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Abstract 

As an important process regulating the water cycle, forest evapotranspiration (ET) also reflects vegetation and moisture 

conditions in response to a changing environment. For mountains in a Mediterranean climate and precipitation largely in 

winter, inconsistent seasonal variations between water stress and forest growth complicate remote-sensing-based ET modeling. 

Focusing on the Mediterranean-climate forests of California’s Sierra Nevada, this regional study presents an NDWI-CWS 

(Normalized Difference Water Index-Canopy Water Stress) model to estimate daily ET in a globally important, representative 

region using MODIS NDWI and NDVI (normalized difference vegetation index) data, plus ground-based meteorological data. 

Specifically, to account for the important yet less-studied role of root-zone water storage in supporting the growth of deep-

rooted woody vegetation (i.e. forest tree and shrub) during dry seasons and droughts, we proposed to use water availability 

based on NDWI in modeling woody ET. In contrast, given the predominant role of surface soil moisture for non-woody 

vegetation (e.g. grass) with shallow roots, the model calculated non-woody ET using water availability based on the ratio of 

cumulative precipitation to potential ET (denoted as P/PET). With ET measurements from 18 flux towers and long-term water-

balance measurements at 58 catchments in the relatively data-rich California study area, we compared ET estimates from four 

modeling experiments with different water availability combinations, and six global and regional ET products. Overall, our 

NDWI-CWS ET estimates generally agreed best with field measurements, with R2 of 0.74 for point-scale woody-ET 

comparison and R2 of 0.42 for catchment-scale comparison. The mean annual woody ET (634 mm) during water year 2003-

2020 was larger than that (353 mm) in non-woody areas. Further, with NDWI-CWS ET estimates and snow data, we estimated 

that the mean root-zone water storage capacity (601 mm) in forests is double that (285 mm) in non-woody (e.g. grassland) 

vegetated areas in the Sierra Nevada. We found that remote-sensing NDWI-based water availability is highly correlated with 

deep root-zone water storage, and much so (correlation R of 0.74) during dry summers. However, P/PET-based water 

availability reflects surface soil moisture (R of 0.66) modulated by short-term precipitation. Together, explicitly accounting for 

the distinct roles of root-zone water storage and soil moisture for woody versus non-woody vegetated areas improves MODIS-

based ET estimation, which is critical for regional water resources and forest management, in addressing water cycle in a 

warming climate. 
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1 Introduction 

Evapotranspiration (ET) links the water, carbon, and 

energy cycles through land surface-atmosphere 

interactions (Jung et al., 2010), transferring water to the 

atmosphere, through vegetation transpiration and 

evaporation from soil and open water. From a global 
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view, terrestrial ET is approximately 60% of total land 

precipitation, with transpiration accounting for 70% of 

terrestrial ET (Oki and Kanae, 2006; Poyatos et al., 

2021; Wang and Dickinson, 2012). Since mountains 

provide a large portion of freshwater to the population in 

downstream regions, making up 50-90% of total 

freshwater in arid areas (Viviroli et al., 2007; Viviroli 

and Weingartner, 2004), it is important to understand 

and predict how mountain ET affects the timing and 

magnitude of water yield (Bales et al., 2006; Gaertner et 

al., 2019; Rungee et al., 2019). ET also reflects 

ecosystem productivity, vegetation conditions, and 

moisture availability, and is widely used for drought-

related studies (Cui et al., 2022a; Teuling et al., 2013; 

Yang et al., 2021). Accurate ET estimates at a high 

spatiotemporal resolution are crucial for water resources, 

ecosystem, and agricultural resource management 

(Cheng et al., 2021; He et al., 2019; Zhang et al., 2010). 

However, compared to direct measurements of 

precipitation and runoff, ET is inherently difficult to 

measure at large scales and has historically been an 

uncertain component in regional and global water cycles 

(Fisher et al., 2017; Ma et al., 2021; Zhang et al., 2010). 

ET at point and local scales is often measured by 

eddy covariance flux towers (Wang and Dickinson, 

2012), which are sparsely distributed and costly. 

Through data sharing and community collaboration, in-

situ EC datasets are powerful resources to help 

understand the ET fluxes in terrestrial ecosystems across 

multiple networks, including the FLUXNET network 

(Baldocchi et al., 2001), the AmeriFlux and ChinaFLUX 

national networks (Novick et al., 2018; Yu et al., 2006), 

and regional networks e.g. TERENO, HiWATER, and 

SSCZO (Bales et al., 2018; Bogena et al., 2018; 

Goulden et al., 2012; Li et al., 2017). To estimate ET at 

broader spatial and temporal coverages for applications, 

a number of studies have upscaled point-scale ET from 

flux towers to global and regional scales through 

statistical (Goulden and Bales, 2019, 2014) and 

machine-learning approaches (Jung et al., 2009; T. Xu et 

al., 2018). Land-surface models are also valuable tools 

for estimating ET, e.g. the global Breathing Earth 

System Simulator (BESS) ET product is estimated using 

a biophysical process-based model (Jiang and Ryu, 

2016). Alternatively, various types of satellite remote 

sensing data have become an emerging and effective 

way to estimate the spatio-temporal distribution of ET 

over local to global extents (Bai et al., 2017; Cheng et 

al., 2021; Consoli and Vanella, 2014; Glenn et al., 2010; 

Hong et al., 2009). Among a wide variety of satellite 

datasets, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data from NASA’s Terra 

and Aqua satellites are commonly used to provide 

operational ET products at relatively fine spatial (500 m) 

and temporal (8-day) resolutions (Maselli et al., 2014; 

Mu et al., 2011, 2007; Zhang et al., 2019). Methods to 

estimate MODIS ET can be generally classified into two 

categories, surface-energy-balance-based (e.g. Surface 

Energy Balance Algorithm for Land, SEBAL) and 

vegetation-index-based (e.g. MOD16 and PML2 

datasets using the Penman-Monteith model) 

(Bastiaanssen et al., 1998; Zhu et al., 2022). Since 

infrequent availability of land-surface-temperature data 

at coarse spatial resolution in surface-energy-balance-

based models may increase the ET uncertainty over 

heterogeneous landscapes, operational MODIS ET 

products are often based on relatively simple vegetation-

index methods (e.g. using the normalized difference 

vegetation index, NDVI), which are resilient to data 

gaps and widely applied over a wide range of landscapes 

(Glenn et al., 2010; Pan et al., 2020). 

Although vegetation-index-based models have 

successfully estimated ET for operational applications, 

high uncertainty still exists in ET estimates for some 

landscapes with specific climates. For example, in 

regions with a Mediterranean climate, ET estimates from 

the MOD16 algorithm showed unsatisfactory 

performance compared to flux-tower sites (Michel et al., 

2016; Mu et al., 2011; Vinukollu et al., 2011), likely due 

to the seasonal variation of vegetation index (e.g. NDVI) 

differing from that of water stress (Chiesi et al., 2013; 

Maselli et al., 2014), which is an important factor in 

regulating seasonal ET. Biederman et al. (2017) also 

found that MOD16 ET shows underestimations in water-

limited regions, and suggested that adding soil-moisture 

constraints could improve remote-sensing-based ET 

products. Incorporating water-stress information, 

indicated by either soil moisture or water-deficit 

indicators, can yield improved ET estimates (Bai et al., 

2017; Miralles et al., 2011). Soil moisture from 

microwave remote sensing products, e.g. Soil Moisture 

Active Passive Mission (SMAP), has been successfully 

used as water-supply control to improve ET prediction 

(Brust et al., 2021; Purdy et al., 2018). Maselli et al. 

(2014, 2009) proposed an NDVI-CWS model with a 

factor named canopy water stress (CWS), which is based 

on water deficit calculated using precipitation and 

potential ET. The NDVI-CWS model accounted for the 

short-term effects of water stress, showing good ET 

estimates in Mediterranean Italy. Similarly, a water-

deficit indicator based on precipitation and PET 

(potential ET) data showed a high correlation to shallow 

soil moisture, which is an important environmental 

factor modulating ET (Rohatyn et al., 2018).  
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Aside from surface soil moisture, plant-accessible 

water also includes deep root-zone water storage, e.g. 

saprolite, saprock, and weathered and fractured bedrock 

(Baldocchi et al., 2019; Bales et al., 2011; Klos et al., 

2018; McCormick et al., 2021; Rempe and Dietrich, 

2018). Globally and annually, plant transpiration mainly 

relies on surface soil moisture (depth ≤ 30 cm) 

(Miguez-Macho and Fan, 2021), which is relevant to 

microwave remote sensing (Feldman et al., 2023). Yet, 

in seasonally dry environments (Dralle et al., 2021; 

Jones and Graham, 1993) and droughts (Zhao et al., 

2022), water accessed from the deep root zone is another 

important water source modulating transpiration (Bai et 

al., 2017; Yu et al., 2007). Forest trees can tap water 

from deep root-zone water storage (Lewis and Burgy, 

1964; Teuling et al., 2010, 2006), e.g. the Mediterranean 

forest with deep roots in the Sierra Nevada forest of 

California (Callahan et al., 2022; Kelly and Goulden, 

2016; Klos et al., 2018), where water storage capacity in 

the deeper root zone was estimated to be roughly nine 

times that in surface soil (Fellows and Goulden, 2017; 

McCormick et al., 2021). A recent study (Stocker et al., 

2023) has found that plant-available water is stored in 

deep soils (≥ 2 m) across 37% of Earth’s vegetated 

surface. It was also reported that in the Sierra Nevada, 

the vegetation-index-based MOD16 model 

underestimated montane forest ET and showed a poor 

correlation to in-site ET measurements (Goulden et al., 

2012). Therefore, ET modeling in semi-arid 

Mediterranean climates and other water-limited regions 

with deep soils needs to account for water-stress 

constraints of the plant‐accessible water from surface 

soil moisture, as well as deep root-zone storage. Yet, 

how to account for the water from deep root-zone 

storage is understudied, hindering the appropriate 

representation of its important role in remote-sensing-

based ET models, which may limit the accuracy of 

spatial ET estimation. 

Unlike surface soil moisture, which can be directly 

measured in situ or in some cases remotely sensed by 

satellites, measuring deep root-zone water storage at a 

large scale remains a challenge. To estimate the amount 

of this important source of plant-accessible water, 

patterns of water deficit based on precipitation minus 

actual ET have often been used (Dralle et al., 2021; 

Fellows and Goulden, 2017; McCormick et al., 2021; 

Roche et al., 2020; Wang-Erlandsson et al., 2016). In 

general, root-zone water storage capacity is high in 

deep-rooted woody vegetated areas (i.e. forest and 

shrub) with high ET, yet is low in shallow-rooted non-

woody areas (e.g. grassland) with lower ET (Liu et al., 

2022). As ET is an input for the estimation of root-zone 

water storage, ET modeling cannot directly incorporate 

root-zone water storage data. However, the amount of 

root-zone water storage results in vegetation change, 

which may be used to in turn reflect root-zone water 

storage. For example, during California’s 2012-2015 

severe drought the low root-zone water storage caused 

by moisture overdraft showed a close spatial correlation 

to the forest die-off patterns from both aerial detection 

surveys and NDWI (normalized difference water index) 

change, demonstrating the important role of root-zone 

water storage in supporting forest growth during dry 

seasons (Bales et al., 2018; Cui et al., 2022a; Goulden 

and Bales, 2019). Meanwhile, previous studies have 

successfully used a moisture index based on remote 

sensing NDWI to estimate the moisture-dependent gross 

primary production (GPP) for many terrestrial 

ecosystems, e.g. mixed forest, evergreen needle-leaf 

forest, and tropical evergreen forest (Gao et al., 2014; 

Xiao et al., 2005, 2004). Building on the above 

understanding, it is worth investigating whether or not 

incorporating remote sensing NDWI data, possibly 

related to root-zone water storage, can improve the ET 

estimates in Mediterranean-climate mountain vegetated 

areas.  

This study focused on estimating daily ET in the 

Sierra Nevada region of California to investigate the 

roles of surface soil moisture and deep root-zone water 

storage in modulating forest and non-woody ET. 

California was chosen as the study area because it is data 

rich, with more flux towers and more known about root-

accessible water storage than other possible 

Mediterranean-climate study areas. It is also an area 

with deep root-accessible water storage providing 

significant resilience to historical dry seasons and multi-

year droughts. We address the question of how remotely 

sensed data indicate forest water stress regulated by 

root-zone water storage. First, we improved a canopy-

water-stress (CWS)-based ET model (2014, 2009) based 

on remote-sensing NDVI data from MODIS and ground-

based meteorological data, by adding the consideration 

of water stress in root-zone water storage for deep-

rooted woody vegetations. The NDWI data from 

MODIS were used as a proxy for water availability in 

woody areas; we named the improved model NDWI-

CWS hereafter. Second, we evaluated the ET estimates 

from NDWI-CWS versus nine other models (three 

modeling experiments with different model settings and 

six ET products) at two spatial scales, i.e. a point scale 

by comparing against ET measurement from flux 

towers, and a watershed scale by evaluating long-term 

water-balance components in 58 catchments. Third, we 

examined the relationship between water availability 

https://doi.org/10.1016/j.rse.2024.114000
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versus in-situ soil moisture and root-zone water storage, 

which was estimated using the ET data from our 

improved model. We hypothesized that using remotely 

sensed NDWI data to account for water availability in 

deep-rooted woody vegetations supported by root-zone 

water storage can improve ET estimates in 

Mediterranean-climate mountains. 

2 Methods and Data 

We estimated daily ET in California’s Sierra Nevada 

(Figure 1) with an NDWI-CWS model using MODIS 

NDWI and NDVI data, plus ground meteorological data 

(Figure 2). This section describes the model 

development in comparison to a previous CWS model 

(Maselli et al., 2014, 2009), ground flux-tower 

measurements (Table 2) and watershed water-balance 

measurements (Table S1) used for model evaluation, and 

multiple ET products for model comparison. In addition, 

we present an approach to estimate root-zone water 

storage based on our ET product and a snowpack 

product. This root-zone-water storage product allows us 

to examine its relation to water availability (a limiting 

factor for ET), in comparison to in-situ soil moisture. 

2.1 Study area 

Our study area, California’s Sierra Nevada, is around 

35.4-41.8° North latitude and 117.6°-123.1° West 

longitude (Figure 1), extending over an area of 87,000 

km2 with a highest elevation of 4280 m (Figure S1a in 

Supporting Information). Its Mediterranean climate is 

characterized by cold wet winters and dry summers. 

Annual precipitation in the Sierra Nevada is 870 mm 

during water year 2003-2020 (WY, from 1st October to 

30th September of the following year), with a wide 

range from 120 to 2840 mm across the domain (Figure 

S1b). Most precipitation arrives in multiday winter 

storms and falls as snow above 1500 m elevation, 

storing as snowpack in high elevations (Cui et al., 

2022b, 2020). During rain-free dry summers, drainage 

from subsurface storage plus late-season snowmelt 

provide water supply (Bales et al., 2006), with snowmelt 

being especially important for water-limited forests 

(Trujillo et al., 2012). Forests consisting of broadleaf 

and evergreen needleleaf trees commonly grow in the 

western mountain region, accounting for 45% of the area 

of the Sierra Nevada (Figure S1c). In this study, deep-

rooted woody vegetation also includes shrubland and 

woody savannas. We classified non-woody areas as 

those with grassland, savanna, and other lands (Table 

S2), together representing 54% of the area of the Sierra 

Nevada (Figure S1c). The remaining 1% domain area is 

open water. The deep rooting of Sierra forests can reach 

up to 10-20 m below the surface (Klos et al., 2018), 

accessing subsurface water to sustain transpiration 

during dry seasons (Callahan et al., 2022; Goulden and 

Bales, 2019; Guo et al., 2022; Kelly and Goulden, 2016; 

Roche et al., 2020). 

2.2 The NDWI-CWS model  

Here we first introduce the original CWS model (Maselli 

et al., 2014, 2009), which was proposed to operationally 

estimate daily ET in Mediterranean-climate Italy. In our 

NDWI-CWS model, we added modifications to account 

for the water stress of deep-rooted vegetation in our 

study area. 

2.2.1 Overview of the original CWS model  

The original CWS model (Maselli et al., 2014, 2009) 

uses remote sensing NDVI and landcover data, plus 

ground meteorological data to estimate daily ET in 

water-limited Mediterranean Italy. First, an NDVI-based 

fractional vegetation cover (FVC, unitless) at each pixel 

is calculated to disentangle ET contributed by vegetation 

transpiration and soil evaporation (Equation 1). 

 
where subscript t means the value at day t; the maximum 

value (𝑁𝐷𝑉𝐼𝑚𝑎𝑥) and minimum value (𝑁𝐷𝑉𝐼𝑚𝑖𝑛) are 

set to 0.15 and 0.9, respectively, for general applications 

(Jiménez-Muñoz et al., 2009; Maselli et al., 2014). 

Second, to account for photosynthesis limitations 

from water stress (Maselli et al., 2014, 2013, 2009), a 

canopy-water-stress factor (CWS, unitless) was 

calculated using water availability (AW),  

 
where CWS varies from 0.5 (maximum water stress) to 1 

(no water stress). AW is the ratio between cumulated 

precipitation (P, mm) and cumulated potential 

evapotranspiration (PET, mm) over two months for 

woody vegetation (e.g. forest tree) versus one month for 

non-woody vegetation (e.g. grass), that is, 

 

𝐴𝑊𝑡 =
∑ 𝑃𝑡

𝑡−30

∑ 𝑃𝐸𝑇𝑡
𝑡−30

   , for non − woody veg.   (4) 

Of note, 𝐴𝑊𝑡 in the original model ranges from 0 to 

1 with a value of 1 denoting sufficient available water, 

i.e. cumulative P equals to or exceeds cumulative PET. 

Finally, daily actual ET (ET𝑡, mm) was calculated as 

the FVC-weighted average of vegetation transpiration 

(the first term in the square bracket of Equation 5) and 

soil evaporation (the second term),  

𝐹𝑉𝐶𝑡 =
𝑁𝐷𝑉𝐼𝑡 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
                          (1) 

𝐶𝑊𝑆𝑡 = 0.5 + 0.5𝐴𝑊𝑡                                       (2)   

𝐴𝑊𝑡 =
∑ 𝑃𝑡

𝑡−60

∑ 𝑃𝐸𝑇𝑡
𝑡−60

   , for woody veg.              (3) 
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where 𝐾𝑐𝑉𝑒𝑔 and 𝐾𝑐𝑆𝑜𝑖𝑙 are maximum crop coefficients 

for vegetation and soil, respectively. Following Maselli 

et al. (2014), 𝐾𝑐𝑆𝑜𝑖𝑙 was set equal to a low value of 0.2; 

the value of 𝐾𝑐𝑉𝑒𝑔 for woody vegetation was set equal 

to 0.7, which is the average value for forest between an 

upper limit of 0.9 and a lower limit of 0.5 (Allen et al., 

1998); 𝐾𝑐𝑉𝑒𝑔 for non-woody was set to 1.2, i.e. the 

value for grasses. Of note, the model does not account 

for sublimation, which often occurs during relatively 

low-ET winter season in areas with snow cover (Herrero 

and Polo, 2016; Sexstone et al., 2018). The above 

equations briefly describe the main procedures in the 

original CWS model, and we refer to Maselli et al. 

(2014) for more details. 

2.2.2 Modified NDWI-CWS model  

Though the original CWS model was proposed for the 

Mediterranean climate and successfully applied in Italy, 

we made further modifications to specifically address 

the near-rain-free dry summer for applications in 

California’s Sierra Nevada. This is because of the 

notable difference in precipitation climatology between 

the two regions (Figures S2a,b), since summer 

precipitation (June-September) represents only 4% of 

the annual total (870 mm) in the Sierra Nevada, but is 

substantially larger, 29% of the annual total (810 mm) in 

Italy. More importantly, in the Sierra Nevada subsurface 

root-zone water sustaining the transpiration of deep-

rooted woody vegetation during the dry growing season 

may not be reflected by short-term water availability 

(i.e. the two-month period in Equation 3 above), as the 

root-zone water storage is often recharged in a longer 

term, e.g. during wet years or seasons (Goulden and 

Bales, 2019; Hahm et al., 2019). 

As a widely-used classic index for water content at 

canopy level (Gao, 1996), NDWI (Equation 6) has also 

been used to quantify forest disturbances (Goodwin et 

al., 2008; Van Gunst et al., 2016; Wilson and Sader, 

2002),  

 
where 𝜌𝑛𝑖𝑟 and 𝜌𝑠𝑤𝑖𝑟 are the spectral reflectance of the 

near-infrared band and shortwave-infrared band, 

respectively. Although NDWI is sensitive to water 

content, it is also affected by canopy structure and leaf 

area index (Anderson et al., 2010). A comprehensive 

comparison between NDWI and other alternative indices 

(e.g. NIRv, EVI, NDVI, CWSI, LAI, VOD, and aridity 

index) is out of the scope of this study. However, 

previous studies (Hardisky et al., 1983; Jin and Sader, 

2005; Wilson and Sader, 2002) have found that NDWI 

is more highly correlated with canopy water content than 

NDVI, and that NDWI-based forest-change detection 

has higher accuracy. 

Since the NDWI decrement during a multi-year 

drought in California shows high correlations to tree die-

off and subsurface water overdraft (Cui et al., 2022a; 

Goulden and Bales, 2019), to some extent, a factor based 

on NDWI may reflect vegetation water availability 

affected by subsurface root-zone water storage, as also 

discussed in Section 3.3. Therefore, we used the 

following equation to calculate NDWI-based water 

availability (AW) for woody vegetation, which relies on 

water stored in the deep root zone in our study area, 

particularly during dry season and droughts,  

 
where 𝑁𝐷𝑊𝐼𝑚𝑎𝑥 is the maximum NDWI value during 

the summer growing season at each pixel. AW with a 

range of 0.5-1 from Equation 7 represents temporal 

dynamics and spatial patterns of vegetation water 

availability, which has been used to denote the effect of 

water on plant photosynthesis for water-dependent GPP 

estimations (Gao et al., 2014; Xiao et al., 2005, 2004). 

The CWS from NDWI-based AW (Equation 3) for 

woody vegetation has a range of 0.75-1, with 0.75 

denoting severe water stress and 1.0 indicating no water 

stress. The larger low-bound value (i.e. 0.75) of variable 

CWS for woody vegetation reflects its higher resistance 

to water stress than non-woody vegetation (0.5), as their 

roots can access deep root-zone water storage (Paço et 

al., 2009; Wilschut et al., 2022; H. Xu et al., 2018). 

Overall, the NDWI-CWS model calculates AW using 

NDWI-based Equation 7 for woody vegetation (i.e. 

forest tree and shrub) and P/PET-based Equation 4 for 

non-woody vegetation. The daily ET is then estimated 

by Equation 5, with the AW term for soil evaporation 

using Equation 4. These model settings were chosen 

after evaluating model performance across different 

modeling experiments (Table 1, described in Section 2.3 

below). As the Priestley‐Taylor equation provides 

reasonable estimates of PET in forests and lakes 

(Priestley and Taylor, 1972; Rao et al., 2011; 

Rosenberry et al., 2007), our NDWI-CWS model uses 

the Priestley‐Taylor-based PET, instead of using the 

PET from the Jensen-Haise method (Jensen and Haise, 

1963) in the original CWS model, which might provide 

unreasonable, negative PET values when temperatures 

are low (Zhao et al., 2021). Our analysis showed that 

ET𝑡 = PET𝑡 × [𝐹𝑉𝐶𝑡 × 𝐾𝑐𝑉𝑒𝑔 × 𝐶𝑊𝑆𝑡 + (1

− 𝐹𝑉𝐶𝑡)𝐾𝑐𝑆𝑜𝑖𝑙 × 𝐴𝑊𝑡]       (5)  

NDWI =  
𝜌𝑛𝑖𝑟 − 𝜌𝑠𝑤𝑖𝑟

𝜌𝑛𝑖𝑟 + 𝜌𝑠𝑤𝑖𝑟
                                       (6)  

𝐴𝑊𝑡 =
1 + 𝑁𝐷𝑊𝐼𝑡

1 + 𝑁𝐷𝑊𝐼𝑚𝑎𝑥
                                          (7)  
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using PET from the Jensen-Haise method significantly 

underestimates ET, compared to the Priestley‐Taylor 

method and in-situ observations. We also added ET 

estimates for open water, assumed to be equal to PET 

(Guerschman et al., 2022; Zhang et al., 2019), which is 

one component of landscape- and basin-scale ET 

budgets. 

As crop coefficients (Kc) vary across different 

ecosystems and soil conditions (Allen et al., 2005; Liu et 

al., 2017), the NDWI-CWS model uses calibrated crop 

coefficients in Equation 5 using California’s ET 

measurements to further improve model performance, 

instead of the determined values used for applications in 

Italy (Maselli et al., 2014). Using the globally 

convergent shuffled-complex-evolution algorithm (SCE-

UA, Duan et al., 1992), the 𝐾𝑐𝑉𝑒𝑔 values for woody and 

non-woody vegetations, as well as 𝐾𝑐𝑆𝑜𝑖𝑙 were 

automatedly calibrated by minimizing the root-mean-

square error (RMSE) of 8-day ET between model 

estimates and in-situ ET measurements across all years 

from 18 flux towers in California (Figure 1 and Table 1, 

described in Section 2.5 below). 

2.3 Modeling experiments and evaluation 

We designed four modeling experiments with different 

formulas for available water and crop coefficients (Table 

1), to examine their impacts on ET simulation and to 

choose the best model setting for our study area. 

Experiment 1 employed the identical setting in the 

original CWS model, which uses P/PET-based AW for 

woody and non-woody vegetated areas. The second 

experiment (named NDWI-woody) switched to the 

NDWI-based AW (Equation 7) for woody areas, but 

kept using P/PET-based AW for non-woody, to test 

whether our NDWI-based AW improves ET simulations 

in deep-rooted woody areas. As opposed to Expt 2, the 

NDWI-non-woody (Expt 3) used NDWI-based AW for 

non-woody areas to examine whether or not NDWI-

based AW is applicable in non-woody areas (e.g. 

grasses). Finally, the NDWI-CWS model (as described 

above, labeled as Expt 4 here) was similar to the NDWI-

forest setting. Rather than using the default crop 

coefficients in Expt 1-3, calibrated coefficients (woody 

𝐾𝑐𝑉𝑒𝑔 = 0.59, non-woody 𝐾𝑐𝑉𝑒𝑔 = 1.00, and soil 

𝐾𝑐𝑆𝑜𝑖𝑙 = 0.30) were used in the NDWI-CWS model. 

Experiments 2-4 used P/PET-based AW to denote the 

water availability for soil evaporation in Equation 5. 

Two sources of “ground-truth” ET datasets were 

used to evaluate modeling ET at both point and 

catchment scales. One was direct ET measurements 

from 18 flux towers in California (9 sites inside the 

Sierra Nevada, Figures 1 and S1d). The other dataset 

was indirectly estimated based on water balance at 58 

catchments (Figures 1 and S1d) with natural-flow data 

(Q, mm). The water-balance approach is often used as 

an accurate way to validate ET estimates at large scales 

(N. Ma et al., 2020; Rodell et al., 2004). Long-term 

water-year ET was calculated as P – Q – ΔS, where the 

long-term (≥ 10 years) catchment-scale terrestrial water 

storage ΔS (mm) approaches zero, and thus this 

comparably minor term was ignored in this study 

(Cheng et al., 2021; Guerschman et al., 2022; Liu et al., 

2016; Ma et al., 2021). The catchment-scale evaluation 

implicitly includes the impacts of complex but often 

unmeasured water movement, e.g. lateral flow, 

providing an overall ET performance at the catchment 

management scale. To evaluate our models’ 

performances compared to “ground-truth” ET datasets 

and other modeling ET datasets, we used the RMSE, 

coefficient of determination (R2), and mean bias 

difference (MBD) with negative values denoting 

underestimation, and values closer to zero denoting 

better agreement. 

2.4 Estimates of root-zone water storage 

As we hypothesized that NDWI-based water 

availability is relevant to water stored in the deep root 

zone, which is important in sustaining ET in forests in 

our study area during dry periods, and episodic or multi-

year droughts, we further calculated root-zone water 

storage (RZWS, mm) for analyzing its relationship to 

water availability. Using a water-balance approach 

(Dralle et al., 2021; McCormick et al., 2021; Wang-

Erlandsson et al., 2016), we first calculated the root-

zone water deficit (D, mm) on day t as the running, 

accumulated difference (A, mm) between outgoing water 

flux (Fout, mm) and incoming water flux (Fin, mm) over 

the previous day, as shown in Equations 8 and 9, 

 

 
where, to obtain a lower bound of D estimates, we 

conservatively used a lower-bound of Fout, which 

consists of ET, with runoff and other outgoing fluxes 

being ignored, following previous studies (Dralle et al., 

2021; McCormick et al., 2021; Wang-Erlandsson et al., 

2016). However, since snowpack accumulation and 

ablation play an important role in regulating incoming 

water flux in the Sierra Nevada (Bales et al., 2006; Henn 

et al., 2020), we specifically proposed to calculate Fin as 

the effective incoming water, which is difference 

between precipitation and snow water equivalent change 

(i.e. ∆𝑆𝑊𝐸, mm; with a positive value denoting 

𝐴𝑡−1→𝑡 = 𝐹𝑜𝑢𝑡,𝑡−1 − 𝐹𝑖𝑛,𝑡−1 

               =  𝐸𝑇𝑡−1 − (𝑃 𝑡−1 − ∆𝑆𝑊𝐸 𝑡−1)                (8)  

𝐷𝑡 = 𝑚𝑎𝑥(0, 𝐷𝑡−1 + 𝐴𝑡−1→𝑡)                                    (9)  

https://doi.org/10.1016/j.rse.2024.114000
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increased snowpack storage in one day). Compared to a 

snow-cover-threshold-based correction used in previous 

study (Dralle et al., 2021), quantitively accounting for 

SWE change can better represent seasonal snow 

dynamics, the portion of precipitation stored as 

snowpack, and the role of melted snow in recharging 

root-zone storage, potentially providing more-robust 

estimates of daily root-zone water storage. 

The daily root-zone water deficit (Dt) at each pixel is 

tracked continuously with an initial D on the first day of 

our calculation period WY2004-2020 being assumed 

zero (i.e. 𝐷𝑡=1 = 0 on Oct. 1, 2003) (Dralle et al., 2021; 

McCormick et al., 2021). The maximum value of Dt 

throughout our study period is defined as the root-zone 

water storage capacity (RZWSmax, mm). Thus, the daily 

root-zone water storage (RZWS) was calculated by: 

 
In this study, we masked out the pixels with long-

term averaged ET – P > 0 to eliminate the areas that may 

have unmeasured incoming fluxes, e.g. water subsidies 

from lateral flow (Cui et al., 2022a; Maxwell and 

Condon, 2016), following Dralle et al. (2021) and 

McCormick et al. (2021). Of note, modeled daily ET is 

used as input for root-zone-water-storage calculation, 

and the masking procedure does not impact the site-scale 

and catchment-scale ET estimates. To investigate the 

relationship between water availability for ET versus 

root-zone water storage and surface soil moisture, we 

deseasonalized time-series data to remove their own 

strong seasonal signals, which may result in spurious 

correlations (Sriwongsitanon et al., 2016). The 

deseasonalization procedure includes three steps: a) 

normalizing time-series data to be between 0 and 1 

range, b) computing the average values of normalized 

data as seasonal patterns, and c) calculating 

deseasonalized data as the residue between normalized 

data and seasonal patterns. 

2.5 Data sources and processing 

Here we describe the sources and processing procedures 

of remote-sensing MODIS data and ground-based 

meteorological data that were used as model inputs to 

estimate daily ET during WY2003-2020. Following that 

we describe the ET measurements from flux towers used 

for model calibration and point-scale evaluation, plus 

their in-situ soil moisture measurements. Auxiliary 

datasets include natural streamflow data used for 

catchment-scale ET evaluation, six other ET products 

(two regional and four global products) as comparisons 

to our model, and a snow product used as inputs for 

estimating root-zone water storage. 

2.5.1 Remote-sensing MODIS data  

The NDVI and NDWI values were derived based on 

surface spectral reflectance from MODIS satellite 

sensors, with a temporal resolution of 8 days and a 

spatial resolution of 500 m (MYD09A1 product, 

https://lpdaac.usgs.gov/products/myd09a1v006/). 

Annual landcover types based on International 

Geosphere-Biosphere Programme (IGBP) classification 

from MODIS MCD12Q1 product 

(https://lpdaac.usgs.gov/products/mcd12q1v006/) were 

used to reclassify our study area into woody, non-

woody, and open water (Table S2). Using the Google 

Earth Engine platform (Gorelick et al., 2017), we 

masked out cloud-contaminated pixels and calculated 8-

day time-series data of NDVI and NDWI, which were 

then linearly interpolated to a daily basis (Battista et al., 

2018; Chiesi et al., 2013; Maselli et al., 2014). 

2.5.2 Ground meteorological data  

Daily minimum and maximum temperature and 

precipitation were obtained from the Parameter-

elevation Relationships on Independent Slopes Model 

(PRISM, https://prism.oregonstate.edu/), which was 

developed using ground measurements at 13,000 sites 

and showed good agreement with ground rain-gauge 

measurements (Daly et al., 2008). Although PRISM has 

limitations in high-elevation complex terrain due to rain-

gauge undercatch during snowfall (Cui et al., 2022b), 

PRISM is still considered one of the best gridded gauge-

based datasets in the U.S. (Pirmoradian et al., 2022). We 

also used rain-gauge measurements from 180 sites in the 

Sierra Nevada, with elevations ranging from 142 to 3263 

m (Text S1 and Figures S3a,b). Evaluation against in-

situ gauge measurements showed that PRISM generally 

aligns well with gauge measurements (Figure S3c), 

though its performance at the high-elevation band 

around (2900 m) is slightly reduced, compared to two 

lower-elevation bands (500 and 1700 m; Figures S3d-f). 

To match the spatial resolution of 500 m in our study, 

we bilinearly interpolated the 800-m PRISM data, 

following previous water-balance-related studies in 

California (Cui et al., 2022a; Goulden and Bales, 2019; 

Roche et al., 2022). With these meteorological data, we 

used the mountain microclimate MTCLIM algorithm 

(Bohn et al., 2013; Kimball et al., 1997; Martínez et al., 

2022; Thornton et al., 2000) to estimate incoming 

shortwave solar radiation, and then calculate daily PET 

using the Priestley-Taylor method. 

2.5.3 ET measurements from flux towers  

Eddy covariance measurements from 18 flux towers in 

California (including nine sites inside the Sierra Nevada; 

see Figures 1 and S1d, Table 2) were retrieved from the 

AmeriFlux (https://ameriflux.lbl.gov/) and Sierra 

Critical Zone Observatory 

𝑅𝑍𝑊𝑆𝑡 = 𝑅𝑍𝑊𝑆𝑚𝑎𝑥 − 𝐷𝑡                              (10)  

https://doi.org/10.1016/j.rse.2024.114000
https://lpdaac.usgs.gov/products/myd09a1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://prism.oregonstate.edu/
https://ameriflux.lbl.gov/
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(https://www.ess.uci.edu/~california/). Since there are 

only 9 flux-tower sites with available data inside the 

Sierra Nevada, including the other 9 flux towers in 

southern California can not only increase our limited 

number of flux-tower sites, but also can help calibrate 

and evaluate the model more broadly (Cui et al., 2022a; 

Goulden and Bales, 2019). The 18 flux towers are 

located in varying landscapes (including evergreen 

needleleaf forests, mixed forests, savannas, shrublands, 

grasslands, and desert barren vegetation). 

Reclassification of the flux towers into 13 woody and 

five non-woody sites was based on ground-level land-

cover metadata and remote-sensing percent woody cover 

estimated using the 10-m WorldCover product (Zanaga 

et al., 2021), with sites with percent woody cover ≥ 40% 

classified as woody (Table 2 and Figure S4). Following 

the data processing procedure described in Rungee et al. 

(2019) and Goulden et al. (2012), we first automatically 

filled 30-min data gaps using regression models and 

linear interpolations. Second, gap-filled 30‐min data 

were aggregated to daily values, and the energy balance 

was closed using linear regression of turbulent fluxes 

and available energy forced through the original 30-min 

data (Goulden et al., 2012; Rungee et al., 2019; Twine et 

al., 2000). Afterward, daily time series were then quality 

filtered to remove suspicious points by visual inspection. 

In total, we collected 52,500 site-day ET data from the 

18 flux towers, which were also aggregated to an 8-day 

basis for calibrating our NDWI-CWS model. The 27,100 

site-day data from the nine sites inside the Sierra Nevada 

were specifically used for evaluating model performance 

in the mountains. In addition, for each of these nine flux-

tower sites we averaged their daily soil water content 

(SWC, %) over shallow soil depths (≤ 30 cm below 

surface), as the soil-moisture sensors across the nine 

sites are placed at different depths ranging from 5 to 90 

cm (Baldocchi et al., 2004; Goldstein et al., 2000; 

Sadeghi et al., 2022). 

2.5.4 Other ET datasets  

Six modeled ET products (four biophysical models, one 

machine-learning model, and one statistical model) were 

used to benchmark our NDWI-CWS model. First was an 

operational MODIS-based global ET product at 500-m 

resolution and 8-day intervals 

(https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD16A2), 

using the MOD16 algorithm (Mu et al., 2011, 2007; 

Running et al., 2017). Another MODIS-based global 

500-m ET product at 8-day intervals was Penman-

Monteith-Leuning Version 2 (PML2, 

https://developers.google.com/earth-

engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017)

, which uses a coupled diagnostic biophysical model 

(Zhang et al., 2019). The third was a daily global 

product from the Global Land Evaporation Amsterdam 

Model (GLEAM) at a 0.25°spatial resolution, which 

uses a data assimilation technique for estimating water 

availability (Martens et al., 2017). The fourth product 

was monthly ET at 1-km resolution developed for 

California 

(https://code.earthengine.google.com/?asset=users/david

dralle/bessv2), using a biophysical model named BESS 

(Baldocchi et al., 2019). For the remaining two models, 

one was FLUXCOM, using machine learning to merge 

energy flux measurements from flux towers and MODIS 

remote sensing data (Jung et al., 2019). FLUXCOM 

provides latent heat flux (LE) and sensible heat flux (H) 

at 0.0833° resolution and 8-day intervals (from 2001 to 

2015), which were used to calculate ET and evaporative 

fraction (𝐸𝐹 =
𝐿𝐸

𝐿𝐸+𝐻
). The other product was from the 

Center for Ecosystem Climate Solutions (CECS, 

https://cecs.ess.uci.edu/data-atlas/), providing monthly 

ET data at a 30-m resolution for California using a 

statistical approach. CECS ET was estimated based on 

the high correlation between ET measurements and 

Landsat-based NDVI (Goulden and Bales, 2019, 2014). 

For model comparison, we bilinearly interpolated data 

from GLEAM, BESS, and FLUXCOM data to match 

the common 500-m resolution, and aggregated the 

CECS data to the 500-m resolution for our analyses. We 

also accumulated daily flux-tower ET measurements and 

estimates from our NDWI-CWS model to 8-day and 

monthly scales to match the time scales of these six ET 

datasets. 

2.5.5 Auxiliary datasets  

We collected long-term natural-streamflow data from 58 

streamflow gages, including 26 gages obtained from the 

California Data Exchange Center (CDEC, 

https://cdec.water.ca.gov/) and 32 gages from the U.S. 

Geological Survey (USGS). Monthly natural-flow data 

from 26 CDEC gages were reconstructed by accounting 

for flow changes induced by upstream operations, e.g. 

diversions and reservoir storage (Huang and Kadir, 

2016; Maurer et al., 2022). For long-term water-balance-

based ET comparison, we filtered out streamflow gages 

with < 10 of years data during our study period. We 

selected 32 unimpaired gages from the USGS GAGES-

II dataset (Falcone, 2017, 2011) from all USGS gages 

inside the Sierra Nevada, by filtering the dataset to 

include only gages with data record coverage of at least 

10 years and no upstream dams. As a result, we 

collected natural-flow data from outlet gages of 58 

catchments encompassing most of the Sierra Nevada 

https://doi.org/10.1016/j.rse.2024.114000
https://www.ess.uci.edu/~california/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD16A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD16A2
https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
https://code.earthengine.google.com/?asset=users/daviddralle/bessv2
https://code.earthengine.google.com/?asset=users/daviddralle/bessv2
https://cecs.ess.uci.edu/data-atlas/
https://cdec.water.ca.gov/
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(Table S1; Figures 1 and S1d). Drainage areas were 

determined based on the GAGES-II dataset, ranging 

from 2 to 22,977 km2. The natural-flow data were 

aggregated to a water-year basis for our analyses. 

Additionally, we collected the daily UA SWE 

product at a 4-km resolution (Broxton et al., 2019), 

which assimilates in-situ snow measurements with 

PRISM data. The UA SWE product has a good 

performance in forested areas (Cho et al., 2020), which 

is important for our study. The daily SWE data were 

bilinearly interpolated to 500-m resolution, the same as 

the spatial resolution of our NDWI-CWS ET, for 

estimating root-zone water storage. 

3 Results 

3.1 ET estimates from NDWI-CWS model 

First, we illustrated the daily variables for estimating 

daily ET in woody versus non-woody vegetation using 

two flux-tower sites (Figure 3). The 2015-m elevation 

woody site US-CZ3 showed higher precipitation and 

lower temperature compared to the 400-m elevation 

non-woody site US-CZ1 (Figures 3a,h). Vegetation 

greenness (NDVI) at US-CZ3 was generally higher than 

at US-CZ1, reflecting a higher fractional vegetation 

cover. US-CZ1 showed a seasonal pattern with relatively 

higher fractional vegetation cover values during winter 

and early spring, and lower dry-summer values (Figures 

3b,i), with relatively constant year-round values at US-

CZ3. The water availability based on NDWI for woody 

US-CZ3 showed relatively lower values during dry 

summer than during spring. Due to vegetation 

difference, water availability at non-woody US-CZ1 was 

calculated differently based on P/PET, exhibiting a clear 

seasonal pattern with low values during the rain-free 

summer. The canopy water stress factor CWS exhibited 

a similar pattern as water availability for both sites. 

Annual PET (1925 mm) at US-CZ1 reflected higher 

temperatures compared to that (1800 mm) at US-CZ3 

(Figures 3c,j). As shown by both daily flux-tower 

measurements and modeled estimates, the observed 

annual ET at US-CZ3 (595 mm) was larger than that at 

US-CZ1 (343 mm). Correlations between daily ET 

measurements and modeled estimates were ≥0.6 for the 

two sites. The statistically significant increases in daily 

ET measurements after precipitation events were also 

captured by the NDWI-CWS model (Figure S5). In-situ 

measurements show lower ET during dry summer at the 

non-woody site, versus peak ET during the growing 

season in summer at the woody site. Although our 

NDWI-CWS model yielded higher ET estimates during 

the dry season (summer) of WY2013, it does not exhibit 

a consistent overestimation bias during dry seasons, as 

shown in Figure S6. We also analyzed variable 

anomalies by removing seasonality from data. At the 

woody US-CZ3 site (Figures 3d-g), wetter soil moisture 

(SWC) and its anomalies during spring season did not 

show a noticeable correlation to anomalies of 

evaporation efficiency (ET/PET), NDWI-based AW, 

CWS, and ET. However, at the non-woody US-CZ1 site 

(Figures 3k-n), the wet-dry-pattern of soil-moisture 

anomalies during spring season showed strong positive 

correlations to anomalies of evaporation efficiency 

(R=0.81), P/PET-based AW (0.81), CWS (0.81), and ET 

(0. 57) from our model, indicating that P/PET-based 

AW is relevant to the variability of soil moisture. 

Second, at an 8-day temporal scale, we compared 

NDWI-CWS ET with observed 8-day ET at the nine 

sites inside the Sierra Nevada (Figure 4), showing a 

good agreement (mean R2=0.66). Albeit there was 

general agreement with in-situ measurements, noticeable 

discrepancies at certain sites (e.g. US-Blo and US-Ton) 

also existed in NDWI-CWS and FLUXCOM models. 

Both may note capture the variability of measured ET 

during growing seasons, and underestimate peak ET at 

some sites (e.g. US-Blo and US-Ton with negative 

MBDs). When compared to measured ET at the nine 

sites, both NDWI-CWS and FLUXCOM yielded similar 

R2 values of 0.68 and 0.70 during the growing seasons 

versus non-growing seasons, respectively, indicating 

relatively consistent performance through all seasons. At 

the woody forest site with the longest record (US-CZ3, 

10 years), both NDWI-CWS and FLUXCOM performed 

well in depicting the measured ET patterns during 

growing seasons. The NDWI-CWS model yielded a 

higher R2 of 0.65 than FLUXCOM (0.58), but also had 

a larger MBD of 1.38 mm than FLUXCOM (0.30 mm). 

At US-Ton, FLUXCOM yielded a higher R2 of 0.75 

than the NDWI-CWS model (0.68), indicating the 

advantage of its machine learning for leveraging flux-

tower data. Regarding ET anomaly (Figure S7), the 

NDWI-CWS model had a higher correlation of 0.6 than 

FLUXCOM (0.49) at US-CZ3. Overall, across the nine 

Sierra sites, ET anomalies from both NDWI-CWS and 

FLUXCOM were positively correlated to those from 

flux-tower observations, with R values of 0.47 and 0.46, 

respectively, indicating both models can somehow 

capture ET variability. Regarding the nine California 

sites outside the Sierra Nevada (Figure S8), NDWI-

CWS model estimates showed good agreement at the 

woody forest US-SCf site (R2 of 0.54, not used in 

FLUXCOM’s training), whereas FLUXCOM showed 

noticeable underestimation with R2 of 0.02 and MBD of 

-11.15 mm. For five woody sites with shrublands (US-

SO3, US-SO4, US-SO2, US-SCw, and US-SCc), the 

https://doi.org/10.1016/j.rse.2024.114000
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mean R2 values for NDWI-CWS and FLUXCOM 

models respectively were 0.33 and 0.19 (Figure S8), 

indicating NDWI-CWS model has a better performance 

in ET at shrublands than does FLUXCOM. In terms of 

ET anomaly across the nine sites outside the Sierra 

Nevada (Figure S9), NDWI-CWS yielded a larger 

correlation (R of 0.43) with observation than 

FLUXCOM (R of 0.27). Across all the 18 sites in 

California, NDWI-CWS (FLUXCOM) had a larger 

mean R2 value of 0.63 (0.50) at seven woody forested 

sites than the mean R2 value of 0.33 (0.07) at five 

woody shrubland sites, showing that NDWI-CWS 

(FLUXCOM) has a better performance in ET at woody 

forested sites than at woody shrubland sites. 

Third, from a climatology view, spatial patterns of 

monthly ET (Figure 5a) show higher values in the 

western versus eastern Sierra, reflecting less water due 

to the rain shadow east of the Sierra crest. Monthly 

woody ET is higher than non-woody ET, but is lower 

than open-water ET (Figures 5a,b). The PET indicated 

by open-water ET peaks at 252 mm in July, coincident 

with peak woody ET (94 mm, Figure 5b). However, 

non-woody ET peaks one month earlier (45 mm in 

June), and declines during the summer. This simulated 

seasonal variation is consistent with in-situ ET 

measurements (Figures 3c,j). Annual ET totals for open 

water, woody, and non-woody are 1642, 634, and 353 

mm, respectively. Summer ET contributes 53%, 53%, 

and 42% of annual totals for open water, woody, and 

non-woody, respectively. In terms of elevational patterns 

below 1000 m (Figure 5c), both woody and non-woody 

ET increases with elevation, coinciding with the general 

increase in precipitation (Figure S1e). However for areas 

above 1000 m elevation, despite precipitation well in 

excess of their ET values, the ET values generally 

decrease with elevation, reflecting apparent energy 

limitations (Guo et al., 2022). 

3.2 Comparison across modeling experiments and 

products 

3.2.1 Point-scale comparison against ET measurements 

from flux towers 

Comparisons across four modeling experiments and six 

other ET products at three temporal scales (1-day, 8-day, 

and monthly) indicate that in most cases NDWI-CWS 

simulations match flux-tower ET measurements better 

than other simulations (i.e. three other modeling 

experiments and six gridded ET products), particularly 

for woody sites (Table 3). For 1-day ET, using NDWI-

based AW for woody areas (NDWI-woody) improved 

R2 to 0.44 from 0.36 (original CWS). However, using 

NDWI-based AW for non-woody areas (NDWI-non-

woody) yielded a smaller R2 of 0.18. Our NDWI-CWS 

using calibrated crop coefficients (Table 1) showed the 

smallest RMSE of 0.87 mm, the largest R2 of 0.46, and 

a closer MBD to zero (-0.01 mm), indicating that the 

calibrated NDWI-CWS further improves results 

compared to NDWI-woody. The GLEAM data shows 

the lowest R2 of 0.01, indicating that its original coarse-

resolution data cannot capture the variability of in-situ 

flux-tower data. 

Similarly, for 8-day ET in seven Sierra woody sites 

(Table 3), NDWI-woody and original CWS showed 

comparable R2 values of 0.54, however NDWI-woody 

yielded a smaller RMSE of 6.79 mm than original CWS 

(8.15). NDWI-CWS showed an R2 value of 0.57, and 

FLUXCOM yielded an R2 of 0.65, a larger value than 

those from PML2 (0.50), MOD16 (0.26), and GLEAM 

(0.01). FLUXCOM yielded the highest R2, indicating 

that its machine-learning approach takes advantage of 

flux-tower measurements. Using 8-day ET from two 

Sierra non-woody sites, NDWI-CWS and original CWS 

yielded comparable R2 values of 0.67 and 0.68, 

respectively. However, NDWI- CWS had a lower MBD 

(0.79 mm) than original CWS (2.33 mm), demonstrating 

a reduction in model overestimation. MOD16 yielded 

the largest R2 of 0.73, but showed underestimation with 

a negative MBD of -1.38 mm. The GLEAM yielded the 

lowest R2 of 0.10, reflecting its limited ability to capture 

the variability of in-situ flux-tower data. Across all 18 

sites, FLUXCOM showed a relatively lower R2 of 0.50 

compared to its performance inside Sierra Nevada, again 

indicating its relatively lower performance at the nine 

sites outside Sierra. Our NDWI-CWS showed the 

highest R2 of 0.59 across 18 sites in California. 

Regarding monthly ET comparison across 18 sites in 

California (Table 3), our NDWI-CWS showed the best 

performance with the lowest RMSE of 16.99 mm, the 

largest R2 of 0.71, and the most-unbiased MBD of 0.09 

mm. For the Sierra woody sites, NDWI-CWS achieved 

the second-highest R2 of 0.74, which was lower than 

FLUXCOM (0.78), but higher than those from MOD16 

(0.0.43), PML (0.48), GLEAM (0.02), BESS (0.57), and 

CECS (0.65). For the Sierra non-woody sites, MOD16 

had the highest R2 (0.81), followed by NDWI-CWS 

(0.75) and FLUXCOM (0.69). Generally, a longer-

temporal-scale (monthly) evaluation yields larger R2 

values compared to 1-day and 8-day scales. Among the 

six off-the-shelf products, FLUXCOM has the best ET 

estimates inside the Sierra Nevada. 

Further evaluation using Taylor diagrams (Taylor, 

2001) at the nine sites inside the Sierra Nevada (Figure 

6) again suggested that both NDWI-CWS and 

FLUXCOM have better performance in woody sites 

(Figures 6a-e) than the other models. Although 
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FLUXCOM data were not evaluated at US-xTE and US-

xSP (FLUXCOM data ended in 2015 not covering the 

in-situ measurements, Figure 4). For example, at US-

CZ3 site (Figure 6c) NDWI-CWS showed a larger 

correlation R of 0.93 and a lower RMSE of 13.53 mm 

than did the other three modeling experiments and six 

ET products. The standard deviation (34.47 mm) of 

NDWI-CWS ET agreed with that (32.15 mm) of flux-

tower measurements, resulting in a visually closer 

distance to the observed ET (Figure 6c). Among the six 

ET products, FLUXCOM ET showed a larger 

correlation R of 0.90 than MOD16 (0.51), PML (0.79), 

CECS (0.86), GLEAM (-0.01), and BESS (0.67). 

Regarding the two non-woody sites (Figures 6f,h), 

NDWI-CWS and FLUXCOM yielded comparable ET 

estimates at US-CZ1, while MOD16  yielded the best 

estimates at US-Var. The NDWI-non-woody and 

GLEAM showed inferior performances compared to 

others.  

3.2.2 Catchment-scale comparison against water-

balance-based ET  

With long-term annual water-balance-based ET (i.e. P – 

Q) estimates at 58 catchments (Table 4 and Figure 7), 

our NDWI-CWS shows reasonable agreements (RMSE 

of 113.01 mm, R2 of 0.42, and MBD of 26.85 mm), 

compared to other ET estimates. For the other three 

modeling experiments, NDWI-woody simulated a larger 

R2 (0.40) than did the original CWS (0.35), but showed 

a larger RMSE of 140.08 versus 106.21 mm (Figure 7a). 

It is worth noting that NDWI-non-woody yielded a low 

R2 (0.12, Figure 7b), consistent with the findings using 

point-scale flux-tower ET measurements (Table 3), 

indicating that NDWI-based AW is not applicable for 

non-woody areas. Among the six ET products, PML2 

and MOD16 showed R2 values of 0.38 and 0.37, 

respectively, although PML2 had a slight overestimation 

(MBD of 40.47 mm) and MOD16 yielded a notable 

underestimation (MBD of -216.99 mm, Figure 7c), 

which is consistent with previous finding that MOD16 

underestimates ET (Biederman et al., 2017; Goulden et 

al., 2012). Both GLEAM and BESS yielded low R2 

values of 0.14 and 0.17, respectively (Figure 7d). The 

BESS ET showed a relatively homogenous pattern, in 

other words, it did not capture the ET-increase pattern in 

high-ET catchments. FLUXCOM and CECS showed 

comparable R2 values of 0.37, respectively, although 

FLUXCOM had a slight overestimation (MBD of 30.40 

mm) and CECS yielded an underestimation (MBD of -

70.97 mm, Figure 7e). The noticeable underestimation 

from CECS appeared in the Lake Tahoe catchment 

(gage TRF), which has the largest percentage (21.3%, 

Table S1) of open water, since CECS excludes ET 

estimates in open-water areas. Among the 10 gridded ET 

estimates, our NDWI-CWS shows the overall best 

performance, which has the largest R2 value at the 

catchment scale (Figure 7f). 

3.3 Root-zone water storage and soil moisture 

Using root-zone water storage capacity (RZWSmax) 

calculated using NDWI-CWS ET, precipitation, and 

SWE (Figure S10), we found that woody areas have a 

statistically significant larger root-zone water storage 

capacity (mean±std of 601±327 mm), which is 

approximately double the mean value in non-woody 

areas (285±283 mm, Figure 8). This coincides with 

woody ET being higher than non-woody. The root-zone 

water storage capacity shows a spatial pattern with 

higher values in western than eastern Sierra (Figure 

S11). This can be explained by that larger root-zone 

water storage capacity is needed in more-vegetated 

western Sierra to sustain ET during dry periods, since 

plants size their root depth and root-zone water storage 

capacity to adapt to prevailing hydroclimate (Schenk 

and Jackson, 2005; Stocker et al., 2023; Wang-

Erlandsson et al., 2016), i.e. dry summer season or 

drought for Sierra. Water supply is another important 

factor that regulates root-zone water-storage capacity. 

The higher precipitation in woody areas (Figure S12a) 

supports larger woody ET and water storage in woody 

root zones. Precipitation can refill the root-zone water 

storage over one year or multiple years. In ≥ 85% of 

non-woody and woody areas (Figure S12b), annual 

precipitation exceeds root-zone water-storage capacity. 

In some areas, overdrafted root-zone water storage 

during drought may take multiple years to replenish 

(Figures S12f,g). 

At an annual scale, the NDWI-based water 

availability showed a larger correlation (0.57) with root-

zone water storage (RZWS, Figure 9a) than did the 

P/PET-based water availability (0.38), using 

deseasonalized values (Figure S13). The correlation 

between NDWI-based water availability and root-zone 

water storage was even higher (0.74) for the dry summer 

season, during which P/PET-based water availability 

shows a poor correlation (0.27), since its short time scale 

(30 days) cannot account for the moisture carry over 

through seasons or years. On the contrary, we observed 

larger correlations between P/PET-based water 

availability and surface soil moisture than that for 

NDWI-based water availability (Figures 9b and S13). 

The correlations between P/PET-based water availability 

and soil moisture were 0.66 and 0.60 for the annual scale 

and summer season, respectively, which were both 

higher than those for NDWI-based water availability. 

We also examined correlations between water 
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availability and evaporation efficiency (ET/PET), and 

evaporative fraction (Figure S15), which are both 

proxies for ET water stress. P/PET-based water 

availability showed stronger positive correlations with 

ET/PET and evaporative fraction at an annual scale, but 

weaker correlations during dry summer (Figures 9c,d). 

In contrast, NDWI-based water availability showed 

larger positive correlations to ET/PET and evaporative 

fraction during dry summer than at an annual scale 

(Figures 9c,d), showing that it better reflects water stress 

during dry summer. A map comparison (Figure S16) 

shows that AW captures wet anomalies in woody areas 

and dry anomalies in non-woody areas, compared to 

evaporative fraction. These results suggested that 

NDWI-based and P/PET-based water availability are 

relevant to ET water stress. NDWI-based water 

availability can indicate deep root-zone water storage, 

and much so during dry summer. Instead, surface soil 

moisture can be represented by P/PET-based water 

availability.  

4 Discussion 

4.1 Distinct water sources for sustaining ET in 

vegetation areas during dry seasons 

It is known that deep-rooted woody vegetation (e.g. 

forest tree) and non-woody vegetation (e.g. grass) use 

water from different sources, reflecting their different 

life strategies (Baldocchi et al., 2004). Through 

hydraulic lift (Ishikawa and Bledsoe, 2000), deep roots 

of forest trees tap water from root-zone water storage 

(Lewis and Burgy, 1964). In our case, deep-rooted 

Sierra forests can withdraw water from root-zone water 

storage to sustain their ET demands during dry summer 

growing seasons and multi-year droughts (Bales et al., 

2018; Cui et al., 2022a; Goulden and Bales, 2019; Guo 

et al., 2022; Klos et al., 2018), when water inputs from 

precipitation, snowmelt, and surface soil moisture are 

not sufficient. The ability of forest trees to withstand 

severe water deficits during dry conditions is also 

strengthened by their physiological and structural 

adjustments, e.g. water-loss control by stomatal closure 

(Ambrose, 2018; Harrison et al., 1971) and reducing 

hydraulic conductivity (Eamus and Prior, 2001). 

Previous studies suggest that the canopy water content 

indicated by NDWI change is a good indicator of tree 

mortality (Goodwin et al., 2008; Van Gunst et al., 2016). 

Meanwhile, recent work suggested that NDWI change 

correlates to subsurface water overdraft during a multi-

year drought in the Sierra Nevada (Cui et al., 2022a; 

Goulden and Bales, 2019). Since we have found a high 

correlation between NDWI-based water availability and 

root-zone water storage, and much so for the dry 

summer growing season, taking into account the role of 

root-zone water storage using NDWI-based water 

availability improves woody ET estimates. This explains 

why our NDWI-CWS model shows better agreement 

with both woody ET measurements from flux towers, 

and long-term catchment-scale water-balance 

components, compared to the original CWS model, 

which only considers available water from short-term 

precipitation using P/PET-based water availability.  

In contrast, non-woody vegetation in mountains has a 

relatively shallow root system with limited access to 

deep root-zone water storage (Krishnan et al., 2012). For 

example, shallow-rooted grasses (Jackson et al., 1996) 

are unable to withdraw water from deep sources 

(Baldocchi et al., 2004), and rely on soil moisture to 

maintain their ET (Sun et al., 2013; Wolf et al., 2013). 

Additionally, it was reported that ET in grassland 

ecosystems is sensitive to surface soil moisture, but not 

to deep root-zone water storage (Krishnan et al., 2012; 

Kurc and Small, 2004). As also indicated by the poor 

performance of our modeling experiment NDWI-non-

woody, which used NDWI-based water availability for 

non-woody and showed substantial ET overestimation, it 

is not appropriate to estimate ET in non-woody areas 

using deep root-zone water storage. Since we have 

observed a strong correlation between P/PET-based 

water availability and surface soil moisture, our NDWI-

CWS model uses the P/PET-based water availability for 

non-woody ET and soil evaporation, reflecting the 

correct dominant water source (i.e. surface soil moisture 

regulated by short-term precipitation) for non-woody 

vegetations. 

Though MODIS-based ET models have adopted 

some approaches to indicate water stress from soil 

moisture, e.g. by vapor pressure deficit (Mu et al., 2011, 

2007) and P/PET-based water availability (Maselli et al., 

2014, 2009), the important role of deep root-zone water 

storage in woody ET modeling was often omitted. Our 

root-zone water storage estimates suggested higher 

values in woody than in non-woody areas, consistent 

with observed greater storage capacity in densely 

forested areas (Callahan et al., 2022; Tague, 2022). 

Given the close relationship between NDWI and root-

zone water storage found in this study, as well as in a 

previous study using a semi-distributed hydrologic 

model (Sriwongsitanon et al., 2016), we suggest taking 

the advantage of remote-sensing NDWI data to 

explicitly account for this critical water component in 

modeling woody ET. This is not limited to regions with 

a Mediterranean climate, but is also important for other 

water-limited regions and areas with deep root-zone 

water storage, deserving further investigation. 
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4.2 Model performance and uncertainty 

For the mountainous areas in California’s Sierra Nevada, 

both point-scale and catchment-scale evaluations 

demonstrate that our NDWI-CWS generally produces 

better ET estimates, compared to the six other ET 

products. Consistent with the findings in Goulden et al. 

(2012), we found that the global MOD16 product 

significantly underestimates ET in the Mediterranean 

Sierra Nevada. The global-scale MODIS-based PML2 

tends to overestimate ET in our study area. Similar to 

MOD16, PML2 does not use soil moisture to constrain 

ET, which can further improve ET estimates in water-

limited regions (Brust et al., 2021). One of the 

challenges is the lack of observed global dataset of 

dynamic rooting-depth soil moisture (Zhang et al., 

2019), particularly for deep-rooted forests that can 

assess deep soil moisture and groundwater (Yang et al., 

2016). Though the global-scale GLEAM product uses a 

data assimilation method and estimates soil moisture in 

root-zone up to 250-cm depth using a water-balance 

algorithm (Martens et al., 2017), its original coarse-

resolution (0.25°) data cannot capture the variability of 

in-situ flux-tower data in the Sierra Nevada, which has 

steep, complex terrain. These discrepancies deserve 

attention if global-scale biophysical ET products are 

used for regional studies and applications, particularly in 

Mediterranean climates where inconsistent seasonal 

variations between water stress and vegetation index 

exist but were not explicitly addressed (Chiesi et al., 

2013; Maselli et al., 2014). The global-scale 

FLUXCOM product shows a good performance in the 

Sierra Nevada, e.g. the lowest RMSE for basin-scale 

water-balance evaluation and largest R2 value for point-

scale evaluation at woody sites inside the Sierra (Tables 

3 and 4), indicating that its machine-learning approach 

takes the advantage of flux-tower measurements at 224 

sites around the world (Jung et al., 2020; Tramontana et 

al., 2016). At a regional scale, FLUXCOM uses only six 

California sites, and machine-learning approaches may 

be affected by the representativeness of training data 

(Pan et al., 2020; Zhang et al., 2023). Benefiting from 

the relatively dense regional data from 18 California 

sites, our calibrated NDWI-CWS model yielded a larger 

R2 than did FLUXCOM, compared to data at 18 flux 

towers. Additionally, our NDWI-CWS mode explicitly 

accounts for the important role of deep root-zone water 

storage in supporting vegetation ET. Similar to other 

above-mentioned global-scale ET products that cannot 

explicitly account for the water stored in deep root zones 

in some deep-rooted forested areas, FLUXCOM 

represents water availability based on a soil-water 

balance model with water-storage capacity being 

assumed up to 100 mm (O’Sullivan et al., 2020; 

Tramontana et al., 2016), much lower than the 

documented water-storage capacity in our study area 

(Fellows and Goulden, 2017; Goulden and Bales, 2019; 

McCormick et al., 2021). This may affect the global-

scale FLUXCOM’s performance in Mediterranean-

climate California. In terms of the regional product 

developed for California, BESS ET showed a noticeable 

underestimation in mountain woody areas. This is 

understandable, as the BESS product focused on broader 

statewide values, particularly ET in irrigated agricultural 

croplands of California’s Central Valley. Of note, 

different from the original CWS model, our NDWI-

CWS did not explicitly address ET in croplands, which 

only account for 0.4% area of our mountainous Sierra 

Nevada. The California CECS product does not account 

for open-water ET, which may constrain its catchment-

scale water accounting in areas with a high portion of 

open water. In another aspect, CECS ET is based on 30-

m Landsat data, allowing fine-scale applications such as 

forest treatment planning and management. As data 

fusion techniques can combine the advantages of the 

high-frequency revisit cycle of MODIS data and the fine 

resolution of Landsat data (Chiesi et al., 2019; He et al., 

2019; Yang et al., 2022), it is worth further developing 

our NDWI-CWS model towards the use of MODIS-

Landsat-fused data in future studies. 

Despite the overall promising performance of the 

NDWI-CWS model, there still exist some uncertainties 

in this study. First is the parameterization of the 

maximum crop coefficients. Of note, using the default 

crop coefficients determined in Italy for the original 

CWS model, we observed that our NDWI-woody 

modeling experiment significantly improved the woody 

ET estimates and catchment-scale water-balance 

agreement. Since crop coefficients vary across different 

ecosystems, soil conditions, and latitude (Allen et al., 

2005; Liu et al., 2017), and precipitation and canopy 

water moisture also affect crop coefficients 

(Guerschman et al., 2009; Yebra et al., 2013), we further 

chose to calibrate the crop coefficients to improve 

NDWI-CWS model performance in our application in 

California’s Sierra Nevada, although potentially 

sacrificing its general applicability.  

Our automatic calibration process using California’s 

flux-tower data across all years provides an example of 

model generalization for other Mediterranean-climate 

regions, such as the Mediterranean Basin, Central Chile, 

and Southwestern Australia. In these regions, vegetation 

relies heavily on deep root-zone water storage to adapt 

to the mismatch between energy and water availability. 

Vegetation itself can be used as an indicator of water 
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availability (Dralle et al., 2020), which is represented 

using remote-sensing NDWI for deep-rooted vegetation. 

Building on the original CWS model developed for 

Mediterranean Italy (Maselli et al., 2014, 2009), our 

NDWI-CWS model further provides more-accurate ET 

estimates for our study area, in relatively data-rich 

California. To obtain high-quality regional ET estimates, 

it is suggested to calibrate the NDWI-CWS model using 

local flux-tower data. We used Mediterranean-climate 

California as the study area to develop the NDWI-CWS 

model, since deep root-zone water storage is recognized 

as an important source of water supply during dry 

summers and multi-year droughts  (Cui et al., 2022a; 

Dralle et al., 2020; Goulden and Bales, 2019; Hahm et 

al., 2019), and multiple regional ET datasets, relatively 

dense flux-tower data, and catchment-scale water-

balance data are available for model evaluation. It is the 

best study area for assessing understanding and 

predictive ability for drought-vulnerable Mediterranean-

climate areas. Though this study did not examine the 

NDWI-CWS model across the U.S., globally, or in other 

climate zones, a broader evaluation of the globally 

focused NDWI-CWS model in other data-rich regions 

would be very interesting and a topic for future studies. 

Second, in this study, the NDWI-based AW and 

subsequent CWS for woody vegetation from NDWI-

CWS model have larger low-bounds (0.5 and 0.75), 

compared to those (0 and 0.5) values based on P/PET for 

non-woody vegetation. Different low-bound values are 

based on the understanding that woody vegetation is 

more resistant to water stress than non-woody vegetation 

because their roots can access deep root-zone water 

storage (Paço et al., 2009; Wilschut et al., 2022; H. Xu 

et al., 2018). Our modeling comparisons through 

different settings (Expt 1-4) have supported that using 

NDWI-based AW and subsequent CWS is more suitable 

for woody vegetation. However, for applications, there 

may be uncertainties when evaluating water stress 

simply using NDWI-based (woody) versus P/PET-based 

(non-woody) AW and CWS, due to their different low-

bound values.  

Third is the uncertainty of precipitation data in high 

elevations of the Sierra Nevada, where systematic bias 

caused by gauge undercatch during snowfall may lead to 

precipitation underestimation (Cui et al., 2022b; 

Rasmussen et al., 2012). Generally, this may not raise an 

issue for our ET modeling, which only uses the ratio of 

cumulative P to PET to denote water availability. During 

wet winters, precipitation underestimation is relatively 

larger, but the PET is small, resulting in larger P/PET-

based water availability. This can adequately represent 

that ET is not limited by available water during energy-

limited winters. For hot dry summers in absence of 

snowfall, precipitation underestimation does not emerge. 

However, regarding catchment-scale water balance 

evaluation, precipitation underestimation may help 

explain the positive mean bias in our NDWI-CWS ET 

estimates, similar to the finding in Roche et al. (2022). 

In addition, given the uncertainty in precipitation (Roche 

et al., 2022) and streamflow data (Huang and Kadir, 

2016), our NDWI-CWS ET was principally in line with 

catchment-scale ET estimates with R2 of 0.42. We 

consider this as a reasonable agreement, compared to the 

R2 values of 0.27-0.36 for evaluating catchment-scale 

ET from a hydrological model, MOD16, and PML2 in 

Australia (Guerschman et al., 2022). 

For the original CWS model, we also found that 

selecting an appropriate longer duration value (180 

days) in Equation 3 for woody vegetation can improve 

its performance of ET prediction (Text S2). However, 

compared to its P/PET-based water availability, NDWI-

based water availability still shows a higher correlation 

to root-zone water storage during the high-ET summer 

season. Considering the important role of root-zone 

water storage in supporting deep-rooted vegetation 

during the summer growing season, we recommend 

using water availability based on remote-sensed NDWI 

data to better reflect the dynamics of root-zone water 

storage. 

4.3 Perspectives on water resources and forest 

management 

As one of the most uncertain water-balance components 

(Fisher et al., 2017; Huang and Kadir, 2016), accurate 

ET estimates are critical for water-yield estimates in 

regional headwater mountains, which are essential to 

downstream populations and ecosystems (Bales et al., 

2006; Rohatyn et al., 2018; Viviroli et al., 2007). This is 

particularly important when considering dramatic 

disturbances (e.g. wildfire, forest thinning, afforestation, 

and drought-induced mortality) to mountain forests. For 

example, destructive wildfire significantly decreases 

woody ET and thus increases water yield (Q. Ma et al., 

2020; Williams et al., 2022). As our NDWI-CWS model 

digests the MODIS-based NDVI and NDWI data, 

reflecting forest conditions altered by wildfire, its 

reliable ET monitoring can detect water-balance-

component changes induced by wildfire. As an example, 

our ET estimates detected a large ET decrease after the 

2014 King Fire in the American River basin (Figure 

S17). The warmer and drier condition associated with 

climate change is leading to wildfires of increasing 

severity and extent (Williams et al., 2019), and has 

doubled the number of trees burned globally compared 

to two decades ago (Tyukavina et al., 2022), increasing 
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the need of accurate forest ET estimates for more 

efficient water resources planning and management. 

Thus, embedding forest-disturbance-sensitive NDWI 

information in models provides a new opportunity to 

reliably monitor ET in woody forest areas under the 

ongoing climate warming. 

Accurate woody ET estimates also enable the reliable 

monitoring of water deficit, which is biologically 

meaningful (Stephenson, 1998), spatially variable across 

vegetation distribution, and linked to drought-induced 

forest mortality (Cui et al., 2022a). Water excess stored 

in root-zone water storage during wet seasons and years 

is critical for deep-rooted forest survival in dry seasons 

and multi-year droughts (Goulden and Bales, 2019), 

buffering the temporal variability of precipitation 

(Baldocchi et al., 2019; Garcia and Tague, 2015; Miller 

et al., 2010). In an indirect approach, we suggest that 

NDWI-based water availability can be used to infer the 

temporal variability of root-zone water storage, since 

remote-sensed NDWI reflects forest canopy water that 

responds to root-zone water storage changes. Further, in 

a direct approach, we can continuously track root-zone 

water deficit and estimate root-zone water storage using 

the daily ET estimates from the NDWI-CWS model. 

Information on root-zone water storage dynamics is 

helpful to forest management, and much so in 

preparation for future megadroughts (Williams et al., 

2020). 

5 Conclusions 

Overall, we have three main conclusions from this 

regional study in the relatively data-rich, Mediterranean-

climate California. First, compared to different modeling 

experiments and products, ET estimates from our 

NDWI-CWS model generally agreed best with flux-

tower measurements, particularly to the seven forest flux 

towers in the Sierra Nevada. Meanwhile, for catchment-

scale ET from long-term water-balance measurements, 

the NDWI-CWS model outperformed others. Together, 

the results suggest our NDWI-CWS model provides 

reliable ET estimates for California’s Sierra Nevada.  

Second, with the improved ET estimates from our 

NDWI-CWS model, we further calculated the root-zone 

water storage including snow dynamics. We found that 

our NDWI-based water availability is highly correlated 

with deep root-zone water storage, and much so 

(correlation R of 0.74) during dry summers. In contrast, 

P/PET-based water availability shows a relatively larger 

correction (R of 0.66) to surface soil moisture.  

Third, the superior model performance and the 

relationships mentioned above collectively highlight that 

using remote-sensing NDWI-based water availability to 

account for water sourced from root-zone water storage 

improves ET estimates in the deep-rooted woody areas 

(e.g. forest, woodland, and shrubland). Denoting soil 

moisture based on P/PET-based water availability is 

suitable for non-woody vegetation with shallow roots 

(e.g. grassland). It is recommended to explicitly account 

for the distinct roles of root-zone water storage and soil 

moisture in ET modeling. More accurate monitoring of 

ET and root-zone water storage can be helpful for more 

efficient water resources and forest management, in the 

context of increasing wildfire and drought risks caused 

by ongoing climate warming.  
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Table 1. Modeling experiments with different settings of water availability (AW) and parameters. 

Model Expt# AW for woody AW for non-woody 
Kc parameters 
(woody; non-woody; soil) 

1. Original CWS 𝐴𝑊 =
∑ 𝑃𝑡

𝑡−60

∑ 𝑃𝐸𝑇𝑡
𝑡−60

 𝐴𝑊 =
∑ 𝑃𝑡

𝑡−30

∑ 𝑃𝐸𝑇𝑡
𝑡−30

 Default (0.7;1.2;0.2) 

2. NDWI-woody 𝐴𝑊 =
1 + 𝑁𝐷𝑊𝐼𝑡

1 + 𝑁𝐷𝑊𝐼𝑚𝑎𝑥
 𝐴𝑊 =

∑ 𝑃𝑡
𝑡−30

∑ 𝑃𝐸𝑇𝑡
𝑡−30

 Default (0.7;1.2;0.2) 

3. NDWI-non-woody 𝐴𝑊 =
∑ 𝑃𝑡

𝑡−60

∑ 𝑃𝐸𝑇𝑡
𝑡−60

 𝐴𝑊 =
1 + 𝑁𝐷𝑊𝐼𝑡

1 + 𝑁𝐷𝑊𝐼𝑚𝑎𝑥
 Default (0.7;1.2;0.2) 

4. NDWI-CWS 𝐴𝑊 =
1 + 𝑁𝐷𝑊𝐼𝑡

1 + 𝑁𝐷𝑊𝐼𝑚𝑎𝑥
 𝐴𝑊 =

∑ 𝑃𝑡
𝑡−30

∑ 𝑃𝐸𝑇𝑡
𝑡−30

 Calibrated (0.63;1.00;0.30) 
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 Table 2. Summary of 18 eddy-covariance flux-tower sites used in this study. 

ID Name Lat, ◦ Lon, ◦ 
Elevation, 
m 

IGBP land covera In Sierra Years 
Percent woody 
coverb,% 

Woody  
site 

US-CZ4 
Sierra Critical Zone-
Shorthair 

37.068 -118.987 2710 
Evergreen 
Needleleaf Forests 

Yes 
2011-2012; 
2015-2018 

86.02  Yes 

US-xTE 
NEON Lower Teakettle 
(TEAK) 

37.006 -119.006 2147 
Evergreen 
Needleleaf Forests 

Yes 2018-2020 98.09  Yes 

US-CZ3 Sierra Critical Zone-P301 37.067 -119.195 2015 
Evergreen 
Needleleaf Forests 

Yes 2008-2019 99.08  Yes 

US-Blo Blodgett Forest 38.895 -120.633 1315 
Evergreen 
Needleleaf Forests 

Yes 2003-2007  93.57  Yes 

US-xSP 
NEON Soaproot Saddle 
(SOAP) 

37.033 -119.262 1160 
Evergreen 
Needleleaf Forests 

Yes 2017-2020 86.13  Yes 

US-CZ2 
Sierra Critical Zone-
Soaproot Saddle 

37.031 -119.256 1160 
Evergreen 
Needleleaf Forests 

Yes 2010-2018 81.95  Yes 

US-CZ1 
Sierra Critical Zone-San 
Joaquin Experimental 
Range 

37.109 -119.731 400 Savannas Yes 2011-2019 24.02  No 

US-Ton Tonzi Ranch 38.431  -120.966  177 Woody Savannas Yes 2003-2020 47.17  Yes 

US-Var Vaira Ranch- Ione 38.413 -120.951  129 Grasslands Yes 2003-2020 14.79  No 

US-SCf 
Southern California 
Climate Gradient - 
Oak/Pine Forest 

33.808 -116.772 1770 Mixed Forests No 2006-2015 99.93  Yes 

US-SO3 Sky Oaks- Young Stand 33.377 -116.623 1429 Closed Shrublands No 2003-2006 99.61  Yes 

US-SO4 Sky Oaks- New Stand 33.385 -116.641 1429 Closed Shrublands No 2005-2006 98.13  Yes 

US-SO2 Sky Oaks- Old Stand 33.374 -116.623 1394 Closed Shrublands No 2003-2006 99.68  Yes 

US-SCw 

Southern California 
Climate Gradient - 
Pinyon/Juniper 
Woodland 

33.605 -116.455 1281 Open Shrublands No 2006-2018 97.15  Yes 

US-SCc 
Southern California 
Climate Gradient -Desert 
Chaparral 

33.609  -116.451  1280 Open Shrublands No 2007-2018 94.82  Yes 

US-SCs 
Southern California 
Climate Gradient - 
Coastal Sage 

33.734 -117.696 470 Open Shrublands No 2006-2018 20.36  No 

US-SCg 
Southern California 
Climate Gradient - 
Grassland 

33.737 -117.695 465 Grasslands No 2006-2018 29.03  No 

US-SCd 
Southern California 
Climate Gradient - 
Sonoran Desert 

33.652 -116.372 275 
Barren Sparse 
Vegetation 

No 2006-2014 3.88  No 

a: Metadata for each site was retrieved from AmeriFlux site information edited by the tower team. International Geosphere-Biosphere Programme (IGBP). 
b: Percent woody cover was estimated using the European Space Agency (ESA) WorldCover 2020 product at a 10-m resolution, with tree and shrub being classified as 
woody areas (Figure S4). 
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Table 3. Evaluation of ET estimates from different modeling experiments and products using flux-tower observations. Performance 
metrics in the table are in the format of RMSE (R2; MBD), where MBD denotes mean bias difference. 

Flow-tower data Original CWS 
NDWI-
woody 

NDWI- 
non-woody  

NDWI-CWS MOD16 PML2 FLUXCOM GLEAM BESS CECS 

1-day  
(18 sites) 

0.95 
(0.36;-0.14) 

0.92 
(0.44;0.08) 

1.23 
(0.18;0.09) 

0.87 
(0.46;-0.01) 

-- -- -- 
1.53 
(0.01;-1.01) 

-- -- 

8-day  
(18 sites) 

6.57 
(0.46;-1.03) 

6.12 
(0.56;0.97) 

9.21 
(0.22;1.04) 

5.62 
(0.59;0.18) 

7.64 
(0.39;0.97) 

6.23 
(0.50;0.12) 

6.73 
(0.50;-2.58) 

12.21 
(0.02;-8.56) 

-- -- 

8-day (7 Sierra 
woody sites) 

8.15 
(0.55;-4.21) 

6.79 
(0.55;0.04) 

8.31 
(0.55;-4.44) 

6.71 
(0.57;-0.89) 

10.68 
(0.26;-6.21 ) 

7.22 
(0.50;- 0.61) 

6.22 
(0.67;-0.98) 

16.58 
(0.01;-12.91) 

-- -- 

8-day (2 Sierra 
non-woody sites) 

5.85 
(0.67;2.33) 

5.85 
(0.67;2.33) 

10.40 
(0.53;7.76) 

5.32 
(0.68;0.79) 

5.17 
(0.73;-1.38) 

6.47 
(0.52;1.10) 

5.50 
(0.67;1.32) 

11.77 
(0.10;-7.81) 

-- -- 

Monthly 
(18 sites) 

20.45 
(0.58;-3.37) 

18.71 
(0.68;2.75) 

29.73 
(0.34;2.81) 

16.99 
(0.71;0.09) 

24.42 
(0.48;-8.90) 

24.41 
(0.48;6.24) 

21.92 
(0.57;-8.51) 

40.07 
(0.06;-26.14) 

24.49 
(0.47;-11.15) 

26.18 
(0.50;-
14.13) 

Monthly (7 Sierra 
woody sites) 

25.22 
(0.73;-12.26) 

20.36 
(0.73;-0.40) 

25.77 
(0.73;-12.91) 

20.08  
(0.74;-2.80) 

34.06 
(0.43;-15.14) 

29.19 
(0.48;7.47) 

19.37 
(0.78;-3.16) 

53.78 
(0.02;-37.25) 

29.69 
(0.57;-16.40) 

22.92 
(0.65;-8.85) 

Monthly (2 Sierra 

non-woody sites) 

17.66 
(0.73;7.41) 

17.66 
(0.73;7.41) 

34.95 
(0.56;24.90) 

15.68 
(0.75;2.47) 

14.93 
(0.81;-4.15) 

22.59 
(0.50;6.40) 

16.99 
(0.69;4.32) 

37.95 
(0.17;-29.33) 

17.81 
(0.68;1.14) 

23.31 
(0.48;-2.81) 

 
Table 4. Water-balance-based evaluation of ET from four modeling experiments and six products at 58 catchments in the Sierra Nevada. 

Model experiment/ 
Product 

RMSEa, 
mm 

R2 
MBDb,  

mm 

Original CWS 106.21 0.35 -39.08 

NDWI-woody 131.05 0.40 49.14 

NDWI-non-woody  140.08 0.12 61.26 

NDWI-CWS 113.01 0.42 26.85 

MOD16 236.4 0.38 -216.99 

PML2 106.19 0.37 40.47 

GLEAM 132.21 0.14 10.11 

BESS 127.48 0.17 -66.47 

FLUXCOM 102.86 0.37 30.40 

CECS 141.25 0.37 -70.97 

a: RMSE denotes root-mean-square error. 
b: MBD denotes mean bias difference. 
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Figure 1. Map of the Sierra Nevada in Mediterranean California, showing the location of 18 flux-tower sites (Table 2) and 
58 catchments (Table S1) with long-term natural streamflow data. The background terrain map is from the ESRI service. 

 

 
Figure 2. Flowchart of MODIS-based NDWI-CWS ET model, its evaluation processes, and subsequent estimates of root-
zone water storage. 
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Figure 3. Examples of variables for estimating daily NDWI-CWS ET in WY2013. For a woody site (US-CZ3), left panels 
show (a) precipitation and temperature, (b) fractional vegetation cover (FVC), canopy-water-stress factor (CWS), NDWI-
based water availability (AW), (c) observed ET, modeled ET, and potential ET (PET), (d) soil moisture (SWC) and its 
anomaly (removing seasonality from data), (e) the anomalies of ET/PET and observed ET/PET, (f) the anomalies of 
NDWI-based AW and CWS, and (g) the anomalies of observed ET and modeled ET. Similar to the woody site, right 
panels (h-n) show the variables for the non-woody site (US-CZ1). However, AW in panel (i) was calculated using P/PET 
instead of the NDWI-based method. 
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Figure 4. Comparison of 8-day ET from flux-tower observation (gray marker), NDWI-CWS model (purple marker), and 
FLUXCOM model (red marker, data end in 2015) at the nine sites inside the Sierra Nevada. Panels of the flux-tower sites 
from top to bottom are sorted by their elevation from highest to lowest. The nan stands for not a number, which 
appears when FLUXCOM data are not available. 
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Figure 5. (a) Monthly ET map calculated as the mean value of each month during WY2003-2020. (b) Time series of mean 
monthly ET for the woody, non-woody, and open-water areas in the Sierra Nevada. (c) Mean annual ET versus 
elevation. Shaded area indicates one standard deviation from the mean value. 
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Figure 6. Taylor diagrams showing model performances (standard deviation, RMSE, and correlation coefficient) using 
monthly ET observation at nine sites inside the Sierra Nevada. Panels are sorted by site elevation. Note that results 
from FLUXCOM were not plotted at US-xTE and US-xSP, since FLUXCOM data ended in 2015 not covering the 
measured data at the two sites. 
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Figure 7. Scatterplot of annual ET from different models (panels a-e) versus that from P – Q at 58 catchments with long-

term (≥ 10 years) measurements. Panel f shows the R2 value of each model. 
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Figure 9. Correlation between deseasonalized values of AW and a) root-zone water storage, b) soil moisture 
measurements at flux-tower sites, c) evaporation efficiency (ET/PET), and d) evaporative fraction, which is the ratio of 
latent heat flux to the sum of latent and sensible heat fluxes from FLUXCOM product. “Annual” denotes correlation 
using annual data throughout our study period (Figures S13, S14, and S15), and “summer” denotes the correlation 
calculated only using summer data. 

  

Figure 8. Comparison of root-zone water 
storage capacity between woody and non-
woody areas. Red triangle in the boxplot 
denotes the labeled mean value. The p-value 
from the Student’s T-test is labeled. 
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Supplemental  Material 

Text S1 

We collected rain-gauge measurements from 180 

sites spreading in the Sierra Nevada (Figure S3a) 

from the California Data Exchange Center (CDEC, 

https://cdec.water.ca.gov/). The sites, with elevations 

ranging from 142 to 3263 (Figure S3b), provide daily 

precipitation data with records spanning at least 10 

years during water years 2004-2020. We used the 

gauge data to evaluate the PRISM gridded data at 

different elevation bands. In the comparison of long-

term annual precipitation elevation versus elevation, 

PRISM generally aligns well with gauge 

measurements (R2=0.87 and a positive bias of 2.93%, 

Figure S3c). Both gauge and PRISM data indicated 

that precipitation generally increases with elevation 

below 1000 m and tends to decrease above 2750 m. 

Compared to annual data of eight gauges at a low-

elevation band of 400-600 m, PRISM yielded a high 

R2 value of 0.97 with a positive bias of 1.62% 

(Figure S3d). Compared to annual data of 12 gauges 

at 1600-1800 m elevation, PRISM had an R2 value of 

0.95 with a positive bias of 2.15% (Figure S3e). At 

the high-elevation band of 2800-3000 m, PRISM 

showed a lower R2 value of 0.82 with a negative bias 

of -5.37% (Figure S3f), indicating greater uncertainty 

at higher elevations than at lower elevations. 

Text S2 

In addition to the four modeling experiments in Table 

1, it is worth exploring whether a longer duration in 

Equation 3 for woody vegetation can improve ET 

estimates in Mediterranean mountains. Thus, we 

tested the ET estimates from the original CWS with 

different durations ranging from 60 to 360 days 

(Table S3). We found that the original CWS model 

with a duration of 180 days (denoted as CWS-

P/PET180) shows a good performance based on 

point-scale evaluation, e.g. an R2 value of 0.79 

against monthly flux-tower data at seven woody sites 

inside the Sierra Nevada. Water-balance-based 

evaluation using 58 catchments (Table S4 and Figure 

S18) suggests that the CWS-P/PET180 model has a 

smaller value of R2 (0.40) than our NDWI-CWS 

model (0.42). The water availability using P/PET 

with a duration of 180 days has larger correlations 

(Figure S19; 0.694 on an annual scale and 0.693 for 

summer only) with root-zone water storage, than does 

the original CWS model with default 60 days 

(Equation 3). In comparison, the NDWI-based water 

availability has a larger correlation of 0.74 to root-

zone water storage during the high-ET summer 

season (Figure 10a). Therefore, selecting an 

appropriate duration value can improve the 

performance of the original CWS model. Considering 

the important role of root-zone water storage in 

supporting deep-rooted vegetation during the summer 

growing season, we recommend using water 

availability based on remote-sensed NDWI data to 

better reflect the dynamics of root-zone water 

storage. 

 
Table S1. Streamflow gages and characteristics of 58 catchments used for water-balance-based ET estimates. Twenty-six natural-flow 
gages from the California Data Exchange Center are labeled using letter ID, and the remaining 32 USGS gages without upstream dams 
are labeled using numerical ID. 

Gage ID Lat, ◦ Lon, ◦ River Basin 
Area, 
km2 

Annual P, 
mm 

Annual Q, 
mm 

Woody% 
Non-
woody% 

Open 
water% 

YRS 39.235 -121.274 YUBA R 2872 1639 943 55.1 44.6 0.3 

11204100 36.024 -118.813 TULE R 249 1552 942 41.7 58.1 0.1 

SDT 40.940 -122.416 SACRAMENTO R 1093 1531 947 65.9 33.9 0.1 

MSS 40.958 -122.219 MC CLOUD R 1567 1429 947 55.9 43.8 0.3 

11203580 36.048 -118.654 TULE R 52 1428 1007 71.4 28.2 0.3 

10336660 39.107 -120.162 LAKE TAHOE 31 1353 1033 16.3 77.7 5.9 

10336775 38.903 -119.969 LAKE TAHOE 60 1304 860 32.4 67.6 0.0 

AMF 38.683 -121.183 AMERICAN R 4819 1295 669 43.5 55.9 0.6 

MKM 38.313 -120.719 MOKELUMNE R 1407 1223 652 37.1 62.9 0.1 
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10336676 39.132 -120.157 LAKE TAHOE 25 1217 391 34.4 63.7 1.9 

10336780 38.920 -119.973 LAKE TAHOE 95 1117 613 24.0 76.0 0.0 

SNS 37.852 -120.637 STANISLAUS R 2537 1116 562 24.0 74.6 1.3 

10308783 38.701 -119.657 CARSON R 11 1114 713 0.0 100.0 0.0 

11202710 36.161 -118.708 TULE R 223 1113 752 71.7 28.3 0.0 

10291500 38.239 -119.326 WALKER R 114 1105 702 0.3 99.7 0.0 

FTO 39.522 -121.547 FEATHER R 9433 1082 545 39.2 59.0 1.8 

11400500 40.187 -121.188 FEATHER R 168 1064 606 69.1 29.3 0.0 

CSN 38.500 -121.044 COSUMNES R 1386 1051 332 51.0 48.9 0.1 

TLG 37.666 -120.441 TUOLUMNE R 3983 1041 581 20.9 78.3 0.9 

11401165 40.001 -120.703 FEATHER R 18 1026 659 64.5 35.5 0.0 

10289500 38.174 -119.234 WALKER R 51 1026 359 0.0 100.0 0.0 

WFC 38.769 -119.832 CARSON R 170 991 504 0.1 99.9 0.0 

MRC 37.522 -120.331 MERCED R 2707 965 438 28.5 71.3 0.2 

11367500 41.188 -122.065 Upper Sac. R 943 958 434 39.3 59.9 0.5 

WWR 38.378 -119.449 WALKER R 465 936 527 0.3 99.7 0.0 

11230500 37.339 -118.973 SAN JOAQUIN R 136 933 333 0.3 99.7 0.0 

11264500 37.732 -119.559 MERCED R 470 932 167 1.0 98.9 0.1 

11316800 38.403 -120.447 MOKELUMNE R 55 925 466 64.0 36.0 0.0 

SJF 36.984 -119.724 SAN JOAQUIN R 4341 920 480 14.7 85.0 0.3 

10308789
1 

38.717 -119.660 CARSON R 2 919 177 0.0 100.0 0.0 

SBB 40.289 -122.186 SACTO VLY NE 22977 900 425 28.5 71.0 0.5 

TRF 39.428 -120.033 LAKE TAHOE 2415 895 203 12.1 66.6 21.3 

11266500 37.716 -119.666 MERCED R 835 890 298 4.2 95.7 0.0 

10343500 39.431 -120.238 Truckee R 27 885 227 38.2 61.8 0.0 

KGF 36.831 -119.335 KINGS R 3997 881 500 12.3 87.6 0.1 

SIS 40.718 -122.420 PIT R 16557 848 394 28.7 70.8 0.5 

11284400 37.842 -120.185 TUOLUMNE R 42 848 292 67.2 32.8 0.0 

11189500 35.737 -118.174 KERN R 1371 841 381 8.8 91.2 0.0 

EFC 38.847 -119.703 CARSON R 921 836 349 3.3 96.7 0.0 

11208600 36.484 -118.836 Kaweah R 428 834 295 34.0 65.8 0.2 

11299600 37.961 -120.615 STANISLAUS R 37 827 294 0.0 100.0 0.0 

11230200 37.306 -118.951 SAN JOAQUIN R 16 814 332 0.0 100.0 0.0 

https://doi.org/10.1016/j.rse.2024.114000
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KWT 36.412 -119.003 KAWEAH R 1450 798 347 29.5 70.4 0.1 

11186000 35.945 -118.478 KERN R 2191 746 460 7.1 92.9 0.0 

DAV 39.883 -120.467 FEATHER R 113 710 322 30.4 62.1 7.5 

10265150 37.669 -118.818 Owens R 186 691 257 0.4 99.3 0.3 

11237500 37.198 -119.214 SAN JOAQUIN R 60 674 213 1.1 98.9 0.0 

10336645 39.052 -120.119 LAKE TAHOE 20 667 188 19.3 79.3 1.4 

11315000 38.519 -120.213 MOKELUMNE R 55 665 135 1.8 98.2 0.0 

PSH 40.843 -122.016 PIT R 12739 650 259 19.2 80.6 0.2 

SCC 36.061 -118.922 TULE R 1009 643 143 36.6 63.4 0.0 

ANT 40.180 -120.607 FEATHER R 184 612 218 10.9 87.5 1.6 

11201456 36.192 -118.658 TULE R 80 601 55 61.0 39.0 0.0 

11202000 36.175 -118.696 TULE R 102 584 118 65.6 34.4 0.0 

EWR 38.328 -119.214 WALKER R 905 568 139 0.1 99.6 0.2 

KRI 35.639 -118.484 KERN R 5367 520 150 17.6 82.2 0.2 

FRD 39.883 -120.183 FEATHER R 211 464 127 4.8 95.1 0.2 

11237700 37.199 -119.215 SAN JOAQUIN R 60 436 78 1.1 98.9 0.0 

 
Table S2. Landcover classification based on the International Geosphere-Biosphere Programme (IGBP) from MODIS. 

Landcover MODIS IGBP class 

Woody 
Evergreen Needleleaf Forests; Evergreen Broadleaf Forests; 

Deciduous Needleleaf Forests; Deciduous Broadleaf Forests; Mixed 
Forests; Closed Shrublands; Open Shrublands;Woody Savannas; 

Non-woodya 
Grasslands; Croplands; Savannas; Barren; Urban and Built-up Lands; 

Cropland/Natural Vegetation Mosaics 

Open water Permanent Wetlands; Permanent Snow and Ice; Water Bodies 

a For simplicity, the nonforest area (54% area of our study domain using 2011 MODIS data) in this study includes 
croplands (0.4% area of our study domain), Urban and Built-up Lands (0.8%), and Barren (5%). 

 
Table S3. Sensitivity analysis of results from the original CWS model with different time durations in Equation 3. Evaluations are based 
on flux-tower observations. Performance metrics in the table are in the format of RMSE (R2; MBD), where MBD denotes mean bias 
difference. 

Flow-tower 
data 

Default 
60 days  
(Eq. 3) 

120 days 180 days 240 days 300 days 360 days 

Daily 
(18 sites) 

0.95 
(0.36;-0.14) 

0.89  
(0.43;-0.06) 

0.87 
(0.47;-0.01) 

0.88  
(0.46;0.002) 

0.90 
(0.42;-0.01) 

0.91 
(0.39;-0.04) 

8-day 
(18 sites) 

6.57 
(0.46;-1.03) 

5.94  
(0.55;-0.39) 

6.02 
(0.56;0.20) 

6.02 
(0.56;0.34) 

6.13 (0.53;0.10) 
6.24 

(0.50;-0.16) 

8-day  
(7 Sierra 

woody sites) 

8.15 
(0.55;-4.21) 

6.76 
(0.64;-2.84) 

6.19 
(0.66;-1.65) 

6.68 
(0.60;-1.16) 

7.33 
(0.51;-1.45) 

7.53 
(0.48;-2.14) 

https://doi.org/10.1016/j.rse.2024.114000
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Monthly 
(18 sites) 

20.45 
(0.58;-3.37) 

18.17 
(0.66;-1.67) 

17.47 
(0.70;-0.45) 

18.84 
(0.66;-0.52) 

21.58 (0.56;-
1.65) 

22.92 
(0.50;-3.0) 

Monthly 
(7 Sierra 

woody sites) 

25.22 
(0.73;-12.26) 

20.49 
(0.78;-8.73) 

18.84 
(0.79;-5.8) 

22.10 
(0.71;-5.53) 

27.66 (0.56;-
7.74) 

30.04 
(0.49;-10.66) 

Note: For example, in the original CWS model with a duration of 180 days, Equation 3 is changed to 𝐴𝑊 =
∑ 𝑃𝑡

𝑡−180

∑ 𝑃𝐸𝑇𝑡
𝑡−180

  ,for woody vegetation.   

 
Table S4. Water-balance-based evaluation of ET at 58 catchments in the Sierra Nevada. 

 
Model experiment/ 
Product 

RMSE, mm R2 MBD, mm 

Original CWS 106.21 0.35 -39.08 

CWS w P/PET 180 days 111.85 0.40 23.6 

NDWI-CWS 113.01 0.42 26.85 

 

 

Figure S1. Maps of (a) elevation, (b) average 
water year precipitation using PRISM data 
for 2003-2020, (c) land cover, (d) flux towers 
and gages with available long-term natural-
flow data in the Sierra Nevada, and (e) mean 
annual (water-year) precipitation from 
PRISM vs. elevation, with shaded area 
indicating one standard deviation from the 
mean. 
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Figure S2. Monthly climatology of precipitation and temperature in (a) Italy where the original CWS model was applied; 
data are from (Worldbank, 2022). (b) Climatology in California’s Sierra Nevada using PRISM data. 

https://doi.org/10.1016/j.rse.2024.114000
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Figure S3. Comparison of rain-gauge measurements versus PRISM precipitation data: (a) map of 180 rain-gauge sites; 
(b) plot of site elevation; (c) long-term mean annual precipitation versus elevation at the 180 sites, banded by 300-meter 
elevation intervals; and panels d-f show the scatter plots of annual precipitation from gauge versus PRISM data at the 
elevation bands of 400-600 m, 1600-1800 m, and 2800-3000 m, respectively. Points with the same color represent 
annual precipitation for different water years at the same site. 
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Figure S4. Satellite images and woody-area maps of six sites, showing a 1-km2 rectangular area around six flux towers 
(red triangles located at the center of the images). Images were retrieved from Google Satellite Map. The European 
Space Agency (ESA) WorldCover 2020 product at a 10-m resolution was used to classify woody areas (tree and shrub, 
colored green) and other areas (yellow), which were then used to estimate the percent woody cover for each site. 
Together with the land-cover metadata (Table 2), this study classified US-Ton (woody savannas) with percent woody 
cover of 47.17% (consistent with site information detailed in (Baldocchi et al., 2004; Kim et al., 2006; Ma et al., 2016)) as 
a woody site, and classified US-SCs (open shrublands) with percent woody cover of 20.36% as a non-woody site. 

 
Figure S5. Comparison of daily ET during one week before and one week after heavy precipitation events. Top panels a 
and b show the comparison of observed ET data and NDWI-CWS ET estimates at the woody site US-CZ3, respectively. 
Similarly, bottom panels c and d show the comparison at the non-woody site US-CZ1. Heavy precipitation events 
during the study period were identified as consecutive days with precipitation larger than 0.254 mm and cumulative 
precipitation greater than 2 cm (Cui et al., 2023, 2022). Red triangle in the boxplot denotes the labeled mean value. The 
p-value from the Student’s T-test is labeled. 

https://doi.org/10.1016/j.rse.2024.114000
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Figure S6. Variables for estimating daily NDWI-CWS ET. Left panels (a-c) show the variables and ET measurements for 
a woody site (US-CZ3) during WY2010-2011, and right panels (d-f) for a non-woody site (US-CZ1) during WY2016-2017. 

https://doi.org/10.1016/j.rse.2024.114000
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Figure S7. Comparison of 8-day ET anomaly (i.e., removing the seasonality signal from the data): flux-tower 
observation (gray marker), NDWI-CWS model (purple marker), and FLUXCOM model (red marker) at the nine sites 
inside the Sierra Nevada. Panels of the flux-tower sites from top to bottom are sorted by their elevation from highest to 
lowest. 
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Figure S8. Comparison of 8-day ET from flux-tower observation, NDWI-CWS model, and FLUXCOM model at 9 sites in 
California but outside of the Sierra Nevada. 
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Figure S9. Comparison of 8-day ET anomaly: flux-tower observation (gray marker), NDWI-CWS model (purple marker), 
and FLUXCOM model (red marker) at 9 sites in California but outside of the Sierra Nevada. 
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Figure S10. Example of daily water deficit (d), daily root-zone water storage (e), and root-zone water storage capacity 
(d) calculated using daily precipitation (a), snow water equivalent (b), and NDWI-CWS ET (c). Data at the US-CZ3 site 
are shown for this example. 
 

 
 
 
 

Figure S11. Map of root-zone water storage 
capacity RZWSmax. 
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Figure S12. (a) Comparison of mean annual precipitation between woody and non-woody areas. Red triangle in the 
boxplot denotes the labeled mean value. The p-value from the Student T test is labeled. (b) Probability density of 
annual precipitation minus root-zone water storage capacity. Panels c-g are the same as Figure S9, but for a woody 
pixel at 36.828°N, 119.007°W. The green shaded area in panel g indicates the replenishment of root-zone water storage 
after the overdraft during the 2012-2015 drought. 
 

 
Figure S13. Deseasonalized values of domain-averaged AW calculated using NDWI and P/PET, versus deseasonalized 
root-zone water storage. 
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Figure S14. Deseasonalized values of daily AW calculated using NDWI and P/PET, versus deseasonalized soil moisture 
at the US-Ton flux-tower site. 

 
Figure S15. Deseasonalized values of domain-averaged AW calculated using NDWI and P/PET, versus deseasonalized 
evaporative fraction (EF, the ratio of latent heat flux to the sum of latent and sensible heat fluxes from FLUXCOM 
product).   
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Figure S16. Maps of deseasonalized values of AW from NDWI-CWS model versus evaporative fraction from FLUXCOM 
product on June 18, 2012. The correlation between the two ET-water-stress-relevant variables is 0.36. Region A marks 
the woody areas with wet anomalies, and Region B for non-woody areas with dry anomalies. 

 
Figure S17. Annual NDWI-CWS ET comparison between a) WY2014 before the King Fire (boundary denoted by red 
dashed line; September 13, 2014 - October 31, 2014) and b) WY2015, one year after the King Fire. 
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Figure S18. Scatterplot of annual ET from 
P – Q at 58 catchments with long-term (≥ 
10 years) measurements versus ET 
estimates from 1) the original CWS model 
using AW from P/PET using 180 days and 
2) NDWI-CWS model using NDWI-based 
AW. 

Figure S19. Correlation between 
deseasonalized root-zone water storage 
and deseasonalized AW values from P/PET 
using 180 days (i.e. CWS model with AW 
using P/PET180) and 60 days (i.e. the 
original CWS, labeled as P/PET60) in 
Equation 3. 
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