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A Deep Learning Approach to Automatic 3D Bone Shape Modeling From Clinical MRI 

Jacob F. Oeding 

Abstract 

Statistical shape modeling has been employed to study three-dimensional bony morphological 

features of the tibia and femur as potential risk factors for ACL injury and negative outcomes 

after ACL reconstruction. However, prior studies have been limited in size, largely due to the 

need for either CT imaging or high-resolution MRI with tedious manual segmentation. In this 

study, a deep learning model was trained to automatically segment tibia and femur bones from 

clinical MRI scans. The model was used to infer segmentations from a large dataset (> 300 

images) of preoperative and postoperative clinical MR images from patients who had underwent 

ACL reconstruction and had clinical, two-dimensional PD-weighted MRIs. Three-dimensional 

bone shape models were constructed from inferred segmentations. PCA was performed, and 

results were compared between datasets of same knees imaged 6 months apart. Correlations 

between same knee principal components were moderate to strong, and point-to-point deviations 

between same knee vertices were small, indicating that reliable and repeatable statistical shape 

modeling can be obtained from clinical MRI sequences. 
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Chapter 1: Introduction 

Knee bony morphology is an important factor in surgical decision-making and surgical 

outcomes. Multiple bone shape features have been identified as risk factors for ACL injury and 

poor outcomes after ACL reconstruction (ACLR).(1) Thus, an accurate evaluation of 

tibiofemoral bone shape and anatomy may support improved preventative care, pre-operative 

planning, and post-surgical outcomes. For example, increased posterior femoral condylar depth 

is associated with higher failure rates in ACL reconstructed knees.(2) It has been proposed that 

the increased length of lateral and anterolateral knee structures during flexion and the increased 

relative laxity of these structures during extension — when most non-contact ACL injuries occur 

— result in increased rotational laxity that ultimately increases the risk for poor ACLR outcomes 

and reinjury.(3) Significant evidence suggests that the addition of lateral extra-articular tenodesis 

(LET) to ACLR results in improvements in rotational stability and better clinical outcomes 

compared with ACLR alone in high-risk patients.(4-6) Thus, identification of patients with bone 

shape features such as increased posterior femoral condyle depths could prove beneficial for 

surgical outcomes. 

 

While three-dimensional reconstruction via computed tomography (CT) provides the current 

gold standard for measurement of complex bony shape structures, previous work has shown that 

high-resolution MRI with specialized sequences can produce 3D reconstructions similar to those 

produced from CT.(7) These MR imaging techniques have been used in prior studies to 

investigate tibiofemoral bone shape and its association with ACLR outcomes.(8-10) However, 

these techniques are not feasible for routine clinical use, as they require specialized sequences 

and extensive manual post-processing. As a result, the sizes of prior studies evaluating 
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tibiofemoral bony morphology have been limited. Ideally, three-dimensional bone shape analysis 

could be automatically performed using readily available clinical MRIs from pre-operative and 

post-operative evaluations. Thus, the goal of this thesis is to develop a deep learning approach to 

produce automatic 3D bone shape models from 2D clinical MR images. As a result, the use of 

larger clinical datasets to more reliably characterize bony morphological characteristics 

associated with ACL injury is made possible. 
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Chapter 2: Methods 

 Clinical Data: MRI scans from 68 patients who had clinical, two-dimensional PD-weighted (3.5 

mm slice thickness) knee MRI sequences were obtained from a previously acquired dataset. 

Diagnoses for all patients included ACL tears. Both contralateral and ipsilateral knees were 

imaged at three time points, one pre-operatively and two post-operatively.  

 

Deep Learning Algorithm Development & Testing: To develop an automatic femur and tibia 

segmentation framework, a training and validation set split based on age, sex, BMI, and timing 

of scan (pre- or post-operative) was generated and used to train a deep convolutional neural 

network (CNN). Both pre-operative and post-surgical reconstruction scans were included in the 

dataset (22 pre-operative, 18 post-operative). The tibia and femur of each MRI was manually 

segmented with custom, in-house developed Matlab-based software. Twenty-eight of the 

manually segmented clinical, PD-weighted MRI volumes were selected to populate the training 

set, while six volumes were reserved for the validation set, which was used to evaluate the 

generalization capability of our machine learning system. The remaining six volumes were 

reserved for a test set, which was used to evaluate the final model performance. 

 

Two separate deep learning models were trained, and information from each was used to 

construct a final volumetric segmentation to be used for the remainder of the shape modeling 

pipeline. One model was trained using only slices for which there was bone manually segmented 

on the ground truth. This was done to improve identification of the intricate details and shapes of 

the bone on slices for which there is bone and produce a more precise segmentation. A second 

model was trained on all slices of the MRI, regardless of whether bone was present, to improve 
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the ability of our deep learning framework to identify whether bone is present on an image. For 

the model combining the two, if bone was determined to be present on an image using the second 

model, the first model was used to infer the segmentation. 

 

Shape Modeling: Femur and tibia segmentations were inferred from the 2D images. Prior to 

inference, all 2D volumes were up-sampled to obtain a slice thickness of 0.5 mm. The resulting 

segmentations were used to produce 3D triangulated meshes using a Marching Cube 

algorithm.(11) Vertices of the triangulated meshes were then nonrigidly registered using 

FOCUSR, as described by Lombaert et al.(12) 

 

Principal component analysis (PCA) was then performed to 1) simplify the complexity of the 

shape variation for analysis and 2) provide a means for evaluating the repeatability and reliability 

of our model. Via PCA, vertex coordinates were transformed to orthonormal bases. Each 

principle component (PC) mode was uncorrelated. The direction of maximum bone shape 

variance was indicated by the first PC, with each subsequent PC indicating the next most 

significant bone shape. Given the size of our dataset, 10 PCs were determined sufficient to 

capture most of the variance in each bone and provide appropriate validation when used to 

evaluate the repeatability of our model. A subset of 42 patients was selected and PCA was 

performed on two separate datasets of contralateral knee MRIs taken 6 months apart. 

 

Statistical Analysis: To assess the repeatability of the SSM pipeline, correlations between 

corresponding PCs in each dataset were determined. Additionally, the average vertex-to-vertex 

distance between same knees at both timepoints was computed and compared with the average 
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vertex-to-vertex distance between each knee and all other knees. Pearson’s coefficients were 

computed and p-values generated to test the hypothesis of no correlation against the alternative 

hypothesis of a nonzero correlation. Significance was defined as p < 0.05. 
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Chapter 3: Results 

Segmentation evaluation was conducted via the volumetric Dice Score Coefficient (DSC). Table 

1 shows the quantitative performance of each model on the separate test set of 6 MRI scans.  

 

Table 1: Model performance. The combined model uses the results of both the model trained 
on only slices manually segmented on the ground truth as well as the model trained on all 
slices regardless of whether a segmentation exists on the ground truth for a particular slice. 
Model DSC - Femur (%) DSC - Tibia (%) 

All Slices 92.73 ± 2.16 92.90 ± 2.17 

Only Segmented 91.87 ± 4.53 94.98 ± 1.36 

Combined 95.29 ± 0.44 95.52 ± 0.75 

 

The average DSC for the separate test set of 6 MRI scans was 95.29 ± 0.44 for the femur and 

95.52 ± 0.75 for the tibia using the combined model. Figure 1 displays a representative slice 

with automatic femur and tibia segmentations overlayed. 

 

 

 

 

 

 

 
 

Figure 1: DSC (%): 95.29 ± 0.44% (Femur), 95.52 ± 0.75% (Tibia). 
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PCA results are displayed in Table 2. All correlations between corresponding PCs measured 

from contralateral knees at both timepoints were moderate to strong and statistically significant, 

with R values ranging from 0.413-0.936 for the femur and 0.372-0.907 for the tibia, indicating 

good repeatability.  

 

Among each of the 59,759 vertices describing the femur, the average same knee deviation of 

each vertex from the corresponding vertex at the second scan was 2.73 ± 1.69 mm. For the tibia, 

the average same knee deviation of each of the 36,679 vertices was 2.41 ± 1.37 mm. When each 

knee was measured against all other knees in the dataset, average deviations of 5.61 ± 0.95 mm 

Table 2: Correlation results from same knee multiple measurement PCA. Bolded values indicate 
p < 0.05. 

 
Femur/R 1 2 3 4 5 6 7 8 9 10 

1 0.936 0.098 0.048 0.333 0.116 0.252 0.072 0.126 0.160 0.202 
2 0.199 0.668 0.214 0.316 0.184 0.246 0.091 0.047 0.262 0.228 
3 0.016 0.082 0.413 0.237 0.013 0.195 0.126 0.102 0.194 0.111 
4 0.130 0.236 0.021 0.563 0.046 0.021 0.235 0.082 0.027 0.002 
5 0.048 0.158 0.095 0.061 0.792 0.042 0.113 0.223 0.145 0.235 
6 0.039 0.048 0.017 0.112 0.159 0.474 0.204 0.162 0.010 0.013 
7 0.039 0.045 0.068 0.009 0.169 0.197 0.415 0.044 0.059 0.121 
8 0.010 0.107 0.131 0.241 0.039 0.144 0.262 0.673 0.011 0.169 
9 0.042 0.097 0.062 0.093 0.005 0.168 0.006 0.122 0.550 0.153 

10 0.044 0.162 0.015 0.052 0.157 0.221 0.095 0.036 0.116 0.425 
Tibia/R 1 2 3 4 5 6 7 8 9 10 

1 0.907 0.199 0.363 0.194 0.418 0.269 0.336 0.249 0.167 0.032 
2 0.096 0.869 0.200 0.062 0.153 0.028 0.054 0.037 0.085 0.097 
3 0.099 0.221 0.372 0.268 0.044 0.135 0.067 0.148 0.192 0.252 
4 0.027 0.139 0.291 0.578 0.004 0.015 0.090 0.046 0.139 0.064 
5 0.184 0.019 0.020 0.008 0.472 0.011 0.055 0.022 0.009 0.386 
6 0.047 0.013 0.134 0.111 0.047 0.730 0.313 0.056 0.159 0.295 
7 0.111 0.089 0.127 0.105 0.207 0.194 0.543 0.140 0.300 0.064 
8 0.006 0.088 0.127 0.075 0.150 0.064 0.303 0.600 0.195 0.096 
9 0.006 0.033 0.068 0.078 0.024 0.177 0.410 0.028 0.702 0.106 

10 0.113 0.175 0.037 0.057 0.021 0.146 0.206 0.026 0.074 0.441 
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and 6.22 ± 1.05 mm were obtained for the femur and tibia, respectively. These results are shown 

in Figure 2.  

 

For a qualitative comparison, Figure 3 shows representative fully automatic reconstructions of a 

single patient’s femur and tibia from clinical MRI scans obtained 6 months apart. 
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Figure 2: Comparison of deviations of mesh vertices from same knee and all other knees imaged 6 

months apart. 
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Figure 3: Qualitative comparison between clinical MRI-based 3D reconstructions at 

baseline (left) and follow-up (right). 
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Chapter 4: Discussion 

This study presents a fully automatic, deep learning-based strategy for extracting tibiofemoral 

bone shape from clinical MRI scans. The methodology presented herein enables the use of 

clinical MRI for 3D SSM, providing for large-scale studies with the potential to discover new 

associations between bony morphology, injury risk, and outcomes for knee conditions such as 

ACL tears. 

 

Excellent segmentation performance and reliable PCA was demonstrated using a deep learning 

model and statistical shape modeling pipeline on clinical MRI scans. Between the two datasets of 

contralateral knee MRIs taken at separate post-operative timepoints, the model was able to 

reliably and repeatably determine the shape variants most significant among our cohort of 42 

patients, as indicated by moderate to strong correlations among PCs. Additionally, significantly 

small deviations in vertex-to-vertex distances between corresponding 3D reconstructions were 

observed for same knees measured 6 months apart. Further studies will validate these 

measurements relative to CT or high-resolution MRI. 
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