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A quasidegenerate 2nd-order perturbation theory approximation

to RAS-nSF for excited states and strong correlations

Nicholas J. Mayhall, Matthew Goldey, and Martin Head-Gordon∗

Kenneth S. Pitzer Center for Theoretical Chemistry,

Department of Chemistry, University of California,

Berkeley, California 94720, USA and

Chemical Sciences Division, Lawrence Berkeley National Laboratory

Abstract

We present a modification of the recently developed Restricted Active Space with n Spin Flips

method (RAS-nSF),which provides significant efficiency advantages. In the RAS-nSF configura-

tion interaction wavefunction, an arbitrary number of spin-flips are performed within an orbital

active space (often simply the singly occupied orbitals), with state-specific orbital relaxation being

described by single excitations into and out of the active space (termed hole and particle states,

respectively). As the number of hole and particle states dominates the cost of the calculation, we

present an attractive simplification in which the orbital relaxation effects (via hole and particle

states) are treated perturbatively rather than variationally. The physical justification for this sim-

plification stems from the spin-flip methodology itself, which suggests that the underlying molecular

orbitals (high-spin ROHF) are capable of providing a decent description of the target (spin-flipped)

electronic states. The current approach termed SF-CAS(h,p)n (Spin-Flip Complete Active-Space

with perturbative Hole and Particle states) yields spin-pure energies and eigenfunctions due to the

spin-free formulation. A description of the theory is presented and a number of numerical exam-

ples are investigated to determine the accuracy of the approximation. Computational speedups of

over 100 times were demonstrated on a 254 electron, 358 basis function calculation on a Cu(II)

porphyrin derivatized with a verdazyl group.
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I. INTRODUCTION

In electronic structure theory, ab initio approaches to modelling the electrons in a molec-

ular system provide computational chemists with a prescription for obtaining arbitrarily

accurate results, in principle. However, without making assumptions about the system at

hand, the computational complexity increases exponentially with the size of the system.

For many stable molecules in their equilibrium geometry, it is reasonable to assume that

a single Slater determinant can provide a qualitatively correct description of the electronic

wavefunction. This is an effective approximation when all the electrons are tied up in chem-

ical bonds, and many-body corrections (such as many-body perturbation theory (MBPT)

or coupled cluster theory (CC))1–4 can be added to obtain quantitatively accurate results.

For systems with unpaired electrons or very low-lying excited states, a single Slater de-

terminant is no longer an adequate approximation to the ground state, nor an effective

reference state for MBPT or CC approximations. This interaction among low-lying config-

urations is somewhat ambiguously termed “static correlation” or “strong correlation”, and

makes even a qualitatively correct description difficult. The electronic characteristics which

give rise to static correlation are, in fact, the same characteristics which lead to chemical

reactivity (small HOMO-LUMO gap, unpaired electrons). It is, therefore, not surprising

that investigations into photochemistry or catalysis are often hindered by the availability of

computationally efficient methods which describe static correlation.

Many directions have been explored to treat static correlation, each with varying utility

and accuracy. Of these, CASSCF (complete active space self consistent field) has been the

most commonly used approach to obtain a qualitatively correct reference state for multi-

reference systems.5 Due to the high computational cost and practical challenges in using

CASSCF, new approaches to this problem are also being pursued.6–11 Most notably, perhaps,

is the density matrix renormalization group (DMRG) approach, which has been shown

to exhibit polynomial, rather than exponential scaling, enabling computations of larger

active spaces.6,12,13 Many-body methods can then be applied to the resulting wavefunction

to describe dynamical correlation (CASPT2), which is required for quantitative accuracy.14

These methods, however, are burdened by difficult orbital convergence, the need for state-

averaging, and the intruder state problem.

A promising single-reference alternative approach is the “spin-flip” framework introduced
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FIG. 1: Schematic representation of the classes of determinants in the RAS(4,4)-2SF wavefunction

expansion.

by Krylov and coworkers.15–18 Spin-flip methods are based on the fact that in many cases

where static correlation plays a role (bond-breaking, biradical electronic states), a low-lying,

high-spin, excited state exists which is single determinantal. The spin-flip approach takes

this high spin Hartree-Fock determinant as the reference state. The states with the desired

Ms value (i.e., the ground state) are then described by a linear combination of spin-flipping

excitations (α → β). By placing all strongly correlated electrons into orbitals with the

same spin function, the high-spin reference can no longer couple to the low-lying excited

states (since they have a different number of α and β electrons), thus providing a valid

single reference determinant. Spin-flip, thus, provides a genuine single reference solution to

a multi-reference problem, in which all the CI determinants are treated on an equal footing.

The simplest realization of the spin-flip model is SF-CIS (spin-flip configuration interac-

tion singles) where only single spin-flipping operators act on a high-spin triplet reference.19

This has the ability to provide qualitatively correct descriptions of single bond breaking

and open-shell singlet states (antiferromagnetic coupling) of biradicaloid molecules. Many

spin-flip methods have been implemented which also account for dynamic correlation via

CI,16 CC,20 DFT,21–23 and MBPT,19 providing quantitatively accurate results for appropri-

ate systems.

Despite the success of the spin-flip approach to studying spin-coupled systems, a few

shortcomings were noticed early on,24 such as the problem with spin-contamination in the

3
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resulting low-spin wavefunction. For instance, SF-CIS does not yield pure spin eigenfunc-

tions, even if the underlying reference wavefunction has no spin contamination (such as with

a restricted open shell Hartree-Fock reference (ROHF)). This is due to the spin asymmetry

of the reference (only using the Ms = 1 component of the triplet state) and the resulting ab-

sence of certain double and triple excitations which provide the proper spin complementing

Slater determinants required to form a configuration state function. This also results in an

artificial energy gap between the Ms = 1/− 1 and Ms = 0 components of the triplet state.

To address this problem, Sears et al. developed spin-complete spin-flip CIS (SC-SF-CIS)24

which produced pure spin states with improved results. The SC-SF-CIS method was later

generalized by including more excited configurations in the SF-XCIS method.25

In order to extend spin-pure treatments of spin-flip CI to a larger number of spin-flips,

the RAS-nSF method was introduced by Casanova et al.26–28 RAS-nSF is defined using high

spin ROHF orbitals which are grouped into three subspaces, RAS I, RAS II, and RAS III.

This subspace grouping is illustrated in Fig. 1 and the RAS-nSF wavefunction is defined as:

ΨRAS
s =

∑
A

csAφA +
∑
h

cshφh +
∑
p

cspφp, (1)

where φA are the set of CAS determinants (full CI in RAS II), and φh and φp are the

determinants from RAS I → II (hole) excitations and RAS II → III (particle) excitations,

respectively. For a fixed number of spin-flips, increasing the system size does not effect the

number of CAS determinants (φA), while the hole and particle determinants (φh, φp) increase

only linearly with system size. One of the prominent advantages of the spin-flip approach

is orbital optimization is not being performed on the multi-determinantal wavefunction;

RAS-nSF is simply a CI expansion using high-spin orbitals.

RAS-nSF can be thought of as a many-spin-flip generalization of the SF-XCIS approach,

in which direct hole → particle excitations are neglected. Alternatively, one can think of

RAS-nSF as an extended CAS-CI method where the CAS-CI wavefunction is of the spin-flip

type: SF-CAS-CI. The increased flexibility of the RAS-nSF wavefunction compared to the

SF-CAS-CI wavefunction is obtained by including the hole and particle excitations, which

provide two benefits:

� State-specific orbital relaxation of all SF-CAS-CI states

� Access to certain singly-excited electronic states not present in the SF-CAS-CI wave-

4
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function

The hole and particle excitations are clearly necessary if one is aiming to describe an elec-

tronic state that is predominately of hole or particle character. However, for the more

common scenario in which one is interested in states primarily described by excitations

within the active-space, then it is the orbital relaxation effect that is relevant. Because the

high-spin HF orbitals are believed to be satisfactory (which is the foundation of the spin-

flip framework), one might expect the orbital relaxation effects of the SF-CAS-CI states to

be rather small, and thus able to be described by perturbation theory. In this paper, we

consider this possibility by developing a quasidegenerate perturbation theory correction to

SF-CAS-CI, which aims to reproduce the full RAS-nSF results but at significantly reduced

computational effort.

II. THEORY

As part of a series of articles on perturbation theory,29–31 Löwdin developed a general

partitioning technique which recasts the Schrödinger equation into a convenient form for

employing various approximations.32–34 By partitioning the CI secular equation into a small

primary space (A), and a larger external space (X): HAA HAX

HXA HXX

 CA

CX

 = Es

 CA

CX

 (2)

one can regroup the equations to obtain the exact energy for state s by diagonalizing an

energy-dependent effective Hamiltonian of only AxA dimension.

HAA,sCA = EsCA (3)

where,

HAA,s = HAA + HAX [Es −HXX ]−1HXA (4)

As this is completely equivalent to the full CI problem, Eq. 4 still requires the diagonalization

of the HXX block of the Hamiltonian. Further, Eq. 3 must now be solved iteratively for

each eigenvalue due to the energy dependence and state-specific nature of the effective

Hamiltonian. Computational simplification occurs when one chooses an approximation to

5
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HXX , such that the formation of the denominator becomes trivial to compute. Further

simplifications may also be invoked to remove the energy dependence from the effective

Hamiltonian.

In the present method, we define the A space to contain all determinants in the SF-

CAS-CI wavefunction, and the X space to contain the hole and particle excitations. This is

different than other approaches which use perturbation theory to help account for the orbital

relaxation to improve the minimal active-space CI,35 as the spin-flip approach circumvents

the orbital optimization entirely.

We define our zeroth order Hamiltonian as:

H =H(0) + λH(1) (5)

H(0) =

 Ĥ 0

0 F̂ + 〈| V̂ |〉+ η

 (6)

H(1) =

 0 Ĥ

Ĥ V̂ − 〈| V̂ |〉 − η

 (7)

where Ĥ, F̂ , and V̂ are the Hamiltonian, Fock operator, and fluctuation potential, respec-

tively. The reference state, |〉, is taken to be the zeroth-order ground-state SF-CAS-CI

wavefunction,81 and the scalar quantity, η, is an arbitrary level-shift chosen to increase the

energy of the perturbing levels in the zeroth order Hamitonian. At zeroth order, the exact

Hamiltonian exists only in the A space, with the one electron Fock operator, F̂ , describing

the zeroth order energy of the determinants in the X space.

The level shift, η, can alternatively be interpreted as a penalty function which damps

large amplitudes in the perturbative space, stabilizing the perturbative expansion. Using

indices a, b to represent SF-CAS determinants (A space), indices x, y to represent hole and

particle determinants (X space), and indices p, q to represent general determinants (A ∪X
space), the Lagrangian for this system is:

L =
∑
pq

cpHpqcq − E
∑
p

(c2p − 1) + η
∑
x

c2x (8)

6
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Making this stationary with respect to the A and X space coefficients,

∂L
∂ca

=
∑
b

Habcb +
∑
y

Haycy − Eca = 0 (9)

∂L
∂cx

=
∑
b

Hxbcb +
∑
y

Hxycy − Ecx + ηcx = 0 (10)

leads to a modified effective Hamiltonian with a level shift in the denominator:

Hab,s = Hab +
∑
x

Hax [Es −Hxx − η]−1Hxb (11)

Larger values of η will consequently yield smaller perturbative corrections.

Substituting with Eq. 5, we can expand the effective Hamiltonian in Eq. 11, Hab,s, in

orders of the perturbation.

H(2)
ab,s = Hab +

∑
x

HaxHxb

Es − Fx − V (0)
0 − η

(12)

Diagonalization of the zeroth-order Hamiltonian yields the SF-CAS-CI energy and wave-

function. The first correction shows up at second order and includes only the diagonal of

the X space in the denominator (by choosing an appropriate F̂ which is diagonal in the

determinant basis), making the denominator trivial to compute.

This can lead directly to a non-degenerate second order perturbative correction, referred

to here as SF-CAS(h,p), by taking the expectation value of the effective Hamiltonian (Eq.

12) in the zeroth-order eigenvector basis.

ESF-CAS(h,p)
s =

∑
ab

c(0)a,sH(2)
ab,sc

(0)
b,s (13)

If an accidental degeneracy arises in the zeroth order problem, the perturbation is not

well-defined, as any non-zero Hamiltonian coupling introduced by the perturbation would

result in a infinite first-order correction to the two degenerate states. This requires one

to variationally remix the states in the presence of the perturbation, via a quasidegenerate

perturbation theory (QDPT). To do this in a well-defined manner, one can choose to remix

all of the states after adding the perturbation into the effective Hamiltonian, i.e., a “perturb-

then-diagonalize” approach.

However, as indicated by the state index (s) on H(2)
ab,s, the effective Hamiltonian has a

state dependence, which (if not removed) makes it necessary to form a separate state-specific

7
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effective Hamiltonian for each state being solved. To remove the state dependence, we write

the denominator as:

D(0)
x,s = Es − Fx − V (0)

0 − η (14)

= ωs + E
(0)
0 − Fx − V (0)

0 − η (15)

= ωs − ω(0)
x − η (16)

where ωs is the excitation energy of the state of interest, s, and

ω(0)
x = 〈X| F̂ |X〉 − 〈| F̂ |〉 (17)

=
∑
i∈|φx〉

εi −
∑
a

∑
i∈|φa〉

(
c
(0)
a,0

)2
εi (18)

As was done in the CIS(D0) method,36–38 expanding the denominator in orders of ωs/(ω
(0)
x +

η), yields an expansion, that when truncated at either the zeroth or first order, removes the

state dependence of H(2)
ab,s.

1

ωs − ω(0)
x − η

= − 1

ω
(0)
x + η

(19)

− ωs

(ω
(0)
x + η)2

+ · · · (20)

This expansion is rapidly convergent provided that the state of interest, s, is close in energy

to the ground state relative to the external space determinants. As we are typically interested

in the few lowest energy states, this should generally not be a problem.

Truncation of the denominator at zeroth or first order defines the SF-CAS(h,p)0 and SF-

CAS(h,p)1 methods, respectively. In both cases, the different state energies are obtained by a

single diagonalization of a state-independent effective Hamiltonian, making this a multistate

theory. However, in the case of SF-CAS(h,p)1, the presence of ωs in the numerator requires

one to solve a generalized eigenvalue equation.

H(2)C = SCE, (21)

A. SF-CAS(h,p)0

The SF-CAS(h,p)0 method offers the simplest QDPT correction. Here, the denominator

is simply orbital energy differences, and the metric, SAA, is the identity matrix, IAA. The

8
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effective Hamiltonian to diagonalize is,

H(2)
ab = Hab −

∑
x

HaxHxb

ω
(0)
x + η

(22)

B. SF-CAS(h,p)1

The SF-CAS(h,p)1 method linearly corrects for the loss of state-specificity in the effective

Hamiltonian. Keeping only the first two terms of the expansion in Eq. 19 and rearranging,

yields the following Hamiltonian and metric,

H(2)
ab =Hab −

∑
x

HaxHxb

ω
(0)
x + η

+ E
(0)
0

∑
x

HaxHxb(
ω
(0)
x + η

)2 (23)

Sab = 1 +
∑
x

HaxHxb(
ω
(0)
x + η

)2 (24)

It is useful to compare the current method to other related theoretical approaches in

the literature. Of particular relevance is the difference dedicated configuration interaction

(DDCI) method of Malrieu and coworkers,39,40 which has been successfully used for the

computation of spin-state energy gaps.35,41–45 In DDCI, a variational CI space is selected

by including all determinants which couple to a model determinant space (CAS) at second-

order perturbation theory. This space was then decomposed into a hierarchy CASCI, DDCI1,

DDCI2, DDCI, which differs based on the number of external indices on the excited deter-

minants defining the variational space.41 The RAS-nSF method itself can be thought of as a

spin-flip DDCI1 method, taking the singly occupied orbitals as the model space. So while the

SF-CAS(h,p)n approach was motivated as a perturbative approximation to a variational CI

problem, the DDCI method was motivated as a variational extension of a perturbative the-

ory. Similar to our current method, Barone et al. have used Löwdin partitioning to increase

efficiency in computing singlet-triplet gaps via DDCI.43,45,46 This was done by partitioning

a spin-coupled system into local fragments to reduce the size of the CI space and including

part of the determinantal space variationally and the rest perturbatively. Our approach

falls within the spin-flip group of methods, thus leaning on the reliability of the high-spin

orbitals for providing a single configuration reference wavefunction. We have also targeted

9
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a low cost approach by exclusively taking the SF-CAS as the zeroth order wavefunction and

including significantly fewer determinants in the perturbation.

C. Choice of F̂

Finally, to fully define the current methodology, attention must be paid to the form of

the Fock operator chosen in the X subspace of the zeroth order Hamiltonian in Eq. 6. Our

principle motivation in choosing a zeroth order Hamiltonian was to obtain a matrix which

was already diagonal in the H
(0)
XX block. However, the ROHF Fock matrix is not actually

diagonal in the determinant basis, due to the absence of variational parameters which would

break spin symmetry. This requires one to select only parts of the Fock matrix to keep in

the zeroth-order Hamiltonian, pushing the rest off to the perturbation.

In the context of ROHF-based MP2, it is well known that the form of the ROHF Fock

matrix leads to some degree of ambiguity in the perturbation,47–55 and the current method is

no exception. To ensure a spin-pure treatment of our perturbation, we construct a spin-free

effective Fock matrix, which when diagonalized, leaves the energy of the high-spin ROHF

wavefunction unchanged. This requires the off-diagonal blocks (in the MO basis) coupling

the D and S blocks and the S and V blocks to come from the β and α Fock matrices,

respectively. Although the off-diagonal blocks are fixed by the HF stationary conditions,

the diagonal blocks can be arbitrarily chosen.

One obvious choice would be to use the orbitals employed in the RO-based MP2 method,

OPT1, which is spin-pure and has the same orbital invariant properties as the underlying

ROHF wavefunction.50 This approach takes the average of the α and β Fock matrices for

the diagonal blocks. We have chosen to use these orbitals which diagonalize the following

effective Fock matrix,

F =


Favg Fβ Favg

Fβ Favg Fα

Favg Fα Favg

 (25)

The potential drawback to choosing this zeroth order partitioning, is that the orbital energies

in the singly occupied block (the magnetic orbitals) are understood to correspond to the

average of ionization potentials and electron affinities.82 This diminishes the reliability of

the Fock operator in estimating the energies of the perturbing states. However, by choosing

10
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a suitable value for the level-shift parameter, η, the accuracy of the PT correction can

be improved while retaining properties which are very important for the current problem,

namely spin-purity and orbital invariance.

D. Implementation

Because the methods presented here contain the full CI wavefunction in the active space,

the computational complexity will always increase factorially with size of active space. How-

ever, with small active spaces, the computational bottlenecks will actually occur when com-

puting the two-electron integrals. It is clear that these two limiting cases might have different

optimal implementations, and we have developed the current code to target the small active

space scenario. Note that in the following, any statements regarding computational scaling

should be understood to mean increasing the molecular system or basis set size while holding

the size of the active space constant.

In the SF-CAS(h,p)n methods, the only matrices to be diagonalized, are of the smaller

zeroth-order dimension. Therefore, we directly diagonalize both the Hab and H(2)
ab matrices.

While our implementation is indeed general, the fact that we use a direct diagonalization,

(rather than a matrix-free Davidson solver), means that we are limited in practice in the

size of active spaces allowed, which happens to be around four spin-flips.

Exploiting the sparsity of the Hamiltonian matrices, we use the α, β-string techniques of

Ruedenburg56 with varying active space occupations to index our CI determinant space.

Our code proceeds by performing the following sequence of steps:

1. Compute ROHF energy and orbitals

2. Obtain new spin-free orbitals from effective Fock matrix

3. Compute and store in memory Ĵµν , K̂µν : O(N3)

4. Compute and store in memory (pq|rs), (Pq|rs) via RI approximation: O(N3)

5. Form and diagonalize Hab: O(N0)

6. Build H(2): O(N1)

� Find memory-allowed batches of the contraction index x for
∑

xHaxDxHbx

11
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TABLE I: Errors in spin-state energy gaps MAD (MAX) Errors. Units in kcal/mol.

MAD (MAX), kcal/mol η = 0 η = opt η, mH

SF-CAS 2.14(−10.0) 2.14(−10.0) −−

SF-CAS(h,p) 0.29(−1.3) 0.28(1.12) −16

SF-CAS(h,p)0 1.34(7.4) 0.24(1.57) 116

SF-CAS(h,p)1 1.09(5.0) 0.22(1.58) 107

� Loop over xi-batches (openMP57 parallelized): O(N1)

� Form blocks of Hi
AX and Di

X for each batch i

� Increment H(2) += Hi
AX

(
Di
X ◦Hi

XA

)
7. Diagonalize H(2): O(N0)

In the above steps, µ, ν refer to atomic orbitals, P , refers to both RAS I and RAS III

orbitals, and p, q, r, s refer to RAS II orbitals. DX is a vector of the denominators. The

hat on J and K indicates that only the RAS I density matrix was used in the integral

digestion. Note that even though the 2-electron integrals are stored in memory, the memory

demands are quite minimal as there are only O(N0) and O(N1) of the (pq|rs) and (Pq|rs)
integrals, respectively. The memory requirements are thus quadratic owing to the Ĵµν and

K̂µν matrices. For small number of spin-flips, the overall bottleneck is the formation of the

integrals which scales as O(N3). The Armadillo C++ Linear Algebra package was used to

facilitate the implementation.58 The resolution-of-the-identity approximation (RI) was used

in computing the two-electron integrals, providing a significant computational speed-up with

negligible error.59,60

Comparing the relative costs of the RAS-nSF and SF-CAS(h,p)n methods, it is easily seen

that the cost of either possible bottleneck (integrals or CI) is going to be reduced for the

new methods. In RAS-nSF, the particle (and hole) states are directly coupled, so integrals

with two virtual and two active indices, 〈VA||VA〉, are needed, which increases the scaling

to O(N4), compared to O(N3) for SF-CAS(h,p)n. For large active spaces and solving for

many states, the CI component can easily become the bottleneck in a RAS-nSF calculation.

SF-CAS(h,p)n simplifies this by replacing the iterative O(N2) σ-vector evaluation with a

non-iterative O(N1) matrix multiply.
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FIG. 2: High spin - Low spin state energy gaps. Perturbative results (y-axis) plotted against

RAS-nSF (x-axis) results. Black Line: RAS-nSF. Grey Pentagons: SF-CAS. Blue Squares: SF-

CAS(h,p). Green Triangles: SF-CAS(h,p)0. Red Circles: SF-CAS(h,p)1. Data below (above)

black diagonal line indicates under(over)-estimation of low-spin energy relative to high-spin state.

Energy gaps with wrong sign show up in +,− quadrants. Units in kcal/mol.

III. NUMERICAL TESTS

The performance of the target RAS-nSF results has been investigated in previous

papers,25–28,61,62 and has been found to provide qualitatively accurate results for a wide

range of molecules. The SF-CAS(h,p)n methods are approximations to the fully variational

RAS-nSF method, and thus we aim to evaluate the quality of this approximation in a well

defined manner, by direct comparison to RAS-nSF results. A variety of computed quantities

are used in this evaluation, including spin-state energy gaps, potential energy surface scans,

and excited state profiles.

All calculations have been performed with a development version of Q-Chem 4.0.63 Carte-

sian coordinates can be obtained in the supplementary information for all systems. Molecular

orbital isosurfaces have been rendered using the IQmol software.64
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FIG. 3: HF Bond dissociation curves. (6,4) active space and triplet reference. Grey area: RAS-

nSF. Black curve: SF-CAS. Blue curve: SF-CAS(h,p). Green curve: SF-CAS(h,p)0. Red curve:

SF-CAS(h,p)1. Orange dotted line: SF-CAS(h,p)∞. y-axis is in units of kcal/mol and same scale

in both plots. x-axis in units of Å. Optimal level-shifts employed.

A. Spin-State Energy Gaps

Organic radicals have enjoyed a great amount of interest due to their potential application

to organic magnetic and conducting materials.65 Crystals or polymers built from molecular

building-blocks which contain unpaired electrons have the potential for exhibiting emergent

bulk magnetic or conductive properties. The realization of this largely depends on the

underlying stability of the radicals, and the manner in which the radical units couple.

One of the more attractive features of the RAS-nSF method is the reliability with which

ground state spin multiplicity can be predicted, even for extremely small energy gaps.28 In

this section, we assess the accuracy of the SF-CAS(h,p)n approximation for computing the

relative energies of spin states, using 68 different energy gaps between singlet, triplet, and

quintet spin states. In Fig. 2(a), we plot the perturbative results, sans level-shift, against

the fully variational RAS-nSF energy gaps. In Fig. 2(b), the results are shown after choosing
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FIG. 4: N2 Bond dissociation curves. (6,6) active space and heptet reference. Grey area: RAS-

nSF. Black curve: SF-CAS. Blue curve: SF-CAS(h,p). Green curve: SF-CAS(h,p)0. Red curve:

SF-CAS(h,p)1. Orange dotted line: SF-CAS(h,p)∞. y-axis is in units of kcal/mol and same scale

in both plots. x-axis in units of Å. Optimal level-shifts employed.

a level-shift value which minimizes the RMS. This optimal value, η, is given in Table I.

All geometries were optimized at the B3LYP/6-31g* level for the high-spin state, and are

provided in the supplementary information. Vertical spin-state energy gaps are computed

using single point calculations either at the SF-CAS(h,p)n/6-31g* level or the RAS-nSF/6-

31g* level.

Without Level-shift

In Fig. 2(a), both the zeroth-order SF-CAS, and the second-order SF-CAS(h,p)n qual-

itatively reproduce the RAS-nSF results. Neglecting all hole and particle relaxation, the

SF-CAS energy gaps (high-spin minus low-spin) are consistently underestimated. This is

to be expected as the orbitals have been optimized for the high spin state (either triplet or

quintet in this data), and not the low-spin states.
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After inclusion of the perturbative correction describing hole and particle relaxation, the

energy gaps increase, owing to a relaxation of the low-spin states. For the non-degenerate

perturbation theory (NDPT) results, SF-CAS(h,p) (depicted as blue squares) performs sur-

prisingly well with a MAD from the RAS-nSF results of only 0.29 kcal/mol.

However, when the theory is made more sophisticated by moving to a quasidegenerate

perturbation theory (QDPT), the SF-CAS(h,p)n results become noticeably worse. This can

be understood as a partial cancellation of two different errors in the NDPT results. The

perturbative coefficients of the hole and particle determinants, and thus the energy cor-

rections, are overestimated by second-order perturbation theory. However, for the NDPT,

the zeroth-order SF-CAS-CI eigenvectors do not diagonalize the effective Hamiltonian (see

Eq. 13), and thus the energy is necessarily higher than the ground state of the effective

Hamiltonian. These two opposing effects work to cancel errors for the NDPT SF-CAS(h,p)

results. When QDPT is used, the effective Hamiltonian stays essentially the same with the

same overestimated corrections, but now is diagonalized to yield even larger corrections.

This effect translates into spin state energy gaps which are too large, since only the low-spin

states are corrected by the perturbation.83 While this might urge one to advocate only for

the non-degenerate SF-CAS(h,p) method, this error cancellation might not always occur.

Furthermore, the NDPT correction will no longer be well defined when actual quasidegen-

eracies occur (see section III D). Therefore, analysis of the QDPT results reveal deficiencies

of the effective Hamiltonian that would have gone unnoticed if only the NDPT results were

considered.

With Level-shift

As seen in the overestimation of the energy gaps, the first-order hole and particle coeffi-

cients are found to be systematically overestimated. To correct this, we have repartitioned

the Hamiltonian using a level-shift which effectively pads the energy of the perturbing states

to protect against small denominators. As described in Eq. 8, this is equivalent to diago-

nalizing the unfolded second-order Hamiltonian, with a penalty function that damps large

external space amplitudes. The value of this level-shift, however, must be determined em-

pirically. For this work, we chose values which made the SF-CAS(h,p)n results most similar

to the RAS-nSF results as quantified by the RMS deviation. The optimal values for this
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data were found to be 107 mH and 116 mH for SF-CAS(h,p)0 and SF-CAS(h,p)1, respec-

tively. Because the NDPT SF-CAS(h,p) underestimated the gaps, the level-shift parameter

optimized to a negative value of −16 mH. After optimizing η, all 3 perturbative theories

perform similarly with results that fall directly in line with the RAS-nSF data, as seen in

Fig. 2(b).

The level-shift does not simply decrease the size of all perturbative corrections as a mul-

tiplicative scale factor would. Energy gaps which were accurate without a level-shift, are

minimally affected, while the few energy gaps with significant errors are improved drasti-

cally. The padding of the denominator thus lends a degree of stability to the SF-CAS(h,p)n

theories, which justifies the slight empiricism.

B. HF Potential Energy Surface

The diatomic molecule HF provides a challenging test case for computing bond dissocia-

tion energies, having both a strong bond energy (D0 = 135.1 kcal/mol)66 and a challenging

electronic structure. The lone pairs on the F atom interact non-negligibly with the bond

at equilibrium distances, and at dissociation all three p orbitals on F become equivalent.

Therefore, as was done previously using RAS-nSF,28 the active space is (6 electrons, 4 or-

bitals) and was chosen to contain the four orbitals which dissociate to 2px,y,z on F and 1s

on H. As degeneracy among multiple triplet states can occur when an open-shell configu-

ration is very unstable (i.e., near equilibrium position), care must be taken to ensure that

the appropriate triplet state, |σ(α)σ∗(α)〉, is obtained to properly model the dissociative

process.19 Calculations on HF molecule employed the aug-cc-pVTZ basis set.67

In Fig. 3, the PES of HF is presented. Here, the RAS-nSF (shown as boundary of grey

area) is compared to the zeroth-order SF-CAS, the non-degenerate SF-CAS(h,p) method,

and the various SF-CAS(h,p)0,1,∞ quasidegenerate methods. All four perturbative methods

reproduce the qualitative energy lowering and R0 shift observed when including the particle

and hole states.

Inclusion of the SF-CAS(h,p)∞ results (shown as orange dotted line) provides a reference

for evaluating the accuracy in truncating the binomial expansion in Eq. 19. Comparing the

SF-CAS(h,p)0 and SF-CAS(h,p)∞ curves, it is observed that the truncation of the binomial

expansion at zeroth-order leads to an overestimation of the correction. By including the
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linear term in Eq. 19, the SF-CAS(h,p)1 method provides virtually identical results to SF-

CAS(h,p)∞. This suggests that any error introduced by removing the state dependence from

the effective Hamiltonian is negligible for the SF-CAS(h,p)1. For this system, the NDPT

correction also provides an accurate approximation to the RAS-nSF curve, although slightly

overestimating the minimum.84

Overall, the SF-CAS(h,p)n methods are able to accurately model the active-space relax-

ation effects that are accounted for variationally in RAS-nSF. Referenced to SF-CAS(h,p)∞,

SF-CAS(h,p)1 provides a dramatic improvement over SF-CAS(h,p)0.

C. N2 Potential Energy Surface

Dissociation of the triply-bonded nitrogen molecule requires the computation of the po-

tential energy surface between a closed-shell singlet at equilibrium, and two singlet-coupled

quartet N atoms. Single reference wavefunctions, are inadequate to model this surface, and

multireference approaches like CASSCF are often needed. Alternatively, in a spin-flip frame-

work, one can obtain a qualitatively correct description of the PES starting from a single

determinant wavefunction (the high-spin heptet). The RAS-nSF method was shown to yield

an N2 PES of comparable accuracy to CASSCF,27 which clearly highlights the ability of the

hole and particle excitations to describe the orbital relaxation effects of the active space con-

figurations. In Fig. 4, the PES of N2 is presented, comparing the SF-CAS, SF-CAS(h,p),

SF-CAS(h,p)0, and SF-CAS(h,p)1 methods to the RAS-nSF results. Calculations were car-

ried out using the cc-pVDZ basis set and used the (6,6) natural active space (the minimal

active space which allows the desired number of spin-flips).67

A prerequisite for perturbation theory is that the zeroth-order wavefunction is at least

qualitatively correct. Here, SF-CAS does provide a decent description of the bond dissoci-

ation, recovering almost 150 kcal/mol of the binding energy. By including the perturbative

hole and particle corrections, comparison to the RAS-nSF curve is significantly enhanced,

with the SF-CAS(h,p)1 and SF-CAS(h,p)∞ curves lying roughly 5 kcal/mol (3% error) lower

in energy. The SF-CAS(h,p)0 curve overshoots by an additional 3 kcal/mol, a clear impact

of the approximate denominator in Eq. 19.

One interesting feature of this plot is the slight barrier on the SF-CAS curve around 2.2 Å.

Here, the SF-CAS energy rises above the energy of the separated N atoms, a result of orbital
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FIG. 5: (a) Chemical structure for the Cu(II) porphyrin derivatized with a verdazyl group. (b)

Schematic description of radical sites in the ground state. (c) Schematic description of radical sites

in the excited state.

"eg"

VzCu

"a1u"
"a2u"

FIG. 6: Molecular orbitals constituting the active-space for the heptet ROHF reference. The

active-space contains the M and Vz singly occupied orbitals and the porphyrin-based orbitals

which correspond to the a1u, a2u, and eg orbitals of the traditional 4-orbital model for porphyrins.

mixing between the active space orbitals and the non-bonding lone pairs. Interestingly, all

perturbative corrections are unaffected by this, providing accurate energies all along the

PES.
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FIG. 7: (Top)
∣∣∣ •
M-P-

•
Vz
〉
−→

∣∣∣ •
M-

••
P-

•
Vz
〉

excitation energies. Data labels refer to the average of

the spin-state energies. Blue (singlet). Red (triplet). Green (quintet). (Bottom) Homogeneity

of the spin-state energy splitting in the
∣∣∣ •
M-

••
P-

•
Vz
〉

state. Energies relative to ground electronic

state. Roman numerals denote which theory was used: (I) SF-CAS. (II) SF-CAS(h,p). (III)

SF-CAS(h,p)0. (IV) SF-CAS(h,p)1. (V) RAS-SF. Same level-shift parameters used as above.

TABLE II: Timings for running the Porphyrin system on a single cpu core. SCF times are neglected

from comparison. Times are given in seconds. 6 RAS-SF states where converged for the singlet,

triplet, and quintet multiplicities.

RAS-SF SF-CAS(h,p) SF-CAS(h,p)0 SF-CAS(h,p)1

Time(s) 7479.392 52.348 53.552 61.028

Relative 100.00% 0.70% 0.72% 0.82%

D. Electronic transitions in biradical porphyrin complex

Establishing reliable microscopic control over molecular properties such as conductance

and magnetism has been an ongoing effort for the past several years. While technological
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applications will ultimately require the manipulation of difficult to compute properties, such

as magnetic anisotropy, the reliable prediction of ground state spin multiplicity is still out

of reach for standard quantum chemical approaches. One class of molecules which carry a

great deal of potential for molecular devices are those for which the magnetic properties can

be manipulated with light.68

One interesting example can be found in Reference 69, wherein a metallated porphyrin

ring with a ligated organic radical can transition from a very weakly antiferromagnetic

ground state, to a ferromagnetic excited state. In this example, Cu(II) (M) occupies the

center of the porphyrin ring85 (P) and possesses an unpaired electron. Attached to one of

the porphyrin’s pyrrole rings is an organic π-radical (verdazyl or Vz).70–73 In the ground

state,
∣∣∣ •
M-P-

•
Vz
〉

, these unpaired electrons are very weakly coupled (J ≈ 5-10 cm1), due to

the radical-radical distance and the perpendicular orientation of Vz ring to P. However,

upon irradiation, a local triplet state can be created on P which can mediate long range

spin-coupling between the M site and Vz, i.e.,
∣∣∣ •
M-

••
P-

•
Vz
〉

. This is illustrated schematically

in Fig. 5.

To study only the
∣∣∣ •
M-P-

•
Vz
〉

ground state, a single spin-flip starting from a triplet refer-

ence is sufficient. RAS-1SF and all the SF-CAS(h,p)n methods predict very similar results

for the singlet-triplet splitting of ≈ 0.1 − 0.2 meV. Although, all the spin-flip calculations

predict the triplet to lie slightly lower in energy than the singlet, which is at odds with the

experimental conclusions, the fact that the states are nearly degenerate and that both will

be populated in experiment is clearly reproduced here. One possible source for this discrep-

ancy could be that we are using a rather insufficient basis set (6-31G) for these calculations.

However, for the sake of evaluating the current approximation, the SF-CAS(h,p)n methods

all agree very closely with the RAS-SF results.

To model the
∣∣∣ •
M-

••
P-

•
Vz
〉

excited state, 4-electrons clearly need to be correlated. While

a double spin-flip calculation is often sufficient for treating four spin-coupled electrons, por-

phyrins have a well-understood electronic structure which is largely described by the Gouter-

man four-orbital model,74–77 in which electrons in two nearly degenerate a1u and a2u orbitals

can be excited into a doubly degenerate eg orbital. In order to correctly correlate the 4 elec-

trons while maintaining a proper description of the P electronic structure, triple spin-flip

calculations were performed using the heptet ROHF orbitals, which are shown in Fig. 6.

The resulting low-energy spectrum is comprised of a nearly degenerate pair of singlet and
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triplet
∣∣∣ •
M-P-

•
Vz
〉

states, with a higher lying group of four
∣∣∣ •
M-

••
P-

•
Vz
〉

states at around 2.3 eV.

These four states are made up of 1 quintet, 2 triplets, and 1 singlet. The excitation energies

for the
∣∣∣ •
M-

••
P-

•
Vz
〉

states are shown in the top of Fig. 7 for the SF-CAS, SF-CAS(h,p),

SF-CAS(h,p)0, SF-CAS(h,p)1, and RAS-SF methods, respectively.

The SF-CAS energies significantly underestimate the excitation energy. This is a direct

result of the absence of low-spin orbital relaxation effects which are, not surprisingly, more

important for the
∣∣∣ •
M-P-

•
Vz
〉

states than the
∣∣∣ •
M-

••
P-

•
Vz
〉

states. The SF-CAS(h,p) overesti-

mates this effect, and the resulting excitation energies are too large. The results are signif-

icantly improved by using the quasidegenerate theories SF-CAS(h,p)0 and SF-CAS(h,p)1,

with the latter providing the best comparison to the RAS-SF excitation energies.

While getting accurate excitation energies is, of course, important, perhaps equally inter-

esting, is the extent to which the new models can reproduce the RAS-SF spin-state splittings

in the
∣∣∣ •
M-

••
P-

•
Vz
〉

excited state. Consistent with experiment, each method predicts an in-

creased spin-state splitting in the excited state, with the quintet state being the most stable.

Although, each method predicted the correct ordering of spin-states (low to high energy:

quintet, triplet, triplet, singlet), quantitatively reproducing the relative spin-state splittings

appears to be more difficult. To quantify the homogeneity of the spin-state splittings for

the different methods, we take the average of the first and last gap, and divide this by the

second gap:

x =
(ET1 − EQ + ES − ET2)

2ET2 − 2ET1
(26)

This is plotted in the bottom of Fig. 7 for each of the methods.

Looking first at the zeroth-order method, SF-CAS, we see a much less homogeneous

energy spread compared to RAS-SF. Using the NDPT does not improve this at all and the

SF-CAS(h,p) method has very similar state-splittings as SF-CAS. QDPT, however, does

improve the energy splittings with the SF-CAS(h,p)1 model providing the best results of the

perturbative methods.

To illustrate the efficiency advantages, Table II lists the wall times on a single cpu for

the reported calculations.86 Note that these timings should be interpreted lightly as they

are obtained by comparison to a spin-adapted, exact integral implementation of RAS-nSF,

while our implementation is determinant-driven, and uses RI integrals.
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IV. CONCLUSIONS

In this paper, we have reported on the development and testing of a new spin-flip method

termed SF-CAS(h,p)n. This is a quasidegenerate perturbative approximation to the re-

stricted active space spin-flip CI method (RAS-SF), which provides significant computa-

tional efficiency gains, while introducing only modest errors. Three different methods were

discussed in this paper, namely SF-CAS(h,p), SF-CAS(h,p)0, and SF-CAS(h,p)1. Of these,

the most interesting is the SF-CAS(h,p)1 theory as it is both quasidegenerate and also a

very good approximation to the iterative and single-state SF-CAS(h,p)∞ theory.

The current method retains the core theoretical features of RAS-SF such as spin-purity,

size-consistency, and orbital invariance, while losing variationality. Relative to RAS-SF, its

primary limitation is the inability to describe excited states whose zero order description

includes significant contributions from either particle or hole configurations. This is typically

not the case for low-lying excited states of strongly correlated molecules, treated with a

number of spin flips that is half the number of strongly correlated electrons.

We have tested the current method on a set of 68 spin-state energy gaps, for organic

polyradicals. From this data, we found the SF-CAS and SF-CAS(h,p) methods to under-

estimate high-spin minus low-spin gaps, while the quasidegenerate methods, overestimated

the gap. To stabilize the perturbative correction, we used a single level-shift parameter to

damp large perturbative amplitudes. The value of this level-shift was optimized by minimiz-

ing the root mean squared deviation to the RAS-nSF results. Although the diversity of the

data set used for the optimization is not quite ideal, the optimal values of the SF-CAS(h,p)0

and SF-CAS(h,p)1 methods, (116 mH and 107 mH, respectively) appear to be reasonably

transferable based on our extension to remaining test cases throughout the paper. Contrary

to the QDPT methods, the level shift for the SF-CAS(h,p) method optimized to a nega-

tive number (-16 mH). The stabilizing effect of the level-shift only makes sense for positive

level-shifts, so we do not recommend any level-shifting with the SF-CAS(h,p) method.

Using the optimized level-shift values, bond dissociation curves were computed for N2

and FH molecules. Good agreement was found between the perturbative curves and the

variational curves.

To highlight the computational advantages of the current approach, a large biradical

porphyrin system was investigated. Here, SF-CAS(h,p)1 provided significant improvements
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over the SF-CAS and the other PT methods, in both excitation energy, and excited state

spin-state splittings. For this system the perturbative approximation was two-orders of

magnitude faster than the variational RAS-SF computation.

We anticipate the SF-CAS(h,p)1 model to stand as both an economical alternative to the

RAS-nSF method, and as a foundation for further developments incorporating dynamical

correlation effects.
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35 Suaud, N.; Ruamps, R.; Guihéry, N.; Malrieu, J.-P. J. Chem. Theory Comput. 2012, 8, 4127–

4137.

36 Head-Gordon, M.; Oumi, M.; Maurice, D. Mol. Phys. 1999, 96, 593–602.

37 Rhee, Y. M.; Casanova, D.; Head-Gordon, M. J. Chem. Theory Comput. 2009, 5, 1224–1236.

38 Casanova, D.; Rhee, Y. M.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 164106.

39 Miralles, J.; Daudey, J.-P.; Caballol, R. Chem. Phys. Lett. 1992, 198, 555–562.

40 Miralles, J.; Castell, O.; Caballol, R.; Malrieu, J.-P. Chem. Phys. 1993, 172, 33–43.

41 Calzado, C. J.; Cabrero, J.; Malrieu, J. P.; Caballol, R. J. Chem. Phys. 2002, 116, 3985.

42 Calzado, C. J.; Cabrero, J.; Malrieu, J. P.; Caballol, R. J. Chem. Phys. 2002, 116, 2728.

43 Barone, V.; Cacelli, I.; Ferretti, A.; Monti, S.; Prampolini, G. J. Chem. Theory Comput. 2011,

7, 699–706.

44 Barone, V.; Cacelli, I.; Ferretti, A.; Monti, S.; Prampolini, G. Phys. Chem. Chem. Phys. 2011,

13, 4709–14.

45 Barone, V.; Boilleau, C.; Cacelli, I.; Ferretti, A.; Monti, S.; Prampolini, G. J. Chem. Theory

Comput. 2012, 9, 300–307.

46 Barone, V.; Cacelli, I.; Ferretti, A.; Prampolini, G. J. Chem. Phys. 2009, 131, 224103.

47 Kozlowski, P. M.; Davidson, E. R. J. Chem. Phys. 1994, 100, 3672.

48 Kozlowski, P.; Davidson, E. Chem. Phys. Lett. 1994, 226, 440–446.

49 Davidson, E. Chem. Phys. Lett. 1995, 241, 432–437.

50 Murray, C.; Davidson, E. R. Chem. Phys. Lett. 1991, 187, 451–454.

51 Glaesemann, K. R.; Schmidt, M. W. J. Phys. Chem. A 2010, 114, 8772–7.

52 Crawford, T. D.; Schaefer, H. F.; Lee, T. J. J. Chem. Phys. 1996, 105, 1060.

53 Murray, C. W.; Handy, N. C. J. Chem. Phys. 1992, 97, 6509.

54 Lauderdale, W. J.; Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, R. J. Chem. Phys. Lett.

1991, 187, 21–28.
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denominator small and the perturbation unstable. Due to the fact that we are flipping spins,

the HF determinant is not longer Aufbau-ordered in the target ms space. The low-spin Aufbau-

ordered determinant could, therefore, provide a better reference state near equilibrium bond

distances and thus larger denominators. However, this effectively adds a two electron component

to the denominator which ultimately destroys orbital invariance of the energy. Taking the ground

state CAS wavefunction as the reference state provides a natural transition between both closed

and open shell scenarios and maintains energy invariance. This is similar to the “Barycentric”

partitioning in multi-reference perturbation theory.78 It is important to note, that single-electron

theories such as CIS(D),79 do not have this ambiguity, as the three reference states listed above

are all exactly the HF determinant.

82 Davidson and Murray introduced OPT2 to address this issue, though introduced significant

orbital invariance as a result.50 To correct the orbital invariance problems, a new IOPT theory

was developed, but failed to be size consistent.80
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is only a result of the level-shift, which increases the correction for SF-CAS(h,p) and decreases

the correction for SF-CAS(h,p)n. When η = 0, the curves are ordered as would be expected

with NDPT lying above the QDPT curve.

85 The actual molecule is based on a tetraphenyl-porphyrin, but in this study we have removed

the phenyl rings to simplify the calculations. A few calculations with the SF-CAS(h,p)1 method

were performed to verify that this does not noticeably change the results.

86 Obtaining a meaningful timing comparison is a bit difficult, as the two codes are implemented

through different approaches. The RAS-SF implementation28 used for this comparison employs

spin-adapted configuration state functions, and computes the eigenstates via Davidson itera-

tions. Our code, directly inverts the effective Hamiltonian, and thus obtain all resulting states

directly. Furthermore, our code uses the RI approximation for the integral evaluation for further

speedups, while computing all matrix elements using slater determinants (not spin-adapted).

Thus the reported timings should be interpreted lightly. For the spin-adapted RAS-SF calcu-

lations, six, six, and five states where converged for the singlet, triplet, quintet multiplicities,
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respectively. Times reported are averaged over 5 separate calculations each.
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