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A mind that is full of conclusions is a dead mind, it is not a living mind.
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provides an isometric embedding with respect to the Wasserstein-2 distance and provide necessary
bounds when we can achieve a pre-specified linear separation level in the LOT embedding space.
Second, we produce a computationally feasible algorithm to recover low-dimensional structures
in measure-valued data by using the LOT embedding along with dimensionality reduction

techniques. Using computational methods for solving optimal transport problems such as the
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sampling rates. Third, we study structured approximations of measures in Wasserstein space by a
scaled Voronoi partition of R? generated from a full rank lattice. We show that these structured
approximations match rates of optimal quantizers and empirical measure approximation in most
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enough. Finally, we study methods for comparing probability measures by analyzing a neural
network two-sample test. In particular, we perform time-analysis on a related neural tangent
kernel (NTK) two-sample test and extend the analysis to the neural network two-sample test with
a small-time training regime. We also show the amount of time needed before the two-sample
test detects a deviation € > 0 in the case the probability measures considered are different versus

when they are the same.
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Chapter 1

Introduction

This thesis considers studying measure-valued data and showcases a variety of techniques
for studying measures or probability distributions. In this chapter, we discuss motivation for such
theory, a preliminary background for some of the ideas used in the rest of the thesis, and general

overview of the rest of the thesis.

1.1 Motivation

In practice, the structure of data for analysis depends on the domain studied and range
anywhere from cases where each data point is an n-dimensional vector to cases where each data
point is a time-series of mathematical objects. For our case, we study measure-valued data. In
particular, each observed data point can be thought of as a measure or a finite sample from a
measure. This type of data practically arises as point clouds of information so that each data point
is a point cloud of possibly different sizes. Situations encountering this type of data have become
increasingly frequent in practical applications.

For example, biologists often consider a bulk samples of cells from a specimen as one data
point so that each data point is indeed thought of as a point cloud [[19, 29,[101]. In image analysis,

the pixels in each image can be normalized so that each image yields a probability measure for



each of the RGB values on the pixel grid [39, 78, [71}93]]; thus, each image can be thought of as a
probability density. In neural network training and analysis, the hidden representations of data in
neural networks can be thought of as point clouds approximating some measure and evolution of
those point clouds is essentially a time-series of measures. Viewing neural network training as a
flow of measures in the hidden representation space provides a gamut of tools at the disposal of
the data scientist.

At the core of all the data analysis examples mentioned is the fundamental problem of
comparing point clouds, or more generally, probability measures. The traditional methods of
comparing probability measures such as the popular Kullback-Leibler (KL) divergence [60] as
well as Maximum Mean Discrepancy (MMD) [47] come with their fair share of difficulties. In
particular, KL-divergence blows up to +c when the measures compared have non-overlapping
support. On the other hand, since kernel MMD is the norm of the difference of mean embeddings
(with approximately norm 1), comparing measures with disjoint support leads to a saturation level
of about v/2. Moreover, kernel MMD depends on the associated reproducing kernel Hilbert space
and lacks some amount of interpretability useful for analysis. Optimal transport (OT) has risen as
a particularly powerful method for comparing probability measures and providing some strong
interpretability since the distance metric using optimal transport naturally gives rise to a geometry
for the space of probability measures. Once a method for comparing measures is established,
we can focus on how to solve run-of-the-mill machine learning and statistics problems such
as classification, regression, unsupervised dimensionality reduction, and two-sample testing on
the space of probability measures. The next section will discuss some fundamentals of OT and
two-sample testing tools and provide the necessary framework to discuss the overview of the rest

of the thesis.



1.2 Background

1.2.1 Optimal Transport

Gaining significant importance in recent years, optimal transport (OT) arises as the most
natural methodology for computing distance between measures [91]]. The central problem that OT
solves is finding methods to transport the mass of one probability measure to another probability
measure. This can be done with a transport map when the associated measures do not need to
be split or with a transport plan which allows for mass splitting. With this in mind, the optimal
transport distance between two probability measures is calculated by finding the transport map or
transport plan that minimizes a transportation cost, which is usually the distance metric on the
underlying space.

More rigorously, let P> (X ) denote the set of all probability measures on a metric space X
with finite second moment. Given u, v € P(X), a transport plan that transports u to v is given by
a product measure Y with marginals p and v. We denote the set of all transport plans for 4 and v

by I'(u,v). The Wasserstein-p distance between measures u and v is now given by

Wynov) = (ot [ d(x,yy’dv(x,y))l/p.

Yel(uv

Under regularity assumptions, solving the optimal transport problem yields an optimal trans-
port (OT) map T’ so that the minimizing product measure is of the form (u, T, ﬁ’u) where
Tﬂvﬁ,u(A) = ,u(T#V_] (A)) =v(A) [17]. We will equivalently denote the space of measures with
the W),-distance metric as the Wasserstein-p space and just say “Wasserstein” space when p = 2.
Building classifiers and regressors for measure-valued data with finite samples will become simple
after a transformation of measures, called Linearized Optimal Transport (LOT) or Cumulative
Distribution Transform (CDT) [[1], to a space that is already amenable to machine learning since

the space of measures is not conducive to standard machine learning techniques and algorithms



due to its nonlinearity.

1.2.2 Two-Sample Tests

A more simple question when comparing two distributions is essentially whether they are
the same or not, and a traditional method to solve this problem is a two-sample hypothesis test.
We will consider a neural network two-sample test in Chapter [5] but to give a brief overview, let
us cover what the two-sample test exactly is. Assume that you are given two datasets, say P and
0, and you want to test whether or not these datasets came from the same probability measure or
not. In particular, we want to assess whether to accept the null hypothesis Hy or reject it for the

alternative hypothesis Hy, where

Hy:p=gq, Hy:p#gq,

with p being the density generating samples for P and ¢ being the density generating samples for
Q. Given an estimator f that trains on training datasets with labels, say 1 and —1 respectively, a

two-sample test can be constructed as

Hp—HQ = (]EXNP - Ewa)f(x)-

Given a threshold T > 0, we reject the null for the alternative if |up —ug| > 7. Initially, [62]
showed properties and analyzed performance of the so-called Classifier Two-Sample Test (C2ST)
and specifically showcased theoretically what the statistical power of such two-sample tests. Soon,
[477] developed two-sample tests corresponding to kernels, which was further expanded to neural

tangent kernels by [30]].



1.3 Overview

The thesis will be split into four chapters, not including this one, covering the following

material.

1. Chapter 2} This chapter is based on the paper [57], where the author of this dissertation is
the main author. Given a reference measure ¢ € P>(R?) and a target measure u € P5(R9),
the author essentially studies the “Linearized Optimal Transport” (LOT) embedding, where
the optimal transport map 75, discussed in Section embeds probability measures into
an L?-space. Using the regular L>-distance in this space, the author discusses when the L*-
distance equals the W>-distance on probability measures so that the LOT embedding is an
isometry. Additionally, the author shows necessary conditions on a dataset of measures that
will ensure linear separability in the LOT embedding space with a pre-specified separation
level. Finally, the author uses multiple reference distributions to produce better separation

guarantees.

2. Chapter [3} This chapter is based on the paper [32], where the author of this dissertation
is the main author. Using the framework from Chapter 2] the author applies the LOT em-
bedding to introduce LOT Wassmap, a computationally feasible algorithm to approximate
low-dimensional structures in the Wasserstein space using manifold learning algorithms,
the Sinkhorn algorithm, and LOT embeddings. This algorithm avoids computing a pairwise
distance matrix and significantly reduces computational cost. Moreover, the PI provided
guarantees on the embedding quality under such approximations, including when explicit
descriptions of the probability measures are not available and one must deal with finite
samples instead. These approximations are guaranteed by showing that pairwise distances
of estimated optimal transport maps converge to the true optimal transport map with rates

depending on the sample sizes of the measures involved.

3. Chapter @ This chapter is based on (insert reference here), where the author of this



dissertation is a co-author. This chapter considers structured approximation of measures
in Wasserstein space W,(R?) for p € [1,0) by discrete and piecewise constant measures
based on a scaled Voronoi partition of R?. We show that if a full rank lattice A is scaled
by a factor of 1 € (0, 1], then approximation of a measure based on the Voronoi partition
of hA is O(h) regardless of d or p. We then use a covering argument to show that N-term
approximations of compactly supported measures is O(N ’5) which matches known rates
for optimal quantizers and empirical measure approximation in most instances. Finally, we

extend these results to noncompactly supported measures with sufficient decay.

. Chapter [5} This chapter is based on (insert reference here), where the author of this
dissertation is the main author of the paper. This chapter constructs a neural network two-
sample test and analyzes the behavior of the test in terms of training time. In particular, we
approximate the finite-sample neural network dynamics and population-level neural network
dynamics with the zero-time neural tangent kernel (NTK) population-level dynamics. The
zero-time NTK two-sample test grows as a function of the zero-time kernel eigenvalues and
projection of an approximated function on the associated eigenfunctions. We relate these
dynamics to the finite-sample neural network two-sample test as well as the populationlevel

neural network two-sample test.



Chapter 2

Linearized Optimal Transport

JOINT WORK WITH HARISH KANNAN, CAROLINE MOOSMULLER, ALEX
CLONINGER

In this chapter, we study supervised learning tasks on the space of probability measures.
We approach this problem by embedding the space of probability measures into L? spaces using
the optimal transport framework. In the embedding spaces, regular machine learning techniques
are used to achieve linear separability. This idea has proved successful in applications and
when the classes to be separated are generated by shifts and scalings of a fixed measure. This
paper extends the class of elementary transformations suitable for the framework to families
of shearings, describing conditions under which two classes of sheared distributions can be
linearly separated. We furthermore give necessary bounds on the transformations to achieve a
pre-specified separation level, and show how multiple embeddings can be used to allow for larger

families of transformations. We demonstrate our results on image classification tasks.



2.1 Introduction

We consider the problem of classifying probability measures y; on R” based on a finite
set of pre-classified training data {(u;,y;)}Y |, where y; denote the labels. The aim is to use the
given training data to build a function f that assigns a probability measure to its correct label, i.e.
we study supervised learning techniques on the space of probability measures.

The problem of classifying probability measures rather than points in R” has a number of
applications, a few examples being classification of population groups [33]], and classification
of flow cytometry and other measurements of cell or gene populations per person [19, 29, [101]].
Note that for application purposes, we need to consider samples of probability measures y;, hence
the task requires one to meaningfully compare and classify point clouds.

The largest issue associated with this classification problem is the generation of features
of y; that can be used to build a classifier f. Many methods use an embedding idea to transform
the set of probability measures into a Hilbert space in which regular machine learning techniques
can be applied for the classification task, e.g. embeddings through moments or kernels [73,76].

In this paper we are interested in such embeddings based on the optimal transport frame-
work [91]. Optimal transport gives rise to a natural distance on the space of probability measures
via the Wasserstein distance, which quantifies the minimal work necessary to move one distribu-
tion into another using an optimal transport plan. Optimal transport has gained high interest in the
machine learning community in recent years, for example for generative models, semi-supervised
learning or imaging applications [[10} 82, 85].

We use the optimal transport plan or map to build an embedding of probability measures
into an L2-space known as “Linear Optimal Transportation” (LOT) [94, [78, [1} (71, 45]] or “Monge

embedding” [68]. LOT is a set of transformations based on optimal transport maps, which map a



distribution u to the optimal transport map that takes a fixed reference distribution G to u:
u—T§, where TS := arg min / |7 (x) — x|j3do(x), (2.1)
Tl

where IT5 denotes the set of measure preserving maps from o to u. Through the embedding [2.1)),
the optimal transport map to a fixed reference G is used as a feature of p.

Note that LOT takes the manifold of probability measures into a Hilbert space of L>
functions. This makes LOT particularly interesting as a feature space. Indeed, it has been
demonstrated in various applications that within the LOT embedding space, classes of probability
measures can be well separated with linear machine learning tools. The main applications concern
signal and image classification tasks [59} [78| [71], such as distinguishing facial expressions,
separating healthy from cancerous tissue classes [93]], and visualizing phenotypic differences
between types of cells [12].

While the LOT embedding space is well studied in 1-dimension [78]], since LOT can be
thought of as a generalized CDF, many questions remain open in higher dimensions. This has to
do with the fact that in higher dimensions, there is a large family of potential group actions that
can be applied to a distribution ; (e.g., shifts, scalings, shearings, rotations), and ITg contains a
large number of measure preserving maps.

It has been shown that shifts and scalings behave well with respect to the LOT embedding
[1, 71, 78], meaning that two classes of probability measures obtained from scaling or shifting
of a fixed measure can be linearly separated in the LOT embedding space. The reason lies in a
property we refer to as the “compatibility condition”, which is satisfied by shifts and scalings
[, [71]]. This property describes an interplay between LOT and the pushforward operator, or in
terms of Riemannian geometry, the invertability of the exponential map [45)]. Similarly, small
perturbations of the distributions in these classes can still be linearly separated under certain

minimal separation conditions [71].



The contributions of this paper are threefold. We first describe conditions under which
families of shearings satisfy the compatibility condition, enlarging the space of functions for
which linear classification results hold in the LOT embedding space (Section [2.3). The second
contribution concerns binary classification results with pre-specified level of separation (Sec-
tion 2.4). We give necessary bounds on the classes of probability measures to achieve linear
separation in the embedding space with given separation level. The bounds are in terms of the
parameters associated with the set of elementary transformations that are used to create the two
classes. In the third part (Section [2.5), we study embeddings using multiple references. Based on
the set of elementary transformations, we quantify the number references needed to achieve a
desired separation level in the embedding space. The paper closes with classification experiments

on sheared distributions.

2.2 Tools from optimal transport

This paper deals with probability measures on R”, i.e. with elements of the space P(R").
We mostly deal with probability measures that have bounded second moment, and denote the
respective space by P, (R"). The Lebesgue measure is denoted by A.

To any probability measure G, we assign the function space L*>(R”", ), which is equipped

with the L?-norm with respect to o:

1713 = [17Gl3do).

If a measure G is absolutely continuous with respect to A, written as ¢ < A, then there

exists a density f5 : R” — R such that

qm:Ak@Mm,
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with A C R” measurable. For the most part, the probability measures we consider are absolutely
continuous with respect to A.

A function S : R" — R" gives rise to the pushforward measure of G:
S;6(A) = o(S(A)). (2.2)

where A C R” measurable. Throughout this paper, we denote the Jacobian of a function S by Js.

Given two measures, 6 and u there may exist many maps S such that §y6 = u. In order to
find a unique map that pushes ¢ into y, the theory of optimal transport [91] imposes an “optimality
condition” on the map S. It has to minimize the overall cost of pushing ¢ into u, where cost is

measured by a metric in the underlying space (here we use the Euclidean distance in R"):

[ 11560 - xlBdo(x). 23

If such a cost minimizing function exists, then

Walo0” = min [ 50~ s/Bdo(). 2.4)

is called the Wasserstein-2 distance between ¢ and u. Note that the Wasserstein problem can also
be considered for different norms (like p-norm) and on Riemannian manifolds [17, 91,167, 3]].

Brenier’s theorem [[17]] states that under the assumption of 6 < A, a unique map exists
that pushes ¢ into y and minimizes (2.3)). We call this map “the optimal transport from G to u”
and denote it by T5'.

We furthermore make use of the following result:

Theorem 2.1 (Brenier’s theorem [[17]). If 6 < A, the optimal transport map T5 is uniquely
defined as the gradient of a convex function @, i.e. Ty (x) = V@(x), where @ is the unique convex

function that satisfies (V@)y6 = . Uniqueness of @ is up to an additive constant.

11



2.2.1 Linear optimal transport embeddings

In this section, we introduce linear optimal transport embeddings, as proposed by [94, 78,
45]). A fixed reference measure G gives rise to an embedding of P> (R") into L?(R", 5) via the
map

ps TY. 2.5)

We denote this map by Fg, and call it “LOT” or “LOT embedding” (sometimes Fs is called a
Monge map as well [68]). The LOT embedding can be very useful as a feature space to use linear
machine learning techniques to classify subsets of P (R") [71,78]]. Other fields of application
include the approximation of the Wasserstein distance with a linear [*-distance [71}168]], and fast
barycenter computation and clustering [68]].

From a theoretical point of view, the regularity of has been studied in [68, 45].
Indeed, the Holder regularity of (2.5)) is not better than 1,/2. We also mention the results of [15]],
where a map related to LOT is analyzed, namely ¢ — 75

A central property in the study of LOT is the so-called compatibility condition [/1,1]. 1t

describes an interplay between LOT and the pushforward operator (4.1).

Definition 2.2. Fix o,u € P(R") with 6 < A. The LOT embedding Fs is called compatible with

the u-pushforward of a function S € L>(R", ) if
Fo(Syu) = So Fo(u).
Note that the compatibility condition of Definition[d.2]can also be written as
To* — SoTH.

Considering the manifold (5 (R"), W, ) with exponential map (the pushforward operator: exp4(S) =

S30) [45]], LOT can be viewed as the exponential map’s right-inverse (i.e. exps oFg = id).

12



For 6 = u, the compatibility condition forces LOT to be a left-inverse as well (i.e. F5o
expg = id).
Under the assumption of the compatibility condition, a series of interesting results can be

derived. First, the Wasserstein-2 distance can be computed from the linear L?-distance,

Wa S (w1, m2) = || Fo(m) — Fo(u2) || (2.6)

if uy, up have been obtained from a fixed template u via pushforwards of two functions Sy, S for

which the compatibility condition holds [[71], i.e. in this case

W (S1gat, Sazpt) = WS (S1apt, San). (2.7)

This is of particular interest when trying to compute the pairwise distance between many measures
{mi}ti=1....n, when each y; is obtained from a fixed template u via the process y; = Sigu with
compatible functions {S;};—1,.n ([1]] calls such a process an “algebraic generative model”). In
this setting, one can compute the N transport maps 75", and then compute (]; ) linear distances
via (2.6), which is computationally much cheaper (especially for large N), than computing (g’ )
transport maps (Wasserstein-2 distances). These results also generalize to when the compatibility
condition is only satisfied up to an error € > O [[71]. Then the linear distance approximates

W5 up to an error of order !/2

. Other approximation results (that do not need the compatibility
condition) can be found in [68]].

Second, under the assumption of the compatibility condition, convexity is preserved
under LOT [[I} 71]. In particular, if # C L?>(R",5) is a set of convex and compatible functions
with respect to ¢ and y, then Fo(H x ) is also convex, where H xu = {hyu: h € #H} (a similar
results holds for almost convex sets [71]). The preservation of convexity is crucial to deduce

linear separability results in the embedding space through the Hahn-Banach theorem (e.g. to

apply LOT in supervised learning). Indeed it has been shown that under the assumption of the

13



compatibility condition, binary classification of sets of probability measures can be achieved
in the LOT embedding space with linear methods, i.e. in the embedding space, a separating
hyperplane can be found [71, [78].

Yet the compatibility condition (Definition[4.2)) is very restrictive, and cannot be expected
to hold for all S. As of now, it is known that shifts and scalings, i.e. functions of the form
S(x) = cx+ b with ¢ > 0 and b € R", satisfy Definition for all choices of o,u [78, 1}, [71].
For fixed o, [1] also shows that for the compatibility condition to hold for all u, S has to be a
shift/scaling.

It is our aim to extend the set of compatible functions S beyond shifts and scalings to
make LOT applicable to a broader range of applications. In particular we study (generalized)
affine transformations. Note that because of the result in [1]], to increase the set of compatible
functions, the reference ¢ and the template u can no longer be chosen independently. In the next

section we establish necessary relationships between ¢, and S for Definition 4.2{to hold.

2.3 Compatibility condition for affine transformations

In this section we study the conditions under which affine transformations S(x) = Ax+b
(and generalizations of such transformations) satisfy the compatibility condition (Definition #.2)).
Our results show that fixing the reference ¢ and template u generates necessary conditions for
maps S to satisfy the compatibility conditions with respect to ¢ and u. Conversely, fixing the
template u and the transformations S generates necessary conditions that references ¢ must satisfy
in order for the compatibility condition to hold. These results strongly depend on the following

theorem.

Theorem 2.3 (Informal Statement of Theorem [2.30). Let o,u € P>(R") and let 6 < A. Let
S € C'(R",R") such that S = V@ for some twice differentiable function ¢. We also assume that

S satisfies the compatibility condition (Definition4.2). Then the Jacobian of S, Js, is symmetric

14



positive definite and shares the same eigenspaces as the Jacobians of T§ and ch W,
Proof. The proof can be found in Section 2.7 U
We get the following corollary.

Corollary 2.4. Let 6,u € P»(R") and let 6 < \. If S € C}(R",R") such that S = V@ for some
twice differentiable © and S satisfies the compatibility condition for 6 and y, then S is an optimal

transport map.

Proof. In particular, note that Theorem [2.3]states that if S = V¢ for some ¢; and if the compati-
bility condition holds, then V2@ is positive definite. Thus, ¢ must have been convex. In light of
Brenier’s theorem Theorem [2.1] S must be an optimal transport map. Informally, Theorem [2.3|
above states that this optimal transport map S must be transporting mass in the same directions

(eigenspaces) as T5. 0

We use Theorem [2.3]above to extend a form of LOT isometry to the case when S is an
affine transformation. The only caveat for our extension is that the orthonormal basis on which
we shear must be constant. The relevant function class for this setting is given in the following

definition.

Definition 2.5. Given an orthogonal matrix P € R"*", define the constant orthonormal basis

shears as the class of maps

fi:R—=R is monotonically

| L2((Px)2)
f(P) = {x 1 ~+ b : increasing and differentiable p
: and b € R"

where P is a row-permutation of the orthogonal matrix P.

15



Note that affine transformations S(x) = Ax+b with A = PTDP and d; > 0,i=1,...,n
(i.e. symmetric positive definite matrices diagonalizable by P), are elements of ¥ (P). Indeed,
choose fi(y) =diy,i=1,...,n.

Given a fixed template distribution u, we show that demanding that the compatibility
condition holds (under suitable conditions), if we fix either the reference distribution ¢ or the set of
transformations, then the other (either the reference or transformations) can be fully characterized.

Fixed Reference and Template: Assume we fix the template distribution u and reference
distribution . If the Jacobian of T§ (x) has spectral decomposition P D(x)P for a constant

orthogonal matrix P, then the set of compatible transformations can be fully characterized:

Theorem 2.6 (Conditions on transformations). Let 6,u € P>(R") with 6 < A. If the Jacobian of
TS has a constant orthonormal basis given by an orthogonal matrix P (i.e. Jpu(x) = P'D(x)P),
then F (P) is the set of transformations for which the compatibility condition (Definition
holds.

Proof. The proof of the theorem can be found in Section O
Example 2.7 (Gaussians). 7o illustrate Theorem[2.6] we provide a simple example with Gaussians.
If both & and u are Gaussian distributions, for example N (my,I) and N (my,X,), then

TH(x) = my+ 2 (x—my),
and Jpu(x) = Z;/ 2 If X, is positive definite, then it can be decomposed as PT DP. Therefore,
Theorem[2.6|allows all generalized shears in Definition [2.5|that point in the same direction as ¥;.

Fixed Shear and Template: Now we fix the transformation to be a type of generalized
shear and the template distribution u, and characterize the set of reference distributions such that

compatibility condition holds.

16



Theorem 2.8 (Conditions on reference distribution). Let P be an orthogonal matrix, let S(x) =
Pg(Px)+bforg(z) = |g (z1) ... gn(za)| :R" = R" where g;: R — R is differentiable and
beR", andlet u € P>(R") be a fixed template distribution withu < \. ThenX = {fyu: f € F(P)}

is the set of reference distributions such that the compatibility condition (Definition holds.
Proof. The proof can be found in Section [2.7 [

In Theorem note that the reference distributions in X end up being absolutely continu-
ous since they are the smooth pushforward of an absolutely continuous measure. Additionally,

we get the following corollary.

Corollary 2.9. Given the family of transformations of the form S(x) from Theorem above, ie.

for S in the set
{S(x) =P'g(Px)+b:hcR" g;:R—>R diﬁerentiable},
the set of reference distributions such that the compatibility condition holds for all of the transfor-

mations simultaneously is ¥ = {fyu: f € F(P)}.

Proof. Inspecting the proof of Theorem [2.8] we see that the set of reference distributions X does

not depend on the choice of functions g; : R — R but rather only on P. O

Remark 2.10. In Theorem 2.8} if we let gi(z;) = dizi for fixed d;, then S(x) = Ax+ b, where
A = PTDP. Thus, for a template distribution u € Po(R") withu <\, L= {fyu: f € F(P)} is
again the set of reference distributions such that the compatibility condition holds for constant

shears such as Ax+b.
A corollary of the theorems above is when the transformations used are constant shears.

Corollary 2.11. Consider an affine transformation S(x) = Ax+ b, where A is symmetric positive

definite with orthonormal basis given by an orthogonal matrix P. For a template distribution
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ue P (R") withu <A X={fuu: f € F(P)} is the set of reference distributions such that the

compatibility condition holds.

Example 2.12 (Gaussians with fixed shear). 7o illustrate Theorem 2.5, we provide a simple
example again with Gaussians. Let y= N (my,1,). Consider a symmetric positive definite matrix
A with spectral decomposition A = P' AP and a corresponding fixed shear S(x) = Ax+ b for
some b € R", which yields the pushforward Sy = N (Am; + b,AA"). For simplicity, we will

check that the subset of compatible affine transformations

Faffine(P) = {f(x) = Cx+d: f € F(P)}

= {P'DPx+d:D;j=0Vi+# j,D;>0,d € R"}

yields reference distributions 6 € { fyur: f € Fugiine(P)} s0 that the compatibility condition hold.

In particular note that for f(x) = Cx+d = P' DPx+d, our reference distributions have the form
6 =N(Cm+d,CC") = N(Cmy +d,P" D*P).

Since the optimal transport map between two general Gaussians N (imy,X1) — N (i, X,) is

given by

see [87], we know that

T = my +(CCT) 2 (CCT)z(CCT) (x—Cm1 —d)

-

(CCT)—I/ZZEEQ)—I/ZZCA

—m+C ' (x—Cm —d)=C"'(x—d).

18



So we have that
SoT¥(x) =AC (x—d)+b.

On the other hand because C =P 'DP=C" and A=P"AP =AT (so that AC = CA), we have

that

To* = Amy +b+M(x — (Cmy +d))
M — (CCT>71/2((CCT)I/ZAAT<CCT>1/2)1/2(CC—F>71/2
_ Cfl(CAQC)I/Zcfl _ C*l(cZAZ)l/chl :Acfl

¢ _
= To"'(x) =Ami —Am; +b+AC™ ' (x—d) = So T§ (x).
0

So we actually get compatibility here and in section[2.12|we present a numerical validation of

this fact.

Shears are Not Compatible in General: Another consequence of Theorem [2.3|is that
non-trivial orthogonal transformations cannot be transformations that satisfy the compatibility

condition.

Theorem 2.13. Let 6 < A u € P (R"), and let S(x) = Ax+ b be a compatible transformation
(i.e SoTs = T(f *) such that b € R" is a shift and A € R™" is an orthogonal matrix. Then A must

be the identity.

Proof. The proof can be found in Section [2./ 0

2.4 Binary classification with pre-specified separation

The main application of LOT isometries is to embed a subset of P(R") into a linear

space where binary classification is easily accomplished via linear separability. We show that
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data generated from a suitably bounded set of transformations still allows one to have LOT linear
separability in a suitable supervised learning paradigm. We focus on classifying two classes. For
the multi-class classification problem, one can use these results to build an ensemble of one-v-one
classifiers.

Consider the following data-generating process:

Definition 2.14 (Elementary Transformation Generated Process). Consider a class of functions
H C{h:R" — R"}. Let uj or up be two probability measures. Then we call H xu; = {hyu
he H} and H xpp = {hypr : h € H} the measures generated from elementary transformation
H and py and H and o, respectively. Moreover, assume that H *uy have label y = 1 and H xu,

have label y = —1.

Given a reference ¢ and a set of measures Q, let F5(Q) be the embedding of Q into
the LOT space L?(R",5). Given the data generating process above, our goal is to show that the
linear separability of Fg(H *u;) and Fs(H % uy) is well characterizable with respect to H and
the distance between u; and yp. We summarize the main result in the theorem below with proof

given in Section 2.8}

Theorem 2.15. Consider distributions uy,u,06 € P>(R"), where uy and p have bounded sup-
port, Wasserstein-2 distance Wa(uy,u2) > 0, and 6 < A. Pick a separation level & such that

Wa(u1,u2) > & > 0 and an error level € > 0. Define L < M —¢. Let
H C{h:R"— R"|h =V for convex ¢, ||h—1I||,, <L,i € {1,2}}

be some convex set of transformations such that H is compatible for ¢ and u; as well as 6 and

L. Furthermore, define the e-tube of this set of transformations

He ={h:R" = R"| |h—hl|, <eic{l1,2},he H}.
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Then, the sets Fs(H* 1) and Fs(H * up) are linearly separable with separation at least 9.

Remark 2.16. In Theorem it should be emphasized that either 6 needs to be chosen to
be compatible with H and yy and uy or H needs to be chosen so that G is compatible with
uy as well as pp with respect to H. This can occur, for example, if we choose 6 = N(0,1) to
be an isotropic Gaussian and let uyy = N(0,X1) and pup = N(0,%5) be such that XXy = L%
(i.e. their covariances have the same orthonormal eigenbasis, say P), then H = F (P) from
Definition 2.5 works for compatibility according to Theorem [2.6] Another scenario would be
to consider absolutely continuous target measures uy and puy; with a constant speed geodesic
(4t )ef0,1), then Lemma 7.2.1 of [7] implies that
7 = 70 #0 o i,

which is essentially the compatibility condition with S = Tlff)l. In light of the proof for Theorem
we note that the Jacobian o (x) must have the same eigenspaces as J%l (T3°(x)). Now, let
Jou (x) = P(x) " diag(d(x))P(x) for some orthogonal matrix-valued and vector-valued function

Ty

defined by P(x) and D(x), respectively, with d(x) > 0. If there exists a map S such that
Js(x) = P(x) " diag(d(x))P(x)

for some other vector-valued function d (x) > 0, then S should also be compatible. To see this,

notice that (So T}, s = Syto = (TyS,WO)ﬁ,ut, and since JSoT;’O is symmetric positive-definite by
t

. S .
construction, we know that S o T,ﬁo = TMWO. In this case,

(S :R" = R"|Js(x) = P(x)" diag(d(x))P(x),d(x) > 0}

is a candidate for H.

Remark 2.17. The bounds on the function class H ensure that H *u; and H x uy are disjoint.
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However, note that there can still exist function classes H without a bound on it, where H * uy
and H « uy are still disjoint. For example, one can consider the case when H is the set of all
shifts and when uy and py are a uniform distribution on the unit square and an isotropic Gaussian.

In this case, the sets H »uy and H x uy are disjoint.

Remark 2.18. Notice that the functions F (P) from Deﬁnitionsatisfy the conditions of H being
the gradient of a convex function in Theoremabove. In particular, every S =P f(Px) € F (P)
can be written as S = VO for some convex ¢. To see this, let p;; denote the (i, j)th entry of P,

then we have that

o) = [ (150, ) ;= [ ¥ pissi(( L pues)a

Note that Jg()(s) = PTJf(px) (x) and

Ui ()i = 1! ( y Pim) Pii = Typwy(x) = diag(F'(Px))P
/=1

using the chain rule, where (f'(Px)); = f;((Px);). This tells us that Js()(x) = P diag(f'(Px))P
so Jg is symmetric. Since the f;’s are increasing and differentiable, it is immediate that Jg is

positive definite. This implies that ¢ is convex.

When we assume that # is compatible with respect to u; and u; and use either of these
templates as the reference distribution, we actually gain better results than the general separation

theorem above. The proof for the theorem below is in Section [2.8}

Theorem 2.19. Fix uy,uy € P>(R™) with finite support and py,u» < A. Let H be a convex set
of transformations that are compatible with uy and py (this includes shifts and scalings). Let

"7_43 = {hfi: ||h_h€”,uj <gj= 172}
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1. (Linear separability) If H % uy and H x u are disjoint, then F,, (H * 1) and Fy, (H * o)

are linearly separable.

2. (Linear separability of e-tube functions) If the minimal separation between H xuy and

H *u is greater than 2g, then Fy, (Hg * 1) and Fy, (He * 2 are linearly separable.
3. (Sufficient conditions for separation) If we assume:

(a) For every h € H and every x € R" that |h(x)||2 > V/2||x — xo|2 where xq is the mean

of the normalized measure |u; — ;|

1

Xp=——"—"
|l — 2| (R7)

[zl = el @),
Rn

(b) supy e gr 11— hlluy < Wa(ur,u2) —8—2¢ for § >0,
then Fy, (Hex 1) and Fy, (Hg* up) are separated by at least & > 0.

Remark 2.20. Notice that if we choose H to be shifts and scalings, the first statement of
Theorem[2.19)is the direct generalization of corollary 4.3 of [[71|] since shifts and scalings are

compatible with every probability measure.

Remark 2.21. Notice that in Theorem the condition Wa(u1,42) — 8 > Supy, jc 4/ | — hl|y, in

the third statement is essentially the same condition the one in Theorem[2.15|because by rewriting

Wal )8 Tpis comes from the fact

the condition in Theorem|2.15| we get sup,c 4/ ||h —1|[4, <

that

2sup |[h—1ly > sup ||h—hy > sup [lh—1ly — inf [[h—1]|,.
heH hheH heH he

If the problem setting allows I € H, then the right hand side is just sup,c 4/ ||h —1||y,. Thus, in
this case, Theorem is stronger than Theorem [2.15] since our function class has the larger

bound supy,c ¢ ||h— 1|, < Wa(ur,u2) — 0.
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Theorem [2.15] above acts as a blueprint for controlling the degree of separation in the

LOT embedding via the bounds of the function class # . For the specific setting of shears,
. . A is symmetric positive definite with
Hymm, = {Ax b (A) > yand e (4) < M, and |[b]> < Mb}’ (2.8)

we can choose Y, M, and M, in a way that guarantees that Fo(Hyam, 1) and Fo(Hyprm, * 12)

are o-separated.

Corollary 2.22. Consider two distributions uy and p, with Wasserstein-2 distance Wy (uy, ). Let

us denote Ry = MaXycqypp(u) [1X|l2 and Ry = max ey () [1X |2 For the function class of shears

M1 H2

Hym o and 6 <K A, we can ensure that Fs(Hy 0+ 1) and Fo(Hyp o0 *u2) are d-separated if

Case 1: assuming that W (u1, ) > (Ry 4+ R2) + 0, then M is chosen such that

Wa(u1,u2) — 8+ (R1 +R»)

2<M< )
- Ri+Ry

and

Case 2: assuming that & < Wa(uy,u2) < (Ry + Ry + ), then either M is chosen such that

Wa(u,u2) — 3+ (R + Ra)
Ri+R

1<M<

or Y is chosen such that

S O —Wa(ui,u2) +R1 +R;
- Ri+Ry ‘

Proof. This comes straight from Corollary provided that M, =0 and € = 0. [l
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2.5 Binary Classification with Multiple References

It is possible to achieve better separation with a larger function class than the class of
bounded shears described in Section [QE} The cost of this better separation, however, is to use
multiple LOT spaces. Note that once a set of two measures # *u; and # x uy are separable in
LOT space with respect to one reference (from Theorem , then # xu; and H x up must be
separable in LOT space with respect to multiple references.

First we must provide a couple of definitions to extend our framework to multiple refer-

ences.
Definition 2.23. Given a family of functions H and a family of N reference measures G1,...,0Oy,
the multiple reference LOT embedding of u, denoted Fy(u), is defined as

Fn(u) = Fo, (H *u) X ... X Fo (H *p).

Definition 2.24. Given 6" > 0 and (T y,...,Tnyu) € Fy(u) and (S1y,...,Sny) € Fn(Y), the

families are called &*-separable if the product metric on Fs, (P2) X ... X F5, (‘P2) satisfies

*

> &,
2

|| (dcl (T171u7 Tl,Y)’ tte ’dGN(TNW? TN,’Y))

where dg; is the metric corresponding to Fs;(Py) and | - ||2 is the regular {2-norm that we are

applying to the Euclidean point

(dcl (Ti s Tig)s - - doy (T TN,Y)> .
Lemma 2.25. Let u,y € P> with bounded support, € > 0, and

H={h:R" = R"h=V¢ for convex ¢, ||h—1||, <L,||h—1|y <L},
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where 2(L+¢€) < Wa(u,7y). Consider a desired separation level §*. If we have absolutely

continuous (with respect to the Lebesgue measure) reference measures G1,...,0n such that

H is compatible for 6; and p as well as 6; and Y for K of the reference measures, where
. 2

K> (W) , then Fy(u) and Fy(Y) are 8*-separable with respect to Hg and the given

family of reference measures.

Notice that the Lemma [2.25] allows one to pick a larger function class % and a small
separation level 0* than with just one reference measure; however, the number of LOT spaces
that you must embed into is the cost of this better performance.

A basic (well-known) exercise in linear algebra shows that in any finite dimensional vector

space V, for any 0 < r < p, and for x € V, we have

1

1
Ixllp < llxllr <n7r{lxlp.

Even though F5, () X ... X Fs, (%P,) is an infinite-dimensional space, the product metric on
this product space is actually acting on R X ... x R-. This means that the ¢, and ¢, norm
inequalities above hold for our product space when endowed with the product metric. This
essentially signals “stronger” linear separability.

To see this with two spaces, assume that Fg, (H * ) and Fg, (# x7y) are 8;-separated in

F5,(P>) and that Fy, (# *u) and Fg, (H x7y) are §,-separated in Fg, (P> ), then in the product space,
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we have

dGl (FGI (}[*l[’l)7F61 (}[*Y))
do, (Foy (H x 1), Fo, (H xY)) | lleo

max(91,0;) =

ds, (FG1 (}[*/J)aFm (—7—[*7))
do, (Foy (FH 5 1), Fo, (%)) | 12

IN

< \/_H do, (Fo, ( (H*pu), Fcl(ﬂ‘[*Y))

(o]

dGz Fs, }[*:u) Fﬁz(}[*Y))

= \/imax(Sl,Sg).

We are more interested, however, in providing lower bounds for the product ¢;-norm. To
investigate this, let’s assume that # is fixed and that we have N templates distributions G1,...,Cy.

Now if u is a generic distribution, let

Fn(u) = Fo, (H %) X Fo, (H % 1) X ... X Fo, (H x )

g FGI (?2) X ... X FGN(?Q,)

denote the embedding of H x u into the product LOT space defined by 1, ...,0y. We will now

prove the result.

Proof of Lemma From Theorem [2.15] we know that for every j, Fs;(H *u) and F;(H * )
can be §;-separated for some 8; < W (u,y) —2(L+¢€). Now notice that the degree of separation

in the product space is

N N
= | L &< (Wa(u,y) —2(L+¢))2 = VN(Wa(u,Y) — 2(L+€)).
j=1 j=l1
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Thus, if we want to be at least 8*-separated in the product space, then we must have

o1
& < < VN(Wa(u,y) —2(L+¢))
2
oy
5 2
= N>
(WZ(/'lv’Y) - 2(L+8))
So we’re done. O]

Example 2.26. To show the tradeoff of Lemma let’s try a multiple LOT embedding example

with Gaussians. Using the previous examples, assume that we have two template distributions
11

p = N(0,%1) and pr = N(0,%2). We know that Wa(u1,p)? = Tr(Z1 + X — 2(Z35,27)1/2).

Recalling that the optimal transport map from u to up is given by
s AEV 2 s i = Ay o,
we consider the set of shears
H={Ax:A=AT € R AAy sy, = ApsA, M1, = A = ml, = 0}

as our set of transformations, where the commuting property of A with Ay, ., ensures that H

compatible with u; and pp. To ensure separation, we use L < M, which is shown in
Section[2.9)to imply that
Wa (u1,42) — 8
max (|M —1[,[1—m|) < T
2maxj-1 2|27 F

Now let us define our reference distributions to be of the form 61 = (h1)su1 and 63 = (ha)yuo for
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hi(x) = A1x and hy(x) = Axx, where Ay,A, are chosen so that hy,hy € H, and so

= (h1)g1 = N(0,A1214] ), 02 = (h)gun = N(0,A2304, ).

Notice that the bounds on M and m imply that there are infinite choices of reference distributions

to choose from. Moreover, we show in Section 2.9 that

?WZ(HDHZ) 2 HTG}WI - chchj > ﬁWZ(/Jl,/JZ)

for our choices of reference distributions and any h,h € H. Now choosing N reference distribu-

tions, our multiple LOT embedding has minimal separation bounded below by

N
(hy) h
Z ||T Vg (o ti'“2|| > Z M2W2(p1,pz)2 = \/_—W2<.U1a.uz)

These choices of 61 and G, ensure that each reference is compatible with u; and H as well as
w and H. Notice that as & becomes closer to Wa(uy, 1), we find that both m and M become
closer to 1, which means that our set of shears become closer to the identity. Using multiple

LOT embeddings; however, we can actually use the maximal function class of shears H when

AR 22 —. To get the same separation with the largest

M:1+Mandm—l— H
F

2max - 12||): H 2max j— 12HZ

possible function class as when we have 8 > 0, we need

Wa (u1,u2) >2 Wa (a1 a0) =8
i3

2
(e (e )
2max;_i |2}/ 2max ;1 o||2}
> .
N< 1+ Wa (u1,412) = 1+ Wa (11 1) —

I/ZH

1/2
2max] ]2”2 2max_,-:132||2j HF
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Rearranging the inequality and squaring both sides, we get the following bound for N

N >

2jfg‘cll?§||2;/2||F+W2(u1,#2) 2 ZII.I;%HZ}/ZHF—Wz(u17u2)+5 4
( 5) ( >

1/2 1/2
2 max [[£3/°(|F + Wa(u1,2) - 2 max =}/ — Wa(ur, )
j=1.2 j=12

Thus, if needed, we can allow 0 to stay small (or even become zero), which would allow us to
use the maximal function class of shears H,; however, the cost of this larger function class and

separation level is increasing the number of reference distributions.

2.6 Numerical experiments

2.6.1 Binary classication of MNIST Images

In this section we present pairwise binary classification results on sheared MNIST images
which are motivated by the linear separability result presented in Corollary [2.22]and also illustrate

the benefit of using multiple references as indicated by lemma

The LOT embedding pipeline for an imageE]

1. Obtain the image represented as a n X n matrix of pixel values.

2. Assuming that the image is supported on a n X n grid on the unit square, obtain the point

cloud which forms the support of the pixel values corresponding to the image.

3. Obtain the discrete measure u induced by the image on the unit square. Each point in
the support of the image has a pixel value which (after normalization) will be the mass

associated with u .

'Code for our LOT classification experiments on MNIST images can be found at https:/github.com/srjr-
hkannan/LOTpython
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4. Let o denote a discrete reference measure El Compute the discrete transport coupling matrix
P5 ﬂ For each point x in the support of the reference 6, choose T3 (x) as the point in the
support of u such that T3 (x) = argmax p(y)Pg(x, y). Here P(x,y) denotes the amount of
mass transported from x € supp(c) to y € supp(u). This is done to extract an approximate

Monge map from the coupling matrix [[71].

5. The LOT embedding of the image corresponding to the reference G is chosen to be TH". Note
that 7,7 € R, where m denotes the size of the size of the support 6, i.e. m := |supp(c)|.
Henceforth this R?” vector will be referred to as the LOT feature corresponding to the

particular image that is being embedded.

(a) One Gaussian reference (b) Five Gaussian references

...............

..........................

...............

Figure 2.1: a) A Gaussian reference distribution approximated on a 28 x 28 grid. b) Five
different Gaussian distributions approximated on a 28 x 28 grid to be used as multiple reference
for LOT embedding.

2.6.2 Experimental settings

The MNIST images are sheared using the transformation described in Section [2.10|and

the values for each of the parameters Aj,A;,0,b are drawn randomly from a pre-fixed range for

%In case the desired reference is an absolutely continuous measure on the unit square, then we work with the
discrete measure it induces on the n X n grid on the unit square (See Figure @)
3https://pythonot.github.io/ [43]
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each image. We perform classification experiments for the MNIST images under two different
shearing conditions (See Figure [2.2). For one set of shearing conditions, termed as mild shearing
, the parameters of shearing for each image, A1, A, are randomly chosen in the interval [0.5,1.5],
0 is randomly chosen in the interval [0,360] degrees and the shifts b are randomly chosen in
the interval [—5,5]. For the other set of shearing conditions termed as severe shearing, the
parameters of shearing for each image, A1, A, are randomly chosen in the interval [0.5,2.5], 6
is randomly chosen in the interval [0,360] degrees and the shifts b are randomly chosen in the
interval [—5,5]. Then the LOT feature corresponding to each of the sheared images are computed
using the embedding pipeline described in subsection [2.6.1|and then classification experiments

are performed using Linear Discriminant Analysis (LDA) [S0] Iﬂ

To test the performance of LDA (Linear Discriminant Analysis) classification of two
distinct classes of MNIST [40] digits using LOT features, we study the test error of the LDA
classifier as a function of the number of training images chosen for each digit. For each fixed
number, N4y, of training images, we train the LDA classifier using a randomly chosen set of
N;rain 1mages from each digit class and test the classification results on a randomly chosen set
of 1000 test images from each digit class. We then repeat this experiment for each fixed N;4in
using 20 different randomly chosen set of training images (N4, images from each digit class)

and 1000 test images from each digit class.

2.6.3 Observations

In Figure [2.3| we report the mean test error for classification of MNIST ones and twos
and in Figure [2.4| we report the mean test error for classification of MNIST sevens and nines for
various choices of reference distributions and under different shearing conditions. Therein for

comparison, we also report the results obtained using the semi-discrete optimal transport [68]]

4https://scikit-learn.org/
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Figure 2.2: In each figure, the first row shows the true unsheared MNIST image. The second

row shows the corresponding mildly sheared MNIST image. The parameters (Section [2.10)

of shearing for each image, A, A, are randomly chosen in the interval [0.5,1.5], 6 is randomly

chosen in the interval [0,360] degrees and the shifts b are randomly chosen in the interval

[—5,5]. The third row shows the corresponding severely sheared MNIST image. The parameters

(Section 2.10) of shearing for each image, A;, A, are randomly chosen in the interval [0.5,2.5],

0 is randomly chosen in the interval [0,360] degrees and the shifts » are randomly chosen in the

interval [—5,5]
framework which uses a uniform reference measure. The corresponding standard deviations are
reported in Figures [2.8]and [2.9] We observe that the LOT framework is able to achieve low test
errors with a relatively low number of training images. Moreover we see that using multiple
references does indeed lead to a decrease in the classification error. Interestingly, we observe that
using multiple references also helps reduce over-fitting (See Figure [2.5). The trade-off observed
is that using multiple references increases the length of the feature vector while on the other hand
it leads to a decrease in the test error.

In Figure [2.6| we illustrate as a heat-map, the mean test errors for binary classification of

all pairs of MNIST digits using 50 training images per class and for different choices of references.

Also, in Table[2.1| we report the range of test errors and standard deviations observed across all the

classification experiments corresponding to Figure Further in Figure[2.11| for comparison, we
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report the classification results for sheared MNIST 7s and 9s using convolutional neural networks
with 1586 training parameters (labelled small CNN) and 3650 training parameters (labelled large

CNN) under identical training and testing conditions as that of the discrete LOT classifier.

(a) Test errors in classifying mildly sheared MNIST 1 and 2

(al) (a2) (a3)
0.10 Gaussian reference 0.10 Sheared MNIST images as references 0.10 Unsheared MNIST images as references
' -@- 1 references (652) ’ @~ 2 references (616) ' =@~ 2 references (622)
0.09 Q ~®- 5 references (1742) 0.09 ~®- 4 references (1072) 0.09 =@~ 4 references (1124)
- JRN ~@- SemiDiscrete OT uniform ref (1568) -@- 6 references (2186) -@- 6 references (1494)
o 008 . 0.08 ~-@- 8 references (2806) 0.08 @ -@- 8 references (2262)
- AN a =@~ 10 references (3676) \ ~@- 10 references (2888)
ﬁ 0.07 0.07 ~@- SemiDiscrete OT uniform ref (1568) 0.07 &. ~@- SemiDiscrete OT uniform ref (1568)
% 0.06 0.06 0.06
()]
= 0.05 : 0.05 0.05
s 0.04 0.04 0.04
(]
= 0.03 0.03 0.03
0.02 0.02 0.02
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of training images (for each label) Number of training images (for each label) Number of training images (for each label)
(b) Test errors in classifying severely sheared MNIST 1 and 2
(b1) (b2) (b3)
0.14 Gaussian reference 0.14 Sheared MNIST images as references 0.14 Unsheared MNIST images as references
' =-@- 1 references (668) ' =@~ 2 references (884) ' ~-@- 2 references (626)
> =@~ 5 references (1728) =@~ 4 references (2222) =@~ 4 references (1040)
«Q\ =@- SemiDiscrete OT uniform ref (1568) =@~ 6 references (2868) =@~ 6 references (1606)
s 0.12 N 0.12 =@~ 8 references (4406) 0.12 =@~ 8 references (2280)
- =@~ 10 references (5646) =@~ 10 references (2214)
‘I.i =@ SemiDiscrete OT uniform ref (1568) N =@- SemiDiscrete OT uniform ref (1568)
0.10 "N 0.10 *
-
] SO ~ W
|2 > ' \ o~ \“.E‘\tx - --°
c © 0.08 B —— 0.08 LN bl
~, -~ — . -~
© Lk W ¢ ST-e.
0 SNlgT=xog
= -
S 006 0.06 0.06 ®- 8
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of training images (for each label) Number of training images (for each label) Number of training images (for each label)

Figure 2.3: (a) Test errors for binary classification of mildly sheared MNIST 1s and 2s using
(al) Gaussian references (a2) sheared MNIST 1s and 2s as references (a3) unsheared MNIST 1s
and 2s as references. (b) Test errors for binary classification of severely sheared MNIST 1s and
2s using (b1) Gaussian references (b2) sheared MNIST 1s and 2s as references (b3) unsheared
MNIST 1s and 2s as references. In the cases where MNIST images are used as references,
the results are reported for the cases where the number of references used is 2i fori =1,---5
wherein i images from each class are randomly drawn to be used as references from a pool of
images that do not correspond to any of the training and testing images. For each fixed number
of training images per class, N;,4in, the mean test classification error averaged across 20 random
choices of N, training images (per class) and 1000 test images (per class) is reported. The
number inside the parenthesis in the legends of the images denote the length of the LOT feature
vector corresponding to the particular choice of references. In all figures, for comparison, the
results for classification using the semi discrete linear optimal transport framework which
uses the uniform measure as the reference is also reported. Standard deviations for each of the
corresponding classification tests are reported in the Figure@
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(a) Test errors in classifying mildly sheared MNIST 7 and 9

(a1) (a2) (a3)
0.20 Gaussian reference 0.20 Sheared MNIST images as references 0.20 Unsheared MNIST images as references
Q @~ 1 references (656) ' @~ 2 references (864) ' @~ 2 references (650)
= 0.18 ,\\ =@~ 5 references (1726) 0.18 =@~ 4 references (1590) 0.18 =@~ 4 references (1348)
o \ ~@- SemiDiscrete OT uniform ref (1568) -@- 6 references (2670) -@- 6 references (1682)
t 0.16 L3 -@- 8 references (2636) 0.16 ‘ =@~ 8 references (1968)
w \\ -®- 10 references (3448) Q‘ -®- 10 references (2776)
ﬁ 0.14 (}\\ =@~ SemiDiscrete OT uniform ref (1568) 0.14 ) =@ SemiDiscrete OT uniform ref (1568)
[}
= 0.12 0.12
c
© 0.10 0.10
[7]
= 0.08 0.08
0.06 0.06
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of training images (for each label) Number of training images (for each label) Number of training images (for each label)

(b) Test errors in classifying severely sheared MNIST 7 and 9

(b1) (b2) (b3)
Gaussian reference Sheared MNIST images as references Unsheared MNIST images as references
0.250 0.250 0.250
Q -@- 1 references (630) -@- 2 references (1686) =@~ 2 references (628)
IO- 0.225 \\ 5 references (1718) 0.225 4 references (3012) 0.225 4 references (1216)
i W\ =@~ SemiDiscrete OT uniform ref (1568) =@~ 6 references (4584) =@~ 6 references (1710)
u‘: 0.200 0200 & -@- 8 references (4626) 0.200 * -@- 8 references (2316)
\\ -®- 10 references (6082) -®- 10 references (3120)
"‘z 0.175 0.175 ~@- SemiDiscrete OT uniform ref (1568) 0.175 =@~ SemiDiscrete OT uniform ref (1568)
(]
= 0.150 0.150 0.150
g 0.125 0.125 0.125 =
9 "-.'- oy Mty
0.100 0.100 b e 0.100 ik Sayesin4
: = ;-‘-"\--n.n_a
0.075 0.075 0.075
0.050 0.050 0.050
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of training images (for each label) Number of training images (for each label) Number of training images (for each label)

Figure 2.4: (a) Test errors for binary classification of mildly sheared MNIST 7s and 9s using
(al) Gaussian references (a2) sheared MNIST 7s and 9s as references (a3) unsheared MNIST 7s
and 9s as references. (b) Test errors for binary classification of severely sheared MNIST 7s and
9s using (b1) Gaussian references (b2) sheared MNIST 7s and 9s as references (b3) unsheared
MNIST 7s and 9s as references. In the cases where MNIST images are used as references,
the results are reported for the cases where the number of references used is 2i fori =1,---5
wherein i images from each class are randomly drawn to be used as references from a pool of
images that do not correspond to any of the training and testing images. For each fixed number
of training images per class, N;4in, the mean test classification error averaged across 20 random
choices of N, training images (per class) and 1000 test images (per class) is reported. The
number inside the parenthesis in the legends of the images denote the length of the LOT feature
vector corresponding to the particular choice of references. In all figures, for comparison, the
results for classification using the semi discrete linear optimal transport framework [68] which
uses the uniform measure as the reference is also reported. Standard deviations for each of the
corresponding classification tests are reported in the Figure@

2.7 Compatibility Condition Proofs

Lemma 2.27. Suppose V is a finite-dimensional vector space, ¢ : V — V is a diagonalizable linear

map, and U C 'V is a O-invariant subspace. Then the restriction |y : U — U is diagonalizable.
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Figure 2.5: Illustration of the benefit of using multiple references to reduce overfitting in the
classification of severely sheared MNIST 7s and 9s using true MNIST images as references
under the same training and testing conditions of Figure @ (b3).

Table 2.1: Range of mean value and standard deviations of test errors for pairwise classification
of sheared MNIST images across all pairs of digits for various reference choices. The reported
values are across 20 experiments involving different choices of 50 randomly drawn training
images per class and 500 randomly drawn test images per class for each experiment.

Reference choice . Mean . STD deviation
Mild Severe Mild Severe
1 Gaussian [0.0083,0.1298]  [0.0198,0.2132] | [0.0064,0.0291]  [0.0108,0.0382]
2 MNIST [0.0078,0.0880]  [0.0220,0.1585] | [0.0056,0.0244]  [0.0111,0.0328]

Proof. LetAp,..., A be distinct eigenvalues of ¢. We will denote by E (A, ) the eigenspace of ¢
corresponding to eigenvalue A;. Since ¢ is diagonalizable over V, we can represent V as a direct

sum

V=EM,0)& & E(Am0).

This means exactly that any vector v is given by

V=Wl wy

where w; € E();,¢). As U is a finite dimensional vector space, we know that there exists a basis
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(a) Test errors for mildly sheared MNIST images (b) Test errors for severely sheared MNIST images

(al) 1 Gaussian reference (b1) 1 Gaussian reference
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Digits
(a2) 2 unsheared MNSIT images as references (b2) 2 unsheared MNSIT images as references
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Figure 2.6: (a) Test errors for binary classification of all pairs of mildly sheared MNIST images
using (al) one Gaussian reference (a2) two unsheared MNIST images as references. (b) Test
errors for binary classification of all pairs of mildly sheared MNIST images using (b1) one
Gaussian reference (b2) two unsheared MNIST images as references. For each given pair of
digits, in the case of MNIST images as references (a2),(b2), one image corresponding to each
class is randomly drawn to serve as the references. The reported error is a mean value 20
experiments involving different choices of 50 randomly drawn training images per class and 500
randomly drawn test images per class for each experiment. The range of standard deviations for
the test errors for each case is reported in Table@

0

Digits
9 8 7 6 5 4 3 2
7 6 5 4 3 2 1

8

7 6 5 4 3 2
7 6 5 4 3 2 1

8

for U given by {u,...,u;}. Let us consider the linear map

i) =[] AI—olv)u.

j=1,....m

J#i
Note that this linear map is commutative in its order of composition. We now will take every

basis vector u; and represent it in terms of eigenvector. Note that because u; is a vector in V, we
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(a) LDA separation for mild shearing (b) LDA separation for severe shearing
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Figure 2.7: Visualization of separation in the LDA projection using LOT features with 2
unsheared MNIST images as references for 50 training images per class corresponding to (a)
mildly sheared MNIST sevens and nines (b) severely sheared MNIST sevens and nines. The
y-axis denotes the value of the projection onto the LDA separating line for the two classes, and
the x-axis denotes an ordering of the MNIST images.

find that there exists eigenvectors w1 € E(A1,0),...,wi n € E(Ay,0) such that
ur=wii1+wiz+...,Wim.

Now let us create a set W = {wi.1,...,wi2}. Note that

since U is ¢-invariant. Because this happens for arbitrary i, we know that wy ; € U for all i. Note,
that this set is linearly independent since each wy ; comes from a different eigenspace. We repeat
this for u; to obtain Wj, and note that Wj C U. Now, let us define ‘61 Wj — W. Note that this
is a spanning set of eigenvectors for U, and we can make this intojg linearly independent set
that still spans U by throwing away the linearly dependent vectors. Note that because of finite
dimensionality, this process will stop, and will yield a linearly independent, spanning set of U,

let’s call it W, consisting of eigenvectors. So this means that ¢|;; is diagonalizable since we found

an eigenbasis for U. So we’re done. [

The following theorem is a fundamental result from matrix analysis (see [S33, Theorem
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1.3.12]), but we provide a proof for convenience of the reader.

Theorem 2.28. Let A and B be two n X n diagonalizable matrices that commute (i.e. AB = BA).

Then there exists a basis of R" consisting of simultaneous eigenvectors of A and B.

Proof. We break this proof up into two parts. First we will show that given an eigenvector A
the eigenspace of A corresponding to A (we denote this with E(A,A) is B-invariant. Consider

v € E(A,A), then notice that
ABv = BAv = B(Av) = ABv.

This means that By is an eigenvector for A with eigenvalue A, which means that E(A,A) is B-
invariant since B maps elements of E(A,A) back into E(A,A). Now we show that there exists a
basis for R” consisting of simultaneous eigenvectors of A and B.

Note that because A is diagonalizable, we know that R” can be represented as a direct

sum given by

k

R = DEMN,A),

i=1

where Aq,...,A; are distinct eigenvalues of A. Now to show that there exists a basis of R”
consisting of simultaneous eigenvectors of A and B, we only need to find a basis for each
subspace E(A,A) because the concatenation of all these bases will yield a basis for R*. Now
note that since E(A,A) is a B-invariant space by above and because B is diagonalizable, we
know from Lemma that the restriction of B to this eigenspace, B| E()¢)- 18 diagonalizable,
which means that there exists an eigenbasis of E(A,A) for the map B. Let us call this this
eigenbasis Sy 4 = {w1,...,w;}, where j is the dimension of E(A,A). Now, note that Sy 4 consists
of eigenvectors of both B and A. To see this, note that Sj 4 C E(A,A); thus, every w; is an

eigenvector of A. Moreover, Sy 4 is an eigenbasis for B| E(r4) by construction (from Lemma2.27).
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This means that

k
§= U ShiA
i=1
forms a basis for R” consisting of simultaneous eigenvectors of A and B. [

Lemma 2.29. If two symmetric matrices A and B commute, then there exists spectral decomposi-
tions A= Q" AQ and B = P" DP such that the rows of Q are the same as the rows of P up to a

permutation.

Proof. We already know that if two diagonalizable matrices commute, then they share the same
eigenvectors; thus, there exist an eigendecomposition for A and B with the same eigenvectors.
By extension, this holds for symmetric matrices. If we assume that these eigendecompositions
are given by A = Q' AQ and B = P' DP, the eigenvectors of A are exactly the columns of Q ',
and similarly, the eigenvectors of B are exactly the columns of P'. This implies that the columns
of Q" and P' should be the same. The order of the columns can be permuted without loss of
generality and still provide the same transformation A and B. Thus, we can assume that Q has the

same rows as P. O]

Theorem 2.30. Let S : R" — R" be a differentiable map such that S = V@ for some @. Let
o,u € P (R™) with 6 absolutely continuous with respect to the Lebesgue measure. Assume that
the compatibility condition So Ts = Tg * holds. Then Js (x) is a symmetric positive definite matrix
for all x. Moreover, Js(T§ (x)), Jpu(x), and JTjn” (x) share the same eigenspaces. Furthermore, the

eigenvalues of Js(T§ (x)) are of the form 73;—” where Ay, is an eigenvalue of Jyu(x) and As s,y is

G
Sy

an eigenvalue OfJTSu” (x).

Proof of Theorem Recall that the main equation for us to study is

SoTt = T(fj'u.
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By Theorem , there exist convex functions y and ¢ such that 75 = V¢ and Tg = Vy. By
Clairaut’s theorem (or the Schwarz theorem), V?y(x) and V?¢(x) are symmetric. Using the

multivariate chain rule and the symmetry of V>y(x), we get that

V2y(x) = Js(Vo(x)) V20(x)
VA0 " = (V2o(x) Us(Vo))

— V20(x)Js(V(x)).

Since Js = V2@ for some @, then J{ (x) = Js(x) for all x € R?. Since Js(V(x)) and V2¢(x)
are symmetric matrices that commute, according to Lemma|[2.29] there exists some orthogonal
matrix P such that we can write the eigendecompositions of V2¢(x) and Js(Vd(x)) as V20(x) =
PTA¢(x)P and Js(VO(x)) = P As(V(x))P where the matrices Ay and Ag are diagonal matrices
with the eigenvalues of V2¢(x) and Js(V(x)), respectively. Moreover, if Ay denotes the diagonal

matrix in the eigendecomposition for 7y, then our matrix equations above can be written as

V2y(x) = Js(Vo(x)) V20 (x)
P Ay(x)P = P As(V(x))PPT Ag(x)P

Ay(x) = As(VO(x))Ag(x).

This immediately shows that every eigenvalue Ag of Js(V(x)) can be written as %, where Ay is an
eigenvalue of V>y(x) and A is an eigenvalue of V2¢(x). Since V2¢(x) and V>y(x) are Hessians of
a convex function, they must be positive definite. This implies that all the eigenvalues of Jg(V(x))
are positive. Since Jg(V¢(x)) is symmetric, we immediately get that Js(Vd(x)) = VZ@(Vd(x)) is
a symmetric positive definite matrix, which means that ¢ must have been convex. This implies

that S = V@ is a transport map. [

Lemma 2.31. Let an optimal transport map be given by V(x) for some convex function ¢. If
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the Hessian V>0(x) has a spectral decomposition that does not depend on x (i.e. P'D(x)P for
a positive diagonal matrix D(x)), then the map PVO(P'x) has a diagonal Jacobian and each

component of PVO(P " x) is a function of only a single variable.

Proof of Lemma If we compute the Jacobian of PV)(P ' x) by using the chain rule twice,

we get that the Jacobian of PVO(P " x) is given by

Tpvo(pTy) (%) = Plyg(pry(x) = PV2o(P x)PT

=PP'D(P"x)PP" =D(P'x).

This means that if we write the transport map V¢ in the basis given by the columns of P' and
the output is written in terms of the basis given by the columns of P, our transport map V¢ can
be written as n single variable functions. To see this, notice that we can write the jth coordinate

output of PV¢(P"x) as some function f; to give us

-fl(xl,...,xn)
PV¢(PTx): Flxt,. . xn)
_fn(x1,...,xn)_

Recall that the (j,k)th entry of the Jacobian Jpy,pr ) (¥) is (%{. Because the Jacobian is diagonal,
we see that STJC]{ = 0 for j # k. This implies that we can actually write

Ji(x1)
fa(x2
PVO(P'x) = (x2)

fn(xn)
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So we’re done. O]

Now we can prove the main LOT isometry theorems for shears.

Proof of Theorem Assume that the Jacobian of T3 has constant orthonormal basis given by
an orthogonal matrix P, then Theorem tells us that a compatible transformation S must have
positive symmetric definite Jacobian Js and has the same eigenspaces as Jyu. First, note that the
corollaries of Theorem [2.30|implies that S is an optimal transport map. Second, note that since
Js commutes with J;u, we know that Js = PTD(x)P, where P is a row-permutation of P from

Lemma[2.29] Because S satisfies the assumptions of Lemma [2.3T] we get that

_fl (x1)
f2(x2)

for f; increasing and differentiable. Note that f; differentiable because Jg is assumed to exist,
and f; is increasing because Js is positive definite. The form of S, however, is exactly the form of
an element of 7 (P) in Definition (the constant vector b is a constant of integration). This

proves Theorem [2.6] O

Proof of Theorem Let us assume that our elementary transformation is S(x) = P' g(Px), then
note that the Jacobian of S can be given as Js(x) = P J,(Px)P, where J,(z) = diag(( 85:(z7))4=1)

(i.e. Jg is a diagonal matrix). Now given our template u, let’s assume that there exists a reference ¢
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o S . iy
such that the compatibility So T4 = Ty “* holds, then we will try to get some necessary conditions
that 6 must satisfy. In particular, from Theorem we can write 75 = V¢ for some convex
; moreover, we know that the Hessian can be written as V2¢(x) = Q" (x)D(x)Q(x) for some

orthogonal matrix-valued function Q(x) and diagonal matrix-valued function D(x). Now, using

Theorem , we know that if So T& = To*, then

Js(VO(x))VZ0(x) = V20(x)Js(V(x))

P'Jo(Px)PQ(x) ' D(x)Q(x) = Q(x) ' D(x)Q(x)P " J4(Px)P.

Since Js(Vo(x)) and V2¢(x) are two symmetric matrices that commute, we can assume without
loss of generality that Q(x) is a row-permutation of P for all x by invoking Lemma We can
call this matrix P. In particular, we can write V2¢(x) = P" D(x)P, where D(x) = diag(d(x)) for a
vector-valued function d(x) with d;(x) > 0 (the positivity comes from the fact that the Hessian
must have positive eigenvalues).

We see that since V20(x) has a constant eigendecomposition, we know from Lemmam

that

-f 1(x1 )-
Bve(pT = |2

fn(xn)

-fl (x1)
f2(x2)

— Vo(PTx)=P"

fn(xn)

From Lemma 2.31| we also note that a choice of the diagonals d;(x;) > 0 gives a unique (up to a
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constant) anti-derivative f; = [d;(x;)dx;. Thus, without loss of generality, we can consider f;’s
to be completely determined by the d;’s.

If we assumed that our inputs x are actually written in the basis given by P and the
outputs are written in basis given by P, then our map transport map decomposes into 7 single-
variable functions as shown above. Moreover, note that f;(x;) must be an increasing function
since ?ij > 0 everywhere. Thus, in principle, this map must be invertible, and we can actually

compute the inverse of this map by computing

. A(Px))
v= 2] = Vot - vorpTey 7 |20
| Vn | _fn((lsx)n)_
fi((Px)1)
Py _ fZ((Px)Z)
_fn((ﬁx)n)_

Note that because the inverse of an increasing function is also increase, we have that Vo~! € 7 (P).
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In practice, we will be given S and y; thus, we would want to find ¢ such that 7§ is compatible
with S. Note that this will be exactly given by the map V¢ ~!(y) because 6 = Vo, !11. This proves
Theorem O

Proof of Theorem Given our elementary transformation S(x) = Ax+ b, we have that Jg = A.
Theorem [2.30] however, shows us that A must be positive symmetric definite. We will show that
the only matrix A that is both positive symmetric definite and orthogonal is the identity. To see
this note that since A is symmetric, we know that AT = A. Since A is assumed to be orthogonal,
we know that ATA = A% = I. Let v be an eigenvector of A with eigenvalue A, then v = A%y = A?v.
This means that A2 = 1. Since A is symmetric, we know that all the eigenvalues must be real;
thus, A = +1. Moreover, because A is positive symmetric definite, the only eigenvalue it could be
are +1. This implies that A is the identity. In particular, this means that constant rotations are not

valid elementary transformations for which the compatibility condition holds. [

2.8 Proofs of Separability Results

For a set of measures u; and u» and a set of elementary transformations #, the general

method of showing that Fis(H x ;) and F(H xup) are linearly separable is to
1. Show that # is convex,
2. Show that # % uy and # % uy are compact (or at least have their closures as being compact),
3. Show that Wy (H %y, H *up) > & for some & > 0.

We show this now for shears, but for another class of elementary transformations, we must show

that # is convex.

Lemma 2.32. The set of shears Hyy m, described in Equation || is convex.
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Proof: Let h,h' € Hyp m, and s € [0, 1], then we want to show that sh+ (1 —s)i' € Hy pr m,. We

find that

sh(x) + (1 —s5)A' (x) = s(Ax+b) + (1 —s)(A'x+b)

= (sA+ (1 —9)A)x+ (sb+ (1 —s)b").
Notice first that sA + (1 —s)A’ is symmetric. Moreover, note that

Amin(SA + (1 —5)A") = min {(x, (sA+ (1 —s)A")x)

Ix[l2=1

= min s{x,Ax) + (1 —s)(x,A'x)

[lx[l2=1

> s min (x,Ax)+(1—s) min (% A'%)

[[x]l2=1 [[€]2=1
—_—— | —
kain (A) mein (A/)

> sAmin(A) + (1 =) Amin(A") > sy+ (1 —s)y=1,
and similarly,

Amax (SA + (1 —5)A") = max {(x, (sA+ (1 —s)A")x)

[lxll2=1

= max s{x,Ax) + (1 —s){x,A'x)

flx[l2=1

<s max (x,Ax)+(1—s) max (¥ A'%)

[[xlla=1 [[7[l2=1
———— — —
<Amax (A) <Amax(A")

< Shmax (A) + (1 — $)Amax (A') < sM + (1 —s)M = M.

This means that sA + (1 —s)A’ is symmetric positive definite and actually has the correct bounds
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on its eigenvalues. We now show that sb + (1 — s)b’ satisfies the proper bounds too. Notice that
lsb+ (1= )b |2 < s|bll2+ (1 —9)||b]|2 < sMp+ (1 — s)Mp = My,.

This implies that sh+ (1 —s)h’ € #. So we’re done. O

Next, given a base measure u and set of elementary transformations #, we ideally want
to show that the set H xu = {hyu : h € H} is compact, but the weaker condition of # xu
being precompact should be good enough for our purposes. To address compactness, we need a

definition.

Definition 2.33 (Tightness). Let (X,7) be a Hausdorf{f space and let S be a G-algebra such that
T C S. Let M be a collection of probability measures defined on S. The collection M is called
tight if, for any € > 0, there exists a compact subset K¢ C X such that for all measures u € M, we

have u(Kg) > 1 —¢.
A natural theorem that relates tightness of measures to compactness is Prokhorov’s theorem.

Theorem 2.34 (Prokhorov). Let (X,d) be a a separable metric space. Let P(X) be the collection
of all probability measures defined on X with respect to the Borel 6-algebra. Then a collection
K C P(X) of probability measures is tight if and only if the closure of K is sequentially compact

in P (X) equipped with the topology of weak convergence.

According to [77, pp. 37-42], we can upgrade Prokhorov’s theorem to be sequentially

compact with the Wasserstein 2-metric if

R—o0
sup [ lBdu(e) =0
ue K Jx:||x[2>R

This is easily true if sup,,c ¢ {[|x]|2 : x € supp(u) } <R < oo,

Corollary 2.35. Let H be a set of transformations such that for every R > 0, there exists R such
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that supyeor{||h(x) |2 : |[x]]2 < R} < R. Also assume that u € P»(R") has bounded support Ry,

then H x u is a precompact set of measures.

Proof. For us, if u has bounded support with bound R, we should have that all measures
belonging to # % u must also have support bounded for some R > 0. To see this, note that for

i1 € H xu, we have supp(f) is bounded by R for some R > 0. So we’re done. O

For shears, we can see that every measure from s v, 11 and Hy y p, * p2 has bounded
support since suphe%MMh{Hh(x)H :x € supp(u),u € X} < MR+ M. It’s easy to see that
Hym.m, * 1 is tight for a big enough ball Bg(0) = {x : ||x||[2 < R} if c has bounded support.
This means that Hy y a, * u is precompact with the Wasserstein 2-metric for any u with bounded
support.

By [91] Corollary 5.23, the stability of optimal transport maps implies that F is continu-
ous; thus, we find that Fi;(H * u) is precompact if # xu is precompact. Note also that Theorem

above gives us a corollary.

Corollary 2.36. Let h: R" — R" be a transformations that can be represented as the gradient
of a convex function, then for &, an absolutely continuous measure with respect to the Lebesgue

hyc
measure, we get that h = Tg" .

Now we must show that Fg(# xu) is convex, which will ensure that our LOT embedding

is convex and precompact.

Lemma 2.37. Let 6 and u be absolutely continuous (with respect to the Lebesgue measure) proba-
bility measures and let H C {h: R" — R"|h =V, 0 is convex} be a convex set of transformations

that is compatible with 6 and y, then Fs(H x u) is convex.

Proof. Let h,h € # and s € [0,1] so that Al M= Fo(H % ). Then we want to show that

h h : . . :
sTe™ + (1 — 5)Ts™ € Fs(H * ). First notice that by Brenier’s theorem, there exists convex
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functions ¢ and ¢ such that Vo = Tél * and Vo = Tél | Note now that
sVO+(1—5)Vo = V(sd+ (1 —5)9)

so that sT(?W +(1-— s)T(?W is actually the gradient of a convex function. Moreover, by the
uniqueness of optimal transport maps as gradients of convex functions, we know that sTél 4
(1—y) Tj # is the unique optimal transport map that transports © to its target distribution. If this
target distribution is of the form ﬁﬁ,u for some i € A, then our proof is done. Indeed, using the

compatibility of of 4 and A

(sT:WJ—{—(l —@Tf”‘)ﬁc: (<Sh+(1 —s)f}) oTé‘) G
:

- (sh+ (1 —s)iz)ﬁ‘u.

Since sh+ (1 —s)h € H, we know that sT(f (- s)T(? *'is the unique optimal transport

map that transports 6 to (sh+ (1 —s)h)su. This means that
hyu flu,u
sTs™ + (1 =5)T5" € Fs(H % u).

Thus, Fs(H xu) is convex. O

Using the lemma above, we get that Fs(H *u;) and Fs(H % up) are both convex and
have compact closures. For our linear separability result, we now only need to make sure

hyuy . T:Q,UZ

that infj, ;¢ 5/ 175" lc > 6 for some & > 0. Ideally, given W>(uj,u2) and the level of

separation & > 0 we want, we should be able to find bounds on the function class # that we are

considering. This leads us to Theorem 2.15}

Proof of Theorem Assume that we have i, h* € #;, then using the triangle inequality, we
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have

Wa (g, Bipn) > |Wa(u, i) — Wa By )|

> | [Waur, ) — Wa (o, B ) | — Wa (g, ) |

provided that the quantity in the left-hand side is positive. Now, we know from [71] that

Wa(u,v) < ||Fs(u) — F5(V)||o; thus, we have that

\Wa (1, 12) = Wa (ua, i) | = Wa (hepay )| < || Fo(hyn) — Fs () |l

So if we lower bound the left-hand side by & > 0, then || Fs(hsu1) — FG(EB‘,uz) lc > &> 0. This
would imply that Fs(He ;) and Fg(He xup) is linearly separable by the Hahn-Banach theorem.
To get this bound, let us find a generic bound for Wz(fzﬁ,u, 1) when h € #H;. In particular,

there exists 1 € #{ such that || — h|,; thus, we get

Wi (hyp, ) < Wa (g, hyp) + Wa (hy, ).

First, since A is the gradient of convex function and Corollary [2.36, we know that THhW = h. This

means that the compatibility condition holds, which further implies that

Wa (B, ) = || =1 < L.

Moreover, equation 2.1 of [6] says that

Wa(lgpa, hygt) < ||h— |, < e.
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Because of our bounds, our results implies that

L< Wz(yl,zﬂz) -9

= Wa(u1,m2) = Wa(uz, hipn) > Wa(ur, p2) — Wa (R, W pn) — Wa (2, o)

—e<Wao(ui,up) —08—¢

>Wa(ui,u2) —L—€>08>0.

Essentially, we were able to remove the absolute values because the quantity in the absolute value

was positive. This positivity of the absolute value implies that we can replace

' \Wa (1, 12) — Wa (ua, i) | — Wa (hgpar )

with

Wa (1, 12) — Wa(ua, i) — Wa (g, )

But note that

Wa(ui,u2) — Wa(u, i) — Wa (hypay 1) > Wy, pa2) —2L— 28 > &
il

W -3
@Lg—z(“]’;z) —E€.

This implies that

Wa (1, 12) — Wa (i, i) — W (Rgay ) | > 8 > 0.

5

So we see that if L < M — ¢, then we must have that ||Fs(hyu;) — FG(hé,uz) |lc >08. O

Proof of Theorem For the first statement, the linear separability result is immediate because

the compatibility criteria ensures that the LOT distance and Wasserstein-2 distance are the same.
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To see this, we note that 1o T} is compatible with respect to the optimal transport between y;

and (ho T} )su; because

(T ot hym 12 1 o T
1, =Ty —hon —hon OT,UI'

This means that from [[71]], for A, h € H we have that

hepu hopu hyu (ho T s
HT.UIt : _T.ult 2“#1 = HT,uljj - T,ul " H,Ul
= Wa(hguy, (ho TH)guy)

= W (hgur, hypo).

This proves the first statement.
For the second statement, let he, /e € H; such that ||h — hel|,, < € and ||/ — hel|,, for

h,h € H. We know that ||F,, ((he)stt1) — Fuy ((he)sp2) |y > Wa((he) s, (he)zpz). Now we know
that

Wa((he)sur, (he)ppn) > “WZ(EﬁHhhﬁlJZ) — Wa(hguy, (he)gur )| — Wa(hgua, (he)sn) |-

From equation 2.1 of [3]], we have that

Wa (hapr, (he)gnr) < || —he |y, <€

Wa (hsuo, (he)spn) < ||h — he ||, <€
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Note that Wy (hyu, hypz) > infy, ;e Wa (hepay, hyuz) > 2€. This means that

> 0.

Wa((iea ) = || in. Wi ) | e
hhe H

S

>0

N J/

So we have that HFM ((ﬁﬁ)ﬁ:ul) - Fﬂz((hﬁ)ﬁHZ) ”,Ul > 0.
For the third statement, we extend the lower bounds from above. Because #, he H are
compatible, we have that Wa (A1, hytin) = | Tuhlw1 - Tuhlw2 ||, - Using the triangle inequality, we

get

hyp hyu ~ hyu
1T = T Ny = 1= T [
~ hau
= |lh—h— (Tmﬁ ’ _h)Hm

hypy hspny 7
> HTHI - T,Ul ||,ul - Hh_hH,Ul :
Because h € # is chosen to be compatible with respect to u; and uy, note that

h h
Wa(hgpar s hepin) = || To™ = T iy = 1= ho TE2 |y

= lho (=T )l = 2]l

= ([ et i)

2 va( [ b B o))

where the last equality came from a change of variable and the inequality comes from our

assumption that ||A(x)||2 > v/2|lx — xpl|o. Now we refer to Theorem 6.15 of [01]], which says that
p I y
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for any xg € R", we have

1/2
Watun,in) < V3(_ [ o=l ~gul)) = rlo)

We want to minimize the right hand side; thus, taking the derivative ddTO f(x0) =0, this reduces to

0=2 [ (o~ )|y ~ o] (x)

: /xd!m—uz\(X)-

e X) = ————————<
1 — o (R7)

Essentially xo is the mean of the measure |u; — | after normalization. So we have that
Wa(u1,p2) < Wahgpr, hypo). Since Wa(ui,p2) — SUpy, e g | —hl|,, > 8+2€e > 8+¢, these

computations imply that

Wa(hyuar, by ) — Wa(hgpr, (he) g )| — Wa(hypaa, (he)siin) > Wa (g, hypn) — 2.
is greater than

Wa(up,p2) — sup ||h—hl|,, —2&>0.
hheH

This implies that

Wa((he)spar, (he)spin) > (Waui, p2) — sup [l —hl|, —2¢| > 8
hheH

This implies that ||Fy, ((he)stt1) — Fuy ((he)stt2) ||y > Wal(he)spr, (he)spz) > 8. So we are done.
]

Notice that Theorem [2.15]above acts as a blueprint to controlling the degree of separation

in the LOT embedding via the bounds on the function class #. For the specific setting of the
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set of shears above, given a desired degree of separation 0 < 8 < W (uy, ), we can choose M,
M), and 7y in the definition of # y that guarantees that F&(Hypmm, * 1) and Fo(Hyp pm, * o) are

d-separated. This leads us to Corollary [2.38;

Corollary 2.38. Consider probability distributions u; and pp with Wasserstein distance W (uy, 1),
and let 8 > 0. Let us denote Ry = MaXycgpp(u) [1X]]2 and Ry = maXcpp(uy) [1X[12. Moreover, for

€ > 0, define

}[YaMuMb-‘s = {il : ||h_7:l||,ul < 831 G {172}7h E }[YvaMb}

as the e-tube around Hyp p,. Assume 6 K N € Po(R") is chosen such that H is compatible with
© and yy as well as 6 and p. We consider the following 2 cases:

Case 1: Assume that Wy(uy,up) > (Ry + Rp) + 8+ 2¢. If My, is chosen such that

Wa(u,12) —8—2e — (R1 +Ry)
2 9

0< My <

then choosing M such that

Wz(,ul 7/12) —0—2e—-2M, + (R] +R2)

2<M<
- R1+R;

ensures that Fo(Hyp m,.e * 1) and Fo(Hyp m, ¢ * o) are d-separated.

Case 2: Assume that 8+ 2& < Wa(u1,u2) < (R +R2) + 38+ 2¢. If My, is chosen such that

Wa(ui,2) —2e—8— (R1+R2)
2

Wa(uy,up) —2€—9
2 )

max {0, } <M, <

then either choosing M such that

W2(H17H2) —0—2e—-2M, + (R1 —l—Rz)

1l<M<
- Ri+R
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or choosing 'y such that

v 2Mp+2€+ 8 —Wa(ui1,2) +Ri + Ry
- Ri+Ry

ensures that Fo(Hyp m,.e * 1) and Fo(Hyp m, ¢ * o) are d-separated.

Proof of Corollary From the lemma above, we need to only bound ||z — I|| appropriately
and invert the bounds. First, note that because / € }[\(,M,Mb can be written as the gradient of a
convex function and }[Y M M, 18 a convex set, we do satisfy the setting of the lemma. Moreover,
we know that the compatibility condition holds, which implies that

1
2

Wa(hau, ) = ||h—1||, = (/ (A —I)X+b||§du(X)>

< I(A=Dxly+ 5]l
I I
1 2

Let us bound /; and I, separately. For the bound of /1, we have

1

s( [rms(a =17 ma ||x|r%du<x>)2
Ama

xesupp(u)
(A1) max |XI|2(/du )
xesupp(u

< max{[M —1[,[1—7v]} max [|x[.
x€esupp(u)
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For the bound of I, we have
1 1
p : 2 :
= 1ol = ( [ WlBauto)” < ([ 2auco)” = ws
Thus, if h € Hyp m,, we have
Wa (hzp,p) < max{|M —1[,[1 =]} max |x[[2+ M.
xéesupp(u)
Using this for our specific choice of y; and u», we find that for fz, h* e %,M,Mh,s’ we have
Wa (1, 12) — Wa (b, 1) — Wa (REua, o)

is lower bounded (via equation 2.1 of [6]) by

Wa(u1, ) = Wa(hepir i) = Wa(haan oy ) =Wa (i pan, iz) — Wa (i, o)
~——— N—_——— —

<[h—h], <e <ty <e

> Wa (1, p2) = Wa(hypr 1) — Wa(hiuo, o) — 2¢,

which in turn is lower bounded by

Walen 2) = 2My — max{[M — 1], 1=y} (_max [lafla+ max xf2) —2e.
xesupp(ur ) xesupp(u2)

~
Ri+R;

Now we just need to find sufficient conditions M, M}, and 7y such that

Wz(yl,yz) —2Mb—max{|M— 1|, |1 _Y’}(Rl —l—Rz) —2e>06>0. (*)

Notice that when [M — 1| > |1 —y

, then M > 1 since M is the bound on the largest eigenvalue.
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Moreover, note that we cannot have y— 1 > M — 1 since Y < M thus, the only cases we need to
consider are when M —1 > 1 —<yand M — 1 < 1 —7. We handle these cases separately.

Case 1 (M — 1 > 1 —7): Note that in this case we can rewrite (*) as

M(Ry +R2) < Wa(ui,m2) —2Mp —2€ — 8+ (R1 +R2)

M< Wz(,ul,,uz) —2M,, —28—8+(R1 —l—Rz)
- Ri+Ry .

Case 2 (1 —y> M — 1): In this case, we can rewrite (x) as

YRy +R2) > 8+ 2Mj, + 2+ (Ry + Ry) — Wa(uy,u2)

v> O+ 2Mp, +2¢e+ (Rl +R2) —WZ(IJI,IJZ)
- R +R» )

Now we will investigate conditions in which case 1 and case 2 are active.

First note that if

Wa(u1,u2) —2Mp — 26 — 8+ (R1 + R2)

>2
Ri+Ry
1% —26—0—(R; +R
— > (U1, 12) . (R1 + 2)>Mb>0

< Wa(u1,m2) > 8+2e+ (R +Ry),

we know that the first case is ensured since we can pick M > 2. In this case, M — 1 > |1 —7|. To
see this, we see that if 0 <y< I,then M —-1>2—-1=1>1-y>0. If 1 <7y< 2, we again
have that M > yimplies that M — 1 > y— 1. Thus, in this regime, the choice of M dominates.

Now if we want 1 < M < 2, we find that

Wo(uy, ) —2Mp, —2e — 3+ (R1 +R»)

M < <?2
Ri+R>
1% —26—0—(R{+R
> (1, u2) . (R +R) <M,
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Notice that since M, > 0, if Wa(uj,12) < 264+ 8+ (R; + R»), then we definitely have the above

inequality. On the other hand,

Wz(,ul,yz) —2M), —2e— 0+ (R1 +R2)

> 1
Ri+R»
1% —2e—-9
2(#1;/«122) M, >0

< Wa(u1,m2) >2e+0.

So we can pick appropriate M}, such that

Wao(ui,up) —2€—9
2 )

maX{Wz(,ul,,Uz) —2e—8—(R1+Ry)

,0}<M <
2 b

and in this case, we pick an appropriate M such that

Wz(‘ul,‘le) —2e—2M;, —d+ (Rl —I—Rz)

1<
R1+R;

<M <2

In the case when |1 — | > |M — 1] case, notice that

0+2e+2Mp+ (R) +Ry) — Wa(uy, Wo(uy, ) — 0 —2¢
+2€+2Mj, + (R1 +Ro) — Wa(u1,u2) <1 M, < > (u1,12) :
Ri+Ry 2

thus, we can pick 7y such that

O0+2M, +2e+ (Ri+R>)) — W
1>YZmax{ +2Mp + 28+ (Ri +Ro) 2(#17;12)’0}_
R1+R;

So we still can satisfy the conditions for linear separability in these cases. [
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2.9 Multiple References Example

Example 2.39. Recall the setup of Example [2.26] where we have two template distributions

ur = N(0,X)) and up = N(0,X2), a set of shears
H={Ax:A=A" cR”" MI, = A = ml, - 0}

as our set of transformations, and reference distributions defined to be of the form o1 = (h1 )y

and 63 = (hy)yu for hy(x) = A1x and ho(x) = Ayx for hy,hy € H so that

o1 = () = N(0,A1Z1A]), 62 = (ho)sr = N(0,A2X24] ).

Using exercise 6.3.1 of [89]], the bounds on our function class H is given by

1/2
WWM—UM=ww(mJWvﬂwﬂ) = sup [|(A — D)=} #

AeH AeH AeH
1/2 1/2
< sup [|A ~1|lo)|=}/* | < max (M~ 1],1 —m|) max |}/ £
AeH J
=1L.

8, which implies that

. Ww- _
To ensure separation, we use L < %

1 1
Tr(X; + X, — 2(22 5,22\ 1/2)1/2 _§
max(|M—1|,|1—m|)§ r( 1+22 ( 142 1) ) '

1/2
2fnaszl,zllﬁj/ P

It is easy to see that L’”fﬁ < 1. This shows the bounds on M and m of Example |2.26
Zmaxj:u sz ||F

Now notice that

hyu; _ _
Tol" = (A7ZjA)) ' P((AZA) P AZAT)(AZA)2) 2 (A2A5) 7 P,
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thus, for h,h € H where h(x) = Ax and h(x) = Ax, we get ||T(,W1 — hﬁm” is equal to

)

E|lIs; (872 (Amia])s)?) 2 = (572 (422247 s7/%) 12)s; 1 23

where S; = A ;¥ ;A ; and the expectation is with respect to G ;. Because S;]/ 2y = (A;ZA j)_l/ 2x ~

N(0,1) and exercise 6.3.1 of [89], we find that the expectation above is equal to
—1/2 1/2 1 2 1/2 1/2
187282 (AimiA] IS - (812 (405240)8)/2) ) -

Using the Courant-Fischer min-max theorem as explained in [53|] and our bounds on the eigen-

values of h € H, we can see that

Ty-12y
m j

1 -1/2
AXA; 1/2>- Z
= I ) M

Since M?%; = (A;L:A;) = €°%;, we have
(A4 )" (AIZIA] ) (ATZA) )2 — (AZ4))' 2 (A252A7 ) (AZA5) 212
—— ——
=m2¥, <m2%,
- (m42}/2212}/2)1/2 . (m42}/2222}/2)1/2 _ m2 (Z;/ZZ]Z;/Z)I/Z . (2;/2222;/2)1/2 :
and similarly,
(A4 )" (AIZIA] ) (ATZA) )2 — ((A[Z4))"2 (A2%2A7 ) (AjTA5) 212
S———r ——

<M?2%,; <M?2%,

- (M42}/2212;/2>1/2 . (M42}/2222;/2>1/2 _ M2 (E}/Zzlzyz)lﬁ . (Z}/zzzzyz)lﬂ .
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hay hjﬂz

This means that || Ts; ||G has the following bounds

hyu Iy
> ||[T5" —Ts; 2||o,

2 2
H%Zil/z [(Z}/zzlzyz)uz B (Z}/ZZZZ}/Z)I/Z]

h h —1/2 1/2 1/2 1 2 1/2
HTGFM—T jFIuZHc > HM ; / [(Z / Y E / )1/2 ( J/ ZZZJ/ )1/2]

F

Moreover, notice that since X; = X1 or L; = Xy, we can assume without loss of generality that

Y =X so that

—-1/2 1/2 1/2 1/2 1/2 1/2 —1/2 ,1/2 1/2
z / {(2}./ lej/ )1/2_(zj/ Zzzj/ 12| =gl 2l s 1212,

We can show, however, that the Frobenius norm of the right-hand side is actually Wa(uy,u2). To
1/2

. : 1/2 . . . :
see this, first notice that because ¥, 2221/ is symmetric, using the cyclic property of traces, we

have

=72 P Eamy ) 2R = Tr(2) P namy ) 2 P () Py ) )

= Tr(Z; 21/ 25,502) = Tr().
Applying this result, we have that HZl/Z II/Z(Z}/ZZZZ}/Z)I/ZH% is equal to

1/2 —1/2 ,«1/2 1/2 1/2-—1/2 ,a1/2 1/2
=21 + |z 2 Py ) 2 —2 (e ey A Py ) )

Tsz )

= TI‘(Z1 +X— 2(2}/22221/2)) = Wz(,ul ,/12)2.

So we get that

M? hygp heyin m’
— o Walum) 2 16 — 167 lo; 2 ﬁWZ(,Ul,,UZ)
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for our choices of reference distributions, of which there are infinite choices because our choices

of € and M are constrained by

Wa(u1, 12)
12,
2maxj-12[[X;/"||F

L Waluim)

T <m<M<1+
2max ;12 ||Z;"7([F

2.10 The shearing transformation

Algorithm 1 Procedure to produce shears of an image
1: Inputs : 28 x 28 matrix of pixel values corresponding to the image, matrix A and shift b.
2: Output : A 28 x 28 matrix of pixel values corresponding to the transformation A (x — center) +
b. (Center of the image is assumed to be (14, 14)). Here x = (i, j) where i, j € {1,2,---28}.
3: ShearedImage <— An empty 28 X 28 array
4: fori=1,---28 do
5. forj=1,---28do

6: y < (i,]) — center

7: x < A~ (y —b) +center

8: ifx; >280rx; <=0o0rx; >28o0rx; <=0 then

9: ShearedImage (i, 3j) < 0
10: else
11: ShearedImage (i, j) < Interpolation of the pixel values (of the original image) of

the four grid points corresponding to the grid box which x belongs to.
12: end if
13:  end for
14: end for
15: return ShearedImage

Following notation introduced in Section 4 of the main text, the function class # with
respect to which we perform numerical experiments on MNIST images to study linear separability
1s,

H = {Ax—l— b : A is symmetric positive definite, b € Rz}, 2.9
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Specifically we choose A to be,

T

cos® —sin6 M0 cos® —sin6
A= (2.10)

sin® cosO 0 N sin® cosO

where, A1,A; > 0 so that A is positive definite. In the subsequent sections, we present the
classification results for two different choices for the range of parameter (A1, A;,0,b) values, one
representing a mild shearing of the images and the other representing a severe shearing of the

images.

2.11 Standard deviation in test error of MNIST classification

experiments

2.12 Numerical validation of example 2.12]

To illustrate Theorem [2.8] we had provided a simple example with Gaussians (see example
2.12| of main text). Let u = A_(my,1,). Consider a symmetric positive definite matrix A with
spectral decomposition A = PTAP and a corresponding fixed shear S(x) = Ax + b for some
b € R", which yields the pushforward Syu = A[(Am; + b,AA"). For simplicity, we will check

that the subset of compatible affine transformations

Fattine(P) = {f(x) = Cx+d: f € F(P)}

={P'DPx+d:D;j=0Vi+# j,D;>0,d € R"}

2.11)

yields reference distributions 6 € { fyur : f € Fasfine(P)} so that the compatibility condition

hold. In particular note that for f(x) = Cx+d = P" DPx+d, our reference distributions have the
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Standard deviation in test error

Standard deviation in test error
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(@) Classifying mildly sheared MNIST 1 and 2

(b) Classifying severely sheared MNIST 1 and 2
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@~ 6 references (1606)
-@- 8 references (2280)
-

Figure 2.8: (a) Standard deviation in test errors for binary classification of mildly sheared
MNIST 1s and 2s using (al) Gaussian references (a2) sheared MNIST 1s and 2s as references
(a3) unsheared MNIST 1s and 2s as references. (b) Standard deviation in test errors for binary
classification of severely sheared MNIST 1s and 2s using (b1) Gaussian references (b2) sheared
MNIST 1s and 2s as references (b3) unsheared MNIST 1s and 2s as references. In the cases
where MNIST images are used as references, the results are reported for the cases where the
number of references used is 2i for i = 1,---5 wherein i images from each class are randomly
drawn to be used as references from a pool of images that do not correspond to any of the
training and testing images. For each fixed number of training images per class, N4, the mean
test classification error averaged across 20 random choices of N, training images (per class)
and 1000 test images (per class) is reported. The number inside the parenthesis in the legends of
the images denote the length of the LOT feature vector corresponding to the particular choice of
references. In all figures, for comparison, the results for classification using the semi discrete
linear optimal transport framework [68] which uses the uniform measure as the reference is also
reported.

form

6 = N(Cmy+d,CC") = N(Cm +d,P"D?*P).
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(a) Classifying mildly sheared MNIST 7 and 9
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(b) Classifying severely sheared MNIST 7 and 9
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Figure 2.9: (a) Standard deviation in test errors for binary classification of mildly sheared
MNIST 7s and 9s using (al) Gaussian references (a2) sheared MNIST 7s and 9s as references
(a3) unsheared MNIST 7s and 9s as references. (b) Standard deviation in test errors for binary
classification of severely sheared MNIST 7s and 9s using (b1) Gaussian references (b2) sheared
MNIST 7s and 9s as references (b3) unsheared MNIST 7s and 9s as references. In the cases
where MNIST images are used as references, the results are reported for the cases where the
number of references used is 2i for i = 1,---5 wherein i images from each class are randomly
drawn to be used as references from a pool of images that do not correspond to any of the
training and testing images. For each fixed number of training images per class, N4, the mean
test classification error averaged across 20 random choices of N, training images (per class)
and 1000 test images (per class) is reported. The number inside the parenthesis in the legends of
the images denote the length of the LOT feature vector corresponding to the particular choice of
references. In all figures, for comparison, the results for classification using the semi discrete
linear optimal transport framework [68] which uses the uniform measure as the reference is also
reported.
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2.13 Comparison with Convolutional Neural Networks (CNNs)

2.14 Experimental Comparison of the Wasserstein distance

and the LOT embedding distance

For the sheared MNIST images whose separability was studied in Section 6 of the main
text, Figure shows the comparison between the Wasserstein distance, W (u,u2), and the
LOT embedding distance Wzlng (t1,12). The Wasserstein distance is approximated using the
Python Optimal Transport (POT) package [43]] E| and LOT embedding distance is approximated

as the 12 distance of the difference between the LOT feature vectors normalized by the grid size.
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al) a2)

Samples from a template Gaussian distribution Template samples snapped to a 28 x 28 grid
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Samples from sheared Gaussian distribution Sheared samples snapped to a 28 x 28 grid
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Figure 2.10: al) Samples from a Gaussian distribution that serves as the template u. a2)
Approximation of the template distribution as a discrete distribution on a grid. b1) Samples from
sheared distribution Syu. b2) Approximation of the sheared distribution as a discrete distribution
on a grid. cl) Samples from a candidate referencec distribution fiu € Fastine(P) (equation
[2.T1). c2) Approximation of the reference distribution as a discrete distribution on a grid. d)
Numerical validation of the equivalence of LOT distance WZLJQJ (1,S3u) and the Wasserstein
distance W (u,Syu) under compatibility as in example using the LOT framework for

different choices of shear S.

69



(a) Mildly sheared MNIST 7s and 9s (b) Severely sheared MNIST 7s and 9s
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Figure 2.11: Comparison of discrete LOT classification of (a) mildly sheared MNIST 7s and 9s
(b) severely sheared MNIST 7s and 9s with convolutional neural network with 1586 training
parameters (labelled small CNN) and 3650 training parameters (labelled large CNN) under
identical training and testing conditions.
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Figure 2.12: Mean test errors for pairwise binary classification of MNIST digits 0 — 9 using
semi-discrete LOT classifier under mild shearing conditions. For each image, A1, A, are randomly
chosen in the interval [0.5,1.5], 6 is randomly chosen in the interval [0,360] and the shifts b are
randomly chosen in the interval [—5,5]. The number of training data samples used per digit
class is 40 and the mean value of the test error is reported based on 20 sample experiments.. The
standard deviation of the test errors was < 0.055.
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Figure 2.13: Mean test errors for pairwise binary classification of MNIST digits 0 — 9 using
semi-discrete LOT classifier under severe shearing conditions. For each image A;,A, are
randomly chosen in the interval [0.5,2.5], 6 is randomly chosen in the interval [0,360] and
the shifts b are randomly chosen in the interval [—5,5]. The number of training data samples
used per digit class is 40 and the mean value of the test error is reported based on 20 sample
experiments.. The standard deviation of the test errors was < 0.055.
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Figure 2.14: a) A randomly selected subset of mildly sheared MNIST ones and twos. b) A
randomly selected subset of mildly sheared MNIST sevens and nines. c) Classifcation of mildly
MNIST sheared ones and twos. For each image, A;, A, are randomly chosen in the interval
[0.5,1.5], 6 is randomly chosen in the interval [0,360] and the shifts b are randomly chosen
in the interval [—5,5]. d) Classifcation of mildly sheared MNIST sevens and nines. For each
image, A1, A, are randomly chosen in the interval [0.5,1.5], 6 is randomly chosen in the interval
[0,360] and the shifts b are randomly chosen in the interval [—5,5].
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Figure 2.15: Visualization of separation in the LDA projection of 40 training per class corre-
sponding to a) MNIST ones and twos under mild shearing b) MNIST sevens and nines under
mild shearing.
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Figure 2.16: a) A randomly selected subset of severely sheared MNIST ones and twos. b) A
randomly selected subset of severely sheared MNIST sevens and nines. c) Classifcation of
severely sheared MNIST ones and twos. For each image, Aj,A, are randomly chosen in the
interval [0.5,2.5], 6 is randomly chosen in the interval [0,360] and the shifts b are randomly
chosen in the interval [—5,5]. d) Classifcation of severely sheared MNIST sevens and nines. For
each image, A1, A, are randomly chosen in the interval [0.5,1.5], 6 is randomly chosen in the
interval [0, 360] and the shifts b are randomly chosen in the interval [—5,5].
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Figure 2.17: Visualization of separation in the LDA projection of 40 training samples per class
corresponding to a) MNIST ones and twos under severe shearing b) MNIST sevens and nines

under severe shearing.
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Figure 2.18: a) 2000 pairwise distances between mildly sheared MNIST ones and twos. b)
2000 pairwise distances between mildly sheared sevens and nines. ¢) 2000 pairwise distances
between severely sheared MNIST ones and twos. d) 2000 pairwise distances between severely
sheared sevens and nines.
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Chapter 3

Linearized Wasserstein Embeddings

JOINT WORK WITH KEATON HAMM, CAROLINE MOOSMULLER, AND ALEX
CLONINGER

We introduce LOT Wassmap, a computationally feasible algorithm to uncover low-
dimensional structures in the Wasserstein space. The algorithm is motivated by the observation
that many datasets are naturally interpreted as probability measures rather than points in R”, and
that finding low-dimensional descriptions of such datasets requires manifold learning algorithms in
the Wasserstein space. Most available algorithms are based on computing the pairwise Wasserstein
distance matrix, which can be computationally challenging for large datasets in high dimensions.
Our algorithm leverages approximation schemes such as Sinkhorn distances and linearized
optimal transport to speed-up computations, and in particular, avoids computing a pairwise
distance matrix. We provide guarantees on the embedding quality under such approximations,
including when explicit descriptions of the probability measures are not available and one must
deal with finite samples instead. Experiments demonstrate that LOT Wassmap attains correct
embeddings and that the quality improves with increased sample size. We also show how LOT
Wassmap significantly reduces the computational cost when compared to algorithms that depend

on pairwise distance computations.
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3.1 Introduction

A classical problem in analyzing large volume, high-dimensional datasets is to develop
efficient algorithms that classify points based on a similarity measure, or based on a subset of
preclassified training data points. Even when data points lie in high-dimensional Euclidean space,
they can often be approximated by low-dimensional structures, such as subspaces or submanifolds.
This observation has led to significant advances in the field, mostly through the development of
manifold learning algorithms, which produce a low-dimensional representation of a given dataset;
see for example [[13} 134} 163} [88]. In many of these frameworks, the data points are assumed to
be sampled from a low-dimensional Riemannian manifold embedded in Euclidean space, and
approximately preserve intrinsic properties such as geodesic distances.

In many applications however, data points are more naturally interpreted as distributions

()

J

N;

e with x

{w;}_, over R", or finite samples X; = {xg.i)} ~ u;. Examples include imaging data
[82]], text documents (the bag-of-word model uses word count within a text as features, creating
a histogram for each document [[100]), and gene expression data, which can be interpreted as
a distribution over a gene network [27,165]. In this setting, a Euclidean embedding space with
Euclidean distances locally approximating the intrinsic distance of the data may not be geomet-
rically meaningful, and datasets are better modeled as probability measures in the Wasserstein
space [90]].

We assume that our data points {u;}Y | belong to the quadratic Wasserstein space W, (IR")

of probability measures with finite second moment, equipped with the Wasserstein distance

W)=t ([ eslPant) ) a1

nel(u,v)

where P(R?") is the set of all probability measures over R?" and I'(u,v) := {y € P(R*") :
YA xR") = pu(A), y(R" xA) =Vv(A) for all A C R"} is the set of all joint probability measures

with marginals u and v. Under regularity assumptions on y, the optimal coupling 7 has the form
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nt = (id, T)4u, where T € L2(IR", ) is the “optimal transport map” [[18} 90].

The Wasserstein space and optimal transport have gained popularity in the machine
learning community, as they are based on a solid theoretical foundation [90] (for example, 1s
a metric), while providing a versatile framework for applications (for example, as a cost function
for generative models [[10], in semi-supervised learning [85], and in pattern detection for neuronal
data [70]).

In this paper, we are interested in uncovering low-dimensional submanifolds in the
Wasserstein space in a computationally feasible manner as well as analyzing the quality of the
embedding. To this end, we follow the idea of [48, 92], which introduces the Wassmap algorithm
(see Section for more details), a version of the Multidimensional Scaling algorithm (MDS)
[64] (see Algorithm 2)), or more generally, the Isomap algorithm [88].

A central part of manifold learning algorithms like MDS or Isomap relies on the com-
putation of the pairwise Euclidean distances. Wassmap uses the pairwise Wasserstein distance
matrix instead, which leads to O(N?) Wasserstein distance computations, each of which is of the
order O(n?log(n)) if one uses interior point methods to solve the linear program (3.1)). If both
N and n are large, computing all pairwise distances becomes infeasible. To deal with this issue,
approximations of the Wasserstein distance can be considered. In this paper, we are interested in
entropic regularized distances (Sinkhorn distances) [3) 136]], which deal with the computational
issue involving n, and in linearized optimal transport (LOT) [45,192], to reduce the computational
costin V.

Our results are twofold:
1. Approximation guarantees:

e We provide bounds on the embedding quality of the Multidimensional Scaling algo-
rithm (MDS) [64] (see Algorithm [2)) applied to a dataset in the Wasserstein space,

where the pairwise Wasserstein distances are only available up to an error 7.
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e We study the size of T in common approximation schemes such as entropic regulariza-
tion and linearized approximations, and when explicit descriptions of the data points

ui,i=1,...,N are not available, and one must deal with finite samples instead.

2. Efficient algorithm (LOT Wassmap): We provide an algorithm, “LOT Wassmap”, inspired
by the Wassmap algorithm of [48]]. It essentially uses linearized Wasserstein distance
approximations through LOT in the Multidimensional Scaling algorithm, leveraging our
approximation guarantees from (I)). However, we do not compute the LOT-Wasserstein
distance matrix and feed it into MDS, but instead compute the truncated SVD of centered

transport maps. This is the same in theory, but computationally more efficient.

3.1.1 Previous work

The idea of replacing pairwise Euclidean distances with pairwise Wasserstein distances in
common manifold learning algorithms has been explored in many settings; for example in [99] to
study shape spaces of proteins, in [65) 27] to analyze gene expression data, and in [92] for cancer
detection.

Theoretical results on the reconstruction of certain submanifolds in W,(R") through the
MDS algorithm using pairwise Wasserstein distances are presented in [48]]. The associated
algorithm, Wassmap, is the basis for our LOT Wassmap algorithm.

Related to the idea of uncovering submanifolds in the Wasserstein space is “Wasserstein
dictionary learning” as discussed in [74, 96]]. The authors propose to represent complex data in

the Wasserstein space as Wasserstein barycenters of a dictionary.

3.1.2 Approximation guarantees

Using approximations of the Wasserstein distance in manifold learning algorithms such

as MDS may change the embedding quality, and our main result provides theoretical bounds on
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the error:

Theorem 3.1 (Informal version of Theorem . Assume that data points {u; }YY | are 1, —close
to a d-dimensional submanifold ‘W in the Wasserstein space, which is isometric to a subset Q of
Euclidean space RY. Furthermore assume that we only have access to approximations \; j of the
pairwise distances W (u;, 1), and that the approximation error is .

Then, under some technical assumptions, the Multidimensional Scaling algorithm using
distances \; j as input recovers data points {zi i\’: 1 C RY, which are CN,‘W(TI +1)-close to Q up

to rigid transformations.
Some remarks on this result:

e The first source of error, 71, depends on how close the data points are to the submanifold

7 isometric to a subspace of R, which is completely determined by the dataset.

e The second source of error, T, depends on the approximation scheme used, and can be

made arbitrarily small with sufficient computational time or good choice of parameters.

A significant part of this paper is dedicated to providing bounds for T, when common approxima-

tion schemes for Wa (u;, ;) are used, and when {y;}¥ | are only available through samples, i.e.

when y; ~ u; = mL, ZT;I SY(,-> with Y j(i) ~ p; i.i.d. In particular, we introduce empirical linearized
j

Wasserstein-2 distance, WwLoT

»'s » Which uses two approximation schemes:
)

(a) Entropic regularized formulation: A very successful approximation framework for efficient
Wasserstein distance computation is the entropic regularized formulation of (3.1), which

depends on a parameter 3, and leads to Sinkhorn distances [36]:

. 1
min [l ylPan(e.y) + BDi (wluev). (62)
nel(u,v) JR2n 2

where Dyy is the Kullback—Leibler divergence of measures [54]]. This formulation leads
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to a unique solution (in contrast to (3.1))), and to a significant computational speed-up in n,

achieving O(n?log(n)) through matrix scaling algorithms (Sinkhorn’s algorithm) [3} 36]].

(b) Linearized Wasserstein distances: Linearized optimal transport (LOT) [45] 92] approximates
Wasserstein distances by linear L>—distances in the tangent space at a chosen reference

measure O:

WEOT (u,v) : (/ T2 () — T () | dos(x ))1/2, (3.3)

where T§ denotes the optimal transport map from G to u (either computed through (3.1) or
(3.2), and using barycentric projections to make a transport plan into a transport map). Instead
of computing all pairwise optimal transport maps, in this framework, one computes 75" from
G to y;, and approximates pairwise maps between y; and y; as a composition of 7' and TE,
reducing the computation in N to O(N). This framework has been successfully applied signal
and image classification tasks [78,194], such as visualizing phenotypic differences between

types of cells [[12]]. There furthermore exist error bounds for WLOT [15,139, 45,157,168, 72].

With these approximation schemes at hand, we define the empirical linearized Wasserstein-2

distance:
1/2
Wi (@, V) = < leTc (Xj>|!2> : (3.4)

where X; ~ ¢ i.i.d. and the transport maps are either computed by (3.1) or (3.2) (and with
barycentric projections, if necessary).

We provide values for 1, as in Theorem by bounding |W5(u, v)? WLOT( ,v)?|,

either a linear program or Sinkhorn iterations to compute the transport plans. These bounds are

derived by combining the following results:

e Estimation of optimal transport maps with plug-in estimators, i.e. bounds on ||T#V =T || s
which are provided by [38]] for the linear program case, and by [80] in the regularized case.

Both [38] and [80] assume compactly supported u and v, while we are able to relax the
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compact support assumption on the target measure, as long as it can be approximated by

compactly supported measures.

e Approximation results for WZLC?T, which are provided in [57, [72], and are based on the idea

that y; are generated by almost compatible functions # applied to a fixed generator u. We

also strengthen some of the approximation results in [S7, [72]].

3.1.3 Efficient algorithm: LOT Wassmap

The Wassmap algorithm of [48] requires computing the pairwise Wasserstein distance ma-
trix Wa(uj, p1), i, j = 1,...,N, which leads to O(N?) expensive computations. We introduce LOT
Wassmap (see Algorithm 3), which uses LOT distances (3.3) to linearly approximate W (u;, ;)
(since the input of our algorithm are empirical samples y;, we actually use the empirical linearized
Wasserstein-2 distance (3.4))). This results in only O(N) optimal transport computations.

However, in practice, we avoid computing the pairwise LOT distance matrix. Instead,
we compute the truncated SVD of the centered transport maps, which is computationally more

efficient. We show that in theory this produces a result equivalent to Theorem [3.1}

Corollary 3.2 (Informal version of Corollary . Assume that data points {u;}Y_| are 11 —close
to a d-dimensional submanifold ‘W in the Wasserstein space, which is isometric to a subset Q
of Euclidean space R, Choose a reference measure 6 and compute all transport maps T&"
(either with a linear program (3.1)) or with Sinkhorn approximations (3.2), and with barycentric
projections, if necessary). Let To be the error between the empirical linearized Wasserstein-2
distance Wzlng (Hi, 1) of and the actual Wasserstein-2 distance Wa (uj, u;).

Then, under some technical assumptions, the truncated SVD of the centered transport
maps T5" (column-stacked) produces data points {z;}"_; C RY, which are Cy, (1 +T2)-close to

Q up to rigid transformations.

We note that Corollary [3.2]is a corollary of Theorem[3.1]and that the technical assumptions
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and constants are the same in both results.

In Section we provide experiments demonstrating that LOT Wassmap does attain
correct embeddings given finite samples without explicitly computing the pairwise LOT distance
matrix. In particular, we show that the embedding quality improves with increased sample size

and that LOT Wassmap significantly reduces the computational cost when compared to Wassmap.

3.1.4 Organization of the paper

This paper is organized as follows: We start by introducing important notation and
background in Section [3.2] This includes discussion of the MDS and Wassmap algorithms,
(linearized) optimal transport, and plug-in estimators. Section |3.3|introduces the LOT Wassmap
algorithm and provides the main results. Sections [3.4] and [3.5] provide approximation guarantees
for VT/ZITST (11, V) for compactly and non-compactly supported target measures, respectively. The
approximation guarantees come with many technical assumptions, and Sections and|3.7|are
dedicated to discussing settings in which these assumptions hold. The paper concludes with
experiments in Section which show the effectiveness of LOT Wassmap. Proofs are provided

in Sections to

3.2 Notation and Background

This paper has a significant amount of background and notation which is summarized

categorically here. See Table|3.1|for an overview of notation used in the paper.

3.2.1 Linear Algebra Preliminaries

Given A € R™*" its Singular Value Decomposition (SVD) is given by A = ULV T, where
U e R™ and V € R™" are orthogonal matrices and ¥ € R™*" has non-zero entries along its

main diagonal (singular values). The singular values are the square roots of the eigenvalues
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Table 3.1: Overview of notation used in the paper.

Notation | Definition Reference
A Square Euclidean distance matrix Algorithm |2
A Perturbed distance matrix Corollary |3.8
X' Moore—Penrose pseudoinverse of matrix X Section |3.2.1
u Template measure Section|3.2.4
u Empirical measure approximating u (R3¢))
o Reference measure for LOT Section [3.2.4
-, Schatten p-norm Section (3.2.1
Il Spectral norm of a matrix or Euclidean norm of a vector | Section|3.2.1
|- |lg Frobenius norm of a matrix Section|3.2.1
I| - || max (Entrywise) maximum norm of a matrix Section|3.2.1
- Il Norm on L?(R", i) Section|3.2.3
n Dimension of Euclidean space that probability measures | Section|3.2.3
are defined on
P(R™) Probability measures on R” Section [3.2.3
P,.(R") | Absolutely continuous probability measures on R” Section[3.2.3
Wh(R") | Wasserstein-2 space over R” Section [3.2.3
Wa(u,v) | Wasserstein-2 distance between y and v @3.35)

Wyg" (u,V)

Linearized Wasserstein-2 distance between u and v, with
o as reference

(3.6)

Weo (u,v)

Empirical linearized Wasserstein-2 distance

G.12)

(9
¢ Optimal transport (Monge) map from G to u Section (3.2.3
Tiu Pushforward of u with respect to T’ Section (3.2.3
TS Barycentric projection of an optimal transport plan (Kan- (3.10)
torovich potential)
d Embedding dimension of MDS Section 3.2.2|
k Sample size that generates u (R3¢))
m Sample size that generates G Algorithm |3
N Number of data points Algorithm |3
€ Distance from compatibility Definition |3.4
B Regularizer for Sinkhorn OT Section |3ﬂ[

of ATA and are taken in descending order 6; > G, > --- > Omin{m,n} = 0. The truncated SVD
of order d of Ais Ay = UdZ‘,dVa,T where U; and V; consist of the first d columns of U and V,
respectively, and £; = diag(o7, ...,0,) € R9*?. The Moore—Penrose pseudoinverse of A € R"*"

is the n x m matrix denoted by A" and defined by AT = VXTU T where X is the n x m matrix with
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1 1
[ Gmin{m‘n}

entries along its main diagonal.
The Schatten p-norms (1 < p < o) are a general class of unitarily invariant, submulti-

plicative norms on R”*" and are defined to be the ¢” norms of the vector of singular values:

|Alls, :== (015 -, Omin{m,n})|l¢,- The Frobenius norm, which is the Schatten 2-norm is denoted
by || - ||, and the spectral norm, which is the Schatten eo-norm is denoted simply by || - ||. We also
use || - || to denote the Euclidean norm of a vector.

3.2.2 Multidimensional scaling

Let 1 be the all-ones vector in R, and J := 1 — %IIT. Then Multidimensional Scaling

(MDS) is summarized in Algorithm 2] For more details see [64].

Algorithm 2 Multidimensional Scaling (MDS) [64]

Input :Points {y; fV: 1 C RP; embedding dimension d < D.
Output : Low-dimensional embedding points {z; ?]:1 c R4
Compute pairwise distance matrix A;; = ||y; —y;||*

1
B= —EJAJ
(Truncated SVD): By = VX,V dT
zi= (VaZa)(i,:), fori=1,...,N

Return {z;}Y |

MDS produces an isometric embedding R” — R? if and only if the matrix B is symmetric
positive semi-definite with rank d, a result that goes back to Young and Householder [98]]. In this
case, the embedding points {z;}¥ ; C RY satisfy |z; — z;|| = ||y: —y;|| and are unique up to rigid

transformation.
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3.2.3 Optimal Transport Preliminaries

Let P(IR") be the space of all probability measures on R”, with Z,.(R") being the subset
of all probability measures which are absolutely continuous with respect to the Lebesgue measure.
Given u € P,.(R"), we denote its probability density function by f,,. The quadratic Wasserstein
space Wa(R") is the subset of P(IR") of measures with finite second moment [, ||x||>du(x) < oo

equipped with the quadratic Wasserstein metric given by

1

Wa(u,v) = inf < /]R - szth(x,y)) ! (3.5)

nel(u,v)

where T'(u,v) := {y € P(R?") : y(A x R") = u(A), y(R" x A) = v(A) for all A C R"} is the set
of couplings, i.e., measures on the product space whose marginals are u and v.

In [[18], Brenier showed that if u is absolutely continuous with respect to the Lebesgue
measure, the optimal coupling of (3.3) takes the special form 7 = (id, 7' )su, where { is the
pushforward operator (Syu(A) = u(S~'(A)) for A measurable) and Ty € L2(R", u) solves

Jmin |7 (6) =22 dux).
dgu=v JRRn"

For simplicity, we denote the norm on L*(R",u) by || f||2 := fgu [/ (x)[|*du(x). Note that if T,
exists, then

Wa(u,v) = |T,) —id |

Furthermore, [18] shows that when u is absolutely continuous with respect to the Lebesgue
measure, the map Tl)’ is uniquely defined as the gradient of a convex function ¢, i.e. T;Y = Vo (up

to an additive constant).
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3.2.4 Linearized optimal transport

Linearized optimal transport (LOT) [45] 68 78], 94] defines an embedding of P(IR") into
the linear space L?(R",5), with 6 being a fixed reference measure. Under the assumption that
the optimal transport map exists, the embedding is defined by u + T5. This embedding can be
used as a feature space, for example, to classify subsets of P(R"), to linearly approximate the
Wasserstein distance, or for fast Wasserstein barycenter computations [2, 57, 168 (72, [78]].

In particular, the LOT embedding defines a linearized Wasserstein-2 distance:
Wad (V) = 118 = T3 | (3.6)

In certain settings, this linearized distance approximates the Wasserstein-2 distance. The strongest

results can be obtained when the so-called compatibility condition is satisfied:

Definition 3.3 (Compatibility condition [2, 72, [78])). Let 6,u € W (R") N Py (R™). We say that

the LOT embedding is compatible with the u-pushforward of a function g € L2(R", u) if
TGg H— goT5.

The compatibility condition describes an interaction between the optimal transport map
and the pushforward operator, namely it requires invertability of the exponential map [45]].

When the compatibility condition holds for two functions g1, g2, then LOT is an isometry,
ie. WZE(?T(g1ﬁH, gastt) = Wa(g144, 82441) as shown in Lemma and [72, [78]]. In particular, this
is the case when g is either a shift or scaling, or a certain type of shearing 57,72, [78].

We can furthermore consider a generalization to “almost compatible” functions, also

termed €-compatible:

Definition 3.4 (e-compatibility). Let 6,u € Wo(R") N Py (R"). We say that H is €- compatible

with respect to G and y, if for every h € #H, there exists a compatible transformation g such that
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g — hlly < & where go TS = Ta™.

We remark that compatibility is stable. Similar to compatibility implying isometry, there
exist results that imply €-compatible transformations imply “almost”-isometry between Wzlng
and W,. Some of these results are accounted for in [[72, Proposition 4.1]; however, we also
extend these almost-compatibility results in Theorem [3.30] These results make use of the Holder
regularity bounds for Wzlng of [45,168]]. We note that the “isometry under compatibility” result
mentioned above is a direct consequence of the preceding proposition, namely by setting € = 0.

In this paper, we consider measures y;,i = 1,...,N of the form y; = h;;u, where p is a
fixed template measure, and h € H with # a space of functions in L?>(R", ). This is similar to
assumptions in [2}, 57, [72, [78]], where # consists of shifts and scalings, compatible maps, or has
other properties, such as convexity and compactness. We will write y; ~ Hiu to indicated that y;

is of such a form for all i = 1,...,N, and H will be specified in the respective context. Note that

[2] calls this data generation process an “algebraic generative model”.

3.2.5 Optimal transport with plug-in estimators

Explicit descriptions of the measures u are often unavailable in applications, and one must

instead deal with finite samples of the measure. In this paper, we consider empirical distributions

1 —

k
TR 3.7)
i=1

with ¥; ~ pi.1.d. In what follows, we will consider approximations of both the target and reference
distributions via empirical distributions.
The Kantorovich problem (3.5)) has a (possibly non-unique) solution for transporting an

absolutely continuous measure G to an empirical measure of the form (3.7). Following [38], we
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define the set of Kantorovich plans

Tin := argmin / lx—y|2dn(x.y). (3.8)
nel(o.) /R

which may contain more than one transport plan. In practice, these optimal transport plans are
exactly computed via linear programming to solve (3.8]). We call optimal transport plans solved
with linear programming yzp. It is much faster, however, to approximate the optimal transport

plan by using an entropic regularized plan [36]]. In particular, we get a unique solution by solving

. 1 ~
Vg := argmin / 3 |x — y||?dm(x,y) + BDkL(T||c @ 1), (3.9)
nel'(o.1)

where Dy, is the Kullback—Leibler divergence of measures [54], c ® u is the measure on the
product space R"” x R"” whose marginals are ¢ and u, and 3 denotes the regularizer. We solve
(3.9) with Sinkhorn’s algorithm, which yields entropic potentials fg and gg corresponding to &
and pu, respectively.

Regardless of whether we solve the optimal transport plan using or (3.9), we can

make a transport plan y € I' into a map by defining the barycentric projection

_ Jyydv(x,y)

Al
Tt Jydv(x,y)

, forx € supp(o). (3.10)

This leads to a natural way to consider linearized Wasserstein-2 distances of the form with

absolutely continuous reference ¢, and for empirical distributions:
Wagt (@,9:9) = 175 () = 15 (%) o, (3.11)
where Y € {Y.p, Vs } denotes the method used to calculate the transport plans y; and g, which are

transport plans from 6 to i and V, respectively. We suppress this notation and will simply use
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Tc’;‘ (-;yLp) or Tcﬁ (*;7Yp) to denote the barycentric projection map computed via linear programming
and Sinkhorn, respectively, so that y.p and g are understood to be in ['(o,u).
To account for m finite samples of the reference distribution, we define the empirical

linearized Wasserstein-2 distance by

™=

1/2
~ o~ 1
Woo (@ V:y) = (Q 178 (X2 ) — T3 (X;: vv)||2> , (3.12)

1

J

where X; ~ 6 1.1.d.

Remark 3.5. When we use yg for a transport plan between 0 and 1, note that our barycentric

projection map is given by

%Zé{:l)’ieXp (<g57k(yi) - %Hx_yin) /B>
% Lio1exp ((gﬁ,k(yi) -3 |x_yi"2)/ﬁ>

T (xyp) = , (3.13)

where gg i denotes the entropic potential corresponding to i, y; € supp(u), and k is the sample

size for both & and 1.

Remark 3.6. Since our approximations will require us to use m samples from the reference
distributions, the barycentric projection map T (x) will only work for x € supp(G); however, for

general computation, we can just interpolate to calculate T(’,A' (x) for x € supp(c) \ supp(0).

In what follows, we are interested in bounds for

[Wa(u,v)? = Wag" (1,9:7)°)

for y € {Yrp,¥p}. In particular, we want similar results to Theorem (Wasserstein-2 compared
to LOT) and results in [38] (Wasserstein-2 compared to Wasserstein-2 on empirical distributions).

This requires comparisons between all of Wa (u,Vv), WLOT( u,Vv), WLOT(,u,V Y), and WLOT(,u,V ),
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which are discussed in Section [3.4] and Section

3.2.6 Wassmap

Various generalizations of MDS have been explored [35] including stress minimization,
which is useful in graph drawing [56, |69]], Isomap [88]] which replaces pairwise distance by a
graph estimation of manifold geodesics, and is useful for embedding data from d—dimensional
nonlinear manifolds in RP. Wang et al. [92] utilized MDS with A, i = Wa(ui,u j)2 for data
considered as probability measures in Wasserstein space with applications to cell imaging and
cancer detection. Subsequently, Hamm et al. [48] proved that several types of submanifolds
of W, can be isometrically embedded via MDS with Wasserstein distances (as in [92]) and
empirically studied Wassmap: a variant of Isomap that approximates nonlinear submanifolds
of W;. In particular, [48] shows that for some submanifolds of W,>(R"™) of the form %y where
H = {hg:0 € ® C RY} which are isometric Euclidean space, the parameter set ® C R? can be
recovered up to rigid transformation via MDS with Wasserstein distances (e.g., translations and

anisotropic dilations).

3.2.7 Other notations

For scalars a and b we use a VV b to denote the maximum and a A b to denote the minimum
value of the pair. Throughout the paper, constants will typically be denoted by C and may change
from line to line, and subscripts will be used to denote dependence on a given set of parameters.
We use a < b to mean that ca < b < Ca for some absolute constance 0 < ¢,C < oo.

For a random variable X,,, we say that X, = O, (ay) if for every € > 0 there exists M > 0

and N > 0 such that

n

p(x

dap

>M) <& Vn>N.
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We denote by O(d) the orthogonal group over R, and the related Procrustes distance (in

the Frobenius norm) between matrices X,Y € R¥V is Qmi?d) X — QY||E.
€0

3.3 LOT Wassmap algorithm and Main Theorem

Here we present our main algorithm which is an LOT approximation to the Wassmap
embedding of [48], and our main theorem which describes the quality of the embedding using

some existing perturbation bounds for MDS.

3.3.1 The LOT Wassmap Embedding Algorithm

The algorithm presented here (Algorithm 3)) takes discretized samples of a set of measures
{wi Y, C W1(R") and a discretized sample of a reference measure 6 € W,(R"), computes
transport maps from the empirical reference measure G to each empirical target measure i1; using
optimal transport solvers and barycentric projections. Finally, the truncated right singular vectors
and singular values of the centered transport map matrix are used to produce the low-dimensional
embedding of the measures. Two things are important to note here: first, the output of the
algorithm is the same as the output of multi-dimensional scaling using pairwise squared LOT
distances (or Sinkhorn distances in the approximate case), but we use the same trick as the
reduction of PCA to the SVD to avoid actually computing the distance matrix; second, in contrast
to the Wassmap embedding of [48] which requires O(N?) Wasserstein distance computations,
Algorithm |3| requires computation of only O(N) optimal tranport maps. Given the high cost
of computing a single optimal transport map for densely sampled measures, this represents a
significant savings.

Note that the factor of \/Lﬁ appearing in the computation of the final embedding is due to
(3.12) where the % appears in the definition of the empirical LOT distance. Lemma Lemma

shows that 7T where T is as in Algorithm [3|is actually the MDS matrix —%JAJ where A
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consists of the empirical LOT distances between the data, hence we absorb the % into the norm in

(3.12) to get the matrix T in Algorithm 3]

Algorithm 3 LOT WassMap Embedding

Input :Reference point cloud {w;}" , ~c € P (R")
Sample point clouds {xlj‘}’;’;l ~ g € PB(RY) (k=1,...,N)
OT solver (with regularizer if Sinkhorn)
Embedding dimension d

Output : Low-dimensional embedding points {z;}¥ , C R?

fork=1,....Ndo

Calculate cost matrix Cj; = ||w; — x’]‘. 1

Compute OT plan y; € R™*"* between {w;}”" ; and {x’Jc ']1": , using C and OT solver
Calculate barycentric projection Ty (w;) = (Z;”‘ lx’]‘ (V)i j> / (27": L (V)i j>

f: [TJ(W’)}:INIIJ 1

for k=1,....Ndo
t T:k - \f(Tk_ NZk 1Tk)

Compute the truncated SVD of T as T; = UdZdVdT
Return z; = V;X,(i,:)

3.3.2 MDS Perturbation Bounds

As stated above, the output of Algorithm [3]is equivalent to the output of MDS on the
transport map matrix 7 therein. Consequently, the analysis of the algorithm will require some
results regarding MDS. On the road to stating our main result, we summarize some nice MDS

perturbation results of [9].

Theorem 3.7 ([9, Theorem 1]). Let Y,Z € R¥N with d < N such that rank(Y) = d, and let

=Z2"Z—Y"Y|s, for some p € [1,00]. Then,

oL L
7l (1= )4 ) ndvhe, rfe< 1,
min HZ QY||S

€o(d 1
ec 1Yt|e? +de, o.W.
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Consequently, if || YT ||e < \f then

Qmoln 1Z—0Y|s, <(1 +V2)|[Y7|je?.

Corollary 3.8. Let yi,...,yy € R? be centered, span R?, and have pairwise dissimilarities

Aij= |lyi—y;l- Let{A,]}N | be arbitrary real numbers and p € [1,0]. If ||Y7||||A— AHS \[,

then MDS (Algomhml) Wlll’l input dissimilarities {A; j} _, and embedding dimension d returns

apoint set 71,...,2N € R4 satisfying

Qmén 1Z—=Qr|s, < (1+V2)IYT[[|A—Als,.

Proof of Corollary[3.8 The proof follows along similar lines to that of [9, Corollary 2] with
some modifications. First, note that the centering matrix J in MDS satisfies ||/|| =1 as it is an

orthogonal projection. Then, by using the fact that ||AB||s, < [|A]|||B||s,, we can estimate
—||J(A As, < —||J|| IA=Alls, < —||A Alls, < o3(Y), (3.14)

where the final inequality follows by assumption.
Since Y is a centered point set, we have Y Ty =JyTyJ= —%JAJ (Lemma . Thus
by Weyl’s inequality, the fact that || - || <[ - [|s, for all p, and (3.14),

1 1 1
—ZJAH ) oy —=JAT ) = S| J(A—A
Gd( > >_Gd< 2JAJ) ZHJ( Mls,
>ou(—Luar) = Laia—ay
264 |~ 3 Sp
|
= G3(Y) LA A,

> 0.
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Consequently, —%JAJ has rank d, so if Z contains the columns of the MDS embedding corre-
sponding to A, then Z " Z is the best rank-d approximation of — %JAJ (by construction). It follows

from Mirsky’s inequality that

1 1
Z'Z+-JN|| < ||ZJ(A—-A) (3.15)
2 S 2 S
P p
Combining (3.14)) and (3.15)), we have
1 1
e:=2"Z2-Y"Y|s, < ‘ 7'z + SIM|| -+ HEJ(A —AJ|| < T(A=A)]s,
SP SP
<[[A=A[s,.

1
Thus, [|YT|le < ||Y7]|[|A - A||§p < \/Li’ so we may apply the final bound of Theorem 3.7|to yield

the conclusion. O]

3.3.3 Main Theorem

The following theorem shows the quality of an MDS embedding of a discrete subset of
W, (R") when approximations of the pairwise W, (RR") distances are used (via, for example, LOT
approximations, Sinkhorn regularization, or other approximation techniques). The embedding
quality is understood in two parts: first, how far away the set is from a subset of W, (IR") that
is isometric to R?, and second, how good an approximation to the Wasserstein distances one
utilizes in MDS. The second source of error can always be made arbitrarily small given sufficient
computation time or judicious choice of parameters (as in Sinkhorn, for example). However, the
first source of error arises from the geometry of the set of points, and may or may not be small.

Note that using Corollary [3.8] outright would require computing a proxy distance matrix
and applying MDS; however, to make Algorithm |3|computationally efficient, we instead compute

the truncated SVD of the centered transport maps rather than on the distance matrix between
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the transport maps. These are the same in theory, but allow for significantly less computation in
practice. Below, we state our main theorem, which is stated in terms of the output of MDS on an
estimation of Wasserstein distances between measures; but we stress that we are able to easily
transfer the bounds to the output of Algorithm [3| which does not require any distance matrix

computation.

Theorem 3.9. Let {u;}Y | C Wa(R"). Suppose W C Wo(R") is a subset of Wasserstein space
that is isometric to a subset of Euclidean space @ C R?, and {v;}Y | C W and {y;} C Q are
such that |y;—y;| = Wa(Vv,V;). Let A;j = Wz(vi,vj)z, Ij= Wz(,u,-,,uj)z, and A;j = k%jfor some
Aij € R. Let {z;}Y | be the output of MDS (Algorithm with input A.

If (Walui p1j)? — Wa(Vi, ;)2 < T1 and [Wa(ui,u;)? — klzj| < 1 for some t; and Ty, and

1 1
YHVN (11 4+12)2 < —, 3.16
[Y|VN(T1+712)2 < 7 (3.16)
then {z;}N | C R? satisfies
min [|Z—QY|[r < (1+V2)|[YT||N (T +12).
Qe0(d)
Proof. Note that
A= Allr < [T = Allp+ [A=T[g < N(t1 +12).
Consequently, allows us to apply Corollary [3.8]to yield the conclusion. O

Specializing Theorem [3.9]to the case of Algorithm 3]yields the following corollary, which
shows that the truncated SVD of the centered LOT transport matrix 7" is equivalent to the output

z; of MDS in Theorem

Corollary 3.10. Invoke the notations and assumptions of Theorem Choose a reference

measure 6 € Wo(R") and compute all transport maps T5'. Let T be the transport map matrix
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created by centering and column-stacking the transport maps Ts' as in Algorithm|3| Let UdZdVdT
be the truncated SVD of T, and let z; =V X4(i,:) for 1 <i <N (i.e., z; is the output ofAlgorithm.
If (3.16) holds, then

in 1Z=0Y|lr<(1+V2IIYTIIN .
leé?d)” QY |lp < (1+V2)[[Y'|IN (t1 +12)

Proof. Since T is centered, Lemmaﬂimplies that T'T =JT'TJ = —%JAJ . Consequently, if
—%JAJ =VX2VT =TTT, then T has truncated SVD T; = U,X,;V,, and therefore z; = VaZa(i,:)
arises from the truncated SVD of T and is also the output of MDS with input A. The conclusion
follows by direct application of Theorem 3.9

]

In the rest of the paper, we will discuss how various LOT approximations to Wasserstein
distances affect the value of the bound 7T, appearing in Theorem and Corollary In
particular, we get different values of T, when we have compactly supported target measures (as in
Theorem for linear programming estimators and Theorem for Sinkhorn estimators) and
non-compactly supported target measures (as in Theorem for linear programming estimators

and Theorem [3.22] for Sinkhorn estimators).

3.4 Bounds for compactly supported target measures

To capture the bound T, of Theorem we turn our attention to approximating the
N
pairwise square-distance matrix [W22 (i, ])] appearing in the theorem statement with the
ij=1
finite sample, discretized LOT distance matrix that comes from differences between transport

maps to a fixed reference, a finite sampling of y;, and a discretization of the reference distribution
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6. In particular, the main approximation argument consists of the following triangle inequality:

Wa(u1,m2)* = Wi (i ,/fz;Y)z‘ < Walui,m2)* = Wog (ur, m2)?)|

LOT error

+ [Waig (k1 m)® = Waig! (7))

>

TV
finite sample and optimization error

(WA (i )? — WS i 55

J/

~
discretized 6 sampling error

There are four sources of error between these two distance matrices:

1. approximating the Wasserstein distance with LOT distance,

2. approximating LOT embeddings between y; and u; with the barycenteric approximations

computed using finite samples f; and 4;,

3. approximating the integral with respect to the reference measure ¢ by the discretized

sampling G, and

4. optimization error in approximating the optimal transport map.

The error from (1) and (3) are handled in Section whilst the error from (2) gives us the
main theorems of this section. Error from (4) is also implicitly considered by handling error
from (2) since the optimization error for using a linear programming optimizer versus a Sinkhorn
optimizer is seen in the error bounds of Theorem [3.12]and Theorem [3.17] We deal with each error
separately and chain the bounds together at the end.

Before dealing with any of the details of the proofs, we need the following assumptions

on o, u, and H:
Assumption 3.11. Consider the following conditions on G, u, and H

i 6 € Pue(Q) for a compact convex set Q@ C B(0,R) C R" with probability density fs bounded

above and below by positive constants.
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ii u has finite p-th moment with bound M, with p > n and p > 4.
iii There exist a,A > 0 such that every h € H satisfies al|x|| < ||h(x)| <Alx||.

iv H is compact and g-compatible with respect to 6,u € Wo(R"). Moreover, supy, jycsr||h —

Wl <M.

v i~ Huiid.

These assumptions ensure that e-compatible transformations are also “€-isometric” as

shown in Theorem [3.30)

3.4.1 Using the Linear Program to compute transport maps

In this subsection, we assume that the classical linear program is used to compute the

optimal transport maps from g; to the reference (and its discretization).

Theorem 3.12. Let 8 > 0. Along with Assumption and that y € P,.(Q) for the Q in

Assumption[3.11] assume that

(i) T&" is L-Lipschitz, which may occur if TS is L-Lipschitz. Note that if 6 and u are both

compactly supported, then T5 itself is L-Lipschitz.

(ii) We estimate u; with an empirical measure y; using k samples and discretize G with m samples.

Let our estimator be given by (3.10) with Y solved using linear programming.

Then with probability at least 1 — 9,

Wi (1, 2)* — WZITC(?T(IJI?IJZ;'YLP)Z‘ < (M+2R) <C96”“6" +20,(r) log(1 +k)ne)

IR M) . (3.17)
m
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where C is the constant from Theorem depending on n, p,Q, M), the constants a and A come
from Assumption (iv), and

;

2k~1/2 n=273
k
r,(,): 2k~ '121og(14+k) n=4
2k—2/d n>5

\

(40) 14+ ((Ro+2n0.—n) V0)) n<4

a=1q (= 'v7/2)—1 n=4,

2(14+n71) n>4

\

so that r,(lk) and t o, are on the order of k1" and 2(1+ n_l), respectively. In this case, Ty of

Corollary is bounded above by the right-hand side of (3.17).

Proof. Note that the transport plan that we are using for the following proof is yzp. Henceforth,
we will suppress y.p from the terms WLO (01, 0;yLp) and T ( ;yLp) for simplicity.

Since |x?> —y?| = |x+y||x — y|, we need to bound both

(a) ’W2(#1,,U2)+WLOT(M1,M2)

®) [Wa o) — WE" i )|

We start with (@)): Since both u; and u, are pushforwards of a fixed template distribution u, we

know that y; = h;zu, where by [6, Eq. 2.1] and our assumptions, it follows that

Wa(u1,u2) = Wa(higp, hog) < [|hy — ol < M.

Moreover, since # is compact, u is compactly supported, and y; ~ Hu, we know that y; is
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compactly supported with supp(y;) C B(0,R) for all i. This implies that

1/2

Putting these estimates together, we have
Waaa ) + WA i )| < M+ 2R,

We continue with (b): From the triangle inequality we get

~

Wi (u1, 1) — Wa S (i i ‘S IWz(ul,uz)—WzL,é)T(ul,uz)H!WzL,QT(m,uz) Wy S (i1, i) |

‘ LOT i WLOT( ,,qu)‘

We now bound these three parts individually:

a) By Assumption [3.11] we can use e-compatibility of # in Theorem to get that

_p
’W2(IL[1HL[2) - WZI_;(‘?T(HINUZ)‘ S C86p+16n,

where C is from Theorem [3.30]

b) For the second term, we again assume that any transport maps involving discrete measures are

obtained from the linear program. In particular, we see that

Wag (ur,p) = | T8 = T8%lo
<ITE' =15 lo + 175" = T6% lo + |1 T5° — T5°llo

= 178" = 15" o + 175" — T5°llo +Wag ' (1 i2)-
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Note that Assumption [3.11|i) implies that there exists some # > 0 and o > 0 such that
Eq[t[[x]|%] < . Together with T4 being Lipschitz, this allows us to use Theorem [3.31]to

conclude that

Wag " (u1,12) = Wag (f )| < |78 = T8 o + 176" — 167 s

<20,(rP1og(1+k)™).

c¢) From Theorem we know that with probability at least 1 — 3,

oy PR 21log(2/d
WA ) - W )| < Ry B2,
Putting these bounds together yields the result. [

3.4.2 Using entropic regularization (Sinkhorn) to compute transport maps

Although [38]] gives estimation rates in terms of a transport map constructed from solving
the linear program associated to the optimal transport problem, solving the regularized optimal
transport problem (3.9) and using the barycentric projection map (3.13)) is much faster. For this
section, we will assume that the target and reference measures are discretized with the same

number of samples k.

Remark 3.13. Since we can choose G as well as the sample size for G, we can allow k = m in
this case. We believe, however, that choosing a larger sample size for G than y; (i.e. m > k) will

result in better approximation.
For the following results, we make use of the following quantity:

Definition 3.14. Consider the Wasserstein geodesic between 6 = gy and u = uy with y; being the

measure on the geodesic fort € (0,1). Let f(t,x) be the density corresponding to y;. Then the
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integrated Fisher information along the Wasserstein geodesic between G and u is given by

o= [,

Moreover, recall that the convex conjugate of a function ¢ € R” is given by

V. log f(t,x) Hzf(t,x)dxdt.

0" (x*) = sup x* ' x—9(x),
xeR”

see, e.g., [8, p. 45]. Now by using Theorem 3 from [80], we will show that under suitable

conditions the entropic map Taﬁ" (-3yp) is close to 73"
Theorem 3.15 (|80, Theorem 3]). Assume that

(Al) ©,u; € Puc(Q) for a compact set Q C R" with densities satisfying fs, fu; < B and f,; > b >0

forall x € Q.
(A2) ¢ € C*(Q) and ¢* € C**1(Q) for o > 1, where 0* denotes the convex conjugate of §.
(A3) T =V with mI < V2¢(x) < LI for m,L > 0 for all x € Q.

i ~ . o —
Then the entropic map Té’ (- ;YB) from G to u; with regularization parameter 3 < k 7 +a+1 satisfies

E[| 7 syp) — T2 < (1 +10(0,Hi))k_2"§++&1“ logk,

where n' =2[n/2], 0= A3, kis the sample size for both G and 1i;, and Iy(G, u;) is the integrated

Fisher information along the Wasserstein geodesic between 6 and y;.

Given the sample size k for both & and ;, if we let

Zk= ’ () — To'

Y
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then by Jensen’s inequality (for concave functions) and Theorem [3.15| we have that

EZ] <E[22]"? < \/ (1 + Io(o.)) k597 logk

o+l

— \/log V(14 Io(o,u;))k 227+

Now using Markov’s inequality, we easily have the following corollary.

Corollary 3.16. Assume that 6 and p; satisfy (Al)—(A3) of Theorem and let & > 0. Then

with probability at least 1 — 8, we have that

_ oGl
172 )~ 78 < o () (1 -+ ol ))& 7050

Now we can approximate T4' with the entropic map that is derived from using Sinkhorn’s
algorithm. Although the barycentric projection map and entropic map approximations have
similar rates of convergence, the entropic map is computationally faster at the cost of more
stringent assumptions in the theorem. The main difference in assumptions below is the addition
of (A1)—(A3) from Theorem and the asymptotic bound on the regularization parameter 3

used in the entropic regularization.

Theorem 3.17. Let & > 0. Along with Assumption and u € P, (Q) for the Q in Assump-

tion[3.11 assume that

(i) © and y; satisfy assumptions (Al)—(A3) from Theorem[3.15|for all i. Note that (A1), regularity
of ¢ in (A2), and the upper bound of (A3) are satisfied under the conditions of Caffarelli’s

regularity theorem.

(ii) Given empirical distributions & and p; both with k sample size, assume that we have
1 ~ .
associated entropic potentials (fg x,8p ), where B <k 7+a+1 and n' and & are defined in

Theorem 3 from [80)]. Assume our estimator is Tg’( *3Yp) given by (3.13).
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Then with probability at least 1 — 9,

17 o~ o~ _pr
Wi (i, 1) — Wzlng(/Ji,llj;'YB)zl <(M+2R) (Cg6p+16n n

o+1
= Vo) (T T Io(0 )k 20 4R 2log]<€2/8>>.

where C is from Theorem and Iy(o, ;) is defined in Theorem In this case, Ty in

Corollary3.10)is bounded above by the right-hand side of the inequality above.

Proof. Note that the transport plan that we are using for the following proof is yg. Henceforth,
we will suppress yg from the notation VAVZIjgT (a1, f1257yp) for simplicity.

Using the same reasoning as in Theorem [3.12] we find that

(Wz(ui,uj) +WLOT(:UU‘UJ)> <M+2R.

Similar to the proof of Theorem [3.12] we bound

WZ(.uiHUJ) WLOT(:ulnuj ‘ S |W2(:ul7:uj) - HT(I;[I_T(I;JJHG|
T =T ot 1T T )
FITEC ) =T ) — WA i)
The first and last term are bounded the same way as in the proof of Theorem [3.12]above. Since

assumption (i) of Assumption [3.11] implies assumption (A1) of Theorem [3.15] we get that with

probability at least 1 —

HT(';M—TM »Yp H < < \/log (14+1In( Glué))k 2(2n+a+1)

for ¢ =i and ¢ = j. Putting the bounds together, we get the result. 0
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Using Theorem [3.12]and Theorem we see that as long as y; are e-compatible push-
forwards of u and the number of samples used in the empirical distribution is large enough, then
our LOT distance is a computationally efficient and a tractable approximation for the Wasserstein

distance and the distortion of the LOT Wassmap embedding of {g;} is small with high probability.

3.5 Bounds for non-compactly supported target measures

In the last section, we saw that for compactly supported y; ~ H;u (as well as a few other
conditions), either the barycentric estimator Tg( - 3YLp) or the entropic estimator T(’;ji( “3Yp)
will allow for fast yet accurate approximation of the pairwise Wasserstein distances Wa (u;, ),
which in turn allows for fast, accurate LOT approximation to the Wassmap embedding [48] via
Algorithm [3] In this section, we show that we can adapt Theorem [3.12] and Theorem to
non-compactly supported measures as long as we can approximate the non-compactly supported
measure with a compactly supported and absolutely continuous measure. To this end, we use the

main theorem of [39].

Theorem 3.18 ([39]). Let Q be a compact convex set and let G be a probability density on
Q, bounded from above and below by positive constants. Let p > n and p > 4. Assume that

u, v € P (R") have bounded p-th moment, and max(M,(u),M,(v)) < M, < oo. Then
_p
||Té1 - TC;/HG S Cn,p,Q,Mpwl (/.I,V) 6p+16n

To achieve our purposes, we will assume that i is a non-compactly supported measure that
has a suitable tail decay rate, and then show that there exists a compactly supported absolutely
continuous u that approximates u well (i.e., W (u, 1) < m.). We achieve this in the following

lemma.

Lemma 3.19. Fix n > 0, and let G satisfy the assumptions of Theorem Moreover; let
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u € P (R") with density f, have a bounded p-th moment for some p > n and p > 4. Finally,

assume that there exists some R > 0 such that for every x ¢ B(0,R), we have

6p+16n

< () " e
H Cn7p7Q7M‘n 3C|’x”n+2 )

where C denotes the constant from integrating over concentric n-spheres. Then there exists a

compactly supported absolutely continuous measure u such that
1T5 — T |lc <M.

The next lemma will be useful in establishing conditions on # and u so that our truncated

measure has a density that is bounded away from O.

Lemma 3.20. Let G satisfy the assumptions of Theorem and let u € P,(R") with density
fu £ C < oo have a bounded p-th moment for some p > n and p > 4. Moreover, assume that
there exists some R > 0 and M > 0 such that for x € B(0,R), we have f,(x) > ¢ > 0; and for every

x ¢ B(0,R), we have

6p+16n

1
f#(x)§<L> ; SR
Cn,p,Q,Mp C’ x|

where Cp, p o m, comes from from Theorem C' is a constant from integrating over concentric
n-spheres as well as another constant from our approximation method. Then there exists a
compactly supported, absolutely continuous measure p with density 0 < ¢ <b < f; < B < oo such

that
||Tclsl - Tcl;”c <.

The proofs of both Lemma [3.19/and Lemma [3.20| are located in Section With these
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two lemmas above, we obtain the following theorems. Note that Theorem [3.21] replaces the
assumption that u is compactly supported with one of polynomial (in the ambient dimension) tail
decay; while the second assumption below is the same as Theorem [3.12] the final assumption
differs from that of Theorem [3.12]by requiring the discretizations of ¢ and y; to have the same

sample size to apply the lemmas above.
Theorem 3.21. Let 8 > 0. Along with Assumption assume that

(i) Every u; has bounded p-th moment for some p > n and p > 4. Moreover, assume that for

all i, there exists some R > 0 such that for every x ¢ B(0,R), we have

6p+16n

n N\
R O —.
fIJt <Cn,p,Q,Mp> 3C||x||l’l+2

Define u; to be the truncated measure found in Lemma or Lemma such that

Wi (ui, ;) < €.
(ii) Tg "is L-Lipschitz (this happens, e.g., if ¢ and @1; are both compactly supported).

(iii) Given empirical distributions & and it; with supp(i;) C B(0,R) and sample sizes m and k,

respectively, let our estimator be the barycentric estimator (3.10), with yp.

Then with probability at least 1 — 9,

Wai )2 = WEST (i i) | < (M +2R) (Ce19 1 2m +20, (1 log (1 + k=)
2log(2
e /6))7

m

(k)

where ry* and t, o are defined in Theorem|3.12|and C is a constant coming from Theorem|3.30

In this case, T of Corollary is bounded above by the right-hand side of the inequality above.

Similarly for the entropic map case we have the following. Note that the primary difference

in assumption between Theorem and Theorem [3.21| is the addition of (A1)—(A3) from
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Theorem [3.15]and the asymptotic assumption on the regularization parameter for the entropic
map. The assumptions (i) and (ii) below are essentially the same as those of Theorem [3.17] but
with g; replaced with g; arising from Theorem [3.21] whereas the additional assumptions below

are that y; have decaying tails as opposed to being compactly supported.
Theorem 3.22. Let § > 0. Along with Assumption and (i) of Theorem assume that

(i) © and u; satisfy assumptions (Al)—(A3) in for all i, where 1; is the truncated measure
from Theorem[3.21]

(ii) Given empirical distributions © and {; with supp(t;) C B(0,R) and sample size k for both,
1
assume that we have associated entropic potentials ( IBks g&k), where B <k~ "+a+1 and n'

and o, are defined in Theorem Moreover, assume our estimator is given by (3.13).

Then with probability at least 1 — 9,

Wz(,uiylvl]) WLOT Mi, ] ‘ < M+2R) <C86p+16” —|—2T'|—|—

ot __ 2log(2/0
—\/IOg 1—|—IO o ,Uz))k 2(2n’ +0+1) +R Ogl(c / )) :

where Iy(0,u;) is defined in Theorem and C is a constant from Theorem In this case,
T2 of Corollary is bounded above by the right-hand side of the inequality above.

The following is a proof for both theorems above.

Proof of Theorems and In the following, we let T5" denote the optimal transport map
estimator that we are considering (either the barycentric estimator with y;p or the entropic

estimator with yg) since the same proof works for both cases. The only difference in the compactly
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supported case and these theorems is that our approximation now becomes

Wa i) — WEST (i) < [Waat ) — 178 = T8 o

T8 =T lo = 178"~ 75 |l

T~ T5" o = 178"~ T5" s

(178~ 7 o — WA i )

where ; is defined as in the theorem statement and g; denotes the empirical measure of y;. Since
we assume that supp(i;) € B(0,R), we know that g; can equivalently be thought of as being
sampled from g; rather than y;. This means that the same bounds as before hold for most of the

terms, while additionally,

|78 — T o — | T8 — T8 |lo| < |18 — T8 o+ |78 — T2} < 2n.

<" )|

The rest of the terms are bounded the same exact way as before, and the result follows. [

In this section, we have shown that results for the case when the y; are compactly supported
can be extended to non-compactly supported y; as long as their densities decay fast enough and

the reference distribution ¢ has a compact and convex support.

3.6 Conditions on # and u (Compact case)

In this section, we derive conditions on # and u so that the assumptions of the theorems
above are satisfied for y; ~ #Hyu. In particular, we can break down our requirements on 4 and
u by noting the necessary conditions on y; for the barycentric map estimator and entropic map
estimator separately. For simplicity, we will assume that # is exactly compatible with respect to

o and p.
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Theorem 3.23 (Barycentric Map Case (Compact)). Along with Assumption[3.11](with € =0 so

that every h € H is exactly compatible with & and ), assume that y; ~ Hyu i.i.d. and that
(i) uis compactly supported,
(ii) © is chosen such that T§ is Lipschitz,

Then y; satisfies the conditions of Theorem i.e., each u; is compactly supported and TS is

Lipschitz.

For the entropic case, the assumptions on u and ¢ are the same, but we require an

additional assumption regarding the Jacobian of elements of # .

Theorem 3.24 (Entropic Map Case (Compact)). Under the assumptions of Theorem as well

as
(iv) © and u satisfy (Al)-(A3),
u; satisfies the conditions of Theorem

The proofs of both Theorems [3.23] and [3.24] are given in Section [3.12.1]

3.7 Conditions on % and u (Non-compact case)

For the non-compactly supported cases, we need to add assumptions that # is closed
under inversion as well as lower and upper boundedness of the density f,. This gives us the

following theorems.

Theorem 3.25 (Barycentric Map Case (Non-Compact)). Along with Assumption[3.11|(with € =0
so that every h € H is exactly compatible with 6 and p), assume that y; ~ Hu i.i.d. Assume

further that

(i) for every h € H, there exists an inverse h™' € H.
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(ii) The density of u is supported on all of R" with f,(x) < C < e for all x, and f,(x) > ¢ >0
for all x € B(0,RL). Moreover, f, has a decay rate as in Lemma |3.20|for x ¢ B(0,R).

Then y; satisfies the conditions of Theorem[3.21]

Theorem 3.26 (Entropic Map Case (Non-Compact)). Assume that y; ~ Hyu i.i.d. and that p, H,
and G satisfy the conditions of Theorem Then y; satisfies the conditions of Theorem[3.22)]

The proofs of both Theorems and are found in Section|3.12.2

3.8 Experiments

We demonstrate that Algorithm (3| does in fact attain correct embeddings given finite
sampling and without explicitly computing the pairwise Wasserstein distances. We test both
variants of our algorithm above using the linear program or entropic regularization to compute the
transport maps from the data to the reference measure, and illustrate the quality of embeddings as

well as the relative embedding error

Y —OX|lr
min

o |Yle

as a function of the sample size m of the data and reference measures.

In all experiments, we generate N data measures, y;, which are Gaussians of various means
and covariance, and a fixed reference measure ¢ drawn from the standard normal distribution
AN (0,1). We randomly sample m points from each measure to form the empirical measure, and
random noise from a Wishart distribution is added to the covariance matrices of the data measures
ui. Additionally, in each experiment we compute the optimal rotation of the embeddings to
properly align them with the true embedding and thus give an accurate error estimate for each

trial.
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For each experiment, we provide a figure for qualitative assessment of the embedding as
well as a quantitative figure in which we compute the relative error as above for the embeddings
as a function of m, the sample size used to generate the empirical data and reference measures.
For the latter figures, we run 10 trials of the embedding and average the relative error; error
bands showing one standard deviation are shown on each figure. A jupyter notebook containing
all of the experiments that generate the figures below can be found at https://github.com/

varunkhuran/LOTWassMap.

3.8.1 Experiment 1: circle translation manifold

First, we consider a 1-dimensional manifold of translations as follows. We uniformly

choose N = 10 points on the circle of radius 8, which we denote x;, and each data measure

1 -5
u; is a Gaussian with mean x; and covariance matrix . Thus, our data set is a set
-5 1

of Gaussians translated around the circle. The Wishart noise added to the covariance matrix
prior to sampling the y; is of the form GG where G has i.i.d. A((0,0.5) entries. We choose the
standard normal distribution A(0,7) as our reference measure 6. We randomly sample m = 1000
points from each data measure and the reference measure independently. Figure [3.1| shows the
original sampled data and the reference measure (in blue), the true embedding points x;, and the
embeddings of Algorithm [3| when using the linear program and Sinkhorn with regularization
parameter A = 1.

One can easily see that the embeddings are qualitatively good as expected given the
theory above and the results of [48] in similar experiments. Figure [3.2] shows the relative error
vs. sampling size m of the measures, and one can see the good performance for modest sample

sizes.
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Figure 3.1: 1-D Manifold of translations: (Left) reference measure 6 ~ A((0,/) in blue and
data measures u; which are Gaussians with the same covariance matrix and means x; uniformly
sampled from the circle of radius 8. (Left Middle) Means x; of y; which are the true embedding
points. (Right Middle) Embedding attained with Algorithm [3|using the linear program. (Right)
Embedding attained with Algorithmusing the Sinkhorn distance with A = 1.
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Figure 3.2: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 1-D translation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with A = 1 (Right).

3.8.2 Experiment 2: rotation manifold

Next, we consider a 1-dimensional rotation manifold in which we generate N = 10 data

measures of Gaussians whose means lie at uniform samples of the circle of radius 8, which we

2

denote (8cos0;,8sin6;), and whose covariance matrices are rotations of by the angles

0 .5

0;. As in experiment 1, the noise level added is 0.5 and we sample m = 1000 points from each
measure. Figure @ shows the data measures, true embedding, and embeddings from Algorithm@
using both the linear program and Sinkhorn (with A = 1) to compute the optimal transport maps.

Figure [3.4] shows the relative error vs. sample size.
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Figure 3.3: 1-D Manifold of rotations: (Left) reference measure ¢ ~ A((0,7) in blue and data
measures t; which are Gaussians with means lying on the circle of radius 8 and covariance
matrices that are rotations of each other. (Left Middle) Means x; of y; which are the true
embedding points. (Right Middle) Embedding attained with Algorithm [3| using the linear
program. (Right) Embedding attained with Algorithmusing the Sinkhorn distance with A = 1.
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Figure 3.4: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 1-D rotation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with A = 1 (Right).

3.8.3 Experiment 3: grid translation manifold

data measures of Gaussians whose means lie on a 5 x 5 uniform grid on the cube [—10, 10]? and

which have constant covariance matrix

measure and the noise level is again 0.5. In the Sinkhorn embedding, we use regularization

Here, we consider a 2-dimensional translation manifold in which we generate N = 25

1 =5
-5 1

A = 10. Figures [3.5]and 3.6 show the data, embeddings, and relative error vs. sample size.
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Figure 3.5: 2-D Manifold of translations: (Left) data measures y; which are Gaussians with the
same covariance matrix and means x; taken from a 5 x 5 uniform grid on [—10,10]?. (Left Mid-
dle) Means x; of y; which are the true embedding points. (Right Middle) Embedding attained
with Algorithm [3|using the linear program. (Right) Embedding attained with Algorithm 3|using
the Sinkhorn distance with A = 10.
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Figure 3.6: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 2-D translation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with A = 10 (Right).

3.8.4 Experiment 4: Dilation manifold

Here, we consider a 2-dimensional anisotropic dilation manifold in which we generate
N =9 data measures of Gaussians with mean 0 and anisotropically scaled covariance matrices of
the form diag(o?, B7) for (0, ;) taken from a uniform 3 x 3 grid on [1,4]2. We sample m = 1000
points from the reference measure and n = 2500 points from the data measures and the noise
level added to the covariance matrices is 0.5 as before. In the Sinkhorn embedding, we use
regularization A = 100. Figure show the data measures, true embedding parameters, and
embeddings from Algorithm 3] Note that the true embedding parameters are centered to allow

them to be comparable to the output of Algorithm 3] which are naturally centered.
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Figure [3.8] shows the relative error vs. m, and for this experiment we choose n = m so

that the sampling order of the data and reference measure are the same. For this case, we see

that the relative error of the embedding decays much more slowly than the previous experiments.

One possible reason for this is that there is significant overlap in the distributions for the dilated

measures, and to overcome this issue one may have to sample many more points in forming the

empirical distribution so that the tails of the data measures are sampled more frequently.
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Figure 3.7: 2-D Manifold of Anisotropic Dilations: (Left) data measures y; which are Gaussians
with mean 0 and anisotropically dilated covariance matrices where dilations are taken from a
3 x 3 uniform grid on [1,4]2. (Left Middle) Dilation factors (x;,y;) of u; which are the true
embedding points. (Right Middle) Embedding attained with Algorithm [3] using the linear
program. (Right) Embedding attained with Algorithm [3| using the Sinkhorn distance with

A = 100.

(=1
.
]

Relative Error
=]
=
=

=
.
o

0.09

Linear Program

500

750

1000 1250 1500 1750 2000

Sample size m

012

=
=
=

Relative Error
=]
=
(=]

0.09

Sinkhorn

500

750
Sample size m

1000 1250 1500 1750 2000

Figure 3.8: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 2-D translation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with A = 10 (Right).
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3.8.5 Experiment 5: Time Comparison

Here, we repeat Experiment 3 in which data measures are centered on a uniform grid and
are translations of a fixed Gaussian measure. We plot the time it takes to compute the embedding
via Algorithm [3|using the Linear Program or Sinkhorn with A = 1 and the Wassmap algorithm of
[48] which requires computing the entire square Wasserstein distance matrix [Wa(u;, u ])]?] j—1 and
the SVD of its centered version as in Algorithm 2] For this experiment, we always choose n = m
so that the reference measure and data measure sampling rates are the same. One can easily see

that a substantial gain in timing is achieved by LOT Wassmap, while previous experiments show

that the quality of the embedding does not degrade significantly when LOT is used.

Finally, we plot the timing for the same experiment for the Linear Program and Sinkhorn
with A = 1 and A = 10 for larger sample sizes to illustrate the character of these choices (Fig-

ure [3.10). As expected, larger regularization parameter yields faster computation time, though the

difference is relatively small even for modestly large sample size.

35

Figure 3.9: Timing vs. sample size m of the reference distribution and data measures. The
data set consists of N = 25 measures translated on a 5 x 5 uniform grid on [—10,10]? as in
Experiment 3. Shown are the computation times to compute the Wassmap embedding and the
embeddings of Algorithm [3|using the Linear Program (LP) and Sinkhorn with regularization
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Figure 3.10: Timing vs. sample size m of the reference distribution and data measures. The
data set consists of N = 25 measures translated on a 5 x 5 uniform grid on [—10,10]? as in
Experiment 3. Shown are the computation times to compute the embeddings of Algorithm
using the Linear Program (LP) and Sinkhorn with regularization parameters A = 1 and A = 10.

Acknowledgements

K.H. acknowledges support from the UTA Research Enhancement Program from the
College of Science at the University of Texas at Arlington, the Fields Institute for Research in
Mathematical Sciences and the Army Research Office under Grant Number W91 1NF-23-1-0213.
The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation herein.
C.M. is supported by NSF award DMS-2306064. A.C. is partially supported by NSF award DMS-
2012266 and a gift from Intel research. K.H. and A.C. thank the Fields Institute and participants
of the Focus Program on Data Science, Approximation Theory, and Harmonic Analysis for their

hospitality, which facilitated the initial discussions of this research.

118



3.9 Helper Theorems and Lemmas

We use the following lemma to extend Corollary [3.8] to get our main theorem (The-
orem @[) The proof follows standard arguments, e.g., as in [64]; the proof is included for

completeness.

Lemma 3.27 ([64, Theorem 14.2.1], for example). Consider a matrix V whose columns are
centered vectors vy, ..., v, such that Z?:l vi=0. LetJ=1- %11T be the centering matrix from
MDS (Algorithm , G =V 'V be the Gram matrix for V, and D be the squared distance matrix

D;j = ||V,‘—Vj||2. Then G = —%JDJ,

Proof. Note first that

1 & 1 &
(JDJ)ij:Dij+_2 Z Dké__Z(Dik"‘ij)-
=1 =

Moreover, because D;; = vl-Tv,- + v]Tv i 2vl-Tv j» we get that

1 n
(JDJ)ij = v v; +v;~rvj —2v] v+ — (Zn Z vl v +21TVTV1)
n k=1

1 n
— - (nviTvi + nv]ij +2 Z vavk — 21TVij — 2viTV1) .
n k=1

Note here that V1 = 0 since Z?;l vj = 0. After cancelling terms, we get
(JDJ),']' = —2\/;'—\/]' = _2Gij-

So our result is immediate. O]

The next results are used to recount the e-compatibility as well as its effects on LOT. First,
we show that every €-compatible map has a compatible map (with € = 0) nearby whose LOT

distance from the e-compatible map is small.
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Lemma 3.28. Assume that

(i) © is supported on a compact convex set Q C R" with probability density fs bounded above

and below by positive constants.
(ii) u has finite p-th moment with bound M, with p > d and p > 4.
(iii) There exist a,A > 0 such that every h € H satisfies a||x|| < ||h(x)|| < Alx].

Let H be e-compatible with respect to ¢ and u. Then for every h € H there exists a compatible g

such that

h
[hoTé —To#|o < e+C,

8 hj‘u L,
TG - TG HG S Cn7p7Q7a—1ApMp . 86P+16n

P
. €6p+16n
7P797071APM17 gor :

Proof. Let h € #, then there exists an exactly compatible transformation g such that go 75 = ng L

with ||z — g||, < € by definition of e-compatibility. Then notice that

ho Tl — To#

_ Hhng‘—gng‘Jrchﬁ“—Tﬁﬁ“
(¢}

o

< = gllu+|

TS _ Tﬁ“‘” .
o
By assumption, we know that ||z — gl|, < €. Since h € A and are Lipschitz, we know that

L7 )= [ 1012 s (9] ) < @' A7M.

<AP|x||P a!

Similarly, we have the same bound for g since g € #. Now using Theorem and equation 2.1
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of [6], we get that

h _p
TS _ T uﬂHG <Gy p.va-tarn, Wi (gatt, hept) 7116

_p
S Cmp,Q,a*lApMsz (gﬁ‘u’ hﬁ‘u) 6pr16n

p
6p+16n

< Cn,p,Q,aflAl’Mp ||h - g”ﬂ

)
. £6p+T6

This implies that
H hyu ST
||]’lOT0—TG ||G<8+Cn7p’g’a—1ApMp'8 ption

]

Now we can show that the LOT embedding between exactly compatible transformations

is isometric with the Wasserstein manifold.

Lemma 3.29. Let g\ and g, be exactly compatible transformations, i.e. g1 oT5 = Tégl)t’u and

goTs = Tégz)u#’ then

Proof. First notice that since everything is absolutely continuous, we can use a change of variables

T8 =15 | = wa (1) (82)im)-

formula to get

T8k _ p(g2)u

e c (g1)su

o

(gl):#.

(2); is the minimizer of the optimal transport problem and the triangle inequality, we

Because T,
(g1)su
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get

(82)
W, ((gl)ﬁ,u, (gz)tt.u) = HI_ T(ggnz)uu:l (g1)zm

< HI— T8 o 7o

(81)g1 (g1)sm

(81)gu

(82)su (82)s4 1o
+HT(81)1# —TIs OT(gl)

gl

(81)s1 (g1)su

Note that Theorem 24 of [57]] implies that given an exactly compatible transformation g, Jo (75 (x))
must share the same eigenspaces as Jru (x). By Corollary 4 of [57], we know that exactly
compatible transformations are optimal transport maps themselves. This means that Tf #H — g for
exactly compatible transport maps. Moreover, for an exactly compatible 4’ € #{, this means that

T(g’)

it #— g'og™! because g 0 g~ !

is a gradient of a convex function (since the Jacobian of g and
g’ share the same eigenspaces) that pushes gsu to (g)su. In the context of g; and g», this gives us

that

(g2)pu -1 _ U e —1 _ (&M o
T =81°8y =810Tc 0Ty 08y =To" 0Ty,

In particular, we get that

Tc(gl)ﬁ.“ B Tc(gz)wHG W, <(g1 m (gz)w) ‘

]

Finally, we show that €-compatible transformations have LOT embeddings that are

“gop+lon_jsometric” in the sense of the following theorem.
Theorem 3.30. Assume that

(i) © is supported on a compact convex set Q C R"™ with probability density fs bounded above

and below by positive constants.
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(ii) u has finite p-th moment with bound M, with p > n and p > 4.
(iii) There exists constants a,A > 0 such that Every h € H satisfies a||x|| < ||h(x)] < Allx].

Let H be e-compatible with respect to absolutely continuous measures ¢ and p and that hyu is

absolutely continuous. Then for hy,hy € H,

Té/u)uu _ TéhZ)W

_pr 4
< 2<8+Cn,p,Q,a_1APMp ' 86PH6"> < Cebp+ion

|W2 ((hl)ﬁ% (hz)ﬁu) -

(&

Proof. By definition, we know that there exist g1 and g» such that ||g1 — A1, < €and ||g2 — A2, <

€. First, note that

’ Téhl)ﬁ# _ Tc(hz)u,u < ‘ Téhl)ﬁ# _ Tégl)u.u i ) Tc(gl)t.u _ Tc(gz)t.u n ‘ Tc(gz)j,u . TéhZ)W
c c c c
By Lemma [3.29] we know that

Tégl)uu B Tégz)nuHG W, <(g1)ﬁ,u, (gz)w) ‘

However, by equation 2.1 of [6] and the triangle inequality, we have

W, ((gl)tj,ua (&)uﬂ) <W ((gl)ﬁ,U, (M)ﬁﬂ) +W2 <(h1)ﬁ#, (hz)ﬁ,u) +I’V2 ((hz)ﬁﬁ% (gz)ﬁ,u)J

(.

' WV
<llg1—h1llu<e <lha—g2llu<e

<W ((hl)ﬁ#a (%)ﬁﬂ) +2e.

Moreover, by Lemma |3.28| for i = 1,2, we know that

, h P
Tégz)ﬁl‘_TG( z)ﬁ:uH < Cana*IApMp . g6p+ion
G bF bl )
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This implies that

h h
Té i (g 2)4H

Wz((hl)ﬁﬂ, (hz)ﬁ/l) <

o

_p__
<W, <(hl )ik (hz)uu> +2 (e + Cn7p7Q7a,1ApMpg6p+16n> 7

and the proof is complete. 0

3.10 Plug-in estimator approximation results

In this section, we provide some auxiliary results that are used along the way to prove the

theorems of Section [3.4]

3.10.1 Using the Linear Program to compute transport maps

Recall that for a random variable X,,, we say that X, = O,(a,,) if for every € > 0 there

exists M > 0 and N > O such that
IP’<|Xm/am| >M) <e VYm>N.

The following theorem from [38] is used in the proofs of our main results, including

Theorem [3.12]

Theorem 3.31 ([38, Theorem 2.2]). Suppose that TS is L-Lipschitz, and u is compactly supported
and Eslexp(t]|x||*)] < e for some t > 0,0t > 0. Assume we draw k i.i.d. samples from u and

consider the estimator u. Then

Sup ||Tcﬁ<X;YLP) - Tél(X) ||2d6(x) < OP(r,(lk) log(1+ k)tn,(x)’
Y€ min
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where

;

2k1/2 n=273
k
) = 2k~ '2log(1+k) n=4
2k—2/d n>5

\

(40) "1 (4+ (Ro+2n0.—n) V0O)) n<4

a=1q (= 'v7/2)—1 n=4,

2(14+n71) n>4

\

so that r,gk) and t, o, are on the order of k=" and 2(1+n~"Y), respectively.

Remark 3.32. We note that Theorem is the “semi-discrete” version described in [138]. The
paper also provides equivalent bounds in the instance that G is similarly estimated. However, the
bounds only guarantee that the transport maps agree when integrated against G, whereas we

need the bound for G itself.

3.10.2 Approximating with Finite Samples from the Reference Distribution

Some of the norms from Theorem 3.12)and Theorem |3.17|are assumed to be integrated
against the true 6. However, we need to consider the discretized ¢ for each norm, and establish
that we can estimate these norms with high probability. For these bounds, we use McDiarmid’s

inequality on the function
& 7 2 = PO
FXty s Xn) = — YT (Xjva) — T2 (X5vw) | = Wag (i, ia2:7)°,
j=1

where X; ~ ©, ;. is a transport plan between 6 and ; for j=1,2,and v € {y.p,Yp} denotes the

optimization method used to get ;.. If y; are supported in a ball of radius R, then McDiarmid’s
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inequality implies

1
p<_
m

Note that since f = WLOT(,ul, 2:Y)%, we get

m o~ o~ o~ o~
YT (Xjva) — T8 (K@) P — 178" (5va) — T8 (59 3o
=1

2
P
>t> < 2¢ M3rt,

2

P (WA i) — WEST i i )2 > 1) < 2" (3.18)

Theorem 3.33. Consider p;,6 € Wo(R") with & absolutely continuous with respect to the
Lebesgue measure. Assume supp(u;) C B(O,R) for i =1,2. Let 8 > 0. Then with probabil-

ity at least 1 — 9,

2log(2/9)

WLOT(‘u]nu Y) %(?T(nululj\z’fY)‘ SR Tu

where m is the number of samples used to estimate ©.

Proof. Define
a=Wyg (@, @:y),  b=Wyg" (i, am:)-
Then both a < 2R and b < 2R. Now, since a> — b*> = (a+b)(a — b), we get that
la—b| > i|a2—b2|
~ 4R '

This, together with (3.18)), implies that

S}

o)

P (| W0 i i)~ WEST @i )| > 1) < 2e "5
2
Solving 8 = 2¢” "2#2 for ¢ yields the conclusion.
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3.11 Non-Compactly Supported Measures Proofs and Results

Here, we give the proofs of the lemmas preceding Theorems [3.21]and [3.22]

Proof of Lemma We will construct the measure g by constructing a transport map that

sends u to a compactly supported absolutely continuous measure. The compact set that g will be

supported on is going to be B(0,R). In particular, for some 0 < p < 1, consider the map

x x € B(0,R)
Swp(x) = .
Ry +min{|lx|| =R, p} i x € B(O,R)

Then let i = (S p)su, and note that

Wiloud) = min_ [ 15 —xlldu) < [ np(x) —xllut)

o
(B AN Y

—/ e deu() /R\BOR)

E
bemin{Il =0} 4, < f
< + R + d < 3||x||du(x).
< oo IR AT ) < [ S
<lxl ~ d
<p<1<|l|
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However, recall that du(x) = f,(x)dx; thus,

Lo st = [ st as

6p+16n

n ’ 1
BB (R e T
RN\B(O,R) \ Cnp.am, Cl|x]|"*

6p+16n

I rn—l
< (—n ) ’ / cdr
CupoMm, =R 1"
—_—

<1

6p+16n
N ( n ) p
- Y
CnupvgvM[)

where C is a constant from integrating over concentric n-spheres. Invoking Theorem [3.18] this

means that

U ~ P
||Tc‘;l - T(';IHG < Cn,p,Q,M Wl (,u,,u) opion < Cn,p,Q,M =
! ! Cn7p7Q7Mp

To see that 1 is compactly supported, notice that for x € R" \ B(0,R), we have

]
LX)~
——

<1

1Sz ()]l = H il - R.p) o R+p.

1+ HH

The case for when x € B(0, R) is trivial since Sk, is the identity map on B(0,R). Moreover, to
see that u is absolutely continuous with respect to the Lebesgue measure, we will take a generic
set A and break it up into components and analyze each component. We first notice that Sg o is

continuous. Indeed, for x such that ||x|| = R, we see that

+m1n{|IXI| R.p} 5

— x| ~R=0

= X.

X
HXI| ||XI|
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Now, let A € R” such that A(A) = 0 for the Lebesgue measure A, then

A=(ANB(0,R)) @ (A\B(O,R)) ® (ANIB(O,R))

= (Srp)su(A) = (Srp)su(ANB(O,R)) + (Srp):u(A\ B(0,R))

+ (Skp)su(ANOB(O,R))

— u(Skp  (ANB(O,R))) +u(Skp " (4\ B(0,R)))

+u(Srp ™' (AN3B(O,R)))

— u(ANB(0,R)) +u(AN3B(O,R)) +u(Srp ' (4\ BIO,R))).
N———

<u(3B(0,R))=0

where we use the additivity of measures over disjoint sets, the form of Sg , on B(0,R), and

the absolutely continuity of u so that u(dB(0,R)) < A(dB(0,R)) = 0. Moreover, note that u(A N

B(0,R)) <u(A) <A(A) =0. The only term leftis A\ B(0,R). Since Sg o is smooth on R"\ B(0,R),

there exists a density g for (Sg)su with respect to u for sets in R”\ B(0,R). This means

(Sr,p)gu << pon R\ B(0,R). Since u < A, we have

MA) =0 = u(A) =0 = u(A\B(O,R)) =0 = (Srp):u(A\B(0,R)) =0.

This shows that (Sg p)u is absolutely continuous with respect to A, so the proof is complete. [

Proof of Lemma[3.20, Rather than constructing a transport map, we will construct a density f;
and will argue that the transport map from u to u (the measure with density f;) behaves nicely.

To do this, consider the following density

/

Ju(x) x € B(O,R)
fiar®) =1 £, (Rﬂj—u) + a(@ - 1) x€B(0,a)\ B(O,R) -

0 otherwise
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for some o > 0. Notice that a is not specified at the moment, but it depends on R and o. Since

we want u to be a probability measure, we note that

fi(RY) :\/B(QR) f#(x)d)j‘l‘\/: r=1c(r) (fu (RH%VH> +OC<@ - 1)>dr,

S

-~

u(B(O,R)) 1(a)

where C(r) is the integral over the sphere at radius r. Notice that I(a) has an integrand that is
increasing as a function of r so that I(a) itself is increasing as a function of a (i.e. lim, . I(a) =
). Moreover, because I(R) = 0, we know from the intermediate value theorem that there exists
some a* such that I(a*) = u(R?\ B(0,R)). Note that from this construction, 1 is compactly
supported, absolutely continuous with respect to the Lebesgue measure, and 0 <c¢ < b < f; <
B < oo for some constants b and B.

Now, we would like to bound Wi (u,11). Let us consider S such that Syu = g and S(x) = x
if x € B(0,R). Such an S exists because we can consider the pushforward that is the identity
on B(0,R) and pushes the rest of the mass of u from R\ B(0,R) to B(0,a) \ B(0,R). Note that
S(x) € B(0,a) for x € B(0,a) \ B(0,R); thus, there exists C such that ||S(x)|| < C||x| (if a < 2R,

then C < 2). For the following calculation, we assume that

6p+16n 6p+16n

g N CnypaQaMp C‘/||x||n—i_2 Cn7P797Mp (C+ I)CsphereHan+27

where Cgphere denotes a constant from integrating over concentric n-spheres and Cy, , o, M, denotes
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the constant from Theorem Now note that

< [, 1500 —xldut)
= [ onlE i) + N CORR O

< S(x +xdx§/ 5+1x x)dx
Jooepor 1@ Il < [ (€41l
6p+16n 1
~ p
L) "
Rd\B(07R) C”J’-,Q-,Mp (C+ 1)CsphereHx”n+1
6p+16n rn—l 6p+16n
p
<(qoem)  Jorm = (i)
Cy PQAM, r>R7T Cn,p,Q,Mp
<1
Invoking Theorem [3.18] this means that
M H 0\ Gt TG n
| Ts —T5|e < Cn,p,Q,MpWI (pa, 1) rT6n < Cn,p.,Q.,Mp— =n.
n7p7Q7M[7
Thus, we have the desired result. ]

3.12 Proofs and Results for Conditions on 7 and u

This section provides the proofs of the results in Sections [3.6and

3.12.1 Compact Case Proofs and Results

Here we prove the results of Section which provide conditions on , u, and  which

guarantee that u; ~ Hu satisfy the conditions of the theorems from Section

Proof of Theorem[3.23] For the barycentric map estimator, we need to show that the y;’s are

compactly supported within a ball of radius R and 75" is Lipschitz.
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e Compact Support: To ensure that a given y; is compactly supported, it suffices for u to have
compact support and A to consist of continuous maps. Indeed, under these assumptions,
u; 1s compactly supported since the image of a compact set under a continuous map is
compact. Since we are considering only a finite number of measures {,u,-}f’: |» €ach with
compact support, there exists a sufficiently large radius R such that supp(u;) € B(0,R) for

all i.

e Lipschitz OT Map: To make sure that each T4" is Lipschitz, we will need that A; is
Lipschitz. In particular, we note that y; = (h;)su for some h; € #. Thus, by compatibility,
we know that T4" = h; o T4, which implies that if h; is Lipschitz and T4 is Lipschitz, then

T4 is Lipschitz.
[

Proof of Theorem[3.24} For the entropic map estimator, the y;’s need to again be compactly-
supported, 75" needs to be Lipschitz, and ¢ and y; together satisfy assumptions (A1) — (A3). It

will turn out, that we will only need to assume that there exist constants a,A > 0 such that
al = Jy(x) <Al

That y; is compactly supported and each 75" are Lipschitz follow from the same analysis

as in the proof of Theorem[3.23]

e Ensuring that y; satisfy (A1): Recall that the change of variables formula for the density

of a pushforward measure i1 = hyu is given by

fix) = fulh™ @)y (),

where |J,-1(x)| denotes the determinant of the Jacobian of 4~!. From [57, Corollary 4],

we know that £ is an optimal transport map if it is compatible. This implies that J(x) is
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positive semidefinite; however, if / is positive definite and Lipschitz (i.e.
al < Jp(x) 2 Al
for some m, M > 0), we know that
AT =<J, 0 (x) <a 'L

This implies that |J,-1| > 0 for all x. In particular, since the determinant of a matrix is the

product of its eigenvalues, we have that
n
AT < )] = [T (1) <@
j=1
Finally, since u itself adheres to (A1), this implies that
b B
o < FuWy (9] < =
So (A1) holds for u if there are constants a,A > 0 such that

al < Jp(x) 2 AL

Ensuring that y; satisfy (A2): From [52, Corollary 4.2.10], we can ensure that (A2) is

satisfied if (A3) is satisfied, which is proved below.

Ensuring that y; satisfy (A3): First, notice that by compatibility of 4, we have that

T(? #—ho Té’ ; thus, a direct corollary of [57, Theorem 24] gives that

(ma)l < JT(fj” (x) < (AL)I
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for all x, where m and L come from assuming ¢ and u satisfy (A3) whilst a and A come

from Assumption So (A3) holds for ¢ and p.

]

The result above essentially states that the entropic estimator works if every h € H is

(exactly) compatible and is uniformly positive definite.

3.12.2 Non-Compact Case Proofs and Results

Here we prove the results of Section [3.7| which provide conditions on G, u, and H which

guarantee that u; ~ Hu satisfy the conditions of the theorems from Section

Proof of Theorem[3.25] Assume that g is the truncated measure approximating hyu for h € .
Given the assumptions of Lemma[3.20] the truncated measure @ is compactly supported, upper
and lower bounded, and absolutely continuous. If we can ensure that the truncated measure u also
has uniformly convex support, we will fulfill the conditions of Caffarelli’s regularity theorem,

which guarantees that the optimal transport map is Lipschitz continuous.

e Decay rate condition: Assuming that u has the necessary decay rate f,(x) < C < o and
0 < ¢ < fu(x) on a large enough ball where the decay rate is active, we need that iy = i
also has the same decay rate up to a constant. For what follows, we must assume that 7 € H

has an inverse A~ 1. If we assume further that # satisfies Assumption (iv) (i.e.
allx|| < [[h(x)]| < Allx]]
for some a,A > 0), then we know that

A7 el < I~ @)l < e,
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or equivalently,
Al 1 a!

Tl = Tl = T @

The bi-Lipshitz assumption further implies that
AT =g (x) <a 'L
Thus, for ||x|| > LR (so that ||»~!(x)|| > R) and the bounds above, we find that

fax) = fulh™ (x)) |41 (x)
——

<a™"
6p+16n

(o) cwmE”
~ \Cupom, C'llh=t (|2

6p+16n
1

n > P —n gAn+2
< | = ——a A"
- (Cn,p,Q,Mp C'|lx||"+2

The constants a and A can be absorbed into the other decay rate constants; thus, Assump-
tion[3.T1] (iv) gives us the decay rate we want. Noting that the form of the density fz also
implies that ca™" < fgz(x) on some large enough ball. In particular, we get that the truncated

measure 4 has a density 0 < b < f;(x) < B < o from Lemma

e Uniformly convex support: If u is supported on all of R”, we would want & € A such that

U = hyu is also supported on all of R". Recall that the resulting density of z is given by

fax) = fulh™ (x)) [ 41 ()
——

<a*ﬂ

Note that i is supported on all of R" if |2~ (x)|| — oo as ||x|| — c. Indeed, if we assume
Assumption (iv), then A=!||x|| < |-~ (x)]||, which implies that 1 is supported on all

of R”. This would imply that the truncated measure g will be supported on a ball of some
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radius. This implies that the support of u is uniformly convex and compact.

From the decay rate condition and the uniformly convex support condition, we get that the
truncated measure u will satisfy the assumptions of Caffarelli’s regularity theorem. This implies
that T will be a C? and Lipschitz function (since T¢' pushes forward a compact support to a

compact support). The other assumptions of the theorem are trivially satisfied. 0

Proof of Theorem From the proof of Theorem above, we easily see that if Assump-
tion [3.11]is fulfilled and u fulfills the conditions of Lemma [3.20]and is supported on all of R",
then Tg will be Lipschitz. We need, however, that g also satisfies (A1)-(A3) fromm We get
(A1) for free since the density f; is lower bounded from the proof of Lemma We also get
(A2) since Tg is differentiable from Caffarelli’s regularity theorem [23, 24, 25] and if (A3) is
satisfied, which comes from [52, Corollary 4.2.10].

Now we only need to ensure that (A3) holds. Indeed, since Caffarelli’s regularity theorem
holds, we know that the potential ¢ such that Tg’ = V¢ is strictly convex, which implies that V>¢(x)
is positive definite. Moreover, the minimum eigenvalue of V2¢(x) is a continuous function of x.
Since x € supp(c), which is compact, we know that 0 < Amin(G) = Min,egpp() Amin(VZ0(x)),

which implies that J_ji(x) = Amin(0)/. This guarantees that (A3) is satisfied for 6 and . O
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Chapter 4

Lattice-Based Approximations

JOINT WORK WITH KEATON HAMM

We consider structured approximation of measures in Wasserstein space Wp(Rd) for
p € [1,%0) by discrete and piecewise constant measures based on a scaled Voronoi partition of
RY. We show that if a full rank lattice A is scaled by a factor of & € (0, 1], then approximation
of a measure based on the Voronoi partition of hA is O(h) regardless of d or p. We then use
a covering argument to show that N-term approximations of compactly supported measures is
O(N ’5) which matches known rates for optimal quantizers and empirical measure approximation
in most instances. Finally, we extend these results to noncompactly supported measures with

sufficient decay.

4.1 Introduction

This short chapter considers N-term approximations of measures in the Wasserstein
distance W), for p € [1,0). We utilize structured approximations based on a Voronoi partition of
R? with respect to a lattice, and the approximation rates are governed by a scaling factor applied

to the lattice. When translated to N-term approximations of compactly supported measures, we
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show that these structured approximations match the known rates of approximation for optimal
quantizers and empirical measures.

Our structured approximations are motivated by orthographic projection camera models
from computer vision [86] in which points are orthogonally projected onto the camera plane. An
N-pixel grayscale image is typically considered as a matrix or vector, and is an array of N pixel
intensity values. However, in machine learning applications, it has been observed that treating
images as vectors in Euclidean space can fail to accurately reflect the structure that appears in
them. Many recent works have proposed understanding images as probability measures, for
instance by mapping pixel intensities to a uniform grid in R? [32], 48, 57, 161}, 66, [75, 92]]. This
viewpoint has been used for manifold learning and supervised classification in these references
with success, as Wasserstein distances between images treated as measures are more meaningful
than Euclidean distances.

Optimal quantization of measures and empirical measure approximation have been studied
in a variety of works [21, 46, 49] and [26, 41, 44} 83, 95]], respectively. It is well known that
in most instances, without stricter assumptions, both problems yield N-term approximations
un of an absolutely continuous measure u such that W, (u,uy) = O(N ’5). Further assumptions
on u sometimes yields more refined estimates which we discuss in the sequel. We will show
that a concrete approximation uy = Yyca, 0.0y, or Uy = Yjea, Baly, will match this rate for
compactly supported measures, i.e., W, (u,uy) = O(N ’5). Here, Ay will be N terms of a full
rank lattice A C R and Vj_ are the associated Voronoi cells of the lattice. These results are
obtained in two stages: first, we consider an approximation on all of R using the scaled lattice
hA whereby we show approximation rate O(h), and then we use a covering number argument to
verify the N-term approximation rate for compactly supported measures. We next generalize the
approximation rates to non-compactly supported measures with suitable tail decay. Additionally,
we provide general rates for nonuniform approximations.

Once these rates are established, we focus on extending the compatibility condition for
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discrete measures similar to compatibility showcased in Chapter 2] In practice, if we are given
a compact measure, the concrete approximations yy use of Dirac masses will ensure that our
approximated measure will lie on a finite grid of the lattice specified above. So computationally,
we end up considering discrete measures on a finite grid. This discrete measure compatibility
does not stem from ensuring that isometry holds but rather to show that certain pushforwards
on a finite grid (such as a lattice on a torus) can be absorbed into the Sinkhorn solution of the
regularized optimal transport problem. The compatibility on the level of discrete measures shows
properly that the reference measure used in this discretized linearized optimal transport (dLOT)

as well as the pushforwards need to respect the geometry and symmetries of the underlying grid.

4.2 Background

The Wasserstein-p space, denoted Wp(]Rd ), is the set of probability measures with finite

p-th moment, equipped with the Wasserstein distance

p
— 3 _vlP
Wnv)i= it ([ hesirante) )

el (y,v)

where P(R?) is the set of all probability measures over R?¢ and I'(u,v) := {y € P(R*) :
V(A x RY) = u(A), Y(RY x A) = v(A) for all A C R} is the set of all joint probability measures
with marginals p and v. We will write M, (u) = [ra |x|Pdu(x) for the p-th moment of u. Given
a measurable map T : R? — R?, we denote by Tiu the pushforward measure which satisfies
Tu(A) = u(T~' (A)).

There are two main types of approximations considered in the literature for measures in
Wp(Rd ): optimal quantizers and empirical measures. The approximation rates are quite similar in

both instances.
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4.2.1 Optimal Quantization in W),

Let Qy := {v € W,(RY) : |supp(Vv)| < N} be the set of all discrete measures in W,
supported on at most N points. Then the optimal quantization problem for a given measure

u € W), is to find a solution to

f(,u, QN)W,, : nf Wp(:u7v)'

=1
veQy
Existence of a minimizing measure is guaranteed for compactly supported .

Graf and Luschgy [46, Lemma 3.1] show that

1

p
£l Qo = inf ([ minte ot )
g(%SN

That is, finding an optimal quantizer (measure) is equivalent to the problem of approximating u
with N centers in R,
Most of the estimates for optimal quantizers are asymptotic estimates. Bucklew and Wise

[21] prove that if 4 € W, (R?) has finite p + € moment for some € > 0, then

(1, Qu)w, = O(N~4).

Interestingly, their analysis shows that the rate above only depends on the absolutely continuous

part of u. Indeed, for any singular u, E(u, Qy)w, = o(N 3 ), which is a stronger condition.
Hardin et al. [49] merged approaches of optimal quantization and optimizing Riesz

energies, which lead to further results on asymptotics of optimal quantifiers. To the best of our

knowledge, optimal quantization results in this vein are all asymptotic estimates.
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4.2.2 Empirical measure approximation

Another large segment of the literature considers approximations of the form uy =
ﬁZﬁi | Oy, where x; are drawn i.i.d. from y. The random measure uy is typically called the
empirical measure of ;1. Most works estimate [E[W), (u, uy)), and in contrast to optimal quantization,
the bounds hold for all N € N, but sometimes require restricted assumptions on the measure p.

Fournier and Guillin [44] show that if u € W,(R?) has finite g-th moment (M, (1) < )

for some g > p, then forall N € N,

;
q—

N_%—l—N*q p>‘§1,q7é2p

q=p

V4
E[W,(u,uv)] <CMg (1) { N-2log(1+N)N @ p=92, g#2p

-z -4k d d
\N i+N « pe(()?f)?q?éﬂ;

for some constant C depending only on p, g, and d. This result generalized those of Dereich et
al. [41]].
For measures on the d-dimensional torus, [42] showed if u is absolutely continuous with

density bounded above and below (away from o and 0, respectively), then for all N € N,

1

[5Y]
QU
V
98]

(S}
—_

1

N-
E[Wp(u,un)] <C N_l(log(N))f d=2
N-

]
U

I
p—

\

If no bounds are assumed on the density, then E[W, (u,un)] < C(N % N7 ), and moreover the
bound is tight [83].

Carias and Rosasco [26] consider u € W,(M), with M a compact smooth d-dimensional
manifold with bounded curvature and C' metric and volume measure A,,. They show that if u

has absolutely continuous part with density f # 0, then W), (u, un) = Q(N -1/ ) uniformly over
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uy with constants depending only on d and f. They additionally show a probabilistic bound on
rate of convergence of the empirical measure. In particular, for sufficiently large N, and any T > 0,

we have
Wa(u,uy) <C- </ HA (x)ﬁdkm,[(x» N~z -7, with probability 1 — e_Tz,
M

where C depends only on d.

Weed and Bach [935] prove both asymptotic estimates and finite-sample estimates in
the following two scenarios: (m,A)-clusterability and approximate low-dimensional support
[95, Definitions 7, 8]. A measure u is (m,A)-clusterable if supp(u) lies in the union of m
balls of at most radius A. Moreover, y, is approximately low-dimensional if supp(u) C S¢ for

Se ={y:|ly—S|| <€} where S is low-dimensional. Their main results show that

E[W( N<c (%)_ﬁ uis (m,A)-clusterable
P ‘U,‘UN — )

N~ u is approximately low-dimensional

U=

where for the (m, A)-clusterable case we assume that N < m(2A)~2? and for the approximately
low-dimensional case we assume that N < (3¢) .

For 1-dimensional measures, [14, 97] investigate the best uniform approximation of a
measure u by uy = ]%, Zﬁil d,; where the x;’s are chosen to minimize W), (uy,u). Similar to optimal

quantizer results, they show that

Hminf NW, (i) > —— ( Lr(w)>0 dx)l/p
W T e @)

where f denotes the density of the absolutely continuous part of u with respect to the Lebesgue

measure.
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4.2.3 Structured approximations

We focus our attention on structured approximations of measures in Wasserstein space
similar to those well known in approximation theory. We consider approximations similar to
lattice quantizers in [46, Section 8.3].

A full-rank lattice A C R? is a discrete subgroup of the additive group R? which spans
the space. A particular type of fundamental domain for a lattice is its Voronoi cell, which is the
domain centered at the origin (which is evidently an element of the lattice) consisting of all points
which are closer to the origin than any other lattice point. More formally, if A is a lattice, then its
Voronoi cell is

Vo={xeR?: |x| < |x—A|, forall L€ A}.

Any element of RY may be written as the sum of a point in V; and an element of A. The Voronoi

cell centered at A € A is defined by

Vi={xeR?: |x—A| < |x— V|, forall X' # A}

and we have V5, = Vo + A. The Voronoi cells tile the space by translation, i.e., R? = Uy <o Vo +A.
Voronoi cells are convex polytopes, and defined as above, distinct Voronoi cells may intersect on
their faces, but their intersection has Lebesgue measure 0. However, for our purposes, since we
want to construct approximations to measures which may not be absolutely continuous, we will
use the fact that one can remove faces from Vj in such a way that it still tiles R4 by translation,
but V), NV, = 0 for all A # A'. Therefore, we will assume that we have a Voronoi cell V) and
Vy, = Vo + A such that RY = | ], ., Vy (disjoint union).

Our requirement that the Voronoi cells be disjoint is simply avoid issues when singular
portions of the measures we are approximating lie on the boundary of any particular Voronoi cell.
An alternative method to remedy this problem is to simply approximate the boundary-supported

singular measure with an €-shifted measure. In particular, if y; denotes the singular portion
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of a measure, let S(uy) = {x € supp(uy) : x € dVy,A € A}. Then for each x € S(uy), define
A(x) ={A € A:x €9V, }. Now we simply split uy(x) across A(x) by % Yoea(x) Oxrer—y) for
€ > 0. Applying this procedure to all x € S(uy) results in an updated measure u, which is close
in W, to uy. In practice, we would gain an extra € error in the approximation bounds below by
employing this method, but as € can be taken as small as needed, the characteristic of the bounds
remains the same.

We will consider two types of approximations akin to piecewise constant approximation

of functions. In particular, we consider approximations of the forms

Y o,

AEA

Z Byl .

AEA

These are particular cases of a more general approximation method relying on a given

class of functions F = {fy : A € A} giving rise to approximating measures of the form

aA) =y, H(x)dx.

AEA ANVy,

Common approximation schemes take ¥ to be piecewise polynomials of a certain degree or
shifted radial basis functions, for example.

In what follows, we will consider approximations at a dilated lattice hA for h > 0. We
will let {Vj : A € A} be its disjoint Voronoi cells such that Vjy, = Vjo +hk = h(Vy+L). We
typically write hVj for V) for clarity. Scaling the lattice by O < & < 1 corresponds to a finer-scale
covering of the space, and allows for more precise approximations of a measure u. We begin by
understanding approximations of u by measures of the form Y ) c o 038y, on the whole lattice,
and then utilize a covering number argument to give N-term approximation bounds for compactly

supported measures. We then show how such bounds can be extended to non-compactly supported
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measures.

4.2.4 Regularized Optimal Transport

Let P, (R?) denote the probability measures with bounded second moment. In particular,

c € P,(RY) satisfies

/m@q@<w
Given a probability measure, we can consider the space L?(R?, &) with norm

1713 = [ Ir)Bdo).

Unless otherwise stated, let { denote the Lebesgue measure, then if ¢ € P (R¢) is absolutely

continuous with respect to {, denoted as 6 < {, then there exists a density f5 : R — R such that
G6(A) = / fs(x)dl(x), A CR? measurable.
A

For the most part, we will be restricting our research to the case of probability measures that are
absolutely continuous with respect to A. Given an elementary transformation S : R — R and a

measure ¢, we can define the push forward measure by
Sio(A) = o(S~1(A)) (4.1)

where A C R?. If 6 < {, then in terms of densities, the pushforward relation v(A) = 6(S~1(A))
is given by

/ fo(x)dS(x) = /fv(y)dC(y), A C RY measurable.
§71(A) A

Given a source distribution ¢ and a target distribution v, the optimal transport problem
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aims at minimizing the cost to “move” u into v:

min, [ 1709 =x?du() @2

where 7 is the collection of all measure preserving maps from y to v. The minimum of (4.2)
exists and is unique subject to certain regularity assumption on g and v [[17, 91]]. In particular, the

following theorem explains the regularity conditions needed on the measures.

Theorem 4.1 ((Brenier)). Let 6,v € P (R"). If 6 < A, then there exists a unique map Ty €
L?>(R", ) that pushes & to v and achieves the 2-Wasserstein distance. Furthermore, the map Ty
is uniquely defined as the gradient of a convex function @ so that Tg (x) = V@(x), where @ is the

unique (up to an additive constant) convex function such that (V@);6 = V.

Note that is the transport map version of the W),-distance (with p = 2) defined earlier
and gives rise to a natural distance between distributions, the Wasserstein-2 distance W (u, v)?.
The argmin of (4.2) is referred to as the “optimal transport map” and we denote it by THV. The
optimization problem can be formulated for different cost functions and on geometric or
manifold domains [67, 5]].

For practical purposes, (4.2) needs to be formulated for discrete measures on finite
domains. Denote the domain by points x; € R?.i=1,...,n, then a discrete measure on this
domain is a vector a € R’ such that a’1 =1 (1 denotes the vector containing only ones). We
denote the set of all such discrete measures by X,,.

The optimal transportation problem in terms of maps 7, (4.2) has proven to be too
restrictive. Often an optimal map does not exist; for example, consider a discrete problem where
a Dirac measure J,, should be transformed into 0.5, ;+ 0.59,,. To overcome this problem, the
notion of “mass splitting” has been introduced by Kantorovich [55]]. This relaxation looks for
optimal couplings instead of optimal maps. A discrete coupling is a matrix P € R"*", where P;;

describes how much mass flows from x; to x;. In this set up, the optimal transport formulation
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now reads: For a source measure a, and target measure b, find P € R:’LX” that minimizes

min tr(CT P) (4.3)
Pellb

where IT2 = {P: P1 = a and PT1 = b}. Here C denotes the cost matrix; in analogy to [#.2) we
use C;; = |x; —x;|*. The minimum is the Wasserstein-2 distance, again denoted by W»(a,b)?. The
problem is a linear program, and thus the minimum might not be unique.

One of the main drawbacks for application purposes is the computational cost of comput-
ing (@.3). Significant computational speed-up (from O(n?log(n)) to O(n*log(n))) for can
be achieved by adding a constraint on the entropy of P, which adds a regularization term to (4.3))

(36, 4]. The regularized version of (4.3)) is

min tr(CT P) — Bh(P), (4.4)
Pellt

where h(P) = — Y1, pij(logp;;) and B > 0 is the regularizer. The optimal coupling of #.4),

which we denote by Pf B(C ), is unique and has the form
diag(u)e PC diag(v)

where ¢ PC denotes the Hadamard (entrywise) exponential and u,v € R? with u,v > 0. The
minimum is the Sinkhorn distance, denoted by W, g(a,b). As p — 0, Piﬁ converges to the
optimal solution of (4.3) with maximal entropy [36,79]. Therefore, also W, g(a,b) — Wa(a,b)
as B — 0. The optimal coupling Pf B(C ) of the regularized problem can be easily computed via

Sinkhorn-Knopp’s fixed point iteration [36, |84].
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4.2.5 Linearized Optimal Transport

Although Linearized Optimal Transport (LOT) is introduced and talked about in Chapter |2}
we reintroduce here as a refresher. LOT, introduced by [94, 78, 45], is a method to embed sz(Rd )
into an L? space in a very natural manner. In particular, if we fix a reference measure &, the LOT

embedding, denoted Fy, is

P (RY) — L*(RY, )
Fs:

p— T3

The so-called compatibility condition (71, 1] describes when LOT and the pushforward

commute.

Definition 4.2. Fix o,u € P3(RY) with 6 < . For a function S € L*(RY, ), we say that (6, u,S)
form a compatible-triple if

Fo(Syu) = So Fo(u).

Note that the compatibility condition of Definition 4.2 can also be written as
S
ToH = SoTE.

From past results in Chapter the LOT embedding between 1, u € P>(R?) is an isometry when

u1 = (S1)su, 2 = (S2)gu and (o, 4, S;) form a compatible-triple for j = 1,2.

4.2.6 Outline

We begin by considering some general lemmas that we will use throughout, then focus
on Dirac train approximations for compactly supported measures in Section {.4] and piecewise
constant approximations of the second form above in Section #.5] Section 4.6 extends these

results to non-compactly supported measures. In Section 4.7, we generalize our approximation
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methods to nonuniform meshes by using the mesh norm and minimum separation radius as a
stand-in. Section 4.8|showcases how to extend the idea of pushforwards to discrete measures as

well as regularized compatibility for discrete measures.

4.3 Lemmas

A set K C R¥ is a convex body if it is convex and compact, and a convex body is (centrally)
symmetric if K = —K. The Voronoi cell Vj of a lattice A is a symmetric convex body, as is
the Euclidean ball of any radius. Below, denote by Bg = B(0,R) the ball of radius R (in the
Euclidean metric) in R?. Given two convex bodies K and T, let A\(K,T') be the minimal number
of translates of T it takes to cover K, i.e., A((K,T) = min{#(a;) CR? : K C U, T + o;}.

The diameter of a convex set A C R is given by diam(A) = sup{|x —y| : s,y € A}. The
radius of a centrally symmetric convex body K is rad(K) = sup{|x| : x € K}. Our estimates below

will involve both diam(Vj) and rad(Vp) for the central Voronoi cell of a lattice A.

Lemma 4.3. Let V;y be the Voronoi cell centered at 0 of a full-rank lattice A C R?. Then for
h e (0,1],

N(BR, hV) < Sdh_dN(BR, Vo).

Proof. We will use the following fact about covering numbers [[11, Theorem 4.1.13 and Corollary

4.1.14): if T € K C R are convex bodies and T is symmetric (T = —T), then for all 2 > 0,

N(K,hT) < (1420~ YK, T).

Consequently, for 0 < h <1,

N (Br,hVo) < (1420~ YN (Bg,Vo) < 3°h™ N (Bg, Vo).
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]

We have not optimized the estimate in Lemma [4.3] because it is not required for our

subsequent analysis, so it is possible that the bound therein could be improved.

Lemma 4.4. Let y € W,(R%), p € [1,0). Let A be a full rank lattice on R? with Voronoi cells
{Va}ren, and let h € (0,1]. Then the following hold:

(i) Y |MPu(Vip) < 2P~ hP rad(Vo)? + 2P~ M,y (u),
AEA

(i) Y N7y Vi) < 271 X [RAPu(Via) 427 AP ad (),
AEA AEA

(iii)) Y ]y, #(Vin) < (22772 42071 rad (Vo)? 427" M,y (u).
AEA

Proof. Proof of (i): Note that for any A € A and any x € V;,A, we have
|hA| < |x| 4 |x — hA| < |x| +rad(Vyy,) + hrad(Vp).

Therefore, |hA|P < 2P~ 1(|x|P +hPrad(Vp)P). Integrating this inequality over Vj; with respect to u

and summing over i gives

Y (Vi) <201 ¥ [ falPdya 207 P rad (V) Y m(Vig)
AEA reA” Vi AEA

=27""M, () + 27" WP rad (Vp ).
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Proof of (ii): We estimate

Y Al2 Vi) < X (10 +rad (Vi) |” (Vi)
AEA AEA

<ot (Z [AAPu(Vip) + ) rad("m)”u(%))

AEA AEA

—op-l (Z IMPu(Vip) + hP rad (Vo)P Y u(%)) :

AEA AEA

which yields the desired conclusion.

Proof of (iii): Combine (i) and (i) N

4.4 Dirac train approximations

First, we consider approximating an arbitrary measure u € W, (R) by a Dirac approxi-
mation as follows. Let & € (0, 1] and we utilize the scaled lattice hA = {hA : A € A}. Then we
approximate u by

Hh =) O Sy (4.5)
AEA

In other words, we utilize a discrete measure with Dirac masses at the scaled lattice 2A. Our goal
is to determine the approximation rate (in terms of /) of u via yj,.

The first requirement is that gy, is a probability measure, which requires that

(R =Y oy = 1.
AEA

A natural candidate would therefore be to take o, to be the measure on the Voronoi region Vj,

1.e.,

Oy, = /V du(x) = u(Vip,)-

Indeed, we show that this choice works and provides approximation rates that match what one
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expects to be optimal in terms of the lattice spacing.

Theorem 4.5. Let u € W,(RY), p € [1,0) be fixed but arbitrary. Let uy := Yy a t(Vip) Sy Then
forall h € (0,1], u, € W,(R?) and

Wy (u ) < rad(Vo)h.

Proof. First, note that yy, is clearly a measure, and

RY) =Y u(Vip) =u (U th) = u(RY) =1,

AEA AEA

where the second equality comes from countable additivity of y and the third equality from the
fact that RY = | lrea Vir- Hence uy is a probability measure. To show that yj, has finite p-th

moment, we notice that (via Tonelli’s Theorem) and Lemma 4.4{f1)),

/ xPd = Y / AP < 27 P rad (Vo)P + 2P~ M,y (1) < oo.
AEA

Using the Kantorovich formulation of W),, we define a (non-optimal) coupling between u

and yy, via

T(A,B) = ) u(BNVj;)8 (A / Y 1y, () i (x)dxdu(y).

AEA AXBj e

It is straightforward to check that T is a measure on R? x R?. Noting that

[, i) = X utvia) = () = 1

AEA
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we see that T is a probability measure. Computing the marginals, we see

T(RY,B) =Y u(BNVjy) = u(B)
AEA

and

TARY) = Y u(Vi) 8 (A) = mi(A),
AEA

for all Borel measurable sets A, B € R?. Therefore, T is a coupling of u and .

Notice that

(Vi Vi) = Y, (Vi NV,3)8,5 (Vi) =0,
AeA

so that T only evaluates mass on sets of the form Vj x V};. Thus, we have

Wol)? < [, le=yldi(x.y)

R9 xR

~Y [ eylarcy)
IAL RIS

= Z/V [P\ — y|Pdu(y)

AEA

< Y rad(Vip)Pu(Via)
AEA

= Wrad(Vo)? ¥ u(Via)
ACA

= hPrad(Vp)?.

The inequality arises by noting that |hA — y| < rad(Vj,,) for y € V), while the subsequent equality

is due to the fact that rad(V}; ) = hrad(Vy) for all A. The conclusion follows by taking the p-th

root on both sides of the above expression.

To provide N-term approximation rates, we assume that u is supported on a compact set
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which is a subset of the interior of some ball Bg. We state bounds in terms of the covering number

of the support of u with Voronoi regions.

Theorem 4.6. Let u € W,(R?), p € [1,00) have compact support contained in the interior of Bg.
1
Let N € N be fixed, N. = N(Bgr,Vo), and set h =3 <%) . Then u, = Yoaca (Vi) O, is an at

most N-term approximation of u, which satisfies
W (11, 11) < 3rad(Vo) AN~ 4.
Proof. Note that for any & € (0, 1], y, has at most
N(Br,hVo) < 3°h™ N (Bg,Vo) = 3'h N

terms (the first inequality is Lemma[4.3), whereupon setting % as in the statement of the theorem

and applying Theorem [4.5]yields the conclusion. O

From Theorem §.6, we may deduce the following result which is related to a simple
camera model from computer vision. The orthographic projection camera model projects objects
orthogonally onto the camera plane [86]. This model is a simplification, as it does not accurately
treat perspective of the object being imaged, but it is relatively accurate for objects being imaged
from a distance. If we take a scaled integer lattice in R? with N elements, then the shifted Voronoi
regions which are cubes of side length N 2 and a discretization of the form (4.5) corresponds to
an orthographic projection model of an N-pixel camera in which pixel intensity values are the

average of the intensity over the given region of the imaging window.

Corollary 4.7. Let u € W,(R?) have support in the interior of [—%,1]%, and let Ay = (N’%Z)d
with Voronoi cells (Vy,)aepy- Then uy = Yoea, 14(Va)Oy is an at most N-term approximation to u
which satisfies

_1
Wp(,Ll,,UN) < N,

Vd
2
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Proof. Settingh=N —a yields N cubes of length N ~4 in the unit cube, so appealing to the proof of
Theoremyields the desired rate upon noticing that rad([— 1, 3]¢) = \/TE and A(([—%, 419, [-3,3]9) =
1. Note that in this case, the bound of Theorem {.6yields an overestimate as it assumes support

in a unit ball instead of a cube. O]

4.5 Piecewise Constant Approximation

In this section we consider approximating a measure vV € W,,(]Rd ) by a piecewise constant

approximation of the form

Vv, = Z Bh?x]th;L' (46)
AEA

For vy, to be a probability measure, the following is required:

y th/V dx="Y BalVia| =1,

AEA AEA

hence a natural choice is

v(Vi)
Vil

B =

which corresponds to a piecewise constant approximation of v where each Voronoi region is

assigned the value of the ratio of the mass that v assigns to the region to its Lebesgue measure.

Theorem 4.8. Let v € W,(R?) be fixed but arbitrary. Let vy, := Yy %HVM. Then for all
h e (0,1], v, € W,(R?) and

W, (v,vy) < diam(Vp)h.

Proof. The analysis above shows that v;, € P(R?), so it remains to show that it has finite p-th
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moment, which can be seen as follows:

V(Via)
Z |th| /th

AEA

oo (Vi) | h?\,‘

XEA

< 21’_1Mp(,u) + (22772 4 2P Y RP rad (Vg)P < oo,

where we have used Lemma |4.4{[i11)) (here and throughout this proof, Tonelli’s Theorem justifies
the interchange of sum and integral). Therefore v;, € Wp(Rd).
To estimate the convergence rate, we again form a (non-optimal) coupling in the Kan-

torovich sense, as follows: for Borel measurable A, B C R¢, define

1
BOVial = [ Y oy, (01, (0)v(x)dy
h AxB = Vil (o (o

It is straightforward to check that T is a measure on R? x R?. To see it is a probability measure,

note that

TRYRY) =Y |(V |>|vh =Y v(Vip) =v(RY) =1.
AEA AEA

Additionally, the marginals can be computed as follows:

V(A M Vh?u)
Vi

AR =Y

AEA

[Vinl = v(A)

as before, and

A(R%,B) =Y Vi) gy, = y vlia) /B 1y, (x)dx = v;(B).

AEA ‘V ’ AEA ’th‘

Therefore, T is a coupling of v and v;,.
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Thus,

Wovoi) < [ e lrdi(x.y)

R4 xRd

zzL

AEA Vil SV xvia

diam(Vy )P
<X —o 1 Vi)Vl

x—y|Pdv(x)dy

= hP diam(Vp)? Y v(Vin)
AEA

= h? diam(Vp)?,

and the conclusion follows. O]

Corollary 4.9. Let v € Wp(Rd) have compact support contained in the interior of Br. Let
1

N € N be fixed, N = N.(Vo,Br), and set h =13 (%) ! Then v), = Yoca V&};’]) 1y, is an N-term

approximation of V, which satisfies

1

Wy (v, vi) < 3diam(Vo) AN 4.

—_

Proof. Mimic the proof of Theorem .6 mutatis mudandis applying Theorem 4.8] N

Corollary 4.10. Let v € W,(R?) have compact support contained in the interior of [—%, %]d

and let Ay = (N_éZ)d with Voronoi cells (Vy)yeny- Then Vy = Yacay %h is an N-term

approximation to V which satisfies

=

W,(v,vy) < VAN~ 4.

Proof. Set h= N~ while noting that A(([—1,1)¢, (=1, 1]¢) = 1 and diam([—1,1]9) = vd. O

While Corollary 4.7| corresponds to mapping pixel intensity values from an orthographic

camera image to a discrete grid in R? (or more generally R¢), Corollary corresponds to a
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voxel representation of the image in which each pixel intensity value takes up the whole cube

rather than just a single point in the center.

4.6 Non-Compactly Supported Measures

So far, we have assumed that u is compactly supported in a ball Bx C R?, but here we
extend the results above to non-compactly supported measure with suitable decay. If the measure
u decays fast enough away outside of a ball Bg, we first estimate u with a compactly supported
measure u, and then apply our approximation schemes above to .

We want to create a non-optimal coupling that will send u to itself when restricted to sets
inside By but that will project the part of u outside of Bg to the boundary of the ball. To do this,

we define the projection operator
P (x) = argmin [lx— y].

YEBR

In particular, given any set B C R?, this projection operator has a preimage PgRl (B)={xeR?:

Pg,(x) € B}. If BNBg = 0, then, PERI (B) = 0. Finally, notice that
P! (B) =Py (BNBg)UPy ! (BNOBg)

We use this definition in our construction to define the following coupling:
= (Ix PBR)ﬁ,u = u X (Ppy )t =: 1 X 1.

Notice first that this coupling sends u to itself when restricted to sets in Bg. Secondly, for A C Bg,
it projects the measure of A to the boundary dBg. In essence, this acts as approximation through

a truncated measure supported on the ball Bg. In particular, the measure ©(R¢, B) = fi(B) is
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supported entirely on the ball Bg.

Recalling the Lebesgue decomposition theorem, we know that y = u +u | + uy where
u< is absolutely continuous with respect to the Lebesgue measure (and has a density f,), u is
the singular continuous measure such that ¢ | {x} = 0 for x € R?, and y, purely atomic discrete
measure such that u; = Y7°; ¢;0,,. We will show that W, (u,u) < € if we assume some decay
conditions on u., u |, and uy. Apart from natural decay conditions on u. and yy, if u| decays on
concentric shells B, ;) = Bj \ B, for a > R, then we get the approximation result. These ideas are

laid out in the following theorem:

Theorem 4.11. Let u have refined Lebesgue decomposition, u = u~ +u | + ug, where u- has

density f,, and let € > 0. Assume that

1. fulx) < 36‘@% where C is the integration constant from integrating over concentric

d-spheres,

2. Forevery j > |R|, we have

P
u (B, . < € °
(/.,j—b—l] p+2 2’
3(j+1—R)

3. the ci’s in g =Y ;| ckOy, decay like

1 1 € 1

for some g > 1 and |x¢| > R.

Then Wy, (u,11) < € where 11 is the compactly supported measure (PBR)ﬁ,u.
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Proof. Notice that

Wyl < [ b= Po(x)du(v
— [ = Po(0)17dutx) + [ 1x— Pay(o) Pdt)
\BR ., Bp
0
P R\”
= . x—Rm du(x) = /% (1_H> x| dpu(x)

(|| = R)pd,u(x).

I
S

R

This means that

Wyl < [ (el =R) dloae 11 +110)

R

= [, (=R e+ / (=R 0

N

11 12

+/BC (1x| = R)duqa(x).

R
N

J/

-

I
In particular, we need that both I, 5,15 < %-. For I, this is ensured if

epP
Jul®) < serprar

where C is the integration constant from integrating over concentric d-spheres. To see this, notice

that
£ (Ix[-R)” 1 ep a1 el
Ilz/c (|x| ) fy( x)dx i‘/ X7 |x|d+1dx<? r>R—rd+1dr§?.
' - 1
<1 <

To bound I, we assumed decay rates on the measure of concentric annuli emanating out
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from Bg. In particular, we assume that for j > |R|, we have

B < ¢ 0
AP (] ) = P22
3 ( Jj+1-— R>
This implies that

J

C
R

i>[R]
) el 6
< Y (+1-R = o
iz IR] 3 ]+1—R>
<£1’ 6 1 <ep
- 372 (j+1-R)?~ 3°

Finally, let us bound /3. Recalling that uy = Y;* | ¢;0y,, we get

Il
gk

L > & (|| = R) pta (i)

[ (1= B) "t

R

w-
I

I
s

L =r (%) - (Pl —R) e

»
I
_

If we assume that c; decays at the following rate

1 1 € 1
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for some ¢ > 1 and |x¢| > R, then

/Bc (¥l = R)"dpa(x) = i 11> (0) (P = R) e
R k=1

1 (x| =R 1
<& _1 _yq =R 2
=73 Z?_]qu;l ‘XklzR(xk)(\x\—R)Pk‘l

eb
< —.
- 3

With these bounds for our decomposed measure u, we get that

and therefore W), (u,u) <e. O

Now, we can use the theorems above to approximate u with the Voronoi cell approxi-
mations. In particular, we get the following corollary for Dirac train approximations and the

piecewise constant approximations.

Corollary 4.12. Assume that u satisfies the assumptions of Theorem and let u be the
1
compactly supported measure (Ppy)yu1. Moreover; let N € N, N = N(Bgr,Vo), and set h =13 (%C) a,

Then

W, (u,fin) < 3rad(Vo)A(IN "7 +,

1

W, (u, 1)) < 3diam(Vo) NN "4 + ¢,

~ A N ul V
where iy = YA H(Vin) O, and 1), = Yo F](‘/h}ﬁ) Lpp.-

Proof. Letting u be the measure from Theorem .11} we have

WP(;“?ﬁh) < Wp(:uaﬁ) +Wp(ﬁnah>-
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By Theorem 4.11} W,,(u, i) < €. Since i is compactly supported within some ball of radius R,
we have by Theorem 4.6|and Theorem 4.8| that W), (11, up,) < 3 rad(Vo)ﬁ\ﬁN ~7 and W, (1, ;,) <

3 diam(Vo)Q\ﬁN -, Putting these together yields the desired result. O

4.7 Nonuniform Approximations

LetX :={x;}7, C R? be a set of (finite or infinite) points that is separated (x; # x 17 ).

We define two quantities governing these points: the mesh norm given by

hx := sup inf |x; —y|,
yGRdxiE

and the minimum separation radius,
I. f| |
X = 1Nl | X; — Xj|.
1 2izj

We denote by V; C R¢ the Voronoi region centered at x;, and enforce V; N Vi=0,i#j.

Lemma 4.13. Let u € W,(R?), p € [1,00). Let X C R? be such that 0 < gx < hy < oo. with

Voronoi cells {V;}%_,. Then the following hold:
el <204 )
i=1
(i) LN V) < 277 blm(Vi) + 2,
i=

i=1

(iii) Y %7y u(Ve) < (22772 4277 B + 2P~ My ().
i=1
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Proof. Proof of (ii): Note that

(Vi)
i=1 i=1
< or~1 E‘” i |Pu(V;) 4+ 2P~ lhp E u(V;

—p- Z|xl|p (Vi) +2°~1hb.

Proof of (i): By the definition of the mesh norm and the triangle equality, the following

holds for every i and every x € V;:
il < el + e —oxi| < x|+ Rx,

hence |x;|? < 2P~ !(|x|P + h%). Integrating this inequality over V; with respect to u and summing

over i gives
Z|x,|1’ ) < 2P 12/ x|Pdu(x) +2P~ 1h§):y =27""M, (u) + 2771,

which is the desired conclusion.

Proof of (iii): Combine (i) and ({ii). O

Theorem 4.14. Let € W,(R%), p € [1,) be fixed but arbitrary, and let X C R be such that

0 <gx <hx <eoo. Let ux := Y | u(Vi)y,. Then
Wp(iunuX) < hX'

Proof. First, note that uy is clearly a measure, and we have

ux (RY) = i”(vi) =u <G Vi) = u(RY) =1,
i=1 i=1
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where the second and third equalities comes from countable additivity of u and the fact that
R? = L2, Vi. To show that uy has finite p-th moment, we notice that (via Tonelli’s Theorem) and

Lemma [4.13({1),
[, atrduy = Zw ) <277 27 My () < o

Using the Kantorovich formulation of W),, we define the following is a (non-optimal)

coupling of y and uy:

7(A,B) := Y u(BOV)3, (A /AXBZ]IV (x)dxdu(y).

It is straightforward to check that 7 is a measure on R? x R?. Noting that

/Rded dn(x,y) = ;H(Vi) —u(RH =1,

we see that T is a probability measure, and its marginals are

R(RL,B) = Y u(BOV) = u(B),
i=1

and

TARY) = Y u(Vi)8,(A) = ux(A),
i=1
for all Borel measurable sets A, B € R?. Therefore, T is a coupling of u and uy.

Notice that if k # j, then

%(Vk,Vj) = ZH(Vkai)Sxi(Vj) =0,
i=1
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that is, 7T only evaluates mass on sets intersecting V; x V;. Therefore, we have

Wyl )" < [ [x—yPdi(x.y)
RI x R4

=Y [ eyl
i=17VixVi

Z/ Ix; — y|Pdu(y)
i=17Vi
<ng Y u(vi)

i=1

— i

]

Theorem 4.15. Let v € W,(RY), p € [1,0) be fixed but arbitrary, and let X C R be such that

0<gx <hx <eoo. Letvx :=Y7, |(V\)1V Then vy € W,(R?) and

Wy(v,vx) < 2hy.

Proof. First, notice that

v (RY) = i“ﬁ dx=v(RY) = 1,

so indeed vy is a probability measure. Next, we see that

vy (2 [ s
e L

vx (V;)

Vil
< (272427 YRk 2P M, (1) < oo,

XN Vi

IN
™

N
I
—_

whereby vy € W), (R9). Here, and throughout the proof, Tonelli’s Theorem justifies the interchange
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of sum and integral.
To estimate the convergence rate, we again form a (non-optimal) coupling in the Kan-

torovich sense by

(o)

V
pavi= [ ¥ G iu vty
izi |V| ><B |V|

It is straightforward to check that T is a probability measure on R? x R¢. Its marginals are

= V(ANYV;)
=]

\V! v(A4)

as before, and

Z(RY,B) — Z v(Vi )‘BQV‘ I%AEW(x)dx:VX(B).

AEA ‘V|

Therefore, T is a coupling of v and v;,.

Finally,

Wovvi)? < [ xe ylPdiy)

R xRY
= x—vy|Pdv(x)d
=X 1 0 vy
= diam(V;
<y GV vy
S Wil
<2PRE Y V(i)
i=1
= 2PhY

]

Theorem 4.16. Let u € W,(R?), p € [1,0) have compact support contained in the interior of
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Bg. Let X C R? be such that 0 < qx < hx < oo and such that the cardinality of X N\ Bg is N.
IfRN_é <hx < CN_617, then ux =Y.;u(Vi)dy, is an at most N-term approximation of u, which

satisfies

U=

Wy (u,ux) <CN™4d.

Proof. Note that N being the number of points in X contained in Bg implies also that N is at least
the number of Voronoi regions intersecting Bg. The mesh norm Ay is the largest radius of one of

the Voronoi regions, which means that N balls of radius 4x must cover Bg; that is

N > N(Br,Buy)-

By volumetric arguments, A (Bg, By, ) > Rdh}}d [11, Theorem 4.1.13]. Rearranging yields the
assumed lower bound on /. Next, with the upper bound on Ay, applying Theorem 4.16]implies

that

U=

Wp(llJHIJX) S hX S CN™ )
as required. 0

Theorem 4.17. Let v € W,(RY), p € [1,00) have compact support contained in the interior of
Bgr. Let X C RY be such that 0 < gx < hx < o and such that the cardinality of X N Bg is N.
IfRN’é <hx < CN’é, then vy =Y, \%ﬂvi is an at most N-term approximation of vV, which
satisfies

W,(v,vx) < 2CN~ 4.
Proof. Mimic the proof of Theorem .16 mutatis mudandis applying Theorem @.1 O

Corollary 4.18. Assume that u € W, x RY) satisfies the assumptions of Theorem and let u

be the compactly supported measure (PBR)ﬁ,u. Moreover, invoke the assumptions of Theorems
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and Then

WP(:“?ﬁX) < CN?é +E,
W, (u,Hy) < 2CN~7 +e,
where iy = ¥, fi(Vi)3y, and fly = £; 55 1.

Proof. Mimic the proof of Corollary using the results from this section. 0

4.8 Linear optimal transport in the Kantorovich setting for
Dirac train approximations

In this section, we extend the ideas used in LOT to the Kantorovich formulation of optimal
transport and investigate an analogue to compatibility when we work with regularized optimal
transport. All the work done in the Dirac train approximations is essentially an infinite grid, but
cutting off the grid at a certain portion, we get a finite grid akin to the ones discussed in

Given two discrete measure a,r € X,, where r is the reference measure, we define the

regularized LOT embedding for a fixed § > 0 by

Frc(a) = PS,B(C)T, (4.7)

where Pfl” B(C ) is the unique solution to the regularized problem (4.4]). Note that this is a mapping

from X, to M,,«,(IR), the space of matrices of size (n X n).
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4.8.1 Pushforward of discrete measures

Given a discrete measure a € X, we consider pushforwards of a € ¥, by a transport plan

S e I1,, where
,={SeR™:5"1,€%,,51,=a}

and m is subject to change depending on which output grid we would like to push forward into.

In this sense, we can specify pushing a forward by the following definition:

Definition 4.19. Leta € X, and let S € I1,. Then, the pushforward of a by S is defined by
Sya:=S" diag(a a=S"1, € L.

This definition of pushforward directly extends the definition of the pushforward operator
and pushforward measure in [[79]. In particular, given a discrete measure o = Y | a;0,, where

x; € X and a continuous map 7" : X — 9, [[/9] defines the pushforward of o under T as

o= Z aidr (x;)-
i=1

This definition is restricted to “transport maps” rather than transport plans. With Definition

we can expand the definition of a pushforward to include mass splitting.

4.8.2 Regularized compatibility for discrete measures

One of the core necessities for LOT embeddings is understanding how push-forwards
of distributions create changes in the LOT embedding space. Ideally, we would like to relate a
push-forward S directly to the embedding F,.c(a) so that F,.c(Sya) and F,.c(a) are related.

In the process of showing this relationship, we derive a few results. First, given a discrete

170



reference measure r € X, and a target measure a € X, and an a-pushforward denoted by § € I1,,

) . S
we will see how to transform I1¢ into I'Ir’ja.

Lemma 4.20. Let r,a € X, and assume that S € I1, C R™"™ with is chosen such that the columns

of S form a spanning set for R". Then the transformation

G(S): T4 — I

P — Pdiag(a™")S

. Sya
is a one-to-one map from I1¢ to IT,*

Proof. We need to check first that for P € I1%, we have G(S)(P) € IT)*". Indeed, note that

Pdiag(a~')S1 = Pdiag(a a=Pl =r

S" diag(a")P'1 =S diag(a a=S"1 = Sa.

Now, we want to show that S is one-to-one. To show this, let sy,...,s, denote the columns
of S and consider P,P’ € IT1¢ with P # P'. Let py,...,p, denote the rows of P, and likewise,
let p!, p5, ..., p), denote the rows of P’. If we assume towards a contradiction that G(S)(P) =

G(S)(P'), then

(P P')diag(a™)$ =0
— s, € ker ((P—Pl)diag(a_l)>

= a;l . <pg—p'£,sj> =0 Vj,/.

But since {s;} are the columns of S and form a spanning set, we know that (p; — py,s;) = 0 for
all j implies that p, = pj, which contradicts that P # P'. This means that G(S) is a one-to-one

map. 0
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A simple, yet important example of pushforwards are permutations because given a
permutation Q, G(Q) will form a permutation. Moreover, permutations are the analogue of
optimal transport maps in the context of discrete measures. Given a permutation O, we can

construct a corresponding transport plan in Sp(a) € I, by defining

So(a) = diag(a)Q "
Note, here that

So(a)l, = diag(a)Q "1, = diag(a)1, = a
So(a) "1, = Qdiag(a)1, = Qa.
This is exactly what we expect from a permutation push-forward. In light of the previous lemma,
we get the following corollary.
Corollary 4.21. The map G(Sg(a)) : 11 — Hfg(a) =112 is a bijection.

Proof. We just need to find an inverse map to G(Sp(a)). The map that will end up working is

G(Sor(Qa)): M2“ — T1%. Indeed, note that if P € T1¢, then

G(Sgr(Qa)) o G(So(a))(P) = Pdiag(a™") diag(a)Q' diag((Qa)™") diag(Qa)Q

SQ (a) SQT (Qa)

So we’re done. O]

Permutations are special in the context of relating F.c((So(a))sa) and F,.c(a) because of

the following lemma.

Lemma 4.22. Let r,a € X, and Q a permutation, then Py, (C)Q" = PrQBa (coh), P;QBa (0)Q =
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PA4(CQ), and Ply(0C) = OPS, ()

Proof. First, recall that G(Sp(a)) (Pr“B (C)) € T2* from the corollary above. We know that Py (C)
has the form diag(u)eBC diag(v); thus,

G(So(a))(P4(C)) = diag(u)e P diag(v) diag(a") diag(a)Q”

Y diag(u)e QT 0 diag(v)Q"

@ diag(u)e*BCQT diag(Qv),

where (1) comes from the fact that Q" Q = I and (2) comes from that fact that permutation matrices
are the normalizer of diagonal matrices (i.e. Qdiag(v)Q ' = diag(Qv)) and e BCoT = e—Bco’

since the exponentiation entry-wise. Given the form of the last equation, we can see that
45(0)Q" = diag(u)e P diag(0v) = P (CQ").
Using the same exact reasoning, we also get that
PE(C)0 = P& (CO).
Finally, for the last equality, we have that PZB(QC ) can be written in the form

“6(0C) = diag(it)e P diag(v)
=00" diag(ith_BC diag (V)

= Qsliag(QTﬁ)e_BC diag(ﬁl.

P
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We want to see which marginals P has. In particular, note that

PT1=P'Q"1=P4(QC) 1=a
QP1 = ;‘B(QC)IL =r
— P1=0Q'r.
Because of the form P, we see that Pr“B(QC )= QPET, B(C ). So we’re done. O
Combining some of the equalities above, we immediately get the following corollary.

Corollary 4.23. Assume that C is symmetric, and let Q be a permutation matrix that commutes

with C, then Py (C) = QTPQa (C)Q (or equivalently QP;5(C o' = PQaB(C)).

Proof. If CQ = QC, then notice that Q' C = CQ'. Then using the equalities from above, we

have
P4 (C) = P45(Q70C) = P4(07C0) = P (QTC) = @TPS%(C)0.

This finishes the proof. [
We finally get another corollary in the circumstance that Qr = r.

Corollary 4.24. Let r and a be discrete measures. If C is a symmetric matrix and Q is a

permutation matrix such that CQ = QC and Qr = r, then QP (C )07 = PQa(C )-
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Chapter 5

A Neural Network Two-Sample Test

JOINT WORK WITH ALEX CLONINGER AND XIUYUAN CHENG

We construct and analyze a neural network two-sample test to determine whether two
datasets came from the same distribution or not. We perform some time-analysis on a neural
tangent kernel (NTK) two-sample test and extend the analysis to the regular neural network two-
sample test by approximating the neural network dynamics with the NTK dynamics. Although
the approximation relies on a small-time training regime, the complexity of the neural network in
relation to the complexity of the two-sample problem considered still allows for the approximation
to hold. We particularly show the theoretical minimum time needed for the neural network two-
sample test to sense a difference € > 0 between the datasets and the theoretical maximum time
before the two-sample test senses a difference € > 0. Additionally, we run some experiments
showcasing a two-layer neural network two-sample test on a hard two-sample test problem. We
show the statistical power of the test in relation to the time it takes to train and how complex the

network is.
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5.1 Introduction

The ability to compare whether two datasets P~ p and Q ~ g came from the same
data-generating process (i.e. checking if p = g or p # ¢) is a problem studied for many years.
Traditionally, the methods to answer this question are called two-sample tests. As a non-exhaustive
list of applications, two-sample testing is widely used in testing drug efficacy [37], studying
behavioral differences in psychology [[16]], pollution impact studied in environmental science
research [20]], and market research impact studies [22]]. The most basic method to compare
distributions is by comparing means with a ¢-test, proportions with a z-test, variances with
Levene’s test, medians with a Mann-Whitney U test, or overall distributions with a Kolmogorov-
Smirnov test. The advent of complex, high-dimensional data in fields like genomics, finance, and
social media analytics has exposed limitations in these traditional methods, particularly in terms
of handling non-linearity, complex interactions, and the curse of dimensionality. The flexibility
and scalability of neural networks make them particularly suited to tackle the challenges posed
by modern datasets, suggesting their potential to revolutionize two-sample testing.

This paper is not the first to explore this idea of using neural networks or classifiers
for two-sample testing. In particular, [62] shows properties and analyzes performance of the
so-called Classifier Two-Sample Test (C2ST) and specifically showcasing theoretically what
the statistical power of such two-sample tests. To go further in the neural network direction,
[30] expanded [47]’s work and used the neural tangent kernel (NTK) for the kernel involved
in a maximum mean discrepancy (MMD) problem. Yet their analysis still did not relate the
NTK MMD performance to the behavior of neural network two-sample tests. Moreover, [28]
introduced a neural network-based two sample test statistic using the classification logit and show
theoretical guarantees for test power for sub-exponential densities problems. One may be hesitant
to use a neural network for two-sample tests since with a big enough neural network and long

enough training time, a neural network could find a separation for data coming from the same
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distribution. Our approach alleviates this hesitation since we train the neural network on a small
time-scale and ensure our network is initialized to output O for all values. We also conduct time
analysis on two levels. First, we analyze the time needed for achieving a desired level of deviation
or detection in the two-sample test. Second, we provide time approximations between different
training regimes, which extends the analysis of the time needed for detection to different training

regimes.

5.1.1 Main Contributions

Our main contributions to the field are the following:

1. We perform some time analysis on the neural tangent kernel (NTK) derived from our neural
network and show that the time it takes for the neural network two-sample test to learn
does not depend on the entire spectrum of the NTK but rather only a subset of the spectrum
on which the labels or witness function f* = ‘;ﬁ non-trivially projects onto. This behavior

is a result of averaging behavior of the neural network two-sample test.

2. We approximate the population-level neural network dynamics and finite-sample neural
network dynamics with the population-level NTK dynamics. This allows the time analysis
performed on the NTK dynamics to transfer to the other two training regimes. Additionally,
we notice here that there is a balancing act of not training the neural network too long so
that the the approximations hold but long enough to detect differences in the datasets. This
balancing act is further informed by the complexity of the neural network considered in

relation to the difficulty of the two-sample test problem.

Our main result essentially shows that as long as p and g are “separated enough”, our
neural network two-sample test can detect the difference before the same detection would take
place if p = ¢. In particular, we can summarize the main result of value as the following informal

theorem.
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Theorem 5.1 (Informal). Assume the alternative hypothesis that f* nontrivially projects onto the
first k eigenfunctions of the zero-time NTK Ky holds true. Given a desired detection level € > (0
and time separation level Ce >y > 0, further assume that the projection of f* onto the first k

eigenfunctions has a “large enough norm.” Then with high probability,

t7(e) =1 () 2v>0,

where t~(€) and 1T (€) are the minimum times needed for the neural network two-sample test to

detect a deviation € under the alternative hypothesis and the null hypothesis, respectively.

In the formal version of this theorem (as shown in Corollary @[}, the detection level
€ > ( possible is perturbed by a time-approximation error between the actual neural network
two-sample test and the zero-time NTK two-sample test. This adds a small amount of complexity
to the informal theorem above and there are lower bound conditions on f* to ensure detectability.
We also discuss (in a subsequent remark to Corollary [5.33) which detection level is the most

trustworthy. A visual for this graph is given in Figure[5.1]

>

Maximum Detection Level IR

Alternative Hypothesis

.

\
Null Hypothesis

Desired Detection Level

Two-Sample Test Statistic Value

>

Time

Figure 5.1: Visual for detection levels 7 (g) and ™ (€) being well-separated.
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5.1.2 Structure of the paper

We review some papers in Section 5.2 that study the same topic that we explore in this
paper. In Section[5.3] we introduce the main notation, a motivating example, and concepts that we
will need for the rest of the paper. We discuss specifics of how the training time-scale interplays
with the network complexity in Section[5.4]

In Section [5.5] we describe in detail three training regimes that we consider for the
two-sample test. First, we consider the case of finite-sample time-varying dynamics; second, we
consider population-level time-varying dynamics; and finally, we consider the zero-time neural
tangent kernel (NTK) dynamics training regime where the analysis is easier to understand. By
solving for the actual solution of the zero-time NTK dynamics, we are able to find an exact form
for the two-sample test in this regime by using the spectrum of the NTK. The exact form of the
two-sample test further allows us to conduct some time analysis. The time analysis is done to
show guarantees for when the null hypothesis is correct or when the alternative hypothesis is
correct. For the alternative hypothesis, we can estimate the minimum time needed for sensing an
error level € > 0. For the null hypothesis statement, we can estimate the maximum time needed
before we are able to sense past an error level € > 0. Using proof techniques similar to [81], these
time-analysis results are adapted later to the other training regimes by using approximation and
estimation between the different regimes.

In Section [5.6] we estimate the population-level time-varying dynamics with the zero-
time NTK dynamics. We are essentially able to approximate the population-level time-varying
dynamics with the zero-time NTK dynamics up to a factor of 13/2 where t denotes time. This
means that if the zero-time NTK dynamics two-sample test are able to detect f* faster than the
approximation guarantees in this section, then all the time analysis for the NTK dynamics also
holds for the population-level time-varying dynamics two-sample test.

Section [5.7]1s the main section for establishing time analysis for the finite-sample time-

varying dynamics case that we usually see in practice. The approximation guarantees between
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the finite-sample time-varying dynamics and the zero-time NTK dynamics hold up to a factor of
/% and depends on how many data points are sampled from both p and q.

The results shown in Section and Section showcase that our neural network two-
sample test is more useful in identifying when the alternative hypothesis is correct. Moreover, we
see a sort of balancing act of training on short time scales and increasing the complexity of the
neural network. These specifics are discussed in more detail in Section[5.4] Finally, in Section|5.§]|
we show empirical evidence of the statistical power of the neural network two-sample test on a

hard two-sample test problem.

5.2 Previous Works

In recent years, there has been growing interest in developing two-sample tests based on
neural networks, leveraging the power of deep learning to address some of the limitations of
classical two-sample tests. More traditional two-sample methods use methods such as kernel
two-sample test and maximum mean discrepancy (MMD) [47]]. [30] took this idea of using the
MMD a bit further by changing the kernel to be the neural tangent kernel (NTK) of a neural
network which resulted in an NTK MMD two-sample test. The

Variations of a neural network-based two-sample test are present in [S8]] and [28]], and
the analysis done in this paper goes further by using small time approximations between the
NTK-based kernel machines and the actual neural network training dynamics. To accomplish
this, we use very similar proof techniques to [81], however, rather than using a loss rescaling to

get into the lazy training regime [31], we are able to use small time approximations for the NTK.
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5.3 Notation and Background

We will study a neural network two-sample test, which will test whether two datasets came
from the same distribution or not. In particular, assume that we are given datasets X = {xi}lrz 1 €
RY and Z = {z j}j”zl C RY. We will endow samples from X to have labels 1 whilst samples from
Z will have labels —1. To give some more structure to our problem, we will moreover assume
that the datasets X and Z are sampled from distributions p(x)dx and g(x)dx, respectively, where
p and g are associated density functions. From X and Z, note that we can construct finite-sample

empirical measures

p

Pl)dx= =Y 8, (x)dx
Npi=i
1 &

q(x)dx = — Z 8 (x)dx
qj=1

respectively. In the same fashion, we can assume that we are given independent test samples
from each of p and g to generate X.s = {x} ?Z’l and Z.5 = {z j}';li , as well as corresponding
test empirical measures pyes (x)dx and gyes (x)dx. These test sets will be used when considering

the finite-sample two-sample test on test data. We now introduce the following notation

1/2
i = VR + ato)a )

1/2
1fl2(54q) = (/Rd !f(x)|2(ﬁ(x)+21\(x))dx) .

Assume that our neural network architecture has associated parameters space @ C RMe

so that our neural network is given as f : R? x ® — R and will be trained on an /> loss function
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against the labels as shown here

0= 5 (3 X (00 -1 - X (2,041

np =1
1

:§</Rd(f(x6)—1 dx—i—/ £(x,8)+1) ()dx).

As a precursor to the more concrete notation introduced in Section[5.5] we will use the general

rule of thumb of distinguishing mathematical objects in different training regimes by:
1. Finite-sample time-varying mathematical objects are adorned with hats, such as .

2. Population-level time-varying mathematical objects are not adorned with any specific

notation, such as u.

3. Population-level zero-time NTK mathematical objects are adorned with bars, such as u.

5.3.1 Motivating Example

For our motivating example two-sample test scenario, we consider when our probability
distributions of interest are two multivariate normals with the same covariance matrix but different
means. In particular, with a fixed covariance matrix X, we let p ~ N(u;,X) and g ~ N(uz,X) with

labels 1 and —1 respectively. Assume that we work with a linear neural network given by

Fa,W,b) = ML@“T (Wx n b)

where x € R? g € RMe W ¢ RMe*d and b € RMe. For ease assume that Mg is even, then for

initialization, let » = 0 and opt to make a; = 1 for i < Mg/2 and a; = —1 otherwise. For W, we
. . g 2 W . .
will generate a random matrix W € R(Me/2)xd gnd Jet W = | - These choices will ensure
-w

that f(x) = 0 for all x.
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Recall the gradient of f with respect to its parameters is given by

0 1
a2() Wb
of . 1 .
W(x) M—@ax
a1

We will show that just one population-level gradient descent step with this setup will allow the
two-sample test to detect the difference in distributions with high probability. In particular, recall

that with our initialization

Now with learning rate 1, one gradient descent step gives us

A — af

=a-n [ )af( x)d(p+q)(x)
:a—n/—de(q—p)(x)ZG—%W(M—HI)
Wi —w—n [ 2030+
:W—n/—ade(q—p)(x) =W—Ml®a(uz—m)T
—b- n/ d(p+4)(x)

:b—n/AT@ad(q—p)(x) —b—0=0.
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This means that after the first gradient descent step, we have

Me Mg

flra W) 0) = <a -y —M1)> ' ((W S —/Jl)T)x)

- 1\%@ <||a|!2<m —k2,%) + (W (1 = p2), W)
4 A%(a,W(,Uz — 1)) (2 — =x>)'

Now notice that if we consider the two-sample test
l
/ Flea W 0)d(p—q)(x) = Mo <||a||2||u1 — P+ [W (1 — )|

W =)l o] ).
(©)

In essence, if 1 is small enough the two-sample test will be positive and the farther u; is away
from uy, the easier it becomes to detect.

In the case that we have W fixed and Mg is large, we can see that a is trying to learn
W (u; — u2). From a qualitative point of view, we only really need one row w of W to form a
hyperplane that separates u; and u, assuming that 0, u1,u> do not all fall on the same line (and
u1 and wp are not on opposite sides of 0). Moreover, the larger we pick Mg, the random matrix W
gets a greater probability of producing such a row w. Moreover, producing such a w becomes

increasingly more likely when we center the data so that the origin is between the two means.
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5.3.2 Relating Finite-sample and Population-level Loss

We now revert to the more general case of neural networks considered and recall the form

of Z(G) Notice that when n,,,n, — oo, we get a population-level loss given by

L(G):%(/Rd(f(xe—l dx+/ f(x,0) +1 )dx>

_ %( [, (£(.02(0) =2/ (x.0)p(x) + p(x)

+ £(x,0)%q(x) +2£(x,0)q(x) +g(x) ) dx

N—

_1! p(x) —q(x)
- E (/Rd (f(xve)z - Zf(xve) m +1)(p(x) +q(x))dx> .

fH((%)

Here we can notice that
1£C.8) = F* Ol g = /Rd (f(x,0) =2£(x,0)£*(x) + (f*(x))?) (p(x) + q(x))dx.

If we add the constant

we get that
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To see this, notice that

This means that minimizing L(0) is the same as minimizing || f — f* as the constant

2
L2(p+q)

doesn’t depend on 6. Importantly, this means that our target function in the population-level

training regimes will be

5.3.3 Two-Sample Test

Given probability densities p and ¢, the two-sample test assesses whether to accept the

null hypothesis Hy or reject it for Hy, where

Hy:p=gq, Hy:p#q.

In words, our test is constructed using the average output of the neural network on measure p
minus the average output of the neural network on measure g. This will give either population-

level two-sample tests or finite-sample two-sample tests on the datasets X;.;; and Z;.. In particular,
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for the population-level statistic, we can define

p(®)= [ F(x.00dp(x), wg(8) = [ f(x,8)dg(
(0:p.q) = (1(6) ~1(0)) = [ f(x.0)d(p—3)(x):

whereas, for the finite-sample statistic on test data, we can define

'uﬁtest<e) :‘/Rdf(x’ e)dﬁtest(x)a :u@esz(e) :/Rdf(xae)dé\test(x)

T (6; Drests Qrest) = (l“ﬁzm(e) _:“@m(e)) = /]Rd f(x,0)d(Prest — Grest) ().

Here, we define the neural network two-sample test for a neural network f(+,0) by T(0; Drest, Grest )-
Given a test threshold T > 0, we reject the null hypothesis if |T(0; Drest, Grest)| > T Moreover, we
control the false discovery of the null by finding the smallest T such that Pr[|T(0; pres, Grest)| >
T|Hp) < a, where 0 < a < 1 is the significance level. To find T, we use a permutation test.

In Section [5.5] we will consider different training regimes and each of these training
regimes will have different notions of the two-sample test, which change by what the output of
the neural network is and which probability measures the two-sample test statistic is computed on.
Particularly, the training regime with the zero-time NTK will end up using not the neural network
by the function that is trained under zero-time NTK dynamics. The specific notation regarding

the two-sample test will be discussed there.

5.4 Balancing time scales and network complexity

In this section, we consider the balancing of time scales for training and the role that the

complexity of the neural network plays in training time.
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5.4.1 Short-Time Requirements

Throughout this paper, we stress that we will work in the small time regime. The small
time scale of the two-sample test is geared towards identifying the case when the alternative
hypothesis is correct. Qualitatively, our results relate the time it takes for the neural network
two-sample test to produce positive results to the complexity of the zero-time neural tangent
kernel (NTK) and how the weighted difference of the densities ;;%Z (x) projects onto the zero-time
NTK’s eigenfunctions. We then relate the neural network’s population-level dynamics as well
as finite-sample dynamics to the zero-time NTK and bound their approximates by time. For the
analysis done in this paper, we interplay between training for long enough that the zero-time
NTK two-sample test performs well enough yet not too long that the approximations between
the zero-time NTK and the other training regimes fail to hold. This interplay ensures that we
are in a short-time regime although the details depend on the complexity of the problem and the
complexity of the neural network.

To get a better idea of when the two-sample test works well, consider when the densities
p and g are vastly different. Now assuming that the zero-time NTK’s larger eigenvalue functions
correspond to low frequency eigenfunctions, the neural network two-sample test should be able

p—q

to produce a positive output with little time since ¥

will tend to be more low frequency than

high frequency. On the other hand, if the densities p and g are quite close, then ’;—IZ would tend
to project onto higher frequency eigenfunctions which would take longer to detect. Detection in
this case would require either need more time or a larger neural network to detect the difference
between the densities. In the next section, we, moreover, discuss the interplay of the size of the

neural network in producing a good two-sample test.
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5.4.2 Complexity Scaling

Along with balancing the short-time versus long-time scale of the neural network two-
sample test, we need to simultaneously balance the complexity of the neural network. The
interplay of neural network complexity comes again in two places. Since we get a two-sample
test from the zero-time NTK, we need the complexity of the neural network to be large enough
to accurately capture ﬁ on the eigenbasis of the NTK. The estimation of the zero-time NTK
to the finite sample neural network dynamics, however, is bounded by how large the neural
network is. Qualitatively, this means that smaller neural networks are approximated better with
the zero-time NTK. This does not arise as much of an issue, however, because the factor of the
neural network complexity is multiplied by time. This means that if the small time scale is small
enough to counteract the loss in approximation from the size of the neural network, we still get
good detection of the alternative hypothesis.

In our empirical results, we consider neural networks with varying parameter-to-sample

ratios that range from the severely under-parameterized to highly over-parameterized regime.

5.5 The Three Training Regimes

We will consider the following three different training regimes for our neural network.

For all of scenarios, however, we assume the following.

Assumption 5.2. The neural network is initialized with parameters 0 such that f(x,00) = 0 for

all x € R4,

5.5.1 Finite-sample time-varying dynamics

This regime is the most realistic as these are the dynamics that will arise in practice. In

this regime, we tend to denote all the associated quantities with a hat. Since we use gradient
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descent to optimize, we denote the parameters trained from finite-sample data as 8(¢) and will
denote the associated neural network’s output as u(x,t) = f (x,@(t)). Now, let us inspect the

equation used to optimize the parameters.

L) = % ( /R (f(,8) = 1) plx)dx+ /R (f(x,0)+ 1)2a(x)dx>

() = e L(8(1))

1 —~

- 5( [ Vor (.80 (£(x.8()) ~ 1)px) + (/(x8(0)) + 1)67(x)>dx)

3,ii(x,1) = (Vo (x,8(1)).8)e = —(Va/(x,6(1)),06L(8(1)))e

= —% (/R (Vo (x.8(), Vof (,8()e ((£(,8(1)) ~ 1) F(¥)

+(080) + 1)1 ) ).
We define the time-varying finite-sample neural tangent kernel by
Ki(x,x') = (Vo f(x,6(t)), Vof(x'.6(1)))e-

We can further define density-specific residuals

ep(x,t) = (f(x,0(1)) — 1)
e,(5,0) = (f(x,0(1)) +1).

This means that

dii(x,1) = —

( [ Baled) ((£0.80) = 1))+ (£(.8(0)) + 1)a<x’>)dx’)

~

= (Ex’~ﬁKt (x,x")ep,(x' 1) + ]Exxwafl (x,x")e (¥, t)) :

D= N =

191



In the context of the two sample test, since this training regime uses only finite training
samples, we will study the two-sample test statistic’s behavior evaluated on the training samples,
the test samples (independent from the training samples), and the population. We denote these

different evaluated test statistics by

Tiraint) : = TO1):5,0) = (Euwp — B ) f(5.8(0)) = (B~ Euvg ) ilx,0)

A~ ~

(e(t) > ﬁtesta atest) == (Exwﬁ,m - EXN@M > f(X, 5(1))

=3

Q

g

—
~

~—
I
N

|
RS

]ExNﬁlexr - ]Ex"’/q\text> l/t(x, t) )

0(1):7.) = (Bvep ~Eing) £(x80) = (Evnp —Euny )i.1)

"sﬂ
S
hS]
—~
~
~—
I
~

where f, YA}“,, fp(,p denote the evaluation on the training samples, test samples, and population,

respectively.

5.5.2 Population-level time-varying dynamics

This regime is essentially what would happen as the number of samples in our datasets
grows larger and larger. In this case, we denote the path of the parameters as simply 6(¢) and will
denote the associated neural network’s output as u(x,t) = f(x,0(¢)). We showed earlier that the
population-level loss is equivalent to simply minimizing £(8) = 3| £(-,0) — f*()|| [2(p+q)- This
means that training the population-level neural network is equivalent to running gradient descent
on L. Moreover, we can define the population level error function as e(x,t) = f(x,0(¢)) — f*(x).

Using these facts, we get the following

~0(0) = 30£(00)) = 5 [, Vo (x,00)) ((x.00)) — () (0 ) ()

du(x,1) = (Vo f(x,8(1)),0(r))o = —(Vef(x,8()). 00 L(8(r)))e
-2 (Vof(x,0(1)), Ve s (x',0(1)))o (f(',0(t)) — f*(x)) (p+ ) (+')dx'.

-5 y

192



Now we define the population level time-varying neural tangent kernel
Ki(x,x") = (Vo f(x,0(1)), Vof (', 0(t)))e-
This finally implies that
1 !/ /
osu(x,t) = —EEX/NP+QK,(x,x Je(x',t) = dre(x,t).

Contrary to the finite-sample training regime, we only care about the population-level two-sample
test statistic in this training regime since this training regime itself uses the population to train on.
We denote the two-sample test statistic associated to the population-level time-varying dynamics

by

where we are integrating the neural network output over the entire densities.

5.5.3 Population-level zero-time kernel dynamics

In this training regime, we will denote related quantities with a bar so that the output
of the trained function here becomes i(x,7) with i(x,0) = f(x,80). At this point, consider the

zero-time NTK of the neural network f(-,6¢) by

Ko(x,x") = (Vo f(x,00),Vef(x',80))e.

According to [81, Lemma 4.3], assuming that || Vg f(x,80)]|| is squared integrable on R? against

measure (p(x) + g(x))dx, the zero-time kernel can act as a kernel integral operator and admits a
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spectral decomposition, which we can write as

(L)) = [ Kol )N (p-+ @) = Yo el

where A > A, > ... > Ay. Although we can find an extended basis for £ > M for L2 (p+q), the
associated eigenvalues of K are 0 on eigenfunctions u, for £ > M. Since Ky does not effectively
have full basis for L?(p 4 ¢), the quantities that we work with will need to be projected onto the

range of the operator Lg,. This motivates the following definition.
Definition 5.3. Denote the projection operator onto the range of Lk, by Ilg,.

Now we can define the associated error function
é(xat) = ﬂ(x,t) _HKo(f*)(x)‘
Since f* is fixed, the dynamics of our model that we care about will be given by
Qi) = — By Ko(xa)o(d 1) = 3,2
tu(-xvt) - _5 X' ~p+q O(X,X )e(x 7t) - te(xat)'

With the simplicity in the model dynamics, we can attain better analysis. Using this interpretation,

we know that

] 1 S
0ré(-,t) = 2(L1<0 g Z ), ue) L2(p+q)We-

We formulate an ansatz of what é(-,¢) would be so that it satisfies this differential equation. In

particular, consider

ﬁ% u(ﬂ ) ))Lz(p+q)u€-

HM§

194



The following proposition ensures that this indeed is a solution of the differential equation of

interest.

Proposition 5.4. The solution

M
(1) =Y e ™(ug,e(-,0))uy

solves the differential equation

_ 1 M
afe('7t> Z(LKO Z l/tg L2(p+q)He-

The proof of Proposition [5.4]is given in Section[5.9]
For this training regime, we can now talk about the two-sample test statistic. In particular,

recalling that i@ = &+ Ik, (f*), we will set

() = [ alen)dp(o) = [ (eler) + T () () plx)d
() = [ n)dg() = [ (ee.t) + iy () )g(x)d.

Similar to the population-level time-varying dynamics, we only care about the population-level
two-sample test statistic for this training regime since we use the entire population for training.

For this training regime, we will denote the associated two-sample test by

T(0) = (0) ) = [ alx.0d(p—a)()

Note that in this case, T (¢) is not determined by the parameters of the neural network changing
but rather by the output of the NTK trained dynamics. With this in mind, we get the following

lemma.
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Lemma 5.5. The population-level zero-time kernel dynamics two-sample test statistic is given by

T(t)= ”HKO(f*)HiZ(pH) =) eit}%<uf7nKo(f*)>i2(p+Q).
>1

The proof of Lemma/5.5]is in Section[5.9]
Note that there is some time-analysis we can undertake at this point. First, you can notice

thatatr =0,

T(0) = Iy (f ) IZ2(pg) — X (e Tty (F Dy =0

>1

J/

-~

and for any time ¢ > 0, we have T (¢) > 0. We will find a theoretical minimum time #(€) such that

T(t(€)) > €. Let us define a few quantities before delving into the main result.

Definition 5.6. Let S C {1,...,M}, then we can consider how much of the norm ||, (f*) sz(erq)

(and hence the norm of f*) lies on the eigenbasis subset Vs = {uy}¢cs. In particular, we have

Ik, (PG = 11713 = X s )2 ) =251 122
les

Since (ue, g, (f*)) 12(p+q) = (e, ) 12(pq) for £ < M, we can also define these quantities for f*
rather than just Ik, (f*). Moreover, we can define the minimum and maximum eigenvalue that

exist for the eigenvectors that lie in Vg by defining
}\fmin(S) = min 7%, XmaX(S) = maXx 7\,@.

leS les

Then we have the following theorem.
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Theorem 5.7. Let € > 0 and assume that there exists a finite subset S C {1,...,M} such that

Tk, ()R = 15713 = X e Vo) > €
les

and Amin(S) > 0. Then

| IR ) sy 1R
v R (e

ensures that T (t(€)) > €.
The proof of Theorem[5.7]is in Section

Remark 5.8. Let us analyze the function

*) |2
¢(e.5) = min kmin(S)log(| Mk, ()1 )

Sesi(e) Tk, (f*)II5—¢

Notice first that the largest that € can be is ||k, (f*) because as t — oo, we get that

2
||L2(P+q)
T(t) — ||k, (f*) ||iz(p+q) and it is easy to see that T (t) is monotonic in t. Now notice that as €
gets larger, we need S to satisfy || £*|| = || Tk, (£*)||3 > € to make sure that g(&,S) is well-defined.
Moreover, we need hin(S) > 0 otherwise we find that g(€,S) = 0 which is the trivial bound. In

particular, we will want the fraction €/||Tk, (f*)|| to be as small as possible to give the smallest

possible non-trivial time.

We have an analogous statement for when we want our test statistic to be less than €. In

particular, we get that

Theorem 5.9. Let € > 0 and assume that there exists a finite subset S C N such that

1Tk, (s,
Tk, (7)1

)—8
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and Amax (S) > 0. Then

*\ (|2
Z(S) S xmaX(S) IOg{ ||HK||(I;>01<()OH(f )HS 8}
0 LZ

(p+q)
ensures that T (t(€)) < €.

The proof of Theorem [5.9]is in Section[5.9] Now if we optimize over all such subsets S,

we get the following corollary.

Corollary 5.10. Ler 0 < € < ||TIg, (f*) || Assume that the set

51(8) = {S CN: ”HKo(f*)H.% > gvkmin('g) > 0} ?’é 0

S$2(e) = {S C N (IThky (f )72 1) — &)/ Mo (/IS > 0, Aanax (S) > 0} # 0.

Then

*) |12
(> 11() == min Amia(8)log [ ol ls
SESi () HHKO(f*)HS_S

ensures that T (t) > € whilst

t<t;(g):= Srer,lgzzlé) Amax (S) log (

Tk, ()2 )

M, ()%,

ensures that T (t) < €.

Here let us remark what occurs in the case when our null hypothesis is correct versus

when the alternative is correct.

Remark 5.11. If Hy is true (so that p = q), then f* = 0. We can’t apply the theorem above then
since the assumption is not satisfied; however, we note by inspection that T (t) = 0 for all t. If

Tk, (£*) HLZ(PH) < & for small & > O, then note that both Theorem|5.7|and Theorem |5.9|limit
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€ < 8. This means that T (t) can only detect small changes. On the other hand, if we are under
H, (so that p # q) and we assume that ||Ilx,(f*)||2(p+q) > O for some larger & > 0, then € can

be made much larger and should be more easy to detect.

5.6 Analysis of u with i

Let Bg denote the open ball of radius R with center 6 and assume that u(x,0) = i(x,0) =

f(x,09) = 0 for all x. For much of the analysis going forward, we will use the following lemma

heavily.
Lemma 5.12. £(8(0)) = [u(-0) — "I+ ) = 1700 = £ oy = 15 Eagpr
Proof. Notice that since u(-,0) =#(-,0) = f(x,80) = 0, we have the result. O

To continue, we will need to assume the following assumptions
Assumption 5.13. There exists positive constants R, L, and Ly such that
1. (Boundedness) For any © € Br, SUPcqpp(p+q) | VoS (x,0)|| < L.

2. (Lipschitz) For any 81,82 € Br, SUPcqupp(p+q) || VoS (X,01) — Vo f (x,02)[| < L2[|81 — 62,

5.6.1 Approximation

Next we apply these assumptions to gain the following proposition.

Proposition 5.14. Assume that u(x,0) = ii(x,0) = 0, then

16(r) = 8(0)| < VI ll2(p1g)-
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Moreover; if

o (L)
"\ N 2prg) )

then 8(t) € Bg.

The proof of Proposition [5.14]is contained in Section Now we can further bound the

operator norm of the difference K; — Ky with the following lemma.

Proposition 5.15. Let 0(t) € Bg, then under Assumption we have

1K = Kollr2(pq) < 2L1LaVE| 12019

The proof of Proposition [5.15]is contained in Section[5.10} Now we use this result for

bounding the difference |lu — |12, ). In particular, we have the following proposition.

p+q)

Proposition 5.16. Under Assumption and

t<<—R )2
N\ prg )

we get

_ _ 8 .
=) )2y = Me=2) ot 2y < STALF 22y g (12

The proof of Proposition[5.16]is contained in Section [5.10] Now let us extend our zero-
time NTK two-sample test results to the population-level time-varying kernel two-sample test.

We first notice the following corollary.
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Corollary 5.17. Under Assumption and

o (L)
"\ N 2prg) )

we have
= 8 %12 3/2
T(0) =T < VZSLiLa|f [ (072

The proof of Corollary is contained in Section For further time analysis in
the alternative hypothesis case below, we will need to show that this two-sample test 7'(¢) is
monotonically increasing. We will be able to show this if our population-level neural network has
increasing norm. This assumption is not unsupported since we initialize as u(x,0) = f(x,6(0)) =0
and our target function f*(x) = Iﬁ—J:‘q’(x) has non-zero norm. Using this assumption, we get the

following theorem (with proof contained in Section[5.10).

Theorem 5.18. Assume that |[u(x,t)||12(,4) is monotonically increasing on the interval [0,7],

then T (t) is monotonically increasing on [0,1].

5.6.2 Time analysis of u

Given all the approximations done before, we can use the time analysis done with & and
apply it to u with the correct approximations. In essence, we can use Corollary along with
Corollary[5.10]to get the following two theorems.

In order to counteract the time-dependent estimation error shown in Corollary the
next theorem, which is geared towards discovering the alternative hypothesis, necessarily assumes
first that the minimum time needed to detect an error € in Corollary [5.10]is smaller than € and
second that the time scale we work on is valid for detection. Note that as the size of the neural

network grows, the minimum time needed for detection decreases but L and L, below increase;
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thus, there is an interplay of making sure your neural network is large but not too large.

For this next theorem, recall from Corollary that

((e) 1= min xmmml@g( e, (F)12 >

S€si(e) [Tk, (f )15 —
H *
(€)= max Aas(S)log ( M, ()13 ) |

st T () 2oy €
Theorem 5.19. Let € > 0 and assume that ||u(x,t) ||i2 (r+q) is monotonically increasing on [0, 1]
and that

8\/_ * 3/2

—IIf ||L2 (p+q L1 L2 (7 (e))”" <&

as well as

: R 2 «
min (T, (m) ) > L (8)

where t} (€) is defined in Corollary Then under Assumption and for

R 2
min (1, (———) ) >t > (e),
( <||f*||Lz(p+q>> ) 1®)

we get

sf

T > &= (112 g L L2 (171(0)) 2.

We prove Theorem in Section Now, the following theorem is useful in showing
the null hypothesis and necessarily needs the time to be smaller the maximum time needed to

detect € as well as the time needed to stay in Bg (so that Proposition [5.16/holds).
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Theorem 5.20. Let € > 0. Under Assumption and for

R 2
t<min{ (— ) ,5(€) p,
{(||f*||Lz<p+q>) 2”}

where t;(€) is defined in Corollary we have

8v/2

23 * 3/2
S i LiLa (5(©)

T() <e+

The proof of Theorem [5.20]is given in Section[5.10] In the next section, we will consider

how to bound ||t — ]| ;2(,, 4 as U represents finite-sample behavior.

5.7 Analysis of i with i

Since we will be using finite-samples, we will use some concentration inequalities and
will need a few extra assumptions. To start off, recall that for our finite-sample we have n,, training
samples from density p and n,; samples from density g. Moreover, recall that our finite-sample

loss function is given by

1

L(6) = 3 (/}Rd (f(x,8) — l)zﬁ(x)dx—}—/Rd (f(x,0)+ I)ZZ]\(x)dx>

We first show approximation of the raw dynamics and then approximation with the

time-analysis.

5.7.1 Approximation

Let us bound ||8(¢) — 6(0)||e. To this end, we get the following lemma.
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Lemma 5.21. Assume that 6(0) = 6(0) and that f(x,0(0)) = 0, then

18() —8(0)lo < V7.

Moreover, if ©(0) € Bg, then

ensures that 8(t) € Bg.

We prove Lemma(5.21]in Section[5.11] Now we will need the following assumption to

proceed.

Assumption 5.22. For A > 0, consider the function

Alog(n) +1log(2Me)

h(n) = \/ 213212 +3)2) - :

Assume that ny, and ny are large enough that h(n,) < % and h(ng) < %

Using this assumption, we can apply Theorem [5.40|to get the following lemma to be used

later.

Lemma 5.23. Assume that © € Bg, then under Assumption and Assumption[5.22)and let p

be a probability density, consider the random Mg-by-Mg matrix
Xi = Vof(xi,0)Vo/(x1,0)" —Ec.,Vof(x,0)Vof(x,6)".

If n is the number of samples from p, then with probability greater than 1 —n™4, we have

1 & Alog(n) +log(2Me)
L% xi < Jauzeai+32) .
i=1

n
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The proof of Lemma([5.23|is in Section[5.11]and is used in the following proposition.

Proposition 5.24. Assume that t < R* (so that ©(t) € Bg) as well as Assumption and
Assumption then with probability > 1 — n;A - n;A, we have

1@ =) (1)l 2(psg) < Crt +Cor* 2+ Cat* +Cut™/?,

where the dependence of the constants is given by Cy = C(L1), Co =C(Ly, Ly, f*), C3 =C(L1, f*,np,ng,Me,A),
and Cy= C(L] ,Lz,f*,np,nq,M@,A).

Note that the more technical version of Proposition [5.24]is contained in Proposition[5.36|
along with its proof. We will use Proposition to show that the finite-sample two-sample
test statistic and zero-time kernel population-level two-sample test statistic are close for fpop,
f}min, and T}es, (i.e. the evaluation of the finite-sample two-sample test statistic on the population,

training samples, and test samples, respectively). For fpo p»» we get the following proposition.

Proposition 5.25. Assume the conditions of Proposition then with probability > 1 — (n;A +

n;A), we get the time-approximation error function

~

|Tpop(t) = T(1)] < Crt +Cor®? + Cat? + Cut>/? 1= 8 (1),

where C1,Cy,C3,Cy are exactly the constants from Proposition Moreover, note that this

error function is monotonic.

Proof of Proposition Mimic the proof of Corollary [5.17|mutatis mutandis applying Propo-
sition O

Now for T}est(t), the test size sample sizes come into play. Recall that since

T\lesl (t) =T (e(t) > ﬁtesta C/I\Zest) = (Exwﬁmt - Ex—@est) ﬁ(xa t)a
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with test sample sizes m, and m, for Drest and Gresr, respectively. We also describe the time-
approximation error function in the next proposition, which will be used for the theorems and

corollaries afterwards.

Proposition 5.26. Assume the conditions of Proposition then with probability > 1 — (m;A +

“A
m, ), we have

[ Trest (£) = Tpop (1) SL%tﬁ(\/fM+ \/AILW)

mp Mq
Moreover, with probability > 1 — (m;A + m;A + n;A + n;A), we get the time-approximation error
function
|7A}est(f) ~T(n] < Cit+Cor* 2+ Car® + Gy’ = 8(1),
where C; = C (L1,A,m,,my) and C»,C3,Cy4 are exactly the constants from Proposition W
Finally, note that this error function 8(t) is monotonic.
The proof of this proposition is located in Section[5.11]

Remark 5.27. We note that Proposition works for ]A}mm if we replace m, and my with n,,
and ng respectively. Since the error function 8 depends on whether we use test samples or training
samples, we will regard the error function by Oe5 (t) and 8;4in(t) to distinguish these cases. In
particular, the only constant that is different in O;yqin, and &g is Ci, where we change m;, and m,

to ny, and ngy, respectively. Moreover, using the triangle inequality, we can see that

|ﬁe5l(t) - T;rain(t” < L%l\/i<\/A10g(mP) + \/AlOg(np)

mp np
Alo Alo
L [Alog(mg) | g(nq)).
mq ng
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Finally, we may also deduce from Proposition that

| Tirain(t) — T, pop()|<L;\/_(\/Alof(”p)_i_\/Alog(nq)).

p ng

To do further time-analysis in this finite-sample training case, we will need that T rain (1)
is monotonic in time. We will then use sampling concentration of T}min with T\pop and i"\,es, to

extend the two-sample test statistic to these two different evaluation settings.

Theorem 5.28. Assume that there is an interval [0,7] such that |u(x,s)| < 1 for s € [0,7]. Then

T rain (t) is monotonically increasing on [0,7].
We include the proof of Theorem [5.28]in Section [5.11]

Remark 5.29. Note that the assumption |u(x,s)| < 1 definitely holds for at least small time
intervals since the training dynamics are smooth and u(x,0) = 0. Moreover, we crucially use the

fact that the training loss is decreasing for the proof of Theorem

Now similar to the case of the time-analysis theorems for u# and i, we get the following
extensions of the zero-time NTK time-analysis theorems. Again for the next theorem, we must
assume that the error detection level is greater than the time-valued approximation error of i with
u. Recall from Corollary the e-detection time thresholds for the zero-time NTK two-sample

test given by

N . ||IIKo(f*)||§
= min(S)1
1 (€) sg}gir(lg)x (S)log (

Mk, (f)II5 —¢
%\ (|2
£i(€) ;== max Kmax(S)log< 1Tk, (/)1 8).

Ses(e) HHKo(f*)HLz (p+4q)

Again, making sure that our time scale lies in the correct regimes, we get the following theorems.

Theorem 5.30. Let € > 0. Along with the assumptions of Proposition[5.26|and Theorem [5.28

assume max(R?,T) >t > t}(g), then
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1. with probability > 1 — 2(n;A + n;A),
|j:train(t)| 2 €— 8train(ﬁk (8))7

2. with probability > 1 — (n;A + nq_A + m;A + m;A),

|7A}est(t)| > & — Oyrain(t7 (€)) _L%t\/i(\/A log(my)/mp + \/A log(myg) /my

+ \/A log(np)/np+ \/A 10g(”q)/”q> ;

3. with probability > 1 — (n;A +n;A),

Tpop(0)] 2 &~ Buain(17(£)) — Lirv2 (JA log(,) /1, + /A log<nq>/nq) ,

where the approximation error function O;qin(t) comes from Proposition with training
samples and t{ (€) from Corollary Moreover, if € is not large enough to make the right-hand

sides of the inequalities positive, the bounds are vacuous.

Since we don’t need monotonicity for the other case in Corollary [5.10|because we use
the regular triangle inequality, the following theorem holds for each of ﬁmin, ﬁest, and fpop with

their respective time-approximation error functions.

Theorem 5.31. Let € > 0 and assume
t < min {Rz,tf (8)},

where t;(€) is defined in Corollary Then
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1. with probability > 1 — 2(n;A + n;A), we have
| Tirain(t)] < €+ 8yrain(t3 (€)),
2. with probability > 1 — (n;A + nq_A + m;A + m;A), we have
ﬁ:test ()] < &+ 8rest (12 (€)),

3. with probability > 1 — (n;A +nq_A), we have

~

Tpop(t)| < €4 80p(t2(€))-

We include the proofs of both Theorem [5.30/and Theorem in Section[5.11]

Now, given the more concrete setting of f* lying on the first k eigenfunctions of Kj,
we want to see if the time it takes to detect a desired deviation level € > 0 is larger whether
we are in the null hypothesis or in the first k eigenfunction assumption. The problem becomes
slightly complex since there is a time-approximate error term in the deviation that comes from
Proposition[5.26] Since this assumption is not exactly the logical complement of the null, let us

define the setting more concretely.

Definition 5.32. If Ik, (f*) nontrivially projects only onto the first k eigenfunctions of Ky holds
true, we denote the projected target function on the first k eigenfunctions as g, (f*) = f;. We
denote the test statistic when f; # 0 by T}mm’k(t), Ttes,,k(t), T\pop,k(t) evaluated on the training set,
test set, and population, respectively, and when the evaluation set is understood from the context,
we use f”k(t) If p = q, we say the null hypothesis holds. We denote the test statistic under this
null hypothesis by f}min’nu”(t), ?tesz,null(t), and T\pop,null(t) depending on the evaluation set, and

when the evaluation set is understood from the context, we use T,;(t).
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In this definition, note f* is not supported on just the first k£ eigenfunctions, but rather
only the projection via the zero-time kernel Ik, (f*) is supported on the first k eigenfunctions.
This means that f* may have a nonzero component that is orthogonal to Ik, (f*). Note that we
have three two-sample test situations since the two-sample test depends on which dataset it is
evaluated on. In particular, we will combine the results for T“po D> T}est, and f}mm into the following

corollary since the only difference is given by a difference in constants.

Corollary 5.33. Ler ||TIk,(f*) o) /2 > € > 0 be a detection level. Now let

2
”Lz(p

(
V2124 7\},0 »(t) evaluation

ct = \/EL% 4+ \/A% + \/A%) ﬁmin(t) evaluation :

\/EL% 4+ \/A% + VA%) T}es,(t) evaluation
\

coming from Proposition and Proposition and consider a time separation level €/C* >
Y> 0. Let t~(€) be such that for t >t (€), we have Ti(t) > € (for our different evaluation

settings). Similarly, let tT(€) be such that for t > 1 (€), we have Ty (1) > €. If we assume

||f*||2 { 2eexp <(8/C+ —'y)/?»k> 2eexp ((g/cf)l/a/xk> }
2 > max , max 7
kL2 (p+q) exp ((g/C“‘ _'Y>/7Vk) — 1 as{1,5/2} exp ((S/C_)l/a/kk> 1

where C~ = CT + Cy + C3 +Cy4 and the constants C,Cz,Cy coming from Proposition then

t7(e)—1 (8) 2v>0
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with probability

(

~

1= (" 4 ?) Tpop(t)

v

= (m A g mp A+ mg ) Thea(t)

1— 2<n;A + I’Z;A) ﬁrain (t)

\

The proof of Corollary [5.33]is in Section[5.11]

Remark 5.34. From the proof of Corollary we can see that the maximum time separation

level is governed by

15 B
28 '

€
— — M log (
TAE

C+

Notice that ife = || f;; 2 x for some fraction 0 < x < 1, then we can simplify this expression.

||L2 (p+q)

In particular, we see that our expression changes to

kaH 2( 1
Y0 = %_kklog(l —2x)

1 172 ) 1/2
o Mo (1/?)

From this, we can see that it is necessary that 0 < x < % Note that as x — 0, we get Y(x) — 0;
but as x — %, we get Y(x) — —oo. Since Y(x) is not decreasing, we can find a maximum for the

time separation Y(x). In particular, we see that

il o 1/2-x 172 ilEpy )
c+ 12 (12=x)2 c+ 12=x

v (x) =
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Setting this equal to 0, we see that the extrema is given by

1 nCt
2 1K1

X =
(p+q)

Moreover, we note that this is a maximum since
!
'Y (X) = —xkﬁ < 0.

Obviously, this only makes sense if

1 MCT
ka 172

(p+a)

This means that as long as f;' has large enough norm, our neural network two-sample test should
(Tl Lz

wta) _ )\ Ct since that is the deviation

be most trustworthy when we observe deviation € =
level with the maximum time separation between the assumption g (f*) = f; and the null

hypothesis p = q.

Remark 5.35. It is instructive to note what are fixed parameters versus parameters to be chosen
in Corollary First, notice that the complexity of our neural network determines not only the
constants C*, C~, and Ay but also whether or not the assumption g, (f*) = fi holds. Although
ff= Z T is fixed inherently from the two-sample test problem, we assume that the complexity of
the neural network is fixed at initialization, which fixes these constants, the hypothesis, and how
large || f ||%2(p ) is. This means that the only choosable parameters are € and Y (which is upper

bounded by €). Moreover, note that the upper bound || Tk, (f*)]? /2 >¢€ > 0is an artifact of

”Lz(erq)

side-stepping the time-approximation error from Proposition In particular, playing around

with the proof of Corollary|5.33} it is possible to get a different bound for || f;' 2 albeit with

”L2 (p+q)

the deviation level given by € — 3(t) (depending on the evaluation set).
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5.8 Experiments

We run our neural network two-sample test on two different data-generating processes.
One of the data-generating processes is a characteristically hard two-sample test problem where
the datasets P and Q come from a Gaussian mixture model. The second data-generating process
only aims to differentiate two multivariate Gaussians from each other. We scale the neural
network complexity in terms of a ratio with respect to the number of samples in the training set.
Additionally, we run permutation tests to find the threshold T at the 95-percentile. We run around
500 different tests and check whether the test statistic is larger than the threshold found from the
95th percentile. We now showcase specifics of the data generating process and how the neural

network is constructed.

5.8.1 Data Generating Process

Our hard two-sample testing problem is given by setting P and Q both to be Gaussian

mixture models given by

2 |
;5 ‘Lll,Id

1 A 04

h
N (:ui ) Al}-l 1 04-2 > )

T T
Od—2 Od—2 )

| =

0-y

i=1

where ,uﬁ’ =0y, ,ug =0.5x*1,, A’f =0.5, and A’g = —0.5. For the purposes of testing, we assume
that we have balanced sampling of N from each distribution P and Q so that the total number of

samples is 2N. The number of test samples is typically set to be M < N.
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5.8.2 Neural Network Architecture

We use a neural network architecture of L layers and a layer-width size of k. We choose
the number of parameters in the neural network kL as different ratios of the number of training
samples. For example, if we consider the ratio 0.01 and N = 1000, then kL = 10. To adhere
closely to the setup of the theory, we initialize our neural network symmetrically to make sure at
time O our neural network returns 0. We make sure to initialize the neural network weights with
the He initialization introduced in [S1] so that the weights are initialized from a random normal
distribution with variance % This initialization ensures that our neural network training doesn’t
result in any exploding or vanishing gradients. We train the neural network with a learning rate of

0.1.

5.8.3 Test Results

We have attached below a heatmap of the statistical power as a function of the number of
epochs as well as the ratio of parameters to samplesE] Additionally we attach the evolution of
the neural network two-sample test for a particular setting for reference. The hyperparameters
for these tests essentially used a learning rate 1 = 0.1, 100 permutation tests, dimensionality
of d = 20, training sample size of N = 6000 from each of P and Q, a testing sample size of
M = 1000 from each of P and Q, and L = 2 layers. We train for a maximum of 15 epochs and
use a batch size of 50. Moreover, our significance level a is the 95th percentile. We calculate
the power of our neural network two-sample test by checking which of our 1000 tests lie past
the 95th percentile of their respective permutation test and calculate the power by the ratio of
all tests that lie past the 95th percentile divided by the total number of tests 1000. We try this
experiment with ratios of parameters to number of training samples to see any double descent
type of behavior in how well the statistical power performs.

Observing Figure we notice that as the number of epochs increases the statistical

TAll the code for producing these plots is on Github at this repository.
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Figure 5.2: Plots statistical power for each epoch and ratio of parameters-to-samples.

power increases as well. On the ratio of parameters to training samples axis, however, we note
that the smaller sized neural networks still produce fairly good statistical power with enough

neural network training.

5.9 Proofs for Section

Proof of Proposition We simply just need to take the derivative of the solution and show that
it is exactly the differential equation, then the uniqueness of solutions of differential equations

implies that our ansatz is indeed the solution. To see this, let us call the solution

e (g,8(-,0)) 12 (psq) Ut

M=

¢ (1) =
L

1

Now notice that

M
ore* (1) = — Z }\,ge_lM <M€73_('a0)>L2(p+Q)ué'
=1

215



On the other hand, let us plug in the ansatz ¢* into the differential equation and see what we get.

In particular,

M M M
=Y Mg e () 2yt = — X A Y e M (g, e(,0)) 12 ) 121 g) U
= = =

M
= Z 7‘] IM<MZ7 (7O)>L2(p+q) <Mj7ué>L2(p+q) uj
Jt=1 ﬁ’_/
0

M
- Z Ape ™M (uf,é(wo»LZ(erq)W
(=1

= e (-,1).

This shows the result. O]

Proof of Lemma Now our two-sample test statistic becomes

T(t)= Fo(1)

—u
_/ Mg, (f*)(x)(p—q)(x dx+/ e(x,t)d(p—q)(x)

- Rdnm(f*)(x)ﬁ;Z<x>d<p+q><x>+ [ etend(p-a))

= My () f Vi + [, €00 (P =) ().

Extending the eigenfunctions {u,}}! | to a full basis for L*(p +¢) given by {u;}7_,, we can see
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that the term with f* reduces to

<HKo(f ) f L2(p+q) ME;HKQ LZ(p+q)ug, Z <u2,f*>Lz(p+q)u'€>
L2(p+q)

/=1 =1

MS/\

(ug, Ik, (f*)>L2(p+q) <”€af*>L2(p+q)

)

I
s

<HK0 (ue), f >L2(p+ql<u57f*>L2(P+f1)

€>M:>O

)
L

I
1=

(ko (), 7 12(pq) e, ) 12 (pg)

o~
I
—_

I
Mk

{

<

o
—

S

(f*)>L2(p+q) <Waf*>L2(p+q)'

)
I

(e, £*) 12(pq) for £ < M, we see that

Now since (ug, Ik, (1)) 12(ptq) =

= (T, (F): T (N 2y = TR () 22

At this point, we plug in our ansatz and get

M
T(0) = 1Ty () )+ L s 0 e (p — ) )

M
M) ey + Lo €™ 202y [ w00 (p =) ).
/=1

At this point, recall that we used the initialization 6¢ such that e(-,0) = i(x,0) — Ik, (f*) =

f(x,00) Tk, (f*) = —Tg, (f*) = HKO(p+q)( x). Along with the fact that (ug,HKO(f*))Lz(p+q) =
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(e, f*)12(p+q) Tor £ < M, we use this fact to see that

<ug,é(',())>L2(p+q) = <W> HKo( )>L2 (p+q)

= [, (W]) X)+4(0)dx
() (p() +q(x))dx
u P)(®)
R

— (1,2, 0)) 21 = — /R ,u)d(pg)(x).

\

This means that

M
T0) = Mg+ L™ 02 [ ued(p =)@

J/

-

{20121

- HHKO(f*)HiZ(pM) _DZIe—’%zwg,é(',o»%z(zﬂw)'

We get the result by seeing that &(-,0) = —Ilk,(f*) and that applying the square gets rid of the

negative sign. So we’re done.

]

Proof of Theorem We want to find the smallest time 7 so that

T(t)>¢

M
2

e—l?u(g(

Mk

||HK0(f*)||%2(p+q)_82 M&HKo(f*»%Z(p_._q)-

L

1

Now using our specific subset S C {1,...,M}, so that

(ue, f* >L2(p+q) (g, gy (f )>L2(p+q)7

218



allows us to consider the following analysis.

M
iy Iy 2 —thy *\2
Y e e ) g Z (e ) i2(prg) T L€ NS Vg
=1 tes *ﬁ‘mm €¢S <1
_ﬁ\'min S
<e ()Z<W7f )2(prq) T Z ug, f Lz(p+4)
ges ,
||f*\|s HHKO(f*)||22<p+q)*||f*\|§

= & eS| 34 g, (F) B2y — 1F71-

We want this quantity to still be less than || f* H%z(p Ly € and to ensure this, we get

e_f)bmin(S)Hf*H%—F HHK()(f*)Hiz(p+q) - Hf*”.% < "HKo(f*)"I%Z(P+Q) —€

e Mmin )| FS =115 < —

€
e Mmin(S) _ 1 < _
— 2
171l
e_ﬁ\'min(s) <

€
<1
1113
€
—tAmin(S) <log(1—
win(8) < log (1= )

€ —Amin (S)
ae((1- ) )

Rearranging the right-hand side and noticing that on S we have ||TI,(f*)||? = || £*||3, we get the

result. [

219



Proof of Theorem We want to find the largest time # so that

T()<e

M
7\, 2

HHKo(f*)H%Z(p+q) —&< Z W(WaHKo(f )>i2(p+q)-
>1

Now using our specific subset S and that (u, Ik, (f*)) 12(p1q) = (Ut [) 12(p1q) TOr £ < M allows

us to consider the following analysis.

tA —t\, 2 t7\. 2
Ze [ u€7f >L2 p+q) Z \e [/ <u€7f >L2(p+q + Z,e é, u(?f >L2(p+q)
> e~ thmax($) S >p

> o~ max(5) Z <ug,f*>L2(P+‘1)
leS

J/

-

Tk (£l

= e Mg (1),

We want our lower bound found above to still be greater than ||TTx,(f™) ||i2(17 g "€ and to ensure
this, we get
—tAmax * *
¢ o) g, (£ 2 1Tk, (F) 22y — €
e_ﬁ\.max(s) > ||HK0(f )||L2 P+q €
R R TSI
Tk, (F) 1172 £
—tAmax (S) > log ( ’ *L (I;LQ) — . 2)
Mg (F)ls Mk (F)ls

<10 <||HK0( Nprg) € )7““‘“(3)
SO U I (12 I (IR |

Rearranging the right-hand side, we get the result. [
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5.10 Proofs for Section

Proof of Proposition Recall that the dynamics of © can be written as

0(t) = —VeL(6(1)) = —Fuxnpiq Vo (x,0(2))e(x,1)].

Moreover, note that we can write

J0) 00} < [ 18(s)lds < [ Vo (@(s))]ds
sw(ﬁn%mem%Q”i

where the last inequality comes from the basic L,-L, inclusion inequality. Additionally, we know

that

%L(e(t)) = (VoL(8(1)),8(1)) = —[|VeL(8(1))|* < 0.

This not only implies that £(6(¢)) is decreasing but also allows us to write

1/2
Jott)~ o000 < V([ I¥oc(o(s))IFas)
= vi((600) - £(0)
< ViVE((0)).

At this point, we can notice that £(0(0)) = ||u(x,0) — f>"||L2 ||f*|| . This finally

(p+q)

gives us the result

16() = 8(0)| < VI ll2(pg)-
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We need 6(¢) € Bg and one way to ensure this is

16() = 8O0)I| < VeI |2 (prg) <R

:>r<( R )2
A\ 2 ptg)

O]

Proof of Proposition Letw e L? (p+ q), then note that for our kernel integral operator K,

we have (W, vy oK (- X )W(X')) 12(p14) €quals

P+q)

EvepiqBrnpraw(X)(Vof (x,8(1)), Vo (', 6(t)))ow(x)
= <Exwp+qvef(x7e(t))w(x)7]Ex’~p+qV9f(xl7e<t))w<x/)>®

= ”Evalﬂ—qvef(xv e(t))w(x) H2®

This means that (w, By, (K: — Ko) (- X )W(x')) 12(p4) €quals

rtq

B pqVor (6, 0(t))w(x) [ — IEanpqVeor (x.0(0))w(x)llg
= (I Eanp+g VoS (x,8(1))w(x)[l@ + [[Exnprq Vo (x,8(0))w(x)[|e)

(Eanpt4Vos (x,0(0))wix) [0 = [[Exvpiq VoS (x,8(0))w(x)0)-

Now using Minkowski’s integral inequality and Assumption[5.13[(1), we get

[Exnpg VoS (x,0(1))wx)]le < ExnpiglVos(x,0(2))w(x) e
S Eipiqll VoS (x,0())[[ew(x)]l

< LiEspiq W)

< Lilwliz2(p4q)-
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Notice that this implies

[ExnpqVoS (x,8(0))w(x)[l@ + [Exnp+qVes (x,0(0))wlx)[lo < 2Li[[Wl12(p)-

Now using Assumption [5.13|2), we have

[ExnprqVesS(x,0(1))w(x)lle — [ExpiqVef(x,0(0))w(x)]le
< Exnprq(Vof (x,6(1)) — Vo (x,6(0)))w(x)|le
< ErvpiqllVes(x,6(2)) — Vo f(x,0(0))llelw(x)]l

< L2[[6(r) = 6(0)[leIwllr2(p+q)

< LZ\/;||f*||L2(p+q) Wllz2(psq)-
This means that
(w, ]Ex’~p+th('ax/)W(X/»LZ(erq) = 2L1L2\/;”f*”L2(p+q) ”W”iz(pﬂi)'

Finally this proves that [|K; — Kol|;2(44) < 2L1L2\/f||f*||Lz(p+q). N

Proof of Proposition Note that

0 (u—id)(x,1) = (e — &) (x,1) = Eypig[Ko(x,x)e(x ;1) — K (x,x")e(x',1)]

= —Eyopig|(Ki(x,x') — Ko(x,x))e(x' ;1) + K (x,x") (e — &) (+',1)].

Notice here that because K;(x,x") = (Vo f(x,0(r)), Vo f(x',8(2))), we have that K; is a positive

semi-definite operator (we will use this later). Now if we take an inner product with e — & on both
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sides of the equation, we get

M=) gy = (e D0, B1e =212
= ((e=&)(-11), B g [(Ki(x.2') — Ko(,X))2(x 1)
+Ki(6,2) (e = ) (V0] )2t
< [{(e=2) (1), ~Eympig [(Ki(5,X) = Ko(,X)e( 1) )2t
< (e =) 0llz2(pg) 1K: = Koll 2 1260|2251

<ll(e=2)(:, )||L2 (p+9q) ||K, K0||L2 (p+9q) ||HKo( *)”Lz(p-i—q)’

where the first inequality comes from the fact that K; is a positive semi-definite operator as well
as using absolute values whilst the second inequality comes from using the Cauchy-Schwartz-

Bunyakovsky inequality along with the kernel integral operator norm bound of [|K; — Ko |12 (,4¢)-

Now recalling that é(-,0) = Ik, (f*) and using Parseval’s identity, the last inequality comes from

the fact that

M M
A -
H ( HLz (p+q) Z — f ué, -0 Z u€7HK0 ‘ = HHKO(f )Hiz(p+q)-

- S

From Proposition[5.15] we get that

d 1 — 3 >k =
5= D2 (prq) < 2L LV li2(prg) T ()22 - (e = @) ) 12 1)

Now, finally notice that

1 trd 1
=Ry = | (531 =5 Baipeg )ds

t
S2L1Lz||f*||L2(p+q>||H1<o(f*)HLz(p+q)/0 Vsll(e=2) ()l 2(p+q)ds-
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Let t* <t be the time such that

SI[lop] (e =2)(-5) | 2(p+q) = 1€ = &) (1) | 2 (g -
s€[0t

Then, we find that

1 - *\ (12 * * — * r
SMte=a) (11214 = 2L1L2 )l 7|2 () [Tl (F ) [ 2(p gyl (€ = ) (1 )||L2<p+q)/0 Vsds,
but this implies

1 * * * *
Slte=a) 1)z (prg) < 2L1L2ll 7 |12 () [Tk () 2(p1g 5 (2 )32

LN W[ N

= [le=2)s0)llz2(prg) < 4L1L2 12 () Tk (F ) 2y 5 ()

< (8/3)L1L2 | £ [1z2 prg) 1Tk (F ) 24y (£)/2,

where we use the fact that [|(e —&)(-,7)||2(p14) < [[(e—&)(,")[| 121 q) and t* <. Finally using

that [Tk, (f*) l22(p+q) < I1F7[l12(p+q) gives the result, so we’re done. O

Proof of Corollary Notice that

‘T(t) —T(t)‘ -

[ u=xnd(p—q))
R

<

<| [ e=m)wnd(p))] +

[ (=) (xnd()
< [ =)@+ [ Ju=nE0idon

o | =B (x0)ld(p+4)(x)

< V2 |u— it 2

(p+q)

where the last inequality comes from using a basic Li-L; inclusion inequality. Now using
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Proposition[5.16] we get the result, and we’re done. O

Proof of Theorem[5.18} Note that the loss £L(0(¢)) = || f(-,0(¢)) — ]‘*H%2 (p+4) is monotonically

decreasing since

d

L L(B(1) = (Vo L(6(1)),6(1)) = —[[VoL(B(1))[* < 0.

So we have that £(0(s)) > L£(0(¢)) if 0 < s <t < 1. Writing out the loss as £(8(s)) =

Hf(a ( ))”LZ p+q <f('7e(s))7f*>L2(p+q) + ”f*Hiz(erq)’ WCe can sec

L(8(s)) = L(6(z))
187201 g) = 2070, ) 12(p1g) = I (BT 1) = 2(FC.OM), 1) 12(p1g)
(F(.8(0) = F(005)): f ) 2(pg) = (OO 72 (g = IF B I 20p)-

Notice that because u(x,t) = f(x,0(¢)) and we assume that ||u(x,#)|?

is increasing in time
||L2 (p+q) g 5

we know that

(F(000) = £, 8(9)), ) 12(p ) = 1F (0@ 121 g~ I G0 2(p1q)

>0

So we see that on the interval [0, 7], the two-sample test statistic 7'(¢) is monotonically increasing.

]
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Proof of Theorem Using the assumption

R 2
min (1, (—— ) ) >r>r(e
< (uf*an(W))) 1®)

allows us to use Corollary Corollary [5.10, and Theorem [5.1§] simultaneously. Using

monotonicity and the reverse triangle inequality shows that

7] = 7)) = [T >>\—}T<ri‘<e>>—?<rf<e>>)\

8v/2

3/2
ZS——IIf 1224 L1 L2 (17 (2))

where we can get rid of the absolute values by assumption. So we’re done. [

Proof of Theorem Because of the assumption on 7, we can use both Corollary[5.10]as well

as Corollary Using the triangle inequality gives us

_ _ 8v/2
70 < [TW]+ |[10) - T < e+ 22217 gy Lot
8V2, .. v/ N\3/2
< et = g lila (5(©)
So we’re done. ]

5.11 Proofs for Section

Proof of Lemma Similar to the proof of Proposition [5.14] we recall that

o) = —3 ( [, Vor (8 ( (£x8()) = 1)px) + (£x8(0)) + 1)a<x>)dx)

= —VoL(0(1)).
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Moreover, recall that

CLB0)) = (VoL(B(1)).61))o = I VeL(B(1))lo < .

This already shows that Z(8(¢)) < L(6(0)). Now, notice that

~ Y t o 1/2
6) 00 < [ 180s)ods < Vi( [ 1B(0)as)

. A 1/2
< vi( [ 196 @) 3as )
— ViyJL(®8(0)) ~ L(6(1)) < viy/L(B(0)).

Now because f(-,0(0)) = f(-,@(O)) =0, we get that

So this implies that
16(r) —6(0)]|o < V.

For the second statement, just notice that we want to ensure H@(t) —0(0)|le < R. With our bounds,

this is ensured if

Vi <R.

Readjusting this expression gives us the result. 0
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Proof of Lemma Notice that EX; = 0 and
IXi]l < Vo f(xi,8)Vo s (xi,8) ' || +Euvpl| Vo (x.0)Vos(x,0) || < 3Li.
Moreover, notice that
1 & T 1 & T
- ) EXX; || < - EX:X; ||
Iy Lol < R IEXK|
Simplifying I, we see

I=EypVof(xi,0)Vof (x:,0) " |Vos(x:,0)|
—2(Eyp Vo (x:,8) Vo  (x:,0) 1)’

+ (Ex~p Vo (xi,8) Vs (xi,8) )7,
This means that
I=EypVof(x:,0)Vef (x1,0) | Vas (xi,8) |* — (Exi~p VoS (xi,6)Vas(xi,6) )7,
which implies

7] < Exmp || Vo (xi,0) Vo f(xi,0) ' ||| Vo s (xi, 0)[1*

-~

<Lt

+||Ex~p Vo (xi,0)Ve s (xi,0) |

~
4
Ll

<2Lf.

Since X; is symmetric, we know the same bound holds for XiTX,- terms. This means that v = 2LAI'.
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Finally, using Theorem [5.40]and cleaning some terms, we get that

P [||1ix\|>t]<2M n
r|||— =t < €x _— 7.
S W7

Let us consider when

Alog(n) +1log(2Me)
p :

— \/2L%(2L% +3/2)

Moreover, we can choose n large enough such that

Al log(2M

n

[\

then we have that

nt? nt?

>
2L3(2L2 +1) © 2L3(2L2 +(3/2))
2

nt < nt?
2L3(2L2 +1) 212(2L2 +(3/2))

nt? _ nt?
X —_— X —
Pl 2200 +0) Pl 220+ (/2)

— 2M@exp{ —

ni? }<2M e { i’ }
Y S S X — .
30 = TP T 2L+ (3/2))

So with our choice of 7, we actually get that

ZMGeXp{ 203 2L2 +(3/2) }
(2L3(2L2 +(3/2)))(Alog(n) +log(2Me) }
—A

=2Mgexp { —
202213+ (3/2))

=2Mg exp{ — (Alog(n) +log(2Me))
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Taking the compliment of this event, we get that with probability greater than 1 —n =4

Alog(n) +log(2Meg)
- :

||—ZX|| < \/21} 212 +3/2)

So we’re done. O]

Proposition 5.36. Assume that t < R* (so that 0(t) € Bg) as well as Assumption and

Assumption then with probability > 1 — n;A qA, we have (4 —i)(-,1)[|(2(pq) is less

than or equal to

Alog(np) +log(2Me) ) 1/2

AL+ AL Lot | 2 g (1 +2L?z2\/2(2L% +3/2) p
p

Alog(ng) +log(2Me) ) 1/2

AL Lo £ 2 g) (1+2L§t2\/2(2L%+3/2) .
q

Alog(n,) +1log(2Me)
np

+12- \/EL?”f*HLZ(p—Fq) \/2L%(2L% +3/2)

Alog(ng) +log(2Me)
np '

+12- \/EL?”f*HLZ(p—i—q) \/2L%(2L% +3/2)

So that ||(@— ) (1) | 12(p4q) is O(5/?).

Proof of Proposition[5.36] Inspecting 0; (& — it) more closely, we see that

20, (@ — 1) (1) = ~EoKi (-, x)8p (', 1) = B g (32 (x1)

+ Ex’NpKO<'axl)é(xl7t) + ]Ex’quO('axl)e_(xlv t)'

231



Notice that

_Ex’NﬁEt('7xl>é\P(xl7t) + ]EX'NPKO<"x/)é(x/’t)

= _{]Exlwﬁl?,(-,x’)(ép(x’,t) —e(x,t)) +EX/NI;(I?, —Ko)(+,x")e(x 1)

+ (Ex’mﬁ_ Ex’wp) Ko(-,x’)é(x’, t) } .
For g, we get a similar form

_Ex/N/q\Et(',x/)é\q(xl’ t) + Ex’quO('vx/)é(xla t)
— —{Exqul?t(-,x’)(?q(x',t) —&(x',1)) + Eya(K — Ko)(-,x)e(¥ 1)

+ (EX/N(? — Ex’~q> Ko(-,x’)e‘(x', t) } .
Putting this together, we get

20,(@— ) (1) = —Ey 5K, (-, ¥ )6 ( 1) — 2 1)

-~

Iip

+EEX/N1;(K0 — I/(\t)(-,x/)é(xl,t) + (]Ex/Np — Ex/wﬁ> Ko(-,x)e(x' 1)

N 7/
-~

I p

hp

By K () (64 (X 1) — &(X 1)) + Eyg(Ko — K;) (-, X)e (1)

J/

Iy by
n (Ex/Nq — EX,N;,) Ko(-,X)e(x' 1)
I
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Similar to the proof of Proposition [5.16, we will consider

L) - ).1) 1Z2(pq) = (@) (1), 20 (@ = ) (-,1)) 20 1)

dt
= (u=a)(,0), i p+11g)12(p1g) + (=) (1), 2p+12g) 12(p 1)
+ {( — ﬁ)('vt)713,17 +I3,¢I>L2(p+q)

<((w—a)(-,1),I1p +11,q>L2(p+q)

+[|(@—a)(-.1) ||L2(p+q) <||12,p +hy L2(pt+q) T ||I3,p +I3761||L2(p+q)> :

So we’ll need to bound I ,, 1> 4,15, and I3 ; and will deal with the I ;, and I; 4 terms at the end.

Before starting, let Ap be the event that

Alog(n,)+log(2Me
|(Evmp — Evop) Vou(x', 8(0) Vou(x',0(0)) T|| < \/2L§(2L%+3/2) &l P>n E(2Mo)
P
and let AQ be the event that
Alog(n,) +log(2Me
|(Eyy —Evg)Veu(x',8(0)) Vou(x',6(0)) || < \/2L§(2L%+3/2) ( ‘f)n ( ).
q

Note that from Lemma , we know that Ap occurs with probability > 1 — n;A and Ay occurs

—A

4 - Since these events are disjoint, notice that

with probability > 1 —n

Pr(ApNAg) = 1-Pr(ApUAY) =1—n,* —n 4

where A% and A‘é are the complements of Ap and Ag respectively. We work in the regime that
both Ap and Ag occur.
Bounding /3 ;, and I3 ,: We will first work with just /3 , and will notice that the method

of bounding I3 ; is the same. Then using the triangle inequality, we will get our bounds. Notice
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that

13717 = <V9u(',6(0)), (Ex’wp - Ex’Nﬁ)Veu(x/,9(0))é(x’,t))@

pioe < | (VUG 0Ol [, 1By~ Eep) Vould 000)2(¥' D)o

-~

<L

<\fL1||( w~p — Bvp) Vou(x',0(0))e(x', 1) [lo-
as

= ||l

L2(p+q)

Now we can use the fact that

e(r) = = [ By prgolx)e(rs)ds

_ /0’<Veu(x,9(0)),]Ey,vp+qveu(y,9(0))6—(% 5))eds.

This means that we can rewrite a3 as

a3 = — /0 [(Evp —Evnp) Vou(x',0(0)) Vou(x',6(0) " |Eyeprq Vou(y,8(0))2(y, 5)ds.

This would mean that ||a3||g is bounded by

t
| N(Evy = E)Voul 000)) Vo 8(0)) | [ Vu(y,8(0)) g By (3:5) s

-~

<L

<Ly [Tk, (F) |2t 1| (B — Ei) Vou(¥',8(0)) Vou(x', 6(0)) ' .

Now recalling that é(-,0) = Ik, (f*) and using Parseval’s identity, the last inequality comes from

the fact that

M M
—2t\ 2
H ( ||L2 (p+9q) Z ! [ Mﬂ? -0 Z ufanKo ‘ = ||HK0( *)||L2(p+q)'

- S
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So we only need to bound the operator norm of
I(Eynp —Evep) Vou(x',6(0)) Vou(x',8(0)) ||

To this end, since we assume that we are working under event Ap N Ap, we can again use

Lemma and get that with probability greater than 1 —n, A nq_A,

(B = Exp) Vot 0(0)) V(' 0(0)) || < \/ 213013 +3/2) o8 HloeCMo)

np

Now putting all these bounds together, we get that

. Alog(ny) +log(2Me)
153 pll12(pg) < 7+ V2L Mgy ( )||L2(p+q)\/2L%(2L%+3/2) . :

np

For ease later on, let us define

* Alog(n) +log(2M
gs(t,n)zrﬁL?HHKO(f)||Lz(p+q)\/2L%(2L§+3/2) gln) +log(2Me)

n

Note that because we are working under event Ap M Ag, we know that with probability greater

A —A
than 1 — n,” —ng

Alog(ng) +log(2Me)
g

1Bgll2pg) <1 V2L (F )12 () \/2L%(2Lf +3/2) = 83(t,ng).

Now let us bound I; ;, and I 4.

Bounding /; , and I; ;: We will again bound for I; ;, and essentially use the same logic
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for bounding I, 4. Note that

~ 2
Ee-p(R: — Ko) (v.2)e( 1)

2
||12,pHL2(p+q) = Bxnpiq

~ 2
< Evprg (Eonpl (K = Ko) (e [2,1)])
Using Lemma [5.21] note that

[K: (x, ') = Ko(x,2')| = [(Vou(x,8(1)), Vou(x',B(1))) — (Veu(x,8(0)), Veu(x',8(0)))|
< ||Vou(x,8(1)[loll[Vou(¥',8(t)) — Veu(x',0(0)) |
+ | Vou(x,8(1)) — Vou(x.6(0)) o] Vou(x',6(0)) o

< 2L1L,||6(t) —8(0) || < 2L1La /1.

Now the only thing left to bound is £ 5|é(x’,#)|. To do this, recalling the time-integrated form

of e, we have that
_ _ _ ) 1/2
Eeple(e0)] = el < (1660 12)
Now notice that
12(, )72 = Bnple(x,0)[* = (B — Eanp)@(x,0) P + Banpl(x,0) 2
e, L2(p) x~p €KXy X~ P x~p)|€\X, x~p|€(X, .

Because integrating a positive function over both p and ¢ is an upper bound of just integrating

over p, we know that

Euple(r0) = 120122 ) < 120:0) 220y = ko (F) B2

so we only need to deal with the first term. In particular, using the time-integrated form of
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|&(x,1)|?, we get that equals

|Ep—Ewplex )| =

t t
[ [ Essepraelz,s2) autra,00)

. |:(]Ex~ﬁ_ Ex~p)Vou(x,6(0)), Vou(x, 9(0))T] Vou(y1,0(0))e(y1,s1)ds1ds>

, 2
< B Erep ~ By Va(x.800). T, 00) | ([ Brepiletosfas)

J/

-~

(V2o () 2 1))

< 232y (1) (e || (B — Boep) Vo, 6(0)), Vigu(x,0(0)) .

Again, since we are under event ApMNAp we can use Lemma @ and get that with probability

—A_ A
greater than 1 —n,” —n,

_ . Alog(n,) +log(2Me)
|(Eyop — Exep)e(x,0)[?] < 21727 ||Tg, (f )||iz(p+q)\/2L%(2L%+3/2) £ :

np

Plugging this back, we get

Alog(np) + log(ZM@)> 1/2
I’Lp )

Bple(e,0) < V2T () 2y (1+ 2L%r2\/ 2203 +3/2)

Plugging back to our original expression for I; ;, and using the fact that E,.,,,1 = 2, we get that

. Alog(n,)+log(2Mg)\ 1/2
B2 pll2(p 1 q) < AL1LaV/1 T, (f )||Lz(p+q)<1+2L%;2\/2(2L%+3/2) ( p)n ( ))
P

with probability > 1 — n;A — n;A. Similar to before, we define

Alog(n)+1log(2Me) ) 1/2
- :

g2(1,n) = 4L1 Lo/t | Tk, () [ 2 () (1 +2L%f2\/2(2L% +3/2)

Using the same logical reasoning of being in the event Ap NAp, we get that with probability
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A -A
>1 n, ny,

Alog(ng) +1og(2Me) ) 1/2
g

il < Vi g1 (14207 (2023372

:gz(lvnQ)'

Working with the /; terms: Let us again work with /; , and use the same logic for I;

later. In particular, note that

(@=a) (1) Ip)iz(prq) = (0= @) (1), ~Eo 5K (-, 2) (@p(x 1) —e(X',1)))12(p1q)
= (= D)) B () @) = 1))
(= D)), B ) () = D) 2

< —((@=a)(-1), By 572K () (&) = D)2y,

where we get the inequality because K isa positive semi-definite operator so the first term is less

than 0. Now we can bound by the following

(@ =) (-,0).11p) 2| S M= D)) 112 ) [ Bt () () = Dl 2(p4)-
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Here note that

B (X ) () = Dl 2(pag) = [Eun(Vou(-8(1)), Voul',8(t)o (f* () = Dl 2(psg)

< LiEoplf* () =1

This means that

(@@= a) (1), 1 p) 2 (g < 2LEN @@= ) (1) |12 g)-

Using the same logic (but with the term —2~ () 6 ), we can show that

px)+q

’<(it\— ﬁ)('yt)all,q>L2(p+q)| S 2L%||(it\_ l/_l)('Jt)”Lz(p'H])'
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Putting this altogether, we see that

. o -

M@= D)) gy < H@= D001} 2|+ F= D0 2
1= D21 (o l2g) + Mol iz
Flpllizprg +1Ballzprg)

_ (4L%+gz<r,np>+g3<r,np>

galtang) + 30.10) ) 1@ 0.0 iz
Using the same argument in Proposition [5.16 let * € [0,¢] be such that

ﬂ{lop} 1@ = @) () 2(prg) = 1= D) 1) 2(p1q)5
s€[0,t

then we know that

*

1= < [ (4224 g2(50m0) + 265
+galssne) +5a(5.10) ) 1@ )C,9) 05
<[ (4L%+g2<s,np>+g3<s,np>
+galoung) ga(5.10) )13 )
< [@=a)(,t") | 2(p+q) /Ot* (4L%+82(S=”p) +g3(s,np)
+82(57”q>+g3(57”q))d5

*

||(l/’t\_ﬁ)('7t*)”L2(p+q) </0 <4L%+g2<sanp)+g3(s7np)+g2(s7nq)+g3(sanl1))ds'
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Now since t* <t and

1@ 20 2prg) < 1@ B0 21

we know that

*

@i < | (455 alsinp) + a(simp) +salsim) +ea(sn) ) s
Moreover, by inspection, we can see that
AL% +g2(s,np) +83(s,np) +82(s,ng) + 83(s,ny)
1s monotone in s, which means that
1= D0l < (4 82(501p) +a(50m,) 4 2(sm) + (5, ).
Putting this altogether and using the fact that we are working under the regime of event ApN Ay,

we can use Lemma [5.23] for the zero-time NTK for samples from p and ¢ to get that with

probability > 1 — n;A — nq’A, we have

H(i‘\_ Iz)('vt)HLZ(p+q) < 4L%t—|—g2(s,np)t—|—g3(s,np)t—|—g2(s,nq)t —l—g3(s,nq)t,
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but the right-hand side of the inequality is just

Alog(np) +log(2Me)\ 1/2
4L%t+4L1th3/2\|HKo(f*)HLz(W)(1+2L?t2\/2(2L%+3/2) lnp) *log( ))

np

* Alog(ng) +1og(2Me)\ 1/2
+4L1L2t3/2”HK0(f )”Lz(m-q)(l+2L?t2\/2(2L%+3/2) el q)n s ))
q

x Alog(n,) +log(2Me)
+12 V213 ||k, (f )|\Lz(p+q)\/2L%(2L%—|—3/2) p -
14

« Alog(ng) +1og(2Me)
+12-V2L3 ||k, (f )|\L2(p+q)\/2L%(2L%+3/2) q .
P

This means that
|G @) (1) 2(p1q) = OC2).

Moreover, we get the result using the fact that

Tk, (F) 2 (prq) < 17 22 p0)-

Proof of Proposition[5.26] Consider following calculation

[fa)~T0)] = | [ 8 rs)0) [, ixa(p )
= | [0 i =)o)~ [ o~ ) )
+ [ aend(p-g)) - [ atead(p—g)0)

Rd
/Rd w(x,0)d [(Drest — P) + (4 — Grest)] ()

-

Aj

[ @) nd(p- )@

-~

Ar

<

_|_
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Let us deal with A, first and then with A;. Note that

Ar=| [ @=m)(xa)dp(x) = [ (@=)(x1)dg(
@0 0dp@)| +| [ (@=xndg
< [ J@=meoldp+ao)

<V2|a- (1)l 2 (prq)-

< +

So we can use Proposition[5.36|for A, and will use this as part of the final bound. Notice that A;

is actually bounds |Tjeq (1) — Tpo p( )|. Now let us bound A;. First note that

Al S ’/ ( ) Ptevt ’ ’/ x t q CItest)
R4

Alp Alq

To bound A, and A; 4, we will aim to use Hoeffding’s inequality, but we must first show

that |u(x,)| is bounded. To this end, consider the time-integrated form of u(x,7) = f(x,0(¢)).

Recalling the density-specific residuals

ep(x,t) = (f(x,08(1)) — 1)

eq(x,t) = (f(x',e(t)) + 1),

and using Assumption [5.13] we have

80) = |~ 5 [ (Bonp Vo 656)). T (4 86108,

+Eyg(Vo (806). o (V,806))08,(5) )

It is important to note that in the equation above, p and g are training datasets (not py.s and gyey),
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and with this in mind, we continue as

£680)) < 5 [ Bep (o (18(5)). Vo (. 8(5)e] [0+

<Li

+Eog|(Vof(x,8(5)), Vaf(x',6(s)))e| [64(x',5)|ds

-~

2
<13

1 ! - ~
< SLE [ By (4,9)] + Evgley ()l ds

=5 [ (L8 = 1apt) + [ 8s) + 1aqtr) ) as.

Using Lemma with a(x,1) = f(x,0(s)) — 1 and b(x,1) = f(x,8(s)) + 1, we know that the

right hand side of the equation above is decreasing if L(8(s)) is decreasing. Indeed, recall

CL60)) = (VoL(B(1)).6(1))o = I VeL(B(1))lo < .

This means that

[ #6800 = 1dpo)+ [ | 1£(8(s)) + 1)
< [ 17Ge8(0) 1)+ [ 17(x.8(0))+ 1]dgtox) =2.

Plugging this back in, we get that
1 (x.8(0)] < Li.

Because we have boundedness, we can use Theorem [5.38] Reworking the probability and lower

bound in Hoeffding’s inequality, we see that

Alog(m
Al,pSL%t zﬂ
mp
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with probability > 1 — mle. Similarly, we get that

Alog(my)

Ay <Lty ]2
Mq

with probability > 1 — m;A. So for both these events to occur together, we can use a probability

intersection bound to get that

A1SL%I\/E(\/AIOg(mP)+\/A10g<mq))
mp g

with probability > 1 — m;A — m;A. Coming back to A, we know the bound from Proposition m

occurs with probability > 1 — n;A — n;A (the finite-sample training dataset size); thus, to have
the bound for A; and A; simultaneously, we again use an intersection probability bound to get
that both events occur simultaneously with probability > 1 — (mI;A + m;A + n;A + n;A). Putting

this altogether, we see that with probability > 1 — (m;A + m;A + n;A + n;A) we have

| Trest (1) = T(1)| < Crry aampangt +Cry o o
+ CLl 7f*7n[77nq7M®7At2

5/2
+CL17L27f*7np7nq-,M®,At / 9

where the constants can be recovered by putting the bound for A; together with Proposition

So we’re done. O]

Proof of Theorem Recall that the loss L(8(s)) is monotonically decreasing because

CLB0)) = (VoL(B(1)).8(1))o = [ VeL(B(1))lo < .
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Now since the loss
7(6(s)) = / @(x,5) — 112dp(x) + / @(x,5) + 112dg(x)
R4 R
is decreasing, we can use Lemma applied to L(8(s)) to see that
[ Jts) = 11dpex) + [ [atr.s)+ 1]dq(x)
R R

is actually monotonically decreasing. Notice that because |u(x,s)| < 1 on [0,7], we have

/Rdm(x’s)_ndﬁ(x):/Rd(l—ﬁ(x,s))
/Rd\b?(x,s)%—l\d@(x) = /Rd(ﬁ(x,s)+1)dg]\(x)_

So putting this back into the definition of monotonically decreasing loss, we see that

[ 1= tes)dpt) + [ i)+ 14q)
> [ t-atendpo+ [ it + 143

— /R i, 0)d(p—q)(x) = /R ulx,s)d(p—q)(x).

This implies that YA}mm (t) is monotonically increasing. So we’re done. O

Proof of Theorem The proof is identical to the case with u. In particular, because we have
max(R>,7) >t > 1] (e),

we can use Proposition[5.26] Corollary [5.10] and Theorem [5.2§] simultaneously. With probability
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>1-— 2(n;A + nq_A), using the reverse triangle inequality and montonicity gives us

|ﬁmin(t)| > |ﬁrain(tr(8))|
> |T([T(8))‘ - |?train(tik(8>) —T(IT(S))’

> &— Orain(t] (€))

where we can rid of the absolute values by assumption. Now, note that if we assumed that

£ > Spain(t (€)) + L21V/2 (\/A log(m,) /m, + \/A log(my)/m,
\/Alog(”p)/”p + \/Alog(”q)/”q) )

then we would have

ﬁ:test(t)l Z ’ﬁrain(tﬂ - ﬁ:test(t) _’ftrain(t)l

> &~ Suain(ti(€)) — L21V/2 (\/A log(my) /my +/Alog(mg) /m,

- \/A log(ny,)/n,+ \/Alog(nq)/nq>

Similarly, if we assume that

e > 8l () + 312 [A10gl) iy - [a10g(n,) ).

then we have

|T\P0P(t)| > |ﬁrain(t)| - |fP0P(t) - ftmin(m

> & — Syain(t}(€)) — L2112 <\/A log(np)/mp + \/A log(11,) /nq) .
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So we’re done. O]

Proof of Theorem Because of the conditions on #, we can use all of Corollary [5.10} Proposi-
tion and Proposition simultaneously. So essentially, we can use the triangle inequality

to get
T < [T@)]+|T@) =T(1)| <e+38(r) <e+8(3(e)),

where, in general, /T\(t) and d(¢) can be replaced by Trvain: Trest (1), T\p(,p (t) and &yqin (1), Srest (1), 8pop (1),
respectively. These situations happen with probability > 1 — 2(n;A + n;A), >1-— (n;A + n;A +

m;A + mq’A), and > 1 — (n;A + n;A), respectively. So we’re done. O

Proof of Corollary[5.33] We will first work with the time associated with detecting deviation
€ under the null hypothesis, and then we consider time associated with detecting € under the
assumption that f* lies on the first k eigenfunctions of Kj. After both these detection times are
studied, we study when they are well-separated.

Null Hypothesis: We first note that if we are in the null hypothesis so that p = ¢, then
J* =0, which implies that || f*||;2(,44) = [Tk (f*)|[z2(p14) = 0. Looking into the proof of
Proposition and Proposition we see that the only term that does not depend on f* is of
the form C™¢ but C* changes depending on which dataset the two-sample test is evaluated on. In

particular, we specify

-~

)
V2124 Tpop(t) evaluation

ct = \/iL% 444 /A% + 4 /A%) T}min(t) evaluation

V202 | 44+ \/A% + VA%) Ties: (1) evaluation.
\

This means that under the null hypothesis p = ¢ and with either fpop, ]A}es,, or f,min determining
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CcT,if
€
t+(£) Z C,__|_7

then we cannot trust the neural network two-sample test statistic past the time threshold ¢ (g).
Note that as n,,ny,my,,m,; — oo, the threshold for 7 to cross becomes ﬁ and reverts back to
the constant C* in the case we use T\pop(t).

Assumption Ik, (f*) = f;'+ Recall that we are dealing with the case that I, (f*) = f
so that Ik, (f*) nontrivially projects onto only the first k eigenfunctions. To deal with the time-
approximation error §(¢), we will consider the detection time needed for 2€ and conduct analysis
for this case. If we are in the assumption Ik, (f*) = f;’, notice that the minimum time needed for

the zero-time NTK dynamics to detect a deviation 2€ from Corollary is given by

| AL )
t5(2¢) = Amin (S) 1 — 2 ],
(2¢) = jmin, ()Og(||f,§‘||§—28

Importantly, if we want to counteract the approximation error from Proposition and
Proposition [5.25] we simply need to make sure §(¢;(2€)) < € so that the total detection will
be 2e — d(7](2¢)) > €, where 8 will be 8,0p,0est, OF Orgin. Notice from the form of time-

approximation error function 6(¢), we have
C~ min{r,r/?} < §(r) < C~ max{r,r*/?},

where C~ = C" +C, + C3 + Cy4 with the constants coming from Proposition|5.26] Proposition
and C" defined above. Thus, note that C~ depends on whether we use the two-sample test

fpop, ﬁes,, or f,min. Assuming the specific assumption that f* nontrivially projects only on the
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first k eigenfunctions of Ky so that Ik, (f*) = f;, notice that

0= min R 1ox (LA 1513 )

SEsi(€) 115 —

117
< A log ( (pt+a) 28) =1, (2e).

TR

With this in mind, notice that
8(17(2e)) < C~ max{t](2e), (1} (2€))>/*} < C~ max{r (2¢), (t; (2€))>/*}
so we only need to ensure
C~ max{r; (2e), (1, (2))7/*} <e.

Rearranging this formula and plugging in the expression for 7, (2¢), we see that our condition

above is ensured if

X 2eexp <(8/C_)1/a/7“k>
il = nax ’
KIL2(p+9) = 4cli5)2) exp ((g/C*)l/“/kk) —1

which is our assumption.
Separation of null and assumption Ik, (f*) = f; times: Finally, we want to ensure that
the time needed 1 (g) — 7~ (€) >y > 0 for some. Noting the lower and upper bounds on ¢ (g)

and ¢t~ (€), respectively, we find that our condition will be satisfied if

(p+q) ) >y
D¢
p+q

ka ”LZ
£ 117

tH(e)— 1 (e) > C% ~Mlog (
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Rewriting this inequality, we see that it is satisfied when

2eexp ((6/C* —)/M)
exp ((e/CH—)/M) =1

2

As this is an assumption, we see that we are done. O]

5.12 Helper Lemmas

Lemma 5.37. Let a(x,t),b(x,t) : R? x [0,00) — R be differentiable functions in t and let dp|(x)
and dq(x) be discrete probability measures supported only on a finite number of Dirac masses.

Then
8()= [ lalen)Pdp) + [ Ib(x.0)Pdg(y
is decreasing if and only if
o) = [ laten)ldp) + [ 1bGen)ida()

is decreasing.

Proof. We will take the derivatives of both g(r) and A(t) with respect to time and compare them,

but we will restrict the integrals to supp(p)+ = {x € supp(p) : |a(x,t)| > 0} and supp(q)+ ={x €
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supp(q) : |b(x,7)| > 0}. In particular, consider

e =4 ( [ latenPdpe)+ [ |b<x,r>|2dc7<x>)

= at]a(x,t)fzdﬁ(x)—i— 8,]b(x,t)]2d21\(x)

supp(p)+ supp(q)+

= 2|a(x,t)|sgn(a(x,t))da(x,t)dp(x)
supp(p)+

+ 2|b(x,t)|sgn(b(x,1))0:b(x,1)dq(x).
supp(q)+

For h(t), we get

%h(t) = % ( /R lalen)ldp(x) + /]R , !b(x,t>!d§(x>>

= _ Oa(x,1)|dp(x) + _ Oy|b(x,1)|dq(x)
supp(p) + supp(q) +

= sgn(a(x,t))ora(x,t)dp(x) + sgn(b(x,1))0;b(x,1)dq(x).
supp(p)+ supp(q) +

Because we are using points only in supp(p)+ and supp(g)+ and since the supports of dp and dq

are discrete measures, we can define

C(t) :2max{ max_ |a(x,t)[, max |b(x,t)|} >0
x€supp(p)-+ x€supp(q)-+

c(t) = 2min{ min_ |a(x,t)[, min |b(x,t)|} > 0.
xesupp(p)+ xesupp(q) +

Notice that the assumption that ¢(¢) > 0 heavily depends on that the measures dp and dq are
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composed of a finite number of Dirac measures. Now, notice that

d ~
ety = [ 2latxn)]sen(atn)datendp()
supp(p)+ ~=——~—

<C(r)

>c(t)

+ 2|b(x,t)|sgn(b(x,t))0,b(x,t)dq(x)
Supp(g)+ ~=—~—"
<C(r)
>c(t)
d d d
—> (1) :h() < (1) < C(0)-7-h().

Since %h(t) and % g (1) are off by positive factors, we see that if one is decreasing, the other must

also be decreasing. This proves the lemma. [

5.12.1 Concentration Inequalities

Theorem 5.38 (Hoeffding’s Inequality). Suppose {X;}"_, are independent random variables with

|X;| <L, then forallt >0

{‘ ix E[X;)) ( }SZexp(—S—Z).

Theorem 5.39 (Hoeffding’s Subgaussian Inequality). Suppose {X;}}_, are independent o;-

subgaussian random variables with X; having mean u, then for allt > 0

t
peree(-omia)
1= l

Theorem 5.40 (Matrix Bernstein). Let X; be a sequence of n independent, random, real-valued

Z{EIE

i=1

matrices of size di-by-dy. Assume that EX; = 0 and ||X;|| < L for each i and v > 0 be such that

n 1 n
H; Y EXX;'|, HZ Y EX X[ <v.
i=1 i=1
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Then for any t > 0,

2

P’”[H%;ﬂ;xz‘” > t] < (di +d2)eXP{ - m}
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