firefly Algorithm

The FA is inspired by the behavior of fireflies in nature. Fireflies
flash their stored energy as light in order to mate, hunt, or evade
predators. Fireflies produce attractiveness by shining light. Three
idealized rules are assumed in the FA as follows:
1. All fireflies are unisex so their attractiveness depends on the

amount of light flashed by them regardless of their sex.
2. The attractiveness of fireflies is proportional to their brightness.

Thus, for any two flashing fireflies, the firefly that flashes less
will move toward the firefly that flashes more. As the distance
between fireflies increases, the attractiveness and the brightness
of fireflies decreases. Thus, the movement of fireflies continues
in this manner until there is no brighter firefly in a group. Once
this happens the fireflies move randomly.

3. The brightness of a firefly is determined by an objective
function.
For simplicity, it is assumed that the attractiveness of a firefly is

determined by its brightness, which in turn is associated with the
encoded objective function. The attractiveness of a firefly can be
expressed as follows:

βðrÞ ¼ β0e−γr
2 ð13Þ

in which βðrÞ = firefly’s attractiveness; β0 = attractiveness at a dis-
tance equal to r ¼ 0; and γ = light absorption coefficient.

The distance r between a pair of fireflies i and j that are located
at xi and xj positions, respectively, is computed according to
Eq. (14)

rij ¼
��xi − xjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

ðxi;k − xj;kÞ2
vuut ð14Þ

in which rij = Cartesian distance between a pair of fireflies i and
j; kk distance vector between a pair of fireflies i and j in space;
xi;k = kth dimension of the spatial coordinate of the ith firefly’s
position; d = number of dimensions; and xj;k = kth dimension
of the spatial coordinate of the jth firefly’s position. Parameter
rij defined in Eq. (14) is not limited to the Euclidean distance.
In fact, any measure that can effectively characterize the quantities
of interests in the optimization problems can be used as the distance
depending on the type of the problem at hand (Yang 2013).

If a pair of fireflies i and j is to be considered so that firefly j is
better than firefly iin terms of brightness, then firefly i is attracted
by firefly j and will move toward the position of firefly j. As the
result of this movement, firefly i would be located at a new
position, which is computed by Eq. (15)

xnewi ¼ xi þ β0e
−γ℘2

ijðxj − xiÞ þ αðrand − 0.5Þ ð15Þ
in which xnewi and xi = new position of firefly i with less bright-
ness and current position of firefly i with less brightness, respec-
tively; xj = position of firefly j with more brightness; α = a
randomized parameter; and rand is a randomized value in the range
(0, 1). The second and third terms are due to the attraction and
randomization, respectively, according to Eq. (15).

Yang (2009) pointed out that for most implementations the value
of β0 can be considered equal to 1. Moreover, according to Yang
(2009), the range of values of α is (0, 1), even though Yang (2013)
remarked that it is better to use a time-dependent αdamped so that
randomness can be decreased gradually as the iterations proceed.
Recall that γ is a light absorption coefficient that takes values in the
range ð0;∞Þ, in theory. However, in practice it is usually taken to
be in the range (0.1, 10) (Yang 2009). The value of γ is key in
determining the convergence speed and the capability of the algo-
rithm. Thus, a sensitivity analysis of this parameter is of vital im-
portance. Fig. 1 illustrates the FA’s flowchart.

Penalty Functions

Penalty functions are introduced in constrained problems in a typ-
ical evolutionary optimization method. The combination of the
penalty functions and the objective function is named fitness func-
tion. Penalty functions can be applied in two ways, collected and
multiplied. In the multiplied state, the penalty is multiplied by the
objective function. In the collected state the penalty is added to the
objective function. The algebraic sign of multiplication or addition
depends on the type of problem under consideration. In minimiza-
tion or maximization problems the penalty functions are multiplied
or added with a positive or negative sign, respectively.

Case Studies

Two reservoir systems are studied in the present paper. Brief details
of study areas and data are presented in the following.

Aydoghmoush Reservoir with Irrigation Purpose

The rock fill Aydoghmoush Dam with a clay core is situated 23 km
southwest of the city of Mianeh in the East Azarbayejan province
of Iran. The dam site is located across the Aydoghmoush River in
the Caspian Sea catchment. The purpose of the dam is to develop
and improve irrigation with a cultivation area equal to 15 × 103 ha.
The length and width of the dam crest are 297 and 12 m, respec-
tively, while the height of the dam is 1,350 m above sea level. The
maximum and minimum storage volumes of the reservoir are
145.7 × 103 and 8.9 × 103 m3, respectively.

The average annual inflow to the Aydoghmoush Reservoir is
estimated to be 228 × 103 m3/month. A diagram of the monthly
inflow volume along with the monthly projected demand volume
for a 10-year period (1991–2000) are illustrated in Fig. 2(a), accord-
ing to which the maximum, average, and minimum volumes of water
demand are 39.57 × 106, 12.12 × 106, and 0 × 106 m3=month,
respectively. As shown in Fig. 2(a), the distributions of inflow
and demand time series are not equal in most periods. In the periods
for which inflow is considerable, the agricultural demand is less
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than inflow, and in periods with low inflow, demands exceed inflow
considerably. The discrepancy between water demand and inflow is
one of the reasons for constructing a reservoir. Furthermore, the
values of monthly evaporation depth are shown in Table 2 for
12 months (1 year) and is repeated for other years during the opera-
tional period.

Eq. (16) is a formula relating the area and volume of the
Aydoghmoush Reservoir

At ¼ −0.0002S2t þ 0.0804St þ 0.4093 ð16Þ
The penalty functions used in the Aydoghmoush Reservoir oper-
ation model are defined by Eqs. (17)–(19)

P1;t ¼
�
0 ifStþ1 > Smin
ðSmin−Stþ1Þ2

Smin
Otherwise

ð17Þ

in which P1;t = penalty applied to the violation of the minimum
storage in period t

P2;t ¼
�
0 if Stþ1 < Smax
ðStþ1−SmaxÞ2

Smax
Otherwise

ð18Þ

in which P2;t = penalty applied to the violation maximum storage in
period t

P3;t ¼
�

0
ðRet−DetÞ2

3,957

if Ret < Det
Otherwise

ð19Þ

in which P3;t = penalty applied to the violation release in period t.
The Aydoghmoush Basin was studied by Ashofteh et al. (2013a)

to survey the impact of climate change on reservoir performance
indices for agricultural water supply. Thus, pertinent information
and data of reservoir, river, and agricultural network of Aydogh-
moush was retrieved from the study by Ashofteh et al. (2013a).

Karun-4 Reservoir with Hydropower Production
Purpose

The double-arch concrete Karun-4 Dam is located 180 km south-
west of the city of Shahrekord in Chaharmahal and Bakhtiary
province of Iran across the Karun River, which is one of the largest
and longest rivers of Iran. The chief purpose of Karun-4 Dam is
hydropower generation. The potential energy production of the
Karun-4 Reservoir equals 2,107 MWh annually. Maximum and
minimum storage volumes of the reservoir are 2,019 × 103 and
1,144.29 × 103 m3=month, respectively. Moreover, the maximum
release volume is 450 × 103 m3=month. The power plant capacity
(PPC), performance coefficient, and efficiency of Karun-4 power
plant are equal to 1,000 × 106 W, 20%, and 88%, respectively.

No modification and 
no change is 

conducted in fireflies’ 
positions

Start

Determine the number or the amount of:

D
ec

is
io

n 
va

ri
ab

le
s

It
er

at
io

n

St
oc

ha
st

ic
 D

is
tr

ib
ut

io
n 

Fu
nc

ti
on

 o
f 

m
ov

em
en

t

  A
tt

ra
ct

iv
en

es
s 

at

L
ig

ht
 a

bs
or

pt
io

n 
co

ef
fi

ci
en

t

R
an

do
m

iz
at

io
n 

pa
ra

m
et

er

D
am

pe
d 

pa
ra

m
et

er

Produce the initial firefly population randomly

Calculate and evaluate the attractiveness 
(objective function) for each firefly 

Select the best firefly or fireflies based on 
attractiveness (objective function) Modify new fireflies population:

Firefly i moves toward 
firefly j and new 

positions of fireflies 
are determined by 

applying 
modification and 
randomization 

operators 
 on all  decision 

variables 

Select the best fireflies according to 
attractiveness (objective function) as 

new population for next iteration 

Satisfy stopping criteria

No

Yes

End

Report final population as the solution

Define objective function

If firefly i is worse than 
firefly j in terms of attractiveness 

(evaluation function)

No Yes

Calculate and evaluate the attractiveness 
(objective function) for each firefly 

Fig. 1. Flowchart of the firefly algorithm
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The average annual inflow to the Karun-4 Reservoir is estimated
to be 6,045 × 103 m3=month. A diagram of the monthly inflow
volume along with monthly projected demand volume for a 42-year
period (1957–1998) is depicted in Fig. 2(b). Furthermore, the
values of monthly evaporation depth are shown in Table 2 for
12 months (1 year) and is repeated for other years during the opera-
tional period.

Eqs. (20) and (21) express the relations between (1) area and
volume and (2) height and volume of the Karun-4 Reservoir,
respectively

At ¼ −3 × 10−6S2t þ 0.019413St þ 1.915948 ð20Þ

Ht ¼ −3 × 10−5S2t þ 0.13810St þ 873.66716 ð21Þ

Table 2. Values of Monthly Evaporation Depth in the Aydoghmoush and Karun-4 Reservoirs

Reservoir

Time period

1 2 3 4 5 6 7 8 9 10 11 12

Aydoghmoush (mm) 26.2 41.5 85.7 132.1 183.6 233.5 265.8 239.6 165.5 101.1 45.4 26.1
Karun-4 (mm) 158.4 77.9 55.2 49.9 64.4 80.7 131.1 165.8 238.3 253.3 259.8 208.2
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Fig. 2. Diagrams of monthly (a) inflow along with monthly projected demand volume for a 10-year period (1991–2000) of Aydoghmoush Reservoir;
(b) inflow for a 42-year period (1957–1998) of Karun-4 Reservoir

Table 3. Characteristics of the GA and FA Used with the Test Functions

Method Characteristics Sphere Ackley Styblinski-Tang Rosenbrock Holder table

GA Decision variables 2 2 2 2 2
Population 50 80 50 50 50
Iterations 500 500 100 500 100

Selection type Roulette wheel Roulette wheel Roulette wheel Roulette wheel Roulette wheel
Crossover type One-point One-point One-point One-point One-point
Mutation type Uniform Uniform Uniform Uniform Uniform

Pc 0.2 0.2 0.1 0.1 0.2
Pm 0.02 0.03 0.02 0.02 0.02

FA Decision variables 2 2 2 2 2
Population 50 80 50 50 50
Iteration 500 500 100 500 100

Random function Uniform Uniform Uniform Uniform Uniform

β0

1 1 1 1 1

γ

5 0.01 0.01 0.01 0.1

α

0.005 0.1 0.001 0.01 0.01

Damped coefficient of α 0.99 0.99 0.99 0.99 0.99
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Table 4. Results of Five Independent Runs of GA and FA for Mathematical Test Functions

Method Objective function value Sphere Ackley Styblinski-Tang Rosenbrock Holder table

GA Global optimum 0 0 −78.33198 0 −19.2085
Run 1 4.86 × 10−5 0.004378 −77.4015 0.004458 −19.1968
Run 2 6.76 × 10−4 0.008095 −78.2894 0.004678 −19.1632
Run 3 1.78 × 10−4 0.014437 −78.1063 0.004104 −19.1846
Run 4 6.60 × 10−5 0.074197 −78.2797 0.531337 −19.1830
Run 5 9.79 × 10−4 0.014561 −78.1107 0.500002 −19.2076

Minimum (best) 4.86 × 10−5 0.004378 −78.2894 0.004104 −19.2076
Average 3.89 × 10−4 0.023134 −78.0375 0.208916 −19.1870

Maximum (worst) 9.79 × 10−4 0.074197 −77.4015 0.531337 −19.1632
Standard deviation 4.17 × 10−4 0.028873 0.3663 0.280246 0.016648

FA Global optimum 0 0 −78.33198 0 −19.2085
Run 1 5.03 × 10−14 3.19 × 10−7 −78.3323 1.03 × 10−13 −19.2085
Run 2 2.57 × 10−14 1.71 × 10−7 −78.2910 1.69 × 10−13 −19.2085
Run 3 1.61 × 10−14 3.97 × 10−7 −78.3323 1.63 × 10−13 −19.2084
Run 4 4.82 × 10−15 7.28 × 10−7 −78.3323 1.65 × 10−14 −19.2085
Run 5 5.05 × 10−14 1.71 × 10−7 −78.0723 3.77 × 10−14 −19.2085

Minimum (best) 4.82 × 10−15 1.71 × 10−7 −78.3323 1.65 × 10−14 −19.2085
Average 2.95 × 10−14 3.57 × 10−7 −78.2720 9.78 × 10−14 −19.2085

Maximum (worst) 5.05 × 10−14 7.28 × 10−7 −78.0723 1.69 × 10−13 −19.2084
Standard deviation 2.05 × 10−14 2.29 × 10−7 0.11308 6.99 × 10−14 4.5 × 10−5
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Fig. 3. Average rates of convergence over five runs obtained from GA and FA for (a) sphere; (b) Ackley; (c) Styblinski-Tang; (d) Rosenbrock;
(e) Holder table
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In addition, the formula relating discharge (0.0033DisRet) and the
height of water (in relation to sea level) of the Karun-4 River (TRt)
is given by Eq. (22)

TRt ¼ 0.000016DisRe2t þ 0.0033DisRet þ 843 ð22Þ
The applied penalty functions in the Aydoghmoush Reservoir

operation model are defined by Eqs. (23)–(25)

P4;t ¼
�

0
Smin−Stþ1

Smin

if Stþ1 > Smin

Otherwise
ð23Þ

in which P4;t penalty applied to the of the minimum storage in
period t

P5;t ¼
�

0
Stþ1−Smax

Smax

if Stþ1 < Smax

Otherwise
ð24Þ

in which P5;t penalty applied to the violation of the maximum
storage in period t

P6;t ¼
�

0 if Pt < PPC
Pt−PPC
PPC Otherwise ð25Þ

in which P6;t = penalty applied to the deviation from the capacity of
power plant in period t.

The global optima of the two reservoir operation models, Ay-
doghmoush and Karun-4, were obtained with NLP in the LINGO
program. The problems were also solved with the GA and FA in the
MATLAB software and the optimal operation rules were developed
with the former three methods. The best solutions from the GA and
FA strongly depend on the best settings of algorithmic parameters.
Thus, a sensitivity analysis is herein performed for the parameters
of the GA and the FA. The results of the sensitivity analysis are
presented in the results section. The process of producing an initial
population in the GA and the FA is random. Therefore, the final
value of the objective function differs each time the algorithm is
run. For this reason, the algorithm is run several times and the aver-
age of the calculated objective functions is reported as the solution
to use for the purpose of interalgorithmic comparisons. Bozorg-
Haddad et al. (2008) tested the HBMO convergence in reservoir
operation with 10 runs. Guo et al. (2013) tested the convergence
of the nondominated PSO (NSPSO) algorithm with 25 independent
runs. Zhang et al. (2013) considered 100 runs as the number of
independent runs in order to survey the convergence of the multi-
guide PSO (MGPSO) algorithm in a multireservoir operation prob-
lem. This study found the GA and FA parameters and the results of
convergence and calculated releases, storages, and power produc-
tion of the best of five runs were calculated and compared with
those computed with the NLP method. All the results and conclu-
sions are summarized next.

Results and Discussions

This section is divided into three subsections. “Mathematical Test
Functions” presents the results of mathematical test functions. “Ay-
doghmoush Reservoir Operation” presents the results from NLP,
GA, and FA for the Aydoghmoush Reservoir operation problem.
“Karun-4 Reservoir Operation” reports the results of NLP, GA,
and FA for the Karun-4 Reservoir operation problem.

Mathematical Test Functions

The five test functions are (1) sphere, (2) Ackley, (3) Styblinski-
Tang, (4) Rosenbrock, and (5) Holder table, which were solved

using the GA and the FA implemented in the MATLAB 12
software so that after a primary sensitivity analysis in GA, the
selection, crossover function, mutation function, crossover proba-
bility (Pc), and mutation probability (Pm) parameters are listed in
Table 3. The sensitivity analysis with the FA were conducted
according to Yang’s (2009) recommendations.

Table 5. Characteristics of the GA and FA Used with the Aydoghmoush
and Karun-4 Reservoirs

Method Characteristics
Aydoghmoush
Reservoir

Karun-4
Reservoir

GA Decision variables 120 504
Population 10 10
Iteration 1,000 10,000

Selection type Roulette wheel Roulette wheel
Crossover type Two-point Two-point
Mutation type Uniform Uniform

Pc 0.1 0.5
Pm 0.01 0.01

FA Decision variables 120 504
Population 10 10
Iteration 1,000 10,000

Random function Uniform Uniform

β0

2 2

γ

0.01 10

α

1 1

Damped coefficient of α 0.99 0.99

Table 6. Results of Five Independent Runs of GA and FA for the
Aydoghmoush and Karun-4 Reservoirs

Method Objective function value
Aydoghmoush
Reservoir

Karun-4
Reservoir

GA Global optimum (NLP solution) 3.3727 0.0045
Run 1 6.4770 0.0094
Run 2 6.8940 0.0096
Run 3 7.0980 0.0089
Run 4 6.5290 0.0099
Run 5 6.3790 0.0096

Minimum (best) 6.3790 0.0089
Average 6.6754 0.0095

Maximum (worst) 7.0980 0.0099
Standard deviation 0.3063 0.0004

FA Global optimum (NLP solution) 3.3727 0.0045
Run 1 3.5581 0.0085
Run 2 3.6166 0.0082
Run 3 3.5365 0.0079
Run 4 3.6898 0.0078
Run 5 3.6427 0.0086

Minimum (best) 3.5365 0.0078
Average 3.6087 0.0082

Maximum (worst) 3.6898 0.0086
Standard deviation 0.0624 0.0003
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It is seen in Table 4 that the FA produced the objective function
values with lower standard deviation over five independent runs
compared with the GA. Moreover, the best (minimum) values of
objective functions for all test problems obtained by the FA are
closer to the global optimum, so that FA could precisely reach
the global optimum value of the Holder table test function. The

results of FA for sphere, Ackley, and Rosenbrock, which have
global optima equal to 0, are acceptable with a very close approxi-
mation. The best calculated objective function value of the FA for
the Styblinski-Tang problem differs less than 5 × 10−6 from the
global optimum, whereas the best obtained objective function value
of GA differs approximately 0.0005 from the global optimum
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Fig. 4. Minimum (best), average, and maximum (worst) rates of convergence over five runs for reservoir of (a) Aydoghmoush obtained from GA;
(b) Aydoghmoush obtained from FA; (c) Karun-4 obtained from GA; (d) Karun-4 obtained from FA
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Fig. 5. Monthly reservoir releases of the best run of five runs for (a) Aydoghmoush obtained from GA; (b) Aydoghmoush obtained from FA;
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for the same problem. In other words, the results of the GA for
Styblinski-Tang is 100 times worse compared with the result of
the FA in term of closeness to the global optimum. The average
rates of convergence versus the number of functional evaluations
of the GA and the FA over five runs are illustrated in Fig. 3 for
each of the five test functions. It is concluded from Fig. 3 that
the FA converges faster than GA for all test functions and it con-
verges closer to the global optimum than the GA.

Aydoghmoush Reservoir Operation

This subsection presents the results of NLP, GA, and FA methods
applied to the Aydoghmoush Reservoir. The value of the objective
function evaluated by NLP using LINGO 14.0 optimization soft-
ware equals 3.3727. Furthermore, the GA and the FA were imple-
mented in the MATLAB 12 software and their parameters were set
equal to the values listed in Table 5 after a primary sensitivity analy-
sis (10,010 evaluations). The results listed in Table 6 indicate that
the best value of the objective function over five runs obtained
with the GA and the FA are 6.3790 and 3.5365, respectively. In
fact, the best value of the objective function of the FA is approx-
imately 95% of the global optimal solution (3.3727). Moreover, it
can be seen that the FA produced objective function values with
lower standard deviation (0.06) over five independent runs com-
pared with GA (0.31). This means that the variations of GA results
are approximately five times larger than those of FA based on the
calculated standard deviations.

Figs. 4(a and b) also illustrates the minimum (best), the average,
and the maximum (worst) rates of convergence over five runs for
the Aydoghmoush Reservoir obtained from the GA and the FA. In
accordance with Fig. 4(a) it can be seen that the GA converged after
approximately 2,000 evaluations. Fig. 4(b) shows that the FA con-
verged after 1,000 functional evaluations. It is concluded that the
FA achieved a faster convergence rate compared with the GA.
Figs. 5 and 6 demonstrate monthly reservoir releases and storages
of the best run of five runs for the Aydoghmoush Reservoir

obtained from both algorithms versus NLP results. It is seen in
Figs. 5(a and b) that the FA releases are very close to the NLP re-
leases. Figs. 6(a and b) show that there are large differences be-
tween the GA storages and NLP storages, particularly in the last
40 periods of operation, compared with those of the FA.

Karun-4 Reservoir Operation

The value of the objective function evaluated by NLP for this prob-
lem is equal to 0.0045. The values of the GA and FA parameters
are listed in Table 5 after a primary sensitivity analysis (100,010
evaluations). It is seen in Table 6 that the best values of the objec-
tive function over five runs calculated with the GA and the A for
Karun-4 equal 0.0089 and 0.0078, respectively. The best value of
the objective function of the FA differs approximately 73% from
the global optimal solution (3.3727). The best value of the objective
function of the GA differs approximately 97% from the global op-
timum solution. Moreover, it can be seen that the FA yielded ob-
jective function values with lower standard deviation (0.0003) over
five independent runs compared with GA (0.0004). In other words,
based on the standard deviation, the variations of GA results are
approximately 1.3 times larger than those of FA.

Figs. 4(c and d) depict the minimum (best), the average, and the
maximum (worst) rates of convergence over five runs for the
Karun-4 Reservoir obtained from GA and FA. Fig. 4(c) shows that
the GA converged after approximately 100,000 functional evalua-
tions, whereas Fig. 4(d) shows the FA after 20,000 functional eval-
uations. Hence, a comparison of these two figures indicates that the
convergence speed of the FA is much higher than that of the GA.
Figs. 5 and 6 show monthly reservoir releases and storages of the
best run of five runs for Karun-4 Reservoir obtained from both
algorithms versus the NLP results, respectively. According to
Figs. 5(c and d), the FA releases are closer to the NLP releases than
those of the GA. Similarly, with regard to Figs. 6(c and d), the
differences between GA storages and NLP storages are larger
than those between the FA and NLP, particularly at low values.
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Figs. 7(a and b) depict the computed power generation with NLP
versus the GA and FA results. Based on Fig. 7 it is inferred that the
deviations of the GA from NLP are larger than those of the FA.
Moreover, the power generated by the FA is closer to NLP than
those generated by the GA. Fig. 7(b) clearly demonstrates the lower
standard deviation of the FA compared with the GA.

Concluding Remarks

This study applied the FA to solve two long-term single-reservoir
operations with different purposes, namely irrigation supply and
hydropower production. First, the performance of the FA was ex-
amined with five different mathematical test functions in which the
FA converged more rapidly than the GA to near-global solutions.
Also, FA was able to obtain the closer value of the objective func-
tion to the global solution compared with the GA. Thereafter, the
results of reservoir operation systems partially revealed the high
potential of FA and emphasized its capacity in solving complex
constrained optimization problems. The results of the NLP method
were herein considered as the global optimal solutions.

It is concluded that the FA achieved closer average value of ob-
jective function (3.6078) to NLP (3.3727) than the average value
of objective function obtained from GA (6.6754) concerning the
Aydoghmoush Reservoir dealing with irrigation supply. Moreover,
the results of five runs of the FA exhibited lower standard deviation
(0.06) than the GA (0.31), which is nearly five times worse.

The results of the Karun-4 Reservoir with the purpose of hydro-
power production demonstrate that the FAwas capable of reaching
better optimal solutions than the GA. The FA converged more rap-
idly than the GA and its average value of the objective function
obtained (0.0082) is closer to NLP’s (0.0045). The GA’s average
value of the objective function (0.0095) is approximately 1.2 times
worse than FA compared with the NLP. This paper’s results show
that the FA achieved better solutions and with faster convergence
rate than the GA in all the test problems.
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