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Neuroprotection Strategies for term encephalopathy

Fernando F. Gonzalez, M.D.1

1Department of Pediatrics; University of California, San Francisco

Abstract

Brain injury in the full-term and near-term neonates is a significant cause of mortality and long-

term morbidity, resulting in injury patterns distinct from that seen in premature infants and older 

patients. Therapeutic hypothermia improves long-term outcomes for many of these infants, but 

there is a continued search for therapies to enhance the plasticity of the newborn brain, resulting in 

long-term repair. It is likely that a combination strategy utilizing both early and late interventions 

may have the most benefit, capitalizing on endogenous mechanisms triggered by hypoxia or 

ischemia. Optimizing care of these critically ill newborns in the acute setting is also vital for 

improving both short and long-term outcomes.

INTRODUCTION

Brain injury in the full-term and near-term gestation neonate is a significant contributor to 

mortality and long-term morbidity, secondary to the vulnerability of the developing brain to 

injury. Causes of early brain injury include stroke, birth trauma, metabolic or genetic 

disorders, neonatal-onset epilepsies, and a variety of perinatal events that lead to decreased 

blood flow or oxygen delivery to the brain. This last cause is the most common cause of 

perinatal brain injury1. It usually presents with neonatal encephalopathy, or an abnormal 

neurological exam, and is estimated to occur in 3 to 5 in 1000 live births1. This is referred to 

as hypoxic-ischemic encephalopathy (HIE), and currently this diagnosis can only be 

confirmed by magnetic resonance imaging (MRI). Stroke is also common, with an estimated 

incidence of 1 in 2000 live births2, and is most commonly arterial-ischemic in origin, with 

clots or emboli likely originating from the placenta. It also shares many of the same risk 

factors as HIE3. While some suffering from perinatal brain injury die during early life, the 

majority of survivors exhibit neurological deficits that persist, such as cerebral palsy, 

intellectual disability or epilepsy4. Therapeutic hypothermia is the only proven therapy for 

HIE, but it must be initiated early and provides only partial benefit to newborns with HIE. 

Aside from therapeutic hypothermia, no established therapies exist, and treatment and care 

for the sequelae of early brain injury requires significant resources. In addition, diagnosis of 

early brain injury is often delayed, making the identification of delayed therapeutic options 
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or strategies crucial5. Neonates that present with encephalopathy following a sentinel event 

are more likely to benefit from hypothermia, whereas those who suffer from a more remote 

or more prolonged insult may not improve, even with immediate initiation of hypothermia 

after delivery6. Full-term neonates with underlying congenital cardiac disease are also at 

increased risk of white matter injury and cortical volume loss more commonly associated 

with premature brain injury7. For infants that present with more remote hypoxic injury or 

other etiologies of impaired development, delayed therapeutic strategies present the only 

option.

Injury to the immature brain involves a number of different mechanisms that lead to cellular 

damage and death, as well as altered cell fate characterized by changes in neural precursor 

cell proliferation, differentiation and migration. Even in cases where the etiology of hypoxia 

or ischemia is brief or acute, injury continues to evolve over a period of days to weeks, and 

even months8, 9. The initial period following an insult is characterized by primary energy 

failure, where decreased ATP and increased lactate production lead to loss of cell membrane 

integrity and calcium entry, excitotoxicity and necrosis within the core of damaged tissue. 

This is followed by a latent phase, where restoration of blood flow and oxygen delivery lead 

to initial recovery of cells within the penumbra, or the damaged tissue may survive the initial 

insult but is still susceptible to further damage. This is why it is critical that acute therapies 

such as hypothermia are initiated early, as there is a brief window to rescue these cells prior 

to secondary energy failure. Left untreated, a number of cells are then overwhelmed by an 

influx of inflammatory mediators, free oxygen radicals, and further excitotoxicity that lead 

to mitochondrial failure and programmed cell death. The mechanisms leading to 

programmed death patterns include classically described apoptosis, as well as other caspase-

dependent and independent processes such as ferroptosis and necroptosis10.

Endogenous repair involves mechanisms that enhance neurogenesis, gliogenesis, 

vasculogenesis/angiogenesis, and remyelination11. Many of these endogenous repair 

processes are mediated through stabilization of neuronal transcription factors, including 

hypoxia-inducible factor (HIF)-1α, which increase expression of downstream cytokines and 

growth factors12. Despite these endogenous processes, significant deficits often persist 

following early brain injury. Therefore, new post-injury strategies are necessary to increase 

the therapeutic window for treatment and further improve long-term outcomes. For those 

reasons, a search for therapies that can prevent injury progression or enhance repair of the 

immature brain continues, with the goal of improving long-term motor and cognitive 

outcomes. Since the neonatal and adult brain respond differently to insults, with different 

responses to hypoxia in regards to gene regulation and vulnerability to excitoxicity and 

oxidative stress, alternate therapies and strategies must be sought13. While some treatments 

that manipulate injury pathways show promise, not all neonates will benefit from treatment, 

depending on the etiology and timing of the insult, as well as the particular mechanisms of 

injury progression and repair involved14.

To maximize the efficacy of current post-injury treatment, we need to be able to quickly 

identify those patients that will benefit from therapy; however, identification of sufficiently 

accurate and timely biomarkers of brain injury remains elusive15. For that reason, a number 

of clinical and metabolic predictors are used to identify term infants at risk for hypoxic brain 
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injury. These include low Apgar scores at 10 minutes of life or prolonged resuscitation at 

birth, significant cord blood or early arterial blood acidosis, and the presence of 

encephalopathy on neurological examination16. Cerebral function monitoring using bedside 

amplitude-integrated EEG (aEEG) has provided an efficient means for identifying abnormal 

background patterns and concern for brain injury, but the aEEG is somewhat prone to 

artifact, is not available at all centers, and inferior to continuous video EEG17, 18. Brain 

imaging with magnetic resonance imaging (MRI), including spectroscopy (MRS) and 

diffusion-weighted imaging (DWI), provides the most accurate assessment of injury and 

currently represents the gold standard for diagnosis19, 20. This can help determine both the 

severity and evolution of brain injury, with specific injury patterns being associated with 

poorer outcomes, such as loss of gray/white differentiation or basal ganglia/thalamus 

injury20. However, early imaging in neonates is difficult secondary to scanner availability, 

patient instability and difficulty in transporting and monitoring critically ill newborns. There 

is also controversy regarding the benefit of current therapy with different severities of 

underlying injury or encephalopathy – including the uncertain benefit of therapeutic 

hypothermia in newborns with mild encephalopathy21. Serum and urine biomarkers of injury 

are being studied but are currently of equivocal value in identifying early neonatal brain 

injury. Given all of the available evidence, a combination of encephalopathic exam, 

metabolic or resuscitation criteria, and early EEG or aEEG monitoring provide the best 

predictors of those at risk that may benefit from treatment16.

The term “neuroprotection” is frequently used to describe the treatment goals after brain 

injury, but the aims with treatment are threefold. The first is to protect the brain or prevent 

injury from occurring. The second is to repair the injured portions of the brain that have 

suffered an initial insult but may potentially recover. The third is to repair the injured brain 

by increasing proliferation, migration of differentiation of neural precursor cells to replace 

injured tissue, and enhance underlying angiogenesis and restore blood flow to injured 

regions. Optimizing therapy for early brain injury requires capitalizing on multiple pathways 

that not only prevent cell death, but also enhance cell growth, differentiation, and long-term 

integration into neural networks. Preventing injury is particularly difficult in the population 

of term/near-term infants because of the difficultly in quickly identifying those patients at 

risk. By targeting the different mechanisms of injury and enhancing the endogenous 

response to hypoxia, hopefully selected pharmacotherapies can salvage cells that would 

otherwise die, protect cells from becoming injured by increasing tolerance, and regenerate 

injured brain tissue. The ultimate answer may be in combination therapies or strategies that 

target each of these different mechanisms of injury and repair at different time points, to 

maximally enhance these protective and reparative responses. This review will focus 

primarily on previous and ongoing research in the full-term human brain, and therapies with 

potential to benefit humans in the near future.

ACUTE THERAPIES

HYPOTHERMIA

Therapeutic hypothermia is standard of care for neonatal HIE14. Current evidence suggests 

that hypothermia must be initiated within 6 hours of birth, and continued at a goal 
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temperature of 33.5 degrees C for 72 hours. Multiple pre-clinical animal models of perinatal 

brain injury demonstrate histological and functional benefit with this early initiation of 

hypothermia22–25. Brief hypothermia provides partial neuroprotection, while prolonged 

moderate hypothermia (total body or selective brain) to 32-34°C for 24-72 hours results in 

sustained improvement in behavioral performance in both newborn and adult 

animals26, 27, 25, 24. The mechanisms underlying protection with hypothermia appear to be 

multifactorial, including modifying apoptosis and interrupting early necrosis, reducing 

cerebral metabolic rate, and reducing release of excitotoxins, oxygen and nitrogen free 

radicals28, 29. Initiation prior to the period of secondary energy failure can help suppress the 

influx of these damaging mediators and help rescue mitochondria from overwhelming 

injury, preventing cell death processes21.

Six major randomized controlled trials of hypothermia in term or near-term human neonates 

have been published14. Overall, they show a reduction in mortality and long-term 

neurodevelopmental disability, with follow-up ranging anywhere from 12 months to 8 years 

of age30, 31, with most benefit seen in moderately encephalopathic infants32–35. Sustained 

protection does depend on the dose of hypothermia, with maximum benefit obtained with 

cooling to 33-34°C, as well as limited delay to treatment initiation24, 36. Mild hypothermia 

to this level is well tolerated without serious adverse effects33, 37, 38, with the most common 

complications being transient effects on heart rate and blood pressure39. There also appears 

to be a mild increased risk of pulmonary hypertension in cooled infants, though generally 

not severe40. In addition to severity of encephalopathy, larger infants appear to be more 

responsive to hypothermia and at more risk for injury if hyperthermic at any point41–43. 

While both head and whole body cooling have been shown to be effective, whole body 

cooling may be more effective in reducing temperature of deep brain structures44, and may 

be more feasible in certain clinical settings by providing access for EEG monitoring45.

While early hypothermia has demonstrated benefit in this subset of patients with moderate 

or severe encephalopathy and underlying HIE, there are still many infants that do not benefit 

from this therapy14.This may be secondary to delayed recognition of injury, more remote 

injury, other underlying etiologies, or individual metabolic or genetic differences in the 

response to injury and treatment. Other studies have sought to expand treatment options 

when it comes to cooling therapies in these neonates. While active cooling during transport 

is safe and effective in getting babies to target temperature sooner46, 47, deeper and longer 

cooling, down to 32 degrees and for as long as 120 hours did not improve outcomes48, 49. 

More recently, initiation of cooling between 6 and 24 hours of age was found to have 

possible benefit, with a 71% chance of improving outcomes by 2% in a Bayesian analysis; 

however, there was also a risk of worse outcomes as babies were cooled for a longer period 

of time (96 hours)50. There is also scant preclinical evidence of benefit with delayed 

initiation of cooling51. Finally, while two of the randomized cooling trials cooled babies < 

36 weeks gestation, the evidence for cooling babies at younger gestational age is lacking. 

The NICHD Neonatal Research Networks is currently enrolling patients in a randomized 

controlled trial that cools babies born between 33+0 and 35+6 weeks gestational age ().
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ANTI-EXCITOXICITY AGENTS: MAGNESIUM SULFATE

Glutamate plays an important role in progenitor cell proliferation and fate, including neural 

circuitry development. Excitotoxicity has long been known to play a part in the progression 

of hypoxic-ischemic brain injury, and differences in receptor expression contribute to the 

vulnerability of the developing brain52. Excitotoxicity refers to excessive glutamatergic 

activation that leads to cell injury and death53. Following hypoxia-ischemia, vesicular 

release and reversal of glutamate transporters results in rapid accumulation of glutamate in 

the brain54–57. Glutamatergic receptors include N-methyl-D-aspartate (NMDA), 

alpha-3amino-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate. NMDA 

receptor activation is important in synaptic plasticity and circuit formation during 

development58, but following injury overactivation increases intracellular calcium 

accumulation and pro-apoptotic signaling pathways59, 60.

There has long been a search for agents that decrease brain injury by decreasing 

excitotoxicity. Magnesium sulfate has shown some benefit in preventing white matter 

damage in animal models61–63, likely mediated through its function as an NMDA receptor 

antagonist, thereby limiting excitotoxicity64. While benefit has been demonstrated in 

reducing cerebral palsy when given antenatally to mothers at risk for preterm delivery65, 

there is less evidence in the full-term population. For example, magnesium administered to 

asphyxiated term neonates did improve aEEG background patterns, but when given in larger 

doses was associated with profound hypotension66, 67. In pre-clinical studies of full-term 

injury, magnesium has also shown equivocal benefit68, although more recent evidence 

suggests that the mechanism of benefit includes gene upregulation and preconditioning, 

which may explain the benefit in antenatal administration to pregnant mothers at risk for 

premature delivery69. In small-scale human trials there is a suggestion of a possible benefit 

with postnatal treatment, but studies are hindered by a heterogeneous population, the lack of 

cooling, and no long-term follow up 70. Rapidly identifying full-term infants at risk of 

hypoxic-ischemic injury to enable early/pre-treatment would require better early biomarkers 

or predictors of injury.

OTHER ANTI-EXCITOXICITY AGENTS

Other therapies targeting the excitotoxic cascade have been studied in humans but have not 

yet shown clinical benefit. Topiramate is an AMPA-kainate receptor antagonist that is FDA-

approved for seizure treatment for patients greater than 2 years of age, and inhibits 

glutamate function while also increasing inhibitory signaling through the GABA pathway. It 

has also been shown to reduce brain injury and cognitive impairment in newborn rodents 

when administered within two hours of the insult71, 72. It has yet to demonstrate efficacy in 

newborns with HIE73. Dizocilipine (MK801) is a NMDA receptor antagonist that is poorly 

tolerated in humans and may actually increase injury in some models74. Memantine is a low 

affinity noncompetitive NMDA receptor that is well tolerated in adults75 and has shown 

some benefit in pre-clinical models76–78. Cannabinoids have also shown promise as a 

treatment for both neurodegenerative disorders79 and adult ischemia80, 81. They are involved 

in control of synaptic transmission, and their receptors (CB1 and CB2) are expressed on 

neurons and glia82, 83. In the immature brain, cannabinoids have effects on excitotoxic 

lesions84, and the agonist WIN 55,212-2 reduces short-term brain injury when administered 
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after neonatal rodent HI85. While cannabinoids are being studied for pediatric epilepsy (), 

there are no clinical studies specific to neonatal brain injury.

ANTI-OXIDANTS: ALLOPURINOL

Oxidative stress also plays a critical role in injury progression following hypoxia-

ischemia86, resulting from excess formation of free radicals (FR) (reactive oxygen species 

(ROS) and reactive nitrogen species (RNS))87, 88. While antioxidant defenses such as 

superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and compounds such 

as vitamins A, C, E, beta-carotene, glutathione and ubiquinones scavenge FRs under normal 

conditions, damage occurs when there is an imbalance between pro- and anti-oxidants. 

Newborns are at the greatest risk for oxidative stress secondary to this imbalance87, 89.

A number of strategies have been tested to improve this balance and reduce underlying 

oxidative stress. For the acute phase of injury, allopurinol is a xanthine oxidase inhibitor that 

has shown initial promise in pre-clinical and human studies. Allopurinol reduces free radical 

production by inhibiting xanthine oxidase-derived superoxide and H2O2 free radical 

production, while also scavenging free hydroxyl radicals. High dose allopurinol given 15 

minutes after HI in newborn rats decreases acute edema and long-term infarct volume90. 

Short-term benefits have also been seen in neonates undergoing cardiac surgery for 

hypoplastic left heart syndrome 91. Early administration of allopurinol to encephalopathic 

infants improved short-term neurodevelopmental outcomes, with the greatest benefit seen in 

moderately encephalopathic infants92; however, there may only be a brief window for 

benefit, as no improvement in outcomes was seen with later treatment after a hypoxic-

ischemic insult93.

MELATONIN

Another antioxidant strategy that may have benefit as either an acute or delayed therapeutic 

option is melatonin. Melatonin is an indoleamine that easily crosses the blood-brain barrier 

and has a number of protective roles, including scavenging ROS, anti-inflammatory and 

anti-apoptotic functions94. It provides long-lasting neuroprotection in pre-clinical HI and 

focal cerebral ischemic injury models95, 96, and human neonates treated with melatonin were 

found to have decreased pro-inflammatory cytokines97, 98. Melatonin levels are relatively 

deficient in newborns (MINT; ISRCTN15119574), and studies are ongoing to identify 

optimal treatment doses (MELIP; and MIND, ). There is also an ongoing trial evaluating 

melatonin to prevent brain injury in unborn growth restricted babies, where a composite 

neonatal outcome will be evaluated ().

XENON

Xenon is an inhaled anesthetic approved for use in Europe that appears to have potent 

neuroprotective effects in pre-clinical models. This is mediated through NMDA antagonism, 

as well as the upregulation of pro-survival proteins BDNF, Bcl-2, HIF99. It appears to be 

superior to other NMDA antagonists, possibly through additional inhibition of AMPA and 

kainite receptors, reduction of neurotransmitter release, or effects on other ion 

channels100–102. While it has demonstrated some benefit as a monotherapy in animal 

studies, it is likely that combination therapy with hypothermia would provide the most 
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benefit (see below). Other antioxidant strategies, including deferoxamine, vitamin E, and 

selective inhibition of nitric oxide synthase have demonstrated limited benefit that have not 

translated to human neonates.

DELAYED THERAPIES: GROWTH FACTORS

ERYTHROPOIETIN

There are a number of growth factors that are critical for development, maturation and 

function of the immature brain. Erythropoietin (EPO) is a glycoprotein produced primarily 

in the fetal liver, but also by multiple cell types in the central nervous system (CNS) during 

development, with its principal functions mediated through binding to its specific receptor 

(EPO-R)103. There is elevated EPO/EPO-R expression in the brain during gestation, which 

declines rapidly postnatally. EPO production in neurons and astrocytes and EPO-R 

expression in neurons, glia, and microglia are upregulated in a temporal specific manner, via 

upregulation by HIF after hypoxia104, 105. Numerous studies of EPO neuroprotection 

performed in rodents, sheep, and nonhuman primates, involving both global and focal 

hypoxic-ischemic brain injury, have consistently shown that exogenous EPO administration 

results in both histologic and functional benefit106, 107. High-dose EPO improves short-term 

histological and behavioral outcomes following neonatal stroke, but multiple dose treatment 

protocols resulted in the long lasting functional improvement108, 109. Studies have also 

demonstrated benefit with delayed initiation of EPO treatment. EPO therapy initiated 48 

hours after neonatal hypoxia-ischemia in mice improved both behavioral outcomes and 

white matter injury, while enhancing neurogenesis110, while EPO initiated 24-72 hours after 

adult rodent stroke enhanced neurogenesis, angiogenesis, and functional 

outcomes111, 112, 113. More recently, EPO therapy initiated one week following stroke 

improved brain volume and sensorimotor behavioral function in newborn rats114.

EPO binding to EPO-R leads to phosphorylation and activation of a number of downstream 

pathways that limit inflammation, decrease apoptosis115, promote neural precursor cell 

proliferation116, 117, and preserve endothelial cell survival and stimulate their production in 
vitro118. In addition to its acute effects, EPO stimulates additional growth factor release, thus 

providing neuroprotective and trophic effects that last well beyond the acute period of injury. 

EPO enhances angiogenesis and improves white matter survival assessed by MRI and 

pathologic analysis109, 113, 119–123. EPO also interacts with VEGF and stimulates the 

production of growth factors such as brain-derived neurotrophic factor (BDNF) and glial cell 

derived neurotrophic factor (GDNF) that likely contribute to effects on cell survival and 

vasculogenesis124, 125.

Pilot trials of exogenous EPO treatment for human brain injury have suggested benefit, with 

larger trials ongoing. Multiple doses of EPO administered daily for adult stroke reduced the 

size of infarct and improved short-term recovery of cognitive function and neurological 

deficits 126. However, a follow-up study in adults with middle cerebral artery territory stroke 

saw increased mortality in treated patients, possibly secondary to interaction with, and 

timing of, TPA administration 127.
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EPO monotherapy for neonatal HIE has been studied in a few small clinical trials, prior to 

hypothermia becoming standard of care for these infants. These studies found that high-dose 

EPO improved short-term neurodevelopmental outcomes128, 129. Zhu et al. studied 167 

neonates with HIE randomized to 300-500 U/Kg of EPO every other day for two weeks, or 

placebo128. Infants in the EPO group were less likely to die or have moderate to severe 

disability at 18 months. Similarly, Elmahdy et al. studied 30 infants with HIE who were 

randomized to receive 5 daily doses of Epo 2500 U/kg or placebo129. The EPO-treated 

infants had improved EEG background activity, reduced biomarkers of oxidative stress at 2 

weeks, and improved neurodevelopment at 6 months. Given the small sample sizes and 

prevalence of therapeutic hypothermia, EPO treatment for HIE must be studied within the 

context of concomitant hypothermia treatment, except for lower resource settings.

Darbepoietin is a long-acting formulation of EPO that may provide a potential therapy with 

less frequent dosing (). Animal studies that provide evidence of darbepoietin neuroprotection 

have been limited to traumatic brain injury and intracerebral haemorrhage in adult 

rodent130, 131. Further studies comparing the use of EPO with darbepoietin in HIE are 

warranted. EPO and darbepoietin is also being evaluated as a neuroprotective agent for other 

causes of full-term brain injury, including mild encephalopathy not qualifying for cooling, 

congenital heart disease132 and perinatal stroke133.

VEGF

Other growth factors have also demonstrated benefit with delayed initiation of therapy in 

pre-clinical models. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and 

vasculogenesis, and is a downstream effector of HIF-1α134. Following ischemia, the brain 

responds by increasing collateral vessel development and arterial perfusion to the ischemic 

penumbra. VEGF is upregulated following stroke in rats, with increased arteriogenesis and 

neurogenesis both in vitro and in vivo135, 136, 25, 26. In the early stages following ischemic 

injury, endogenous VEGF expression contributes to disruption of blood-brain barrier 

integrity, with increased vascular permeability and uncoupling of endothelial cell-cell 

junctions137, 138. For this reason, the timing of exogenous VEGF treatment is crucial as 

studies have shown that early administration increases edema and infarct volume, while later 

treatment reduces injury, increases blood vessel formation and myelin basic protein 

production in the injured penumbra135, 139. In humans, there is an increase in VEGF levels 

for 3 months following stroke, which correlates with functional outcome140.

BDNF

Brain-derived neurotrophic factor (BDNF) is also critical for cell survival and tissue repair in 

the brain following ischemia. Exogenous BDNF administration after ischemia reduces 

histological injury and improves behavioral outcomes, with increased oligodendrocyte 

differentiation and myelin formation with delayed injection of BDNF following 

stroke141, 142, and increased neurogenesis and migration of neural precursor cells to injured 

regions of the brain143. BDNF injections for 5 days following photothrombolytic stroke has 

also been shown to improve sensorimotor outcomes in pre-clinical models144.
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DELAYED THERAPIES; STEM CELLS

Stem cells have gained traction in recent years as a therapeutic option for a number of 

different CNS diseases in both the mature and immature brain, with the ability to enhance 

repair in some pre-clinical models. Neural stem cells (NSCs) are multi-potent precursors that 

self-renew and retain the ability to differentiate into a variety of neuronal and non-neuronal 

cell types in the CNS. They reside in neurogenic zones throughout life, such as the 

subventricular zone and subgranular zone of the dentate gyrus in rodent models, and help 

maintain cell turnover at baseline and replace injured cells by migrating to injured tissue. 

Implanted cells integrate into injured tissue145, decrease volume loss146–148 and improving 

behavioral outcomes149, 150 in both neonatal and adult models of ischemia147, 148. These 

stem cells differentiate into neurons, astrocytes, oligodendroctyes, as well as undifferentiated 

progenitors. These cells not only promote regeneration, but non-neuronal phenotypes inhibit 

inflammation and scar formation, while promoting angiogenesis and neuronal cell survival 

in both rodent and primate models151, 152. While no adverse effects have been noted, the 

therapeutic window is not known.

In humans, mesenchymal stem cells (MSCs) are a particularly promising candidate to repair 

the ischemic brain damage because of their low immunogenicity, their availability and 

promising pre-clinical data. MSCs can be isolated from a variety of tissues types, and 

administration of MSCs reduces lesion volume and improves functional outcomes in 

neonatal rodent stroke35. In addition, this therapy appears to be effective with delayed 

administration, as there has been demonstration of short-term benefit with treatment times 

ranging anywhere from 3 hours to 10 days after the onset of injury153. These data indicate 

that stem cells have both neuroprotective and neuroregenerative properties. This role is also 

supported by results showing that there is decreased apoptosis after stem cell transplantation, 

with endogenous neurogenesis is enhanced, and with increasing benefit with multiple 

injections.

While it was originally thought that implantation and engraftment of exogenous cells may 

result in proliferation and differentiation to replace dead or dying cells as part of the repair 

process, systemic transplantation-induced effects after ischemia frequently occur in the 

absence of grafted cell survival. This suggests that transplanted cells may improve outcome 

via indirect mechanisms on local growth factor production or cellular differentiation, as 

opposed to replacement of damaged cells with transplanted cells. MSCs have been shown to 

secrete a number of factors involved in cell death, cell proliferation, cell fate, and functional 

incorporation, including BDNF, VEGF, and insulin-like growth factor-1 (IGF-1)154. These 

findings have now led to the alternative strategy of combining cell-based therapies and gene 

manipulation or delivery155. Transplantation of endothelial precursor cells (EPCs) over-

expressing IGF-1 reduced apoptosis and increased blood vessel number in a model of 

cardiac injury. Stem cells that have been manipulated to over-express specific neurotrophic 

factors, such as BDNF, have also shown benefit in different pre-clinical models of brain 

injury156, 157. Administration of BDNF modified MSCs has shown benefit in small animal 

models of transient stroke, traumatic brain injury, and spinal cord injury. Intranasal 

administration of BDNF-overexpressing MSCs given three days after neonatal stroke 

reducing histological injury and improving short-term motor function153.
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COMBINATION THERAPY

Monotherapies that address any one of the underlying mechanisms or pathways of injury 

may result in only mild improvement. Therapies that potentially address multiple pathways, 

such as hypothermia, erythropoietin, or melatonin, have demonstrated more benefit and may 

provide more potential for long-term repair. Hypothermia has become the standard of care 

since showing benefit in moderate to severely encephalopathic newborns, resulting in long-

lasting improvement for many children; however, it does not completely protect or repair all 

injured brains158, 159, 160, 161. For this reason, there is a continued search for adjuvant or 

synergistic therapies that may provide more long-lasting neuroprotection and repair. Specific 

to HIE, these are often referred to as “Cooling Plus” therapies, and include early 

hypothermia combined with other therapies that include EPO, xenon, melatonin, allopurinol, 

magnesium sulfate, topiramate, and autologous cord blood, which will be discussed below. 

While it is difficult to study comparative effectiveness of combination therapies there may 

be a cocktail or sequence of therapies that provide the most benefit. Once adequate 

biomarkers are identified that can quickly and accurately determine those at risk and those 

that may benefit from particular strategies, we can take advantage of specific endogenous 

repair processes at different time points following injury can be craft a strategy to maximally 

repair the injured brain and improve outcomes.

In the phase I, dose escalation NEAT trial, infants cooled within 6 hours of birth then 

received up to EPO doses every 48 h (up to 6 doses), with the first dose given within 24 

hours after delivery162. Of the 4 different EPO doses tested, a dose of 1000 units/kg/dose in 

cooled babies achieved plasma serum concentrations that most closely approximated 

optimum neuroprotective levels in different animal models163. Several larger clinical trials of 

hypothermia/EPO therapy are currently underway, in hopes of providing additional 

information on both safety and efficacy. The multicenter phase II double-blinded, 

randomized controlled NEAT O trial also demonstrated safety with multiple doses of 1000 

units/kg/dose over a one-week period, and suggested short-term imaging and 

neurodevelopmental improvement, but was not powered to demonstrate efficacy 164. Three 

large phase III randomized controlled trials will assess neurodevelopmental outcomes at age 

2 years in cooled infants with HIE. A French study () began enrolling patients in 2013, and 

the Australian PAEAN study () and the HEAL trial in the United States () are currently 

enrolling. All three trials will test the administration of EPO 1000 U/kg, with multiple doses 

given intravenously over the first week of life.

Xenon and hypothermia have also been studied as combination therapy for moderate to 

severe encephalopathy and concern for HIE. In pre-clinical studies, combination xenon/

hypothermia initiated 4 hours after neonatal HI provided synergistic histological and 

functional protection when evaluated at 30 days after injury165. Hypothermia reduces 

glutamate and glycine release166, and NMDA receptor antagonism may explain these 

effects. An additive effect was also shown after neonatal HI in rats cooled to 32°C that 

received 50% xenon, with improvement in long-term histology and functional performance 

that exceeded the individual benefit of either167. In humans, a phase I trial where 50% xenon 

was administered for 18 hours, starting by 18 hours of age, was found to be safe while also 

suppressing seizures168. The TOBY-Xe trial in the UK administered 30% xenon by 12 hours 
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of age in cooled infants, continued for 24 hours, and similarly found a reduction in seizures, 

but no difference in neuroimaging biomarkers169, 170. Neither of these studies examined 

long-term neurodevelopment.

Other human combination trials include a randomized controlled pilot trial combining 

melatonin with cooling in term infants with HIE. The melatonin/hypothermia group had 

fewer seizures, less evidence of white matter injury on MRI, and a lower rate of mortality 

without developmental or neurological abnormalities at 6 months171. There is a phase II, 

melatonin escalation study ongoing () and larger ongoing trials are necessary. Allopurinol is 

also being studied in combination with hypothermia for HIE. Since pre-clinical evidence 

suggests it must be given early for HIE 90, the ongoing ALBINO trial will give two doses of 

Allopurinol, with the first dose within 30 minutes of birth (). Finally, there are ongoing 

phase I and phase II trials combining autologous cord blood or nucleated blood cells in 

combination with hypothermia for term HIE (; ).

There are other “Cooling Plus” strategies that have demonstrated benefit in animal models, 

but have yet to be systematically studied in humans. N-acetylcysteine (NAC) is a medication 

approved for neonates that is a scavenger of oxygen radicals and restores intracellular 

glutathione levels, attenuating reperfusion injury and decreasing inflammation and NO 

production in adult models of stroke172, 173. Adding NAC therapy to systemic hypothermia 

reduced brain volume loss at both 2 and 4 weeks after neonatal rodent HI, with increased 

myelin expression and improved reflexes174. Inhibition of inflammation with MK-801 has 

also been effective when combined with hypothermia in neonatal rats post HI injury175. In 

neonatal rats who underwent HI followed by early topiramate and delayed hypothermia, 

improved short-term histology and function was seen73, 176, 177. This may provide a window 

for protection if hypothermia is delayed.

CONCLUSIONS

Many pre-clinical and clinical studies have focused on singular mechanisms of injury, such 

as oxidative stress, inflammation, or excitotoxicity. Evidence suggests that injury continues 

to progress and therapies may need to be administered over much a much longer period of 

time than had previously been appreciated [Figure 1]. While hypothermia and single 

pharmacotherapies show promise, combination therapy may be necessary to increase the 

therapeutic time window for protection and enhance reparative processes, making recovery 

possible.

Neonatal critical care has grown over many decades, with improved care of lung disease, 

congenital cardiac disease, improved ventilation strategies and ECMO. Despite these 

improvements, neurodevelopmental outcomes continue to suffer. The immature brain is 

unique in its developing complexity, and response to hypoxic and/or ischemic insults. While 

the above-mentioned therapeutic strategies show promise as future therapies, attention must 

be paid to a neonate’s physiological status, including their blood pressure, carbon dioxide 

and glucose levels, and the presence of seizures to prevent progression of brain injury or 

secondary brain injury from occurring. Neonatal neurocritical care, involving expertise from 

neonatologists, child neurologists, neuroradiologists, neonatal nurses, and developmental 
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specialists will provide the most appropriate acute care, identify those at risk who can 

benefit from therapy, and follow up to optimize long-term outcomes178, 179.
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Fig 1. Mechanisms of injury and potential therapies following perinatal insult.
A number of injury mechanisms result in primary and secondary energy failure, leading to a 

variety of cell death pathways. Potential therapeutic strategies can alter these early pathways 

to limit cell injury and death, or enhance long-term repair.
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