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ABSTRACT OF THE DISSERTATION

Learning on the Space of Probability Measures

by

Varun Khurana

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Alex Cloninger, Chair

This thesis studies computationally feasible machine learning methods, based on optimal

transport and neural network theory, applied to measure-valued data. We first analyze linearized

optimal transport (LOT), which essentially embeds measure-valued data into an L2 space, where

out-of-the-box machine learning techniques are available. We analyze the situations when LOT

provides an isometric embedding with respect to the Wasserstein-2 distance and provide necessary

bounds when we can achieve a pre-specified linear separation level in the LOT embedding space.

Second, we produce a computationally feasible algorithm to recover low-dimensional structures

in measure-valued data by using the LOT embedding along with dimensionality reduction

techniques. Using computational methods for solving optimal transport problems such as the

xv



Sinkhorn algorithm or linear programming, we provide approximation guarantees in terms of the

sampling rates. Third, we study structured approximations of measures in Wasserstein space by a

scaled Voronoi partition of Rd generated from a full rank lattice. We show that these structured

approximations match rates of optimal quantizers and empirical measure approximation in most

instances. We then extend these results for noncompactly supported measures that decay fast

enough. Finally, we study methods for comparing probability measures by analyzing a neural

network two-sample test. In particular, we perform time-analysis on a related neural tangent

kernel (NTK) two-sample test and extend the analysis to the neural network two-sample test with

a small-time training regime. We also show the amount of time needed before the two-sample

test detects a deviation ε > 0 in the case the probability measures considered are different versus

when they are the same.
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Chapter 1

Introduction

This thesis considers studying measure-valued data and showcases a variety of techniques

for studying measures or probability distributions. In this chapter, we discuss motivation for such

theory, a preliminary background for some of the ideas used in the rest of the thesis, and general

overview of the rest of the thesis.

1.1 Motivation

In practice, the structure of data for analysis depends on the domain studied and range

anywhere from cases where each data point is an n-dimensional vector to cases where each data

point is a time-series of mathematical objects. For our case, we study measure-valued data. In

particular, each observed data point can be thought of as a measure or a finite sample from a

measure. This type of data practically arises as point clouds of information so that each data point

is a point cloud of possibly different sizes. Situations encountering this type of data have become

increasingly frequent in practical applications.

For example, biologists often consider a bulk samples of cells from a specimen as one data

point so that each data point is indeed thought of as a point cloud [19, 29, 101]. In image analysis,

the pixels in each image can be normalized so that each image yields a probability measure for

1



each of the RGB values on the pixel grid [59, 78, 71, 93]; thus, each image can be thought of as a

probability density. In neural network training and analysis, the hidden representations of data in

neural networks can be thought of as point clouds approximating some measure and evolution of

those point clouds is essentially a time-series of measures. Viewing neural network training as a

flow of measures in the hidden representation space provides a gamut of tools at the disposal of

the data scientist.

At the core of all the data analysis examples mentioned is the fundamental problem of

comparing point clouds, or more generally, probability measures. The traditional methods of

comparing probability measures such as the popular Kullback-Leibler (KL) divergence [60] as

well as Maximum Mean Discrepancy (MMD) [47] come with their fair share of difficulties. In

particular, KL-divergence blows up to +∞ when the measures compared have non-overlapping

support. On the other hand, since kernel MMD is the norm of the difference of mean embeddings

(with approximately norm 1), comparing measures with disjoint support leads to a saturation level

of about
√

2. Moreover, kernel MMD depends on the associated reproducing kernel Hilbert space

and lacks some amount of interpretability useful for analysis. Optimal transport (OT) has risen as

a particularly powerful method for comparing probability measures and providing some strong

interpretability since the distance metric using optimal transport naturally gives rise to a geometry

for the space of probability measures. Once a method for comparing measures is established,

we can focus on how to solve run-of-the-mill machine learning and statistics problems such

as classification, regression, unsupervised dimensionality reduction, and two-sample testing on

the space of probability measures. The next section will discuss some fundamentals of OT and

two-sample testing tools and provide the necessary framework to discuss the overview of the rest

of the thesis.
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1.2 Background

1.2.1 Optimal Transport

Gaining significant importance in recent years, optimal transport (OT) arises as the most

natural methodology for computing distance between measures [91]. The central problem that OT

solves is finding methods to transport the mass of one probability measure to another probability

measure. This can be done with a transport map when the associated measures do not need to

be split or with a transport plan which allows for mass splitting. With this in mind, the optimal

transport distance between two probability measures is calculated by finding the transport map or

transport plan that minimizes a transportation cost, which is usually the distance metric on the

underlying space.

More rigorously, let P2(X) denote the set of all probability measures on a metric space X

with finite second moment. Given µ,ν ∈ P2(X), a transport plan that transports µ to ν is given by

a product measure γ with marginals µ and ν. We denote the set of all transport plans for µ and ν

by Γ(µ,ν). The Wasserstein-p distance between measures µ and ν is now given by

Wp(µ,ν) =
(

inf
γ∈Γ(µ,ν)

∫
X

d(x,y)pdγ(x,y)
)1/p

.

Under regularity assumptions, solving the optimal transport problem yields an optimal trans-

port (OT) map T ν
µ so that the minimizing product measure is of the form (µ,T ν

µ ♯
µ) where

T ν
µ ♯

µ(A) = µ(T ν
µ
−1(A)) = ν(A) [17]. We will equivalently denote the space of measures with

the Wp-distance metric as the Wasserstein-p space and just say “Wasserstein” space when p = 2.

Building classifiers and regressors for measure-valued data with finite samples will become simple

after a transformation of measures, called Linearized Optimal Transport (LOT) or Cumulative

Distribution Transform (CDT) [1], to a space that is already amenable to machine learning since

the space of measures is not conducive to standard machine learning techniques and algorithms
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due to its nonlinearity.

1.2.2 Two-Sample Tests

A more simple question when comparing two distributions is essentially whether they are

the same or not, and a traditional method to solve this problem is a two-sample hypothesis test.

We will consider a neural network two-sample test in Chapter 5, but to give a brief overview, let

us cover what the two-sample test exactly is. Assume that you are given two datasets, say P and

Q, and you want to test whether or not these datasets came from the same probability measure or

not. In particular, we want to assess whether to accept the null hypothesis H0 or reject it for the

alternative hypothesis H1, where

H0 : p = q, H1 : p ̸= q,

with p being the density generating samples for P and q being the density generating samples for

Q. Given an estimator f that trains on training datasets with labels, say 1 and −1 respectively, a

two-sample test can be constructed as

µP−µQ =
(
Ex∼P−Ex∼Q

)
f (x).

Given a threshold τ > 0, we reject the null for the alternative if |µP− µQ| > τ. Initially, [62]

showed properties and analyzed performance of the so-called Classifier Two-Sample Test (C2ST)

and specifically showcased theoretically what the statistical power of such two-sample tests. Soon,

[47] developed two-sample tests corresponding to kernels, which was further expanded to neural

tangent kernels by [30].
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1.3 Overview

The thesis will be split into four chapters, not including this one, covering the following

material.

1. Chapter 2: This chapter is based on the paper [57], where the author of this dissertation is

the main author. Given a reference measure σ ∈ P2(Rd) and a target measure µ ∈ P2(Rd),

the author essentially studies the “Linearized Optimal Transport” (LOT) embedding, where

the optimal transport map T µ
σ , discussed in Section 1.2, embeds probability measures into

an L2-space. Using the regular L2-distance in this space, the author discusses when the L2-

distance equals the W2-distance on probability measures so that the LOT embedding is an

isometry. Additionally, the author shows necessary conditions on a dataset of measures that

will ensure linear separability in the LOT embedding space with a pre-specified separation

level. Finally, the author uses multiple reference distributions to produce better separation

guarantees.

2. Chapter 3: This chapter is based on the paper [32], where the author of this dissertation

is the main author. Using the framework from Chapter 2, the author applies the LOT em-

bedding to introduce LOT Wassmap, a computationally feasible algorithm to approximate

low-dimensional structures in the Wasserstein space using manifold learning algorithms,

the Sinkhorn algorithm, and LOT embeddings. This algorithm avoids computing a pairwise

distance matrix and significantly reduces computational cost. Moreover, the PI provided

guarantees on the embedding quality under such approximations, including when explicit

descriptions of the probability measures are not available and one must deal with finite

samples instead. These approximations are guaranteed by showing that pairwise distances

of estimated optimal transport maps converge to the true optimal transport map with rates

depending on the sample sizes of the measures involved.

3. Chapter 4: This chapter is based on (insert reference here), where the author of this
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dissertation is a co-author. This chapter considers structured approximation of measures

in Wasserstein space Wp(Rd) for p ∈ [1,∞) by discrete and piecewise constant measures

based on a scaled Voronoi partition of Rd . We show that if a full rank lattice Λ is scaled

by a factor of h ∈ (0,1], then approximation of a measure based on the Voronoi partition

of hΛ is O(h) regardless of d or p. We then use a covering argument to show that N-term

approximations of compactly supported measures is O(N−
1
d ) which matches known rates

for optimal quantizers and empirical measure approximation in most instances. Finally, we

extend these results to noncompactly supported measures with sufficient decay.

4. Chapter 5: This chapter is based on (insert reference here), where the author of this

dissertation is the main author of the paper. This chapter constructs a neural network two-

sample test and analyzes the behavior of the test in terms of training time. In particular, we

approximate the finite-sample neural network dynamics and population-level neural network

dynamics with the zero-time neural tangent kernel (NTK) population-level dynamics. The

zero-time NTK two-sample test grows as a function of the zero-time kernel eigenvalues and

projection of an approximated function on the associated eigenfunctions. We relate these

dynamics to the finite-sample neural network two-sample test as well as the populationlevel

neural network two-sample test.
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Chapter 2

Linearized Optimal Transport
JOINT WORK WITH HARISH KANNAN, CAROLINE MOOSMÜLLER, ALEX

CLONINGER

In this chapter, we study supervised learning tasks on the space of probability measures.

We approach this problem by embedding the space of probability measures into L2 spaces using

the optimal transport framework. In the embedding spaces, regular machine learning techniques

are used to achieve linear separability. This idea has proved successful in applications and

when the classes to be separated are generated by shifts and scalings of a fixed measure. This

paper extends the class of elementary transformations suitable for the framework to families

of shearings, describing conditions under which two classes of sheared distributions can be

linearly separated. We furthermore give necessary bounds on the transformations to achieve a

pre-specified separation level, and show how multiple embeddings can be used to allow for larger

families of transformations. We demonstrate our results on image classification tasks.
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2.1 Introduction

We consider the problem of classifying probability measures µi on Rn based on a finite

set of pre-classified training data {(µi,yi)}N
i=1, where yi denote the labels. The aim is to use the

given training data to build a function f that assigns a probability measure to its correct label, i.e.

we study supervised learning techniques on the space of probability measures.

The problem of classifying probability measures rather than points in Rn has a number of

applications, a few examples being classification of population groups [33], and classification

of flow cytometry and other measurements of cell or gene populations per person [19, 29, 101].

Note that for application purposes, we need to consider samples of probability measures µi, hence

the task requires one to meaningfully compare and classify point clouds.

The largest issue associated with this classification problem is the generation of features

of µi that can be used to build a classifier f . Many methods use an embedding idea to transform

the set of probability measures into a Hilbert space in which regular machine learning techniques

can be applied for the classification task, e.g. embeddings through moments or kernels [73, 76].

In this paper we are interested in such embeddings based on the optimal transport frame-

work [91]. Optimal transport gives rise to a natural distance on the space of probability measures

via the Wasserstein distance, which quantifies the minimal work necessary to move one distribu-

tion into another using an optimal transport plan. Optimal transport has gained high interest in the

machine learning community in recent years, for example for generative models, semi-supervised

learning or imaging applications [10, 82, 85].

We use the optimal transport plan or map to build an embedding of probability measures

into an L2-space known as “Linear Optimal Transportation” (LOT) [94, 78, 1, 71, 45] or “Monge

embedding” [68]. LOT is a set of transformations based on optimal transport maps, which map a
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distribution µ to the optimal transport map that takes a fixed reference distribution σ to µ:

µ 7→ T µ
σ , where T µ

σ := arg min
T∈Π

µ
σ

∫
∥T (x)− x∥2

2dσ(x), (2.1)

where Π
µ
σ denotes the set of measure preserving maps from σ to µ. Through the embedding (2.1),

the optimal transport map to a fixed reference σ is used as a feature of µ.

Note that LOT takes the manifold of probability measures into a Hilbert space of L2

functions. This makes LOT particularly interesting as a feature space. Indeed, it has been

demonstrated in various applications that within the LOT embedding space, classes of probability

measures can be well separated with linear machine learning tools. The main applications concern

signal and image classification tasks [59, 78, 71], such as distinguishing facial expressions,

separating healthy from cancerous tissue classes [93], and visualizing phenotypic differences

between types of cells [12].

While the LOT embedding space is well studied in 1-dimension [78], since LOT can be

thought of as a generalized CDF, many questions remain open in higher dimensions. This has to

do with the fact that in higher dimensions, there is a large family of potential group actions that

can be applied to a distribution µi (e.g., shifts, scalings, shearings, rotations), and Π
µ
σ contains a

large number of measure preserving maps.

It has been shown that shifts and scalings behave well with respect to the LOT embedding

[1, 71, 78], meaning that two classes of probability measures obtained from scaling or shifting

of a fixed measure can be linearly separated in the LOT embedding space. The reason lies in a

property we refer to as the “compatibility condition”, which is satisfied by shifts and scalings

[1, 71]. This property describes an interplay between LOT and the pushforward operator, or in

terms of Riemannian geometry, the invertability of the exponential map [45]. Similarly, small

perturbations of the distributions in these classes can still be linearly separated under certain

minimal separation conditions [71].
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The contributions of this paper are threefold. We first describe conditions under which

families of shearings satisfy the compatibility condition, enlarging the space of functions for

which linear classification results hold in the LOT embedding space (Section 2.3). The second

contribution concerns binary classification results with pre-specified level of separation (Sec-

tion 2.4). We give necessary bounds on the classes of probability measures to achieve linear

separation in the embedding space with given separation level. The bounds are in terms of the

parameters associated with the set of elementary transformations that are used to create the two

classes. In the third part (Section 2.5), we study embeddings using multiple references. Based on

the set of elementary transformations, we quantify the number references needed to achieve a

desired separation level in the embedding space. The paper closes with classification experiments

on sheared distributions.

2.2 Tools from optimal transport

This paper deals with probability measures on Rn, i.e. with elements of the space P (Rn).

We mostly deal with probability measures that have bounded second moment, and denote the

respective space by P2(Rn). The Lebesgue measure is denoted by λ.

To any probability measure σ, we assign the function space L2(Rn,σ), which is equipped

with the L2-norm with respect to σ:

∥ f∥2
σ =

∫
∥ f (x)∥2

2 dσ(x).

If a measure σ is absolutely continuous with respect to λ, written as σ≪ λ, then there

exists a density fσ : Rn→ R such that

σ(A) =
∫

A
fσ(x)dλ(x),
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with A⊆ Rn measurable. For the most part, the probability measures we consider are absolutely

continuous with respect to λ.

A function S : Rn→ Rn gives rise to the pushforward measure of σ:

S♯σ(A) = σ(S−1(A)). (2.2)

where A⊂ Rn measurable. Throughout this paper, we denote the Jacobian of a function S by JS.

Given two measures, σ and µ there may exist many maps S such that S♯σ = µ. In order to

find a unique map that pushes σ into µ, the theory of optimal transport [91] imposes an “optimality

condition” on the map S. It has to minimize the overall cost of pushing σ into µ, where cost is

measured by a metric in the underlying space (here we use the Euclidean distance in Rn):

∫
∥S(x)− x∥2

2dσ(x). (2.3)

If such a cost minimizing function exists, then

W2(σ,µ)2 = min
S:S♯σ=µ

∫
∥S(x)− x∥2

2dσ(x). (2.4)

is called the Wasserstein-2 distance between σ and µ. Note that the Wasserstein problem can also

be considered for different norms (like p-norm) and on Riemannian manifolds [17, 91, 67, 5].

Brenier’s theorem [17] states that under the assumption of σ≪ λ, a unique map exists

that pushes σ into µ and minimizes (2.3). We call this map “the optimal transport from σ to µ”

and denote it by T µ
σ .

We furthermore make use of the following result:

Theorem 2.1 (Brenier’s theorem [17]). If σ≪ λ, the optimal transport map T µ
σ is uniquely

defined as the gradient of a convex function ϕ, i.e. T µ
σ (x) = ∇ϕ(x), where ϕ is the unique convex

function that satisfies (∇ϕ)♯σ = µ. Uniqueness of ϕ is up to an additive constant.
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2.2.1 Linear optimal transport embeddings

In this section, we introduce linear optimal transport embeddings, as proposed by [94, 78,

45]. A fixed reference measure σ gives rise to an embedding of P2(Rn) into L2(Rn,σ) via the

map

µ 7→ T µ
σ . (2.5)

We denote this map by Fσ, and call it “LOT” or “LOT embedding” (sometimes Fσ is called a

Monge map as well [68]). The LOT embedding can be very useful as a feature space to use linear

machine learning techniques to classify subsets of P2(Rn) [71, 78]. Other fields of application

include the approximation of the Wasserstein distance with a linear L2-distance [71, 68], and fast

barycenter computation and clustering [68].

From a theoretical point of view, the regularity of (2.5) has been studied in [68, 45].

Indeed, the Hölder regularity of (2.5) is not better than 1/2. We also mention the results of [15],

where a map related to LOT is analyzed, namely σ 7→ T µ
σ .

A central property in the study of LOT is the so-called compatibility condition [71, 1]. It

describes an interplay between LOT and the pushforward operator (4.1).

Definition 2.2. Fix σ,µ ∈ P2(Rn) with σ≪ λ. The LOT embedding Fσ is called compatible with

the µ-pushforward of a function S ∈ L2(Rn,µ) if

Fσ(S♯µ) = S◦Fσ(µ).

Note that the compatibility condition of Definition 4.2 can also be written as

T
S♯µ

σ = S◦T µ
σ .

Considering the manifold (P2(Rn),W2) with exponential map (the pushforward operator: expσ(S)=

S♯σ) [45], LOT can be viewed as the exponential map’s right-inverse (i.e. expσ ◦Fσ = id).
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For σ = µ, the compatibility condition forces LOT to be a left-inverse as well (i.e. Fσ ◦

expσ = id).

Under the assumption of the compatibility condition, a series of interesting results can be

derived. First, the Wasserstein-2 distance can be computed from the linear L2-distance,

W LOT
2,σ (µ1,µ2) := ∥Fσ(µ1)−Fσ(µ2)∥σ (2.6)

if µ1,µ2 have been obtained from a fixed template µ via pushforwards of two functions S1,S2 for

which the compatibility condition holds [71], i.e. in this case

W2(S1♯µ,S2♯µ) =W LOT
2,σ (S1♯µ,S2♯µ). (2.7)

This is of particular interest when trying to compute the pairwise distance between many measures

{µi}i=1,...,N , when each µi is obtained from a fixed template µ via the process µi = Si♯µ with

compatible functions {Si}i=1,...,N ([1] calls such a process an “algebraic generative model”). In

this setting, one can compute the N transport maps T µi
σ , and then compute

(N
2

)
linear distances

via (2.6), which is computationally much cheaper (especially for large N), than computing
(N

2

)
transport maps (Wasserstein-2 distances). These results also generalize to when the compatibility

condition is only satisfied up to an error ε > 0 [71]. Then the linear distance (2.6) approximates

W2 up to an error of order ε1/2. Other approximation results (that do not need the compatibility

condition) can be found in [68].

Second, under the assumption of the compatibility condition, convexity is preserved

under LOT [1, 71]. In particular, if H ⊆ L2(Rn,σ) is a set of convex and compatible functions

with respect to σ and µ, then Fσ(H ⋆µ) is also convex, where H ⋆µ = {h♯µ : h ∈H } (a similar

results holds for almost convex sets [71]). The preservation of convexity is crucial to deduce

linear separability results in the embedding space through the Hahn-Banach theorem (e.g. to

apply LOT in supervised learning). Indeed it has been shown that under the assumption of the
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compatibility condition, binary classification of sets of probability measures can be achieved

in the LOT embedding space with linear methods, i.e. in the embedding space, a separating

hyperplane can be found [71, 78].

Yet the compatibility condition (Definition 4.2) is very restrictive, and cannot be expected

to hold for all S. As of now, it is known that shifts and scalings, i.e. functions of the form

S(x) = cx+ b with c > 0 and b ∈ Rn, satisfy Definition 4.2 for all choices of σ,µ [78, 1, 71].

For fixed σ, [1] also shows that for the compatibility condition to hold for all µ, S has to be a

shift/scaling.

It is our aim to extend the set of compatible functions S beyond shifts and scalings to

make LOT applicable to a broader range of applications. In particular we study (generalized)

affine transformations. Note that because of the result in [1], to increase the set of compatible

functions, the reference σ and the template µ can no longer be chosen independently. In the next

section we establish necessary relationships between σ,µ and S for Definition 4.2 to hold.

2.3 Compatibility condition for affine transformations

In this section we study the conditions under which affine transformations S(x) = Ax+b

(and generalizations of such transformations) satisfy the compatibility condition (Definition 4.2).

Our results show that fixing the reference σ and template µ generates necessary conditions for

maps S to satisfy the compatibility conditions with respect to σ and µ. Conversely, fixing the

template µ and the transformations S generates necessary conditions that references σ must satisfy

in order for the compatibility condition to hold. These results strongly depend on the following

theorem.

Theorem 2.3 (Informal Statement of Theorem 2.30). Let σ,µ ∈ P2(Rn) and let σ≪ λ. Let

S ∈C1(Rn,Rn) such that S = ∇ϕ for some twice differentiable function ϕ. We also assume that

S satisfies the compatibility condition (Definition 4.2). Then the Jacobian of S, JS, is symmetric
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positive definite and shares the same eigenspaces as the Jacobians of T µ
σ and T

S♯µ
σ .

Proof. The proof can be found in Section 2.7.

We get the following corollary.

Corollary 2.4. Let σ,µ ∈ P2(Rn) and let σ≪ λ. If S ∈C1(Rn,Rn) such that S = ∇ϕ for some

twice differentiable ϕ and S satisfies the compatibility condition for σ and µ, then S is an optimal

transport map.

Proof. In particular, note that Theorem 2.3 states that if S = ∇ϕ for some ϕ; and if the compati-

bility condition holds, then ∇2ϕ is positive definite. Thus, ϕ must have been convex. In light of

Brenier’s theorem Theorem 2.1, S must be an optimal transport map. Informally, Theorem 2.3

above states that this optimal transport map S must be transporting mass in the same directions

(eigenspaces) as T µ
σ .

We use Theorem 2.3 above to extend a form of LOT isometry to the case when S is an

affine transformation. The only caveat for our extension is that the orthonormal basis on which

we shear must be constant. The relevant function class for this setting is given in the following

definition.

Definition 2.5. Given an orthogonal matrix P ∈ Rn×n, define the constant orthonormal basis

shears as the class of maps

F (P) =

{
x 7→ P̃⊤



f1((P̃x)1)

f2((P̃x)2)

...

fn((P̃x)n))


+b :

f j:R→R is monotonically
increasing and differentiable

and b ∈ Rn

}
,

where P̃ is a row-permutation of the orthogonal matrix P.
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Note that affine transformations S(x) = Ax+ b with A = PT DP and di > 0, i = 1, . . . ,n

(i.e. symmetric positive definite matrices diagonalizable by P), are elements of F (P). Indeed,

choose fi(y) = diy, i = 1, . . . ,n.

Given a fixed template distribution µ, we show that demanding that the compatibility

condition holds (under suitable conditions), if we fix either the reference distribution σ or the set of

transformations, then the other (either the reference or transformations) can be fully characterized.

Fixed Reference and Template: Assume we fix the template distribution µ and reference

distribution σ. If the Jacobian of T µ
σ (x) has spectral decomposition P⊤D(x)P for a constant

orthogonal matrix P, then the set of compatible transformations can be fully characterized:

Theorem 2.6 (Conditions on transformations). Let σ,µ ∈ P2(Rn) with σ≪ λ. If the Jacobian of

T µ
σ has a constant orthonormal basis given by an orthogonal matrix P (i.e. JT µ

σ
(x) = P⊤D(x)P),

then F (P) is the set of transformations for which the compatibility condition (Definition 4.2)

holds.

Proof. The proof of the theorem can be found in Section 2.7.

Example 2.7 (Gaussians). To illustrate Theorem 2.6, we provide a simple example with Gaussians.

If both σ and µ are Gaussian distributions, for example N (m1, I) and N (m2,Σ2), then

T µ
σ (x) = m2 +Σ

1/2
2 (x−m1),

and JT µ
σ
(x) = Σ

1/2
2 . If Σ2 is positive definite, then it can be decomposed as PT DP. Therefore,

Theorem 2.6 allows all generalized shears in Definition 2.5 that point in the same direction as Σ2.

Fixed Shear and Template: Now we fix the transformation to be a type of generalized

shear and the template distribution µ, and characterize the set of reference distributions such that

compatibility condition holds.
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Theorem 2.8 (Conditions on reference distribution). Let P be an orthogonal matrix, let S(x) =

P⊤g(Px)+b for g(z) =
[

g1(z1) . . . gn(zn)

]
: Rn→ Rn where g j : R→ R is differentiable and

b∈Rn, and let µ∈P2(Rn) be a fixed template distribution with µ≪ λ. Then Σ= { f♯µ : f ∈F (P)}

is the set of reference distributions such that the compatibility condition (Definition 4.2) holds.

Proof. The proof can be found in Section 2.7.

In Theorem 2.8, note that the reference distributions in Σ end up being absolutely continu-

ous since they are the smooth pushforward of an absolutely continuous measure. Additionally,

we get the following corollary.

Corollary 2.9. Given the family of transformations of the form S(x) from Theorem 2.8 above, i.e.

for S in the set

{
S(x) = P⊤g(Px)+b : b ∈ Rn,g j : R→ R differentiable

}
,

the set of reference distributions such that the compatibility condition holds for all of the transfor-

mations simultaneously is Σ = { f♯µ : f ∈ F (P)}.

Proof. Inspecting the proof of Theorem 2.8, we see that the set of reference distributions Σ does

not depend on the choice of functions g j : R→ R but rather only on P.

Remark 2.10. In Theorem 2.8, if we let gi(zi) = dizi for fixed di, then S(x) = Ax+ b, where

A = P⊤DP. Thus, for a template distribution µ ∈ P2(Rn) with µ≪ λ, Σ = { f♯µ : f ∈ F (P)} is

again the set of reference distributions such that the compatibility condition holds for constant

shears such as Ax+b.

A corollary of the theorems above is when the transformations used are constant shears.

Corollary 2.11. Consider an affine transformation S(x) = Ax+b, where A is symmetric positive

definite with orthonormal basis given by an orthogonal matrix P. For a template distribution
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µ ∈ P2(Rn) with µ≪ λ, Σ = { f♯µ : f ∈ F (P)} is the set of reference distributions such that the

compatibility condition holds.

Example 2.12 (Gaussians with fixed shear). To illustrate Theorem 2.8, we provide a simple

example again with Gaussians. Let µ = N (m1, In). Consider a symmetric positive definite matrix

A with spectral decomposition A = P⊤ΛP and a corresponding fixed shear S(x) = Ax+ b for

some b ∈ Rn, which yields the pushforward S♯µ = N (Am1 + b,AA⊤). For simplicity, we will

check that the subset of compatible affine transformations

Faffine(P) = { f (x) =Cx+d : f ∈ F (P)}

= {P⊤DPx+d : Di j = 0 ∀ i ̸= j,Dii > 0,d ∈ Rn}

yields reference distributions σ ∈ { f♯µ : f ∈ Faffine(P)} so that the compatibility condition hold.

In particular note that for f (x) =Cx+d = P⊤DPx+d, our reference distributions have the form

σ = N (Cm1 +d,CC⊤) = N (Cm1 +d,P⊤D2P).

Since the optimal transport map between two general Gaussians N (m̃1,Σ1)→ N (m̃2,Σ2) is

given by

m̃2 +Σ
− 1

2
1 (Σ

1
2
1 Σ2Σ

1
2
1 )

1
2 Σ
− 1

2
1

(
x− m̃1

)
,

see [87], we know that

T µ
σ = m1 +(CC⊤)−

1
2 (CC⊤)

1
2 (CC⊤)−

1
2︸ ︷︷ ︸

(CC⊤)−1/2=(C2)−1/2=C−1

(
x−Cm1−d

)

= m1 +C−1(x−Cm1−d) =C−1(x−d).
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So we have that

S◦T µ
σ (x) = AC−1(x−d)+b.

On the other hand because C = P⊤DP =C⊤ and A = P⊤ΛP = A⊤ (so that AC =CA), we have

that

T
S♯µ

σ = Am1 +b+M(x− (Cm1 +d))

M = (CC⊤)−1/2((CC⊤)1/2AA⊤(CC⊤)1/2)1/2(CC⊤)−1/2

=C−1(CA2C)1/2C−1 =C−1(C2A2)1/2C−1 = AC−1

=⇒ T
S♯µ

σ (x) = Am1−Am1︸ ︷︷ ︸
0

+b+AC−1(x−d) = S◦T µ
σ (x).

So we actually get compatibility here and in section 2.12 we present a numerical validation of

this fact.

Shears are Not Compatible in General: Another consequence of Theorem 2.3 is that

non-trivial orthogonal transformations cannot be transformations that satisfy the compatibility

condition.

Theorem 2.13. Let σ≪ λ,µ ∈ P2(Rn), and let S(x) = Ax+b be a compatible transformation

(i.e S◦T µ
σ = T

S♯µ
σ ) such that b ∈ Rn is a shift and A ∈ Rn×n is an orthogonal matrix. Then A must

be the identity.

Proof. The proof can be found in Section 2.7.

2.4 Binary classification with pre-specified separation

The main application of LOT isometries is to embed a subset of P2(Rn) into a linear

space where binary classification is easily accomplished via linear separability. We show that
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data generated from a suitably bounded set of transformations still allows one to have LOT linear

separability in a suitable supervised learning paradigm. We focus on classifying two classes. For

the multi-class classification problem, one can use these results to build an ensemble of one-v-one

classifiers.

Consider the following data-generating process:

Definition 2.14 (Elementary Transformation Generated Process). Consider a class of functions

H ⊆ {h : Rn→ Rn}. Let µ1 or µ2 be two probability measures. Then we call H ⋆µ1 = {h♯µ1 :

h ∈H } and H ⋆µ2 = {h♯µ2 : h ∈H } the measures generated from elementary transformation

H and µ1 and H and µ2, respectively. Moreover, assume that H ⋆µ1 have label y = 1 and H ⋆µ2

have label y =−1.

Given a reference σ and a set of measures Q , let Fσ(Q ) be the embedding of Q into

the LOT space L2(Rn,σ). Given the data generating process above, our goal is to show that the

linear separability of Fσ(H ⋆µ1) and Fσ(H ⋆µ2) is well characterizable with respect to H and

the distance between µ1 and µ2. We summarize the main result in the theorem below with proof

given in Section 2.8:

Theorem 2.15. Consider distributions µ1,µ2,σ ∈ P2(Rn), where µ1 and µ2 have bounded sup-

port, Wasserstein-2 distance W2(µ1,µ2) > 0, and σ≪ λ. Pick a separation level δ such that

W2(µ1,µ2)> δ > 0 and an error level ε > 0. Define L≤ W2(µ1,µ2)−δ

2 − ε. Let

H ⊆ {h : Rn→ Rn|h = ∇φ for convex φ,∥h− I∥µi ≤ L, i ∈ {1,2}}

be some convex set of transformations such that H is compatible for σ and µ1 as well as σ and

µ2. Furthermore, define the ε-tube of this set of transformations

Hε = {h̃ : Rn→ Rn| ∥h− h̃∥µi < ε; i ∈ {1,2},h ∈H }.
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Then, the sets Fσ(Hε ⋆µ1) and Fσ(Hε ⋆µ2) are linearly separable with separation at least δ.

Remark 2.16. In Theorem 2.15, it should be emphasized that either σ needs to be chosen to

be compatible with H and µ1 and µ2 or H needs to be chosen so that σ is compatible with

µ1 as well as µ2 with respect to H . This can occur, for example, if we choose σ = N(0, I) to

be an isotropic Gaussian and let µ1 = N(0,Σ1) and µ2 = N(0,Σ2) be such that Σ1Σ2 = Σ2Σ1

(i.e. their covariances have the same orthonormal eigenbasis, say P), then H = F (P) from

Definition 2.5 works for compatibility according to Theorem 2.6. Another scenario would be

to consider absolutely continuous target measures µ0 and µ1 with a constant speed geodesic

(µt)t∈[0,1], then Lemma 7.2.1 of [7] implies that

T µ1
µt

= T
(T

µ1
µ0 )♯µ0

µt = T µ1
µ0
◦T µ0

µt
,

which is essentially the compatibility condition with S= T µ1
µ0 . In light of the proof for Theorem 2.30,

we note that the Jacobian JT
µ0

µt
(x) must have the same eigenspaces as JT

µ1
µ0
(T µ0

µt (x)). Now, let

JT
µ1

µ0
(x) = P(x)⊤ diag(d(x))P(x) for some orthogonal matrix-valued and vector-valued function

defined by P(x) and D(x), respectively, with d(x)> 0. If there exists a map S such that

JS(x) = P(x)⊤ diag(d̃(x))P(x)

for some other vector-valued function d̃(x)> 0, then S should also be compatible. To see this,

notice that (S ◦T µ0
µt )♯µt = S♯µ0 = (T

S♯µ0
µt )♯µt , and since JS◦T µ0

µt
is symmetric positive-definite by

construction, we know that S◦T µ0
µt = T

S♯µ0
µt . In this case,

{S : Rn→ Rn|JS(x) = P(x)⊤ diag(d̃(x))P(x), d̃(x)> 0}

is a candidate for H .

Remark 2.17. The bounds on the function class H ensure that H ⋆µ1 and H ⋆µ2 are disjoint.
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However, note that there can still exist function classes H without a bound on it, where H ⋆µ1

and H ⋆ µ2 are still disjoint. For example, one can consider the case when H is the set of all

shifts and when µ1 and µ2 are a uniform distribution on the unit square and an isotropic Gaussian.

In this case, the sets H ⋆µ1 and H ⋆µ2 are disjoint.

Remark 2.18. Notice that the functions F (P) from Definition 2.5 satisfy the conditions of H being

the gradient of a convex function in Theorem 2.15 above. In particular, every S= P̃⊤ f (Px)∈F (P)

can be written as S = ∇φ for some convex φ. To see this, let pi j denote the (i, j)th entry of P̃⊤,

then we have that

φ(x) =
∫
R

(
(S(x)) j

)
dx j =

∫
R

n

∑
k=1

p jk fk

( n

∑
i=1

pkixi

)
dx j

=
n

∑
k=1

p jk

∫
R

fk

( n

∑
i=1

pkixi

)
dx j.

Note that JS(x)(s) = P⊤J f (Px)(x) and

(J f (Px)(x))i j = f ′i

( n

∑
ℓ=1

Piℓxℓ

)
pi j =⇒ J f (Px)(x) = diag( f ′(Px))P

using the chain rule, where ( f ′(Px)) j = f ′j((Px) j). This tells us that JS(x)(x) = P⊤ diag( f ′(Px))P

so JS is symmetric. Since the f j’s are increasing and differentiable, it is immediate that JS is

positive definite. This implies that φ is convex.

When we assume that H is compatible with respect to µ1 and µ2 and use either of these

templates as the reference distribution, we actually gain better results than the general separation

theorem above. The proof for the theorem below is in Section 2.8:

Theorem 2.19. Fix µ1,µ2 ∈ P2(Rn) with finite support and µ1,µ2≪ λ. Let H be a convex set

of transformations that are compatible with µ1 and µ2 (this includes shifts and scalings). Let

Hε = {hε : ∥h−hε∥µ j < ε, j = 1,2}.
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1. (Linear separability) If H ⋆µ1 and H ⋆µ2 are disjoint, then Fµ1(H ⋆µ1) and Fµ1(H ⋆µ2)

are linearly separable.

2. (Linear separability of ε-tube functions) If the minimal separation between H ⋆ µ1 and

H ⋆µ2 is greater than 2ε, then Fµ1(Hε ⋆µ1) and Fµ1(Hε ⋆µ2) are linearly separable.

3. (Sufficient conditions for separation) If we assume:

(a) For every h ∈H and every x ∈ Rn that ∥h(x)∥2 ≥
√

2∥x− x0∥2 where x0 is the mean

of the normalized measure |µ1−µ2|

x0 =
1

|µ1−µ2|(Rn)

∫
Rn

zd|µ1−µ2|(z),

(b) suph,h̃∈H ∥h− h̃∥µ1 ≤W2(µ1,µ2)−δ−2ε for δ > 0,

then Fµ1(Hε ⋆µ1) and Fµ1(Hε ⋆µ2) are separated by at least δ > 0.

Remark 2.20. Notice that if we choose H to be shifts and scalings, the first statement of

Theorem 2.19 is the direct generalization of corollary 4.3 of [71] since shifts and scalings are

compatible with every probability measure.

Remark 2.21. Notice that in Theorem 2.19, the condition W2(µ1,µ2)−δ≥ suph,h̃∈H ∥h̃−h∥µ1 in

the third statement is essentially the same condition the one in Theorem 2.15 because by rewriting

the condition in Theorem 2.15, we get suph∈H ∥h− I∥µ1 ≤
W2(µ1,µ2)−δ

2 . This comes from the fact

that

2 sup
h∈H
∥h− I∥µ1 ≥ sup

h,h̃∈H
∥h̃−h∥µ1 ≥ sup

h∈H
∥h− I∥µ1− inf

h̃∈H
∥h̃− I∥µ1 .

If the problem setting allows I ∈H , then the right hand side is just suph∈H ∥h− I∥µ1 . Thus, in

this case, Theorem 2.19 is stronger than Theorem 2.15 since our function class has the larger

bound suph∈H ∥h− I∥µ1 ≤W2(µ1,µ2)−δ.
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Theorem 2.15 above acts as a blueprint for controlling the degree of separation in the

LOT embedding via the bounds of the function class H . For the specific setting of shears,

Hγ,M,Mb =
{

Ax+b : A is symmetric positive definite with
λmin(A)> γ and λmax(A)< M, and ∥b∥2 ≤Mb

}
, (2.8)

we can choose γ,M, and Mb in a way that guarantees that Fσ(Hγ,M,Mb ⋆µ1) and Fσ(Hγ,M,Mb ⋆µ2)

are δ-separated.

Corollary 2.22. Consider two distributions µ1 and µ2 with Wasserstein-2 distance W2(µ1,µ2). Let

us denote R1 = maxx∈supp(µ1) ∥x∥2 and R2 = maxx∈supp(µ2) ∥x∥2. For the function class of shears

Hγ,M,0 and σ≪ λ, we can ensure that Fσ(Hγ,M,0 ⋆µ1) and Fσ(Hγ,M,0 ⋆µ2) are δ-separated if

Case 1: assuming that W2(µ1,µ2)> (R1 +R2)+δ, then M is chosen such that

2 < M ≤ W2(µ1,µ2)−δ+(R1 +R2)

R1 +R2
,

and

Case 2: assuming that δ <W2(µ1,µ2)< (R1 +R2 +δ), then either M is chosen such that

1 < M ≤ W2(µ1,µ2)−δ+(R1 +R2)

R1 +R2

or γ is chosen such that

γ≥ δ−W2(µ1,µ2)+R1 +R2

R1 +R2
.

Proof. This comes straight from Corollary 2.38 provided that Mb = 0 and ε = 0.
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2.5 Binary Classification with Multiple References

It is possible to achieve better separation with a larger function class than the class of

bounded shears described in Section 2.4. The cost of this better separation, however, is to use

multiple LOT spaces. Note that once a set of two measures H ⋆µ1 and H ⋆µ2 are separable in

LOT space with respect to one reference (from Theorem 2.15), then H ⋆µ1 and H ⋆µ2 must be

separable in LOT space with respect to multiple references.

First we must provide a couple of definitions to extend our framework to multiple refer-

ences.

Definition 2.23. Given a family of functions H and a family of N reference measures σ1, . . . ,σN ,

the multiple reference LOT embedding of µ, denoted FN(µ), is defined as

FN(µ) = Fσ1(H ⋆µ)× . . .×FσN (H ⋆µ).

Definition 2.24. Given δ∗ > 0 and (T1,µ, . . . ,TN,µ) ∈ FN(µ) and (S1,γ, . . . ,SN,γ) ∈ FN(γ), the

families are called δ∗-separable if the product metric on Fσ1(P2)× . . .×FσN (P2) satisfies

∥∥∥∥∥
(

dσ1(T1,µ,T1,γ), . . . ,dσN (TN,µ,TN,γ)

)∥∥∥∥∥
2

> δ
∗,

where dσ j is the metric corresponding to Fσ j(P2) and ∥ · ∥2 is the regular ℓ2-norm that we are

applying to the Euclidean point

(
dσ1(T1,µ,T1,γ), . . . ,dσN (TN,µ,TN,γ)

)
.

Lemma 2.25. Let µ,γ ∈ P2 with bounded support, ε > 0, and

H = {h : Rn→ Rn|h = ∇φ for convex φ,∥h− I∥µ ≤ L,∥h− I∥γ ≤ L},
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where 2(L + ε) < W2(µ,γ). Consider a desired separation level δ∗. If we have absolutely

continuous (with respect to the Lebesgue measure) reference measures σ1, . . . ,σN such that

H is compatible for σ j and µ as well as σ j and γ for K of the reference measures, where

K ≥
(

δ⋆

W2(µ,γ)−2(L+ε)

)2
, then FN(µ) and FN(γ) are δ∗-separable with respect to Hε and the given

family of reference measures.

Notice that the Lemma 2.25 allows one to pick a larger function class H and a small

separation level δ∗ than with just one reference measure; however, the number of LOT spaces

that you must embed into is the cost of this better performance.

A basic (well-known) exercise in linear algebra shows that in any finite dimensional vector

space V , for any 0 < r < p, and for x ∈V , we have

∥x∥p ≤ ∥x∥r ≤ n
1
r−

1
p∥x∥p.

Even though Fσ1(P2)× . . .×FσN (P2) is an infinite-dimensional space, the product metric on

this product space is actually acting on R>0× . . .×R>0. This means that the ℓp and ℓr norm

inequalities above hold for our product space when endowed with the product metric. This

essentially signals “stronger” linear separability.

To see this with two spaces, assume that Fσ1(H ⋆µ) and Fσ1(H ⋆ γ) are δ1-separated in

Fσ1(P2) and that Fσ2(H ⋆µ) and Fσ2(H ⋆γ) are δ2-separated in Fσ2(P2), then in the product space,
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we have

max(δ1,δ2) =

∥∥∥∥∥
dσ1(Fσ1(H ⋆µ),Fσ1(H ⋆ γ))

dσ2(Fσ2(H ⋆µ),Fσ2(H ⋆ γ))

∥∥∥∥∥
∞

≤

∥∥∥∥∥
dσ1(Fσ1(H ⋆µ),Fσ1(H ⋆ γ))

dσ2(Fσ2(H ⋆µ),Fσ2(H ⋆ γ))

∥∥∥∥∥
2

≤
√

2

∥∥∥∥∥
dσ1(Fσ1(H ⋆µ),Fσ1(H ⋆ γ))

dσ2(Fσ2(H ⋆µ),Fσ2(H ⋆ γ))

∥∥∥∥∥
∞

=
√

2max(δ1,δ2).

We are more interested, however, in providing lower bounds for the product ℓ2-norm. To

investigate this, let’s assume that H is fixed and that we have N templates distributions σ1, . . . ,σN .

Now if µ is a generic distribution, let

FN(µ) = Fσ1(H ⋆µ)×Fσ2(H ⋆µ)× . . .×FσN (H ⋆µ)

⊆ Fσ1(P2)× . . .×FσN (P2)

denote the embedding of H ⋆µ into the product LOT space defined by σ1, . . . ,σN . We will now

prove the result.

Proof of Lemma 2.25. From Theorem 2.15, we know that for every j, Fσ j(H ⋆µ) and Fσ j(H ⋆µ)

can be δ j-separated for some δ j <W2(µ,γ)−2(L+ ε). Now notice that the degree of separation

in the product space is

∥∥∥∥∥


δ1

...

δN


∥∥∥∥∥

2

=

√√√√ N

∑
j=1

δ2
j <

√√√√ N

∑
j=1

(W2(µ,γ)−2(L+ ε))2 =
√

N(W2(µ,γ)−2(L+ ε)).
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Thus, if we want to be at least δ∗-separated in the product space, then we must have

δ
∗ ≤

∥∥∥∥∥


δ1

...

δN


∥∥∥∥∥

2

<
√

N(W2(µ,γ)−2(L+ ε))

=⇒ N >

(
δ∗

W2(µ,γ)−2(L+ ε)

)2

So we’re done.

Example 2.26. To show the tradeoff of Lemma 2.25, let’s try a multiple LOT embedding example

with Gaussians. Using the previous examples, assume that we have two template distributions

µ1 = N (0,Σ1) and µ2 = N (0,Σ2). We know that W2(µ1,µ2)
2 = Tr(Σ1 +Σ2− 2(Σ

1
2
1 Σ2Σ

1
2
1 )

1/2).

Recalling that the optimal transport map from µ1 to µ2 is given by

Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )Σ

−1/2
1 x =: Aµ1→µ2x,

we consider the set of shears

H = {Ax : A = A⊤ ∈ Rn×n,AAµ1→µ2 = Aµ1→µ2A,MIn ⪰ A⪰ mIn ≻ 0}

as our set of transformations, where the commuting property of A with Aµ1→µ2 ensures that H

compatible with µ1 and µ2. To ensure separation, we use L ≤ W2(µ1,µ2)−δ

2 , which is shown in

Section 2.9 to imply that

max
(
|M−1|, |1−m|

)
≤ W2(µ1,µ2)−δ

2max j=1,2 ∥Σ
1/2
j ∥F

.

Now let us define our reference distributions to be of the form σ1 = (h1)♯µ1 and σ2 = (h2)♯µ2 for
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h1(x) = A1x and h2(x) = A2x, where A1,A2 are chosen so that h1,h2 ∈H , and so

σ1 = (h1)♯µ1 = N (0,A1Σ1A⊤1 ), σ2 = (h2)♯µ2 = N (0,A2Σ2A⊤2 ).

Notice that the bounds on M and m imply that there are infinite choices of reference distributions

to choose from. Moreover, we show in Section 2.9 that

M2

m
W2(µ1,µ2)≥ ∥T

h♯µ1
σ j −T

h̃♯µ2
σ j ∥σ j ≥

m2

M
W2(µ1,µ2)

for our choices of reference distributions and any h, h̃ ∈H . Now choosing N reference distribu-

tions, our multiple LOT embedding has minimal separation bounded below by

√√√√ N

∑
j=1
∥T (h1)♯µ1

σ j −T
(h2)♯µ2

σ j ∥2
σ j
≥

√√√√ N

∑
j=1

m4

M2W2(µ1,µ2)2 =
√

N
m2

M
W2(µ1,µ2).

These choices of σ1 and σ2 ensure that each reference is compatible with µ1 and H as well as

µ2 and H . Notice that as δ becomes closer to W2(µ1,µ2), we find that both m and M become

closer to 1, which means that our set of shears become closer to the identity. Using multiple

LOT embeddings; however, we can actually use the maximal function class of shears H when

M = 1+ W2(µ1,µ2)

2max j=1,2 ∥Σ
1/2
j ∥F

and m = 1− W2(µ1,µ2)

2max j=1,2 ∥Σ
1/2
j ∥F

. To get the same separation with the largest

possible function class as when we have δ > 0, we need

√
N

((1− W2(µ1,µ2)

2max j=1,2 ∥Σ
1/2
j ∥F

)2

1+ W2(µ1,µ2)

2max j=1,2 ∥Σ
1/2
j ∥F

)
≥

((1− W2(µ1,µ2)−δ

2max j=1,2 ∥Σ
1/2
j ∥F

)2

1+ W2(µ1,µ2)−δ

2max j=1,2 ∥Σ
1/2
j ∥F

)
.
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Rearranging the inequality and squaring both sides, we get the following bound for N

N ≥

( 2 max
j=1,2
∥Σ1/2

j ∥F +W2(µ1,µ2)

2 max
j=1,2
∥Σ1/2

j ∥F +W2(µ1,µ2)−δ

)2(2 max
j=1,2
∥Σ1/2

j ∥F −W2(µ1,µ2)+δ

2 max
j=1,2
∥Σ1/2

j ∥F −W2(µ1,µ2)

)4

.

Thus, if needed, we can allow δ to stay small (or even become zero), which would allow us to

use the maximal function class of shears H ; however, the cost of this larger function class and

separation level is increasing the number of reference distributions.

2.6 Numerical experiments

2.6.1 Binary classication of MNIST Images

In this section we present pairwise binary classification results on sheared MNIST images

which are motivated by the linear separability result presented in Corollary 2.22 and also illustrate

the benefit of using multiple references as indicated by lemma 2.25.

The LOT embedding pipeline for an image 1

1. Obtain the image represented as a n×n matrix of pixel values.

2. Assuming that the image is supported on a n×n grid on the unit square, obtain the point

cloud which forms the support of the pixel values corresponding to the image.

3. Obtain the discrete measure µ induced by the image on the unit square. Each point in

the support of the image has a pixel value which (after normalization) will be the mass

associated with µ .

1Code for our LOT classification experiments on MNIST images can be found at https://github.com/srjr-
hkannan/LOTpython
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4. Let σ denote a discrete reference measure 2. Compute the discrete transport coupling matrix

Pµ
σ

3. For each point x in the support of the reference σ, choose T µ
σ (x) as the point in the

support of µ such that T µ
σ (x) = argmaxy∈supp(µ)P

µ
σ(x,y). Here P(x,y) denotes the amount of

mass transported from x ∈ supp(σ) to y ∈ supp(µ). This is done to extract an approximate

Monge map from the coupling matrix [71].

5. The LOT embedding of the image corresponding to the reference σ is chosen to be T σ
µ . Note

that T σ
µ ∈ R2m, where m denotes the size of the size of the support σ, i.e. m := |supp(σ)|.

Henceforth this R2m vector will be referred to as the LOT feature corresponding to the

particular image that is being embedded.

Figure 2.1: a) A Gaussian reference distribution approximated on a 28× 28 grid. b) Five
different Gaussian distributions approximated on a 28×28 grid to be used as multiple reference
for LOT embedding.

2.6.2 Experimental settings

The MNIST images are sheared using the transformation described in Section 2.10 and

the values for each of the parameters λ1,λ2,θ,b are drawn randomly from a pre-fixed range for

2In case the desired reference is an absolutely continuous measure on the unit square, then we work with the
discrete measure it induces on the n×n grid on the unit square (See Figure 2.1).

3https://pythonot.github.io/ [43]
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each image. We perform classification experiments for the MNIST images under two different

shearing conditions (See Figure 2.2). For one set of shearing conditions, termed as mild shearing

, the parameters of shearing for each image, λ1,λ2 are randomly chosen in the interval [0.5,1.5],

θ is randomly chosen in the interval [0,360] degrees and the shifts b are randomly chosen in

the interval [−5,5]. For the other set of shearing conditions termed as severe shearing, the

parameters of shearing for each image, λ1,λ2 are randomly chosen in the interval [0.5,2.5], θ

is randomly chosen in the interval [0,360] degrees and the shifts b are randomly chosen in the

interval [−5,5]. Then the LOT feature corresponding to each of the sheared images are computed

using the embedding pipeline described in subsection 2.6.1 and then classification experiments

are performed using Linear Discriminant Analysis (LDA) [50] 4.

To test the performance of LDA (Linear Discriminant Analysis) classification of two

distinct classes of MNIST [40] digits using LOT features, we study the test error of the LDA

classifier as a function of the number of training images chosen for each digit. For each fixed

number, Ntrain, of training images, we train the LDA classifier using a randomly chosen set of

Ntrain images from each digit class and test the classification results on a randomly chosen set

of 1000 test images from each digit class. We then repeat this experiment for each fixed Ntrain

using 20 different randomly chosen set of training images (Ntrain images from each digit class)

and 1000 test images from each digit class.

2.6.3 Observations

In Figure 2.3 we report the mean test error for classification of MNIST ones and twos

and in Figure 2.4 we report the mean test error for classification of MNIST sevens and nines for

various choices of reference distributions and under different shearing conditions. Therein for

comparison, we also report the results obtained using the semi-discrete optimal transport [68]

4https://scikit-learn.org/
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Figure 2.2: In each figure, the first row shows the true unsheared MNIST image. The second
row shows the corresponding mildly sheared MNIST image. The parameters (Section 2.10)
of shearing for each image, λ1,λ2 are randomly chosen in the interval [0.5,1.5], θ is randomly
chosen in the interval [0,360] degrees and the shifts b are randomly chosen in the interval
[−5,5]. The third row shows the corresponding severely sheared MNIST image. The parameters
(Section 2.10) of shearing for each image, λ1,λ2 are randomly chosen in the interval [0.5,2.5],
θ is randomly chosen in the interval [0,360] degrees and the shifts b are randomly chosen in the
interval [−5,5]

framework which uses a uniform reference measure. The corresponding standard deviations are

reported in Figures 2.8 and 2.9. We observe that the LOT framework is able to achieve low test

errors with a relatively low number of training images. Moreover we see that using multiple

references does indeed lead to a decrease in the classification error. Interestingly, we observe that

using multiple references also helps reduce over-fitting (See Figure 2.5). The trade-off observed

is that using multiple references increases the length of the feature vector while on the other hand

it leads to a decrease in the test error.

In Figure 2.6 we illustrate as a heat-map, the mean test errors for binary classification of

all pairs of MNIST digits using 50 training images per class and for different choices of references.

Also, in Table 2.1 we report the range of test errors and standard deviations observed across all the

classification experiments corresponding to Figure 2.6. Further in Figure 2.11, for comparison, we
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report the classification results for sheared MNIST 7s and 9s using convolutional neural networks

with 1586 training parameters (labelled small CNN) and 3650 training parameters (labelled large

CNN) under identical training and testing conditions as that of the discrete LOT classifier.

Figure 2.3: (a) Test errors for binary classification of mildly sheared MNIST 1s and 2s using
(a1) Gaussian references (a2) sheared MNIST 1s and 2s as references (a3) unsheared MNIST 1s
and 2s as references. (b) Test errors for binary classification of severely sheared MNIST 1s and
2s using (b1) Gaussian references (b2) sheared MNIST 1s and 2s as references (b3) unsheared
MNIST 1s and 2s as references. In the cases where MNIST images are used as references,
the results are reported for the cases where the number of references used is 2i for i = 1, · · ·5
wherein i images from each class are randomly drawn to be used as references from a pool of
images that do not correspond to any of the training and testing images. For each fixed number
of training images per class, Ntrain, the mean test classification error averaged across 20 random
choices of Ntrain training images (per class) and 1000 test images (per class) is reported. The
number inside the parenthesis in the legends of the images denote the length of the LOT feature
vector corresponding to the particular choice of references. In all figures, for comparison, the
results for classification using the semi discrete linear optimal transport framework [68] which
uses the uniform measure as the reference is also reported. Standard deviations for each of the
corresponding classification tests are reported in the Figure 2.8.
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Figure 2.4: (a) Test errors for binary classification of mildly sheared MNIST 7s and 9s using
(a1) Gaussian references (a2) sheared MNIST 7s and 9s as references (a3) unsheared MNIST 7s
and 9s as references. (b) Test errors for binary classification of severely sheared MNIST 7s and
9s using (b1) Gaussian references (b2) sheared MNIST 7s and 9s as references (b3) unsheared
MNIST 7s and 9s as references. In the cases where MNIST images are used as references,
the results are reported for the cases where the number of references used is 2i for i = 1, · · ·5
wherein i images from each class are randomly drawn to be used as references from a pool of
images that do not correspond to any of the training and testing images. For each fixed number
of training images per class, Ntrain, the mean test classification error averaged across 20 random
choices of Ntrain training images (per class) and 1000 test images (per class) is reported. The
number inside the parenthesis in the legends of the images denote the length of the LOT feature
vector corresponding to the particular choice of references. In all figures, for comparison, the
results for classification using the semi discrete linear optimal transport framework [68] which
uses the uniform measure as the reference is also reported. Standard deviations for each of the
corresponding classification tests are reported in the Figure 2.9.

2.7 Compatibility Condition Proofs

Lemma 2.27. Suppose V is a finite-dimensional vector space, φ : V →V is a diagonalizable linear

map, and U ⊆V is a φ-invariant subspace. Then the restriction φ|U : U →U is diagonalizable.
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Figure 2.5: Illustration of the benefit of using multiple references to reduce overfitting in the
classification of severely sheared MNIST 7s and 9s using true MNIST images as references
under the same training and testing conditions of Figure 2.4 (b3).

Table 2.1: Range of mean value and standard deviations of test errors for pairwise classification
of sheared MNIST images across all pairs of digits for various reference choices. The reported
values are across 20 experiments involving different choices of 50 randomly drawn training
images per class and 500 randomly drawn test images per class for each experiment.

Reference choice Mean STD deviation
Mild Severe Mild Severe

1 Gaussian [0.0083,0.1298] [0.0198,0.2132] [0.0064,0.0291] [0.0108,0.0382]
2 MNIST [0.0078,0.0880] [0.0220,0.1585] [0.0056,0.0244] [0.0111,0.0328]

Proof. Let λ1, . . . ,λk be distinct eigenvalues of φ. We will denote by E(λk,φ) the eigenspace of φ

corresponding to eigenvalue λk. Since φ is diagonalizable over V , we can represent V as a direct

sum

V = E(λ1,φ)⊕·· ·⊕E(λm,φ).

This means exactly that any vector v is given by

v = w1 + · · ·+wm

where wi ∈ E(λi,φ). As U is a finite dimensional vector space, we know that there exists a basis

36



Figure 2.6: (a) Test errors for binary classification of all pairs of mildly sheared MNIST images
using (a1) one Gaussian reference (a2) two unsheared MNIST images as references. (b) Test
errors for binary classification of all pairs of mildly sheared MNIST images using (b1) one
Gaussian reference (b2) two unsheared MNIST images as references. For each given pair of
digits, in the case of MNIST images as references (a2),(b2), one image corresponding to each
class is randomly drawn to serve as the references. The reported error is a mean value 20
experiments involving different choices of 50 randomly drawn training images per class and 500
randomly drawn test images per class for each experiment. The range of standard deviations for
the test errors for each case is reported in Table 2.1.

for U given by {u1, . . . ,uk}. Let us consider the linear map

Φi(u) = ∏
j=1,...,m

j ̸=i

(λ jI−φ|U)u.

Note that this linear map is commutative in its order of composition. We now will take every

basis vector ui and represent it in terms of eigenvector. Note that because ui is a vector in V , we
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Figure 2.7: Visualization of separation in the LDA projection using LOT features with 2
unsheared MNIST images as references for 50 training images per class corresponding to (a)
mildly sheared MNIST sevens and nines (b) severely sheared MNIST sevens and nines. The
y-axis denotes the value of the projection onto the LDA separating line for the two classes, and
the x-axis denotes an ordering of the MNIST images.

find that there exists eigenvectors w1,1 ∈ E(λ1,φ), . . . ,w1,m ∈ E(λm,φ) such that

u1 = w1,1 +w1,2 + . . . ,w1,m.

Now let us create a set Ŵ1 = {w1,1, . . . ,w1,2}. Note that

Φi(u1) = ∏
j=1,...,m

j ̸=i

(λ j−λi)w1,i =⇒ w1,i ∈U,

since U is φ-invariant. Because this happens for arbitrary i, we know that w1,i ∈U for all i. Note,

that this set is linearly independent since each w1,i comes from a different eigenspace. We repeat

this for u j to obtain Ŵj, and note that Ŵj ⊆U . Now, let us define
k⋃

j=1
Ŵj = Ŵ . Note that this

is a spanning set of eigenvectors for U , and we can make this into a linearly independent set

that still spans U by throwing away the linearly dependent vectors. Note that because of finite

dimensionality, this process will stop, and will yield a linearly independent, spanning set of U ,

let’s call it Ŵ , consisting of eigenvectors. So this means that φ|U is diagonalizable since we found

an eigenbasis for U . So we’re done.

The following theorem is a fundamental result from matrix analysis (see [53, Theorem
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1.3.12]), but we provide a proof for convenience of the reader.

Theorem 2.28. Let A and B be two n×n diagonalizable matrices that commute (i.e. AB = BA).

Then there exists a basis of Rn consisting of simultaneous eigenvectors of A and B.

Proof. We break this proof up into two parts. First we will show that given an eigenvector λ

the eigenspace of A corresponding to λ (we denote this with E(λ,A) is B-invariant. Consider

v ∈ E(λ,A), then notice that

ABv = BAv = B(λv) = λBv.

This means that Bv is an eigenvector for A with eigenvalue λ, which means that E(λ,A) is B-

invariant since B maps elements of E(λ,A) back into E(λ,A). Now we show that there exists a

basis for Rn consisting of simultaneous eigenvectors of A and B.

Note that because A is diagonalizable, we know that Rn can be represented as a direct

sum given by

Rn =
k⊕

i=1

E(λi,A),

where λ1, . . . ,λk are distinct eigenvalues of A. Now to show that there exists a basis of Rn

consisting of simultaneous eigenvectors of A and B, we only need to find a basis for each

subspace E(λ,A) because the concatenation of all these bases will yield a basis for Rn. Now

note that since E(λ,A) is a B-invariant space by above and because B is diagonalizable, we

know from Lemma 2.27 that the restriction of B to this eigenspace, B|E(λ,φ), is diagonalizable,

which means that there exists an eigenbasis of E(λ,A) for the map B. Let us call this this

eigenbasis Sλ,A = {w1, . . . ,w j}, where j is the dimension of E(λ,A). Now, note that Sλ,A consists

of eigenvectors of both B and A. To see this, note that Sλ,A ⊆ E(λ,A); thus, every wi is an

eigenvector of A. Moreover, Sλ,A is an eigenbasis for B|E(λ,A) by construction (from Lemma 2.27).
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This means that

S =
k⋃

i=1

Sλi,A

forms a basis for Rn consisting of simultaneous eigenvectors of A and B.

Lemma 2.29. If two symmetric matrices A and B commute, then there exists spectral decomposi-

tions A = Q⊤ΛQ and B = P⊤DP such that the rows of Q are the same as the rows of P up to a

permutation.

Proof. We already know that if two diagonalizable matrices commute, then they share the same

eigenvectors; thus, there exist an eigendecomposition for A and B with the same eigenvectors.

By extension, this holds for symmetric matrices. If we assume that these eigendecompositions

are given by A = Q⊤ΛQ and B = P⊤DP, the eigenvectors of A are exactly the columns of Q⊤,

and similarly, the eigenvectors of B are exactly the columns of P⊤. This implies that the columns

of Q⊤ and P⊤ should be the same. The order of the columns can be permuted without loss of

generality and still provide the same transformation A and B. Thus, we can assume that Q has the

same rows as P.

Theorem 2.30. Let S : Rn → Rn be a differentiable map such that S = ∇ϕ for some ϕ. Let

σ,µ ∈ P2(Rn) with σ absolutely continuous with respect to the Lebesgue measure. Assume that

the compatibility condition S◦T µ
σ = T

S♯µ
σ holds. Then JS(x) is a symmetric positive definite matrix

for all x. Moreover, JS(T
µ

σ (x)), JT µ
σ
(x), and J

T
S♯µ

σ

(x) share the same eigenspaces. Furthermore, the

eigenvalues of JS(T
µ

σ (x)) are of the form λσ,µ
λσ,S♯µ

where λσ,µ is an eigenvalue of JT µ
σ
(x) and λσ,S♯µ is

an eigenvalue of J
T

S♯µ
σ

(x).

Proof of Theorem 2.30. Recall that the main equation for us to study is

S◦T µ
σ = T

S♯µ
σ .
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By Theorem 2.1, there exist convex functions γ and φ such that T µ
σ = ∇φ and T

S♯µ
σ = ∇γ. By

Clairaut’s theorem (or the Schwarz theorem), ∇2γ(x) and ∇2φ(x) are symmetric. Using the

multivariate chain rule and the symmetry of ∇2γ(x), we get that

∇
2
γ(x) = JS(∇φ(x))∇2

φ(x)

∇
2
γ(x)⊤ = (∇2

φ(x))⊤JS(∇φ(x))⊤

= ∇
2
φ(x)JS(∇φ(x))⊤.

Since JS = ∇2ϕ for some ϕ, then J⊤S (x) = JS(x) for all x ∈ Rd . Since JS(∇φ(x)) and ∇2φ(x)

are symmetric matrices that commute, according to Lemma 2.29, there exists some orthogonal

matrix P such that we can write the eigendecompositions of ∇2φ(x) and JS(∇φ(x)) as ∇2φ(x) =

P⊤Λφ(x)P and JS(∇φ(x)) = P⊤ΛS(∇φ(x))P where the matrices Λφ and ΛS are diagonal matrices

with the eigenvalues of ∇2φ(x) and JS(∇φ(x)), respectively. Moreover, if Λγ denotes the diagonal

matrix in the eigendecomposition for γ, then our matrix equations above can be written as

∇
2
γ(x) = JS(∇φ(x))∇2

φ(x)

P⊤Λγ(x)P = P⊤ΛS(∇φ(x))PP⊤Λφ(x)P

Λγ(x) = ΛS(∇φ(x))Λφ(x).

This immediately shows that every eigenvalue λS of JS(∇φ(x)) can be written as λγ

λφ
, where λγ is an

eigenvalue of ∇2γ(x) and λφ is an eigenvalue of ∇2φ(x). Since ∇2φ(x) and ∇2γ(x) are Hessians of

a convex function, they must be positive definite. This implies that all the eigenvalues of JS(∇φ(x))

are positive. Since JS(∇φ(x)) is symmetric, we immediately get that JS(∇φ(x)) = ∇2ϕ(∇φ(x)) is

a symmetric positive definite matrix, which means that ϕ must have been convex. This implies

that S = ∇ϕ is a transport map.

Lemma 2.31. Let an optimal transport map be given by ∇φ(x) for some convex function φ. If
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the Hessian ∇2φ(x) has a spectral decomposition that does not depend on x (i.e. P⊤D(x)P for

a positive diagonal matrix D(x)), then the map P∇φ(P⊤x) has a diagonal Jacobian and each

component of P∇φ(P⊤x) is a function of only a single variable.

Proof of Lemma 2.31. If we compute the Jacobian of P∇φ(P⊤x) by using the chain rule twice,

we get that the Jacobian of P∇φ(P⊤x) is given by

JP∇φ(P⊤x)(x) = PJ
∇φ(P⊤x)(x) = P∇

2
φ(P⊤x)P⊤

= PP⊤D(P⊤x)PP⊤ = D(P⊤x).

This means that if we write the transport map ∇φ in the basis given by the columns of P⊤ and

the output is written in terms of the basis given by the columns of P, our transport map ∇φ can

be written as n single variable functions. To see this, notice that we can write the jth coordinate

output of P∇φ(P⊤x) as some function f j to give us

P∇φ(P⊤x) =



f1(x1, . . . ,xn)

f2(x1, . . . ,xn)

...

fn(x1, . . . ,xn)


.

Recall that the ( j,k)th entry of the Jacobian JP∇φ(P⊤x)(x) is ∂ f j
∂xk

. Because the Jacobian is diagonal,

we see that ∂ f j
∂xk

= 0 for j ̸= k. This implies that we can actually write

P∇φ(P⊤x) =



f1(x1)

f2(x2)

...

fn(xn)


.
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So we’re done.

Now we can prove the main LOT isometry theorems for shears.

Proof of Theorem 2.6. Assume that the Jacobian of T µ
σ has constant orthonormal basis given by

an orthogonal matrix P, then Theorem 2.30 tells us that a compatible transformation S must have

positive symmetric definite Jacobian JS and has the same eigenspaces as JT µ
σ

. First, note that the

corollaries of Theorem 2.30 implies that S is an optimal transport map. Second, note that since

JS commutes with JT µ
σ

, we know that JS = P̃⊤D(x)P̃, where P̃ is a row-permutation of P from

Lemma 2.29. Because S satisfies the assumptions of Lemma 2.31, we get that

P̃S(P̃⊤x) =



f1(x1)

f2(x2)

...

fn(xn)



=⇒ S(x) = P̃⊤



f1((P̃x)1)

f2((P̃x)2)

...

fn((P̃x)n)


for f j increasing and differentiable. Note that f j differentiable because JS is assumed to exist,

and f j is increasing because JS is positive definite. The form of S, however, is exactly the form of

an element of F (P) in Definition 2.5 (the constant vector b is a constant of integration). This

proves Theorem 2.6.

Proof of Theorem 2.8. Let us assume that our elementary transformation is S(x) = P⊤g(Px), then

note that the Jacobian of S can be given as JS(x) = P⊤Jg(Px)P, where Jg(z) = diag((g′j(z j))
n
j=1)

(i.e. Jg is a diagonal matrix). Now given our template µ, let’s assume that there exists a reference σ
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such that the compatibility S◦T µ
σ = T

S♯µ
σ holds, then we will try to get some necessary conditions

that σ must satisfy. In particular, from Theorem 2.1 we can write T µ
σ = ∇φ for some convex

φ; moreover, we know that the Hessian can be written as ∇2φ(x) = Q⊤(x)D(x)Q(x) for some

orthogonal matrix-valued function Q(x) and diagonal matrix-valued function D(x). Now, using

Theorem 2.30, we know that if S◦T µ
σ = T

S♯µ
σ , then

JS(∇φ(x))∇2
φ(x) = ∇

2
φ(x)JS(∇φ(x))

P⊤Jg(Px)PQ(x)⊤D(x)Q(x) = Q(x)⊤D(x)Q(x)P⊤Jg(Px)P.

Since JS(∇φ(x)) and ∇2φ(x) are two symmetric matrices that commute, we can assume without

loss of generality that Q(x) is a row-permutation of P for all x by invoking Lemma 2.29. We can

call this matrix P̃. In particular, we can write ∇2φ(x) = P̃⊤D(x)P̃, where D(x) = diag(d(x)) for a

vector-valued function d(x) with di(x)> 0 (the positivity comes from the fact that the Hessian

must have positive eigenvalues).

We see that since ∇2φ(x) has a constant eigendecomposition, we know from Lemma 2.31

that

P̃∇φ(P̃⊤x) =



f1(x1)

f2(x2)

...

fn(xn)



=⇒ ∇φ(P̃⊤x) = P̃⊤



f1(x1)

f2(x2)

...

fn(xn)


.

From Lemma 2.31, we also note that a choice of the diagonals d j(x j)> 0 gives a unique (up to a
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constant) anti-derivative f j =
∫

d j(x j)dx j. Thus, without loss of generality, we can consider f j’s

to be completely determined by the d j’s.

If we assumed that our inputs x are actually written in the basis given by P̃⊤ and the

outputs are written in basis given by P̃, then our map transport map decomposes into n single-

variable functions as shown above. Moreover, note that f j(x j) must be an increasing function

since ∂ f j
∂x j

> 0 everywhere. Thus, in principle, this map must be invertible, and we can actually

compute the inverse of this map by computing

y =



y1

y2

...

yn


= ∇φ(x) = ∇φ(P̃⊤P̃x) = P̃⊤



f1((P̃x)1)

f2((P̃x)2)

...

fn((P̃x)n)



P̃y =



f1((P̃x)1)

f2((P̃x)2)

...

fn((P̃x)n)




f−1
1 ((P̃y)1)

f−1
2 ((P̃y)2)

...

f−1
n ((P̃y)n)


=



(P̃x)1

(P̃x)2

...

(P̃x)n


= P̃x

=⇒ ∇φ
−1(y) = P̃⊤



f−1
1 ((P̃y)1)

f−1
2 ((P̃y)2)

...

f−1
n ((P̃y)n)


.

Note that because the inverse of an increasing function is also increase, we have that ∇φ−1 ∈F (P).
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In practice, we will be given S and µ; thus, we would want to find σ such that T µ
σ is compatible

with S. Note that this will be exactly given by the map ∇φ−1(y) because σ = ∇φ
−1
♯ µ. This proves

Theorem 2.8.

Proof of Theorem 2.13. Given our elementary transformation S(x) = Ax+b, we have that JS = A.

Theorem 2.30, however, shows us that A must be positive symmetric definite. We will show that

the only matrix A that is both positive symmetric definite and orthogonal is the identity. To see

this note that since A is symmetric, we know that A⊤ = A. Since A is assumed to be orthogonal,

we know that A⊤A = A2 = I. Let v be an eigenvector of A with eigenvalue λ, then v = A2v = λ2v.

This means that λ2 = 1. Since A is symmetric, we know that all the eigenvalues must be real;

thus, λ =±1. Moreover, because A is positive symmetric definite, the only eigenvalue it could be

are +1. This implies that A is the identity. In particular, this means that constant rotations are not

valid elementary transformations for which the compatibility condition holds.

2.8 Proofs of Separability Results

For a set of measures µ1 and µ2 and a set of elementary transformations H , the general

method of showing that Fσ(H ⋆µ1) and Fσ(H ⋆µ2) are linearly separable is to

1. Show that H is convex,

2. Show that H ⋆µ1 and H ⋆µ2 are compact (or at least have their closures as being compact),

3. Show that W2(H ⋆µ1,H ⋆µ2)> δ for some δ > 0.

We show this now for shears, but for another class of elementary transformations, we must show

that H is convex.

Lemma 2.32. The set of shears Hγ,M,Mb described in Equation (2.8) is convex.

46



Proof: Let h,h′ ∈Hγ,M,Mb and s ∈ [0,1], then we want to show that sh+(1− s)h′ ∈Hγ,M,Mb . We

find that

sh(x)+(1− s)h′(x) = s(Ax+b)+(1− s)(A′x+b′)

= (sA+(1− s)A′)x+(sb+(1− s)b′).

Notice first that sA+(1− s)A′ is symmetric. Moreover, note that

λmin(sA+(1− s)A′) = min
∥x∥2=1

⟨x,(sA+(1− s)A′)x⟩

= min
∥x∥2=1

s⟨x,Ax⟩+(1− s)⟨x,A′x⟩

≥ s min
∥x∥2=1

⟨x,Ax⟩︸ ︷︷ ︸
≥λmin(A)

+(1− s) min
∥x̃∥2=1

⟨x̃,A′x̃⟩︸ ︷︷ ︸
≥λmin(A′)

≥ sλmin(A)+(1− s)λmin(A′)> sγ+(1− s)γ = γ;

and similarly,

λmax(sA+(1− s)A′) = max
∥x∥2=1

⟨x,(sA+(1− s)A′)x⟩

= max
∥x∥2=1

s⟨x,Ax⟩+(1− s)⟨x,A′x⟩

≤ s max
∥x∥2=1

⟨x,Ax⟩︸ ︷︷ ︸
≤λmax(A)

+(1− s) max
∥x̃∥2=1

⟨x̃,A′x̃⟩︸ ︷︷ ︸
≤λmax(A′)

≤ sλmax(A)+(1− s)λmax(A′)< sM+(1− s)M = M.

This means that sA+(1− s)A′ is symmetric positive definite and actually has the correct bounds
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on its eigenvalues. We now show that sb+(1− s)b′ satisfies the proper bounds too. Notice that

∥sb+(1− s)b′∥2 ≤ s∥b∥2 +(1− s)∥b′∥2 ≤ sMb +(1− s)Mb = Mb.

This implies that sh+(1− s)h′ ∈H . So we’re done.

Next, given a base measure µ and set of elementary transformations H , we ideally want

to show that the set H ⋆ µ = {h♯µ : h ∈ H } is compact, but the weaker condition of H ⋆ µ

being precompact should be good enough for our purposes. To address compactness, we need a

definition.

Definition 2.33 (Tightness). Let (X ,T ) be a Hausdorff space and let S be a σ-algebra such that

T ⊆ S . Let M be a collection of probability measures defined on S . The collection M is called

tight if, for any ε > 0, there exists a compact subset Kε ⊂ X such that for all measures µ ∈M, we

have µ(Kε)> 1− ε.

A natural theorem that relates tightness of measures to compactness is Prokhorov’s theorem.

Theorem 2.34 (Prokhorov). Let (X ,d) be a a separable metric space. Let P (X) be the collection

of all probability measures defined on X with respect to the Borel σ-algebra. Then a collection

K ⊂ P (X) of probability measures is tight if and only if the closure of K is sequentially compact

in P2(X) equipped with the topology of weak convergence.

According to [77, pp. 37–42], we can upgrade Prokhorov’s theorem to be sequentially

compact with the Wasserstein 2-metric if

sup
µ∈K

∫
x:∥x∥2>R

∥x∥2
2dµ(x) R→∞−−−→ 0.

This is easily true if supµ∈K {∥x∥2 : x ∈ supp(µ)} ≤ R < ∞.

Corollary 2.35. Let H be a set of transformations such that for every R > 0, there exists R̃ such
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that suph∈H {∥h(x)∥2 : ∥x∥2 < R} < R̃. Also assume that µ ∈ P2(Rn) has bounded support Rµ,

then H ⋆µ is a precompact set of measures.

Proof. For us, if µ has bounded support with bound Rµ, we should have that all measures

belonging to H ⋆µ must also have support bounded for some R̃ > 0. To see this, note that for

µ̃ ∈H ⋆µ, we have supp(µ̃) is bounded by R̃ for some R̃ > 0. So we’re done.

For shears, we can see that every measure from Hγ,M,Mb ⋆µ1 and Hγ,M,Mb ⋆µ2 has bounded

support since suph∈Hγ,M,Mb
{∥h(x)∥ : x ∈ supp(µ),µ ∈ K } ≤ MR + Mb. It’s easy to see that

Hγ,M,Mb ⋆ µ is tight for a big enough ball BR(0) = {x : ∥x∥2 ≤ R} if σ has bounded support.

This means that Hγ,M,Mb ⋆µ is precompact with the Wasserstein 2-metric for any µ with bounded

support.

By [91] Corollary 5.23, the stability of optimal transport maps implies that Fσ is continu-

ous; thus, we find that Fσ(H ⋆µ) is precompact if H ⋆µ is precompact. Note also that Theorem 2.1

above gives us a corollary.

Corollary 2.36. Let h : Rn→ Rn be a transformations that can be represented as the gradient

of a convex function, then for σ, an absolutely continuous measure with respect to the Lebesgue

measure, we get that h = T
h♯σ

σ .

Now we must show that Fσ(H ⋆µ) is convex, which will ensure that our LOT embedding

is convex and precompact.

Lemma 2.37. Let σ and µ be absolutely continuous (with respect to the Lebesgue measure) proba-

bility measures and let H ⊆{h :Rn→Rn|h=∇φ,φ is convex} be a convex set of transformations

that is compatible with σ and µ, then Fσ(H ⋆µ) is convex.

Proof. Let h, ĥ ∈ H and s ∈ [0,1] so that T
h♯µ

σ ,T
ĥ♯µ

σ ∈ Fσ(H ⋆ µ). Then we want to show that

sT
h♯µ

σ +(1− s)T
ĥ♯µ

σ ∈ Fσ(H ⋆ µ). First notice that by Brenier’s theorem, there exists convex
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functions φ and φ̂ such that ∇φ = T
h♯µ

σ and ∇φ̂ = T
ĥ♯µ

σ . Note now that

s∇φ+(1− s)∇φ̂ = ∇(sφ+(1− s)φ̂)

so that sT
h♯µ

σ + (1− s)T
ĥ♯µ

σ is actually the gradient of a convex function. Moreover, by the

uniqueness of optimal transport maps as gradients of convex functions, we know that sT
h♯µ

σ +

(1− s)T
ĥ♯µ

σ is the unique optimal transport map that transports σ to its target distribution. If this

target distribution is of the form h̃♯µ for some h̃ ∈H , then our proof is done. Indeed, using the

compatibility of of h and ĥ:

(
sT

h♯µ
σ +(1− s)T

ĥ♯µ
σ

)
♯
σ =

((
sh+(1− s)ĥ

)
◦T µ

σ

)
♯

σ

=
(

sh+(1− s)ĥ
)
♯
µ.

Since sh+(1− s)ĥ ∈H , we know that sT
h♯µ

σ +(1− s)T
ĥ♯µ

σ is the unique optimal transport

map that transports σ to (sh+(1− s)ĥ)♯µ. This means that

sT
h♯µ

σ +(1− s)T
ĥ♯µ

σ ∈ Fσ(H ⋆µ).

Thus, Fσ(H ⋆µ) is convex.

Using the lemma above, we get that Fσ(H ⋆ µ1) and Fσ(H ⋆ µ2) are both convex and

have compact closures. For our linear separability result, we now only need to make sure

that infh,h′∈H ∥T
h♯µ1

σ −T
h′♯µ2

σ ∥σ ≥ δ for some δ > 0. Ideally, given W2(µ1,µ2) and the level of

separation δ > 0 we want, we should be able to find bounds on the function class H that we are

considering. This leads us to Theorem 2.15:

Proof of Theorem 2.15. Assume that we have h̃, h̃⋆ ∈Hε, then using the triangle inequality, we
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have

W2(h̃♯µ1, h̃⋆♯µ2)≥ |W2(µ1, h̃⋆♯µ2)−W2(h̃♯µ1,µ1)|

≥
∣∣∣∣∣∣W2(µ1,µ2)−W2(µ2, h̃⋆♯µ2)

∣∣−W2(h̃♯µ1,µ1)

∣∣∣∣,
provided that the quantity in the left-hand side is positive. Now, we know from [71] that

W2(µ,ν)≤ ∥Fσ(µ)−Fσ(ν)∥σ; thus, we have that

∣∣∣∣∣∣W2(µ1,µ2)−W2(µ2, h̃⋆♯µ2)
∣∣−W2(h̃♯µ1,µ1)

∣∣∣∣≤ ∥Fσ(h̃♯µ1)−Fσ(h̃⋆♯µ2)∥σ.

So if we lower bound the left-hand side by δ > 0, then ∥Fσ(h̃♯µ1)−Fσ(h̃⋆♯µ2)∥σ ≥ δ > 0. This

would imply that Fσ(Hε ⋆µ1) and Fσ(Hε ⋆µ2) is linearly separable by the Hahn-Banach theorem.

To get this bound, let us find a generic bound for W2(h̃♯µ,µ) when h̃ ∈Hε. In particular,

there exists h ∈H such that ∥h− h̃∥µ; thus, we get

W2(h̃♯µ,µ)≤W2(h̃♯µ,h♯µ)+W2(h♯µ,µ).

First, since h is the gradient of convex function and Corollary 2.36, we know that T
h♯µ

µ = h. This

means that the compatibility condition holds, which further implies that

W2(h̃♯µ,µ) = ∥h̃− I∥µ ≤ L.

Moreover, equation 2.1 of [6] says that

W2(h̃♯µ,h♯µ)≤ ∥h− h̃∥µ < ε.
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Because of our bounds, our results implies that

L≤ W2(µ1,µ2)−δ

2
− ε≤W2(µ1,µ2)−δ− ε

=⇒ W2(µ1,µ2)−W2(µ2, h̃⋆♯µ2)≥W2(µ1,µ2)−W2(h̃⋆♯µ2,h⋆♯µ2)−W2(h⋆♯µ2,µ2)

≥W2(µ1,µ2)−L− ε > δ > 0.

Essentially, we were able to remove the absolute values because the quantity in the absolute value

was positive. This positivity of the absolute value implies that we can replace

∣∣∣∣∣∣W2(µ1,µ2)−W2(µ2, h̃⋆♯µ2)
∣∣−W2(h̃♯µ1,µ1)

∣∣∣∣
with

∣∣∣∣W2(µ1,µ2)−W2(µ2, h̃⋆♯µ2)−W2(h̃♯µ1,µ1)

∣∣∣∣.
But note that

W2(µ1,µ2)−W2(µ2, h̃⋆♯µ2)−W2(h̃♯µ1,µ1)≥W2(µ1,µ2)−2L−2ε≥ δ

⇐⇒ L≤ W2(µ1,µ2)−δ

2
− ε.

This implies that

∣∣∣∣W2(µ1,µ2)−W2(µ2, h̃⋆♯µ2)−W2(h̃♯µ1,µ1)

∣∣∣∣≥ δ > 0.

So we see that if L≤ W2(µ1,µ2)−δ

2 − ε, then we must have that ∥Fσ(h♯µ1)−Fσ(h′♯µ2)∥σ ≥ δ.

Proof of Theorem 2.19. For the first statement, the linear separability result is immediate because

the compatibility criteria ensures that the LOT distance and Wasserstein-2 distance are the same.
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To see this, we note that h◦T µ2
µ1 is compatible with respect to the optimal transport between µ1

and (h◦T µ2
µ1 )♯µ1 because

T
(h◦T µ2

µ1 )♯µ1
µ1 = T

h♯µ2
µ1 = h◦T µ2

µ1
= h◦T µ2

µ1
◦T µ1

µ1
.

This means that from [71], for h, h̃ ∈H we have that

∥T h̃♯µ1
µ1 −T

h♯µ2
µ1 ∥µ1 = ∥T

h̃♯µ1
µ1 −T

(h◦T µ2
µ1 )♯µ1

µ1 ∥µ1

=W2(h̃♯µ1,(h◦T µ2
µ1
)♯µ1)

=W2(h̃♯µ1,h♯µ2).

This proves the first statement.

For the second statement, let hε, h̃ε ∈ Hε such that ∥h− hε∥µ1 < ε and ∥h̃− h̃ε∥µ1 for

h, h̃ ∈H . We know that ∥Fµ1((h̃ε)♯µ1)−Fµ2((hε)♯µ2)∥µ1 ≥W2((h̃ε)♯µ1,(hε)♯µ2). Now we know

that

W2((h̃ε)♯µ1,(hε)♯µ2)≥
∣∣∣∣∣∣∣W2(h̃♯µ1,h♯µ2)−W2(h̃♯µ1,(h̃ε)♯µ1)

∣∣∣−W2(h♯µ2,(hε)♯µ2)

∣∣∣∣.
From equation 2.1 of [5], we have that

W2(h̃♯µ1,(h̃ε)♯µ1)≤ ∥h̃− h̃ε∥µ1 < ε

W2(h♯µ2,(hε)♯µ2)≤ ∥h−hε∥µ2 < ε.
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Note that W2(h̃♯µ1,h♯µ2)≥ infh,h̃∈H W2(h̃♯µ1,h♯µ2)> 2ε. This means that

W2((h̃ε)♯µ1,(hε)♯µ2)≥
∣∣∣∣ ∣∣∣ inf

h,h̃∈H
W2(h̃♯µ1,h♯µ2)− ε︸ ︷︷ ︸

>0

∣∣∣− ε

︸ ︷︷ ︸
>0

∣∣∣∣> 0.

So we have that ∥Fµ1((h̃ε)♯µ1)−Fµ2((hε)♯µ2)∥µ1 > 0.

For the third statement, we extend the lower bounds from above. Because h, h̃ ∈H are

compatible, we have that W2(h̃♯µ1,h♯µ2) = ∥T
h̃♯µ1

µ1 −T
h♯µ2

µ1 ∥µ1 . Using the triangle inequality, we

get

∥T h̃♯µ1
µ1 −T

h♯µ2
µ1 ∥µ1 = ∥h̃−T

h♯µ2
µ1 ∥µ1

= ∥h̃−h− (T
h♯µ2

µ1 −h)∥µ1

≥
∣∣∣∥T h♯µ2

µ1 −T
h♯µ1

µ1 ∥µ1−∥h̃−h∥µ1

∣∣∣.
Because h ∈H is chosen to be compatible with respect to µ1 and µ2, note that

W2(h♯µ1,h♯µ2) = ∥T
h♯µ1

µ1 −T
h♯µ2

µ1 ∥µ1 = ∥h−h◦T µ2
µ1
∥µ1

= ∥h◦ (I−T µ2
µ1
)∥µ1 = ∥h∥|µ1−µ2|

=

(∫
∥h(x)∥2

2d|µ1−µ2|(x)
)1/2

≥
√

2
(∫
∥x0− x∥2

2d|µ1−µ2|(x)
)1/2

where the last equality came from a change of variable and the inequality comes from our

assumption that ∥h(x)∥2 ≥
√

2∥x− x0∥2. Now we refer to Theorem 6.15 of [91], which says that
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for any x0 ∈ Rn, we have

W2(µ1,µ2)≤
√

2
(∫
∥x0− x∥2

2d|µ1−µ2|(x)
)1/2

= f (x0).

We want to minimize the right hand side; thus, taking the derivative d
dx0

f (x0) = 0, this reduces to

0 = 2
∫
(x0− x)d|µ1−µ2|(x)

=⇒ x0 =
1

|µ1−µ2|(Rn)

∫
xd|µ1−µ2|(x).

Essentially x0 is the mean of the measure |µ1 − µ2| after normalization. So we have that

W2(µ1,µ2) ≤ W2(h♯µ1,h♯µ2). Since W2(µ1,µ2)− suph,h̃∈H ∥h̃− h∥µ1 ≥ δ + 2ε > δ + ε, these

computations imply that

∣∣∣W2(h̃♯µ1,h♯µ2)−W2(h̃♯µ1,(h̃ε)♯µ1)
∣∣∣−W2(h♯µ2,(hε)♯µ2)≥W2(h̃♯µ1,h♯µ2)−2ε.

is greater than

W2(µ1,µ2)− sup
h,h̃∈H

∥h̃−h∥µ1−2ε > 0.

This implies that

W2((h̃ε)♯µ1,(hε)♯µ2)≥
∣∣∣W2(µ1,µ2)− sup

h,h̃∈H
∥h̃−h∥µ1−2ε

∣∣∣≥ δ

This implies that ∥Fµ1((h̃ε)♯µ1)−Fµ2((hε)♯µ2)∥µ1 ≥W2((h̃ε)♯µ1,(hε)♯µ2) ≥ δ. So we are done.

Notice that Theorem 2.15 above acts as a blueprint to controlling the degree of separation

in the LOT embedding via the bounds on the function class H . For the specific setting of the
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set of shears above, given a desired degree of separation 0 < δ <W2(µ1,µ2), we can choose M,

Mb, and γ in the definition of Hγ,M that guarantees that Fσ(Hγ,M,Mb ⋆µ1) and Fσ(Hγ,M,Mb ⋆µ2) are

δ-separated. This leads us to Corollary 2.38:

Corollary 2.38. Consider probability distributions µ1 and µ2 with Wasserstein distance W2(µ1,µ2),

and let δ > 0. Let us denote R1 = maxx∈supp(µ1) ∥x∥2 and R2 = maxx∈supp(µ2) ∥x∥2. Moreover, for

ε > 0, define

Hγ,M,Mb,ε = {h̃ : ∥h− h̃∥µi < ε, i ∈ {1,2},h ∈Hγ,M,Mb}

as the ε-tube around Hγ,M,Mb . Assume σ≪ λ ∈ P2(Rn) is chosen such that H is compatible with

σ and µ1 as well as σ and µ2. We consider the following 2 cases:

Case 1: Assume that W2(µ1,µ2)> (R1 +R2)+δ+2ε. If Mb is chosen such that

0≤Mb <
W2(µ1,µ2)−δ−2ε− (R1 +R2)

2
,

then choosing M such that

2 < M ≤ W2(µ1,µ2)−δ−2ε−2Mb +(R1 +R2)

R1 +R2

ensures that Fσ(Hγ,M,Mb,ε ⋆µ1) and Fσ(Hγ,M,Mb,ε ⋆µ2) are δ-separated.

Case 2: Assume that δ+2ε <W2(µ1,µ2)< (R1 +R2)+δ+2ε. If Mb is chosen such that

max
{

0,
W2(µ1,µ2)−2ε−δ− (R1 +R2)

2

}
≤Mb <

W2(µ1,µ2)−2ε−δ

2
,

then either choosing M such that

1 < M ≤ W2(µ1,µ2)−δ−2ε−2Mb +(R1 +R2)

R1 +R2
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or choosing γ such that

γ≥ 2Mb +2ε+δ−W2(µ1,µ2)+R1 +R2

R1 +R2

ensures that Fσ(Hγ,M,Mb,ε ⋆µ1) and Fσ(Hγ,M,Mb,ε ⋆µ2) are δ-separated.

Proof of Corollary 2.38. From the lemma above, we need to only bound ∥h− I∥σ appropriately

and invert the bounds. First, note that because h ∈ Hγ,M,Mb can be written as the gradient of a

convex function and Hγ,M,Mb is a convex set, we do satisfy the setting of the lemma. Moreover,

we know that the compatibility condition holds, which implies that

W2(h♯µ,µ) = ∥h− I∥µ =

(∫
∥(A− I)x+b∥2

2dµ(x)

) 1
2

≤ ∥(A− I)x∥µ︸ ︷︷ ︸
I1

+∥b∥µ︸︷︷︸
I2

.

Let us bound I1 and I2 separately. For the bound of I1, we have

I1 =

(∫
∥(A− I)x∥2

2dµ(x)
) 1

2

≤
(∫

λmax(A− I)2∥x∥2
2dµ(x)

) 1
2

≤
(∫

λmax(A− I)2 max
x∈supp(µ)

∥x∥2
2dµ(x)

) 1
2

= λmax(A− I) max
x∈supp(µ)

∥x∥2

(∫
dµ(x)

) 1
2

︸ ︷︷ ︸
1

≤max{|M−1|, |1− γ|} max
x∈supp(µ)

∥x∥2.
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For the bound of I2, we have

I2 = ∥b∥µ =

(∫
∥b∥2

2dµ(x)
) 1

2

≤
(∫

M2
bdµ(x)

) 1
2

= Mb.

Thus, if h ∈Hγ,M,Mb , we have

W2(h♯µ,µ)≤max{|M−1|, |1− γ|} max
x∈supp(µ)

∥x∥2 +Mb.

Using this for our specific choice of µ1 and µ2, we find that for h̃, h̃⋆ ∈Hγ,M,Mb,ε, we have

W2(µ1,µ2)−W2(h̃♯µ1,µ1)−W2(h̃⋆♯µ2,µ2)

is lower bounded (via equation 2.1 of [6]) by

W2(µ1,µ2)−W2(h♯µ1,µ1)−W2(h♯µ1, h̃♯µ1)︸ ︷︷ ︸
≤∥h−h̃∥µ1<ε

−W2(h⋆♯µ2,µ2)−W2(h⋆♯µ2, h̃⋆♯µ2)︸ ︷︷ ︸
≤∥h⋆h̃⋆∥µ2<ε

≥W2(µ1,µ2)−W2(h♯µ1,µ1)−W2(h⋆♯µ2,µ2)−2ε,

which in turn is lower bounded by

W2(µ1,µ2)−2Mb−max{|M−1|, |1− γ|}
(

max
x∈supp(µ1)

∥x∥2 + max
x∈supp(µ2)

∥x∥2︸ ︷︷ ︸
R1+R2

)
−2ε.

Now we just need to find sufficient conditions M,Mb, and γ such that

W2(µ1,µ2)−2Mb−max{|M−1|, |1− γ|}(R1 +R2)−2ε≥ δ > 0. (⋆)

Notice that when |M−1|> |1− γ|, then M > 1 since M is the bound on the largest eigenvalue.
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Moreover, note that we cannot have γ−1 > M−1 since γ < M; thus, the only cases we need to

consider are when M−1 > 1− γ and M−1 < 1− γ. We handle these cases separately.

Case 1 (M−1 > 1− γ): Note that in this case we can rewrite (⋆) as

M(R1 +R2)≤W2(µ1,µ2)−2Mb−2ε−δ+(R1 +R2)

M ≤ W2(µ1,µ2)−2Mb−2ε−δ+(R1 +R2)

R1 +R2
.

Case 2 (1− γ > M−1): In this case, we can rewrite (⋆) as

γ(R1 +R2)≥ δ+2Mb +2ε+(R1 +R2)−W2(µ1,µ2)

γ≥ δ+2Mb +2ε+(R1 +R2)−W2(µ1,µ2)

R1 +R2
.

Now we will investigate conditions in which case 1 and case 2 are active.

First note that if

W2(µ1,µ2)−2Mb−2ε−δ+(R1 +R2)

R1 +R2
> 2

⇐⇒ W2(µ1,µ2)−2ε−δ− (R1 +R2)

2
> Mb > 0

⇐⇒ W2(µ1,µ2)> δ+2ε+(R1 +R2),

we know that the first case is ensured since we can pick M > 2. In this case, M−1 > |1− γ|. To

see this, we see that if 0 < γ < 1, then M− 1 > 2− 1 = 1 > 1− γ > 0. If 1 < γ < 2, we again

have that M > γ implies that M−1 > γ−1. Thus, in this regime, the choice of M dominates.

Now if we want 1 < M < 2, we find that

M ≤ W2(µ1,µ2)−2Mb−2ε−δ+(R1 +R2)

R1 +R2
< 2

⇐⇒ W2(µ1,µ2)−2ε−δ− (R1 +R2)

2
< Mb.
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Notice that since Mb ≥ 0, if W2(µ1,µ2)< 2ε+δ+(R1 +R2), then we definitely have the above

inequality. On the other hand,

W2(µ1,µ2)−2Mb−2ε−δ+(R1 +R2)

R1 +R2
> 1

⇐⇒ W2(µ1,µ2)−2ε−δ

2
> Mb > 0

⇐⇒ W2(µ1,µ2)> 2ε+δ.

So we can pick appropriate Mb such that

max
{W2(µ1,µ2)−2ε−δ− (R1 +R2)

2
,0
}
< Mb <

W2(µ1,µ2)−2ε−δ

2
,

and in this case, we pick an appropriate M such that

1 <
W2(µ1,µ2)−2ε−2Mb−δ+(R1 +R2)

R1 +R2
≤M < 2.

In the case when |1− γ|> |M−1| case, notice that

δ+2ε+2Mb +(R1 +R2)−W2(µ1,µ2)

R1 +R2
< 1 ⇐⇒ ∃Mb <

W2(µ1,µ2)−δ−2ε

2
;

thus, we can pick γ such that

1 > γ≥max
{

δ+2Mb +2ε+(R1 +R2)−W2(µ1,µ2)

R1 +R2
,0
}
.

So we still can satisfy the conditions for linear separability in these cases.
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2.9 Multiple References Example

Example 2.39. Recall the setup of Example 2.26, where we have two template distributions

µ1 = N (0,Σ1) and µ2 = N (0,Σ2), a set of shears

H = {Ax : A = A⊤ ∈ Rn×n,MIn ⪰ A⪰ mIn ≻ 0}

as our set of transformations, and reference distributions defined to be of the form σ1 = (h1)♯µ1

and σ2 = (h2)♯µ2 for h1(x) = A1x and h2(x) = A2x for h1,h2 ∈H so that

σ1 = (h1)♯µ1 = N (0,A1Σ1A⊤1 ), σ2 = (h2)♯µ2 = N (0,A2Σ2A⊤2 ).

Using exercise 6.3.1 of [89], the bounds on our function class H is given by

sup
A∈H
∥(A− I)∥µ j = sup

A∈H

(
Eµ j

[
∥(A− I)x∥2

2

])1/2

= sup
A∈H
∥(A− I)Σ1/2

j ∥F

≤ sup
A∈H
∥A− I∥2∥Σ

1/2
j ∥F ≤max

(
|M−1|, |1−m|

)
max

j
∥Σ1/2

j ∥F

= L.

To ensure separation, we use L≤ W2(µ1,µ2)−δ

2 , which implies that

max
(
|M−1|, |1−m|

)
≤

Tr(Σ1 +Σ2−2(Σ
1
2
1 Σ2Σ

1
2
1 )

1/2)1/2−δ

2max j=1,2 ∥Σ
1/2
j ∥F

.

It is easy to see that W2(µ1,µ2)

2max j=1,2 ∥Σ
1/2
j ∥F

< 1. This shows the bounds on M and m of Example 2.26.

Now notice that

T
h♯µi

σ j = (A jΣ jA j)
−1/2((A jΣ jA j)

1/2(AΣiA⊤)(A jΣ jA j)
1/2)1/2(A jΣ jA j)

−1/2x;
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thus, for h, h̃ ∈H where h(x) = Ax and h̃(x) = Ãx, we get ∥T h♯µ1
σ j −T

h̃♯µ2
σ j ∥2

σ j
is equal to

E
[
∥S−1/2

j ((S1/2
j (A1Σ1A⊤1 )S

1/2
j )1/2− (S1/2

j (A2Σ2A⊤2 )S
1/2
j )1/2)S−1/2

j x∥2
2

]
,

where S j = A jΣ jA j and the expectation is with respect to σ j. Because S−1/2
j x = (A jΣ jA j)

−1/2x∼

N (0, I) and exercise 6.3.1 of [89], we find that the expectation above is equal to

∥S−1/2
j ((S1/2

j (A1Σ1A⊤1 )S
1/2
j )1/2− (S1/2

j (A2Σ2A⊤2 )S
1/2
j )1/2)∥2

F .

Using the Courant-Fischer min-max theorem as explained in [53] and our bounds on the eigen-

values of h ∈H , we can see that

1
m

Σ
−1/2
j ⪰ (A jΣ jA j)

−1/2 ⪰ 1
M

Σ
−1/2
j .

Since M2Σi ⪰ (AiΣiAi)⪰ ε2Σi, we have

((A jΣ jA j)
1/2 (A1Σ1A⊤1 )︸ ︷︷ ︸

⪰m2Σ1

(A jΣ jA j)
1/2)1/2− ((A jΣ jA j)

1/2 (A2Σ2A⊤2 )︸ ︷︷ ︸
⪯m2Σ2

(A jΣ jA j)
1/2)1/2

⪰ (m4
Σ

1/2
j Σ1Σ

1/2
j )1/2− (m4

Σ
1/2
j Σ2Σ

1/2
j )1/2 = m2

[
(Σ

1/2
j Σ1Σ

1/2
j )1/2− (Σ

1/2
j Σ2Σ

1/2
j )1/2

]
,

and similarly,

((A jΣ jA j)
1/2 (A1Σ1A⊤1 )︸ ︷︷ ︸

⪯M2Σ1

(A jΣ jA j)
1/2)1/2− ((A jΣ jA j)

1/2 (A2Σ2A⊤2 )︸ ︷︷ ︸
⪯M2Σ2

(A jΣ jA j)
1/2)1/2

⪰ (M4
Σ

1/2
j Σ1Σ

1/2
j )1/2− (M4

Σ
1/2
j Σ2Σ

1/2
j )1/2 = M2

[
(Σ

1/2
j Σ1Σ

1/2
j )1/2− (Σ

1/2
j Σ2Σ

1/2
j )1/2

]
.
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This means that ∥T h♯µ1
σ j −T

h̃♯µ2
σ j ∥2

σ j
has the following bounds

∥∥∥∥M2

m
Σ
−1/2
j

[
(Σ

1/2
j Σ1Σ

1/2
j )1/2− (Σ

1/2
j Σ2Σ

1/2
j )1/2

]∥∥∥∥2

F
≥ ∥T h♯µ1

σ j −T
h̃♯µ2

σ j ∥
2
σ j

∥T h♯µ1
σ j −T

h̃♯µ2
σ j ∥

2
σ j
≥
∥∥∥∥m2

M
Σ
−1/2
j

[
(Σ

1/2
j Σ1Σ

1/2
j )1/2− (Σ

1/2
j Σ2Σ

1/2
j )1/2

]∥∥∥∥2

F
.

Moreover, notice that since Σ j = Σ1 or Σ j = Σ2, we can assume without loss of generality that

Σ j = Σ1 so that

Σ
−1/2
j

[
(Σ

1/2
j Σ1Σ

1/2
j )1/2− (Σ

1/2
j Σ2Σ

1/2
j )1/2

]
= Σ

1/2
1 −Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2.

We can show, however, that the Frobenius norm of the right-hand side is actually W2(µ1,µ2). To

see this, first notice that because Σ
1/2
1 Σ2Σ

1/2
1 is symmetric, using the cyclic property of traces, we

have

∥Σ−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2∥2

F = Tr((Σ1/2
1 Σ2Σ

1/2
1 )1/2

Σ
−1/2
1 Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2)

= Tr(Σ−1
1 Σ

1/2
1 Σ2Σ

1/2
1 ) = Tr(Σ2).

Applying this result, we have that ∥Σ1/2
1 −Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2∥2

F is equal to

∥Σ1/2
1 ∥

2
F +∥Σ−1/2

1 (Σ
1/2
1 Σ2Σ

1/2
1 )1/2∥2

F︸ ︷︷ ︸
Tr(Σ2)

−2Tr(Σ1/2
1 Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2)

= Tr(Σ1 +Σ2−2(Σ1/2
1 Σ2Σ

1/2
1 )) =W2(µ1,µ2)

2.

So we get that

M2

m
W2(µ1,µ2)≥ ∥T

h♯µ1
σ j −T

h̃♯µ2
σ j ∥σ j ≥

m2

M
W2(µ1,µ2)
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for our choices of reference distributions, of which there are infinite choices because our choices

of ε and M are constrained by

1− W2(µ1,µ2)

2max j=1,2 ∥Σ
1/2
j ∥F

≤ m≤M ≤ 1+
W2(µ1,µ2)

2max j=1,2 ∥Σ
1/2
j ∥F

.

2.10 The shearing transformation

Algorithm 1 Procedure to produce shears of an image
1: Inputs : 28×28 matrix of pixel values corresponding to the image, matrix A and shift b.
2: Output : A 28×28 matrix of pixel values corresponding to the transformation A(x−center)+

b. (Center of the image is assumed to be (14,14)). Here x = (i, j) where i, j ∈ {1,2, · · ·28}.
3: ShearedImage← An empty 28×28 array
4: for i = 1, · · ·28 do
5: for j = 1, · · ·28 do
6: y← (i, j)− center
7: x← A−1(y−b)+ center
8: if x1 > 28 or x1 <= 0 or x2 > 28 or x2 <= 0 then
9: ShearedImage(i,j)← 0

10: else
11: ShearedImage(i,j)← Interpolation of the pixel values (of the original image) of

the four grid points corresponding to the grid box which x belongs to.
12: end if
13: end for
14: end for
15: return ShearedImage

Following notation introduced in Section 4 of the main text, the function class H with

respect to which we perform numerical experiments on MNIST images to study linear separability

is,

H =
{

Ax+b : A is symmetric positive definite, b ∈ R2
}
, (2.9)
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Specifically we choose A to be,

A =

cosθ −sinθ

sinθ cosθ


T λ1 0

0 λ2


cosθ −sinθ

sinθ cosθ

 (2.10)

where, λ1,λ2 > 0 so that A is positive definite. In the subsequent sections, we present the

classification results for two different choices for the range of parameter (λ1,λ2,θ,b) values, one

representing a mild shearing of the images and the other representing a severe shearing of the

images.

2.11 Standard deviation in test error of MNIST classification

experiments

2.12 Numerical validation of example 2.12

To illustrate Theorem 2.8, we had provided a simple example with Gaussians (see example

2.12 of main text). Let µ = N (m1, In). Consider a symmetric positive definite matrix A with

spectral decomposition A = P⊤ΛP and a corresponding fixed shear S(x) = Ax+ b for some

b ∈ Rn, which yields the pushforward S♯µ = N (Am1 +b,AA⊤). For simplicity, we will check

that the subset of compatible affine transformations

Faffine(P) = { f (x) =Cx+d : f ∈ F (P)}

= {P⊤DPx+d : Di j = 0 ∀ i ̸= j,Dii > 0,d ∈ Rn}
(2.11)

yields reference distributions σ ∈ { f♯µ : f ∈ Faffine(P)} so that the compatibility condition

hold. In particular note that for f (x) =Cx+d = P⊤DPx+d, our reference distributions have the
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Figure 2.8: (a) Standard deviation in test errors for binary classification of mildly sheared
MNIST 1s and 2s using (a1) Gaussian references (a2) sheared MNIST 1s and 2s as references
(a3) unsheared MNIST 1s and 2s as references. (b) Standard deviation in test errors for binary
classification of severely sheared MNIST 1s and 2s using (b1) Gaussian references (b2) sheared
MNIST 1s and 2s as references (b3) unsheared MNIST 1s and 2s as references. In the cases
where MNIST images are used as references, the results are reported for the cases where the
number of references used is 2i for i = 1, · · ·5 wherein i images from each class are randomly
drawn to be used as references from a pool of images that do not correspond to any of the
training and testing images. For each fixed number of training images per class, Ntrain, the mean
test classification error averaged across 20 random choices of Ntrain training images (per class)
and 1000 test images (per class) is reported. The number inside the parenthesis in the legends of
the images denote the length of the LOT feature vector corresponding to the particular choice of
references. In all figures, for comparison, the results for classification using the semi discrete
linear optimal transport framework [68] which uses the uniform measure as the reference is also
reported.

form

σ = N (Cm1 +d,CC⊤) = N (Cm1 +d,P⊤D2P).
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Figure 2.9: (a) Standard deviation in test errors for binary classification of mildly sheared
MNIST 7s and 9s using (a1) Gaussian references (a2) sheared MNIST 7s and 9s as references
(a3) unsheared MNIST 7s and 9s as references. (b) Standard deviation in test errors for binary
classification of severely sheared MNIST 7s and 9s using (b1) Gaussian references (b2) sheared
MNIST 7s and 9s as references (b3) unsheared MNIST 7s and 9s as references. In the cases
where MNIST images are used as references, the results are reported for the cases where the
number of references used is 2i for i = 1, · · ·5 wherein i images from each class are randomly
drawn to be used as references from a pool of images that do not correspond to any of the
training and testing images. For each fixed number of training images per class, Ntrain, the mean
test classification error averaged across 20 random choices of Ntrain training images (per class)
and 1000 test images (per class) is reported. The number inside the parenthesis in the legends of
the images denote the length of the LOT feature vector corresponding to the particular choice of
references. In all figures, for comparison, the results for classification using the semi discrete
linear optimal transport framework [68] which uses the uniform measure as the reference is also
reported.
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2.13 Comparison with Convolutional Neural Networks (CNNs)

2.14 Experimental Comparison of the Wasserstein distance

and the LOT embedding distance

For the sheared MNIST images whose separability was studied in Section 6 of the main

text, Figure 2.18 shows the comparison between the Wasserstein distance, W2(µ1,µ2), and the

LOT embedding distance W LOT
2,σ (µ1,µ2). The Wasserstein distance is approximated using the

Python Optimal Transport (POT) package [43] 5 and LOT embedding distance is approximated

as the l2 distance of the difference between the LOT feature vectors normalized by the grid size.
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Figure 2.10: a1) Samples from a Gaussian distribution that serves as the template µ. a2)
Approximation of the template distribution as a discrete distribution on a grid. b1) Samples from
sheared distribution S♯µ. b2) Approximation of the sheared distribution as a discrete distribution
on a grid. c1) Samples from a candidate referencec distribution f♯µ ∈ Faffine(P) (equation
2.11). c2) Approximation of the reference distribution as a discrete distribution on a grid. d)
Numerical validation of the equivalence of LOT distance W LOT

2, f♯µ (µ,S♯µ) and the Wasserstein
distance W2(µ,S♯µ) under compatibility as in example 2.12 using the LOT framework for
different choices of shear S.
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Figure 2.11: Comparison of discrete LOT classification of (a) mildly sheared MNIST 7s and 9s
(b) severely sheared MNIST 7s and 9s with convolutional neural network with 1586 training
parameters (labelled small CNN) and 3650 training parameters (labelled large CNN) under
identical training and testing conditions.

Figure 2.12: Mean test errors for pairwise binary classification of MNIST digits 0−9 using
semi-discrete LOT classifier under mild shearing conditions. For each image, λ1,λ2 are randomly
chosen in the interval [0.5,1.5], θ is randomly chosen in the interval [0,360] and the shifts b are
randomly chosen in the interval [−5,5]. The number of training data samples used per digit
class is 40 and the mean value of the test error is reported based on 20 sample experiments.. The
standard deviation of the test errors was < 0.055.
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Figure 2.13: Mean test errors for pairwise binary classification of MNIST digits 0−9 using
semi-discrete LOT classifier under severe shearing conditions. For each image λ1,λ2 are
randomly chosen in the interval [0.5,2.5], θ is randomly chosen in the interval [0,360] and
the shifts b are randomly chosen in the interval [−5,5]. The number of training data samples
used per digit class is 40 and the mean value of the test error is reported based on 20 sample
experiments.. The standard deviation of the test errors was < 0.055.
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Figure 2.14: a) A randomly selected subset of mildly sheared MNIST ones and twos. b) A
randomly selected subset of mildly sheared MNIST sevens and nines. c) Classifcation of mildly
MNIST sheared ones and twos. For each image, λ1,λ2 are randomly chosen in the interval
[0.5,1.5], θ is randomly chosen in the interval [0,360] and the shifts b are randomly chosen
in the interval [−5,5]. d) Classifcation of mildly sheared MNIST sevens and nines. For each
image, λ1,λ2 are randomly chosen in the interval [0.5,1.5], θ is randomly chosen in the interval
[0,360] and the shifts b are randomly chosen in the interval [−5,5].

Figure 2.15: Visualization of separation in the LDA projection of 40 training per class corre-
sponding to a) MNIST ones and twos under mild shearing b) MNIST sevens and nines under
mild shearing.
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Figure 2.16: a) A randomly selected subset of severely sheared MNIST ones and twos. b) A
randomly selected subset of severely sheared MNIST sevens and nines. c) Classifcation of
severely sheared MNIST ones and twos. For each image, λ1,λ2 are randomly chosen in the
interval [0.5,2.5], θ is randomly chosen in the interval [0,360] and the shifts b are randomly
chosen in the interval [−5,5]. d) Classifcation of severely sheared MNIST sevens and nines. For
each image, λ1,λ2 are randomly chosen in the interval [0.5,1.5], θ is randomly chosen in the
interval [0,360] and the shifts b are randomly chosen in the interval [−5,5].

Figure 2.17: Visualization of separation in the LDA projection of 40 training samples per class
corresponding to a) MNIST ones and twos under severe shearing b) MNIST sevens and nines
under severe shearing.
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Figure 2.18: a) 2000 pairwise distances between mildly sheared MNIST ones and twos. b)
2000 pairwise distances between mildly sheared sevens and nines. c) 2000 pairwise distances
between severely sheared MNIST ones and twos. d) 2000 pairwise distances between severely
sheared sevens and nines.
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Chapter 3

Linearized Wasserstein Embeddings
JOINT WORK WITH KEATON HAMM, CAROLINE MOOSMÜLLER, AND ALEX

CLONINGER

We introduce LOT Wassmap, a computationally feasible algorithm to uncover low-

dimensional structures in the Wasserstein space. The algorithm is motivated by the observation

that many datasets are naturally interpreted as probability measures rather than points in Rn, and

that finding low-dimensional descriptions of such datasets requires manifold learning algorithms in

the Wasserstein space. Most available algorithms are based on computing the pairwise Wasserstein

distance matrix, which can be computationally challenging for large datasets in high dimensions.

Our algorithm leverages approximation schemes such as Sinkhorn distances and linearized

optimal transport to speed-up computations, and in particular, avoids computing a pairwise

distance matrix. We provide guarantees on the embedding quality under such approximations,

including when explicit descriptions of the probability measures are not available and one must

deal with finite samples instead. Experiments demonstrate that LOT Wassmap attains correct

embeddings and that the quality improves with increased sample size. We also show how LOT

Wassmap significantly reduces the computational cost when compared to algorithms that depend

on pairwise distance computations.
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3.1 Introduction

A classical problem in analyzing large volume, high-dimensional datasets is to develop

efficient algorithms that classify points based on a similarity measure, or based on a subset of

preclassified training data points. Even when data points lie in high-dimensional Euclidean space,

they can often be approximated by low-dimensional structures, such as subspaces or submanifolds.

This observation has led to significant advances in the field, mostly through the development of

manifold learning algorithms, which produce a low-dimensional representation of a given dataset;

see for example [13, 34, 63, 88]. In many of these frameworks, the data points are assumed to

be sampled from a low-dimensional Riemannian manifold embedded in Euclidean space, and

approximately preserve intrinsic properties such as geodesic distances.

In many applications however, data points are more naturally interpreted as distributions

{µi}N
i=1 over Rn, or finite samples Xi = {x

(i)
j }

Ni
j=1 with x(i)j ∼ µi. Examples include imaging data

[82], text documents (the bag-of-word model uses word count within a text as features, creating

a histogram for each document [100]), and gene expression data, which can be interpreted as

a distribution over a gene network [27, 65]. In this setting, a Euclidean embedding space with

Euclidean distances locally approximating the intrinsic distance of the data may not be geomet-

rically meaningful, and datasets are better modeled as probability measures in the Wasserstein

space [90].

We assume that our data points {µi}N
i=1 belong to the quadratic Wasserstein space W2(Rn)

of probability measures with finite second moment, equipped with the Wasserstein distance

W2(µ,ν) := inf
π∈Γ(µ,ν)

(∫
R2n
∥x− y∥2dπ(x,y)

) 1
2

, (3.1)

where P (R2n) is the set of all probability measures over R2n and Γ(µ,ν) := {γ ∈ P (R2n) :

γ(A×Rn) = µ(A), γ(Rn×A) = ν(A) for all A⊂ Rn} is the set of all joint probability measures

with marginals µ and ν. Under regularity assumptions on µ, the optimal coupling π has the form
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π = (id,T )♯µ, where T ∈ L2(Rn,µ) is the “optimal transport map” [18, 90].

The Wasserstein space and optimal transport have gained popularity in the machine

learning community, as they are based on a solid theoretical foundation [90] (for example, (3.1) is

a metric), while providing a versatile framework for applications (for example, as a cost function

for generative models [10], in semi-supervised learning [85], and in pattern detection for neuronal

data [70]).

In this paper, we are interested in uncovering low-dimensional submanifolds in the

Wasserstein space in a computationally feasible manner as well as analyzing the quality of the

embedding. To this end, we follow the idea of [48, 92], which introduces the Wassmap algorithm

(see Section 3.2.6 for more details), a version of the Multidimensional Scaling algorithm (MDS)

[64] (see Algorithm 2), or more generally, the Isomap algorithm [88].

A central part of manifold learning algorithms like MDS or Isomap relies on the com-

putation of the pairwise Euclidean distances. Wassmap uses the pairwise Wasserstein distance

matrix instead, which leads to O(N2) Wasserstein distance computations, each of which is of the

order O(n3 log(n)) if one uses interior point methods to solve the linear program (3.1). If both

N and n are large, computing all pairwise distances becomes infeasible. To deal with this issue,

approximations of the Wasserstein distance can be considered. In this paper, we are interested in

entropic regularized distances (Sinkhorn distances) [3, 36], which deal with the computational

issue involving n, and in linearized optimal transport (LOT) [45, 92], to reduce the computational

cost in N.

Our results are twofold:

1. Approximation guarantees:

• We provide bounds on the embedding quality of the Multidimensional Scaling algo-

rithm (MDS) [64] (see Algorithm 2) applied to a dataset in the Wasserstein space,

where the pairwise Wasserstein distances are only available up to an error τ.
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• We study the size of τ in common approximation schemes such as entropic regulariza-

tion and linearized approximations, and when explicit descriptions of the data points

µi, i = 1, . . . ,N are not available, and one must deal with finite samples instead.

2. Efficient algorithm (LOT Wassmap): We provide an algorithm, “LOT Wassmap”, inspired

by the Wassmap algorithm of [48]. It essentially uses linearized Wasserstein distance

approximations through LOT in the Multidimensional Scaling algorithm, leveraging our

approximation guarantees from (1). However, we do not compute the LOT-Wasserstein

distance matrix and feed it into MDS, but instead compute the truncated SVD of centered

transport maps. This is the same in theory, but computationally more efficient.

3.1.1 Previous work

The idea of replacing pairwise Euclidean distances with pairwise Wasserstein distances in

common manifold learning algorithms has been explored in many settings; for example in [99] to

study shape spaces of proteins, in [65, 27] to analyze gene expression data, and in [92] for cancer

detection.

Theoretical results on the reconstruction of certain submanifolds in W2(Rn) through the

MDS algorithm using pairwise Wasserstein distances are presented in [48]. The associated

algorithm, Wassmap, is the basis for our LOT Wassmap algorithm.

Related to the idea of uncovering submanifolds in the Wasserstein space is “Wasserstein

dictionary learning” as discussed in [74, 96]. The authors propose to represent complex data in

the Wasserstein space as Wasserstein barycenters of a dictionary.

3.1.2 Approximation guarantees

Using approximations of the Wasserstein distance in manifold learning algorithms such

as MDS may change the embedding quality, and our main result provides theoretical bounds on
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the error:

Theorem 3.1 (Informal version of Theorem 3.9). Assume that data points {µi}N
i=1 are τ1−close

to a d-dimensional submanifold W in the Wasserstein space, which is isometric to a subset Ω of

Euclidean space Rd . Furthermore assume that we only have access to approximations λi j of the

pairwise distances W2(µi,µ j), and that the approximation error is τ2.

Then, under some technical assumptions, the Multidimensional Scaling algorithm using

distances λi j as input recovers data points {zi}N
i=1 ⊂ Rd , which are CN,W (τ1 + τ2)-close to Ω up

to rigid transformations.

Some remarks on this result:

• The first source of error, τ1, depends on how close the data points are to the submanifold

W isometric to a subspace of Rd , which is completely determined by the dataset.

• The second source of error, τ2, depends on the approximation scheme used, and can be

made arbitrarily small with sufficient computational time or good choice of parameters.

A significant part of this paper is dedicated to providing bounds for τ2, when common approxima-

tion schemes for W2(µi,µ j) are used, and when {µi}N
i=1 are only available through samples, i.e.

when µi ≈ µ̂i =
1
mi

∑
mi
j=1 δ

Y (i)
j

with Y (i)
j ∼ µi i.i.d. In particular, we introduce empirical linearized

Wasserstein-2 distance, Ŵ LOT
2,σ , which uses two approximation schemes:

(a) Entropic regularized formulation: A very successful approximation framework for efficient

Wasserstein distance computation is the entropic regularized formulation of (3.1), which

depends on a parameter β, and leads to Sinkhorn distances [36]:

min
π∈Γ(µ,ν)

∫
R2n

1
2
∥x− y∥2dπ(x,y)+βDKL(π∥µ⊗ν), (3.2)

where DKL is the Kullback–Leibler divergence of measures [54]. This formulation leads
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to a unique solution (in contrast to (3.1)), and to a significant computational speed-up in n,

achieving O(n2 log(n)) through matrix scaling algorithms (Sinkhorn’s algorithm) [3, 36].

(b) Linearized Wasserstein distances: Linearized optimal transport (LOT) [45, 92] approximates

Wasserstein distances by linear L2−distances in the tangent space at a chosen reference

measure σ:

W LOT
2,σ (µ,ν) :=

(∫
Rn
∥T µ

σ (x)−T ν
σ (x)∥2 dσ(x)

)1/2

, (3.3)

where T µ
σ denotes the optimal transport map from σ to µ (either computed through (3.1) or

(3.2), and using barycentric projections to make a transport plan into a transport map). Instead

of computing all pairwise optimal transport maps, in this framework, one computes T µi
σ from

σ to µi, and approximates pairwise maps between µi and µ j as a composition of T µi
σ and T µ j

σ ,

reducing the computation in N to O(N). This framework has been successfully applied signal

and image classification tasks [78, 94], such as visualizing phenotypic differences between

types of cells [12]. There furthermore exist error bounds for W LOT
2,σ [15, 39, 45, 57, 68, 72].

With these approximation schemes at hand, we define the empirical linearized Wasserstein-2

distance:

Ŵ LOT
2,σ (µ̂, ν̂) :=

(
1
m

m

∑
j=1
∥T µ̂

σ (X j)−T ν̂
σ (X j)∥2

)1/2

, (3.4)

where X j ∼ σ i.i.d. and the transport maps are either computed by (3.1) or (3.2) (and with

barycentric projections, if necessary).

We provide values for τ2 as in Theorem 3.1, by bounding |W2(µ,ν)2−Ŵ LOT
2,σ (µ̂, ν̂)2|, using

either a linear program or Sinkhorn iterations to compute the transport plans. These bounds are

derived by combining the following results:

• Estimation of optimal transport maps with plug-in estimators, i.e. bounds on ∥T ν̂
µ −T ν

µ ∥µ,

which are provided by [38] for the linear program case, and by [80] in the regularized case.

Both [38] and [80] assume compactly supported µ and ν, while we are able to relax the
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compact support assumption on the target measure, as long as it can be approximated by

compactly supported measures.

• Approximation results for W LOT
2,σ , which are provided in [57, 72], and are based on the idea

that µi are generated by almost compatible functions H applied to a fixed generator µ. We

also strengthen some of the approximation results in [57, 72].

3.1.3 Efficient algorithm: LOT Wassmap

The Wassmap algorithm of [48] requires computing the pairwise Wasserstein distance ma-

trix W2(µi,µ j), i, j = 1, . . . ,N, which leads to O(N2) expensive computations. We introduce LOT

Wassmap (see Algorithm 3), which uses LOT distances (3.3) to linearly approximate W2(µi,µ j)

(since the input of our algorithm are empirical samples µ̂i, we actually use the empirical linearized

Wasserstein-2 distance (3.4)). This results in only O(N) optimal transport computations.

However, in practice, we avoid computing the pairwise LOT distance matrix. Instead,

we compute the truncated SVD of the centered transport maps, which is computationally more

efficient. We show that in theory this produces a result equivalent to Theorem 3.1:

Corollary 3.2 (Informal version of Corollary 3.10). Assume that data points {µi}N
i=1 are τ1−close

to a d-dimensional submanifold W in the Wasserstein space, which is isometric to a subset Ω

of Euclidean space Rd . Choose a reference measure σ and compute all transport maps T µi
σ

(either with a linear program (3.1) or with Sinkhorn approximations (3.2), and with barycentric

projections, if necessary). Let τ2 be the error between the empirical linearized Wasserstein-2

distance Ŵ LOT
2,σ (µ̂i, µ̂ j) of (3.4) and the actual Wasserstein-2 distance W2(µi,µ j).

Then, under some technical assumptions, the truncated SVD of the centered transport

maps T µi
σ (column-stacked) produces data points {zi}N

i=1 ⊂Rd , which are CN,W (τ1 + τ2)-close to

Ω up to rigid transformations.

We note that Corollary 3.2 is a corollary of Theorem 3.1 and that the technical assumptions
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and constants are the same in both results.

In Section 5.8, we provide experiments demonstrating that LOT Wassmap does attain

correct embeddings given finite samples without explicitly computing the pairwise LOT distance

matrix. In particular, we show that the embedding quality improves with increased sample size

and that LOT Wassmap significantly reduces the computational cost when compared to Wassmap.

3.1.4 Organization of the paper

This paper is organized as follows: We start by introducing important notation and

background in Section 3.2. This includes discussion of the MDS and Wassmap algorithms,

(linearized) optimal transport, and plug-in estimators. Section 3.3 introduces the LOT Wassmap

algorithm and provides the main results. Sections 3.4 and 3.5 provide approximation guarantees

for Ŵ LOT
2,σ (µ̂, ν̂) for compactly and non-compactly supported target measures, respectively. The

approximation guarantees come with many technical assumptions, and Sections 3.6 and 3.7 are

dedicated to discussing settings in which these assumptions hold. The paper concludes with

experiments in Section 5.8, which show the effectiveness of LOT Wassmap. Proofs are provided

in Sections 3.9 to 3.12.

3.2 Notation and Background

This paper has a significant amount of background and notation which is summarized

categorically here. See Table 3.1 for an overview of notation used in the paper.

3.2.1 Linear Algebra Preliminaries

Given A ∈ Rm×n, its Singular Value Decomposition (SVD) is given by A =UΣV⊤, where

U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n has non-zero entries along its

main diagonal (singular values). The singular values are the square roots of the eigenvalues
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Table 3.1: Overview of notation used in the paper.

Notation Definition Reference
∆ Square Euclidean distance matrix Algorithm 2
Λ Perturbed distance matrix Corollary 3.8
X† Moore–Penrose pseudoinverse of matrix X Section 3.2.1
µ Template measure Section 3.2.4
µ̂ Empirical measure approximating µ (3.7)
σ Reference measure for LOT Section 3.2.4
∥ · ∥Sp Schatten p-norm Section 3.2.1
∥ · ∥ Spectral norm of a matrix or Euclidean norm of a vector Section 3.2.1
∥ · ∥F Frobenius norm of a matrix Section 3.2.1
∥ · ∥max (Entrywise) maximum norm of a matrix Section 3.2.1
∥ · ∥µ Norm on L2(Rn,µ) Section 3.2.3

n Dimension of Euclidean space that probability measures
are defined on

Section 3.2.3

P (Rn) Probability measures on Rn Section 3.2.3
Pac(Rn) Absolutely continuous probability measures on Rn Section 3.2.3
W2(Rn) Wasserstein-2 space over Rn Section 3.2.3
W2(µ,ν) Wasserstein-2 distance between µ and ν (3.5)

W LOT
2,σ (µ,ν) Linearized Wasserstein-2 distance between µ and ν, with

σ as reference
(3.6)

Ŵ LOT
2,σ (µ,ν) Empirical linearized Wasserstein-2 distance (3.12)

T µ
σ Optimal transport (Monge) map from σ to µ Section 3.2.3

T♯µ Pushforward of µ with respect to T Section 3.2.3

T µ̂
σ Barycentric projection of an optimal transport plan (Kan-

torovich potential)
(3.10)

d Embedding dimension of MDS Section 3.2.2
k Sample size that generates µ̂ (3.7)
m Sample size that generates σ̂ Algorithm 3
N Number of data points Algorithm 3
ε Distance from compatibility Definition 3.4
β Regularizer for Sinkhorn OT Section 3.4.2

of A⊤A and are taken in descending order σ1 ≥ σ2 ≥ ·· · ≥ σmin{m,n} ≥ 0. The truncated SVD

of order d of A is Ad = UdΣdV⊤d where Ud and Vd consist of the first d columns of U and V ,

respectively, and Σd = diag(σ1, . . . ,σd) ∈Rd×d . The Moore–Penrose pseudoinverse of A ∈Rm×n

is the n×m matrix denoted by A† and defined by A† =V Σ†U⊤ where Σ† is the n×m matrix with
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entries 1
σ1
, . . . , 1

σmin{m,n}
along its main diagonal.

The Schatten p-norms (1 ≤ p ≤ ∞) are a general class of unitarily invariant, submulti-

plicative norms on Rm×n and are defined to be the ℓp norms of the vector of singular values:

∥A∥Sp := ∥(σ1, . . . ,σmin{m,n})∥ℓp. The Frobenius norm, which is the Schatten 2-norm is denoted

by ∥ · ∥F, and the spectral norm, which is the Schatten ∞-norm is denoted simply by ∥ · ∥. We also

use ∥ · ∥ to denote the Euclidean norm of a vector.

3.2.2 Multidimensional scaling

Let 1 be the all-ones vector in RN , and J := I− 1
N 11⊤. Then Multidimensional Scaling

(MDS) is summarized in Algorithm 2. For more details see [64].

Algorithm 2 Multidimensional Scaling (MDS) [64]
Input :Points {yi}N

i=1 ⊂ RD; embedding dimension d≪ D.
Output :Low-dimensional embedding points {zi}N

i=1 ⊂ Rd

Compute pairwise distance matrix ∆i j = ∥yi− y j∥2

B =−1
2J∆J

(Truncated SVD): Bd =VdΣdV⊤d

zi = (VdΣd)(i, :), for i = 1, . . . ,N

Return {zi}N
i=1

MDS produces an isometric embedding RD→Rd if and only if the matrix B is symmetric

positive semi-definite with rank d, a result that goes back to Young and Householder [98]. In this

case, the embedding points {zi}N
i=1 ⊂ Rd satisfy ∥zi− z j∥= ∥yi− y j∥ and are unique up to rigid

transformation.
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3.2.3 Optimal Transport Preliminaries

Let P (Rn) be the space of all probability measures on Rn, with Pac(Rn) being the subset

of all probability measures which are absolutely continuous with respect to the Lebesgue measure.

Given µ ∈ Pac(Rn), we denote its probability density function by fµ. The quadratic Wasserstein

space W2(Rn) is the subset of P (Rn) of measures with finite second moment
∫
Rn ∥x∥2dµ(x)< ∞

equipped with the quadratic Wasserstein metric given by

W2(µ,ν) := inf
π∈Γ(µ,ν)

(∫
R2n
∥x− y∥2dπ(x,y)

) 1
2

, (3.5)

where Γ(µ,ν) := {γ ∈ P (R2n) : γ(A×Rn) = µ(A), γ(Rn×A) = ν(A) for all A ⊂ Rn} is the set

of couplings, i.e., measures on the product space whose marginals are µ and ν.

In [18], Brenier showed that if µ is absolutely continuous with respect to the Lebesgue

measure, the optimal coupling of (3.5) takes the special form π = (id,T ν
µ )♯µ, where ♯ is the

pushforward operator (S♯µ(A) = µ(S−1(A)) for A measurable) and T ν
µ ∈ L2(Rn,µ) solves

min
T :T♯µ=ν

∫
Rn
∥T (x)− x∥2 dµ(x).

For simplicity, we denote the norm on L2(Rn,µ) by ∥ f∥2
µ :=

∫
Rn ∥ f (x)∥2dµ(x). Note that if T ν

µ

exists, then

W2(µ,ν) = ∥T ν
µ − id∥µ.

Furthermore, [18] shows that when µ is absolutely continuous with respect to the Lebesgue

measure, the map T ν
µ is uniquely defined as the gradient of a convex function φ, i.e. T ν

µ = ∇φ (up

to an additive constant).
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3.2.4 Linearized optimal transport

Linearized optimal transport (LOT) [45, 68, 78, 94] defines an embedding of P (Rn) into

the linear space L2(Rn,σ), with σ being a fixed reference measure. Under the assumption that

the optimal transport map exists, the embedding is defined by µ 7→ T µ
σ . This embedding can be

used as a feature space, for example, to classify subsets of P (Rn), to linearly approximate the

Wasserstein distance, or for fast Wasserstein barycenter computations [2, 57, 68, 72, 78].

In particular, the LOT embedding defines a linearized Wasserstein-2 distance:

W LOT
2,σ (µ,ν) := ∥T µ

σ −T ν
σ ∥σ. (3.6)

In certain settings, this linearized distance approximates the Wasserstein-2 distance. The strongest

results can be obtained when the so-called compatibility condition is satisfied:

Definition 3.3 (Compatibility condition [2, 72, 78]). Let σ,µ ∈W2(Rn)∩Pac(Rn). We say that

the LOT embedding is compatible with the µ-pushforward of a function g ∈ L2(Rn,µ) if

T
g♯µ

σ = g◦T µ
σ .

The compatibility condition describes an interaction between the optimal transport map

and the pushforward operator, namely it requires invertability of the exponential map [45].

When the compatibility condition holds for two functions g1,g2, then LOT is an isometry,

i.e. W LOT
2,σ (g1♯µ,g2♯µ) =W2(g1♯µ,g2♯µ) as shown in Lemma 3.29 and [72, 78]. In particular, this

is the case when g is either a shift or scaling, or a certain type of shearing [57, 72, 78].

We can furthermore consider a generalization to “almost compatible” functions, also

termed ε-compatible:

Definition 3.4 (ε-compatibility). Let σ,µ ∈W2(Rn)∩Pac(Rn). We say that H is ε- compatible

with respect to σ and µ, if for every h ∈H , there exists a compatible transformation g such that
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∥g−h∥µ < ε, where g◦T µ
σ = T

g♯µ
σ .

We remark that compatibility is stable. Similar to compatibility implying isometry, there

exist results that imply ε-compatible transformations imply “almost”-isometry between W LOT
2,σ

and W2. Some of these results are accounted for in [72, Proposition 4.1]; however, we also

extend these almost-compatibility results in Theorem 3.30. These results make use of the Hölder

regularity bounds for W LOT
2,σ of [45, 68]. We note that the “isometry under compatibility” result

mentioned above is a direct consequence of the preceding proposition, namely by setting ε = 0.

In this paper, we consider measures µi, i = 1, . . . ,N of the form µi = hi♯µ, where µ is a

fixed template measure, and h ∈H with H a space of functions in L2(Rn,µ). This is similar to

assumptions in [2, 57, 72, 78], where H consists of shifts and scalings, compatible maps, or has

other properties, such as convexity and compactness. We will write µi ∼H♯µ to indicated that µi

is of such a form for all i = 1, . . . ,N, and H will be specified in the respective context. Note that

[2] calls this data generation process an “algebraic generative model”.

3.2.5 Optimal transport with plug-in estimators

Explicit descriptions of the measures µ are often unavailable in applications, and one must

instead deal with finite samples of the measure. In this paper, we consider empirical distributions

µ̂ =
1
k

k

∑
i=1

δYi (3.7)

with Yi ∼ µ i.i.d. In what follows, we will consider approximations of both the target and reference

distributions via empirical distributions.

The Kantorovich problem (3.5) has a (possibly non-unique) solution for transporting an

absolutely continuous measure σ to an empirical measure of the form (3.7). Following [38], we
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define the set of Kantorovich plans

Γmin := argmin
π∈Γ(σ,µ̂)

∫
R2n
∥x− y∥2dπ(x,y), (3.8)

which may contain more than one transport plan. In practice, these optimal transport plans are

exactly computed via linear programming to solve (3.8). We call optimal transport plans solved

with linear programming γLP. It is much faster, however, to approximate the optimal transport

plan by using an entropic regularized plan [36]. In particular, we get a unique solution by solving

γβ := argmin
π∈Γ(σ,µ̂)

∫ 1
2
∥x− y∥2dπ(x,y)+βDKL(π∥σ⊗ µ̂), (3.9)

where DKL is the Kullback–Leibler divergence of measures [54], σ⊗ µ̂ is the measure on the

product space Rn×Rn whose marginals are σ and µ̂, and β denotes the regularizer. We solve

(3.9) with Sinkhorn’s algorithm, which yields entropic potentials fβ and gβ corresponding to σ

and µ̂, respectively.

Regardless of whether we solve the optimal transport plan using (3.8) or (3.9), we can

make a transport plan γ ∈ Γ into a map by defining the barycentric projection

T µ̂
σ (x;γ) :=

∫
y ydγ(x,y)∫
y dγ(x,y)

, for x ∈ supp(σ). (3.10)

This leads to a natural way to consider linearized Wasserstein-2 distances of the form (3.6) with

absolutely continuous reference σ, and for empirical distributions:

W LOT
2,σ (µ̂, ν̂;γ) := ∥T µ̂

σ (·;γµ̂)−T ν̂
σ (·;γν̂)∥σ, (3.11)

where γ ∈ {γLP,γβ} denotes the method used to calculate the transport plans γµ̂ and γν̂, which are

transport plans from σ to µ̂ and ν̂, respectively. We suppress this notation and will simply use
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T µ̂
σ (·;γLP) or T µ̂

σ (·;γβ) to denote the barycentric projection map computed via linear programming

and Sinkhorn, respectively, so that γLP and γβ are understood to be in Γ(σ, µ̂).

To account for m finite samples of the reference distribution, we define the empirical

linearized Wasserstein-2 distance by

Ŵ LOT
2,σ (µ̂, ν̂;γ) :=

(
1
m

m

∑
j=1
∥T µ̂

σ (X j;γµ̂)−T ν̂
σ (X j;γν̂)∥2

)1/2

, (3.12)

where X j ∼ σ i.i.d.

Remark 3.5. When we use γβ for a transport plan between σ̂ and µ̂, note that our barycentric

projection map is given by

T µ̂
σ̂
(x;γβ) :=

1
k ∑

k
i=1 yi exp

((
gβ,k(yi)− 1

2∥x− yi∥2
)
/β

)
1
k ∑

k
i=1 exp

((
gβ,k(yi)− 1

2∥x− yi∥2
)
/β

) , (3.13)

where gβ,k denotes the entropic potential corresponding to µ̂, yi ∈ supp(µ̂), and k is the sample

size for both σ̂ and µ̂.

Remark 3.6. Since our approximations will require us to use m samples from the reference

distributions, the barycentric projection map T µ̂
σ (x) will only work for x ∈ supp(σ̂); however, for

general computation, we can just interpolate to calculate T µ̂
σ (x) for x ∈ supp(σ)\ supp(σ̂).

In what follows, we are interested in bounds for

|W2(µ,ν)2−Ŵ LOT
2,σ (µ̂, ν̂;γ)2|

for γ ∈ {γLP,γβ}. In particular, we want similar results to Theorem 3.30 (Wasserstein-2 compared

to LOT) and results in [38] (Wasserstein-2 compared to Wasserstein-2 on empirical distributions).

This requires comparisons between all of W2(µ,ν), W LOT
2,σ (µ,ν), W LOT

2,σ (µ̂, ν̂;γ), and Ŵ LOT
2,σ (µ̂, ν̂;γ),

89



which are discussed in Section 3.4 and Section 3.5.

3.2.6 Wassmap

Various generalizations of MDS have been explored [35] including stress minimization,

which is useful in graph drawing [56, 69], Isomap [88] which replaces pairwise distance by a

graph estimation of manifold geodesics, and is useful for embedding data from d–dimensional

nonlinear manifolds in RD. Wang et al. [92] utilized MDS with ∆i j = W2(µi,µ j)
2 for data

considered as probability measures in Wasserstein space with applications to cell imaging and

cancer detection. Subsequently, Hamm et al. [48] proved that several types of submanifolds

of W2 can be isometrically embedded via MDS with Wasserstein distances (as in [92]) and

empirically studied Wassmap: a variant of Isomap that approximates nonlinear submanifolds

of W2. In particular, [48] shows that for some submanifolds of W2(Rm) of the form H♯µ where

H = {hθ : θ ∈Θ⊂ Rd} which are isometric Euclidean space, the parameter set Θ⊂ Rd can be

recovered up to rigid transformation via MDS with Wasserstein distances (e.g., translations and

anisotropic dilations).

3.2.7 Other notations

For scalars a and b we use a∨b to denote the maximum and a∧b to denote the minimum

value of the pair. Throughout the paper, constants will typically be denoted by C and may change

from line to line, and subscripts will be used to denote dependence on a given set of parameters.

We use a≍ b to mean that ca≤ b≤Ca for some absolute constance 0 < c,C < ∞.

For a random variable Xn, we say that Xn = Op(an) if for every ε > 0 there exists M > 0

and N > 0 such that

P
(∣∣∣∣Xn

an

∣∣∣∣> M
)
< ε ∀n≥ N.
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We denote by O(d) the orthogonal group over Rd , and the related Procrustes distance (in

the Frobenius norm) between matrices X ,Y ∈ Rd×N is min
Q∈O(d)

∥X−QY∥F.

3.3 LOT Wassmap algorithm and Main Theorem

Here we present our main algorithm which is an LOT approximation to the Wassmap

embedding of [48], and our main theorem which describes the quality of the embedding using

some existing perturbation bounds for MDS.

3.3.1 The LOT Wassmap Embedding Algorithm

The algorithm presented here (Algorithm 3) takes discretized samples of a set of measures

{µi}N
i=1 ⊂ W2(Rn) and a discretized sample of a reference measure σ ∈ W2(Rn), computes

transport maps from the empirical reference measure σ̂ to each empirical target measure µ̂i using

optimal transport solvers and barycentric projections. Finally, the truncated right singular vectors

and singular values of the centered transport map matrix are used to produce the low-dimensional

embedding of the measures. Two things are important to note here: first, the output of the

algorithm is the same as the output of multi-dimensional scaling using pairwise squared LOT

distances (or Sinkhorn distances in the approximate case), but we use the same trick as the

reduction of PCA to the SVD to avoid actually computing the distance matrix; second, in contrast

to the Wassmap embedding of [48] which requires O(N2) Wasserstein distance computations,

Algorithm 3 requires computation of only O(N) optimal tranport maps. Given the high cost

of computing a single optimal transport map for densely sampled measures, this represents a

significant savings.

Note that the factor of 1√
m appearing in the computation of the final embedding is due to

(3.12) where the 1
m appears in the definition of the empirical LOT distance. Lemma Lemma 3.27

shows that T⊤T where T is as in Algorithm 3 is actually the MDS matrix −1
2JΛJ where Λ

91



consists of the empirical LOT distances between the data, hence we absorb the 1
m into the norm in

(3.12) to get the matrix T in Algorithm 3.

Algorithm 3 LOT WassMap Embedding
Input :Reference point cloud {wi}m

i=1 ∼ σ ∈ P2(Rn)
Sample point clouds {xk

j}
nk
j=1 ∼ µk ∈ P2(Rn) (k = 1, . . . ,N)

OT solver (with regularizer if Sinkhorn)
Embedding dimension d

Output :Low-dimensional embedding points {zi}N
i=1 ⊆ Rd

for k = 1, . . . ,N do
Calculate cost matrix Ci j = ∥wi− xk

j∥2

Compute OT plan γk ∈ Rm×nk between {wi}m
i=1 and {xk

j}
nk
j=1 using C and OT solver

Calculate barycentric projection T̃k(wi) =
(

∑
nk
j=1 xk

j(γk)i j

)
/
(

∑
nk
j=1(γk)i j

)
T̂ =

[
T̃j(wi)

]m,n
i=1, j=1

for k = 1, . . . ,N do
T:k =

1√
m(T̂:k− 1

N ∑
N
k=1 T̂:k)

Compute the truncated SVD of T as Td =UdΣdV⊤d
Return zi =VdΣd(i, :)

3.3.2 MDS Perturbation Bounds

As stated above, the output of Algorithm 3 is equivalent to the output of MDS on the

transport map matrix T therein. Consequently, the analysis of the algorithm will require some

results regarding MDS. On the road to stating our main result, we summarize some nice MDS

perturbation results of [9].

Theorem 3.7 ([9, Theorem 1]). Let Y,Z ∈ Rd×N with d < N such that rank(Y ) = d, and let

ε2 := ∥Z⊤Z−Y⊤Y∥Sp for some p ∈ [1,∞]. Then,

min
Q∈O(d)

∥Z−QY∥Sp ≤


∥Y †∥ε2 +

(
(1−∥Y †∥2ε2)−

1
2∥Y †∥ε2

)
∧d

1
2p ε, ∥Y †∥ε < 1,

∥Y †∥ε2 +d
1

2p ε, o.w.
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Consequently, if ∥Y †∥ε≤ 1√
2
, then

min
Q∈O(d)

∥Z−QY∥Sp ≤ (1+
√

2)∥Y †∥ε2.

Corollary 3.8. Let y1, . . . ,yN ∈ Rd be centered, span Rd , and have pairwise dissimilarities

∆i j = ∥yi−y j∥2. Let {Λi j}N
i, j=1 be arbitrary real numbers and p∈ [1,∞]. If ∥Y †∥∥Λ−∆∥

1
2
Sp
≤ 1√

2
,

then MDS (Algorithm 2) with input dissimilarities {Λi j}N
i, j=1 and embedding dimension d returns

a point set z1, . . . ,zN ∈ Rd satisfying

min
Q∈O(d)

∥Z−QY∥Sp ≤ (1+
√

2)∥Y †∥∥Λ−∆∥Sp .

Proof of Corollary 3.8. The proof follows along similar lines to that of [9, Corollary 2] with

some modifications. First, note that the centering matrix J in MDS satisfies ∥J∥= 1 as it is an

orthogonal projection. Then, by using the fact that ∥AB∥Sp ≤ ∥A∥∥B∥Sp , we can estimate

1
2
∥J(Λ−∆)J∥Sp ≤

1
2
∥J∥2∥Λ−∆∥Sp ≤

1
2
∥Λ−∆∥Sp < σ

2
d(Y ), (3.14)

where the final inequality follows by assumption.

Since Y is a centered point set, we have Y⊤Y = JY⊤Y J =−1
2J∆J (Lemma 3.27). Thus

by Weyl’s inequality, the fact that ∥ · ∥ ≤ ∥ · ∥Sp for all p, and (3.14),

σd

(
−1

2
JΛH

)
≥ σd

(
−1

2
J∆J

)
− 1

2
∥J(Λ−∆)J∥Sp

≥ σd

(
−1

2
J∆J

)
− 1

2
∥J(Λ−∆)J∥Sp

= σ
2
d(Y )−

1
2
∥J(Λ−∆)J∥Sp

> 0.
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Consequently, −1
2JΛJ has rank d, so if Z contains the columns of the MDS embedding corre-

sponding to Λ, then Z⊤Z is the best rank-d approximation of −1
2JΛJ (by construction). It follows

from Mirsky’s inequality that

∥∥∥∥Z⊤Z +
1
2

JΛJ
∥∥∥∥

Sp

≤
∥∥∥∥1

2
J(Λ−∆)J

∥∥∥∥
Sp

. (3.15)

Combining (3.14) and (3.15), we have

ε
2 := ∥Z⊤Z−Y⊤Y∥Sp ≤

∥∥∥∥Z⊤Z +
1
2

JΛJ
∥∥∥∥

Sp

+

∥∥∥∥1
2

J(Λ−∆)J
∥∥∥∥

Sp

≤ ∥J(Λ−∆)J∥Sp

≤ ∥Λ−∆∥Sp.

Thus, ∥Y †∥ε≤ ∥Y †∥∥Λ−∆∥
1
2
Sp
≤ 1√

2
, so we may apply the final bound of Theorem 3.7 to yield

the conclusion.

3.3.3 Main Theorem

The following theorem shows the quality of an MDS embedding of a discrete subset of

W2(Rn) when approximations of the pairwise W2(Rn) distances are used (via, for example, LOT

approximations, Sinkhorn regularization, or other approximation techniques). The embedding

quality is understood in two parts: first, how far away the set is from a subset of W2(Rn) that

is isometric to Rd , and second, how good an approximation to the Wasserstein distances one

utilizes in MDS. The second source of error can always be made arbitrarily small given sufficient

computation time or judicious choice of parameters (as in Sinkhorn, for example). However, the

first source of error arises from the geometry of the set of points, and may or may not be small.

Note that using Corollary 3.8 outright would require computing a proxy distance matrix

and applying MDS; however, to make Algorithm 3 computationally efficient, we instead compute

the truncated SVD of the centered transport maps rather than on the distance matrix between
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the transport maps. These are the same in theory, but allow for significantly less computation in

practice. Below, we state our main theorem, which is stated in terms of the output of MDS on an

estimation of Wasserstein distances between measures; but we stress that we are able to easily

transfer the bounds to the output of Algorithm 3, which does not require any distance matrix

computation.

Theorem 3.9. Let {µi}N
i=1 ⊂W2(Rn). Suppose W ⊂W2(Rn) is a subset of Wasserstein space

that is isometric to a subset of Euclidean space Ω ⊂ Rd , and {νi}N
i=1 ⊂W and {yi} ⊂ Ω are

such that |yi−y j|=W2(νi,ν j). Let ∆i j :=W2(νi,ν j)
2, Γi j :=W2(µi,µ j)

2, and Λi j := λ2
i j for some

λi j ∈ R. Let {zi}N
i=1 be the output of MDS (Algorithm 2) with input Λ.

If |W2(µi,µ j)
2−W2(νi,ν j)

2| ≤ τ1 and |W2(µi,µ j)
2−λ2

i j| ≤ τ2 for some τ1 and τ2, and

∥Y †∥
√

N (τ1 + τ2)
1
2 ≤ 1√

2
, (3.16)

then {zi}N
i=1 ⊂ Rd satisfies

min
Q∈O(d)

∥Z−QY∥F ≤ (1+
√

2)∥Y †∥N (τ1 + τ2) .

Proof. Note that

∥Λ−∆∥F ≤ ∥Γ−∆∥F +∥Λ−Γ∥F ≤ N(τ1 + τ2).

Consequently, (3.16) allows us to apply Corollary 3.8 to yield the conclusion.

Specializing Theorem 3.9 to the case of Algorithm 3 yields the following corollary, which

shows that the truncated SVD of the centered LOT transport matrix T is equivalent to the output

zi of MDS in Theorem 3.9.

Corollary 3.10. Invoke the notations and assumptions of Theorem 3.9. Choose a reference

measure σ ∈W2(Rn) and compute all transport maps T µi
σ . Let T be the transport map matrix
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created by centering and column-stacking the transport maps T µi
σ as in Algorithm 3. Let UdΣdV⊤d

be the truncated SVD of T , and let zi =VdΣd(i, :) for 1≤ i≤N (i.e., zi is the output of Algorithm 3).

If (3.16) holds, then

min
Q∈O(d)

∥Z−QY∥F ≤ (1+
√

2)∥Y †∥N (τ1 + τ2) .

Proof. Since T is centered, Lemma 3.27 implies that T⊤T = JT⊤T J =−1
2JΛJ. Consequently, if

−1
2JΛJ =V Σ2V⊤ = T⊤T , then T has truncated SVD Td =UdΣdV⊤d , and therefore zi =VdΣd(i, :)

arises from the truncated SVD of T and is also the output of MDS with input Λ. The conclusion

follows by direct application of Theorem 3.9.

In the rest of the paper, we will discuss how various LOT approximations to Wasserstein

distances affect the value of the bound τ2 appearing in Theorem 3.9 and Corollary 3.10. In

particular, we get different values of τ2 when we have compactly supported target measures (as in

Theorem 3.12 for linear programming estimators and Theorem 3.17 for Sinkhorn estimators) and

non-compactly supported target measures (as in Theorem 3.21 for linear programming estimators

and Theorem 3.22 for Sinkhorn estimators).

3.4 Bounds for compactly supported target measures

To capture the bound τ2 of Theorem 3.9, we turn our attention to approximating the

pairwise square-distance matrix
[
W 2

2 (µi,µ j)

]N

i, j=1
appearing in the theorem statement with the

finite sample, discretized LOT distance matrix that comes from differences between transport

maps to a fixed reference, a finite sampling of µi, and a discretization of the reference distribution
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σ. In particular, the main approximation argument consists of the following triangle inequality:

∣∣∣W2(µ1,µ2)
2−Ŵ LOT

2,σ (µ̂1, µ̂2;γ)2
∣∣∣≤ ∣∣W2(µ1,µ2)

2−W LOT
2,σ (µ1,µ2)

2∣∣︸ ︷︷ ︸
LOT error

+
∣∣W LOT

2,σ (µ1,µ2)
2−W LOT

2,σ (µ̂1, µ̂2;γ)2∣∣︸ ︷︷ ︸
finite sample and optimization error

+
∣∣∣W LOT

2,σ (µ̂1, µ̂2;γ)2−Ŵ LOT
2,σ (µ̂1, µ̂2;γ)2

∣∣∣︸ ︷︷ ︸
discretized σ sampling error

.

There are four sources of error between these two distance matrices:

1. approximating the Wasserstein distance with LOT distance,

2. approximating LOT embeddings between µi and µ j with the barycenteric approximations

computed using finite samples µ̂i and µ̂ j,

3. approximating the integral with respect to the reference measure σ by the discretized

sampling σ̂, and

4. optimization error in approximating the optimal transport map.

The error from (1) and (3) are handled in Section 3.10 whilst the error from (2) gives us the

main theorems of this section. Error from (4) is also implicitly considered by handling error

from (2) since the optimization error for using a linear programming optimizer versus a Sinkhorn

optimizer is seen in the error bounds of Theorem 3.12 and Theorem 3.17. We deal with each error

separately and chain the bounds together at the end.

Before dealing with any of the details of the proofs, we need the following assumptions

on σ, µ, and H :

Assumption 3.11. Consider the following conditions on σ, µ, and H

i σ ∈ Pac(Ω) for a compact convex set Ω⊆ B(0,R)⊂ Rn with probability density fσ bounded

above and below by positive constants.
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ii µ has finite p-th moment with bound Mp with p > n and p≥ 4.

iii There exist a,A > 0 such that every h ∈H satisfies a∥x∥ ≤ ∥h(x)∥ ≤ A∥x∥.

iv H is compact and ε-compatible with respect to σ,µ ∈W2(Rn). Moreover, suph,h′∈H ∥h−

h′∥µ ≤M.

v µi ∼H♯µ i.i.d.

These assumptions ensure that ε-compatible transformations are also “ε-isometric” as

shown in Theorem 3.30.

3.4.1 Using the Linear Program to compute transport maps

In this subsection, we assume that the classical linear program is used to compute the

optimal transport maps from µ̂i to the reference (and its discretization).

Theorem 3.12. Let δ > 0. Along with Assumption 3.11 and that µ ∈ Pac(Ω) for the Ω in

Assumption 3.11, assume that

(i) T µi
σ is L-Lipschitz, which may occur if T µ

σ is L-Lipschitz. Note that if σ and µ are both

compactly supported, then T µ
σ itself is L-Lipschitz.

(ii) We estimate µi with an empirical measure µ̂i using k samples and discretize σ with m samples.

Let our estimator be given by (3.10) with γ solved using linear programming.

Then with probability at least 1−δ,

∣∣∣W2(µ1,µ2)
2−Ŵ LOT

2,σ (µ̂1, µ̂2;γLP)
2
∣∣∣≤ (M+2R)

(
Cε

p
6p+16n +2Op(r

(k)
n log(1+ k)tn,α)

+R

√
2log(2/δ)

m

)
. (3.17)
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where C is the constant from Theorem 3.30 depending on n, p,Ω,Mp, the constants a and A come

from Assumption 3.11 (iv), and

r(k)n =


2k−1/2 n = 2,3

2k−1/2 log(1+ k) n = 4

2k−2/d n≥ 5

,

tn,α =


(4α)−1(4+((2α+2nα−n)∨0)) n < 4

(α−1∨7/2)−1 n = 4

2(1+n−1) n > 4

,

so that r(k)n and tn,α are on the order of k−1/n and 2(1+ n−1), respectively. In this case, τ2 of

Corollary 3.10 is bounded above by the right-hand side of (3.17).

Proof. Note that the transport plan that we are using for the following proof is γLP. Henceforth,

we will suppress γLP from the terms Ŵ LOT
2,σ (µ̂1, µ̂2;γLP) and T µ̂ j

σ (·;γLP) for simplicity.

Since |x2− y2|= |x+ y||x− y|, we need to bound both

(a)
∣∣∣W2(µ1,µ2)+Ŵ LOT

2,σ (µ̂1, µ̂2)
∣∣∣,

(b)
∣∣∣W2(µ1,µ2)−Ŵ LOT

2,σ (µ̂1, µ̂2)
∣∣∣.

We start with (a): Since both µ1 and µ2 are pushforwards of a fixed template distribution µ, we

know that µi = hi♯µ, where by [6, Eq. 2.1] and our assumptions, it follows that

W2(µ1,µ2) =W2(h1♯µ,h2♯µ)≤ ∥h1−h2∥µ ≤M.

Moreover, since H is compact, µ is compactly supported, and µi ∼ H♯µ, we know that µi is
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compactly supported with supp(µi)⊆ B(0,R) for all i. This implies that

Ŵ LOT
2,σ (µ̂1, µ̂2) =

 1
m

m

∑
j=1
|T µ̂1

σ (X j)−T µ̂2
σ (X j)|2︸ ︷︷ ︸

≤4R2


1/2

≤ 2R.

Putting these estimates together, we have

∣∣∣W2(µ1,µ2)+Ŵ LOT
2,σ (µ̂1, µ̂2)

∣∣∣≤M+2R.

We continue with (b): From the triangle inequality we get

∣∣∣W2(µ1,µ2)−Ŵ LOT
2,σ (µ̂1, µ̂2)

∣∣∣≤ ∣∣W2(µ1,µ2)−W LOT
2,σ (µ1,µ2)

∣∣+ ∣∣W LOT
2,σ (µ1,µ2)−W LOT

2,σ (µ̂1, µ̂2)
∣∣

+
∣∣∣W LOT

2,σ (µ̂1, µ̂2)−Ŵ LOT
2,σ (µ̂1, µ̂2)

∣∣∣
We now bound these three parts individually:

a) By Assumption 3.11, we can use ε-compatibility of H in Theorem 3.30 to get that

∣∣W2(µ1,µ2)−W LOT
2,σ (µ1,µ2)

∣∣≤Cε
p

6p+16n ,

where C is from Theorem 3.30.

b) For the second term, we again assume that any transport maps involving discrete measures are

obtained from the linear program. In particular, we see that

W LOT
2,σ (µ1,µ2) = ∥T µ1

σ −T µ2
σ ∥σ

≤ ∥T µ1
σ −T µ̂1

σ ∥σ +∥T µ̂1
σ −T µ̂2

σ ∥σ +∥T µ̂2
σ −T µ2

σ ∥σ

= ∥T µ1
σ −T µ̂1

σ ∥σ +∥T µ̂2
σ −T µ2

σ ∥σ +W LOT
2,σ (µ̂1, µ̂2).
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Note that Assumption 3.11(i) implies that there exists some t > 0 and α > 0 such that

Eσ[t∥x∥α] < ∞. Together with T µ
σ being Lipschitz, this allows us to use Theorem 3.31 to

conclude that

|W LOT
2,σ (µ1,µ2)−W LOT

2,σ (µ̂1, µ̂2)| ≤ ∥T µ1
σ −T µ̂1

σ ∥σ +∥T µ̂2
σ −T µ2

σ ∥σ

≤ 2Op(r
(k)
n log(1+ k)tn).

c) From Theorem 3.33 we know that with probability at least 1−δ,

∣∣∣W LOT
2,σ (µ̂1, µ̂2)−Ŵ LOT

2,σ (µ̂1, µ̂2)
∣∣∣≤ R

√
2log(2/δ)

m
.

Putting these bounds together yields the result.

3.4.2 Using entropic regularization (Sinkhorn) to compute transport maps

Although [38] gives estimation rates in terms of a transport map constructed from solving

the linear program associated to the optimal transport problem, solving the regularized optimal

transport problem (3.9) and using the barycentric projection map (3.13) is much faster. For this

section, we will assume that the target and reference measures are discretized with the same

number of samples k.

Remark 3.13. Since we can choose σ as well as the sample size for σ̂, we can allow k = m in

this case. We believe, however, that choosing a larger sample size for σ than µi (i.e. m > k) will

result in better approximation.

For the following results, we make use of the following quantity:

Definition 3.14. Consider the Wasserstein geodesic between σ = µ0 and µ = µ1 with µt being the

measure on the geodesic for t ∈ (0,1). Let f (t,x) be the density corresponding to µt . Then the
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integrated Fisher information along the Wasserstein geodesic between σ and µ is given by

I0(σ,µ) =
∫ 1

0

∫
Rn

∥∥∥∇x log f (t,x)
∥∥∥2

2
f (t,x)dxdt.

Moreover, recall that the convex conjugate of a function φ ∈ Rn is given by

φ
∗(x∗) = sup

x∈Rn
x∗⊤x−φ(x),

see, e.g., [8, p. 45]. Now by using Theorem 3 from [80], we will show that under suitable

conditions the entropic map T µ̂i
σ̂
( · ;γβ) is close to T µi

σ .

Theorem 3.15 ([80, Theorem 3]). Assume that

(A1) σ,µi ∈Pac(Ω) for a compact set Ω⊂Rn with densities satisfying fσ, fµi ≤B and fµi ≥ b> 0

for all x ∈Ω.

(A2) φ ∈C2(Ω) and φ∗ ∈Cα+1(Ω) for α > 1, where φ∗ denotes the convex conjugate of φ.

(A3) T µi
σ = ∇φ with mI ⪯ ∇2φ(x)⪯ LI for m,L > 0 for all x ∈Ω.

Then the entropic map T µ̂i
σ̂
( · ;γβ) from σ̂ to µ̂i with regularization parameter β≍ k−

1
n′+α̃+1 satisfies

E
∥∥T µ̂i

σ̂
( · ;γβ)−T µi

σ

∥∥2
σ
≤
(
1+ I0(σ,µi)

)
k−

α̃+1
2n′+α̃+1 logk,

where n′ = 2⌈n/2⌉, α̃ = α∧3, k is the sample size for both σ̂ and µ̂i, and I0(σ,µi) is the integrated

Fisher information along the Wasserstein geodesic between σ and µi.

Given the sample size k for both σ̂ and µ̂i, if we let

Zk =
∥∥∥T µ̂i

σ̂
( · ;γβ)−T µi

σ

∥∥∥
σ

,
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then by Jensen’s inequality (for concave functions) and Theorem 3.15 we have that

E[Zk]≤ E
[
Z2

k
]1/2 ≤

√(
1+ I0(σ,µi)

)
k−

α̃+1
2n′+α̃+1 logk

=
√

log(k)(1+ I0(σ,µi))k
− α̃+1

2(2n′+α̃+1) .

Now using Markov’s inequality, we easily have the following corollary.

Corollary 3.16. Assume that σ and µi satisfy (A1)–(A3) of Theorem 3.15 and let δ > 0. Then

with probability at least 1−δ, we have that

∥∥T µ̂i
σ̂
( · ;γβ)−T µi

σ

∥∥
σ
≤ 1

δ

√
log(k)

(
1+ I0(σ,µi)

)
k
− α̃+1

2(2n′+α̃+1) .

Now we can approximate T µi
σ with the entropic map that is derived from using Sinkhorn’s

algorithm. Although the barycentric projection map and entropic map approximations have

similar rates of convergence, the entropic map is computationally faster at the cost of more

stringent assumptions in the theorem. The main difference in assumptions below is the addition

of (A1)–(A3) from Theorem 3.15 and the asymptotic bound on the regularization parameter β

used in the entropic regularization.

Theorem 3.17. Let δ > 0. Along with Assumption 3.11 and µ ∈ Pac(Ω) for the Ω in Assump-

tion 3.11, assume that

(i) σ and µi satisfy assumptions (A1)–(A3) from Theorem 3.15 for all i. Note that (A1), regularity

of φ in (A2), and the upper bound of (A3) are satisfied under the conditions of Caffarelli’s

regularity theorem.

(ii) Given empirical distributions σ̂ and µ̂i both with k sample size, assume that we have

associated entropic potentials ( fβ,k,gβ,k), where β≍ k−
1

n′+α̃+1 and n′ and α̃ are defined in

Theorem 3 from [80]. Assume our estimator is T µ̂i
σ̂
( · ;γβ) given by (3.13).
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Then with probability at least 1−δ,

∣∣∣W2(µi,µ j)
2−Ŵ LOT

2,σ (µ̂i, µ̂ j;γβ)
2
∣∣∣≤(M+2R)

(
Cε

p
6p+16n+

2
δ

√
log(k)(1+ I0(σ,µi))k

− α̃+1
2(2n′+α̃+1) +R

√
2log(2/δ)

k

)
.

where C is from Theorem 3.30 and I0(σ,µi) is defined in Theorem 3.15. In this case, τ2 in

Corollary 3.10 is bounded above by the right-hand side of the inequality above.

Proof. Note that the transport plan that we are using for the following proof is γβ. Henceforth,

we will suppress γβ from the notation Ŵ LOT
2,σ (µ̂1, µ̂2;γβ) for simplicity.

Using the same reasoning as in Theorem 3.12, we find that

(
W2(µi,µ j)+Ŵ LOT

2,σ (µ̂i, µ̂ j)
)
≤M+2R.

Similar to the proof of Theorem 3.12, we bound

∣∣∣W2(µi,µ j)−Ŵ LOT
2,σ (µ̂i, µ̂ j)

∣∣∣≤ ∣∣W2(µi,µ j)−
∥∥T µi

σ −T µ j
σ

∥∥
σ

∣∣
+
∥∥T µi

σ −T µ̂i
σ̂
( · ;γβ)

∥∥
σ
+
∥∥T µ j

σ −T µ̂ j

σ̂
( · ;γβ)

∥∥
σ

+
∣∣∣∥∥T µ̂i

σ̂
( · ;γβ)−T µ̂ j

σ̂
( · ;γβ)

∥∥
σ
−Ŵ LOT

2,σ (µ̂i, µ̂ j)
∣∣∣ .

The first and last term are bounded the same way as in the proof of Theorem 3.12 above. Since

assumption (i) of Assumption 3.11, implies assumption (A1) of Theorem 3.15, we get that with

probability at least 1−δ

∥∥T µℓ
σ −T µ̂ℓ

σ̂
( · ;γβ)

∥∥
σ
≤ 1

δ

√
log(k)(1+ I0(σ,µℓ))k

− α̃+1
2(2n′+α̃+1)

for ℓ= i and ℓ= j. Putting the bounds together, we get the result.
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Using Theorem 3.12 and Theorem 3.17, we see that as long as µi are ε-compatible push-

forwards of µ and the number of samples used in the empirical distribution is large enough, then

our LOT distance is a computationally efficient and a tractable approximation for the Wasserstein

distance and the distortion of the LOT Wassmap embedding of {µi} is small with high probability.

3.5 Bounds for non-compactly supported target measures

In the last section, we saw that for compactly supported µi ∼H♯µ (as well as a few other

conditions), either the barycentric estimator T µ̂i
σ ( · ;γLP) or the entropic estimator T µ̂i

σ ( · ;γβ)

will allow for fast yet accurate approximation of the pairwise Wasserstein distances W2(µi,µ j),

which in turn allows for fast, accurate LOT approximation to the Wassmap embedding [48] via

Algorithm 3. In this section, we show that we can adapt Theorem 3.12 and Theorem 3.17 to

non-compactly supported measures as long as we can approximate the non-compactly supported

measure with a compactly supported and absolutely continuous measure. To this end, we use the

main theorem of [39].

Theorem 3.18 ([39]). Let Ω be a compact convex set and let σ be a probability density on

Ω, bounded from above and below by positive constants. Let p > n and p ≥ 4. Assume that

µ,ν ∈ P2(Rn) have bounded p-th moment, and max(Mp(µ),Mp(ν))≤Mp < ∞. Then

∥T µ
σ −T ν

σ ∥σ ≤Cn,p,Ω,MpW1(µ,ν)
p

6p+16n .

To achieve our purposes, we will assume that µ is a non-compactly supported measure that

has a suitable tail decay rate, and then show that there exists a compactly supported absolutely

continuous µ̃ that approximates µ well (i.e., W1(µ, µ̃) < η.). We achieve this in the following

lemma.

Lemma 3.19. Fix η > 0, and let σ satisfy the assumptions of Theorem 3.18. Moreover, let
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µ ∈ P2(Rn) with density fµ have a bounded p-th moment for some p > n and p ≥ 4. Finally,

assume that there exists some R > 0 such that for every x ̸∈ B(0,R), we have

fµ(x)<
(

η

Cn,p,Ω,Mp

) 6p+16n
p 1

3C∥x∥n+2 ,

where C denotes the constant from integrating over concentric n-spheres. Then there exists a

compactly supported absolutely continuous measure µ̃ such that

∥T µ
σ −T µ̃

σ ∥σ < η.

The next lemma will be useful in establishing conditions on H and µ so that our truncated

measure has a density that is bounded away from 0.

Lemma 3.20. Let σ satisfy the assumptions of Theorem 3.18 and let µ ∈ P2(Rn) with density

fµ ≤C < ∞ have a bounded p-th moment for some p > n and p ≥ 4. Moreover, assume that

there exists some R > 0 and η > 0 such that for x ∈ B(0,R), we have fµ(x)≥ c > 0; and for every

x /∈ B(0,R), we have

fµ(x)≤
(

η

Cn,p,Ω,Mp

) 6p+16n
p 1

C′∥x∥n+2 ,

where Cn,p,Ω,Mp comes from from Theorem 3.18, C′ is a constant from integrating over concentric

n-spheres as well as another constant from our approximation method. Then there exists a

compactly supported, absolutely continuous measure µ̃ with density 0 < c≤ b≤ fµ̃ ≤ B < ∞ such

that

∥T µ
σ −T µ̃

σ ∥σ < η.

The proofs of both Lemma 3.19 and Lemma 3.20 are located in Section 3.11. With these
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two lemmas above, we obtain the following theorems. Note that Theorem 3.21 replaces the

assumption that µ is compactly supported with one of polynomial (in the ambient dimension) tail

decay; while the second assumption below is the same as Theorem 3.12, the final assumption

differs from that of Theorem 3.12 by requiring the discretizations of σ and µi to have the same

sample size to apply the lemmas above.

Theorem 3.21. Let δ > 0. Along with Assumption 3.11, assume that

(i) Every µi has bounded p-th moment for some p > n and p≥ 4. Moreover, assume that for

all i, there exists some R > 0 such that for every x ̸∈ B(0,R), we have

fµi <

(
η

Cn,p,Ω,Mp

) 6p+16n
p 1

3C∥x∥n+2 .

Define µ̃i to be the truncated measure found in Lemma 3.19 or Lemma 3.20 such that

W1(µi, µ̃i)< ε.

(ii) T µ̃i
σ is L-Lipschitz (this happens, e.g., if σ and µ̃i are both compactly supported).

(iii) Given empirical distributions σ̂ and µ̂i with supp(µ̂i)⊆ B(0,R) and sample sizes m and k,

respectively, let our estimator be the barycentric estimator (3.10), with γLP.

Then with probability at least 1−δ,

∣∣∣W2(µi,µ j)
2−Ŵ LOT

2,σ (µ̂i, µ̂ j;γLP)
2
∣∣∣≤ (M+2R)

(
Cε

p
6p+16n +2η+2Op(r

(k)
n log(1+ k)tn,α)

+ R

√
2log(2/δ)

m

)
,

where r(k)n and tn,α are defined in Theorem 3.12 and C is a constant coming from Theorem 3.30.

In this case, τ2 of Corollary 3.10 is bounded above by the right-hand side of the inequality above.

Similarly for the entropic map case we have the following. Note that the primary difference

in assumption between Theorem 3.22 and Theorem 3.21 is the addition of (A1)–(A3) from
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Theorem 3.15 and the asymptotic assumption on the regularization parameter for the entropic

map. The assumptions (i) and (ii) below are essentially the same as those of Theorem 3.17, but

with µ̂i replaced with µ̃i arising from Theorem 3.21, whereas the additional assumptions below

are that µi have decaying tails as opposed to being compactly supported.

Theorem 3.22. Let δ > 0. Along with Assumption 3.11 and (i) of Theorem 3.21, assume that

(i) σ and µ̃i satisfy assumptions (A1)–(A3) in 3.15 for all i, where µ̃i is the truncated measure

from Theorem 3.21.

(ii) Given empirical distributions σ̂ and µ̂i with supp(µ̂i)⊆ B(0,R) and sample size k for both,

assume that we have associated entropic potentials ( fβ,k,gβ,k), where β≍ k−
1

n′+α̃+1 and n′

and α̃ are defined in Theorem 3.15. Moreover, assume our estimator is given by (3.13).

Then with probability at least 1−δ,

∣∣∣W2(µi,µ j)
2−Ŵ LOT

2,σ (µ̂i, µ̂ j)
2
∣∣∣≤ (M+2R)

(
Cε

p
6p+16n +2η+

2
δ

√
log(k)(1+ I0(σ,µi))k

− α̃+1
2(2n′+α̃+1) +R

√
2log(2/δ)

k

)
,

where I0(σ,µi) is defined in Theorem 3.15 and C is a constant from Theorem 3.30. In this case,

τ2 of Corollary 3.10 is bounded above by the right-hand side of the inequality above.

The following is a proof for both theorems above.

Proof of Theorems 3.21 and 3.22. In the following, we let T µ̂i
σ denote the optimal transport map

estimator that we are considering (either the barycentric estimator with γLP or the entropic

estimator with γβ) since the same proof works for both cases. The only difference in the compactly
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supported case and these theorems is that our approximation now becomes

∣∣∣W2(µi,µ j)−Ŵ LOT
2,σ (µ̂i, µ̂ j)

∣∣∣≤ ∣∣W2(µi,µ j)−∥T µi
σ −T µ j

σ ∥σ

∣∣
+
∣∣∣∥T µi

σ −T µ j
σ ∥σ−∥T µ̃i

σ −T µ̃ j
σ ∥σ

∣∣∣
+
∣∣∣∥T µ̃i

σ −T µ̃ j
σ ∥σ−∥T µ̂i

σ −T µ̂ j
σ ∥σ

∣∣∣
+
∣∣∣∥T µ̂i

σ −T µ̂ j
σ ∥σ−Ŵ LOT

2,σ (µ̂i, µ̂ j)
∣∣∣ ,

where µ̃i is defined as in the theorem statement and µ̂i denotes the empirical measure of µi. Since

we assume that supp(µ̂i) ⊆ B(0,R), we know that µ̂i can equivalently be thought of as being

sampled from µ̃i rather than µi. This means that the same bounds as before hold for most of the

terms, while additionally,

∣∣∣∥T µi
σ −T µ j

σ ∥σ−∥T µ̃i
σ −T µ̃ j

σ ∥σ

∣∣∣≤ ∥T µi
σ −T µ̃i

σ ∥σ︸ ︷︷ ︸
≤η

+∥T µ j
σ −T µ̃i

σ ∥σ︸ ︷︷ ︸
≤η

≤ 2η.

The rest of the terms are bounded the same exact way as before, and the result follows.

In this section, we have shown that results for the case when the µi are compactly supported

can be extended to non-compactly supported µi as long as their densities decay fast enough and

the reference distribution σ has a compact and convex support.

3.6 Conditions on H and µ (Compact case)

In this section, we derive conditions on H and µ so that the assumptions of the theorems

above are satisfied for µi ∼H♯µ. In particular, we can break down our requirements on H and

µ by noting the necessary conditions on µi for the barycentric map estimator and entropic map

estimator separately. For simplicity, we will assume that H is exactly compatible with respect to

σ and µ.
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Theorem 3.23 (Barycentric Map Case (Compact)). Along with Assumption 3.11 (with ε = 0 so

that every h ∈H is exactly compatible with σ and µ), assume that µi ∼H♯µ i.i.d. and that

(i) µ is compactly supported,

(ii) σ is chosen such that T µ
σ is Lipschitz,

Then µi satisfies the conditions of Theorem 3.12, i.e., each µi is compactly supported and T µi
σ is

Lipschitz.

For the entropic case, the assumptions on µ and σ are the same, but we require an

additional assumption regarding the Jacobian of elements of H .

Theorem 3.24 (Entropic Map Case (Compact)). Under the assumptions of Theorem 3.23, as well

as

(iv) σ and µ satisfy (A1)-(A3),

µi satisfies the conditions of Theorem 3.17.

The proofs of both Theorems 3.23 and 3.24 are given in Section 3.12.1.

3.7 Conditions on H and µ (Non-compact case)

For the non-compactly supported cases, we need to add assumptions that H is closed

under inversion as well as lower and upper boundedness of the density fµ. This gives us the

following theorems.

Theorem 3.25 (Barycentric Map Case (Non-Compact)). Along with Assumption 3.11 (with ε = 0

so that every h ∈ H is exactly compatible with σ and µ), assume that µi ∼ H♯µ i.i.d. Assume

further that

(i) for every h ∈H , there exists an inverse h−1 ∈H .
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(ii) The density of µ is supported on all of Rn with fµ(x)≤C < ∞ for all x, and fµ(x)≥ c > 0

for all x ∈ B(0,RL). Moreover, fµ has a decay rate as in Lemma 3.20 for x ̸∈ B(0,R).

Then µi satisfies the conditions of Theorem 3.21.

Theorem 3.26 (Entropic Map Case (Non-Compact)). Assume that µi ∼H♯µ i.i.d. and that µ, H ,

and σ satisfy the conditions of Theorem 3.25. Then µi satisfies the conditions of Theorem 3.22.

The proofs of both Theorems 3.25 and 3.26 are found in Section 3.12.2.

3.8 Experiments

We demonstrate that Algorithm 3 does in fact attain correct embeddings given finite

sampling and without explicitly computing the pairwise Wasserstein distances. We test both

variants of our algorithm above using the linear program or entropic regularization to compute the

transport maps from the data to the reference measure, and illustrate the quality of embeddings as

well as the relative embedding error

min
Q

∥Y −QX∥F

∥Y∥F

as a function of the sample size m of the data and reference measures.

In all experiments, we generate N data measures, µi, which are Gaussians of various means

and covariance, and a fixed reference measure σ drawn from the standard normal distribution

N (0, I). We randomly sample m points from each measure to form the empirical measure, and

random noise from a Wishart distribution is added to the covariance matrices of the data measures

µi. Additionally, in each experiment we compute the optimal rotation of the embeddings to

properly align them with the true embedding and thus give an accurate error estimate for each

trial.
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For each experiment, we provide a figure for qualitative assessment of the embedding as

well as a quantitative figure in which we compute the relative error as above for the embeddings

as a function of m, the sample size used to generate the empirical data and reference measures.

For the latter figures, we run 10 trials of the embedding and average the relative error; error

bands showing one standard deviation are shown on each figure. A jupyter notebook containing

all of the experiments that generate the figures below can be found at https://github.com/

varunkhuran/LOTWassMap.

3.8.1 Experiment 1: circle translation manifold

First, we consider a 1-dimensional manifold of translations as follows. We uniformly

choose N = 10 points on the circle of radius 8, which we denote xi, and each data measure

µi is a Gaussian with mean xi and covariance matrix

 1 −.5

−.5 1

 . Thus, our data set is a set

of Gaussians translated around the circle. The Wishart noise added to the covariance matrix

prior to sampling the µi is of the form GG⊤ where G has i.i.d. N (0,0.5) entries. We choose the

standard normal distribution N (0, I) as our reference measure σ. We randomly sample m = 1000

points from each data measure and the reference measure independently. Figure 3.1 shows the

original sampled data and the reference measure (in blue), the true embedding points xi, and the

embeddings of Algorithm 3 when using the linear program and Sinkhorn with regularization

parameter λ = 1.

One can easily see that the embeddings are qualitatively good as expected given the

theory above and the results of [48] in similar experiments. Figure 3.2 shows the relative error

vs. sampling size m of the measures, and one can see the good performance for modest sample

sizes.
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Figure 3.1: 1-D Manifold of translations: (Left) reference measure σ ∼N (0, I) in blue and
data measures µi which are Gaussians with the same covariance matrix and means xi uniformly
sampled from the circle of radius 8. (Left Middle) Means xi of µi which are the true embedding
points. (Right Middle) Embedding attained with Algorithm 3 using the linear program. (Right)
Embedding attained with Algorithm 3 using the Sinkhorn distance with λ = 1.

Figure 3.2: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 1-D translation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with λ = 1 (Right).

3.8.2 Experiment 2: rotation manifold

Next, we consider a 1-dimensional rotation manifold in which we generate N = 10 data

measures of Gaussians whose means lie at uniform samples of the circle of radius 8, which we

denote (8cosθi,8sinθi), and whose covariance matrices are rotations of

2 0

0 .5

 by the angles

θi. As in experiment 1, the noise level added is 0.5 and we sample m = 1000 points from each

measure. Figure 3.3 shows the data measures, true embedding, and embeddings from Algorithm 3

using both the linear program and Sinkhorn (with λ = 1) to compute the optimal transport maps.

Figure 3.4 shows the relative error vs. sample size.
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Figure 3.3: 1-D Manifold of rotations: (Left) reference measure σ∼N (0, I) in blue and data
measures µi which are Gaussians with means lying on the circle of radius 8 and covariance
matrices that are rotations of each other. (Left Middle) Means xi of µi which are the true
embedding points. (Right Middle) Embedding attained with Algorithm 3 using the linear
program. (Right) Embedding attained with Algorithm 3 using the Sinkhorn distance with λ = 1.

Figure 3.4: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 1-D rotation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with λ = 1 (Right).

3.8.3 Experiment 3: grid translation manifold

Here, we consider a 2-dimensional translation manifold in which we generate N = 25

data measures of Gaussians whose means lie on a 5×5 uniform grid on the cube [−10,10]2 and

which have constant covariance matrix

 1 −.5

−.5 1

 . We sample m = 1000 points from each

measure and the noise level is again 0.5. In the Sinkhorn embedding, we use regularization

λ = 10. Figures 3.5 and 3.6 show the data, embeddings, and relative error vs. sample size.
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Figure 3.5: 2-D Manifold of translations: (Left) data measures µi which are Gaussians with the
same covariance matrix and means xi taken from a 5×5 uniform grid on [−10,10]2. (Left Mid-
dle) Means xi of µi which are the true embedding points. (Right Middle) Embedding attained
with Algorithm 3 using the linear program. (Right) Embedding attained with Algorithm 3 using
the Sinkhorn distance with λ = 10.

Figure 3.6: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 2-D translation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with λ = 10 (Right).

3.8.4 Experiment 4: Dilation manifold

Here, we consider a 2-dimensional anisotropic dilation manifold in which we generate

N = 9 data measures of Gaussians with mean 0 and anisotropically scaled covariance matrices of

the form diag(α2
i ,β

2
i ) for (αi,βi) taken from a uniform 3×3 grid on [1,4]2. We sample m = 1000

points from the reference measure and n = 2500 points from the data measures and the noise

level added to the covariance matrices is 0.5 as before. In the Sinkhorn embedding, we use

regularization λ = 100. Figure 3.7 show the data measures, true embedding parameters, and

embeddings from Algorithm 3. Note that the true embedding parameters are centered to allow

them to be comparable to the output of Algorithm 3 which are naturally centered.
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Figure 3.8 shows the relative error vs. m, and for this experiment we choose n = m so

that the sampling order of the data and reference measure are the same. For this case, we see

that the relative error of the embedding decays much more slowly than the previous experiments.

One possible reason for this is that there is significant overlap in the distributions for the dilated

measures, and to overcome this issue one may have to sample many more points in forming the

empirical distribution so that the tails of the data measures are sampled more frequently.

Figure 3.7: 2-D Manifold of Anisotropic Dilations: (Left) data measures µi which are Gaussians
with mean 0 and anisotropically dilated covariance matrices where dilations are taken from a
3× 3 uniform grid on [1,4]2. (Left Middle) Dilation factors (xi,yi) of µi which are the true
embedding points. (Right Middle) Embedding attained with Algorithm 3 using the linear
program. (Right) Embedding attained with Algorithm 3 using the Sinkhorn distance with
λ = 100.

Figure 3.8: Embedding error vs. m (number of sample points from data and reference distri-
butions for the 2-D translation manifold. Optimal transport maps are computed via the Linear
Program (Left) and Sinkhorn with λ = 10 (Right).
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3.8.5 Experiment 5: Time Comparison

Here, we repeat Experiment 3 in which data measures are centered on a uniform grid and

are translations of a fixed Gaussian measure. We plot the time it takes to compute the embedding

via Algorithm 3 using the Linear Program or Sinkhorn with λ = 1 and the Wassmap algorithm of

[48] which requires computing the entire square Wasserstein distance matrix [W2(µi,µ j)]
N
i, j=1 and

the SVD of its centered version as in Algorithm 2. For this experiment, we always choose n = m

so that the reference measure and data measure sampling rates are the same. One can easily see

that a substantial gain in timing is achieved by LOT Wassmap, while previous experiments show

that the quality of the embedding does not degrade significantly when LOT is used.

Finally, we plot the timing for the same experiment for the Linear Program and Sinkhorn

with λ = 1 and λ = 10 for larger sample sizes to illustrate the character of these choices (Fig-

ure 3.10). As expected, larger regularization parameter yields faster computation time, though the

difference is relatively small even for modestly large sample size.

Figure 3.9: Timing vs. sample size m of the reference distribution and data measures. The
data set consists of N = 25 measures translated on a 5× 5 uniform grid on [−10,10]2 as in
Experiment 3. Shown are the computation times to compute the Wassmap embedding and the
embeddings of Algorithm 3 using the Linear Program (LP) and Sinkhorn with regularization
parameter λ = 1.
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Figure 3.10: Timing vs. sample size m of the reference distribution and data measures. The
data set consists of N = 25 measures translated on a 5× 5 uniform grid on [−10,10]2 as in
Experiment 3. Shown are the computation times to compute the embeddings of Algorithm 3
using the Linear Program (LP) and Sinkhorn with regularization parameters λ = 1 and λ = 10.
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3.9 Helper Theorems and Lemmas

We use the following lemma to extend Corollary 3.8 to get our main theorem (The-

orem 3.9). The proof follows standard arguments, e.g., as in [64]; the proof is included for

completeness.

Lemma 3.27 ([64, Theorem 14.2.1], for example). Consider a matrix V whose columns are

centered vectors v1, . . . ,vn such that ∑
n
j=1 v j = 0. Let J = I− 1

n11⊤ be the centering matrix from

MDS (Algorithm 2), G =V⊤V be the Gram matrix for V , and D be the squared distance matrix

Di j = ∥vi− v j∥2. Then G =−1
2JDJ.

Proof. Note first that

(JDJ)i j = Di j +
1
n2

n

∑
k,ℓ=1

Dkℓ−
1
n

n

∑
k=1

(Dik +Dk j).

Moreover, because Di j = v⊤i vi + v⊤j v j−2v⊤i v j, we get that

(JDJ)i j = v⊤i vi + v⊤j v j−2v⊤i v j +
1
n2

(
2n

n

∑
k=1

v⊤k vk +21⊤V⊤V 1
)

− 1
n

(
nv⊤i vi +nv⊤j v j +2

n

∑
k=1

v⊤k vk−21⊤V⊤v j−2v⊤i V 1
)
.

Note here that V 1 = 0 since ∑
n
j=1 v j = 0. After cancelling terms, we get

(JDJ)i j =−2v⊤i v j =−2Gi j.

So our result is immediate.

The next results are used to recount the ε-compatibility as well as its effects on LOT. First,

we show that every ε-compatible map has a compatible map (with ε = 0) nearby whose LOT

distance from the ε-compatible map is small.
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Lemma 3.28. Assume that

(i) σ is supported on a compact convex set Ω⊂ Rn with probability density fσ bounded above

and below by positive constants.

(ii) µ has finite p-th moment with bound Mp with p > d and p≥ 4.

(iii) There exist a,A > 0 such that every h ∈H satisfies a∥x∥ ≤ ∥h(x)∥ ≤ A∥x∥.

Let H be ε-compatible with respect to σ and µ. Then for every h ∈H there exists a compatible g

such that

∥∥∥T
g♯µ

σ −T
h♯µ

σ

∥∥∥
σ

≤Cn,p,Ω,a−1ApMp
· ε

p
6p+16n

∥h◦T µ
σ −T

h♯µ
σ ∥σ < ε+Cn,p,Ω,a−1ApMp

· ε
p

6p+16n .

Proof. Let h∈H , then there exists an exactly compatible transformation g such that g◦T µ
σ = T

g♯µ
σ

with ∥h−g∥µ < ε by definition of ε-compatibility. Then notice that

∥∥∥h◦T µ
σ −T

h♯µ
σ

∥∥∥
σ

=
∥∥∥h◦T µ

σ −g◦T µ
σ +T

g♯µ
σ −T

h♯µ
σ

∥∥∥
σ

≤ ∥h−g∥µ +
∥∥∥T

g♯µ
σ −T

h♯µ
σ

∥∥∥
σ

.

By assumption, we know that ∥h−g∥µ < ε. Since h ∈H and are Lipschitz, we know that

∫
Ω

∥x∥p fh♯µ(x)dx =
∫

Ω

∥h(x)∥p︸ ︷︷ ︸
≤Ap∥x∥p

|Jh−1(x)|︸ ︷︷ ︸
a−1

fµ(x)dx≤ a−1ApMp.

Similarly, we have the same bound for g since g ∈H . Now using Theorem 3.18 and equation 2.1
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of [6], we get that

∥∥∥T
g♯µ

σ −T
h♯µ

σ

∥∥∥
σ

≤Cn,p,Ω,a−1ApMp
W1(g♯µ,h♯µ)

p
6p+16n

≤Cn,p,Ω,a−1ApMp
W2(g♯µ,h♯µ)

p
6p+16n

≤Cn,p,Ω,a−1ApMp
∥h−g∥

p
6p+16n
µ

≤Cn,p,Ω,a−1ApMp
· ε

p
6p+16n .

This implies that

∥h◦T µ
σ −T

h♯µ
σ ∥σ < ε+Cn,p,Ω,a−1ApMp

· ε
p

6p+16n .

Now we can show that the LOT embedding between exactly compatible transformations

is isometric with the Wasserstein manifold.

Lemma 3.29. Let g1 and g2 be exactly compatible transformations, i.e. g1 ◦T µ
σ = T

(g1)♯µ
σ and

g2 ◦T µ
σ = T

(g2)♯µ
σ , then

∥∥∥T
(g1)♯µ

σ −T
(g2)♯µ

σ

∥∥∥
σ

=W2

(
(g1)♯µ,(g2)♯µ

)
.

Proof. First notice that since everything is absolutely continuous, we can use a change of variables

formula to get

∥∥∥∥T
(g1)♯µ

σ −T
(g2)♯µ

σ

∥∥∥∥
σ

=

∥∥∥∥I−T
(g2)♯µ

σ ◦T σ

(g1)♯µ

∥∥∥∥
(g1)♯µ

.

Because T
(g2)♯µ
(g1)♯µ

is the minimizer of the optimal transport problem and the triangle inequality, we
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get

W2

(
(g1)♯µ,(g2)♯µ

)
=

∥∥∥∥I−T
(g2)♯µ
(g1)♯µ

∥∥∥∥
(g1)♯µ

≤
∥∥∥∥I−T

(g2)♯µ
σ ◦T σ

(g1)♯µ

∥∥∥∥
(g1)♯µ

≤
∥∥∥∥I−T

(g2)♯µ
(g1)♯µ

∥∥∥∥
(g1)♯µ

+

∥∥∥∥T
(g2)♯µ
(g1)♯µ

−T
(g2)♯µ

σ ◦T σ

(g1)♯µ

∥∥∥∥
(g1)♯µ

.

Note that Theorem 24 of [57] implies that given an exactly compatible transformation g, Jg(T
µ

σ (x))

must share the same eigenspaces as JT µ
σ
(x). By Corollary 4 of [57], we know that exactly

compatible transformations are optimal transport maps themselves. This means that T
g♯µ

µ = g for

exactly compatible transport maps. Moreover, for an exactly compatible h′ ∈H , this means that

T
(g′)♯µ

g♯µ = g′ ◦g−1 because g′ ◦g−1 is a gradient of a convex function (since the Jacobian of g and

g′ share the same eigenspaces) that pushes g♯µ to (g′)♯µ. In the context of g1 and g2, this gives us

that

T
(g2)♯µ
(g1)♯µ

= g1 ◦g−1
2 = g1 ◦T µ

σ ◦T σ
µ ◦g−1

2 = T
(g2)♯µ

σ ◦T σ

(g1)♯µ
.

In particular, we get that

∥∥∥T
(g1)♯µ

σ −T
(g2)♯µ

σ

∥∥∥
σ

=W2

(
(g1)♯µ,(g2)♯µ

)
.

Finally, we show that ε-compatible transformations have LOT embeddings that are

“ε
p

6p+16n -isometric” in the sense of the following theorem.

Theorem 3.30. Assume that

(i) σ is supported on a compact convex set Ω⊂ Rn with probability density fσ bounded above

and below by positive constants.
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(ii) µ has finite p-th moment with bound Mp with p > n and p≥ 4.

(iii) There exists constants a,A > 0 such that Every h ∈H satisfies a∥x∥ ≤ ∥h(x)∥ ≤ A∥x∥.

Let H be ε-compatible with respect to absolutely continuous measures σ and µ and that h♯µ is

absolutely continuous. Then for h1,h2 ∈H ,

∣∣∣∣∣W2

(
(h1)♯µ,(h2)♯µ

)
−
∥∥∥∥T

(h1)♯µ
σ −T

(h2)♯µ
σ

∥∥∥∥
σ

∣∣∣∣∣< 2
(

ε+Cn,p,Ω,a−1ApMp
· ε

p
6p+16n

)
<Cε

p
6p+16n

Proof. By definition, we know that there exist g1 and g2 such that ∥g1−h1∥µ < ε and ∥g2−h2∥µ <

ε. First, note that

∥∥∥T
(h1)♯µ

σ −T
(h2)♯µ

σ

∥∥∥
σ

≤
∥∥∥T

(h1)♯µ
σ −T

(g1)♯µ
σ

∥∥∥
σ

+
∥∥∥T

(g1)♯µ
σ −T

(g2)♯µ
σ

∥∥∥
σ

+
∥∥∥T

(g2)♯µ
σ −T

(h2)♯µ
σ

∥∥∥
σ

.

By Lemma 3.29, we know that

∥∥∥T
(g1)♯µ

σ −T
(g2)♯µ

σ

∥∥∥
σ

=W2

(
(g1)♯µ,(g2)♯µ

)
.

However, by equation 2.1 of [6] and the triangle inequality, we have

W2

(
(g1)♯µ,(g2)♯µ

)
≤W2

(
(g1)♯µ,(h1)♯µ

)
︸ ︷︷ ︸

≤∥g1−h1∥µ<ε

+W2

(
(h1)♯µ,(h2)♯µ

)
+W2

(
(h2)♯µ,(g2)♯µ

)
︸ ︷︷ ︸

≤∥h2−g2∥µ<ε

≤W2

(
(h1)♯µ,(h2)♯µ

)
+2ε.

Moreover, by Lemma 3.28, for i = 1,2, we know that

∥∥∥T
(gi)♯µ

σ −T
(hi)♯µ

σ

∥∥∥
σ

≤Cn,p,Ω,a−1ApMp
· ε

p
6p+16n .
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This implies that

W2

(
(h1)♯µ,(h2)♯µ

)
≤
∥∥∥T

(h1)♯µ
σ −T

(h2)♯µ
σ

∥∥∥
σ

≤W2

(
(h1)♯µ,(h2)♯µ

)
+2
(

ε+Cn,p,Ω,a−1ApMp
ε

p
6p+16n

)
,

and the proof is complete.

3.10 Plug-in estimator approximation results

In this section, we provide some auxiliary results that are used along the way to prove the

theorems of Section 3.4.

3.10.1 Using the Linear Program to compute transport maps

Recall that for a random variable Xm, we say that Xm = Op(am) if for every ε > 0 there

exists M > 0 and N > 0 such that

P
(
|Xm/am|> M

)
< ε ∀m≥ N.

The following theorem from [38] is used in the proofs of our main results, including

Theorem 3.12.

Theorem 3.31 ([38, Theorem 2.2]). Suppose that T µ
σ is L-Lipschitz, and µ is compactly supported

and Eσ[exp(t∥x∥α)] < ∞ for some t > 0,α > 0. Assume we draw k i.i.d. samples from µ and

consider the estimator µ̂. Then

sup
γ∈Γmin

∫
∥T µ̂

σ (x;γLP)−T µ
σ (x)∥2dσ(x)≤ Op(r

(k)
n log(1+ k)tn,α),
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where

r(k)n =


2k−1/2 n = 2,3

2k−1/2 log(1+ k) n = 4

2k−2/d n≥ 5

,

tn,α =


(4α)−1(4+((2α+2nα−n)∨0)) n < 4

(α−1∨7/2)−1 n = 4

2(1+n−1) n > 4

,

so that r(k)n and tn,α are on the order of k−1/n and 2(1+n−1), respectively.

Remark 3.32. We note that Theorem 3.31 is the “semi-discrete” version described in [38]. The

paper also provides equivalent bounds in the instance that σ is similarly estimated. However, the

bounds only guarantee that the transport maps agree when integrated against σ̂, whereas we

need the bound for σ itself.

3.10.2 Approximating with Finite Samples from the Reference Distribution

Some of the norms from Theorem 3.12 and Theorem 3.17 are assumed to be integrated

against the true σ. However, we need to consider the discretized σ for each norm, and establish

that we can estimate these norms with high probability. For these bounds, we use McDiarmid’s

inequality on the function

f (X1, ...,Xm) =
1
m

m

∑
j=1

∣∣T µ̂1
σ (X j;γµ̂1)−T µ̂2

σ (X j;γµ̂2)
∣∣2 = Ŵ LOT

2,σ (µ̂1, µ̂2;γ)2,

where X j ∼ σ, γµ̂ j is a transport plan between σ and µ̂ j for j = 1,2, and γ ∈ {γLP,γβ} denotes the

optimization method used to get γµ̂ j . If µi are supported in a ball of radius R, then McDiarmid’s

125



inequality implies

P

(∣∣∣∣∣ 1
m

m

∑
j=1
|T µ̂1

σ (X j;γµ̂1)−T µ̂2
σ (X j;γµ̂2)|

2−∥T µ̂1
σ (·;γµ̂1)−T µ̂2

σ (·;γµ̂2)∥
2
2σ

∣∣∣∣∣> t

)
≤ 2e−m t2

32R4 .

Note that since f = Ŵ LOT
2,σ (µ̂1, µ̂2;γ)2, we get

P
(∣∣∣Ŵ LOT

2,σ (µ̂1, µ̂2;γ)2−W LOT
2,σ (µ̂1, µ̂2;γ)2

∣∣∣> t
)
≤ 2e−m t2

32R4 . (3.18)

Theorem 3.33. Consider µi,σ ∈ W2(Rn) with σ absolutely continuous with respect to the

Lebesgue measure. Assume supp(µi) ⊂ B(0,R) for i = 1,2. Let δ > 0. Then with probabil-

ity at least 1−δ,

∣∣∣W LOT
2,σ (µ̂1, µ̂2;γ)−Ŵ LOT

2,σ (µ̂1, µ̂2;γ)
∣∣∣≤ R

√
2log(2/δ)

m
,

where m is the number of samples used to estimate σ.

Proof. Define

a =W LOT
2,σ (µ̂1, µ̂2;γ), b = Ŵ LOT

2,σ (µ̂1, µ̂2;γ).

Then both a≤ 2R and b≤ 2R. Now, since a2−b2 = (a+b)(a−b), we get that

|a−b| ≥ 1
4R
|a2−b2|.

This, together with (3.18), implies that

P
(∣∣∣Ŵ LOT

2,σ (µ̂1, µ̂2;γ)−W LOT
2,σ (µ̂1, µ̂2;γ)

∣∣∣> t
)
≤ 2e−m t2

2R2 .

Solving δ = 2e−m t2

2R2 for t yields the conclusion.
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3.11 Non-Compactly Supported Measures Proofs and Results

Here, we give the proofs of the lemmas preceding Theorems 3.21 and 3.22.

Proof of Lemma 3.19. We will construct the measure µ̃ by constructing a transport map that

sends µ to a compactly supported absolutely continuous measure. The compact set that µ̃ will be

supported on is going to be B(0,R). In particular, for some 0 < ρ≪ 1, consider the map

SR,ρ(x) =


x x ∈ B(0,R)

R x
∥x∥ +min{∥x∥−R,ρ} x

1+∥x∥ x ̸∈ B(0,R)
.

Then let µ̃ = (SR,ρ)♯µ, and note that

W1(µ, µ̃) = min
S:S♯µ=µ̃

∫
Rn
∥S(x)− x∥dµ(x)≤

∫
Rn
∥SR,ρ(x)− x∥dµ(x)

=
∫

B(0,R)
∥x− x∥︸ ︷︷ ︸

=0

dµ(x)+
∫
Rn\B(0,R)

∥∥∥∥(1− R
∥x∥
− min{∥x∥−R,ρ}

1+∥x∥

)
x
∥∥∥∥dµ(x)

≤
∫
Rn\B(0,R)

∥x∥+ R︸︷︷︸
≤∥x∥

+
∥x∥min{∥x∥−R,ρ}

1+∥x∥︸ ︷︷ ︸
≤ρ≤1≤∥x∥

dµ(x)≤
∫
Rn\B(0,R)

3∥x∥dµ(x).
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However, recall that dµ(x) = fµ(x)dx; thus,

∫
Rn\B(0,R)

3∥x∥dµ(x) =
∫
Rn\B(0,R)

3∥x∥ fµ(x)dx

≤
∫
Rn\B(0,R)

(
η

Cn,p,Ω,Mp

) 6p+16n
p 1

C∥x∥n+1 dx

≤
(

η

Cn,p,Ω,Mp

) 6p+16n
p ∫

r≥R

rn−1

rn+1 dr︸ ︷︷ ︸
≤1

=

(
η

Cn,p,Ω,Mp

) 6p+16n
p

,

where C is a constant from integrating over concentric n-spheres. Invoking Theorem 3.18, this

means that

∥T µ
σ −T µ̃

σ ∥σ ≤Cn,p,Ω,MpW1(µ, µ̃)
p

6p+16n ≤Cn,p,Ω,Mp

η

Cn,p,Ω,Mp

= η.

To see that µ̃ is compactly supported, notice that for x ∈ Rn \B(0,R), we have

∥SR,ρ(x)∥=
∥∥∥∥R

x
∥x∥

+min{∥x∥−R,ρ} x
1+∥x∥

∥∥∥∥≤ R+ρ
∥x∥

1+∥x∥︸ ︷︷ ︸
≤1

≤ R+ρ.

The case for when x ∈ B(0,R) is trivial since SR,ρ is the identity map on B(0,R). Moreover, to

see that µ̃ is absolutely continuous with respect to the Lebesgue measure, we will take a generic

set A and break it up into components and analyze each component. We first notice that SR,ρ is

continuous. Indeed, for x such that ∥x∥= R, we see that

R
x
∥x∥︸ ︷︷ ︸
x

+min{∥x∥−R,ρ}︸ ︷︷ ︸
=∥x∥−R=0

x
1+∥x∥

= x.
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Now, let A ∈ Rn such that λ(A) = 0 for the Lebesgue measure λ, then

A = (A∩B(0,R))⊕ (A\B(0,R))⊕ (A∩∂B(0,R))

=⇒ (SR,ρ)♯µ(A) = (SR,ρ)♯µ(A∩B(0,R))+(SR,ρ)♯µ(A\B(0,R))

+(SR,ρ)♯µ(A∩∂B(0,R))

= µ(SR,ρ
−1(A∩B(0,R)))+µ(SR,ρ

−1(A\B(0,R)))

+µ(SR,ρ
−1(A∩∂B(0,R)))

= µ(A∩B(0,R))+µ(A∩∂B(0,R))︸ ︷︷ ︸
≤µ(∂B(0,R))=0

+µ(SR,ρ
−1(A\B(0,R))),

where we use the additivity of measures over disjoint sets, the form of SR,ρ on B(0,R), and

the absolutely continuity of µ so that µ(∂B(0,R))≤ λ(∂B(0,R)) = 0. Moreover, note that µ(A∩

B(0,R))≤ µ(A)≤ λ(A)= 0. The only term left is A\B(0,R). Since SR,ρ is smooth on Rn\B(0,R),

there exists a density g for (SR,ρ)♯µ with respect to µ for sets in Rn \ B(0,R). This means

(SR,ρ)♯µ≪ µ on Rn \B(0,R). Since µ≪ λ, we have

λ(A) = 0 =⇒ µ(A) = 0 =⇒ µ(A\B(0,R)) = 0 =⇒ (SR,ρ)♯µ(A\B(0,R)) = 0.

This shows that (SR,ρ)♯µ is absolutely continuous with respect to λ, so the proof is complete.

Proof of Lemma 3.20. Rather than constructing a transport map, we will construct a density fµ̃

and will argue that the transport map from µ to µ̃ (the measure with density fµ̃) behaves nicely.

To do this, consider the following density

fµ̃,a,R(x) =


fµ(x) x ∈ B(0,R)

fµ

(
R x
∥x∥

)
+α

(
∥x∥
R −1

)
x ∈ B(0,a)\B(0,R)

0 otherwise

,
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for some α > 0. Notice that a is not specified at the moment, but it depends on R and α. Since

we want µ̃ to be a probability measure, we note that

µ̃(Rd) =
∫

B(0,R)
fµ(x)dx︸ ︷︷ ︸

µ(B(0,R))

+
∫ a

R
rd−1C(r)

(
fµ

(
R

x
∥x∥

)
+α

(∥x∥
R
−1
))

dr︸ ︷︷ ︸
I(a)

,

where C(r) is the integral over the sphere at radius r. Notice that I(a) has an integrand that is

increasing as a function of r so that I(a) itself is increasing as a function of a (i.e. lima→∞ I(a) =

∞). Moreover, because I(R) = 0, we know from the intermediate value theorem that there exists

some a∗ such that I(a∗) = µ(Rd \B(0,R)). Note that from this construction, µ̃ is compactly

supported, absolutely continuous with respect to the Lebesgue measure, and 0 < c≤ b≤ fµ̃ ≤

B < ∞ for some constants b and B.

Now, we would like to bound W1(µ, µ̃). Let us consider S such that S♯µ = µ̃ and S(x) = x

if x ∈ B(0,R). Such an S exists because we can consider the pushforward that is the identity

on B(0,R) and pushes the rest of the mass of µ from Rd \B(0,R) to B(0,a)\B(0,R). Note that

S(x) ∈ B(0,a) for x ∈ B(0,a)\B(0,R); thus, there exists C̃ such that ∥S(x)∥ ≤ C̃∥x∥ (if a < 2R,

then C̃ ≤ 2). For the following calculation, we assume that

fµ(x)≤
(

η

Cn,p,Ω,Mp

) 6p+16n
p 1

C′∥x∥n+2 :=
(

η

Cn,p,Ω,Mp

) 6p+16n
p 1

(C̃+1)Csphere∥x∥n+2
,

where Csphere denotes a constant from integrating over concentric n-spheres and Cn,p,Ω,Mp denotes
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the constant from Theorem 3.18. Now note that

W1(µ, µ̃)≤
∫
Rd
∥S(x)− x∥dµ(x)

=
∫

B(0,R)
∥x− x∥︸ ︷︷ ︸

=0

dµ(x)+
∫
Rd\B(0,R)

∥S(x)− x∥dµ(x)

≤
∫
Rd\B(0,R)

∥S(x)∥+∥x∥dµ(x)≤
∫
Rd\B(0,R)

(C̃+1)∥x∥ fµ(x)dx

≤
∫
Rd\B(0,R)

(C̃+1)
(

η

Cn,p,Ω,Mp

) 6p+16n
p 1

(C̃+1)Csphere∥x∥n+1
dx

≤
(

η

Cn,p,Ω,Mp

) 6p+16n
p ∫

r≥R

rn−1

rn+1 dr︸ ︷︷ ︸
≤1

≤
(

η

Cn,p,Ω,Mp

) 6p+16n
p

.

Invoking Theorem 3.18, this means that

∥T µ
σ −T µ̃

σ ∥σ ≤Cn,p,Ω,MpW1(µ, µ̃)
p

6p+16n ≤Cn,p,Ω,Mp

η

Cn,p,Ω,Mp

= η.

Thus, we have the desired result.

3.12 Proofs and Results for Conditions on H and µ

This section provides the proofs of the results in Sections 3.6 and 3.7.

3.12.1 Compact Case Proofs and Results

Here we prove the results of Section 3.6 which provide conditions on σ, µ, and H which

guarantee that µi ∼H♯µ satisfy the conditions of the theorems from Section 3.4.

Proof of Theorem 3.23. For the barycentric map estimator, we need to show that the µi’s are

compactly supported within a ball of radius R and T µi
σ is Lipschitz.
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• Compact Support: To ensure that a given µi is compactly supported, it suffices for µ to have

compact support and H to consist of continuous maps. Indeed, under these assumptions,

µi is compactly supported since the image of a compact set under a continuous map is

compact. Since we are considering only a finite number of measures {µi}N
i=1, each with

compact support, there exists a sufficiently large radius R such that supp(µi)⊆ B(0,R) for

all i.

• Lipschitz OT Map: To make sure that each T µi
σ is Lipschitz, we will need that hi is

Lipschitz. In particular, we note that µi = (hi)♯µ for some hi ∈H . Thus, by compatibility,

we know that T µi
σ = hi ◦T µ

σ , which implies that if hi is Lipschitz and T µ
σ is Lipschitz, then

T µi
σ is Lipschitz.

Proof of Theorem 3.24. For the entropic map estimator, the µi’s need to again be compactly-

supported, T µi
σ needs to be Lipschitz, and σ and µi together satisfy assumptions (A1)− (A3). It

will turn out, that we will only need to assume that there exist constants a,A > 0 such that

aI ⪯ Jh(x)⪯ AI.

That µi is compactly supported and each T µi
σ are Lipschitz follow from the same analysis

as in the proof of Theorem 3.23.

• Ensuring that µi satisfy (A1): Recall that the change of variables formula for the density

of a pushforward measure µ̃ = h♯µ is given by

fµ̃(x) = fµ(h−1(x))|Jh−1(x)|,

where |Jh−1(x)| denotes the determinant of the Jacobian of h−1. From [57, Corollary 4],

we know that h is an optimal transport map if it is compatible. This implies that Jh(x) is
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positive semidefinite; however, if h is positive definite and Lipschitz (i.e.

aI ⪯ Jh(x)⪯ AI

for some m̃,M > 0), we know that

A−1I ⪯ Jh−1(x)⪯ a−1I.

This implies that |Jh−1|> 0 for all x. In particular, since the determinant of a matrix is the

product of its eigenvalues, we have that

A−d ≤ |Jh−1(x)|=
n

∏
j=1

λ j(Jh−1(x))≤ a−n.

Finally, since µ itself adheres to (A1), this implies that

b
An ≤ fµ(x)|Jh−1(x)| ≤

B
an .

So (A1) holds for µ̃ if there are constants a,A > 0 such that

aI ⪯ Jh(x)⪯ AI.

• Ensuring that µi satisfy (A2): From [52, Corollary 4.2.10], we can ensure that (A2) is

satisfied if (A3) is satisfied, which is proved below.

• Ensuring that µi satisfy (A3): First, notice that by compatibility of h, we have that

T
h♯µ

σ = h◦T µ
σ ; thus, a direct corollary of [57, Theorem 24] gives that

(ma)I ⪯ J
T

h♯µ
σ

(x)⪯ (AL)I

133



for all x, where m and L come from assuming σ and µ satisfy (A3) whilst a and A come

from Assumption 3.11. So (A3) holds for σ and µ̃.

The result above essentially states that the entropic estimator works if every h ∈ H is

(exactly) compatible and is uniformly positive definite.

3.12.2 Non-Compact Case Proofs and Results

Here we prove the results of Section 3.7 which provide conditions on σ, µ, and H which

guarantee that µi ∼H♯µ satisfy the conditions of the theorems from Section 3.5.

Proof of Theorem 3.25. Assume that µ̃ is the truncated measure approximating h♯µ for h ∈ H .

Given the assumptions of Lemma 3.20, the truncated measure µ̃ is compactly supported, upper

and lower bounded, and absolutely continuous. If we can ensure that the truncated measure µ̃ also

has uniformly convex support, we will fulfill the conditions of Caffarelli’s regularity theorem,

which guarantees that the optimal transport map is Lipschitz continuous.

• Decay rate condition: Assuming that µ has the necessary decay rate fµ(x)≤C < ∞ and

0 < c≤ fµ(x) on a large enough ball where the decay rate is active, we need that h♯µ = µ

also has the same decay rate up to a constant. For what follows, we must assume that h∈H

has an inverse h−1. If we assume further that H satisfies Assumption 3.11 (iv) (i.e.

a∥x∥ ≤ ∥h(x)∥ ≤ A∥x∥

for some a,A > 0), then we know that

A−1∥x∥ ≤ ∥h−1(x)∥ ≤ a−1∥x∥,
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or equivalently,
A−1

∥h−1(x)∥
≤ 1
∥x∥
≤ a−1

∥h−1(x)∥
.

The bi-Lipshitz assumption further implies that

A−1I ⪯ Jh−1(x)⪯ a−1I.

Thus, for ∥x∥ ≥ LR (so that ∥h−1(x)∥ ≥ R) and the bounds above, we find that

fµ(x) = fµ(h−1(x)) |Jh−1(x)|︸ ︷︷ ︸
≤a−n

≤
(

η

Cn,p,Ω,Mp

) 6p+16n
p 1

C′∥h−1(x)∥n+2 a−n

≤
(

η

Cn,p,Ω,Mp

) 6p+16n
p 1

C′∥x∥n+2 a−nAn+2.

The constants a and A can be absorbed into the other decay rate constants; thus, Assump-

tion 3.11 (iv) gives us the decay rate we want. Noting that the form of the density fµ also

implies that ca−n ≤ fµ(x) on some large enough ball. In particular, we get that the truncated

measure µ̃ has a density 0 < b≤ fµ̃(x)≤ B < ∞ from Lemma 3.20.

• Uniformly convex support: If µ is supported on all of Rn, we would want h ∈H such that

µ = h♯µ is also supported on all of Rn. Recall that the resulting density of µ is given by

fµ(x) = fµ(h−1(x)) |Jh−1(x)|︸ ︷︷ ︸
≤a−n

Note that µ is supported on all of Rn if ∥h−1(x)∥→ ∞ as ∥x∥→ ∞. Indeed, if we assume

Assumption 3.11 (iv), then A−1∥x∥ ≤ ∥h−1(x)∥, which implies that µ is supported on all

of Rn. This would imply that the truncated measure µ̃ will be supported on a ball of some
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radius. This implies that the support of µ̃ is uniformly convex and compact.

From the decay rate condition and the uniformly convex support condition, we get that the

truncated measure µ̃ will satisfy the assumptions of Caffarelli’s regularity theorem. This implies

that T µ̃
σ will be a C2 and Lipschitz function (since T µ̃

σ pushes forward a compact support to a

compact support). The other assumptions of the theorem are trivially satisfied.

Proof of Theorem 3.26. From the proof of Theorem 3.25 above, we easily see that if Assump-

tion 3.11 is fulfilled and µ fulfills the conditions of Lemma 3.20 and is supported on all of Rn,

then T µ̃
σ will be Lipschitz. We need, however, that µ̃ also satisfies (A1)-(A3) from 3.15. We get

(A1) for free since the density fµ̃ is lower bounded from the proof of Lemma 3.20. We also get

(A2) since T µ̃
σ is differentiable from Caffarelli’s regularity theorem [23, 24, 25] and if (A3) is

satisfied, which comes from [52, Corollary 4.2.10].

Now we only need to ensure that (A3) holds. Indeed, since Caffarelli’s regularity theorem

holds, we know that the potential φ such that T µ̃
σ =∇φ is strictly convex, which implies that ∇2φ(x)

is positive definite. Moreover, the minimum eigenvalue of ∇2φ(x) is a continuous function of x.

Since x ∈ supp(σ), which is compact, we know that 0 < λmin(σ) = minx∈supp(σ)λmin(∇
2φ(x)),

which implies that J
T µ̃

σ

(x)⪰ λmin(σ)I. This guarantees that (A3) is satisfied for σ and µ̃.
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Chapter 4

Lattice-Based Approximations
JOINT WORK WITH KEATON HAMM

We consider structured approximation of measures in Wasserstein space Wp(Rd) for

p ∈ [1,∞) by discrete and piecewise constant measures based on a scaled Voronoi partition of

Rd . We show that if a full rank lattice Λ is scaled by a factor of h ∈ (0,1], then approximation

of a measure based on the Voronoi partition of hΛ is O(h) regardless of d or p. We then use

a covering argument to show that N-term approximations of compactly supported measures is

O(N−
1
d ) which matches known rates for optimal quantizers and empirical measure approximation

in most instances. Finally, we extend these results to noncompactly supported measures with

sufficient decay.

4.1 Introduction

This short chapter considers N-term approximations of measures in the Wasserstein

distance Wp for p ∈ [1,∞). We utilize structured approximations based on a Voronoi partition of

Rd with respect to a lattice, and the approximation rates are governed by a scaling factor applied

to the lattice. When translated to N-term approximations of compactly supported measures, we
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show that these structured approximations match the known rates of approximation for optimal

quantizers and empirical measures.

Our structured approximations are motivated by orthographic projection camera models

from computer vision [86] in which points are orthogonally projected onto the camera plane. An

N-pixel grayscale image is typically considered as a matrix or vector, and is an array of N pixel

intensity values. However, in machine learning applications, it has been observed that treating

images as vectors in Euclidean space can fail to accurately reflect the structure that appears in

them. Many recent works have proposed understanding images as probability measures, for

instance by mapping pixel intensities to a uniform grid in R2 [32, 48, 57, 61, 66, 75, 92]. This

viewpoint has been used for manifold learning and supervised classification in these references

with success, as Wasserstein distances between images treated as measures are more meaningful

than Euclidean distances.

Optimal quantization of measures and empirical measure approximation have been studied

in a variety of works [21, 46, 49] and [26, 41, 44, 83, 95], respectively. It is well known that

in most instances, without stricter assumptions, both problems yield N-term approximations

µN of an absolutely continuous measure µ such that Wp(µ,µN) = Θ(N−
1
d ). Further assumptions

on µ sometimes yields more refined estimates which we discuss in the sequel. We will show

that a concrete approximation µN = ∑λ∈ΛN αλδλ or µN = ∑λ∈ΛN βλ1Vλ
will match this rate for

compactly supported measures, i.e., Wp(µ,µN) = O(N−
1
d ). Here, ΛN will be N terms of a full

rank lattice Λ ⊂ Rd and Vλ are the associated Voronoi cells of the lattice. These results are

obtained in two stages: first, we consider an approximation on all of Rd using the scaled lattice

hΛ whereby we show approximation rate O(h), and then we use a covering number argument to

verify the N-term approximation rate for compactly supported measures. We next generalize the

approximation rates to non-compactly supported measures with suitable tail decay. Additionally,

we provide general rates for nonuniform approximations.

Once these rates are established, we focus on extending the compatibility condition for

138



discrete measures similar to compatibility showcased in Chapter 2. In practice, if we are given

a compact measure, the concrete approximations µN use of Dirac masses will ensure that our

approximated measure will lie on a finite grid of the lattice specified above. So computationally,

we end up considering discrete measures on a finite grid. This discrete measure compatibility

does not stem from ensuring that isometry holds but rather to show that certain pushforwards

on a finite grid (such as a lattice on a torus) can be absorbed into the Sinkhorn solution of the

regularized optimal transport problem. The compatibility on the level of discrete measures shows

properly that the reference measure used in this discretized linearized optimal transport (dLOT)

as well as the pushforwards need to respect the geometry and symmetries of the underlying grid.

4.2 Background

The Wasserstein-p space, denoted Wp(Rd), is the set of probability measures with finite

p-th moment, equipped with the Wasserstein distance

Wp(µ,ν) := inf
π∈Γ(µ,ν)

(∫
R2d
|x− y|pdπ(x,y)

) 1
p

,

where P (R2d) is the set of all probability measures over R2d and Γ(µ,ν) := {γ ∈ P (R2d) :

γ(A×Rd) = µ(A), γ(Rd×A) = ν(A) for all A⊂ Rd} is the set of all joint probability measures

with marginals µ and ν. We will write Mp(µ) =
∫
Rd |x|pdµ(x) for the p-th moment of µ. Given

a measurable map T : Rd → Rd , we denote by T♯µ the pushforward measure which satisfies

T♯µ(A) = µ(T−1(A)).

There are two main types of approximations considered in the literature for measures in

Wp(Rd): optimal quantizers and empirical measures. The approximation rates are quite similar in

both instances.
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4.2.1 Optimal Quantization in Wp

Let QN := {ν ∈ Wp(Rd) : |supp(ν)| ≤ N} be the set of all discrete measures in Wp

supported on at most N points. Then the optimal quantization problem for a given measure

µ ∈Wp is to find a solution to

E(µ,QN)Wp := inf
ν∈QN

Wp(µ,ν).

Existence of a minimizing measure is guaranteed for compactly supported µ.

Graf and Luschgy [46, Lemma 3.1] show that

E(µ,QN)Wp = inf
α⊂Rd

#α≤N

(∫
Rd

min
i
|x−αi|pdµ(x)

) 1
p

.

That is, finding an optimal quantizer (measure) is equivalent to the problem of approximating µ

with N centers in Rd .

Most of the estimates for optimal quantizers are asymptotic estimates. Bucklew and Wise

[21] prove that if µ ∈Wp(Rd) has finite p+ ε moment for some ε > 0, then

E(µ,QN)Wp = O(N−
1
d ).

Interestingly, their analysis shows that the rate above only depends on the absolutely continuous

part of µ. Indeed, for any singular µ, E(µ,QN)Wp = o(N−
1
d ), which is a stronger condition.

Hardin et al. [49] merged approaches of optimal quantization and optimizing Riesz

energies, which lead to further results on asymptotics of optimal quantifiers. To the best of our

knowledge, optimal quantization results in this vein are all asymptotic estimates.

140



4.2.2 Empirical measure approximation

Another large segment of the literature considers approximations of the form µN =

1
N ∑

N
i=1 δxi where xi are drawn i.i.d. from µ. The random measure µN is typically called the

empirical measure of µ. Most works estimate E[Wp(µ,µN)], and in contrast to optimal quantization,

the bounds hold for all N ∈ N, but sometimes require restricted assumptions on the measure µ.

Fournier and Guillin [44] show that if µ ∈Wp(Rd) has finite q-th moment (Mq(µ)< ∞)

for some q > p, then for all N ∈ N,

E[Wp(µ,µN)]≤CM
p
q
q (µ)


N−

1
2 +N−

q−p
q p > d

2 , q ̸= 2p

N−
1
2 log(1+N)N−

q−p
q p = d

2 , q ̸= 2p

N−
p
d +N−

q−p
q p ∈ (0, d

2 ), q ̸= d
d−p ,

for some constant C depending only on p,q, and d. This result generalized those of Dereich et

al. [41].

For measures on the d-dimensional torus, [42] showed if µ is absolutely continuous with

density bounded above and below (away from ∞ and 0, respectively), then for all N ∈ N,

E[Wp(µ,µN)]≤C


N−

1
d d ≥ 3

N−
1
2 (log(N))

1
2 d = 2

N−
1
2 d = 1.

If no bounds are assumed on the density, then E[Wp(µ,µN)]≤C(N−
1

2p +N−
1
d ), and moreover the

bound is tight [83].

Cañas and Rosasco [26] consider µ ∈Wp(M ), with M a compact smooth d-dimensional

manifold with bounded curvature and C1 metric and volume measure λM . They show that if µ

has absolutely continuous part with density f ̸= 0, then Wp(µ,µN) = Ω(N−1/d) uniformly over
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µN with constants depending only on d and f . They additionally show a probabilistic bound on

rate of convergence of the empirical measure. In particular, for sufficiently large N, and any τ > 0,

we have

W2(µ,µN)≤C ·
(∫

M
µA(x)

d
d+2 dλM (x)

)
·N−

1
2d+4 · τ, with probability 1− e−τ2

,

where C depends only on d.

Weed and Bach [95] prove both asymptotic estimates and finite-sample estimates in

the following two scenarios: (m,∆)-clusterability and approximate low-dimensional support

[95, Definitions 7, 8]. A measure µ is (m,∆)-clusterable if supp(µ) lies in the union of m

balls of at most radius ∆. Moreover, µ, is approximately low-dimensional if supp(µ) ⊆ Sε for

Sε = {y : ∥y−S∥ ≤ ε} where S is low-dimensional. Their main results show that

E[Wp(µ,µN)]≤C


(N

m)
− 1

2p µ is (m,∆)-clusterable

N−
1
d µ is approximately low-dimensional

,

where for the (m,∆)-clusterable case we assume that N ≤ m(2∆)−2p and for the approximately

low-dimensional case we assume that N ≤ (3ε)−d .

For 1-dimensional measures, [14, 97] investigate the best uniform approximation of a

measure µ by µN = 1
N ∑

N
i=1 δxi where the xi’s are chosen to minimize Wp(µN ,µ). Similar to optimal

quantizer results, they show that

liminf
N→+∞

NWp(µN ,µ)≥
1

2(p+1)
1
p

(∫
R

1 f (x)>0

f p−1(x)
dx
)1/p

,

where f denotes the density of the absolutely continuous part of µ with respect to the Lebesgue

measure.

142



4.2.3 Structured approximations

We focus our attention on structured approximations of measures in Wasserstein space

similar to those well known in approximation theory. We consider approximations similar to

lattice quantizers in [46, Section 8.3].

A full-rank lattice Λ⊂ Rd is a discrete subgroup of the additive group Rd which spans

the space. A particular type of fundamental domain for a lattice is its Voronoi cell, which is the

domain centered at the origin (which is evidently an element of the lattice) consisting of all points

which are closer to the origin than any other lattice point. More formally, if Λ is a lattice, then its

Voronoi cell is

V0 = {x ∈ Rd : |x| ≤ |x−λ|, for all λ ∈ Λ}.

Any element of Rd may be written as the sum of a point in V0 and an element of Λ. The Voronoi

cell centered at λ ∈ Λ is defined by

Vλ = {x ∈ Rd : |x−λ| ≤ |x−λ
′|, for all λ

′ ̸= λ}

and we have Vλ =V0 +λ. The Voronoi cells tile the space by translation, i.e., Rd = ∪λ∈ΛV0 +λ.

Voronoi cells are convex polytopes, and defined as above, distinct Voronoi cells may intersect on

their faces, but their intersection has Lebesgue measure 0. However, for our purposes, since we

want to construct approximations to measures which may not be absolutely continuous, we will

use the fact that one can remove faces from V0 in such a way that it still tiles Rd by translation,

but Vλ∩Vλ′ = /0 for all λ ̸= λ′. Therefore, we will assume that we have a Voronoi cell V0 and

Vλ =V0 +λ such that Rd =
⊔

λ∈ΛVλ (disjoint union).

Our requirement that the Voronoi cells be disjoint is simply avoid issues when singular

portions of the measures we are approximating lie on the boundary of any particular Voronoi cell.

An alternative method to remedy this problem is to simply approximate the boundary-supported

singular measure with an ε-shifted measure. In particular, if µd denotes the singular portion
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of a measure, let S(µd) = {x ∈ supp(µd) : x ∈ ∂Vλ,λ ∈ Λ}. Then for each x ∈ S(µd), define

Λ(x) = {λ ∈ Λ : x ∈ ∂Vλ}. Now we simply split µd(x) across Λ(x) by µd(x)
|Λ(x)|∑λ∈Λ(x) δx+ε(λ−x) for

ε > 0. Applying this procedure to all x ∈ S(µd) results in an updated measure µ̂d which is close

in Wp to µd . In practice, we would gain an extra ε error in the approximation bounds below by

employing this method, but as ε can be taken as small as needed, the characteristic of the bounds

remains the same.

We will consider two types of approximations akin to piecewise constant approximation

of functions. In particular, we consider approximations of the forms

∑
λ∈Λ

αλδλ,

∑
λ∈Λ

βλ1Vλ
.

These are particular cases of a more general approximation method relying on a given

class of functions F = { fλ : λ ∈ Λ} giving rise to approximating measures of the form

µ̃(A) = ∑
λ∈Λ

∫
A∩Vλ

fλ(x)dx.

Common approximation schemes take F to be piecewise polynomials of a certain degree or

shifted radial basis functions, for example.

In what follows, we will consider approximations at a dilated lattice hΛ for h > 0. We

will let {Vhλ : λ ∈ Λ} be its disjoint Voronoi cells such that Vhλ = Vh0 + hλ = h(V0 +λ). We

typically write hV0 for Vh0 for clarity. Scaling the lattice by 0 < h≤ 1 corresponds to a finer-scale

covering of the space, and allows for more precise approximations of a measure µ. We begin by

understanding approximations of µ by measures of the form ∑λ∈Λ αhλδhλ on the whole lattice,

and then utilize a covering number argument to give N-term approximation bounds for compactly

supported measures. We then show how such bounds can be extended to non-compactly supported
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measures.

4.2.4 Regularized Optimal Transport

Let P2(Rd) denote the probability measures with bounded second moment. In particular,

σ ∈ P2(Rd) satisfies ∫
|x|22dσ(x)< ∞.

Given a probability measure, we can consider the space L2(Rd,σ) with norm

∥ f∥2
σ =

∫
| f (x)|22dσ(x).

Unless otherwise stated, let ζ denote the Lebesgue measure, then if σ ∈ P2(Rd) is absolutely

continuous with respect to ζ, denoted as σ≪ ζ, then there exists a density fσ : Rd → R such that

σ(A) =
∫

A
fσ(x)dζ(x), A⊆ Rd measurable.

For the most part, we will be restricting our research to the case of probability measures that are

absolutely continuous with respect to λ. Given an elementary transformation S : Rd → Rd and a

measure σ, we can define the push forward measure by

S♯σ(A) = σ(S−1(A)) (4.1)

where A⊂ Rd . If σ≪ ζ, then in terms of densities, the pushforward relation ν(A) = σ(S−1(A))

is given by ∫
S−1(A)

fσ(x)dζ(x) =
∫

A
fν(y)dζ(y), A⊆ Rd measurable.

Given a source distribution µ and a target distribution ν, the optimal transport problem
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aims at minimizing the cost to “move” µ into ν:

min
T∈T ν

µ

∫
Rd
∥T (x)− x∥2dµ(x), (4.2)

where T ν
µ is the collection of all measure preserving maps from µ to ν. The minimum of (4.2)

exists and is unique subject to certain regularity assumption on µ and ν [17, 91]. In particular, the

following theorem explains the regularity conditions needed on the measures.

Theorem 4.1 ((Brenier)). Let σ,ν ∈ P2(Rn). If σ≪ λ, then there exists a unique map T ν
σ ∈

L2(Rn,σ) that pushes σ to ν and achieves the 2-Wasserstein distance. Furthermore, the map T ν
σ

is uniquely defined as the gradient of a convex function ϕ so that T ν
σ (x) = ∇ϕ(x), where ϕ is the

unique (up to an additive constant) convex function such that (∇ϕ)♯σ = ν.

Note that (4.2) is the transport map version of the Wp-distance (with p = 2) defined earlier

and gives rise to a natural distance between distributions, the Wasserstein-2 distance W2(µ,ν)2.

The argmin of (4.2) is referred to as the “optimal transport map” and we denote it by T ν
µ . The

optimization problem (4.2) can be formulated for different cost functions and on geometric or

manifold domains [67, 5].

For practical purposes, (4.2) needs to be formulated for discrete measures on finite

domains. Denote the domain by points xi ∈ Rd, i = 1, . . . ,n, then a discrete measure on this

domain is a vector a ∈ Rn
+ such that aT

1= 1 (1 denotes the vector containing only ones). We

denote the set of all such discrete measures by Σn.

The optimal transportation problem in terms of maps T ν
µ (4.2) has proven to be too

restrictive. Often an optimal map does not exist; for example, consider a discrete problem where

a Dirac measure δxi should be transformed into 0.5δx j +0.5δxk . To overcome this problem, the

notion of “mass splitting” has been introduced by Kantorovich [55]. This relaxation looks for

optimal couplings instead of optimal maps. A discrete coupling is a matrix P ∈ Rn×n
+ , where Pi j

describes how much mass flows from xi to x j. In this set up, the optimal transport formulation
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now reads: For a source measure a, and target measure b, find P ∈ Rn×n
+ that minimizes

min
P∈Πb

a

tr(CT P) (4.3)

where Πb
a = {P : P1= a and PT

1= b}. Here C denotes the cost matrix; in analogy to (4.2) we

use Ci j = |xi−x j|2. The minimum is the Wasserstein-2 distance, again denoted by W2(a,b)2. The

problem (4.3) is a linear program, and thus the minimum might not be unique.

One of the main drawbacks for application purposes is the computational cost of comput-

ing (4.3). Significant computational speed-up (from O(n3 log(n)) to O(n2 log(n))) for (4.3) can

be achieved by adding a constraint on the entropy of P, which adds a regularization term to (4.3)

[36, 4]. The regularized version of (4.3) is

min
P∈Πb

a

tr(CT P)−βh(P), (4.4)

where h(P) = −∑
n
i, j=1 pi j(log pi j) and β > 0 is the regularizer. The optimal coupling of (4.4),

which we denote by Pb
a,β(C), is unique and has the form

diag(u)e−βC diag(v)

where e−βC denotes the Hadamard (entrywise) exponential and u,v ∈ Rd with u,v > 0. The

minimum is the Sinkhorn distance, denoted by W2,β(a,b). As β→ 0, Pb
a,β converges to the

optimal solution of (4.3) with maximal entropy [36, 79]. Therefore, also W2,β(a,b)→W2(a,b)

as β→ 0. The optimal coupling Pb
a,β(C) of the regularized problem can be easily computed via

Sinkhorn-Knopp’s fixed point iteration [36, 84].
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4.2.5 Linearized Optimal Transport

Although Linearized Optimal Transport (LOT) is introduced and talked about in Chapter 2,

we reintroduce here as a refresher. LOT, introduced by [94, 78, 45], is a method to embed P2(Rd)

into an L2 space in a very natural manner. In particular, if we fix a reference measure σ, the LOT

embedding, denoted Fσ, is

Fσ :


P2(Rd)→ L2(Rd,σ)

µ→ T µ
σ

.

The so-called compatibility condition [71, 1] describes when LOT and the pushforward

commute.

Definition 4.2. Fix σ,µ ∈ P2(Rd) with σ≪ ζ. For a function S ∈ L2(Rd,µ), we say that (σ,µ,S)

form a compatible-triple if

Fσ(S♯µ) = S◦Fσ(µ).

Note that the compatibility condition of Definition 4.2 can also be written as

T
S♯µ

σ = S◦T µ
σ .

From past results in Chapter 2, the LOT embedding between µ1,µ2 ∈ P2(Rd) is an isometry when

µ1 = (S1)♯µ, µ2 = (S2)♯µ and (σ,µ,S j) form a compatible-triple for j = 1,2.

4.2.6 Outline

We begin by considering some general lemmas that we will use throughout, then focus

on Dirac train approximations for compactly supported measures in Section 4.4 and piecewise

constant approximations of the second form above in Section 4.5. Section 4.6 extends these

results to non-compactly supported measures. In Section 4.7, we generalize our approximation
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methods to nonuniform meshes by using the mesh norm and minimum separation radius as a

stand-in. Section 4.8 showcases how to extend the idea of pushforwards to discrete measures as

well as regularized compatibility for discrete measures.

4.3 Lemmas

A set K ⊂Rd is a convex body if it is convex and compact, and a convex body is (centrally)

symmetric if K = −K. The Voronoi cell V0 of a lattice Λ is a symmetric convex body, as is

the Euclidean ball of any radius. Below, denote by BR = B(0,R) the ball of radius R (in the

Euclidean metric) in Rd . Given two convex bodies K and T , let N (K,T ) be the minimal number

of translates of T it takes to cover K, i.e., N (K,T ) = min{#(αi)⊂ Rd : K ⊂
⋃

i T +αi}.

The diameter of a convex set A⊂ Rd is given by diam(A) = sup{|x− y| : s,y ∈ A}. The

radius of a centrally symmetric convex body K is rad(K) = sup{|x| : x ∈ K}. Our estimates below

will involve both diam(V0) and rad(V0) for the central Voronoi cell of a lattice Λ.

Lemma 4.3. Let V0 be the Voronoi cell centered at 0 of a full-rank lattice Λ ⊂ Rd . Then for

h ∈ (0,1],

N (BR,hV0)≤ 3dh−dN (BR,V0).

Proof. We will use the following fact about covering numbers [11, Theorem 4.1.13 and Corollary

4.1.14]: if T ⊂ K ⊂ Rd are convex bodies and T is symmetric (T =−T ), then for all h > 0,

N (K,hT )≤ (1+2h−1)dN (K,T ).

Consequently, for 0 < h≤ 1,

N (BR,hV0)≤ (1+2h−1)dN (BR,V0)≤ 3dh−dN (BR,V0).
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We have not optimized the estimate in Lemma 4.3 because it is not required for our

subsequent analysis, so it is possible that the bound therein could be improved.

Lemma 4.4. Let µ ∈Wp(Rd), p ∈ [1,∞). Let Λ be a full rank lattice on Rd with Voronoi cells

{Vλ}λ∈Λ, and let h ∈ (0,1]. Then the following hold:

(i) ∑
λ∈Λ

|hλ|pµ(Vhλ)≤ 2p−1hp rad(V0)
p +2p−1Mp(µ),

(ii) ∑
λ∈Λ

∥x∥p
L∞(Vhλ)

µ(Vhλ)≤ 2p−1
∑

λ∈Λ

|hλ|pµ(Vhλ)+2p−1hp rad(V0)
p,

(iii) ∑
λ∈Λ

∥x∥p
L∞(Vhλ)

µ(Vhλ)≤ (22p−2 +2p−1)hp rad(V0)
p +2p−1Mp(µ).

Proof. Proof of (i): Note that for any λ ∈ Λ and any x ∈Vhλ, we have

|hλ| ≤ |x|+ |x−hλ| ≤ |x|+ rad(Vhλ)+h rad(V0).

Therefore, |hλ|p ≤ 2p−1(|x|p+hp rad(V0)
p). Integrating this inequality over Vhλ with respect to µ

and summing over i gives

∑
λ∈Λ

|hλ|pµ(Vhλ)≤ 2p−1
∑

λ∈Λ

∫
Vhλ

|x|pdµ+2p−1hp rad(V0)
p

∑
λ∈Λ

µ(Vhλ)

= 2p−1Mp(µ)+2p−1hp rad(V0)
p.
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Proof of (ii): We estimate

∑
λ∈Λ

∥x∥p
L∞(Vhλ)

µ(Vhλ)≤ ∑
λ∈Λ

||hλ|+ rad(Vhλ)|p µ(Vhλ)

≤ 2p−1

(
∑

λ∈Λ

|hλ|pµ(Vhλ)+ ∑
λ∈Λ

rad(Vhλ)
pµ(Vhλ)

)

= 2p−1

(
∑

λ∈Λ

|hλ|pµ(Vhλ)+hp rad(V0)
p

∑
λ∈Λ

µ(Vhλ)

)
,

which yields the desired conclusion.

Proof of (iii): Combine (i) and (ii).

4.4 Dirac train approximations

First, we consider approximating an arbitrary measure µ ∈Wp(Rd) by a Dirac approxi-

mation as follows. Let h ∈ (0,1] and we utilize the scaled lattice hΛ = {hλ : λ ∈ Λ}. Then we

approximate µ by

µh := ∑
λ∈Λ

αhλδhλ. (4.5)

In other words, we utilize a discrete measure with Dirac masses at the scaled lattice hΛ. Our goal

is to determine the approximation rate (in terms of h) of µ via µh.

The first requirement is that µh is a probability measure, which requires that

µh(Rd) = ∑
λ∈Λ

αhλ = 1.

A natural candidate would therefore be to take αhλ to be the measure on the Voronoi region Vhλ,

i.e.,

αhλ =
∫

Vhλ

dµ(x) = µ(Vhλ).

Indeed, we show that this choice works and provides approximation rates that match what one
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expects to be optimal in terms of the lattice spacing.

Theorem 4.5. Let µ ∈Wp(Rd), p ∈ [1,∞) be fixed but arbitrary. Let µh := ∑λ∈Λ µ(Vhλ)δhλ. Then

for all h ∈ (0,1], µh ∈Wp(Rd) and

Wp(µ,µh)≤ rad(V0)h.

Proof. First, note that µh is clearly a measure, and

µh(Rd) = ∑
λ∈Λ

µ(Vhλ) = µ

(⋃
λ∈Λ

Vhλ

)
= µ(Rd) = 1,

where the second equality comes from countable additivity of µ and the third equality from the

fact that Rd =
⊔

λ∈ΛVhλ. Hence µh is a probability measure. To show that µh has finite p-th

moment, we notice that (via Tonelli’s Theorem) and Lemma 4.4(i),

∫
Rd
|x|pdµh = ∑

λ∈Λ

∫
Vhλ

|hλ|pdµ≤ 2p−1hp rad(V0)
p +2p−1Mp(µ)< ∞.

Using the Kantorovich formulation of Wp, we define a (non-optimal) coupling between µ

and µh via

π̃(A,B) = ∑
λ∈Λ

µ(B∩Vhλ)δhλ(A) =
∫

A×B
∑

λ∈Λ

1Vhλ
(y) δhλ(x)dxdµ(y).

It is straightforward to check that π̃ is a measure on Rd×Rd . Noting that

∫
Rd×Rd

dπ̃(x,y) = ∑
λ∈Λ

µ(Vhλ) = µ(Rd) = 1,

152



we see that π̃ is a probability measure. Computing the marginals, we see

π̃(Rd,B) = ∑
λ∈Λ

µ(B∩Vhλ) = µ(B)

and

π̃(A,Rd) = ∑
λ∈Λ

µ(Vhλ)δhλ(A) = µh(A),

for all Borel measurable sets A,B ∈ Rd . Therefore, π̃ is a coupling of µ and µh.

Notice that

π̃(Vhλ,Vhλ′) = ∑
λ̄∈Λ

µ(Vhλ∩Vhλ̄
)δhλ̄

(Vhλ′) = 0,

so that π̃ only evaluates mass on sets of the form Vhλ×Vhλ. Thus, we have

Wp(µ,µh)
p ≤

∫
Rd×Rd

|x− y|pdπ̃(x,y)

= ∑
λ∈Λ

∫
Vhλ×Vhλ

|x− y|pdπ̃(x,y)

= ∑
λ∈Λ

∫
Vhλ

|hλ− y|pdµ(y)

≤ ∑
λ∈Λ

rad(Vhλ)
pµ(Vhλ)

= hp rad(V0)
p

∑
λ∈Λ

µ(Vhλ)

= hp rad(V0)
p.

The inequality arises by noting that |hλ−y| ≤ rad(Vhλ) for y ∈Vhλ, while the subsequent equality

is due to the fact that rad(Vhλ) = h rad(Vλ) for all λ. The conclusion follows by taking the p-th

root on both sides of the above expression.

To provide N-term approximation rates, we assume that µ is supported on a compact set
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which is a subset of the interior of some ball BR. We state bounds in terms of the covering number

of the support of µ with Voronoi regions.

Theorem 4.6. Let µ ∈Wp(Rd), p ∈ [1,∞) have compact support contained in the interior of BR.

Let N ∈ N be fixed, N = N (BR,V0), and set h = 3
(

N
N

) 1
d
. Then µh = ∑λ∈Λ µ(Vhλ)δhλ is an at

most N-term approximation of µ, which satisfies

Wp(µ,µh)≤ 3rad(V0)N
1
d N−

1
d .

Proof. Note that for any h ∈ (0,1], µh has at most

N (BR,hV0)≤ 3dh−dN (BR,V0) = 3dh−dN

terms (the first inequality is Lemma 4.3), whereupon setting h as in the statement of the theorem

and applying Theorem 4.5 yields the conclusion.

From Theorem 4.6, we may deduce the following result which is related to a simple

camera model from computer vision. The orthographic projection camera model projects objects

orthogonally onto the camera plane [86]. This model is a simplification, as it does not accurately

treat perspective of the object being imaged, but it is relatively accurate for objects being imaged

from a distance. If we take a scaled integer lattice in R2 with N elements, then the shifted Voronoi

regions which are cubes of side length N−
1
2 and a discretization of the form (4.5) corresponds to

an orthographic projection model of an N-pixel camera in which pixel intensity values are the

average of the intensity over the given region of the imaging window.

Corollary 4.7. Let µ ∈Wp(Rd) have support in the interior of [−1
2 ,

1
2 ]

d , and let ΛN = (N−
1
2Z)d

with Voronoi cells (Vλ)λ∈ΛN . Then µN = ∑λ∈ΛN µ(Vλ)δλ is an at most N-term approximation to µ

which satisfies

Wp(µ,µN)≤
√

d
2

N−
1
d .
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Proof. Setting h=N−
1
d yields N cubes of length N−

1
d in the unit cube, so appealing to the proof of

Theorem 4.5 yields the desired rate upon noticing that rad([−1
2 ,

1
2 ]

d)=
√

d
2 and N ([−1

2 ,
1
2 ]

d, [−1
2 ,

1
2 ]

d)=

1. Note that in this case, the bound of Theorem 4.6 yields an overestimate as it assumes support

in a unit ball instead of a cube.

4.5 Piecewise Constant Approximation

In this section we consider approximating a measure ν ∈Wp(Rd) by a piecewise constant

approximation of the form

νh = ∑
λ∈Λ

βhλ1Vhλ
. (4.6)

For νh to be a probability measure, the following is required:

∑
λ∈Λ

βhλ

∫
Vhλ

dx = ∑
λ∈Λ

βhλ|Vhλ|= 1,

hence a natural choice is

βhλ =
ν(Vhλ)

|Vhλ|
,

which corresponds to a piecewise constant approximation of ν where each Voronoi region is

assigned the value of the ratio of the mass that ν assigns to the region to its Lebesgue measure.

Theorem 4.8. Let ν ∈Wp(Rd) be fixed but arbitrary. Let νh := ∑λ∈Λ

ν(Vhλ)
|Vhλ|

1Vhλ
. Then for all

h ∈ (0,1], νh ∈Wp(Rd) and

Wp(ν,νh)≤ diam(V0)h.

Proof. The analysis above shows that νh ∈ P (Rd), so it remains to show that it has finite p-th
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moment, which can be seen as follows:

∑
λ∈Λ

ν(Vhλ)

|Vhλ|

∫
Vhλ

|x|pdx≤ ∑
λ∈Λ

ν(Vhλ)

|Vhλ|
∥x∥p

L∞(Vhλ)
|Vhλ|

≤ 2p−1Mp(µ)+(22p−2 +2p−1)hp rad(V0)
p < ∞,

where we have used Lemma 4.4(iii) (here and throughout this proof, Tonelli’s Theorem justifies

the interchange of sum and integral). Therefore νh ∈Wp(Rd).

To estimate the convergence rate, we again form a (non-optimal) coupling in the Kan-

torovich sense, as follows: for Borel measurable A,B⊂ Rd, define

π̃(A,B) := ∑
λ∈Λ

ν(A∩Vhλ)

|Vhλ|
|B∩Vhλ|=

∫
A×B

∑
λ∈Λ

1
|Vhλ|

1Vhλ
(x)1Vhλ

(y)dν(x)dy.

It is straightforward to check that π̃ is a measure on Rd×Rd . To see it is a probability measure,

note that

π̃(Rd,Rd) = ∑
λ∈Λ

ν(Vhλ)

|Vhλ|
|Vhλ|= ∑

λ∈Λ

ν(Vhλ) = ν(Rd) = 1.

Additionally, the marginals can be computed as follows:

π̃(A,Rd) = ∑
λ∈Λ

ν(A∩Vhλ)

|Vhλ|
|Vhλ|= ν(A)

as before, and

π̃(Rd,B) = ∑
λ∈Λ

ν(Vhλ)

|Vhλ|
|B∩Vhλ|= ∑

λ∈Λ

ν(Vhλ)

|Vhλ|

∫
B
1Vhλ

(x)dx = νh(B).

Therefore, π̃ is a coupling of ν and νh.
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Thus,

Wp(ν,νh)
p ≤

∫
Rd×Rd

|x− y|pdπ̃(x,y)

= ∑
λ∈Λ

1
|Vhλ|

∫
Vhλ×Vhλ

|x− y|pdν(x)dy

≤ ∑
λ∈Λ

diam(Vhλ)
p

|Vhλ|
ν(Vhλ)|Vhλ|

= hp diam(V0)
p

∑
λ∈Λ

ν(Vhλ)

= hp diam(V0)
p,

and the conclusion follows.

Corollary 4.9. Let ν ∈Wp(Rd) have compact support contained in the interior of BR. Let

N ∈ N be fixed, N = N (V0,BR), and set h = 3
(

N
N

) 1
d
. Then νh = ∑λ∈Λ

ν(Vhλ)
|Vhλ|

1hλ is an N-term

approximation of ν, which satisfies

Wp(ν,νh)≤ 3diam(V0)N
1
d N−

1
d .

Proof. Mimic the proof of Theorem 4.6 mutatis mudandis applying Theorem 4.8.

Corollary 4.10. Let ν ∈Wp(Rd) have compact support contained in the interior of [−1
2 ,

1
2 ]

d ,

and let ΛN = (N−
1
d Z)d with Voronoi cells (Vλ)λ∈ΛN . Then νN = ∑λ∈ΛN

ν(Vλ)
|Vhλ|

1λ is an N-term

approximation to ν which satisfies

Wp(ν,νN)≤
√

dN−
1
d .

Proof. Set h = N−
1
d while noting that N ([−1

2 ,
1
2 ]

d, [−1
2 ,

1
2 ]

d) = 1 and diam([−1
2 ,

1
2 ]

d) =
√

d.

While Corollary 4.7 corresponds to mapping pixel intensity values from an orthographic

camera image to a discrete grid in R2 (or more generally Rd), Corollary 4.10 corresponds to a
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voxel representation of the image in which each pixel intensity value takes up the whole cube

rather than just a single point in the center.

4.6 Non-Compactly Supported Measures

So far, we have assumed that µ is compactly supported in a ball BR ⊂ Rd , but here we

extend the results above to non-compactly supported measure with suitable decay. If the measure

µ decays fast enough away outside of a ball BR, we first estimate µ with a compactly supported

measure µ̂, and then apply our approximation schemes above to µ̂.

We want to create a non-optimal coupling that will send µ to itself when restricted to sets

inside BR but that will project the part of µ outside of BR to the boundary of the ball. To do this,

we define the projection operator

PBR(x) = argmin
y∈BR

∥x− y∥.

In particular, given any set B⊆ Rd , this projection operator has a preimage P−1
BR

(B) = {x ∈ Rd :

PBR(x) ∈ B}. If B∩BR = /0, then, P−1
BR

(B) = /0. Finally, notice that

P−1
BR

(B) = P−1
BR

(B∩BR)∪P−1
BR

(B∩∂BR)

We use this definition in our construction to define the following coupling:

π =
(
I×PBR

)
♯
µ = µ× (PBR)♯µ =: µ× µ̂.

Notice first that this coupling sends µ to itself when restricted to sets in BR. Secondly, for A⊆ Bc
R,

it projects the measure of A to the boundary ∂BR. In essence, this acts as approximation through

a truncated measure supported on the ball BR. In particular, the measure π(Rd,B) = µ̂(B) is
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supported entirely on the ball BR.

Recalling the Lebesgue decomposition theorem, we know that µ = µ<+µ⊥+µd where

µ< is absolutely continuous with respect to the Lebesgue measure (and has a density fµ), µ⊥ is

the singular continuous measure such that µ⊥{x}= 0 for x ∈ Rd , and µd purely atomic discrete

measure such that µd = ∑
∞
i=1 ciδxi . We will show that Wp(µ, µ̂) < ε if we assume some decay

conditions on µ<, µ⊥, and µd . Apart from natural decay conditions on µ< and µd , if µ⊥ decays on

concentric shells B(a,b] = Bb \Ba for a > R, then we get the approximation result. These ideas are

laid out in the following theorem:

Theorem 4.11. Let µ have refined Lebesgue decomposition, µ = µ<+ µ⊥+ µd , where µ< has

density fµ, and let ε > 0. Assume that

1. fµ(x) ≤ εp

3C|x|p+d+1 where C is the integration constant from integrating over concentric

d-spheres,

2. For every j ≥ ⌊R⌋, we have

µ⊥

(
B(

j, j+1
])≤ εp

3
(

j+1−R
)p+2

6
π2 ,

3. the ck’s in µd = ∑
∞
k=1 ckδxk decay like

ck ≤
1

(|xk|−R)p ·
1
kq ·

εp

3
· 1

∑
∞
ℓ=1 ℓ

q

for some q > 1 and |xk|> R.

Then Wp(µ, µ̂)< ε, where µ̂ is the compactly supported measure (PBR)♯µ.
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Proof. Notice that

Wp(µ, µ̂)p ≤
∫
Rd×Rd

|x−PBR(x)|pdµ(x)

=
∫

BR

|x−PBR(x)|pdµ(x)︸ ︷︷ ︸
0

+
∫

Bc
R

|x−PBR(x)|pdµ(x)

=
∫

Bc
R

∣∣∣∣x−R
x
|x|

∣∣∣∣pdµ(x) =
∫

Bc
R

(
1− R
|x|

)p

|x|pdµ(x)

=
∫

Bc
R

(
|x|−R

)pdµ(x).

This means that

Wp(µ, µ̂)p ≤
∫

Bc
R

(
|x|−R

)pd(µ<+µ⊥+µd)(x)

=
∫

Bc
R

(
|x|−R

)p fµ(x)dx︸ ︷︷ ︸
I1

+
∫

Bc
R

(
|x|−R

)pdµ⊥(x)︸ ︷︷ ︸
I2

+
∫

Bc
R

(
|x|−R

)pdµd(x)︸ ︷︷ ︸
I3

.

In particular, we need that both I1, I2, I3 <
εp

3 . For I1, this is ensured if

fµ(x)≤
εp

3C|x|p+d+1 ,

where C is the integration constant from integrating over concentric d-spheres. To see this, notice

that

I1 =
∫

Bc
R

(
|x|−R

)p fµ(x)dx≤ εp

3C

∫
Bc

R

(
|x|−R

)p

|x|p︸ ︷︷ ︸
<1

1
|x|d+1 dx <

εp

3

∫
r≥R

rd−1

rd+1 dr︸ ︷︷ ︸
≤1

≤ εp

3
.

To bound I2, we assumed decay rates on the measure of concentric annuli emanating out
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from BR. In particular, we assume that for j ≥ ⌊R⌋, we have

µ⊥

(
B(

j, j+1
])≤ εp

3
(

j+1−R
)p+2

6
π2 .

This implies that

∫
Bc

R

(
|x|−R

)p
dµ⊥(x) =

∫
B[R,⌈R⌉)

(|x|−R)p︸ ︷︷ ︸
≤(⌈R⌉−R)p

µ⊥(x)+
∞

∑
j>R

∫
B[ j, j+1)

(|x|−R)p︸ ︷︷ ︸
( j+1−R)p

µ⊥(x)

≤
∫

B[R,⌈R⌉)
(⌈R⌉−R)pµ⊥(x)+

∞

∑
j>R

∫
B[ j, j+1)

( j+1−R)pµ⊥(x)

≤ ∑
j≥⌊R⌋

( j+1−R)pµ⊥

(
B(

j, j+1
])

≤ ∑
j≥⌊R⌋

( j+1−R)p εp

3
(

j+1−R
)p+2

6
π2

≤ εp

3
6
π2 ∑

j≥⌊R⌋

1
( j+1−R)2︸ ︷︷ ︸
≤ π2

6

≤ εp

3
.

Finally, let us bound I3. Recalling that µd = ∑
∞
i=1 ciδxi , we get

∫
Bc

R

(
|x|−R

)pdµd(x) =
∞

∑
k=1

1|xk|≥R
(
|xk|−R

)pµd(xk)

=
∞

∑
k=1

1|xk|≥R(xk) ·
(
|xk|−R

)pck.

If we assume that ck decays at the following rate

ck ≤
1

(|xk|−R)p ·
1
kq ·

εp

3
· 1

∑
∞
ℓ=1 ℓ

q
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for some q > 1 and |xk|> R, then

∫
Bc

R

(
|x|−R

)pdµd(x) =
∞

∑
k=1

1|xk|≥R(xk)
(
|xk|−R

)pck

≤ εp

3
1

∑
∞
ℓ=1 ℓ

q

∞

∑
k=1

1|xk|≥R(xk)
(|x|−R)p

(|x|−R)p
1
kq

≤ εp

3
.

With these bounds for our decomposed measure µ, we get that

Wp(µ, µ̂)p ≤ εp

3
+

εp

3
+

εp

3
= ε

p,

and therefore Wp(µ, µ̂)≤ ε.

Now, we can use the theorems above to approximate µ̂ with the Voronoi cell approxi-

mations. In particular, we get the following corollary for Dirac train approximations and the

piecewise constant approximations.

Corollary 4.12. Assume that µ satisfies the assumptions of Theorem 4.11 and let µ̂ be the

compactly supported measure (PBR)♯µ. Moreover, let N ∈N, N =N (BR,V0), and set h= 3
(N

N

) 1
d .

Then

Wp(µ, µ̂h)≤ 3rad(V0)N
1
d N−

1
d + ε,

Wp(µ, µ̂′h)≤ 3diam(V0)N
1
d N−

1
d + ε,

where µ̂h = ∑λ∈Λ µ̂(Vhλ)δhλ and µ̂′h = ∑λ∈Λ

µ̂(Vhλ)
|Vhλ|

1hλ.

Proof. Letting µ̂ be the measure from Theorem 4.11, we have

Wp(µ, µ̂h)≤Wp(µ, µ̂)+Wp(µ̂, µ̂h).
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By Theorem 4.11, Wp(µ, µ̂) < ε. Since µ̂ is compactly supported within some ball of radius R,

we have by Theorem 4.6 and Theorem 4.8 that Wp(µ̂, µ̂h)≤ 3rad(V0)N
1
d N−

1
d and Wp(µ̂, µ̂′h)≤

3diam(V0)N
1
d N−

1
d . Putting these together yields the desired result.

4.7 Nonuniform Approximations

Let X := {xi}∞
i=1 ⊂Rd be a set of (finite or infinite) points that is separated (xi ̸= x j, i ̸= j).

We define two quantities governing these points: the mesh norm given by

hX := sup
y∈Rd

inf
xi∈X
|xi− y|,

and the minimum separation radius,

qX :=
1
2

inf
i ̸= j
|xi− x j|.

We denote by Vi ⊂ Rd the Voronoi region centered at xi, and enforce Vi∩Vj = /0, i ̸= j.

Lemma 4.13. Let µ ∈Wp(Rd), p ∈ [1,∞). Let X ⊂ Rd be such that 0 < qX ≤ hX < ∞. with

Voronoi cells {Vi}∞
i=1. Then the following hold:

(i)
∞

∑
i=1
|xi|pµ(Vi)≤ 2p−1hp

X +2p−1Mp(µ),

(ii)
∞

∑
i=1
∥x∥p

L∞(Vi)
µ(Vi)≤ 2p−1

∞

∑
i=1
|xi|pµ(Vi)+2p−1hp

X ,

(iii)
∞

∑
i=1
∥x∥p

L∞(Vi)
µ(Vi)≤ (22p−2 +2p−1)hp

X +2p−1Mp(µ).
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Proof. Proof of (ii): Note that

∞

∑
i=1
∥x∥p

L∞(Vi)
µ(Vi)≤

∞

∑
i=1

(|xi|+hX)
pµ(Vi)

≤ 2p−1
∞

∑
i=1
|xi|pµ(Vi)+2p−1hp

X

∞

∑
i=1

µ(Vi)

= 2p−1
∞

∑
i=1
|xi|pµ(Vi)+2p−1hp

X .

Proof of (i): By the definition of the mesh norm and the triangle equality, the following

holds for every i and every x ∈Vi:

|xi| ≤ |x|+ |x− xi| ≤ |x|+hX ,

hence |xi|p ≤ 2p−1(|x|p +hp
X). Integrating this inequality over Vi with respect to µ and summing

over i gives

∞

∑
i=1
|xi|pµ(Vi)≤ 2p−1

∞

∑
i=1

∫
Vi

|x|pdµ(x)+2p−1hp
X

∞

∑
i=1

µ(Vi) = 2p−1Mp(µ)+2p−1hp
X ,

which is the desired conclusion.

Proof of (iii): Combine (i) and (ii).

Theorem 4.14. Let µ ∈Wp(Rd), p ∈ [1,∞) be fixed but arbitrary, and let X ⊂ Rd be such that

0 < qX ≤ hX < ∞. Let µX := ∑
∞
i=1 µ(Vi)δxi. Then

Wp(µ,µX)≤ hX .

Proof. First, note that µX is clearly a measure, and we have

µX(Rd) =
∞

∑
i=1

µ(Vi) = µ

(
∞⋃

i=1

Vi

)
= µ(Rd) = 1,
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where the second and third equalities comes from countable additivity of µ and the fact that

Rd = ⊔∞
i=1Vi. To show that µX has finite p-th moment, we notice that (via Tonelli’s Theorem) and

Lemma 4.13(i),

∫
Rd
|x|pdµX =

∞

∑
i=1
|xi|pµ(Vi)≤ 2p−1hp

X +2p−1Mp(µ)< ∞.

Using the Kantorovich formulation of Wp, we define the following is a (non-optimal)

coupling of µ and µX :

π̃(A,B) :=
∞

∑
i=1

µ(B∩Vi)δxi(A) =
∫

A×B

∞

∑
i=1

1Vi(y)δxi(x)dxdµ(y).

It is straightforward to check that π̃ is a measure on Rd×Rd . Noting that

∫
Rd×Rd

dπ̃(x,y) =
∞

∑
i=1

µ(Vi) = µ(Rd) = 1,

we see that π̃ is a probability measure, and its marginals are

π̃(Rd,B) =
∞

∑
i=1

µ(B∩Vi) = µ(B),

and

π̃(A,Rd) =
∞

∑
i=1

µ(Vi)δxi(A) = µX(A),

for all Borel measurable sets A,B ∈ Rd . Therefore, π̃ is a coupling of µ and µX .

Notice that if k ̸= j, then

π̃(Vk,Vj) =
∞

∑
i=1

µ(Vk∩Vi)δxi(Vj) = 0,
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that is, π̃ only evaluates mass on sets intersecting Vi×Vi. Therefore, we have

Wp(µ,µX)
p ≤

∫
Rd×Rd

|x− y|pdπ̃(x,y)

=
∞

∑
i=1

∫
Vi×Vi

|x− y|pdπ̃(x,y)

=
∞

∑
i=1

∫
Vi

|xi− y|pdµ(y)

≤ hp
X

∞

∑
i=1

µ(Vi)

= hp
X .

Theorem 4.15. Let ν ∈Wp(Rd), p ∈ [1,∞) be fixed but arbitrary, and let X ⊂ Rd be such that

0 < qX ≤ hX < ∞. Let νX := ∑
∞
i=1

ν(Vi)
|Vi| 1Vi. Then νX ∈Wp(Rd) and

Wp(ν,νX)≤ 2hX .

Proof. First, notice that

νX(Rd) =
∞

∑
i=1

ν(Vi)

|Vi|

∫
Vi

dx = ν(Rd) = 1,

so indeed νX is a probability measure. Next, we see that

∫
Rd
|x|pdνX(x) =

∞

∑
i=1

νX(Vi)

|Vi|

∫
Vi

|x|pdx

≤
∞

∑
i=1

νX(Vi)

|Vi|
∥X∥p

L∞(Vi)
|Vi|

≤ (2p−2 +2p−1)hp
X +2p−1Mp(µ)< ∞,

whereby νX ∈Wp(Rd). Here, and throughout the proof, Tonelli’s Theorem justifies the interchange
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of sum and integral.

To estimate the convergence rate, we again form a (non-optimal) coupling in the Kan-

torovich sense by

π̃(A,B) :=
∞

∑
i=1

ν(A∩Vi)

|Vi|
|B∩Vi|=

∫
A×B

∞

∑
i=1

1
|Vi|

1Vi(x)1Vi(y)dν(x)dy.

It is straightforward to check that π̃ is a probability measure on Rd×Rd . Its marginals are

π̃(A,Rd) =
∞

∑
i=1

ν(A∩Vi)

|Vi|
|Vi|= ν(A)

as before, and

π̃(Rd,B) = ∑
λ∈Λ

ν(Vi)

|Vi|
|B∩Vi|=

∞

∑
i=1

ν(Vi)

|Vi|

∫
B
1Vi(x)dx = νX(B).

Therefore, π̃ is a coupling of ν and νh.

Finally,

Wp(ν,νX)
p ≤

∫
Rd×Rd

|x− y|pdπ̃(x,y)

=
∞

∑
i=1

1
|Vi|

∫
Vi×Vi

|x− y|pdν(x)dy

≤
∞

∑
i=1

diam(Vi)
p

|Vi|
ν(Vi)|Vi|

≤ 2php
X

∞

∑
i=1

ν(Vi)

= 2php
X .

Theorem 4.16. Let µ ∈Wp(Rd), p ∈ [1,∞) have compact support contained in the interior of
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BR. Let X ⊂ Rd be such that 0 < qX ≤ hX < ∞ and such that the cardinality of X ∩BR is N.

If RN−
1
d ≤ hX ≤CN−

1
d , then µX = ∑i µ(Vi)δxi is an at most N-term approximation of µ, which

satisfies

Wp(µ,µX)≤CN−
1
d .

Proof. Note that N being the number of points in X contained in BR implies also that N is at least

the number of Voronoi regions intersecting BR. The mesh norm hX is the largest radius of one of

the Voronoi regions, which means that N balls of radius hX must cover BR; that is

N ≥N (BR,BhX ).

By volumetric arguments, N (BR,BhX )≥ Rdh−d
X [11, Theorem 4.1.13]. Rearranging yields the

assumed lower bound on hX . Next, with the upper bound on hX , applying Theorem 4.16 implies

that

Wp(µ,µX)≤ hX ≤CN−
1
d ,

as required.

Theorem 4.17. Let ν ∈Wp(Rd), p ∈ [1,∞) have compact support contained in the interior of

BR. Let X ⊂ Rd be such that 0 < qX ≤ hX < ∞ and such that the cardinality of X ∩BR is N.

If RN−
1
d ≤ hX ≤CN−

1
d , then νX = ∑i

ν(Vi)
|Vi| 1Vi is an at most N-term approximation of ν, which

satisfies

Wp(ν,νX)≤ 2CN−
1
d .

Proof. Mimic the proof of Theorem 4.16 mutatis mudandis applying Theorem 4.15.

Corollary 4.18. Assume that µ ∈Wp ∗Rd) satisfies the assumptions of Theorem 4.11, and let µ̂

be the compactly supported measure (PBR)♯µ. Moreover, invoke the assumptions of Theorems
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4.16 and 4.17. Then

Wp(µ, µ̂X)≤CN−
1
d + ε,

Wp(µ, µ̂′X)≤ 2CN−
1
d + ε,

where µ̂h = ∑i µ̂(Vi)δxi and µ̂′X = ∑i
µ̂(Vi)
|Vi| 1Vi .

Proof. Mimic the proof of Corollary 4.12 using the results from this section.

4.8 Linear optimal transport in the Kantorovich setting for

Dirac train approximations

In this section, we extend the ideas used in LOT to the Kantorovich formulation of optimal

transport and investigate an analogue to compatibility when we work with regularized optimal

transport. All the work done in the Dirac train approximations is essentially an infinite grid, but

cutting off the grid at a certain portion, we get a finite grid akin to the ones discussed in

Given two discrete measure a,r ∈ Σn, where r is the reference measure, we define the

regularized LOT embedding for a fixed β > 0 by

Fr,C(a) = Pb
a,β(C)

⊤
, (4.7)

where Pb
a,β(C) is the unique solution to the regularized problem (4.4). Note that this is a mapping

from Σn to Mn×n(R), the space of matrices of size (n×n).
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4.8.1 Pushforward of discrete measures

Given a discrete measure a ∈ Σn, we consider pushforwards of a ∈ Σn by a transport plan

S ∈Πa, where

Πa = {S ∈ Rn×m : S⊤1n ∈ Σm,S1m = a}

and m is subject to change depending on which output grid we would like to push forward into.

In this sense, we can specify pushing a forward by the following definition:

Definition 4.19. Let a ∈ Σn and let S ∈Πa. Then, the pushforward of a by S is defined by

S♯a := S⊤ diag(a−1)a = S⊤1n ∈ Σm.

This definition of pushforward directly extends the definition of the pushforward operator

and pushforward measure in [79]. In particular, given a discrete measure α = ∑
n
i=1 aiδxi where

xi ∈ X and a continuous map T : X → Y , [79] defines the pushforward of α under T as

T♯α =
n

∑
i=1

aiδT (xi).

This definition is restricted to “transport maps” rather than transport plans. With Definition 4.19,

we can expand the definition of a pushforward to include mass splitting.

4.8.2 Regularized compatibility for discrete measures

One of the core necessities for LOT embeddings is understanding how push-forwards

of distributions create changes in the LOT embedding space. Ideally, we would like to relate a

push-forward S directly to the embedding Fr,C(a) so that Fr,C(S♯a) and Fr,C(a) are related.

In the process of showing this relationship, we derive a few results. First, given a discrete
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reference measure r ∈ Σn and a target measure a ∈ Σn and an a-pushforward denoted by S ∈Πa,

we will see how to transform Πa
r into Π

S♯a
r .

Lemma 4.20. Let r,a ∈ Σn and assume that S ∈Πa ⊆Rn×m with is chosen such that the columns

of S form a spanning set for Rn. Then the transformation


G(S) : Πa

r →Π
S♯a
r

P→ Pdiag(a−1)S

is a one-to-one map from Πa
r to Π

S♯a
r .

Proof. We need to check first that for P ∈Πa
r , we have G(S)(P) ∈Π

S♯a
r . Indeed, note that

Pdiag(a−1)S1= Pdiag(a−1)a = P1= r

S⊤ diag(a−1)P⊤1= S⊤ diag(a−1)a = S⊤1= S♯a.

Now, we want to show that S is one-to-one. To show this, let s1, . . . ,sm denote the columns

of S and consider P,P′ ∈ Πa
r with P ̸= P′. Let p1, . . . , pn denote the rows of P, and likewise,

let p′1, p′2, . . . , p′n denote the rows of P′. If we assume towards a contradiction that G(S)(P) =

G(S)(P′), then

(P−P′)diag(a−1)S = 0

=⇒ s j ∈ ker
(
(P−P′)diag(a−1)

)
=⇒ a−1

ℓ · ⟨pℓ− p′ℓ,s j⟩= 0 ∀ j, ℓ.

But since {s j} are the columns of S and form a spanning set, we know that ⟨pℓ− p′ℓ,s j⟩= 0 for

all j implies that pℓ = p′ℓ, which contradicts that P ̸= P′. This means that G(S) is a one-to-one

map.
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A simple, yet important example of pushforwards are permutations because given a

permutation Q, G(Q) will form a permutation. Moreover, permutations are the analogue of

optimal transport maps in the context of discrete measures. Given a permutation Q, we can

construct a corresponding transport plan in SQ(a) ∈Πa by defining

SQ(a) = diag(a)Q⊤.

Note, here that

SQ(a)1n = diag(a)Q⊤1n = diag(a)1n = a

SQ(a)⊤1n = Qdiag(a)1n = Qa.

This is exactly what we expect from a permutation push-forward. In light of the previous lemma,

we get the following corollary.

Corollary 4.21. The map G(SQ(a)) : Πa
r →Π

SQ(a)
r = Π

Qa
r is a bijection.

Proof. We just need to find an inverse map to G(SQ(a)). The map that will end up working is

G(SQ⊤(Qa)) : Π
Qa
r →Πa

r . Indeed, note that if P ∈Πa
r , then

G(SQ⊤(Qa))◦G(SQ(a))(P) = Pdiag(a−1)diag(a)Q⊤︸ ︷︷ ︸
SQ(a)

diag((Qa)−1)diag(Qa)Q︸ ︷︷ ︸
SQ⊤(Qa)

= P.

So we’re done.

Permutations are special in the context of relating Fr,C((SQ(a))♯a) and Fr,C(a) because of

the following lemma.

Lemma 4.22. Let r,a ∈ Σn and Q a permutation, then Pa
r,β(C)Q⊤ = PQa

r,β (CQ⊤), PQa
r,β (C)Q =
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Pa
r,β(CQ), and Pa

r,β(QC) = QPa
Q⊤r,β(C)

Proof. First, recall that G(SQ(a))(Pa
r,β(C))∈Π

Qa
r from the corollary above. We know that Pa

r,β(C)

has the form diag(u)e−βC diag(v); thus,

G(SQ(a))(Pa
r,β(C)) = diag(u)e−βC diag(v)diag(a−1)diag(a)Q⊤

(1)
= diag(u)e−βCQ⊤Qdiag(v)Q⊤

(2)
= diag(u)e−βCQ⊤ diag(Qv),

where (1) comes from the fact that Q⊤Q= I and (2) comes from that fact that permutation matrices

are the normalizer of diagonal matrices (i.e. Qdiag(v)Q⊤ = diag(Qv)) and e−βCQ⊤ = e−βCQ⊤

since the exponentiation entry-wise. Given the form of the last equation, we can see that

Pa
r,β(C)Q⊤ = diag(u)e−βCQ⊤ diag(Qv) = PQa

r,β (CQ⊤).

Using the same exact reasoning, we also get that

PQa
r,β (C)Q = Pa

r,β(CQ).

Finally, for the last equality, we have that Pa
r,β(QC) can be written in the form

Pa
r,β(QC) = diag(ũ)e−βQC diag(ṽ)

= QQ⊤ diag(ũQe−βC diag(ṽ)

= Qdiag(Q⊤ũ)e−βC diag(ṽ)︸ ︷︷ ︸
P

.
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We want to see which marginals P has. In particular, note that

P⊤1= P⊤Q⊤1= Pa
r,β(QC)⊤1= a

QP1= Pa
r,β(QC)1= r

=⇒ P1= Q⊤r.

Because of the form P, we see that Pa
r,β(QC) = QPa

Q⊤r,β(C). So we’re done.

Combining some of the equalities above, we immediately get the following corollary.

Corollary 4.23. Assume that C is symmetric, and let Q be a permutation matrix that commutes

with C, then Pa
r,β(C) = Q⊤PQa

Qr,β(C)Q (or equivalently QPa
r,β(C)Q⊤ = PQa

Qr,β(C)).

Proof. If CQ = QC, then notice that Q⊤C = CQ⊤. Then using the equalities from above, we

have

Pa
r,β(C) = Pa

r,β(Q
⊤QC) = Pa

r,β(Q
⊤CQ) = PQa

r,β (Q
⊤C) = Q⊤PQa

Qr,β(C)Q.

This finishes the proof.

We finally get another corollary in the circumstance that Qr = r.

Corollary 4.24. Let r and a be discrete measures. If C is a symmetric matrix and Q is a

permutation matrix such that CQ = QC and Qr = r, then QPa
r,β(C)Q⊤ = PQa

r,β (C).
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Chapter 5

A Neural Network Two-Sample Test
JOINT WORK WITH ALEX CLONINGER AND XIUYUAN CHENG

We construct and analyze a neural network two-sample test to determine whether two

datasets came from the same distribution or not. We perform some time-analysis on a neural

tangent kernel (NTK) two-sample test and extend the analysis to the regular neural network two-

sample test by approximating the neural network dynamics with the NTK dynamics. Although

the approximation relies on a small-time training regime, the complexity of the neural network in

relation to the complexity of the two-sample problem considered still allows for the approximation

to hold. We particularly show the theoretical minimum time needed for the neural network two-

sample test to sense a difference ε > 0 between the datasets and the theoretical maximum time

before the two-sample test senses a difference ε > 0. Additionally, we run some experiments

showcasing a two-layer neural network two-sample test on a hard two-sample test problem. We

show the statistical power of the test in relation to the time it takes to train and how complex the

network is.
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5.1 Introduction

The ability to compare whether two datasets P̂ ∼ p and Q̂ ∼ q came from the same

data-generating process (i.e. checking if p = q or p ̸= q) is a problem studied for many years.

Traditionally, the methods to answer this question are called two-sample tests. As a non-exhaustive

list of applications, two-sample testing is widely used in testing drug efficacy [37], studying

behavioral differences in psychology [16], pollution impact studied in environmental science

research [20], and market research impact studies [22]. The most basic method to compare

distributions is by comparing means with a t-test, proportions with a z-test, variances with

Levene’s test, medians with a Mann-Whitney U test, or overall distributions with a Kolmogorov-

Smirnov test. The advent of complex, high-dimensional data in fields like genomics, finance, and

social media analytics has exposed limitations in these traditional methods, particularly in terms

of handling non-linearity, complex interactions, and the curse of dimensionality. The flexibility

and scalability of neural networks make them particularly suited to tackle the challenges posed

by modern datasets, suggesting their potential to revolutionize two-sample testing.

This paper is not the first to explore this idea of using neural networks or classifiers

for two-sample testing. In particular, [62] shows properties and analyzes performance of the

so-called Classifier Two-Sample Test (C2ST) and specifically showcasing theoretically what

the statistical power of such two-sample tests. To go further in the neural network direction,

[30] expanded [47]’s work and used the neural tangent kernel (NTK) for the kernel involved

in a maximum mean discrepancy (MMD) problem. Yet their analysis still did not relate the

NTK MMD performance to the behavior of neural network two-sample tests. Moreover, [28]

introduced a neural network-based two sample test statistic using the classification logit and show

theoretical guarantees for test power for sub-exponential densities problems. One may be hesitant

to use a neural network for two-sample tests since with a big enough neural network and long

enough training time, a neural network could find a separation for data coming from the same
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distribution. Our approach alleviates this hesitation since we train the neural network on a small

time-scale and ensure our network is initialized to output 0 for all values. We also conduct time

analysis on two levels. First, we analyze the time needed for achieving a desired level of deviation

or detection in the two-sample test. Second, we provide time approximations between different

training regimes, which extends the analysis of the time needed for detection to different training

regimes.

5.1.1 Main Contributions

Our main contributions to the field are the following:

1. We perform some time analysis on the neural tangent kernel (NTK) derived from our neural

network and show that the time it takes for the neural network two-sample test to learn

does not depend on the entire spectrum of the NTK but rather only a subset of the spectrum

on which the labels or witness function f ∗ = p−q
p+q non-trivially projects onto. This behavior

is a result of averaging behavior of the neural network two-sample test.

2. We approximate the population-level neural network dynamics and finite-sample neural

network dynamics with the population-level NTK dynamics. This allows the time analysis

performed on the NTK dynamics to transfer to the other two training regimes. Additionally,

we notice here that there is a balancing act of not training the neural network too long so

that the the approximations hold but long enough to detect differences in the datasets. This

balancing act is further informed by the complexity of the neural network considered in

relation to the difficulty of the two-sample test problem.

Our main result essentially shows that as long as p and q are “separated enough”, our

neural network two-sample test can detect the difference before the same detection would take

place if p = q. In particular, we can summarize the main result of value as the following informal

theorem.
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Theorem 5.1 (Informal). Assume the alternative hypothesis that f ∗ nontrivially projects onto the

first k eigenfunctions of the zero-time NTK K0 holds true. Given a desired detection level ε > 0

and time separation level Cε ≥ γ > 0, further assume that the projection of f ∗ onto the first k

eigenfunctions has a “large enough norm.” Then with high probability,

t+(ε)− t−(ε)≥ γ > 0,

where t−(ε) and t+(ε) are the minimum times needed for the neural network two-sample test to

detect a deviation ε under the alternative hypothesis and the null hypothesis, respectively.

In the formal version of this theorem (as shown in Corollary 5.33), the detection level

ε > 0 possible is perturbed by a time-approximation error between the actual neural network

two-sample test and the zero-time NTK two-sample test. This adds a small amount of complexity

to the informal theorem above and there are lower bound conditions on f ∗ to ensure detectability.

We also discuss (in a subsequent remark to Corollary 5.33) which detection level is the most

trustworthy. A visual for this graph is given in Figure 5.1.

Figure 5.1: Visual for detection levels t+(ε) and t−(ε) being well-separated.
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5.1.2 Structure of the paper

We review some papers in Section 5.2 that study the same topic that we explore in this

paper. In Section 5.3, we introduce the main notation, a motivating example, and concepts that we

will need for the rest of the paper. We discuss specifics of how the training time-scale interplays

with the network complexity in Section 5.4.

In Section 5.5, we describe in detail three training regimes that we consider for the

two-sample test. First, we consider the case of finite-sample time-varying dynamics; second, we

consider population-level time-varying dynamics; and finally, we consider the zero-time neural

tangent kernel (NTK) dynamics training regime where the analysis is easier to understand. By

solving for the actual solution of the zero-time NTK dynamics, we are able to find an exact form

for the two-sample test in this regime by using the spectrum of the NTK. The exact form of the

two-sample test further allows us to conduct some time analysis. The time analysis is done to

show guarantees for when the null hypothesis is correct or when the alternative hypothesis is

correct. For the alternative hypothesis, we can estimate the minimum time needed for sensing an

error level ε > 0. For the null hypothesis statement, we can estimate the maximum time needed

before we are able to sense past an error level ε > 0. Using proof techniques similar to [81], these

time-analysis results are adapted later to the other training regimes by using approximation and

estimation between the different regimes.

In Section 5.6, we estimate the population-level time-varying dynamics with the zero-

time NTK dynamics. We are essentially able to approximate the population-level time-varying

dynamics with the zero-time NTK dynamics up to a factor of t3/2 where t denotes time. This

means that if the zero-time NTK dynamics two-sample test are able to detect f ∗ faster than the

approximation guarantees in this section, then all the time analysis for the NTK dynamics also

holds for the population-level time-varying dynamics two-sample test.

Section 5.7 is the main section for establishing time analysis for the finite-sample time-

varying dynamics case that we usually see in practice. The approximation guarantees between
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the finite-sample time-varying dynamics and the zero-time NTK dynamics hold up to a factor of

t5/2 and depends on how many data points are sampled from both p and q.

The results shown in Section 5.6 and Section 5.7 showcase that our neural network two-

sample test is more useful in identifying when the alternative hypothesis is correct. Moreover, we

see a sort of balancing act of training on short time scales and increasing the complexity of the

neural network. These specifics are discussed in more detail in Section 5.4. Finally, in Section 5.8

we show empirical evidence of the statistical power of the neural network two-sample test on a

hard two-sample test problem.

5.2 Previous Works

In recent years, there has been growing interest in developing two-sample tests based on

neural networks, leveraging the power of deep learning to address some of the limitations of

classical two-sample tests. More traditional two-sample methods use methods such as kernel

two-sample test and maximum mean discrepancy (MMD) [47]. [30] took this idea of using the

MMD a bit further by changing the kernel to be the neural tangent kernel (NTK) of a neural

network which resulted in an NTK MMD two-sample test. The

Variations of a neural network-based two-sample test are present in [58] and [28], and

the analysis done in this paper goes further by using small time approximations between the

NTK-based kernel machines and the actual neural network training dynamics. To accomplish

this, we use very similar proof techniques to [81], however, rather than using a loss rescaling to

get into the lazy training regime [31], we are able to use small time approximations for the NTK.
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5.3 Notation and Background

We will study a neural network two-sample test, which will test whether two datasets came

from the same distribution or not. In particular, assume that we are given datasets X = {xi}
np
i=1 ⊆

Rd and Z = {z j}
nq
j=1 ⊆ Rd . We will endow samples from X to have labels 1 whilst samples from

Z will have labels −1. To give some more structure to our problem, we will moreover assume

that the datasets X and Z are sampled from distributions p(x)dx and q(x)dx, respectively, where

p and q are associated density functions. From X and Z, note that we can construct finite-sample

empirical measures

p̂(x)dx =
1
np

np

∑
i=1

δxi(x)dx

q̂(x)dx =
1
nq

nq

∑
j=1

δz j(x)dx

respectively. In the same fashion, we can assume that we are given independent test samples

from each of p and q to generate Xtest = {x∗i }
mp
i=1 and Ztest = {z j}

mq
j=1 as well as corresponding

test empirical measures p̂test(x)dx and q̂test(x)dx. These test sets will be used when considering

the finite-sample two-sample test on test data. We now introduce the following notation

∥ f∥L2(p+q) =

(∫
Rd
| f (x)|2(p(x)+q(x))dx

)1/2

∥ f∥L2(p̂+q̂) =

(∫
Rd
| f (x)|2(p̂(x)+ q̂(x))dx

)1/2

.

Assume that our neural network architecture has associated parameters space Θ⊆ RMΘ

so that our neural network is given as f : Rd×Θ→ R and will be trained on an ℓ2 loss function
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against the labels as shown here

L̂(θ) =
1
2

(
1
np

np

∑
i=1

(
f (xi,θ)−1

)2
+

1
nq

nq

∑
j=1

(
f (z j,θ)+1

)2
)

=
1
2

(∫
Rd

(
f (x,θ)−1

)2 p̂(x)dx+
∫
Rd

(
f (x,θ)+1

)2q̂(x)dx
)
.

As a precursor to the more concrete notation introduced in Section 5.5, we will use the general

rule of thumb of distinguishing mathematical objects in different training regimes by:

1. Finite-sample time-varying mathematical objects are adorned with hats, such as û.

2. Population-level time-varying mathematical objects are not adorned with any specific

notation, such as u.

3. Population-level zero-time NTK mathematical objects are adorned with bars, such as u.

5.3.1 Motivating Example

For our motivating example two-sample test scenario, we consider when our probability

distributions of interest are two multivariate normals with the same covariance matrix but different

means. In particular, with a fixed covariance matrix Σ, we let p∼ N(µ1,Σ) and q∼ N(µ2,Σ) with

labels 1 and −1 respectively. Assume that we work with a linear neural network given by

f (x;a,W,b) =
1

MΘ

a⊤
(

Wx+b
)

where x ∈ Rd,a ∈ RMΘ , W ∈ RMΘ×d , and b ∈ RMΘ . For ease assume that MΘ is even, then for

initialization, let b = 0 and opt to make ai = 1 for i≤MΘ/2 and ai =−1 otherwise. For W , we

will generate a random matrix W̃ ∈ R(MΘ/2)×d and let W =

 W̃

−W̃

. These choices will ensure

that f (x) = 0 for all x.
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Recall the gradient of f with respect to its parameters is given by

∂ f
∂a

(x) =
1

MΘ

(Wx+b)

∂ f
∂W

(x) =
1

MΘ

ax⊤

∂ f
∂b

(x) =
1

MΘ

a.

We will show that just one population-level gradient descent step with this setup will allow the

two-sample test to detect the difference in distributions with high probability. In particular, recall

that with our initialization

∂L̂(θ0)

∂ f
(x) =


−1 x∼ p

1 x∼ q
.

Now with learning rate η, one gradient descent step gives us

a(1) = a−η

∫
∂ f
∂a

(x)
∂L̂
∂ f

(x)d(p+q)(x)

= a−η

∫ 1
MΘ

Wxd(q− p)(x) = a− η

MΘ

W (µ2−µ1)

W (1) =W −η

∫
∂ f
∂W

(x)
∂L̂
∂ f

(x)d(p+q)(x)

=W −η

∫ 1
MΘ

ax⊤d(q− p)(x) =W − η

MΘ

a(µ2−µ1)
⊤

b(1) = b−η

∫
∂ f
∂b

(x)
∂L̂
∂ f

(x)d(p+q)(x)

= b−η

∫ 1
MΘ

ad(q− p)(x) = b−0 = 0.
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This means that after the first gradient descent step, we have

f (x;a(1),W (1),0) =
(

a− η

MΘ

W (µ2−µ1)

)⊤((
W − η

MΘ

a(µ2−µ1)
⊤
)

x

)

=
η

MΘ

(
∥a∥2⟨µ1−µ2,x⟩+ ⟨W (µ1−µ2),Wx⟩

+
η

MΘ

⟨a,W (µ2−µ1)⟩⟨µ2−µ1,x⟩
)
.

Now notice that if we consider the two-sample test

∫
f (x;a(1),W (1),0)d(p−q)(x) =

η

MΘ

(
∥a∥2∥µ1−µ2∥2 +∥W (µ1−µ2)∥

+
η

MΘ

⟨a,W (µ1−µ2)⟩∥µ1−µ2∥
)
.

In essence, if η is small enough the two-sample test will be positive and the farther µ1 is away

from µ2, the easier it becomes to detect.

In the case that we have W fixed and MΘ is large, we can see that a is trying to learn

W (µ1− µ2). From a qualitative point of view, we only really need one row w of W to form a

hyperplane that separates µ1 and µ2, assuming that 0,µ1,µ2 do not all fall on the same line (and

µ1 and µ2 are not on opposite sides of 0). Moreover, the larger we pick MΘ, the random matrix W

gets a greater probability of producing such a row w. Moreover, producing such a w becomes

increasingly more likely when we center the data so that the origin is between the two means.

185



5.3.2 Relating Finite-sample and Population-level Loss

We now revert to the more general case of neural networks considered and recall the form

of L̂(θ). Notice that when np,nq→ ∞, we get a population-level loss given by

L(θ) =
1
2

(∫
Rd

(
f (x,θ)−1

)2 p(x)dx+
∫
Rd

(
f (x,θ)+1

)2q(x)dx
)

=
1
2

(∫
Rd

(
f (x,θ)2 p(x)−2 f (x,θ)p(x)+ p(x)

+ f (x,θ)2q(x)+2 f (x,θ)q(x)+q(x)
)
dx
)

=
1
2

(∫
Rd

(
f (x,θ)2−2 f (x,θ)

p(x)−q(x)
p(x)+q(x)︸ ︷︷ ︸

f ∗((x)

+1
)
(p(x)+q(x))dx

)
.

Here we can notice that

∥ f (·,θ)− f ∗(·)∥2
L2(p+q) =

∫
Rd

(
f (x,θ)2−2 f (x,θ) f ∗(x)+( f ∗(x))2)(p(x)+q(x))dx.

If we add the constant

C =
1
2

∫
Rd

4
p(x)q(x)

p(x)+q(x)
dx,

we get that

L(θ) =
1
2
∥ f (·,θ)− f ∗(·)∥2

L2(p+q)+C.
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To see this, notice that

1
2

∫
Rd

(
( f ∗(x))2(p(x)+q(x))+

4p(x)q(x)
p(x)+q(x)

)
dx

=
1
2

∫
Rd

((p(x)−q(x))2

(p(x)+q(x))2 (p(x)+q(x))+
4p(x)q(x)
p(x)+q(x)

)
dx

=
1
2

∫
Rd

( p(x)2−2p(x)q(x)+q(x)2 +4p(x)q(x)
p(x)+q(x)

)
dx

=
1
2

∫
Rd

((p(x)+q(x))2

p(x)+q(x)

)
dx =

1
2

∫
Rd

p(x)+q(x)dx.

This means that minimizing L(θ) is the same as minimizing ∥ f − f ∗∥2
L2(p+q) as the constant

doesn’t depend on θ. Importantly, this means that our target function in the population-level

training regimes will be

f ∗(x) :=
p(x)−q(x)
p(x)+q(x)

.

5.3.3 Two-Sample Test

Given probability densities p and q, the two-sample test assesses whether to accept the

null hypothesis H0 or reject it for H1, where

H0 : p = q, H1 : p ̸= q.

In words, our test is constructed using the average output of the neural network on measure p

minus the average output of the neural network on measure q. This will give either population-

level two-sample tests or finite-sample two-sample tests on the datasets Xtest and Ztest . In particular,
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for the population-level statistic, we can define

µp(θ) =
∫
Rd

f (x,θ)d p(x), µq(θ) =
∫
Rd

f (x,θ)dq(x)

T (θ; p,q) = (µp(θ)−µq(θ)) =
∫
Rd

f (x,θ)d(p−q)(x);

whereas, for the finite-sample statistic on test data, we can define

µp̂test (θ) =
∫
Rd

f (x,θ)d p̂test(x), µq̂test (θ) =
∫
Rd

f (x,θ)dq̂test(x)

T (θ; p̂test , q̂test) = (µp̂test (θ)−µq̂test (θ)) =
∫
Rd

f (x,θ)d(p̂test− q̂test)(x).

Here, we define the neural network two-sample test for a neural network f (·,θ) by T (θ; p̂test , q̂test).

Given a test threshold τ > 0, we reject the null hypothesis if |T (θ; p̂test , q̂test)|> τ. Moreover, we

control the false discovery of the null by finding the smallest τ such that Pr[|T (θ; p̂test , q̂test)|>

τ|H0]≤ α, where 0 < α < 1 is the significance level. To find τ, we use a permutation test.

In Section 5.5, we will consider different training regimes and each of these training

regimes will have different notions of the two-sample test, which change by what the output of

the neural network is and which probability measures the two-sample test statistic is computed on.

Particularly, the training regime with the zero-time NTK will end up using not the neural network

by the function that is trained under zero-time NTK dynamics. The specific notation regarding

the two-sample test will be discussed there.

5.4 Balancing time scales and network complexity

In this section, we consider the balancing of time scales for training and the role that the

complexity of the neural network plays in training time.
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5.4.1 Short-Time Requirements

Throughout this paper, we stress that we will work in the small time regime. The small

time scale of the two-sample test is geared towards identifying the case when the alternative

hypothesis is correct. Qualitatively, our results relate the time it takes for the neural network

two-sample test to produce positive results to the complexity of the zero-time neural tangent

kernel (NTK) and how the weighted difference of the densities p−q
p+q(x) projects onto the zero-time

NTK’s eigenfunctions. We then relate the neural network’s population-level dynamics as well

as finite-sample dynamics to the zero-time NTK and bound their approximates by time. For the

analysis done in this paper, we interplay between training for long enough that the zero-time

NTK two-sample test performs well enough yet not too long that the approximations between

the zero-time NTK and the other training regimes fail to hold. This interplay ensures that we

are in a short-time regime although the details depend on the complexity of the problem and the

complexity of the neural network.

To get a better idea of when the two-sample test works well, consider when the densities

p and q are vastly different. Now assuming that the zero-time NTK’s larger eigenvalue functions

correspond to low frequency eigenfunctions, the neural network two-sample test should be able

to produce a positive output with little time since p−q
p+q will tend to be more low frequency than

high frequency. On the other hand, if the densities p and q are quite close, then p−q
p+q would tend

to project onto higher frequency eigenfunctions which would take longer to detect. Detection in

this case would require either need more time or a larger neural network to detect the difference

between the densities. In the next section, we, moreover, discuss the interplay of the size of the

neural network in producing a good two-sample test.
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5.4.2 Complexity Scaling

Along with balancing the short-time versus long-time scale of the neural network two-

sample test, we need to simultaneously balance the complexity of the neural network. The

interplay of neural network complexity comes again in two places. Since we get a two-sample

test from the zero-time NTK, we need the complexity of the neural network to be large enough

to accurately capture p−q
p+q on the eigenbasis of the NTK. The estimation of the zero-time NTK

to the finite sample neural network dynamics, however, is bounded by how large the neural

network is. Qualitatively, this means that smaller neural networks are approximated better with

the zero-time NTK. This does not arise as much of an issue, however, because the factor of the

neural network complexity is multiplied by time. This means that if the small time scale is small

enough to counteract the loss in approximation from the size of the neural network, we still get

good detection of the alternative hypothesis.

In our empirical results, we consider neural networks with varying parameter-to-sample

ratios that range from the severely under-parameterized to highly over-parameterized regime.

5.5 The Three Training Regimes

We will consider the following three different training regimes for our neural network.

For all of scenarios, however, we assume the following.

Assumption 5.2. The neural network is initialized with parameters θ0 such that f (x,θ0) = 0 for

all x ∈ Rd .

5.5.1 Finite-sample time-varying dynamics

This regime is the most realistic as these are the dynamics that will arise in practice. In

this regime, we tend to denote all the associated quantities with a hat. Since we use gradient
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descent to optimize, we denote the parameters trained from finite-sample data as θ̂(t) and will

denote the associated neural network’s output as û(x, t) = f (x, θ̂(t)). Now, let us inspect the

equation used to optimize the parameters.

L̂(θ) =
1
2

(∫
Rd

(
f (x,θ)−1

)2 p̂(x)dx+
∫
Rd

(
f (x,θ)+1

)2q̂(x)dx
)

− ˙̂
θ(t) = ∂θL̂(θ̂(t))

=
1
2

(∫
Rd

∇θ f (x, θ̂(t))
((

f (x, θ̂(t))−1
)

p̂(x)+
(

f (x, θ̂(t))+1
)
q̂(x)

)
dx
)

∂t û(x, t) = ⟨∇θ f (x, θ̂(t)), ˙̂
θ⟩Θ =−⟨∇θ f (x, θ̂(t)),∂θL̂(θ̂(t))⟩Θ

=−1
2

(∫
Rd
⟨∇θ f (x, θ̂(t)),∇θ f (x′, θ̂(t))⟩Θ

((
f (x′, θ̂(t))−1

)
p̂(x′)

+
(

f (x′, θ̂(t))+1
)
q̂(x′)

)
dx′
)
.

We define the time-varying finite-sample neural tangent kernel by

K̂t(x,x′) = ⟨∇θ f (x, θ̂(t)),∇θ f (x′, θ̂(t))⟩Θ.

We can further define density-specific residuals

êp(x, t) =
(

f (x, θ̂(t))−1
)

êq(x, t) =
(

f (x, θ̂(t))+1
)
.

This means that

∂t û(x, t) =−
1
2

(∫
Rd

K̂t(x,x′)
((

f (x′, θ̂(t))−1
)

p̂(x′)+
(

f (x′, θ̂(t))+1
)
q̂(x′)

)
dx′
)

=−1
2

(
Ex′∼p̂K̂t(x,x′)êp(x′, t)+Ex′∼q̂K̂t(x,x′)êq(x′, t)

)
.

191



In the context of the two sample test, since this training regime uses only finite training

samples, we will study the two-sample test statistic’s behavior evaluated on the training samples,

the test samples (independent from the training samples), and the population. We denote these

different evaluated test statistics by

T̂train(t) : = T (θ̂(t); p̂, q̂) =
(
Ex∼p̂−Ex∼q̂

)
f (x, θ̂(t)) =

(
Ex∼p̂−Ex∼q̂

)
û(x, t),

T̂test(t) : = T (θ̂(t); p̂test , q̂test) =
(
Ex∼p̂test −Ex∼q̂test

)
f (x, θ̂(t))

=
(
Ex∼p̂test −Ex∼q̂test

)
û(x, t),

T̂pop(t) : = T (θ̂(t); p,q) =
(
Ex∼p−Ex∼q

)
f (x, θ̂(t)) =

(
Ex∼p−Ex∼q

)
û(x, t),

where T̂ , T̂test , T̂pop denote the evaluation on the training samples, test samples, and population,

respectively.

5.5.2 Population-level time-varying dynamics

This regime is essentially what would happen as the number of samples in our datasets

grows larger and larger. In this case, we denote the path of the parameters as simply θ(t) and will

denote the associated neural network’s output as u(x, t) = f (x,θ(t)). We showed earlier that the

population-level loss is equivalent to simply minimizing L(θ) = 1
2∥ f (·,θ)− f ∗(·)∥L2(p+q). This

means that training the population-level neural network is equivalent to running gradient descent

on L . Moreover, we can define the population level error function as e(x, t) = f (x,θ(t))− f ∗(x).

Using these facts, we get the following

−θ̇(t) = ∂θL(θ(t)) =
1
2

∫
Rd

∇θ f (x,θ(t))
(

f (x,θ(t))− f ∗(x)
)
(p+q)(x)dx

∂tu(x, t) = ⟨∇θ f (x,θ(t)), θ̇(t)⟩Θ =−⟨∇θ f (x,θ(t)),∂θL(θ(t))⟩Θ

=−1
2

∫
Rd
⟨∇θ f (x,θ(t)),∇θ f (x′,θ(t))⟩Θ

(
f (x′,θ(t))− f ∗(x′)

)
(p+q)(x′)dx′.
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Now we define the population level time-varying neural tangent kernel

Kt(x,x′) = ⟨∇θ f (x,θ(t)),∇θ f (x′,θ(t))⟩Θ.

This finally implies that

∂tu(x, t) =−
1
2
Ex′∼p+qKt(x,x′)e(x′, t) = ∂te(x, t).

Contrary to the finite-sample training regime, we only care about the population-level two-sample

test statistic in this training regime since this training regime itself uses the population to train on.

We denote the two-sample test statistic associated to the population-level time-varying dynamics

by

T (t) := T (θ(t); p,q) =
∫
Rd

u(x, t)d(p−q)(x),

where we are integrating the neural network output over the entire densities.

5.5.3 Population-level zero-time kernel dynamics

In this training regime, we will denote related quantities with a bar so that the output

of the trained function here becomes ū(x, t) with ū(x,0) = f (x,θ0). At this point, consider the

zero-time NTK of the neural network f (·,θ0) by

K0(x,x′) = ⟨∇θ f (x,θ0),∇θ f (x′,θ0)⟩Θ.

According to [81, Lemma 4.3], assuming that ∥∇θ f (x,θ0)∥Θ is squared integrable on Rd against

measure (p(x)+q(x))dx, the zero-time kernel can act as a kernel integral operator and admits a
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spectral decomposition, which we can write as

(LK0g)(x) =
∫
Rd

K0(x,x′)g(x′)(p+q)(x′)dx′ =
M

∑
ℓ=1

λℓ⟨g,uℓ⟩L2(p+q)uℓ(x),

where λ1 ≥ λ2 ≥ . . .≥ λM. Although we can find an extended basis for ℓ > M for L2(p+q), the

associated eigenvalues of K0 are 0 on eigenfunctions uℓ for ℓ > M. Since K0 does not effectively

have full basis for L2(p+q), the quantities that we work with will need to be projected onto the

range of the operator LK0 . This motivates the following definition.

Definition 5.3. Denote the projection operator onto the range of LK0 by ΠK0 .

Now we can define the associated error function

ē(x, t) = ū(x, t)−ΠK0( f ∗)(x).

Since f ∗ is fixed, the dynamics of our model that we care about will be given by

∂t ū(x, t) =−
1
2
Ex′∼p+qK0(x,x′)ē(x′, t) = ∂t ē(x, t).

With the simplicity in the model dynamics, we can attain better analysis. Using this interpretation,

we know that

∂t ē(·, t) =−
1
2
(LK0 ē(·, t)) =−

M

∑
ℓ=1

λℓ⟨ē(·, t),uℓ⟩L2(p+q)uℓ.

We formulate an ansatz of what ē(·, t) would be so that it satisfies this differential equation. In

particular, consider

ē(·, t) =
M

∑
ℓ=1

e−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)uℓ.
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The following proposition ensures that this indeed is a solution of the differential equation of

interest.

Proposition 5.4. The solution

ē(·, t) =
M

∑
ℓ=1

e−tλℓ⟨uℓ, ē(·,0)⟩uℓ

solves the differential equation

∂t ē(·, t) =−
1
2
(LK0 ē(·, t)) =−

M

∑
ℓ=1

λℓ⟨ē(·, t),uℓ⟩L2(p+q)uℓ.

The proof of Proposition 5.4 is given in Section 5.9.

For this training regime, we can now talk about the two-sample test statistic. In particular,

recalling that ū = ē+ΠK0( f ∗), we will set

µp(t) =
∫
Rd

ū(x, t)d p(x) =
∫
Rd
(ē(x, t)+ΠK0( f ∗)(x))p(x)dx,

µp(t) =
∫

X
ū(x, t)dq(x) =

∫
X
(ē(x, t)+ΠK0( f ∗)(x))q(x)dx.

Similar to the population-level time-varying dynamics, we only care about the population-level

two-sample test statistic for this training regime since we use the entire population for training.

For this training regime, we will denote the associated two-sample test by

T (t) := µp(t)−µq(t) =
∫
Rd

ū(x, t)d(p−q)(x).

Note that in this case, T (t) is not determined by the parameters of the neural network changing

but rather by the output of the NTK trained dynamics. With this in mind, we get the following

lemma.
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Lemma 5.5. The population-level zero-time kernel dynamics two-sample test statistic is given by

T (t) = ∥ΠK0( f ∗)∥2
L2(p+q)−∑

ℓ≥1
e−tλℓ⟨uℓ,ΠK0( f ∗)⟩2L2(p+q).

The proof of Lemma 5.5 is in Section 5.9.

Note that there is some time-analysis we can undertake at this point. First, you can notice

that at t = 0,

T (0) = ∥ΠK0( f ∗)∥2
L2(p+q)−∑

ℓ≥1
⟨uℓ,ΠK0( f ∗)⟩2L2(p+q)︸ ︷︷ ︸
∥ΠK0( f ∗)∥2

L2(p+q)

= 0,

and for any time t > 0, we have T (t)> 0. We will find a theoretical minimum time t(ε) such that

T (t(ε))≥ ε. Let us define a few quantities before delving into the main result.

Definition 5.6. Let S⊆{1, . . . ,M}, then we can consider how much of the norm ∥ΠK0( f ∗)∥2
L2(p+q)

(and hence the norm of f ∗) lies on the eigenbasis subset VS = {uℓ}ℓ∈S. In particular, we have

∥ΠK0( f ∗)∥2
S = ∥ f ∗∥2

S = ∑
ℓ∈S
⟨uℓ, f ∗⟩2L2(p+q) = xS∥ f ∗∥2

L2(p+q).

Since ⟨uℓ,ΠK0( f ∗)⟩L2(p+q) = ⟨uℓ, f ∗⟩L2(p+q) for ℓ≤M, we can also define these quantities for f ∗

rather than just ΠK0( f ∗). Moreover, we can define the minimum and maximum eigenvalue that

exist for the eigenvectors that lie in VS by defining

λmin(S) = min
ℓ∈S

λℓ, λmax(S) = max
ℓ∈S

λℓ.

Then we have the following theorem.
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Theorem 5.7. Let ε > 0 and assume that there exists a finite subset S⊂ {1, . . . ,M} such that

∥ΠK0( f ∗)∥2
S = ∥ f ∗∥2

S = ∑
ℓ∈S
⟨uℓ, f ∗⟩2L2(p+q) > ε

and λmin(S)> 0. Then

t(ε)≥ λmin(S) log
(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
S− ε

)
= λmin(S) log

(
∥ f ∗∥2

S

∥ f ∗∥2
S− ε

)

ensures that T (t(ε))≥ ε.

The proof of Theorem 5.7 is in Section 5.9.

Remark 5.8. Let us analyze the function

g(ε,S) = min
S∈S1(ε)

λmin(S) log
(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
S− ε

)
.

Notice first that the largest that ε can be is ∥ΠK0( f ∗)∥2
L2(p+q) because as t → ∞, we get that

T (t)→∥ΠK0( f ∗)∥2
L2(p+q) and it is easy to see that T (t) is monotonic in t. Now notice that as ε

gets larger, we need S to satisfy ∥ f ∗∥2
S = ∥ΠK0( f ∗)∥2

S > ε to make sure that g(ε,S) is well-defined.

Moreover, we need λmin(S)> 0 otherwise we find that g(ε,S) = 0 which is the trivial bound. In

particular, we will want the fraction ε/∥ΠK0( f ∗)∥2
S to be as small as possible to give the smallest

possible non-trivial time.

We have an analogous statement for when we want our test statistic to be less than ε. In

particular, we get that

Theorem 5.9. Let ε > 0 and assume that there exists a finite subset S⊂ N such that

∥ΠK0( f ∗)∥2
L2(p+q)− ε

∥ΠK0( f ∗)∥2
S

> 0
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and λmax(S)> 0. Then

t(ε)≤ λmax(S) log

{
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
L2(p+q)− ε

}

ensures that T (t(ε))≤ ε.

The proof of Theorem 5.9 is in Section 5.9. Now if we optimize over all such subsets S,

we get the following corollary.

Corollary 5.10. Let 0 < ε < ∥ΠK0( f ∗)∥2
L2(p+q). Assume that the set

S1(ε) = {S⊂ N : ∥ΠK0( f ∗)∥2
S > ε,λmin(S)> 0} ̸= /0

S2(ε) = {S⊂ N : (∥ΠK0( f ∗)∥2
L2(p+q)− ε)/∥ΠK0( f ∗)∥2

S > 0,λmax(S)> 0} ̸= /0.

Then

t ≥ t∗1(ε) := min
S∈S1(ε)

λmin(S) log

(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
S− ε

)

ensures that T (t)≥ ε whilst

t ≤ t∗2(ε) := max
S∈S2(ε)

λmax(S) log

(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
L2(p+q)− ε

)

ensures that T (t)≤ ε.

Here let us remark what occurs in the case when our null hypothesis is correct versus

when the alternative is correct.

Remark 5.11. If H0 is true (so that p = q), then f ∗ = 0. We can’t apply the theorem above then

since the assumption is not satisfied; however, we note by inspection that T (t) = 0 for all t. If

∥ΠK0( f ∗)∥L2(p+q) < δ for small δ > 0, then note that both Theorem 5.7 and Theorem 5.9 limit
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ε < δ. This means that T (t) can only detect small changes. On the other hand, if we are under

H1 (so that p ̸= q) and we assume that ∥ΠK0( f ∗)∥L2(p+q) > δ for some larger δ > 0, then ε can

be made much larger and should be more easy to detect.

5.6 Analysis of u with ū

Let BR denote the open ball of radius R with center θ0 and assume that u(x,0) = ū(x,0) =

f (x,θ0) = 0 for all x. For much of the analysis going forward, we will use the following lemma

heavily.

Lemma 5.12. L(θ(0)) = ∥u(·,0)− f ∗∥2
L2(p+q) = ∥ū(·,0)− f ∗∥2

L2(p+q) = ∥ f ∗∥2
L2(p+q).

Proof. Notice that since u(·,0) = ū(·,0) = f (x,θ0) = 0, we have the result.

To continue, we will need to assume the following assumptions

Assumption 5.13. There exists positive constants R,L1, and L2 such that

1. (Boundedness) For any θ ∈ BR, supx∈supp(p+q) ∥∇θ f (x,θ)∥ ≤ L1.

2. (Lipschitz) For any θ1,θ2 ∈ BR, supx∈supp(p+q) ∥∇θ f (x,θ1)−∇θ f (x,θ2)∥ ≤ L2∥θ1−θ2∥.

5.6.1 Approximation

Next we apply these assumptions to gain the following proposition.

Proposition 5.14. Assume that u(x,0) = ū(x,0) = 0, then

∥θ(t)−θ(0)∥ ≤
√

t∥ f ∗∥L2(p+q).
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Moreover, if

t ≤
(

R
∥ f ∗∥L2(p+q)

)2

,

then θ(t) ∈ BR.

The proof of Proposition 5.14 is contained in Section 5.10. Now we can further bound the

operator norm of the difference Kt−K0 with the following lemma.

Proposition 5.15. Let θ(t) ∈ BR, then under Assumption 5.13, we have

∥Kt−K0∥L2(p+q) ≤ 2L1L2
√

t∥ f ∗∥L2(p+q).

The proof of Proposition 5.15 is contained in Section 5.10. Now we use this result for

bounding the difference ∥u− ū∥L2(p+q). In particular, we have the following proposition.

Proposition 5.16. Under Assumption 5.13 and

t ≤
(

R
∥ f ∗∥L2(p+q)

)2

,

we get

∥(u− ū)(·, t)∥L2(p+q) = ∥(e− ē)(·, t)∥L2(p+q) ≤
8
3

L1L2∥ f ∗∥2
L2(p+q)(t)

3/2.

The proof of Proposition 5.16 is contained in Section 5.10. Now let us extend our zero-

time NTK two-sample test results to the population-level time-varying kernel two-sample test.

We first notice the following corollary.
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Corollary 5.17. Under Assumption 5.13 and

t ≤
(

R
∥ f ∗∥L2(p+q)

)2

,

we have

∣∣∣T (t)−T (t)
∣∣∣≤√2

8
3

L1L2∥ f ∗∥2
L2(p+q)(t)

3/2.

The proof of Corollary 5.17 is contained in Section 5.10. For further time analysis in

the alternative hypothesis case below, we will need to show that this two-sample test T (t) is

monotonically increasing. We will be able to show this if our population-level neural network has

increasing norm. This assumption is not unsupported since we initialize as u(x,0)= f (x,θ(0))= 0

and our target function f ∗(x) = p−q
p+q(x) has non-zero norm. Using this assumption, we get the

following theorem (with proof contained in Section 5.10).

Theorem 5.18. Assume that ∥u(x, t)∥L2(p+q) is monotonically increasing on the interval [0,τ],

then T (t) is monotonically increasing on [0,τ].

5.6.2 Time analysis of u

Given all the approximations done before, we can use the time analysis done with ū and

apply it to u with the correct approximations. In essence, we can use Corollary 5.17 along with

Corollary 5.10 to get the following two theorems.

In order to counteract the time-dependent estimation error shown in Corollary 5.17, the

next theorem, which is geared towards discovering the alternative hypothesis, necessarily assumes

first that the minimum time needed to detect an error ε in Corollary 5.10 is smaller than ε and

second that the time scale we work on is valid for detection. Note that as the size of the neural

network grows, the minimum time needed for detection decreases but L1 and L2 below increase;
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thus, there is an interplay of making sure your neural network is large but not too large.

For this next theorem, recall from Corollary 5.10 that

t∗1(ε) := min
S∈S1(ε)

λmin(S) log

(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
S− ε

)
,

t∗2(ε) := max
S∈S2(ε)

λmax(S) log

(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
L2(p+q)− ε

)
.

Theorem 5.19. Let ε > 0 and assume that ∥u(x, t)∥2
L2(p+q) is monotonically increasing on [0,τ]

and that

8
√

2
3
∥ f ∗∥2

L2(p+q)L1L2
(
t∗1(ε)

)3/2
< ε

as well as

min
(

τ,
( R
∥ f ∗∥L2(p+q)

)2
)
≥ t∗1(ε)

where t∗1(ε) is defined in Corollary 5.10. Then under Assumption 5.13 and for

min
(

τ,
( R
∥ f ∗∥L2(p+q)

)2
)
≥ t ≥ t∗1(ε),

we get

|T (t)| ≥ ε− 8
√

2
3
∥ f ∗∥2

L2(p+q)L1L2
(
t∗1(ε)

)3/2
.

We prove Theorem 5.19 in Section 5.10. Now, the following theorem is useful in showing

the null hypothesis and necessarily needs the time to be smaller the maximum time needed to

detect ε as well as the time needed to stay in BR (so that Proposition 5.16 holds).
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Theorem 5.20. Let ε > 0. Under Assumption 5.13 and for

t ≤min

{( R
∥ f ∗∥L2(p+q)

)2
, t∗2(ε)

}
,

where t∗2(ε) is defined in Corollary 5.10, we have

|T (t)| ≤ ε+
8
√

2
3
∥ f ∗∥2

L2(p+q)L1L2
(
t∗2(ε)

)3/2

The proof of Theorem 5.20 is given in Section 5.10. In the next section, we will consider

how to bound ∥ū− û∥L2(p+q) as û represents finite-sample behavior.

5.7 Analysis of û with ū

Since we will be using finite-samples, we will use some concentration inequalities and

will need a few extra assumptions. To start off, recall that for our finite-sample we have np training

samples from density p and nq samples from density q. Moreover, recall that our finite-sample

loss function is given by

L̂(θ) =
1
2

(∫
Rd

(
f (x,θ)−1

)2 p̂(x)dx+
∫
Rd

(
f (x,θ)+1

)2q̂(x)dx
)

We first show approximation of the raw dynamics and then approximation with the

time-analysis.

5.7.1 Approximation

Let us bound ∥θ̂(t)− θ̂(0)∥Θ. To this end, we get the following lemma.
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Lemma 5.21. Assume that θ̂(0) = θ(0) and that f (x,θ(0)) = 0, then

∥θ̂(t)−θ(0)∥Θ ≤
√

t.

Moreover, if θ(0) ∈ BR, then

t ≤ R2

ensures that θ̂(t) ∈ BR.

We prove Lemma 5.21 in Section 5.11. Now we will need the following assumption to

proceed.

Assumption 5.22. For A > 0, consider the function

h(n) =

√
2L2

1(2L2
1 +3/2)

A log(n)+ log(2MΘ)

n
.

Assume that np and nq are large enough that h(np)<
3
2 and h(nq)<

3
2 .

Using this assumption, we can apply Theorem 5.40 to get the following lemma to be used

later.

Lemma 5.23. Assume that θ ∈ BR, then under Assumption 5.13 and Assumption 5.22 and let p

be a probability density, consider the random MΘ-by-MΘ matrix

Xi = ∇θ f (xi,θ)∇θ f (xi,θ)
⊤−Ex∼p∇θ f (x,θ)∇θ f (x,θ)⊤.

If n is the number of samples from p, then with probability greater than 1−n−A, we have

∥1
n

n

∑
i=1

Xi∥ ≤
√

2L2
1(2L2

1 +3/2)
A log(n)+ log(2MΘ)

n
.
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The proof of Lemma 5.23 is in Section 5.11 and is used in the following proposition.

Proposition 5.24. Assume that t ≤ R2 (so that θ(t) ∈ BR) as well as Assumption 5.13 and

Assumption 5.22, then with probability ≥ 1−n−A
p −n−A

q , we have

∥(û− ū)(·, t)∥L2(p+q) ≤C1t +C2t3/2 +C3t2 +C4t5/2,

where the dependence of the constants is given by C1 =C(L1), C2 =C(L1,L2, f ∗), C3 =C(L1, f ∗,np,nq,MΘ,A),

and C4 =C(L1,L2, f ∗,np,nq,MΘ,A).

Note that the more technical version of Proposition 5.24 is contained in Proposition 5.36

along with its proof. We will use Proposition 5.24 to show that the finite-sample two-sample

test statistic and zero-time kernel population-level two-sample test statistic are close for T̂pop,

T̂train, and T̂test (i.e. the evaluation of the finite-sample two-sample test statistic on the population,

training samples, and test samples, respectively). For T̂pop, we get the following proposition.

Proposition 5.25. Assume the conditions of Proposition 5.24, then with probability≥ 1− (n−A
p +

n−A
q ), we get the time-approximation error function

∣∣T̂pop(t)−T (t)
∣∣≤C1t +C2t3/2 +C3t2 +C4t5/2 := δpop(t),

where C1,C2,C3,C4 are exactly the constants from Proposition 5.24. Moreover, note that this

error function is monotonic.

Proof of Proposition 5.25. Mimic the proof of Corollary 5.17 mutatis mutandis applying Propo-

sition 5.24.

Now for T̂test(t), the test size sample sizes come into play. Recall that since

T̂test(t) = T (θ̂(t); p̂test , q̂test) =
(
Ex∼p̂test −Ex−q̂test

)
û(x, t),
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with test sample sizes mp and mq for p̂test and q̂test , respectively. We also describe the time-

approximation error function in the next proposition, which will be used for the theorems and

corollaries afterwards.

Proposition 5.26. Assume the conditions of Proposition 5.24, then with probability ≥ 1− (m−A
p +

m−A
q ), we have

|T̂test(t)− T̂pop(t)| ≤ L2
1t
√

2
(√

A log(mp)

mp
+

√
A log(mq)

mq

)
.

Moreover, with probability≥ 1−(m−A
p +m−A

q +n−A
p +n−A

q ), we get the time-approximation error

function

∣∣T̂test(t)−T (t)
∣∣≤ C̃1t +C2t3/2 +C3t2 +C4t5/2 := δ(t),

where C̃1 = C(L1,A,mp,mq) and C2,C3,C4 are exactly the constants from Proposition 5.24.

Finally, note that this error function δ(t) is monotonic.

The proof of this proposition is located in Section 5.11.

Remark 5.27. We note that Proposition 5.26 works for T̂train if we replace mp and mq with np

and nq respectively. Since the error function δ depends on whether we use test samples or training

samples, we will regard the error function by δtest(t) and δtrain(t) to distinguish these cases. In

particular, the only constant that is different in δtrain and δtest is C̃1, where we change mp and mq

to np and nq, respectively. Moreover, using the triangle inequality, we can see that

|T̂test(t)− T̂train(t)| ≤ L2
1t
√

2
(√

A log(mp)

mp
+

√
A log(np)

np

+

√
A log(mq)

mq
+

√
A log(nq)

nq

)
.
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Finally, we may also deduce from Proposition 5.26 that

|T̂train(t)− T̂pop(t)| ≤ L2
1t
√

2
(√

A log(np)

np
+

√
A log(nq)

nq

)
.

To do further time-analysis in this finite-sample training case, we will need that T̂train(t)

is monotonic in time. We will then use sampling concentration of T̂train with T̂pop and T̂test to

extend the two-sample test statistic to these two different evaluation settings.

Theorem 5.28. Assume that there is an interval [0, τ̂] such that |û(x,s)| ≤ 1 for s ∈ [0, τ̂]. Then

T̂train(t) is monotonically increasing on [0, τ̂].

We include the proof of Theorem 5.28 in Section 5.11.

Remark 5.29. Note that the assumption |û(x,s)| ≤ 1 definitely holds for at least small time

intervals since the training dynamics are smooth and û(x,0) = 0. Moreover, we crucially use the

fact that the training loss is decreasing for the proof of Theorem 5.28.

Now similar to the case of the time-analysis theorems for u and ū, we get the following

extensions of the zero-time NTK time-analysis theorems. Again for the next theorem, we must

assume that the error detection level is greater than the time-valued approximation error of ū with

û. Recall from Corollary 5.10 the ε-detection time thresholds for the zero-time NTK two-sample

test given by

t∗1(ε) := min
S∈S1(ε)

λmin(S) log

(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
S− ε

)
,

t∗2(ε) := max
S∈S2(ε)

λmax(S) log

(
∥ΠK0( f ∗)∥2

S

∥ΠK0( f ∗)∥2
L2(p+q)− ε

)
.

Again, making sure that our time scale lies in the correct regimes, we get the following theorems.

Theorem 5.30. Let ε > 0. Along with the assumptions of Proposition 5.26 and Theorem 5.28,

assume max(R2, τ̂)≥ t ≥ t∗1(ε), then
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1. with probability ≥ 1−2(n−A
p +n−A

q ),

|T̂train(t)| ≥ ε−δtrain(t∗1(ε)),

2. with probability ≥ 1− (n−A
p +n−A

q +m−A
p +m−A

q ),

|T̂test(t)| ≥ ε−δtrain(t∗1(ε))−L2
1t
√

2
(√

A log(mp)/mp +
√

A log(mq)/mq

+
√

A log(np)/np +
√

A log(nq)/nq

)
,

3. with probability ≥ 1− (n−A
p +n−A

q ),

|T̂pop(t)| ≥ ε−δtrain(t∗1(ε))−L2
1t
√

2
(√

A log(np)/np +
√

A log(nq)/nq

)
,

where the approximation error function δtrain(t) comes from Proposition 5.26 with training

samples and t∗1(ε) from Corollary 5.10. Moreover, if ε is not large enough to make the right-hand

sides of the inequalities positive, the bounds are vacuous.

Since we don’t need monotonicity for the other case in Corollary 5.10 because we use

the regular triangle inequality, the following theorem holds for each of T̂train, T̂test , and T̂pop with

their respective time-approximation error functions.

Theorem 5.31. Let ε > 0 and assume

t ≤min
{

R2, t∗2(ε)
}
,

where t∗2(ε) is defined in Corollary 5.10. Then
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1. with probability ≥ 1−2(n−A
p +n−A

q ), we have

|T̂train(t)| ≤ ε+δtrain(t∗2(ε)),

2. with probability ≥ 1− (n−A
p +n−A

q +m−A
p +m−A

q ), we have

|T̂test(t)| ≤ ε+δtest(t∗2(ε)),

3. with probability ≥ 1− (n−A
p +n−A

q ), we have

|T̂pop(t)| ≤ ε+δpop(t∗2(ε)).

We include the proofs of both Theorem 5.30 and Theorem 5.31 in Section 5.11.

Now, given the more concrete setting of f ∗ lying on the first k eigenfunctions of K0,

we want to see if the time it takes to detect a desired deviation level ε > 0 is larger whether

we are in the null hypothesis or in the first k eigenfunction assumption. The problem becomes

slightly complex since there is a time-approximate error term in the deviation that comes from

Proposition 5.26. Since this assumption is not exactly the logical complement of the null, let us

define the setting more concretely.

Definition 5.32. If ΠK0( f ∗) nontrivially projects only onto the first k eigenfunctions of K0 holds

true, we denote the projected target function on the first k eigenfunctions as ΠK0( f ∗) = f ∗k . We

denote the test statistic when f ∗k ̸= 0 by T̂train,k(t), T̂test,k(t), T̂pop,k(t) evaluated on the training set,

test set, and population, respectively, and when the evaluation set is understood from the context,

we use T̂k(t). If p = q, we say the null hypothesis holds. We denote the test statistic under this

null hypothesis by T̂train,null(t), T̂test,null(t), and T̂pop,null(t) depending on the evaluation set, and

when the evaluation set is understood from the context, we use T̂null(t).
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In this definition, note f ∗ is not supported on just the first k eigenfunctions, but rather

only the projection via the zero-time kernel ΠK0( f ∗) is supported on the first k eigenfunctions.

This means that f ∗ may have a nonzero component that is orthogonal to ΠK0( f ∗). Note that we

have three two-sample test situations since the two-sample test depends on which dataset it is

evaluated on. In particular, we will combine the results for T̂pop, T̂test , and T̂train into the following

corollary since the only difference is given by a difference in constants.

Corollary 5.33. Let ∥ΠK0( f ∗)∥2
L2(p+q)/2 > ε > 0 be a detection level. Now let

C+ =



√
2L2

14 T̂pop(t) evaluation

√
2L2

1

(
4+
√

A log(np)
np

+
√

A log(nq)
nq

)
T̂train(t) evaluation

√
2L2

1

(
4+
√

A log(mp)
mp

+
√

A log(mq)
mq

)
T̂test(t) evaluation

,

coming from Proposition 5.26 and Proposition 5.25 and consider a time separation level ε/C+ ≥

γ > 0. Let t−(ε) be such that for t ≥ t−(ε), we have T̂k(t) ≥ ε (for our different evaluation

settings). Similarly, let t+(ε) be such that for t ≥ t+(ε), we have T̂null(t)≥ ε. If we assume

∥ f ∗k ∥2
L2(p+q) > max

{
2εexp

(
(ε/C+− γ)/λk

)
exp
(
(ε/C+− γ)/λk

)
−1

, max
a∈{1,5/2}

2εexp
(
(ε/C−)1/a/λk

)
exp
(
(ε/C−)1/a/λk

)
−1

}
,

where C− =C++C2 +C3 +C4 and the constants C2,C3,C4 coming from Proposition 5.24, then

t+(ε)− t−(ε)≥ γ > 0
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with probability

≥


1− (n−A

p +n−A
q ) T̂pop(t)

1− (n−A
p +n−A

q +m−A
p +m−A

q ) T̂test(t)

1−2(n−A
p +n−A

q ) T̂train(t)

The proof of Corollary 5.33 is in Section 5.11.

Remark 5.34. From the proof of Corollary 5.33, we can see that the maximum time separation

level is governed by

ε

C+
−λk log

( ∥ f ∗k ∥2
L2(p+q)

∥ f ∗k ∥2
L2(p+q)−2ε

)
.

Notice that if ε = ∥ f ∗k ∥2
L2(p+q)x for some fraction 0 < x < 1, then we can simplify this expression.

In particular, we see that our expression changes to

γ(x) =
∥ f ∗k ∥2

L2(p+q)x

C+
−λk log

(
1

1−2x

)
=
∥ f ∗k ∥2

L2(p+q)x

C+
−λk log

(
1/2

1/2− x

)
.

From this, we can see that it is necessary that 0 < x < 1
2 . Note that as x→ 0, we get γ(x)→ 0;

but as x→ 1
2 , we get γ(x)→−∞. Since γ(x) is not decreasing, we can find a maximum for the

time separation γ(x). In particular, we see that

γ
′(x) =

∥ f ∗k ∥2
L2(p+q)

C+
−λk

1/2− x
1/2

1/2
(1/2− x)2 =

∥ f ∗k ∥2
L2(p+q)

C+
−λk

1
1/2− x

.
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Setting this equal to 0, we see that the extrema is given by

x =
1
2
− λkC+

∥ f ∗k ∥2
L2(p+q)

.

Moreover, we note that this is a maximum since

γ
′′(x) =−λk

1
(1/2− x)2 < 0.

Obviously, this only makes sense if

1
2
>

λkC+

∥ f ∗k ∥2
L2(p+q)

⇐⇒ ∥ f ∗k ∥2
L2(p+q) > 2λkC+.

This means that as long as f ∗k has large enough norm, our neural network two-sample test should

be most trustworthy when we observe deviation ε =
∥ f ∗k ∥

2
L2(p+q)
2 −λkC+ since that is the deviation

level with the maximum time separation between the assumption ΠK0( f ∗) = f ∗k and the null

hypothesis p = q.

Remark 5.35. It is instructive to note what are fixed parameters versus parameters to be chosen

in Corollary 5.33. First, notice that the complexity of our neural network determines not only the

constants C+, C−, and λk but also whether or not the assumption ΠK0( f ∗) = f ∗k holds. Although

f ∗ = p−q
p+q is fixed inherently from the two-sample test problem, we assume that the complexity of

the neural network is fixed at initialization, which fixes these constants, the hypothesis, and how

large ∥ f ∗k ∥2
L2(p+q) is. This means that the only choosable parameters are ε and γ (which is upper

bounded by ε). Moreover, note that the upper bound ∥ΠK0( f ∗)∥2
L2(p+q)/2≥ ε > 0 is an artifact of

side-stepping the time-approximation error from Proposition 5.26. In particular, playing around

with the proof of Corollary 5.33, it is possible to get a different bound for ∥ f ∗k ∥2
L2(p+q) albeit with

the deviation level given by ε−δ(t) (depending on the evaluation set).
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5.8 Experiments

We run our neural network two-sample test on two different data-generating processes.

One of the data-generating processes is a characteristically hard two-sample test problem where

the datasets P̂ and Q̂ come from a Gaussian mixture model. The second data-generating process

only aims to differentiate two multivariate Gaussians from each other. We scale the neural

network complexity in terms of a ratio with respect to the number of samples in the training set.

Additionally, we run permutation tests to find the threshold τ at the 95-percentile. We run around

500 different tests and check whether the test statistic is larger than the threshold found from the

95th percentile. We now showcase specifics of the data generating process and how the neural

network is constructed.

5.8.1 Data Generating Process

Our hard two-sample testing problem is given by setting P and Q both to be Gaussian

mixture models given by

P =
2

∑
i=1

1
2

N (µh
i , Id)

Q =
2

∑
i=1

1
2

N

(
µh

i ,


1 ∆h

i 0d−2

∆h
i 1 0d−2

0⊤d−2 0⊤d−2 Id−2


)
,

where µh
1 = 0d , µh

2 = 0.5∗1d , ∆h
1 = 0.5, and ∆h

2 =−0.5. For the purposes of testing, we assume

that we have balanced sampling of N from each distribution P and Q so that the total number of

samples is 2N. The number of test samples is typically set to be M < N.
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5.8.2 Neural Network Architecture

We use a neural network architecture of L layers and a layer-width size of k. We choose

the number of parameters in the neural network kL as different ratios of the number of training

samples. For example, if we consider the ratio 0.01 and N = 1000, then kL = 10. To adhere

closely to the setup of the theory, we initialize our neural network symmetrically to make sure at

time 0 our neural network returns 0. We make sure to initialize the neural network weights with

the He initialization introduced in [51] so that the weights are initialized from a random normal

distribution with variance 2
k . This initialization ensures that our neural network training doesn’t

result in any exploding or vanishing gradients. We train the neural network with a learning rate of

0.1.

5.8.3 Test Results

We have attached below a heatmap of the statistical power as a function of the number of

epochs as well as the ratio of parameters to samples.1 Additionally we attach the evolution of

the neural network two-sample test for a particular setting for reference. The hyperparameters

for these tests essentially used a learning rate η = 0.1, 100 permutation tests, dimensionality

of d = 20, training sample size of N = 6000 from each of P and Q, a testing sample size of

M = 1000 from each of P and Q, and L = 2 layers. We train for a maximum of 15 epochs and

use a batch size of 50. Moreover, our significance level α is the 95th percentile. We calculate

the power of our neural network two-sample test by checking which of our 1000 tests lie past

the 95th percentile of their respective permutation test and calculate the power by the ratio of

all tests that lie past the 95th percentile divided by the total number of tests 1000. We try this

experiment with ratios of parameters to number of training samples to see any double descent

type of behavior in how well the statistical power performs.

Observing Figure 5.2, we notice that as the number of epochs increases the statistical
1All the code for producing these plots is on Github at this repository.
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Figure 5.2: Plots statistical power for each epoch and ratio of parameters-to-samples.

power increases as well. On the ratio of parameters to training samples axis, however, we note

that the smaller sized neural networks still produce fairly good statistical power with enough

neural network training.

5.9 Proofs for Section 5.5.3

Proof of Proposition 5.4. We simply just need to take the derivative of the solution and show that

it is exactly the differential equation, then the uniqueness of solutions of differential equations

implies that our ansatz is indeed the solution. To see this, let us call the solution

e∗(·, t) =
M

∑
ℓ=1

e−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)uℓ.

Now notice that

∂te∗(·, t) =−
M

∑
ℓ=1

λℓe−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)uℓ.
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On the other hand, let us plug in the ansatz e∗ into the differential equation and see what we get.

In particular,

−
M

∑
j=1

λ j⟨u j,e∗(·, t)⟩L2(p+q)u j =−
M

∑
j=1

λ j⟨u j,
M

∑
ℓ=1

e−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)uℓ⟩L2(p+q)u j

=−
M

∑
j,ℓ=1

λ je−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q) ⟨u j,uℓ⟩L2(p+q)︸ ︷︷ ︸
δ jℓ

u j

=−
M

∑
ℓ=1

λℓe−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)uℓ

= ∂te∗(·, t).

This shows the result.

Proof of Lemma 5.5. Now our two-sample test statistic becomes

T (t) = µP(t)−µQ(t)

=
∫
Rd

ΠK0( f ∗)(x)(p−q)(x)dx+
∫
Rd

ē(x, t)d(p−q)(x)

=
∫
Rd

ΠK0( f ∗)(x)
p−q
p+q

(x)d(p+q)(x)+
∫
Rd

ē(x, t)d(p−q)(x)

= ⟨ΠK0( f ∗), f ∗⟩L2(p+q)+
∫
Rd

ē(x, t)d(p−q)(x).

Extending the eigenfunctions {uℓ}M
ℓ=1 to a full basis for L2(p+q) given by {uℓ}∞

ℓ=1, we can see
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that the term with f ∗ reduces to

⟨ΠK0( f ∗), f ∗⟩L2(p+q) =

〈
∞

∑
ℓ=1
⟨uℓ,ΠK0( f ∗)⟩L2(p+q)uℓ,

∞

∑
ℓ′=1
⟨u′ℓ, f ∗⟩L2(p+q)u

′
ℓ

〉
L2(p+q)

=
∞

∑
ℓ=1
⟨uℓ,ΠK0( f ∗)⟩L2(p+q)⟨uℓ, f ∗⟩L2(p+q)

=
∞

∑
ℓ=1
⟨ΠK0(uℓ), f ∗⟩L2(p+q)︸ ︷︷ ︸

ℓ>M =⇒ 0

⟨uℓ, f ∗⟩L2(p+q)

=
M

∑
ℓ=1
⟨ΠK0(uℓ), f ∗⟩L2(p+q)⟨uℓ, f ∗⟩L2(p+q)

=
M

∑
ℓ=1
⟨uℓ,ΠK0( f ∗)⟩L2(p+q)⟨uℓ, f ∗⟩L2(p+q).

Now since ⟨uℓ,ΠK0( f ∗)⟩L2(p+q) = ⟨uℓ, f ∗⟩L2(p+q) for ℓ≤M, we see that

⟨ΠK0( f ∗), f ∗⟩L2(p+q) =
M

∑
ℓ=1
⟨uℓ,ΠK0( f ∗)⟩2L2(p+q)

= ⟨ΠK0( f ∗),ΠK0( f ∗)⟩L2(p+q) = ∥ΠK0( f ∗)∥2
L2(p+q).

At this point, we plug in our ansatz and get

T (t) = ∥ΠK0( f ∗)∥2
L2(p+q)+

∫
Rd

M

∑
ℓ=1

e−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)uℓ(x)d(p−q)(x)

= ∥ΠK0( f ∗)∥2
L2(p+q)+

M

∑
ℓ=1

e−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)

∫
Rd

uℓ(x)d(p−q)(x).

At this point, recall that we used the initialization θ0 such that ē(·,0) = ū(x,0)−ΠK0( f ∗) =

f (x,θ0)−ΠK0( f ∗)=−ΠK0( f ∗)=ΠK0

(q−p
p+q

)
(x). Along with the fact that ⟨uℓ,ΠK0( f ∗)⟩L2(p+q)=
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⟨uℓ, f ∗⟩L2(p+q) for ℓ≤M, we use this fact to see that

⟨uℓ, ē(·,0)⟩L2(p+q) = ⟨uℓ,−ΠK0( f ∗)⟩L2(p+q)

=
∫
Rd

uℓ(x)ΠK0

(q− p
p+q

)
(x)(p(x)+q(x))dx

=
∫
Rd

uℓ(x)
q− p
p+q

(x)(p(x)+q(x))dx

=
∫
Rd

uℓ(x)d(q− p)(x)

=⇒ ⟨uℓ, ē(·,0)⟩L2(p+q) =−
∫
Rd

uℓ(x)d(p−q)(x).

This means that

T (t) = ∥ΠK0( f ∗)∥2
L2(p+q)+

M

∑
ℓ=1

e−tλℓ⟨uℓ, ē(·,0)⟩L2(p+q)

∫
Rd

uℓ(x)d(p−q)(x)︸ ︷︷ ︸
−⟨uℓ,ē(·,0)⟩L2(p+q)

= ∥ΠK0( f ∗)∥2
L2(p+q)−∑

ℓ≥1
e−tλℓ⟨uℓ, ē(·,0)⟩2L2(p+q).

We get the result by seeing that ē(·,0) =−ΠK0( f ∗) and that applying the square gets rid of the

negative sign. So we’re done.

Proof of Theorem 5.7. We want to find the smallest time t so that

T (t)≥ ε

∥ΠK0( f ∗)∥2
L2(p+q)−

M

∑
ℓ=1

e−tλℓ⟨uℓ,ΠK0( f ∗)⟩2L2(p+q) ≥ ε

∥ΠK0( f ∗)∥2
L2(p+q)− ε≥

M

∑
ℓ=1

e−tλℓ⟨uℓ,ΠK0( f ∗)⟩2L2(p+q).

Now using our specific subset S⊆ {1, . . . ,M}, so that

⟨uℓ, f ∗⟩L2(p+q) = ⟨uℓ,ΠK0( f ∗)⟩L2(p+q),
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allows us to consider the following analysis.

M

∑
ℓ=1

e−tλℓ⟨uℓ, f ∗⟩2L2(p+q) = ∑
ℓ∈S

e−tλℓ︸︷︷︸
≤e−tλmin(S)

⟨uℓ, f ∗⟩2L2(p+q)+ ∑
ℓ̸∈S

e−tλℓ︸︷︷︸
≤1

⟨uℓ, f ∗⟩2L2(p+q)

≤ e−tλmin(S) ∑
ℓ∈S
⟨uℓ, f ∗⟩L2(p+q)︸ ︷︷ ︸
∥ f ∗∥2

S

+ ∑
ℓ̸∈S
⟨uℓ, f ∗⟩2L2(p+q)︸ ︷︷ ︸

∥ΠK0( f ∗)∥2
L2(p+q)

−∥ f ∗∥2
S

= e−tλmin(S)∥ f ∗∥2
S +∥ΠK0( f ∗)∥2

L2(p+q)−∥ f ∗∥2
S.

We want this quantity to still be less than ∥ f ∗∥2
L2(p+q)− ε and to ensure this, we get

e−tλmin(S)∥ f ∗∥2
S +∥ΠK0( f ∗)∥2

L2(p+q)−∥ f ∗∥2
S ≤ ∥ΠK0( f ∗)∥2

L2(p+q)− ε

e−tλmin(S)∥ f ∗∥2
S−∥ f ∗∥2

S ≤−ε

e−tλmin(S)−1≤− ε

∥ f ∗∥2
S

e−tλmin(S) ≤ 1− ε

∥ f ∗∥2
S

−tλmin(S)≤ log
(

1− ε

∥ f ∗∥2
S

)
t ≥ log

((
1− ε

∥ f ∗∥2
S

)−λmin(S)
)
.

Rearranging the right-hand side and noticing that on S we have ∥ΠK0( f ∗)∥2
S = ∥ f ∗∥2

S, we get the

result.
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Proof of Theorem 5.9. We want to find the largest time t so that

T (t)≤ ε

∥ΠK0( f ∗)∥2
L2(p+q)−

M

∑
ℓ=1

e−tλℓ⟨uℓ,ΠK0( f ∗)⟩2L2(p+q) ≤ ε

∥ΠK0( f ∗)∥2
L2(p+q)− ε≤ ∑

ℓ≥1
e−tλℓ⟨uℓ,ΠK0( f ∗)⟩2L2(p+q).

Now using our specific subset S and that ⟨uℓ,ΠK0( f ∗)⟩L2(p+q) = ⟨uℓ, f ∗⟩L2(p+q) for ℓ≤M allows

us to consider the following analysis.

M

∑
ℓ=1

e−tλℓ⟨uℓ, f ∗⟩2L2(p+q) = ∑
ℓ∈S

e−tλℓ︸︷︷︸
≥e−tλmax(S)

⟨uℓ, f ∗⟩2L2(p+q)+ ∑
ℓ̸∈S

e−tλℓ︸︷︷︸
≥0

⟨uℓ, f ∗⟩2L2(p+q)

≥ e−tλmax(S) ∑
ℓ∈S
⟨uℓ, f ∗⟩L2(p+q)︸ ︷︷ ︸
∥ΠK0( f ∗)∥2

S

= e−tλmax(S)∥ΠK0( f ∗)∥2
S.

We want our lower bound found above to still be greater than ∥ΠK0( f ∗)∥2
L2(p+q)−ε and to ensure

this, we get

e−tλmax(S)∥ΠK0( f ∗)∥2
S ≥ ∥ΠK0( f ∗)∥2

L2(p+q)− ε

e−tλmax(S) ≥
∥ΠK0( f ∗)∥2

L2(p+q)

∥ΠK0( f ∗)∥2
S
− ε

∥ΠK0( f ∗)∥2
S

−tλmax(S)≥ log
(∥ΠK0( f ∗)∥2

L2(p+q)

∥ΠK0( f ∗)∥2
S
− ε

∥ΠK0( f ∗)∥2
S

)
t ≤ log

{(∥ΠK0( f ∗)∥2
L2(p+q)

∥ΠK0( f ∗)∥2
S
− ε

∥ΠK0( f ∗)∥2
S

)−λmax(S)
}
.

Rearranging the right-hand side, we get the result.
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5.10 Proofs for Section 5.6

Proof of Proposition 5.14. Recall that the dynamics of θ can be written as

θ̇(t) =−∇θL(θ(t)) =−Ex∼p+q
[
∇θ f (x,θ(t))e(x, t)

]
.

Moreover, note that we can write

∥θ(t)−θ(0)∥ ≤
∫ t

0
∥θ̇(s)∥ds≤

∫ t

0
∥∇θL(θ(s))∥ds

≤
√

t
(∫ t

0
∥∇θL(θ(s))∥2ds

)1/2

,

where the last inequality comes from the basic Lp-Lq inclusion inequality. Additionally, we know

that

d
dt

L(θ(t)) = ⟨∇θL(θ(t)), θ̇(t)⟩=−∥∇θL(θ(t))∥2 ≤ 0.

This not only implies that L(θ(t)) is decreasing but also allows us to write

∥θ(t)−θ(0)∥ ≤
√

t
(∫ t

0
∥∇θL(θ(s))∥2ds

)1/2

=
√

t
(

L(θ(0))−L(θ(t))
)1/2

≤
√

t
√

L(θ(0)).

At this point, we can notice that L(θ(0)) = ∥u(x,0)− f ∗∥2
L2(p+q) = ∥ f ∗∥2

L2(p+q). This finally

gives us the result

∥θ(t)−θ(0)∥ ≤
√

t∥ f ∗∥L2(p+q).
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We need θ(t) ∈ BR and one way to ensure this is

∥θ(t)−θ(0)∥ ≤
√

t∥ f ∗∥L2(p+q) ≤ R

=⇒ t ≤
(

R
∥ f ∗∥L2(p+q)

)2

Proof of Proposition 5.15. Let w ∈ L2(p+q), then note that for our kernel integral operator Kt ,

we have ⟨w,Ex′∼p+qKt(·,x′)w(x′)⟩L2(p+q) equals

Ex∼p+qEx′∼p+qw(x)⟨∇θ f (x,θ(t)),∇θ f (x′,θ(t))⟩Θw(x′)

= ⟨Ex∼p+q∇θ f (x,θ(t))w(x),Ex′∼p+q∇θ f (x′,θ(t))w(x′)⟩Θ

= ∥Ex∼p+q∇θ f (x,θ(t))w(x)∥2
Θ.

This means that ⟨w,Ex′∼p+q(Kt−K0)(·,x′)w(x′)⟩L2(p+q) equals

∥Ex∼p+q∇θ f (x,θ(t))w(x)∥2
Θ−∥Ex∼p+q∇θ f (x,θ(0))w(x)∥2

Θ

= (∥Ex∼p+q∇θ f (x,θ(t))w(x)∥Θ +∥Ex∼p+q∇θ f (x,θ(0))w(x)∥Θ)

·(∥Ex∼p+q∇θ f (x,θ(t))w(x)∥Θ−∥Ex∼p+q∇θ f (x,θ(0))w(x)∥Θ).

Now using Minkowski’s integral inequality and Assumption 5.13(1), we get

∥Ex∼p+q∇θ f (x,θ(t))w(x)∥Θ ≤ Ex∼p+q∥∇θ f (x,θ(t))w(x)∥Θ

≤ Ex∼p+q∥∇θ f (x,θ(t))∥Θ∥w(x)∥

≤ L1Ex∼p+q∥w(x)∥

≤ L1∥w∥L2(p+q).
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Notice that this implies

∥Ex∼p+q∇θ f (x,θ(t))w(x)∥Θ +∥Ex∼p+q∇θ f (x,θ(0))w(x)∥Θ ≤ 2L1∥w∥L2(p+q).

Now using Assumption 5.13(2), we have

∥Ex∼p+q∇θ f (x,θ(t))w(x)∥Θ−∥Ex∼p+q∇θ f (x,θ(0))w(x)∥Θ

≤ ∥Ex∼p+q(∇θ f (x,θ(t))−∇θ f (x,θ(0)))w(x)∥Θ

≤ Ex∼p+q∥∇θ f (x,θ(t))−∇θ f (x,θ(0))∥Θ∥w(x)∥

≤ L2∥θ(t)−θ(0)∥Θ∥w∥L2(p+q)

≤ L2
√

t∥ f ∗∥L2(p+q)∥w∥L2(p+q).

This means that

⟨w,Ex′∼p+qKt(·,x′)w(x′)⟩L2(p+q) ≤ 2L1L2
√

t∥ f ∗∥L2(p+q)∥w∥2
L2(p+q).

Finally this proves that ∥Kt−K0∥L2(p+q) ≤ 2L1L2
√

t∥ f ∗∥L2(p+q).

Proof of Proposition 5.16. Note that

∂t(u− ū)(x, t) = ∂t(e− ē)(x, t) = Ex′∼p+q
[
K0(x,x′)ē(x′, t)−Kt(x,x′)e(x′, t)

]
=−Ex′∼p+q

[
(Kt(x,x′)−K0(x,x′))ē(x′, t)+Kt(x,x′)(e− ē)(x′, t)

]
.

Notice here that because Kt(x,x′) = ⟨∇θ f (x,θ(t)),∇θ f (x′,θ(t))⟩, we have that Kt is a positive

semi-definite operator (we will use this later). Now if we take an inner product with e− ē on both
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sides of the equation, we get

d
dt

1
2
∥(e− ē)(·, t)∥2

L2(p+q) = ⟨(e− ē)(·, t),∂t(e− ē)(·, t)⟩L2(p+q)

= ⟨(e− ē)(·, t),−Ex′∼p+q
[
(Kt(x,x′)−K0(x,x′))ē(x′, t)

+Kt(x,x′)(e− ē)(x′, t)
]
⟩L2(p+q)

≤ |⟨(e− ē)(·, t),−Ex′∼p+q
[
(Kt(x,x′)−K0(x,x′))ē(x′, t)

]
⟩L2(p+q)|

≤ ∥(e− ē)(·, t)∥L2(p+q)∥Kt−K0∥L2(p+q)∥ē(·, t)∥L2(p+q)

≤ ∥(e− ē)(·, t)∥L2(p+q)∥Kt−K0∥L2(p+q)∥ΠK0( f ∗)∥L2(p+q),

where the first inequality comes from the fact that Kt is a positive semi-definite operator as well

as using absolute values whilst the second inequality comes from using the Cauchy-Schwartz-

Bunyakovsky inequality along with the kernel integral operator norm bound of ∥Kt−K0∥L2(p+q).

Now recalling that ē(·,0) = ΠK0( f ∗) and using Parseval’s identity, the last inequality comes from

the fact that

∥ē(·, t)∥2
L2(p+q) =

M

∑
ℓ=1

e−2tλℓ︸ ︷︷ ︸
≤1

|⟨uℓ, ē(·,0)⟩|2 ≤
M

∑
ℓ=1
|⟨uℓ,ΠK0( f ∗)⟩|2 = ∥ΠK0( f ∗)∥2

L2(p+q).

From Proposition 5.15, we get that

d
dt

1
2
∥(e− ē)(·, t)∥2

L2(p+q) ≤ 2L1L2
√

t∥ f ∗∥L2(p+q) · ∥ΠK0( f ∗)∥L2(p+q) · ∥(e− ē)(·, t)∥L2(p+q).

Now, finally notice that

1
2
∥(e− ē)(·, t)∥2

L2(p+q) =
∫ t

0

( d
dt

1
2
∥(e− ē)(·,s)∥2

L2(p+q)

)
ds

≤ 2L1L2∥ f ∗∥L2(p+q)∥ΠK0( f ∗)∥L2(p+q)

∫ t

0

√
s∥(e− ē)(·,s)∥L2(p+q)ds.
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Let t∗ ≤ t be the time such that

sup
s∈[0,t]

∥(e− ē)(·,s)∥L2(p+q) = ∥(e− ē)(·, t∗)∥L2(p+q).

Then, we find that

1
2
∥(e− ē)(·, t∗)∥2

L2(p+q) ≤ 2L1L2∥ f ∗∥L2(p+q)∥ΠK0( f ∗)∥L2(p+q)∥(e− ē)(·, t∗)∥L2(p+q)

∫ t∗

0

√
sds,

but this implies

1
2
∥(e− ē)(·, t∗)∥L2(p+q) ≤ 2L1L2∥ f ∗∥L2(p+q)∥ΠK0( f ∗)∥L2(p+q)

2
3
(t∗)3/2

=⇒ ∥(e− ē)(·, t)∥L2(p+q) ≤ 4L1L2∥ f ∗∥L2(p+q)∥ΠK0( f ∗)∥L2(p+q)
2
3
(t∗)3/2

≤ (8/3)L1L2∥ f ∗∥L2(p+q)∥ΠK0( f ∗)∥L2(p+q)(t)
3/2,

where we use the fact that ∥(e− ē)(·, t)∥L2(p+q) ≤ ∥(e− ē)(·, t∗)∥L2(p+q) and t∗ ≤ t. Finally using

that ∥ΠK0( f ∗)∥L2(p+q) ≤ ∥ f ∗∥L2(p+q) gives the result, so we’re done.

Proof of Corollary 5.17. Notice that

∣∣∣T (t)−T (t)
∣∣∣= ∣∣∣∣∫Rd

(u− ū)(x, t)d(p−q)(x)
∣∣∣∣

≤
∣∣∣∣∫Rd

(u− ū)(x, t)d(p)(x)
∣∣∣∣+ ∣∣∣∣∫Rd

(u− ū)(x, t)d(q)(x)
∣∣∣∣

≤
∫
Rd
|(u− ū)(x, t)|d(p)(x)+

∫
Rd
|(u− ū)(x, t)|d(q)(x)

=
∫
Rd
|(u− ū)(x, t)|d(p+q)(x)

≤
√

2∥u− ū∥L2(p+q),

where the last inequality comes from using a basic L1-L2 inclusion inequality. Now using
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Proposition 5.16, we get the result, and we’re done.

Proof of Theorem 5.18. Note that the loss L(θ(t)) = ∥ f (·,θ(t))− f ∗∥2
L2(p+q) is monotonically

decreasing since

d
dt

L(θ(t)) = ⟨∇θL(θ(t)), θ̇(t)⟩=−∥∇θL(θ(t))∥2 ≤ 0.

So we have that L(θ(s)) ≥ L(θ(t)) if 0 ≤ s ≤ t ≤ τ. Writing out the loss as L(θ(s)) =

∥ f (·,θ(s))∥2
L2(p+q)−2⟨ f (·,θ(s)), f ∗⟩L2(p+q)+∥ f ∗∥2

L2(p+q), we can see

L(θ(s))≥ L(θ(t))

∥ f (·,θ(s))∥2
L2(p+q)−2⟨ f (·,θ(s)), f ∗⟩L2(p+q) ≥ ∥ f (·,θ(t))∥2

L2(p+q)−2⟨ f (·,θ(t)), f ∗⟩L2(p+q)

⟨ f (·,θ(t))− f (·,θ(s)), f ∗⟩L2(p+q) ≥ | f (·,θ(t))∥2
L2(p+q)−∥ f (·,θ(s))∥L2(p+q).

Notice that because u(x, t) = f (x,θ(t)) and we assume that ∥u(x, t)∥2
L2(p+q) is increasing in time,

we know that

⟨ f (·,θ(t))− f (·,θ(s)), f ∗⟩L2(p+q) ≥ | f (·,θ(t))∥2
L2(p+q)−∥ f (·,θ(s))∥L2(p+q)︸ ︷︷ ︸

≥0∫
Rd

(
u(x, t)−u(x,s)

) p−q
p+q

(x)d(p+q)(x)≥ 0∫
Rd

(
u(x, t)−u(x,s)

)
d(p−q)(x)≥ 0∫

Rd
u(x, t)d(p−q)(x)≥

∫
Rd

u(x,s)d(p−q)(x).

So we see that on the interval [0,T ], the two-sample test statistic T (t) is monotonically increasing.
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Proof of Theorem 5.19. Using the assumption

min
(

τ,
( R
∥ f ∗∥L2(p+q)

)2
)
≥ t ≥ t∗1(ε)

allows us to use Corollary 5.17, Corollary 5.10, and Theorem 5.18 simultaneously. Using

monotonicity and the reverse triangle inequality shows that

|T (t)| ≥ |T (t∗1(ε))| ≥
∣∣∣T (t∗1(ε))∣∣∣− ∣∣∣T (t∗1(ε))−T (t∗1(ε))

∣∣∣∣∣∣∣
≥ ε− 8

√
2

3
∥ f ∗∥2

L2(p+q)L1L2
(
t∗1(ε)

)3/2

where we can get rid of the absolute values by assumption. So we’re done.

Proof of Theorem 5.20. Because of the assumption on t, we can use both Corollary 5.10 as well

as Corollary 5.17. Using the triangle inequality gives us

|T (t)| ≤
∣∣∣T (t)∣∣∣+ ∣∣∣T (t)−T (t)

∣∣∣≤ ε+
8
√

2
3
∥ f ∗∥2

L2(p+q)L1L2t

≤ ε+
8
√

2
3
∥ f ∗∥2

L2(p+q)L1L2
(
t∗2(ε)

)3/2
.

So we’re done.

5.11 Proofs for Section 5.7

Proof of Lemma 5.21. Similar to the proof of Proposition 5.14, we recall that

˙̂
θ(t) =−1

2

(∫
Rd

∇θ f (x, θ̂(t))
((

f (x, θ̂(t))−1
)

p̂(x)+
(

f (x, θ̂(t))+1
)
q̂(x)

)
dx
)

=−∇θL̂(θ̂(t)).
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Moreover, recall that

d
dt

L̂(θ̂(t)) = ⟨∇θL̂(θ̂(t)), ˙̂
θ(t)⟩Θ =−∥∇θL̂(θ̂(t))∥Θ ≤ 0.

This already shows that L̂(θ̂(t))≤ L̂(θ(0)). Now, notice that

∥θ̂(t)−θ(0)∥Θ ≤
∫ t

0
∥ ˙̂
θ(s)∥Θds≤

√
t
(∫ t

0
∥ ˙̂
θ(s)∥2

Θds
)1/2

≤
√

t
(∫ t

0
∥∇θL̂(θ̂(s))∥2

Θds
)1/2

=
√

t
√

L̂(θ̂(0))− L̂(θ̂(t))≤
√

t
√

L̂(θ̂(0)).

Now because f (·,θ(0)) = f (·, θ̂(0)) = 0, we get that

L̂(θ(0)) =
1
2

(∫
Rd

(
f (x,θ(0))−1

)2 p̂(x)dx+
∫
Rd

(
f (x,θ(0))+1

)2q̂(x)dx
)

=
1
2

(∫
Rd

p̂(x)dx+
∫
Rd

q̂(x)dx
)
= 1.

So this implies that

∥θ̂(t)−θ(0)∥Θ ≤
√

t.

For the second statement, just notice that we want to ensure ∥θ̂(t)−θ(0)∥Θ ≤ R. With our bounds,

this is ensured if

√
t ≤ R.

Readjusting this expression gives us the result.
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Proof of Lemma 5.23. Notice that EXi = 0 and

∥Xi∥ ≤ ∥∇θ f (xi,θ)∇θ f (xi,θ)
⊤∥+Ex∼p∥∇θ f (x,θ)∇θ f (x,θ)⊤∥ ≤ 3L2

1.

Moreover, notice that

∥1
n

n

∑
i=1

EXiX⊤i ∥ ≤
1
n

n

∑
i=1
∥EXiX⊤i︸ ︷︷ ︸

I

∥.

Simplifying I, we see

I = Exi∼p∇θ f (xi,θ)∇θ f (xi,θ)
⊤∥∇θ f (xi,θ)∥2

−2(Exi∼p∇θ f (xi,θ)∇θ f (xi,θ)
⊤)2

+(Exi∼p∇θ f (xi,θ)∇θ f (xi,θ)
⊤)2.

This means that

I = Exi∼p∇θ f (xi,θ)∇θ f (xi,θ)
⊤∥∇θ f (xi,θ)∥2− (Exi∼p∇θ f (xi,θ)∇θ f (xi,θ)

⊤)2,

which implies

∥I∥ ≤ Exi∼p ∥∇θ f (xi,θ)∇θ f (xi,θ)
⊤∥∥∇θ f (xi,θ)∥2︸ ︷︷ ︸

≤L4
1

+∥Exi∼p∇θ f (xi,θ)∇θ f (xi,θ)
⊤∥2︸ ︷︷ ︸

L4
1

≤ 2L4
1.

Since Xi is symmetric, we know the same bound holds for X⊤i Xi terms. This means that ν = 2L4
1.
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Finally, using Theorem 5.40 and cleaning some terms, we get that

Pr
[
∥1

n

n

∑
i=1

Xi∥ ≥ t
]
≤ 2MΘ exp

{
− nt2

2L2
1(2L2

1 + t)

}
.

Let us consider when

t =

√
2L2

1(2L2
1 +3/2)

A log(n)+ log(2MΘ)

n
.

Moreover, we can choose n large enough such that

√
2L2

1(2L2
1 +3/2)

A log(n)+ log(2MΘ)

n
<

3
2
,

then we have that

nt2

2L2
1(2L2

1 + t)
>

nt2

2L2
1(2L2

1 +(3/2))

− nt2

2L2
1(2L2

1 + t)
<− nt2

2L2
1(2L2

1 +(3/2))

exp
{
− nt2

2L2
1(2L2

1 + t)

}
< exp

{
− nt2

2L2
1(2L2

1 +(3/2))

}
=⇒ 2MΘ exp

{
− nt2

2L2
1(2L2

1 + t)

}
≤ 2MΘ exp

{
− nt2

2L2
1(2L2

1 +(3/2))

}
.

So with our choice of t, we actually get that

2MΘ exp
{
− nt2

2L2
1(2L2

1 +(3/2))

}
= 2MΘ exp

{
−

(2L2
1(2L2

1 +(3/2)))(A log(n)+ log(2MΘ))

2L2
1(2L2

1 +(3/2))

}
= 2MΘ exp

{
− (A log(n)+ log(2MΘ))

}
= n−A.
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Taking the compliment of this event, we get that with probability greater than 1−n−A

∥1
n

n

∑
i=1

Xi∥ ≤
√

2L2
1(2L2

1 +3/2)
A log(n)+ log(2MΘ)

n
.

So we’re done.

Proposition 5.36. Assume that t ≤ R2 (so that θ(t) ∈ BR) as well as Assumption 5.13 and

Assumption 5.22, then with probability ≥ 1−n−A
p −n−A

q , we have ∥(û− ū)(·, t)∥L2(p+q) is less

than or equal to

4L2
1t +4L1L2t3/2∥ f ∗∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(np)+ log(2MΘ)

np

)1/2

+4L1L2t3/2∥ f ∗∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(nq)+ log(2MΘ)

nq

)1/2

+ t2 ·
√

2L3
1∥ f ∗∥L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(np)+ log(2MΘ)

np

+ t2 ·
√

2L3
1∥ f ∗∥L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(nq)+ log(2MΘ)

np
.

So that ∥(û− ū)(·, t)∥L2(p+q) is O(t5/2).

Proof of Proposition 5.36. Inspecting ∂t(û− ū) more closely, we see that

2∂t(û− ū)(·, t) =−Ex′∼p̂K̂t(·,x′)êp(x′, t)−Ex′∼q̂K̂t(·,x′)êq(x′, t)

+Ex′∼pK0(·,x′)ē(x′, t)+Ex′∼qK0(·,x′)ē(x′, t).
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Notice that

−Ex′∼p̂K̂t(·,x′)êp(x′, t)+Ex′∼pK0(·,x′)ē(x′, t)

=−
{
Ex′∼p̂K̂t(·,x′)(êp(x′, t)− ē(x′, t))+Ex′∼p̂(K̂t−K0)(·,x′)ē(x′, t)

+
(
Ex′∼p̂−Ex′∼p

)
K0(·,x′)ē(x′, t)

}
.

For q, we get a similar form

−Ex′∼q̂K̂t(·,x′)êq(x′, t)+Ex′∼qK0(·,x′)ē(x′, t)

=−
{
Ex′∼q̂K̂t(·,x′)(êq(x′, t)− ē(x′, t))+Ex′∼q̂(K̂t−K0)(·,x′)ē(x′, t)

+
(
Ex′∼q̂−Ex′∼q

)
K0(·,x′)ē(x′, t)

}
.

Putting this together, we get

2∂t(û− ū)(·, t) =−Ex′∼p̂K̂t(·,x′)(êp(x′, t)− ē(x′, t))︸ ︷︷ ︸
I1,p

+Ex′∼p̂(K0− K̂t)(·,x′)ē(x′, t)︸ ︷︷ ︸
I2,p

+
(
Ex′∼p−Ex′∼p̂

)
K0(·,x′)ē(x′, t)︸ ︷︷ ︸

I3,p

−Ex′∼q̂K̂t(·,x′)(êq(x′, t)− ē(x′, t))︸ ︷︷ ︸
I1,q

+Ex′∼q̂(K0− K̂t)(·,x′)ē(x′, t)︸ ︷︷ ︸
I2,q

+
(
Ex′∼q−Ex′∼q̂

)
K0(·,x′)ē(x′, t)︸ ︷︷ ︸

I3,q

.
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Similar to the proof of Proposition 5.16, we will consider

d
dt
∥(û− ū)(·, t)∥2

L2(p+q) = ⟨(û− ū)(·, t),2∂t(û− ū)(·, t)⟩L2(p+q)

= ⟨(û− ū)(·, t), I1,p + I1,q⟩L2(p+q)+ ⟨(û− ū)(·, t), I2,p + I2,q⟩L2(p+q)

+ ⟨(û− ū)(·, t), I3,p + I3,q⟩L2(p+q)

≤ ⟨(û− ū)(·, t), I1,p + I1,q⟩L2(p+q)

+∥(û− ū)(·, t)∥L2(p+q)

(
∥I2,p + I2,q∥L2(p+q)+∥I3,p + I3,q∥L2(p+q)

)
.

So we’ll need to bound I2,p, I2,q, I3,p, and I3,q and will deal with the I1,p and I1,q terms at the end.

Before starting, let AP be the event that

∥(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))∇θu(x′,θ(0))⊤∥ ≤

√
2L2

1(2L2
1 +3/2)

A log(np)+ log(2MΘ)

np

and let AQ be the event that

∥(Ex′∼q−Ex′∼q̂)∇θu(x′,θ(0))∇θu(x′,θ(0))⊤∥ ≤

√
2L2

1(2L2
1 +3/2)

A log(nq)+ log(2MΘ)

nq
.

Note that from Lemma 5.23, we know that AP occurs with probability ≥ 1−n−A
p and AQ occurs

with probability ≥ 1−n−A
q . Since these events are disjoint, notice that

Pr
(
AP∩AQ

)
= 1−Pr

(
Ac

P∪Ac
Q
)
= 1−n−A

p −n−A
q

where Ac
P and Ac

Q are the complements of AP and AQ respectively. We work in the regime that

both AP and AQ occur.

Bounding I3,p and I3,q: We will first work with just I3,p and will notice that the method

of bounding I3,q is the same. Then using the triangle inequality, we will get our bounds. Notice
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that

I3,p = ⟨∇θu(·,θ(0)),(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))ē(x′, t)⟩Θ

=⇒ ∥I3,p∥L2(p+q) ≤
∥∥∥∥∇θu(·,θ(0))∥Θ︸ ︷︷ ︸

≤L1

∥∥∥
L2(p+q)

∥(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))ē(x′, t)∥Θ

≤
√

2L1∥(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))ē(x′, t)︸ ︷︷ ︸
a3

∥Θ.

Now we can use the fact that

ē(x, t) =−
∫ t

0
Ey∼p+qK0(x,y)ē(y,s)ds

=−
∫ t

0
⟨∇θu(x,θ(0)),Ey∼p+q∇θu(y,θ(0))ē(y,s)⟩Θds.

This means that we can rewrite a3 as

a3 =−
∫ t

0

[
(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))∇θu(x′,θ(0))⊤

]
Ey∼p+q∇θu(y,θ(0))ē(y,s)ds.

This would mean that ∥a3∥Θ is bounded by

∫ t

0
∥(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))∇θu(x′,θ(0))⊤∥∥∇θu(y,θ(0))∥Θ︸ ︷︷ ︸

≤L1

Ey∼p+q∥ē(y,s)∥ds

≤ tL1∥ΠK0( f ∗)∥L2(p+q)∥∥(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))∇θu(x′,θ(0))⊤∥.

Now recalling that ē(·,0) = ΠK0( f ∗) and using Parseval’s identity, the last inequality comes from

the fact that

∥ē(·, t)∥2
L2(p+q) =

M

∑
ℓ=1

e−2tλℓ︸ ︷︷ ︸
≤1

|⟨uℓ, ē(·,0)⟩|2 ≤
M

∑
ℓ=1
|⟨uℓ,ΠK0( f ∗)⟩|2 = ∥ΠK0( f ∗)∥2

L2(p+q).
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So we only need to bound the operator norm of

∥(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))∇θu(x′,θ(0))⊤∥.

To this end, since we assume that we are working under event AP ∩ AQ, we can again use

Lemma 5.23 and get that with probability greater than 1−np
−A−n−A

q ,

∥(Ex′∼p−Ex′∼p̂)∇θu(x′,θ(0))∇θu(x′,θ(0))⊤∥ ≤

√
2L2

1(2L2
1 +3/2)

A log(np)+ log(2MΘ)

np
.

Now putting all these bounds together, we get that

∥I3,p∥L2(p+q) ≤ t ·
√

2L3
1∥ΠK0( f ∗)∥L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(np)+ log(2MΘ)

np
.

For ease later on, let us define

g3(t,n) = t ·
√

2L3
1∥ΠK0( f ∗)∥L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(n)+ log(2MΘ)

n
.

Note that because we are working under event AP∩AQ, we know that with probability greater

than 1−n−A
p −nq

−A

∥I3,q∥L2(p+q) ≤ t ·
√

2L3
1∥ΠK0( f ∗)∥L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(nq)+ log(2MΘ)

nq
= g3(t,nq).

Now let us bound I2,p and I2,q.

Bounding I2,p and I2,q: We will again bound for I2,p and essentially use the same logic
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for bounding I2,q. Note that

∥I2,p∥2
L2(p+q) = Ex∼p+q

∣∣∣Ex′∼p̂(K̂t−K0)(x,x′)ē(x′, t)
∣∣∣2

≤ Ex∼p+q

(
Ex′∼p̂|(K̂t−K0)(x,x′)||ē(x′, t)|

)2
.

Using Lemma 5.21, note that

|K̂t(x,x′)−K0(x,x′)|= |⟨∇θu(x, θ̂(t)),∇θu(x′, θ̂(t))⟩−⟨∇θu(x,θ(0)),∇θu(x′,θ(0))⟩|

≤ ∥∇θu(x, θ̂(t))∥Θ∥∥∇θu(x′, θ̂(t))−∇θu(x′,θ(0))∥Θ

+∥∇θu(x, θ̂(t))−∇θu(x,θ(0))∥Θ∥∇θu(x′,θ(0))∥Θ

≤ 2L1L2∥θ̂(t)−θ(0)∥Θ ≤ 2L1L2
√

t.

Now the only thing left to bound is Ex′∼p̂|ē(x′, t)|. To do this, recalling the time-integrated form

of ē, we have that

Ex∼p̂|ē(x, t)|= ∥ē(·, t)∥L1(p̂) ≤
(
∥ē(·, t)∥2

L2(p̂)

)1/2
.

Now notice that

∥ē(·, t)∥2
L2(p̂) = Ex∼p̂|ē(x, t)|2 = (Ex∼p̂−Ex∼p)|ē(x, t)|2 +Ex∼p|ē(x, t)|2.

Because integrating a positive function over both p and q is an upper bound of just integrating

over p, we know that

Ex∼p|ē(x, t)|2 = ∥ē(·, t)∥2
L2(p) ≤ ∥ē(·,0)∥

2
L2(p+q) = ∥ΠK0( f ∗)∥2

L2(p+q),

so we only need to deal with the first term. In particular, using the time-integrated form of
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|ē(x, t)|2, we get that equals

∣∣∣(Ex∼p̂−Ex∼p)|ē(x, t)|2
∣∣∣= ∣∣∣∣∫ t

0

∫ t

0
Ey1,y2∼p+qē(y2,s2)∇θu(y2,θ(0))⊤

·
[
(Ex∼p̂−Ex∼p)∇θu(x,θ(0)),∇θu(x,θ(0))⊤

]
∇θu(y1,θ(0))ē(y1,s1)ds1ds2

∣∣∣∣
≤ L2

1∥(Ex∼p̂−Ex∼p)∇θu(x,θ(0)),∇θu(x,θ(0))⊤∥
(∫ t

0
Ex∼p+q|ē(x,s)|ds

)2

︸ ︷︷ ︸
≤(t
√

2∥ΠK0( f ∗)∥L2(p+q))
2

≤ 2L2
1t2∥ΠK0( f ∗)∥2

L2(p+q)

∥∥∥(Ex∼p̂−Ex∼p)∇θu(x,θ(0)),∇θu(x,θ(0))⊤
∥∥∥.

Again, since we are under event AP∩AQ we can use Lemma 5.23 and get that with probability

greater than 1−n−A
p −n−A

q

∣∣(Ex∼p̂−Ex∼p)|ē(x, t)|2
∣∣≤ 2L2

1t2∥ΠK0( f ∗)∥2
L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(np)+ log(2MΘ)

np
.

Plugging this back, we get

Ex∼p̂|ē(x, t)| ≤
√

2∥ΠK0( f ∗)∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(np)+ log(2MΘ)

np

)1/2
.

Plugging back to our original expression for I2,p and using the fact that Ex∼p+q1 = 2, we get that

∥I2,p∥L2(p+q) ≤ 4L1L2
√

t∥ΠK0( f ∗)∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(np)+ log(2MΘ)

np

)1/2

with probability ≥ 1−n−A
p −n−A

q . Similar to before, we define

g2(t,n) = 4L1L2
√

t∥ΠK0( f ∗)∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(n)+ log(2MΘ)

n

)1/2
.

Using the same logical reasoning of being in the event AP ∩AQ, we get that with probability
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≥ 1−n−A
p −n−A

q

∥I2,q∥L2(p+q) ≤ 4L1L2
√

t∥ f ∗∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(nq)+ log(2MΘ)

nq

)1/2

= g2(t,nQ).

Working with the I1 terms: Let us again work with I1,p and use the same logic for I1,q

later. In particular, note that

⟨(û− ū)(·, t), I1,p⟩L2(p+q) = ⟨(û− ū)(·, t),−Ex′∼p̂K̂t(·,x′)(êP(x′, t)− ē(x′, t))⟩L2(p+q)

=−⟨(û− ū)(·, t),Ex′∼p̂K̂t(·,x′)(û(x′, t)− ū(x′, t))⟩L2(p+q)

−⟨(û− ū)(·, t),Ex′∼p̂K̂t(·,x′)( f ∗(x′)−1)⟩L2(p+q)

≤−⟨(û− ū)(·, t),Ex′∼p̂+qK̂t(·,x′)( f ∗(x′)−1)⟩L2(p+q),

where we get the inequality because K̂t is a positive semi-definite operator so the first term is less

than 0. Now we can bound by the following

|⟨(û− ū)(·, t), I1,p⟩L2(p+q)| ≤ ∥(û− ū)(·, t)∥L2(p+q)∥Ex′∼p̂K̂t(·,x′)( f ∗(x′)−1)∥L2(p+q).
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Here note that

∥Ex′∼p̂K̂t(·,x′)( f ∗(x′)−1)∥L2(p+q) = ∥Ex′∼p̂⟨∇θu(·, θ̂(t)),∇θu(x′, θ̂(t))⟩Θ( f ∗(x′)−1)∥L2(p+q)

≤ L2
1Ex′∼p̂| f ∗(x′)−1|

≤ L2
1

∫
Rd

∣∣∣∣ p−q
p+q

(x)−1
∣∣∣∣d p̂(x)

= L2
1

∫
Rd

∣∣∣∣ p(x)−q(x)− p(x)−q(x)
p(x)+q(x)

∣∣∣∣d p̂(x)

= L2
1

∫
Rd

2
∣∣∣∣ q(x)

p(x)+q(x)

∣∣∣∣d p̂(x)

= 2L2
1

1
np

np

∑
i=1

∣∣∣∣ q(xi)

p(xi)+q(xi)︸ ︷︷ ︸
≤1

∣∣∣∣
≤ 2L2

1
1
np

np

∑
i=1

1 = 2L2
1.

This means that

|⟨(û− ū)(·, t), I1,p⟩L2(p+q)| ≤ 2L2
1∥(û− ū)(·, t)∥L2(p+q).

Using the same logic (but with the term p(x)
p(x)+q(x)), we can show that

|⟨(û− ū)(·, t), I1,q⟩L2(p+q)| ≤ 2L2
1∥(û− ū)(·, t)∥L2(p+q).
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Putting this altogether, we see that

d
dt
∥(û− ū)(·, t)∥2

L2(p+q) ≤ |⟨(û− ū)(·, t), I1,p⟩L2(p+q)|+ |⟨(û− ū)(·, t), I1,q⟩L2(p+q)|

+∥(û− ū)(·, t)∥L2(p+q)

(
∥I2,p∥L2(p+q)+∥I2,q∥L2(p+q)

+∥I3,p∥L2(p+q)+∥I3,q∥L2(p+q)

)
=

(
4L2

1 +g2(t,np)+g3(t,np)

+g2(t,nq)+g3(t,nq)

)
∥(û− ū)(·, t)∥L2(p+q).

Using the same argument in Proposition 5.16, let t∗ ∈ [0, t] be such that

sup
s∈[0,t]

∥(û− ū)(·,s)∥L2(p+q) = ∥(û− ū)(·, t∗)∥L2(p+q),

then we know that

∥(û− ū)(·, t∗)∥2
L2(p+q) ≤

∫ t∗

0

(
4L2

1 +g2(s,np)+g3(s,np)

+g2(s,nq)+g3(s,nq)

)
∥(û− ū)(·,s)∥L2(p+q)ds

≤
∫ t∗

0

(
4L2

1 +g2(s,np)+g3(s,np)

+g2(s,nq)+g3(s,nq)

)
∥(û− ū)(·, t∗)∥L2(p+q)ds

≤ ∥(û− ū)(·, t∗)∥L2(p+q)

∫ t∗

0

(
4L2

1 +g2(s,np)+g3(s,np)

+g2(s,nq)+g3(s,nq)

)
ds

∥(û− ū)(·, t∗)∥L2(p+q) ≤
∫ t∗

0

(
4L2

1 +g2(s,np)+g3(s,np)+g2(s,nq)+g3(s,nq)

)
ds.
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Now since t∗ ≤ t and

∥(û− ū)(·, t)∥L2(p+q) ≤ ∥(û− ū)(·, t∗)∥L2(p+q),

we know that

∥(û− ū)(·, t)∥L2(p+q) ≤
∫ t∗

0

(
4L2

1 +g2(s,np)+g3(s,np)+g2(s,nq)+g3(s,nq)

)
ds.

Moreover, by inspection, we can see that

4L2
1 +g2(s,np)+g3(s,np)+g2(s,nq)+g3(s,nq)

is monotone in s, which means that

∥(û− ū)(·, t)∥L2(p+q) ≤
(

4L2
1 +g2(s,np)+g3(s,np)+g2(s,nq)+g3(s,nq)

)
t.

Putting this altogether and using the fact that we are working under the regime of event AP∩AQ,

we can use Lemma 5.23 for the zero-time NTK for samples from p and q to get that with

probability ≥ 1−n−A
p −n−A

q , we have

∥(û− ū)(·, t)∥L2(p+q) ≤ 4L2
1t +g2(s,np)t +g3(s,np)t +g2(s,nq)t +g3(s,nq)t,
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but the right-hand side of the inequality is just

4L2
1t +4L1L2t3/2∥ΠK0( f ∗)∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(np)+ log(2MΘ)

np

)1/2

+4L1L2t3/2∥ΠK0( f ∗)∥L2(p+q)

(
1+2L3

1t2

√
2(2L2

1 +3/2)
A log(nq)+ log(2MΘ)

nq

)1/2

+ t2 ·
√

2L3
1∥ΠK0( f ∗)∥L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(np)+ log(2MΘ)

np

+ t2 ·
√

2L3
1∥ΠK0( f ∗)∥L2(p+q)

√
2L2

1(2L2
1 +3/2)

A log(nq)+ log(2MΘ)

np
.

This means that

∥(û− ū)(·, t)∥L2(p+q) = O(t5/2).

Moreover, we get the result using the fact that

∥ΠK0( f ∗)∥L2(p+q) ≤ ∥ f ∗∥L2(p+q).

Proof of Proposition 5.26. Consider following calculation

∣∣T̂test(t)−T (t)
∣∣= ∣∣∣∣∫Rd

û(x, t)d(p̂test− q̂test)(x)−
∫
Rd

ū(x, t)d(p−q)(x)
∣∣∣∣

=

∣∣∣∣∫Rd
û(x, t)d(p̂test− q̂test)(x)−

∫
Rd

û(x, t)d(p−q)(x)

+
∫
Rd

û(x, t)d(p−q)(x)−
∫
Rd

ū(x, t)d(p−q)(x)
∣∣∣∣

≤
∣∣∣∣∫Rd

û(x, t)d
[
(p̂test− p)+(q− q̂test)

]
(x)
∣∣∣∣︸ ︷︷ ︸

A1

+

∣∣∣∣∫Rd
(û− ū)(x, t)d(p−q)(x)

∣∣∣∣︸ ︷︷ ︸
A2

.
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Let us deal with A2 first and then with A1. Note that

A2 =

∣∣∣∣∫Rd
(û− ū)(x, t)d p(x)−

∫
Rd
(û− ū)(x, t)dq(x)

∣∣∣∣
≤
∣∣∣∣∫Rd

(û− ū)(x, t)d p(x)
∣∣∣∣+ ∣∣∣∣∫Rd

(û− ū)(x, t)dq(x)
∣∣∣∣

≤
∫
Rd
|(û− ū)(x, t)|d(p+q)(x)

≤
√

2∥û− ū(·, t)∥L2(p+q).

So we can use Proposition 5.36 for A2 and will use this as part of the final bound. Notice that A1

is actually bounds |T̂test(t)− T̂pop(t)|. Now let us bound A1. First note that

A1 ≤
∣∣∣∣∫Rd

û(x, t)d(p̂test− p)
∣∣∣∣︸ ︷︷ ︸

A1,p

+

∣∣∣∣∫Rd
û(x, t)d(q− q̂test)

∣∣∣∣︸ ︷︷ ︸
A1,q

.

To bound A1,p and A1,q, we will aim to use Hoeffding’s inequality, but we must first show

that |û(x, t)| is bounded. To this end, consider the time-integrated form of û(x, t) = f (x, θ̂(t)).

Recalling the density-specific residuals

êp(x, t) =
(

f (x′, θ̂(t))−1
)

êq(x, t) =
(

f (x′, θ̂(t))+1
)
,

and using Assumption 5.13, we have

| f (x, θ̂(t))|=
∣∣∣∣− 1

2

∫ t

0

(
Ex′∼p̂⟨∇θ f (x, θ̂(s)),∇θ f (x′, θ̂(s))⟩Θêp(x′,s)

+Ex′∼q̂⟨∇θ f (x, θ̂(s)),∇θ f (x′, θ̂(s))⟩Θêq(x′,s)
)

ds
∣∣∣∣.

It is important to note that in the equation above, p̂ and q̂ are training datasets (not p̂test and q̂test),
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and with this in mind, we continue as

| f (x, θ̂(t))| ≤ 1
2

∫ t

0
Ex′∼p̂ |⟨∇θ f (x, θ̂(s)),∇θ f (x′, θ̂(s))⟩Θ|︸ ︷︷ ︸

≤L2
1

|êp(x′,s)|

+Ex′∼q̂ |⟨∇θ f (x, θ̂(s)),∇θ f (x′, θ̂(s))⟩Θ|︸ ︷︷ ︸
≤L2

1

|êq(x′,s)|ds

≤ 1
2

L2
1

∫ t

0
Ex′∼p̂|êp(x′,s)|+Ex′∼q̂|êq(x′,s)|ds

=
1
2

L2
1

∫ t

0

(∫
Rd
| f (x, θ̂(s))−1|d p̂(x)+

∫
Rd
| f (x, θ̂(s))+1|dq̂(x)

)
ds.

Using Lemma 5.37 with a(x, t) = f (x, θ̂(s))− 1 and b(x, t) = f (x, θ̂(s))+ 1, we know that the

right hand side of the equation above is decreasing if L̂(θ̂(s)) is decreasing. Indeed, recall

d
dt

L̂(θ̂(t)) = ⟨∇θL̂(θ̂(t)), ˙̂
θ(t)⟩Θ =−∥∇θL̂(θ̂(t))∥Θ ≤ 0.

This means that

∫
Rd
| f (x, θ̂(s))−1|d p̂(x)+

∫
Rd
| f (x, θ̂(s))+1|dq̂(x)

≤
∫
Rd
| f (x, θ̂(0))−1|d p̂(x)+

∫
Rd
| f (x, θ̂(0))+1|dq̂(x) = 2.

Plugging this back in, we get that

| f (x, θ̂(t))| ≤ L2
1t.

Because we have boundedness, we can use Theorem 5.38. Reworking the probability and lower

bound in Hoeffding’s inequality, we see that

A1,p ≤ L2
1t

√
2

A log(mp)

mp
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with probability ≥ 1−m−A
p . Similarly, we get that

A1,q ≤ L2
1t

√
2

A log(mq)

mq

with probability ≥ 1−m−A
q . So for both these events to occur together, we can use a probability

intersection bound to get that

A1 ≤ L2
1t
√

2
(√

A log(mp)

mp
+

√
A log(mq)

mq

)

with probability≥ 1−m−A
p −m−A

q . Coming back to A2, we know the bound from Proposition 5.36

occurs with probability ≥ 1−n−A
p −n−A

q (the finite-sample training dataset size); thus, to have

the bound for A1 and A2 simultaneously, we again use an intersection probability bound to get

that both events occur simultaneously with probability ≥ 1− (m−A
p +m−A

q +n−A
p +n−A

q ). Putting

this altogether, we see that with probability ≥ 1− (m−A
p +m−A

q +n−A
p +n−A

q ) we have

∣∣T̂test(t)−T (t)
∣∣≤C1L1,A,mp,mqt +CL1,L2, f ∗t

3/2

+CL1, f ∗,np,nq,MΘ,At2

+CL1,L2, f ∗,np,nq,MΘ,At5/2,

where the constants can be recovered by putting the bound for A1 together with Proposition 5.36.

So we’re done.

Proof of Theorem 5.28. Recall that the loss L̂(θ̂(s)) is monotonically decreasing because

d
dt

L̂(θ̂(t)) = ⟨∇θL̂(θ̂(t)), θ̂(t)⟩Θ =−∥∇θL̂(θ̂(t))∥Θ ≤ 0.
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Now since the loss

L̂(θ̂(s)) =
∫
Rd
|û(x,s)−1|2d p̂(x)+

∫
Rd
|û(x,s)+1|2dq̂(x)

is decreasing, we can use Lemma 5.37 applied to L̂(θ̂(s)) to see that

∫
Rd
|û(x,s)−1|d p̂(x)+

∫
Rd
|û(x,s)+1|dq̂(x)

is actually monotonically decreasing. Notice that because |û(x,s)| ≤ 1 on [0, τ̂], we have

∫
Rd
|û(x,s)−1|d p̂(x) =

∫
Rd
(1− û(x,s))∫

Rd
|û(x,s)+1|dq̂(x) =

∫
Rd
(û(x,s)+1)dq̂(x).

So putting this back into the definition of monotonically decreasing loss, we see that

∫
Rd

1− û(x,s)d p̂(x)+
∫
Rd

û(x,s)+1dq̂(x)

≥
∫
Rd

1− û(x, t)d p̂(x)+
∫
Rd

û(x, t)+1dq̂(x)

=⇒
∫
Rd

û(x, t)d(p̂− q̂)(x)≥
∫
Rd

û(x,s)d(p̂− q̂)(x).

This implies that T̂train(t) is monotonically increasing. So we’re done.

Proof of Theorem 5.30. The proof is identical to the case with u. In particular, because we have

max(R2, τ̂)≥ t ≥ t∗1(ε),

we can use Proposition 5.26, Corollary 5.10, and Theorem 5.28 simultaneously. With probability
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≥ 1−2(n−A
p +n−A

q ), using the reverse triangle inequality and montonicity gives us

|T̂train(t)| ≥ |T̂train(t∗1(ε))|

≥
∣∣∣∣∣∣T (t∗1(ε))∣∣− ∣∣T̂train(t∗1(ε))−T (t∗1(ε))

∣∣∣∣∣∣
≥ ε−δtrain(t∗1(ε))

where we can rid of the absolute values by assumption. Now, note that if we assumed that

ε > δtrain(t∗1(ε))+L2
1t
√

2
(√

A log(mp)/mp +
√

A log(mq)/mq√
A log(np)/np +

√
A log(nq)/nq

)
,

then we would have

|T̂test(t)| ≥
∣∣∣∣|T̂train(t)|− |T̂test(t)− T̂train(t)|

∣∣∣∣
≥ ε−δtrain(t∗1(ε))−L2

1t
√

2
(√

A log(mp)/mp +
√

A log(mq)/mq

+
√

A log(np)/np +
√

A log(nq)/nq

)

Similarly, if we assume that

ε > δtrain(t∗1(ε))+L2
1t
√

2
(√

A log(np)/np +
√

A log(nq)/nq

)
,

then we have

|T̂pop(t)| ≥
∣∣∣∣|T̂train(t)|− |T̂pop(t)− T̂train(t)|

∣∣∣∣
≥ ε−δtrain(t∗1(ε))−L2

1t
√

2
(√

A log(np)/np +
√

A log(nq)/nq

)
.
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So we’re done.

Proof of Theorem 5.31. Because of the conditions on t, we can use all of Corollary 5.10, Proposi-

tion 5.26, and Proposition 5.25 simultaneously. So essentially, we can use the triangle inequality

to get

|T̂ (t)| ≤
∣∣T (t)∣∣+ ∣∣T̂ (t)−T (t)

∣∣≤ ε+δ(t)≤ ε+δ(t∗2(ε)),

where, in general, T̂ (t) and δ(t) can be replaced by T̂train, T̂test(t), T̂pop(t) and δtrain(t),δtest(t),δpop(t),

respectively. These situations happen with probability ≥ 1−2(n−A
p +n−A

q ), ≥ 1− (n−A
p +n−A

q +

m−A
p +m−A

q ), and ≥ 1− (n−A
p +n−A

q ), respectively. So we’re done.

Proof of Corollary 5.33. We will first work with the time associated with detecting deviation

ε under the null hypothesis, and then we consider time associated with detecting ε under the

assumption that f ∗ lies on the first k eigenfunctions of K0. After both these detection times are

studied, we study when they are well-separated.

Null Hypothesis: We first note that if we are in the null hypothesis so that p = q, then

f ∗ = 0, which implies that ∥ f ∗∥L2(p+q) = ∥ΠK0( f ∗)∥L2(p+q) = 0. Looking into the proof of

Proposition 5.26 and Proposition 5.25, we see that the only term that does not depend on f ∗ is of

the form C+t but C+ changes depending on which dataset the two-sample test is evaluated on. In

particular, we specify

C+ =



√
2L2

14 T̂pop(t) evaluation

√
2L2

1

(
4+
√

A log(np)
np

+
√

A log(nq)
nq

)
T̂train(t) evaluation

√
2L2

1

(
4+
√

A log(mp)
mp

+
√

A log(mq)
mq

)
T̂test(t) evaluation.

This means that under the null hypothesis p = q and with either T̂pop, T̂test , or T̂train determining
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C+, if

t+(ε)≥ ε

C+
,

then we cannot trust the neural network two-sample test statistic past the time threshold t+(ε).

Note that as np,nq,mp,mq→ ∞, the threshold for t to cross becomes ε

4
√

2L2
1

and reverts back to

the constant C+ in the case we use T̂pop(t).

Assumption ΠK0( f ∗) = f ∗k : Recall that we are dealing with the case that ΠK0( f ∗) = f ∗k

so that ΠK0( f ∗) nontrivially projects onto only the first k eigenfunctions. To deal with the time-

approximation error δ(t), we will consider the detection time needed for 2ε and conduct analysis

for this case. If we are in the assumption ΠK0( f ∗) = f ∗k , notice that the minimum time needed for

the zero-time NTK dynamics to detect a deviation 2ε from Corollary 5.10 is given by

t∗1(2ε) = min
S∈S1(ε)

λmin(S) log
(
∥ f ∗k ∥2

S

∥ f ∗k ∥2
S−2ε

)
.

Importantly, if we want to counteract the approximation error from Proposition 5.26 and

Proposition 5.25, we simply need to make sure δ(t∗1(2ε)) < ε so that the total detection will

be 2ε− δ(t∗1(2ε)) > ε, where δ will be δpop,δtest , or δtrain. Notice from the form of time-

approximation error function δ(t), we have

C−min{t, t5/2} ≤ δ(t)≤C−max{t, t5/2},

where C−=C++C2+C3+C4 with the constants coming from Proposition 5.26, Proposition 5.25,

and C+ defined above. Thus, note that C− depends on whether we use the two-sample test

T̂pop, T̂test , or T̂train. Assuming the specific assumption that f ∗ nontrivially projects only on the
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first k eigenfunctions of K0 so that ΠK0( f ∗) = f ∗k , notice that

t∗1(2ε) = min
S∈S1(ε)

λmin(S) log
(
∥ f ∗k ∥2

S

∥ f ∗k ∥2
S−2ε

)

≤ λk log
( ∥ f ∗k ∥2

L2(p+q)

∥ f ∗k ∥2
L2(p+q)−2ε

)
:= t−k (2ε).

With this in mind, notice that

δ(t∗1(2ε))≤C−max{t∗1(2ε),(t∗1(2ε))5/2} ≤C−max{t−k (2ε),(t−k (2ε))5/2}

so we only need to ensure

C−max{t−k (2ε),(t−k (2ε))5/2} ≤ ε.

Rearranging this formula and plugging in the expression for t−k (2ε), we see that our condition

above is ensured if

∥ f ∗k ∥2
L2(p+q) ≥ max

a∈{1,5/2}

2εexp
(
(ε/C−)1/a/λk

)
exp
(
(ε/C−)1/a/λk

)
−1

,

which is our assumption.

Separation of null and assumption ΠK0( f ∗) = f ∗k times: Finally, we want to ensure that

the time needed t+(ε)− t−(ε) ≥ γ > 0 for some. Noting the lower and upper bounds on t+(ε)

and t−(ε), respectively, we find that our condition will be satisfied if

t+(ε)− t−(ε)≥ ε

C+
−λk log

( ∥ f ∗k ∥2
L2(p+q)

∥ f ∗k ∥2
L2(p+q)−2ε

)
≥ γ.
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Rewriting this inequality, we see that it is satisfied when

∥ f ∗k ∥2
L2(p+q) ≥

2εexp
(
(ε/C+− γ)/λk

)
exp
(
(ε/C+− γ)/λk

)
−1

.

As this is an assumption, we see that we are done.

5.12 Helper Lemmas

Lemma 5.37. Let a(x, t),b(x, t) : Rd× [0,∞)→ R be differentiable functions in t and let d p̂(x)

and dq̂(x) be discrete probability measures supported only on a finite number of Dirac masses.

Then

g(t) =
∫
Rd
|a(x, t)|2d p̂(x)+

∫
Rd
|b(x, t)|2dq̂(x)

is decreasing if and only if

h(t) =
∫
Rd
|a(x, t)|d p̂(x)+

∫
Rd
|b(x, t)|dq̂(x)

is decreasing.

Proof. We will take the derivatives of both g(t) and h(t) with respect to time and compare them,

but we will restrict the integrals to supp(p̂)+ = {x∈ supp(p̂) : |a(x, t)|> 0} and supp(q̂)+ = {x∈
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supp(q̂) : |b(x, t)|> 0}. In particular, consider

d
dt

g(t) =
d
dt

(∫
Rd
|a(x, t)|2d p̂(x)+

∫
Rd
|b(x, t)|2dq̂(x)

)

=
∫

supp(p̂)+
∂t |a(x, t)|2d p̂(x)+

∫
supp(q̂)+

∂t |b(x, t)|2dq̂(x)

=
∫

supp(p̂)+
2|a(x, t)|sgn(a(x, t))∂ta(x, t)d p̂(x)

+
∫

supp(q̂)+
2|b(x, t)|sgn(b(x, t))∂tb(x, t)dq̂(x).

For h(t), we get

d
dt

h(t) =
d
dt

(∫
Rd
|a(x, t)|d p̂(x)+

∫
Rd
|b(x, t)|dq̂(x)

)

=
∫

supp(p̂)+
∂t |a(x, t)|d p̂(x)+

∫
supp(q̂)+

∂t |b(x, t)|dq̂(x)

=
∫

supp(p̂)+
sgn(a(x, t))∂ta(x, t)d p̂(x)+

∫
supp(q̂)+

sgn(b(x, t))∂tb(x, t)dq̂(x).

Because we are using points only in supp(p̂)+ and supp(q̂)+ and since the supports of d p̂ and dq̂

are discrete measures, we can define

C(t) = 2max
{

max
x∈supp(p̂)+

|a(x, t)|, max
x∈supp(q̂)+

|b(x, t)|
}
> 0

c(t) = 2min
{

min
x∈supp(p̂)+

|a(x, t)|, min
x∈supp(q̂)+

|b(x, t)|
}
> 0.

Notice that the assumption that c(t) > 0 heavily depends on that the measures d p̂ and dq̂ are
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composed of a finite number of Dirac measures. Now, notice that

d
dt

g(t) =
∫

supp(p̂)+
2|a(x, t)|︸ ︷︷ ︸
≤C(t)
≥c(t)

sgn(a(x, t))∂ta(x, t)d p̂(x)

+
∫

supp(q̂)+
2|b(x, t)|︸ ︷︷ ︸
≤C(t)
≥c(t)

sgn(b(x, t))∂tb(x, t)dq̂(x)

=⇒ c(t)
d
dt

h(t)≤ d
dt

g(t)≤C(t)
d
dt

h(t).

Since d
dt h(t) and d

dt g(t) are off by positive factors, we see that if one is decreasing, the other must

also be decreasing. This proves the lemma.

5.12.1 Concentration Inequalities

Theorem 5.38 (Hoeffding’s Inequality). Suppose {Xi}n
i=1 are independent random variables with

|Xi| ≤ L, then for all t ≥ 0

Pr
{∣∣∣1

n

n

∑
i=1

(Xi−E[Xi])
∣∣∣≥ t

}
≤ 2exp

(
− nt2

2L2

)
.

Theorem 5.39 (Hoeffding’s Subgaussian Inequality). Suppose {Xi}n
i=1 are independent σi-

subgaussian random variables with Xi having mean µ, then for all t ≥ 0

Pr
{∣∣∣1

n

n

∑
i=1

(Xi−µi)
∣∣∣≥ t

}
≤ 2exp

(
− t

2∑
n
i=1 σ2

i

)
.

Theorem 5.40 (Matrix Bernstein). Let Xi be a sequence of n independent, random, real-valued

matrices of size d1-by-d2. Assume that EXi = 0 and ∥Xi∥ ≤ L for each i and ν > 0 be such that

∥1
n

n

∑
i=1

EXiX⊤i ∥,∥
1
n

n

∑
i=1

EX⊤i Xi∥ ≤ ν.
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Then for any t ≥ 0,

Pr
[
∥1

n

n

∑
i=1

Xi∥ ≥ t
]
≤ (d1 +d2)exp

{
− nt2

2(ν+Lt/3)

}
.
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