Lawrence Berkeley National Laboratory

LBL Publications

Title

A Free-Radical Prompted Barrierless Gas-Phase Synthesis of Pentacene

Permalink https://escholarship.org/uc/item/5827j2sg

Journal Angewandte Chemie, 132(28)

ISSN 0044-8249

Authors

Zhao, Long Kaiser, Ralf I Lu, Wenchao <u>et al.</u>

Publication Date 2020-07-06

DOI

10.1002/ange.202003402

Peer reviewed

A Free Radical Prompted Barrierless Gas Phase Synthesis of Pentacene

Long Zhao, Ralf I. Kaiser*

Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA

Wenchao Lu, Musahid Ahmed*

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Mikhail M. Evseev, Eugene K. Bashkirov

Samara National Research University, Samara 443086, Russian Federation

V. N. Azyazov

Lebedev Physical Institute, Samara 443011 and Samara National Research University, Samara 443086, Russian Federation

Alexander M. Mebel*

Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA

Christina Tönshoff, Florian Reicherter, Holger F. Bettinger*

Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18; 72076 Tübingen, Germany

^{*}Corresponding authors:

Prof. Dr. Ralf I. Kaiser <<u>ralfk@hawaii.edu</u>>

Dr. Musahid Ahmed <<u>MAhmed@lbl.gov</u>>

Prof. Dr. Alexander M. Mebel <<u>mebela@fiu.edu</u>>

Prof. Dr. Holger F. Bettinger <<u>holger.bettinger@uni-tuebingen.de</u>>

ABSTRACT: A representative, low temperature gas phase reaction mechanism synthesizing polyacenes via ring annulation exemplified by the formation of pentacene ($C_{22}H_{14}$) along with its benzo[*a*]tetracene isomer ($C_{22}H_{14}$) is unraveled by probing the elementary reaction of the 2-tetracenyl radical ($C_{18}H_{11}$) with vinylacetylene ($C_{4}H_{4}$). The pathway to pentacene – a prototype polyacene and a fundamental molecular building block in graphenes, fullerenes, and carbon nanotubes – is facilitated by a barrierless, vinylacetylene mediated gas phase chemistry thus disputing conventional hypotheses that synthesis of polycyclic aromatic hydrocarbons (PAHs) solely proceeds at elevated temperatures. This low temperature pathway can launch isomerselective routes to aromatic structures through submerged reaction barriers, resonantly stabilized free radical intermediates, and methodical ring annulation in deep space eventually changing our perception about the chemistry of carbon in our Universe.

Pentacene can be formed through molecular mass growth processes via ring annulation at low temperatures via the reaction of 2-tetracenyl radicals with vinylacetylene.

Keywords: Hydrogen Abstraction/Vinylacetylene Addition (HAVA) • polycyclic aromatic hydrocarbons • gas-phase chemistry • mass spectrometry • interstellar medium

Since the very first isolation of tetracene (C₁₈H₁₂) and pentacene (C₂₂H₁₄) by Ernst & Siegmund (1898)^[1] and Mills & Gostling (1912) more than a century ago, acenes - polycyclic aromatic hydrocarbons (PAHs) with the molecular formula $C_{4n+2}H_{2n+4}$ (n \geq 4) formally grown by linear fusion of benzene molecules^[2] (Scheme 1) - have attracted extensive attention from the physical chemistry, organic chemistry, material science, and astrochemistry communities. This interest is based on their exceptional optoelectronic properties - often in combination with Buckminster-fullerene (C_{60}) – as organic semiconductors^[3] and organic field effect transistors (OFETs).^[4] Acenes also play a fundamental role as molecular building blocks in nanotubes,^[5] graphenes,^[6] nanoflakes,^[7] and fullerenes (C₇₀) (Scheme 2)^[8] and have been suggested as potential carriers of (some of) the diffuse interstellar bands (DIBs)^[9] - discrete absorption features overlaid on the interstellar extinction curve from the blue part of the visible (400 nm) to the near-infrared (1.2 mm).^[10] Structurally, the 22 π -aromatic pentacene (C₂₂H₁₄) represents a linear (planar) acene with tetracene ($C_{18}H_{12}$) and hexacene ($C_{26}H_{16}$) defining the previous and next member in the homologous series, respectively. Although unsubstituted acenes hold a D_{2h} point group, substitution by phenyl groups in pentacene distorts the acene moiety out of plane resulting in right- and left-handed enantiomers with end-to-end twists of 144°.^[11] Considering the highly reactive 6 and 13 positions of pentacene due to π -electron localization, the aromatic character of pentacene is quite distinct from PAHs such as naphthalene ($C_{10}H_8$). This is evident from the facile oxidation of pentacene at the 6 and 13 positions to pentacene quinone^[12] and a tautomeric equilibrium between 6-methylpentacene and 6-methylene-6,13-dihydropentacene favoring the methylene species.^[13]

There are a number of ways to synthesize acenes. Classical approaches involve the reduction of acenequinones, the deoxygenation of epoxyacenes, and the dehydrogenation of hydroacenes.^[14] More recent techniques are the photo bisdecarbonylation of bridged α -diketones (Strating-Zwanenburg reaction)^[15] and the photochemical or thermal extrusion of carbon monoxide, a retro-cheletropic reaction.^[16] The latter approaches were exploited successfully for the generation of the largest acenes under matrix isolation conditions and in ultrahigh vacuum on noble metal surfaces: heptacene (n = 7), octacene (n = 8), nonacene (n = 9), and undecacene (n = 11).^[17] Based on the absorption spectra, an optical gap of 1.2 eV was extrapolated for the infinitely long polyacene. Nonacene (n = 9), decacene (n = 10), and undecacene (n = 11) were prepared *in situ* on gold surfaces using α -diketone, hydroacene, and epoxyacene precursors. The HOMO-LUMO gap of undecacene was determined to be only 1.2 eV.^[18] However, despite extraordinary progress on the synthesis and characterization of higher acenes, molecular mass growth processes leading to these aromatic molecules at extreme temperatures of 10 K as present in molecular clouds have not been reported yet. A fundamental understanding of these processes is critical not only to constrain the formation of a key class of aromatic compounds – acenes – in deep space (after all, if acenes contribute to the DIBS carriers, they have to be synthesized in the interstellar medium), but also to elucidate non-traditional, low-temperature reaction mechanisms to precursors to carbonaceous nanostructures in interstellar environments eventually bringing us closer to an understanding of the carbon chemistry in our Universe.

In this *Communication*, we report on a pathway to synthesize polyacenes through a targeted, vinylacetylene prompted gas phase chemistry via ring annulation involving bimolecular reactions with aryl radicals. In distinction to aforementioned routes pursuing gas phase pyrolysis of labile precursors,^[19] preparative high temperature solution chemistry,^[20] and matrix isolation,^[21] the novel gas phase synthesis involves a de-facto barrierless reaction via molecular mass growth from the bottom-up via ring addition involving free radical reaction intermediates. Exploiting pentacene as a prototype, we expose the previously unknown gas phase chemistry forming pentacene ($C_{22}H_{14}$; 278 amu) along with atomic hydrogen (1 amu) through the elementary reaction of the 2-tetracenyl radical (C₁₈H₁₁; 227 amu) with vinylacetylene (C₄H₄; 52 amu). Tetracene has been proposed to exist in the interstellar medium (ISM);^[9] the 2-tetracenyl radical can be generated from tetracene via photolysis by the internal ultraviolet field existing even deep inside molecular clouds. Laboratory studies have shown that vinylacetylene can be synthesized in deep space via the barrier-less gas phase reaction of ethylene (C_2H_4) with the ethynyl radical (C_2H) .^[22] Engaging a combination of laboratory experiments and *ab initio* electronic structure calculations, this proof-of-concept study reveals a benchmark of an unconventional, barrierless reaction through resonance-stabilized free radical (RSFR) intermediates ($C_{22}H_{15}$) leading to an efficient gas phase synthesis of pentacene. This route represents a facile, representative mechanism to systematically build up more complex polyacenes such as hexacene and heptacene through successive ring annulation - one ring at a time - involving bimolecular gas phase reactions of an aryl radical with vinylacetylene. The extracted reaction mechanism also allows a selective design of substituted acenes by replacing hydrogen atoms in the aryl and/or vinylacetylene reactant(s) by organic groups thus connecting to substituted acenes, whose classical

synthetic chemistry has been proven challenging. These processes operate even at ultralow interstellar temperatures as low as 10 K hence providing an unconventional synthetic route to potential carriers of DIBs: polyacenes. Briefly, a chemical microreactor was utilized to synthesize pentacene through the gas phase reaction of the 2-tetracenyl radical ($C_{18}H_{11}$) with vinylacetylene (C_4H_4). The nascent reaction products were sampled in a molecular beam isomerspecifically via fragment-free photoionization of the neutral products exploiting tunable vacuum ultraviolet (VUV) light followed by detection of the ionized molecules in a reflectron time-of-flight mass spectrometer (ReTOFMS) (Supporting Information).

A representative mass spectrum recorded at a photoionization energy of 9.50 eV is displayed in Figure 1 for the reaction of the 2-tetracenyl radical (C₁₈H₁₁; 227 amu) formed via flash pyrolysis of 2-bromotetracene with vinylacetylene (C_4H_4 ; 52 amu). Control experiments were also carried out by replacing the vinylacetylene reactant with non-reactive helium carrier gas (Figure 1). A comparison of both data sets reveals compelling evidence on the formation of a molecule with the molecular formula $C_{22}H_{14}$ (278 amu) in the 2-tetracenyl – vinylacetylene system (Figure 1b); this signal is absent in the control experiment (Figure 1a). Considering the molecular weight of the reactant molecules and the products, it is evident that the C₂₂H₁₄ isomer(s) together with the hydrogen atom are formed via the reaction of the 2-tetracenyl radical with vinylacetylene. Note that signal at m/z = 252 (C₂₀H₁₂) is likely linked to 2-ethynyltetracene formed via the reaction of the 2-tetracenyl radical ($C_{18}H_{11}$; 227 amu) with acetylene ($C_{2}H_{2}$; 26 amu) (Supporting Information). Ion counts at mass-to-charge ratios (m/z) from 306 to 309 $(C_{18}H_{11}^{79}Br^{+}, {}^{13}CC_{17}H_{11}^{79}Br^{+}, C_{18}H_{11}^{81}Br^{+}, {}^{13}CC_{17}H_{11}^{79}Br^{+})$ and from 226 to 229 $(C_{18}H_{10}, C_{18}H_{10}, C_{18}H_{10},$ $^{13}CC_{17}H_{10}/C_{18}H_{11}$, $C_{18}H_{12}$, $^{13}CC_{17}H_{10}$) are evident in the 2-tetracenyl – vinylacetylene and helium-vinylacetylene systems; this finding suggests that these molecules are not connected to the gas phase reaction of the 2-tetracenyl radical with vinylacetylene. Here, ion counts at m/z =306 - 309 are connected to the non-pyrolyzed 2-bromotetracene precursor, while signals at m/z = 226 and 227 are associated with C₁₈H₁₀ and ¹³C-C₁₇H₁₀ formed via hydrogen abstraction from the 2-tetracenyl radical and its ¹³C-substitued counterpart. Finally, ion counts at m/z = 228 and 229 are likely traced to tetracene and ¹³C-tetracene, respectively, and/or originate from dissociative photoionization of the precursor (Supporting Information).

With the detection of hydrocarbon molecules holding the molecular formula $C_{22}H_{14}$ formed through reactive collisions of the 2-tetracenyl radical with vinylacetylene, we aim to assign the

structural isomer(s) synthesized in this reaction. This requires an in-depth analysis of the corresponding photoionization efficiency (PIE) curve, which displays the intensity of the ion at m/z of 278 (C₂₂H₁₄⁺) as a function of the photon energy from 6.60 eV to 9.00 eV (Figure 2). This graph could be reproduced through a linear combination of two distinct reference PIE curves of discrete $C_{22}H_{14}$ isomers: pentacene (green) and benzo[a]tetracene (blue) (Figure 2). The experimental and reference PIE curves for pentacene show an onset of 6.65 ± 0.05 eV, which agrees nicely with the literature value of the adiabatic ionization energy of 6.61 eV.^[23] The addition of the reference PIE curve of benzo[a]tetracene significantly improves the fits from 7.20 to 9.0 eV and accounts for 11 ± 5 % in the ion counts. Fitting the experimental data only with pentacene does not reproduce the curve. It is important to highlight that both reference curves were recorded in an identical experimental setup as the 2-tetracenyl – vinylacetylene reaction (Supporting Information). After scaling, the PIE curve at m/z = 279 nicely matches the PIE curve of m/z = 278; therefore, signal at m/z = 279 is associated with ¹³C-pentacene and ¹³Cbenzo[a]tetracene. We would like to stress that absolute photoionization cross sections of these isomers are unknown, and absolute branching ratios cannot be provided. However, the goal of the present investigation is to provide explicit evidence on the synthesis of pentacene within the 2-tetracenyl – vinylacetylene system.

With the explicit experimental evidence on the detection of pentacene ($C_{22}H_{14}$, **P1**) along with its isomer benzo[*a*]tetracene (**P2**) formed via the reaction of 2-tetracenyl with vinylacetylene in the gas phase, it is our goal to untangle the underlying reaction mechanisms. In case of complex systems, it is very beneficial to merge the experimental findings with electronic structure calculations to explore the synthetic routes (Figure 3). Our computations **at the G3**(MP2,CC)//B3LYP/6-311G(d,p) level of theory reveal that the 2-tetracenyl radical approaches the vinylacetylene reactant barrierlessly leading to the formation of two possible vander-Waals complex [**i0a**] and [**i0b**] which are stabilized by 9 and 7 kJ mol⁻¹ with respect to the separated reactants. The 2-tetracenyl radical adds to vinylacetylene at the terminal carbon atoms of the vinyl and ethynyl moieties yielding the intermediates [**i1**] and [**i2**], respectively through barriers of 4 and 10 kJ mol⁻¹ relative to [**i0a**] and [**i0b**], respectively. It is important to highlight that the barrier connecting the van-der-Waals complex [**i0a**] to the resonantly stabilized free radical (RSFR) intermediate [**i1**] is *below* the energy of the separated reactants. In this sense, a barrier to addition exists, but the latter resides lower in energy than the reactants and hence is called a *submerged barrier*.^[24] Intermediate [i1] is central to the formation of the pentacene (P1) and benzo[*a*]tetracene (P2) products; these isomers are synthesized via the reaction sequences [i1] \rightarrow [i3] \rightarrow [i4] \rightarrow [i5] \rightarrow P1 and [i1] \rightarrow [i6] \rightarrow [i7] \rightarrow [i8] \rightarrow P2 involving an hydrogen atom migration from an *ortho* carbon in the attacked ring of tetracenyl to β-carbon in the side chain, cyclization, another hydrogen atom migration in the newly formed six-member ring (from the methylene moiety to the neighboring bare carbon atom), and atomic hydrogen elimination accompanied by aromatization and ring annulation. Two thermodynamically less favorable isomers, (E)-2-(but-1-en-3-yn-1-yl)tetracene (P3) and 2-(but-3-en-1-yn-1-yl)tetracene (P4), were not detected in our experiment. In principle, these molecules can be accessed via a hydrogen atom loss from intermediates [i1] and [i2], respectively. Considering (E)-2-(but-1-en-3-yn-1yl)tetracene (P3), the barrier of $[i1] \rightarrow P3$ plus hydrogen is higher than the competing isomerization $[i1] \rightarrow [i3]$ and $[i1] \rightarrow [i6]$; therefore, isomerization and eventual formation of pentacene (P1) and benzo[a]tetracene (P2) is preferred compared to decomposition to (E)-2-(but-1-en-3-yn-1-yl)tetracene (P3), at least at low temperatures when the entropy factor does not play a significant role. For 2-(but-3-en-1-yn-1-yl)tetracene (P4), the van-der-Waals complex [i0b] has to isomerize via a higher barrier to [i2] making the addition to the vinyl moiety more likely.

In conclusion, our study identified pentacene (**P1**) and benzo[*a*]tetracene (**P2**) as key products of the reaction of the 2-tetracenyl radical with vinylacetylene. The reaction was found to be barrierless and exoergic with all transition states involved located below the energy of the separated reactants. Considering these critical features along with the submerged barrier to reaction, the bimolecular reactions of the 2-tetracenyl radical with vinylacetylene reveals a facile pathway to synthesize complex PAHs – acenes - in low-temperature interstellar conditions (10 K) as present in cold molecular clouds like TMC-1 and OMC-1. Consequently, the Hydrogen-Abstraction-Vinylacetylene-Addition mechanism represents a unique low temperature pathway propelling molecular mass growth processes of aromatic systems via barrierless, successive ring annulation involving elementary reactions of aryl radical with vinylacetylene as a molecular building block.

Acknowledgments

This work was supported by the US Department of Energy, Basic Energy Sciences DE-FG02-03ER15411 (experimental studies) DE-FG02-04ER15570 (computational studies) to the University of Hawaii and Florida International University, respectively. M.A. is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Gas Phase Chemical Physics program of the Chemical Sciences Division. The ALS is supported under the same contract. Ab initio calculations at Samara University were supported by the Ministry of Higher Education and Science of the Russian Federation under Grant No. 14.Y26.31.0020. H.F.B.'s group was supported by the Fonds der chemischen Industrie and Deutsche Forschungsgemeinschaft.

References

- [1] S. Gabriel, E. Leupold, Ber. Dtsch. Chem. Ges. 1898, 31, 1272.
- [2] E. Clar, Ber. Dtsch. Chem. Ges. B 1939, 72B, 2137.
- [3] a) R. Bhatia, D. Wadhawa, G. Gurtu, J. Gaur, D. Gupta, J. Saudi Chem. Soc. 2019, 23, 925; b) Z. He, Z. Zhang, S. Bi, J. Mater. Sci.: Mater. Electron. 2019, 30, 20899.
- [4] R. R. Tykwinski, Acc. Chem. Res. 2019, 52, 2056.
- [5] K. Kuroda, K. Yazaki, Y. Tanaka, M. Akita, H. Sakai, T. Hasobe, N. V. Tkachenko, M. Yoshizawa, *Angew. Chem. Int. Ed.* **2019**, *58*, 1115.
- [6] M. Altarawneh, I. Oluwoye, B. Z. Dlugogorski, *Combust. Flame* **2019**, *212*, 279.
- [7] N. Wohner, P. Lam, K. Sattler, *Carbon* **2014**, *67*, 721.
- [8] H. E. Lim, Y. Miyata, R. Kitaura, Y. Nishimura, Y. Nishimoto, S. Irle, J. H. Warner, H. Kataura, H. Shinohara, *Nat. Commun.* **2013**, *4*, 2548.
- [9] A. Omont, H. F. Bettinger, C. Tönshoff, *A&A* **2019**, *625*, A41.
- [10] a) L. J. Allamandola, *EAS Publ. Ser.* 2011, 46, 305; b) A. Tielens, L. J. Allamandola, in *Physics and Chemistry at Low Temperatures* (Ed.: Khriachtchev), Pan Stanford Publishing, 2011, pp. 341-380; c) A. G. G. M. Tielens, *Annu. Rev. Astron. Astr.* 2008, 46, 289; d) A. G. G. M. Tielens, *Rev. Mod. Phys.* 2013, 85, 1021; e) P. J. Sarre, *J. Mol. Spectrosc.* 2006, 238, 1.
- [11] J. Lu, D. M. Ho, N. J. Vogelaar, C. M. Kraml, R. A. Pascal, J. Am. Chem. Soc. 2004, 126, 11168.
- [12] S. Yamada, K. Kinoshita, S. Iwama, T. Yamazaki, T. Kubota, T. Yajima, K. Yamamoto, S. Tahara, *Org. Biomol. Chem.* 2017, 15, 2522.
- [13] E. Clar, J. W. Wright, *Nature* **1949**, *163*, 921.
- [14] a) C. Tönshoff, H. F. Bettinger, in *Polyarenes I*, Springer, **2013**, pp. 1-30; b) K. J. Thorley, J. E. Anthony, *Isr. J. Chem.* **2014**, *54*, 642; c) J. E. Anthony, *Angew. Chem. Int. Ed.* **2008**, *47*, 452; d) J. E. Anthony, *Chem. Rev.* **2006**, *106*, 5028.
- [15] M. Suzuki, T. Aotake, Y. Yamaguchi, N. Noguchi, H. Nakano, K.-i. Nakayama, H. Yamada, J. Photochem. Photobiol., C 2014, 18, 50.
- [16] a) M. Watanabe, K.-Y. Chen, Y. J. Chang, T. J. Chow, Acc. Chem. Res. 2013, 46, 1606; b)
 M. Watanabe, et al., Nat. Chem. 2012, 4, 574.
- [17] a) R. Einholz, T. Fang, R. Berger, P. Grüninger, A. Früh, T. Chassé, R. F. Fink, H. F. Bettinger, J. Am. Chem. Soc. 2017, 139, 4435; b) C. Tönshoff, H. F. Bettinger, Angew. Chem. Int. Ed. 2010, 49, 4125; c) B. Shen, J. Tatchen, E. Sanchez-Garcia, H. F. Bettinger, Angew. Chem. Int. Ed. 2018, 57, 10506; Angew. Chem. 2018, 130, 10666.
- [18] a) J. Krüger, et al., Angew. Chem. Int. Ed. 2017, 56, 11945; Angew. Chem. 2017, 129, 12107; b) J. Krüger, et al., ACS nano 2018, 12, 8506; c) R. Zuzak, R. Dorel, M. Kolmer, M. Szymonski, S. Godlewski, A. M. Echavarren, Angew. Chem. Int. Ed. 2018, 57, 10500; Angew. Chem. 2018, 130, 10660.
- [19] A. M. Mastral, M. S. Callen, *Environ. Sci. Technol.* **2000**, *34*, 3051.
- [20] B. Wen, K. K. Wang, Pure Appl. Chem. 2012, 84, 893.
- [21] P. Makos, A. Przyjazny, G. Boczkaj, J. Chromatogr. A 2018, 1570, 28.
- [22] F. Zhang, Y. S. Kim, R. I. Kaiser, S. P. Krishtal, A. M. Mebel, J. Phys. Chem. A 2009, 113, 11167.
- [23] D. Stahl, F. Maquin, Chem. Phys. Lett. 1984, 108, 613.
- [24] L. Zhao, R. I. Kaiser, B. Xu, U. Ablikim, M. Ahmed, M. M. Evseev, E. K. Bashkirov, V. N. Azyazov, A. M. Mebel, Angew. Chem. Int. Ed. 2020, 59, 4051.

Scheme 1. Molecular structures of the three simplest acenes: tetracene ($C_{18}H_{12}$), pentacene ($C_{22}H_{14}$), and hexacene ($C_{26}H_{16}$). Carbon and hydrogen atoms are color coded in gray and white, respectively.

Scheme 2. Acenes as fundamental building blocks in fullerenes and carbon nanotubes; the acene moiety is highlighted in black.

Figure 1. Photoionization mass spectra recorded at a photoionization energy of 9.0 eV. (a) 2-tetracenyl ($C_{18}H_{11}$) - helium (He) system; (b) 2-tetracenyl ($C_{18}H_{11}$) - vinylacetylene (C_4H_4) system. The mass peaks of the newly formed $C_{22}H_{14}$ (m/z = 278) species along with the ¹³C-substituted counterpart (m/z = 279) are highlighted in red.

Figure 2. Photoionization efficiency (PIE) curves for m/z = 278 and 279. Black: experimentally derived PIE curves with the error area presented in gray; green: pentacene reference PIE curve; blue: benzo[*a*]tetracene PIE curve; red: overall fit. The overall error bars consist of two parts: $\pm 10\%$ based on the accuracy of the photodiode and a 1 σ error of the PIE curve averaged over the individual scans.

Figure 3. Potential energy surface (PES) for the 2-tetracenyl ($C_{18}H_{11}$) reaction with vinylacetylene (C_4H_4). This PES was calculated at the G3(MP2,CC)//B3LYP/6-311G(d,p) level of theory leading to pentacene and its isomer benzo[*a*]tetracene. The relative energies are given in kJ mol⁻¹.

Supporting Information

A Free Radical Prompted Barrierless Gas Phase Synthesis of Pentacene

Long Zhao, Ralf I. Kaiser*

Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA

Wenchao Lu, Musahid Ahmed*

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Mikhail M. Evseev, Eugene K. Bashkirov

Samara National Research University, Samara 443086, Russian Federation

V. N. Azyazov

Lebedev Physical Institute, Samara 443011 and Samara National Research University, Samara 443086, Russian Federation

Alexander M. Mebel*

Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA

Christina Tönshoff, Florian Reicherter, Holger F. Bettinger*

Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18; 72076 Tübingen, Germany

^{*} Corresponding authors:

- Prof. Dr. Ralf I. Kaiser <<u>ralfk@hawaii.edu</u>>
- Dr. Musahid Ahmed <<u>MAhmed@lbl.gov</u>>

Prof. Dr. Alexander M. Mebel <<u>mebela@fiu.edu</u>>

Prof. Dr. Holger F. Bettinger <<u>holger.bettinger@uni-tuebingen.de</u>>

Methods

Experimental: The experimental studies were conducted at the Advanced Light Source (ALS) at the Chemical Dynamics Beamline (9.0.2.) exploiting a high-temperature chemical reactor;^[1] this unit comprises of a resistively-heated silicon carbide (SiC) tube of 20 mm length and 1 mm inner diameter and is incorporated within the source chamber of the molecular beam apparatus operated with a Wiley-McLaren reflectron time-of-flight mass spectrometer (Re-TOFMS). Here, 2-tetracenyl radicals ($C_{18}H_{11}$) were produced at concentrations of less than 0.1% in situ via pyrolysis of the 2-bromotetracene precursor ($C_{18}H_{11}Br$) seeded in vinylacetylene/helium (5% C₄H₄; 95 % He; Applied Gas) carrier gas at a pressure of 300 Torr. Due to the low vapor pressure of the precursor, 2-bromotetracene was placed inside the nozzle assembly and heated to 613 ± 10 K operated with an aperture of 0.2 mm. The temperature of the SiC tube was monitored using a Type-C thermocouple and was maintained at $1,500 \pm 10$ K. At this temperature, 2-bromotetracene dissociates to the 2-tetracenyl radical plus atomic bromine in situ followed by the reaction of the aromatic radical with vinylacetylene. All reaction products were expanded supersonically and passed through a 2 mm diameter skimmer located 10 mm downstream the reactor; the products then entered the main chamber and were photoionized in the extraction region of the mass spectrometer by exploiting quasicontinuous tunable synchrotron vacuum ultraviolet (VUV) light. The ions formed via soft photoionization are extracted and introduced onto a microchannel plate detector through an ion lens. Photoionization efficiency (PIE) curves, which report ion counts as a function of photon energy from 6.60 eV to 9.00 eV with a step interval of 0.05 eV at a well-defined massto-charge ratio (m/z), were produced by integrating the signal collected at the specific m/z for the species of interest and normalized to the photon flux; the repeller plate of the ReTOF was pulsed at a voltage of 1200 V with a pulse duration of 2.5 µs; the multichannel plate was held at 4450 V. An ionization efficiency curve produced by photoionization is comparable to a first derivative of its electron-ionization counterpart.^[2] The residence time in the reactor tube under our experimental condition are few hundreds of µs.^[3] The control experiment was carried out by expanding neat helium carrier gas with the 2-bromotetracene precursor into the resistivelyheated SiC tube. Calibration experiments of the PIE curves of pentacene and benzo[*a*]tetracene were conducted in the same experimental setup by seeding these molecules in neat helium carrier gas. 2-Bromotetracene and benzo[a]tetracene were synthesized as described in the Supporting Information; pentacene (99.999 %) was acquired from TCI America.

Theoretical Calculation: The energies and molecular parameters of the local minima and transition states involved in the reaction were computed at the G3(MP2,CC)//B3LYP/6-311G(d,p) level of theory with a chemical accuracy of at least 8 kJ mol⁻¹ for the relative energies and 0.01–0.02 Å for bond lengths as well as $1-2^{\circ}$ for bond angles.^[4] Within this theoretical scheme, geometries are optimized and vibrational frequencies are computed using the density functional B3LYP/6-311G(d,p) method and single-point energies are refined as:

E[G3(MP2,CC)] = E[CCSD(T)/6-311G(d,p)] + E[MP2/G3Large)] - E[MP2/6-311G(d,p)] + ZPE[B3LYP/6-311G(d,p)]

The GAUSSIAN 09^[5] and MOLPRO 2010 program packages^[6] were exploited for the *ab initio* calculations.

Figure S1. Photoionization efficiency (PIE) curves of distinct ions detected in 2bromotetracene - vinylacetylene system.

Signal at m/z = 252 and 253 can be associated with $C_{20}H_{12}$ molecule(s) which originate from the reaction of 2-tetracenyl with acetylene, with the latter representing a minor impurity from the vinylacetylene reactant.^[7] After scaling, the graphs of m/z = 252 and 253 overlap below 8.6 eV indicating that the signal at m/z = 253 can be attributed to the ¹³C-counterpart of m/z =252. Due to the lack of calibrated PIE curves, we could not identify the products at m/z = 252($C_{20}H_{12}$) and 253 with m/z = 252 attributed to dissociative photoionization of the precursor molecule. Signal at m/z = 227 can be connected to the 2-tetracenyl radical. m/z = 226 and m/z= 228 originate from the hydrogen atom loss from and hydrogen atom addition to 2-tetracenyl leading to tetracyne isomers and tetracene, respectively; signal at m/z = 228 can also originate from dissociative photoionization of the precursor. Signals at m/z = 306 and 308 are attributed to the precursor 2-bromotetracene ($C_{18}H_{11}^{79}Br$ and $C_{18}H_{11}^{81}Br$).

Figure S2. Photoionization efficiency (PIE) curves for m/z = 278 and 279. Black: experimentally derived PIE curves with the error bars presented in gray; green: pentacene reference PIE curve; blue: benzo[*a*]tetracene PIE curve; cyan: (*E*)-2-(but-1-en-3-yn-1yl)tetracene; orange: 2-(but-3-en-1-yl)tetracene; red: overall fit. The overall error limits consist of two parts: ± 10 % based on the accuracy of the photodiode and a 1 σ error of the PIE curve averaged over the individual scans.

To this fit, we added the PIE curves for (*E*)-2-(but-1-en-3-yn-1-yl)tetracene and 2-(but-3-en-1-yl)tetracene computed at the G3(MP2,CC)//B3LYP/6-311G(d,p) level of theory; the branching ratios contributing to the overall intensity is only 2 ± 2 % and 1 ± 1 %, respectively. Thus, even these two isomers can be produced in the experiment, the amount would be very limited and negligible; note that the experimental data can be fit within the error limits without any contribution of both isomers. As a conclusion, it is vital to highlight that the PIE curves of the C₂₂H₁₄ isomers are *discretely connected* to the specific isomers emphasizing that the co-existence of additional isomers in the molecular beam besides pentacene and benzo[*a*]tetracene such as (*E*)-2-(but-1-en-3-yn-1-yl)tetracene and 2-(but-3-en-1-yn-1-yl)tetracene can be excluded since their presence would change the shape of the PIE curve. Therefore, our data analysis reveals that only pentacene and benzo[*a*]tetracene contribute to signal at *m/z* = 278 within our error limits. These errors are connected to the 1 σ error of the PIE curve averaged over multiple scans and the ± 10 % error stated by the manufacturer as the accuracy of the photodiode.

Scheme S1. Tautomeric equilibrium between 6-methylene-6,13-dihydropentacene and 6-methyl-pentacene.

Scheme S2. Schematic representation on the formation of pentacene and its benzo[a] tetracene isomer through the reaction of the 2-tetracenyl radical (C₁₈H₁₁) with vinylacetylene (C₄H₄).

Synthesis method

General Information

All commercially available reagents were used without further purification.

NMR spectra were recorded on Bruker AVANCE III HD 400 MHz and Bruker AVIII HDX+700 spectrometers. Spectra were recorded in CDCl₃ or CDCl₃/CS₂ (99.9% extra pure, AcrosOrganics) as indicated and chemical shifts were referenced to the residual solvent peak. Mass spectra (EI) were obtained from a Finnigan TSQ 70 with quadrupole analyzer, and high-resolution data were obtained using a Finnigan MAT 95 spectrometer with sector field analyzer.

Absorption spectra were measured on a PerkinElmer LAMDA 1050 spectrometer.

Synthesis of 2-Bromotetracene^[8]

2-Bromotetracene is obtained by a reaction sequence similar to that described by Kitamura et al.^[8a] with the difference that in the last step instead of a Meerwein-Ponndorf reaction a reduction with NaBH₄ in iPrOH was performed.^[9]

Compound 2 was synthesized by Wohl-Ziegler bromination according to the literature,^[10] but CH_2Cl_2 was used as solvent instead of CCl_4 . **2** was obtained together with the threefold benzylic brominated compounds. After column chromatopraphy, **2** is obtained together with mixed fractions containing **2** and threefold brominated compounds, which can also be used in the subsequent Diels-Alder reaction.

9.6 g N-Bromosuccinimid NBS (54.04 mmol) were suspended in 50 ml of CH₂Cl₂ and 3.65 ml (5g, 27.07 mmol) 4-bromo-o-xylol **1** and 0.15 g azobis(isobutyronitrile) AIBN (0.88 mmol)

were added. The mixture was refluxed for 72 h and after 24h and 48h another 9.6 g NBS and 0.15 g AIBN were added. After cooling the mixture was filtered, the solid was washed with CH_2Cl_2 and the combined filtrate and washing solution were washed three times with water, aqueous $Na_2S_2O_3$ and brine. After drying over MgSO₄ the solvent was evaporated and the residue was purified by column chromatography (silica; hexane). 4.65 g (9.4 mmol, 34.7 %) of **2** were obtained together with 7.7g of a mixed fraction containing **2** and threefold brominated compounds. The mixed fraction can also be used in the Diels-Alder reaction in the next step. NMR data of **2**:

¹H (400MHz, CDCl₃): 7.81 (s, 1H), 7.58-7.48 (m, 2H), 7.04(m, 2H) ppm

¹³C (100 MHz, CDCl₃): 139.04 (broad), 136.60 (broad), 133.50, 132.14 (broad), 131.08 (broad), 124.12, 35.25, 34.81 ppm

Compound 3^[8a]

Under N₂ 3.94 g (26.28 mmol) NaI and 1.00 g (6.31 mmol) of 1,4-naphthoquinone were suspended in 30 ml DMF and 3.29 g (6.57 mmol) **2** were added. The mixture was heated to 110 °C for 48 h and after cooling the precipitated solid was isolated by filtration, washed with water, methanol and acetone, and dried under vacuum. 1.68 g (4.98 mmol, 78 %) of **3** were obtained as gold-yellow solid.

¹H (400MHz, CDCl₃): 8.84 (s, 1H), 8.77 (s, 1H), 8.42-8.39 (m, 2H), 8.28 (m, 1H), 7.98 (d, 1H), 7.86-7.83 (m, 2H), 7.79-7.76 (dd, 1H) ppm

¹H (400MHz, D₂SO₄): 9.05 (s, 1H), 8.84 (s, 1H), 8.48-8.42 (m, 2H), 8.28 (s, 1H), 8.13-8.06 (m, 2H), 8.00-7.98 (m, 1H), 7.94-7.92 (m, 1H)

¹³C (100MHz, D₂SO₄): 187.74, 186.79, 141.34, 140.15, 138.26, 137.59, 137.40, 135.09, 134.40, 134.32, 132.42, 132.38, 132.24, 132.18, 130.83, 126.12, 124.11

Compound 4^[8]

0.2 g (0.59 mmol) **3** and 0.31 g NaBH₄ (8 mmol) in 20 ml of *i*-PrOH were heated under reflux for 24 h in the dark. After cooling 20 ml of 2M HCl were added dropwise and the mixture was refluxed for 3 h. After cooling the obtained orange solid was washed with water, methanol, acetone and hexane. Then the solid was suspended in acetone, sonicated for a few minutes, centrifuged and the solvent removed. This was repeated three more times with fresh acetone and then four times using CHCl₃ as solvent. 0.14 g (0.46 mmol) of **4** was obtained (77%). **4** is hardly soluble in common organic solvents.

¹H (400MHz, CS₂/CDCl₃): 8.60 (s, 3H), 8.53 (s, 1H), 8.13 (s, 1H), 7.96-7.95 (m, 2H), 7.86 (d, 1H), 7.41-7.38 (m, 3H) MS (EI, 70 eV, m/z (%)): 308/306 (M⁺⁻, 100), 226 (M⁺⁻-Br), 113 HR-MS: *m/z*: calcd for C₁₈H₁₁Br 306.003864; found 306.00053 UV/Vis (CHCl₃): $\lambda_{max} = 284$, 299, 378, 400, 421, 448, 478 nm (due to the low solubility no extinction coefficients could be determined)

Synthesis of Benzo[a]tetracene

1,2-Benzotetracene is a known compound.^[11] It was synthesized in a reaction sequence similar to the one used for 2-bromotetracene. The final reduction with NaBH₄ had to be done in two separated steps, but the intermediate hydroquinone was not purified as described in the literature for the synthesis of 2,3-dibromotetracene.^[9b]

Comound 6 was prepared by Wohl-Ziegler bromination of 5 according to García et al.^[12]

Compound 7^[13]

Under N₂ 1.5 g (4.8 mmol) of **6**, 0.52 g (3.3 mmol) 1,4-naphthoquinone and 5.2 g (31.2 mmol) KI were stirred at 110 °C for 24 h. After cooling to RT the solid was isolated by filtration and washed with water, acetone, and CH₂Cl₂ and dried under vacuum. **7** was obtained as a yellow solid in 51 % yield (0.52g, 1.7 mmol).

¹H (700 MHz, CDCl₃): 9.65 (s, 1H), 8.92 (d, 1H), 8.84 (s, 1H), 8.44-8.39 (m, 2H), 7.97-7.94 (m, 3H), 7.86-7.78 (m, 3H), 7.75-7.71 (m, 1H)

¹³C (176 MHz, CDCl₃): 183.15, 183.05, 135.05, 134.37, 134.28, 134.16, 134.14, 133.62, 133.08, 130.82, 130.51, 130.50, 130.28, 128.96, 128.55, 127.89, 127.48, 127.39, 127.19, 123.92, 123.44

MS (EI, 70 eV, m/z (%)): 308.2 (100, M⁺⁻), 280.1 (28), 252.1 (39)

HR-MS: *m/z*: calcd for C₂₂H₁₂O₂ 308.083181; found 308.08373

Compound P2 was prepared as described in the literature for 2,3-dibromotetracene.^[9b]

0.5 g (1.62 mmol) of 7 and 3.52 g (93 mmol) NaBH₄ were dissolved in 150 ml of *i*-PrOH under N₂ and stirred for 2 h at RT and then for 12 h under reflux. After cooling 6M HCl was added until no more gas evolved and then it was refluxed for 4 h. After cooling the precipitated solid was separated by filtration. This solid was again dissolved in 100 ml *i*-PrOH under N₂ and 2.5 g (66 mmol) were added and the mixture refluxed for 40 h. After cooling it was quenched with 3 M HCl and refluxed again for 2 h. After cooling the solid was separated by filtration and washed with water, acetone and hexane. The solid was put in 100 ml toluene and kept overnight at -18 °C and the bright yellow solid was isolated in 85 % yield (0.39 g; 1.4 mmol).

¹H (700MHz, CDCl₃/CS₂): 9.26 (s, 1H), 8.76 (d, 1H), 8.69 (s, 1H), 8.60 (s, 1H), 8.47 (s, 1H), 8.02-8.00 (m, 2H), 7.73-7.70 (d(1H) + d(1H)), 7.65-7.63 (m, 1H), 7.59-7.55 (m, 1H), 7.50 (d, 1H), 7.46-7.42 (m, 2H)

¹³C (176MHz, CDCl₃/CS₂): 131.76, 131.49, 131.43, 130.46, 130.42, 130.14, 128.58, 128.44, 128.11, 128.05, 127.44, 127.16, 127.09, 126.81, 126.72, 126.58, 125.85, 125.16, 125.10, 122.77, 121.57

MS (EI, 70 eV, m/z (%)): 278.1 (100, M⁺⁻), 139 (22)

HR-MS: *m/z*: calcd for C₂₂H₁₄ 278.109001; found 278.1080

UV-vis (CHCl₃) λ_{max} (ε): 294 (383010), 305 (58300), 318 (50700), 362 (1300), 381 (2100), 402 (3500), 425 (5400), 453(5200)

NMR Spectra

Figure S3: ¹H NMR spectrum of 8-bromotetracene-5,12-dione (compound 3) in D_2SO_4 .

Figure S4: ${}^{13}C$ NMR spectrum of 8-bromotetracene-5,12-dione (compound 3) in D₂SO₄.

Figure S5: ¹H NMR spectrum of 8-bromotetracene-5,12-dione (compound 3) in CDCl₃.

Figure S6: ¹H NMR spectrum of 2-bromotetracene (compound 4) in $CDCl_3/CS_2$; the peak at 7.31 ppm is due to an impurity in the CS_2 .

Figure S7: ¹H NMR spectrum of benzo[*a*]tetracene-8,13-dione (compound 7) in CDCl₃.

Figure **S8**: ¹³C NMR spectrum of benzo[*a*]tetracene-8,13-dione (compound **7**) in CDCl₃.

Figure S9: ¹H NMR spectrum of benzo[*a*]tetracene (compound **P2**) in CDCl₃/CS₂; the peak at 7.31 ppm is due to an impurity in CS₂.

Figure S10: ¹³C NMR spectrum of benzo[a] tetracene (compound P2) in CDCl₃/CS₂.

Figure S11: Absorption spectrum of 2-bromotetracene (compound 4) in CHCl₃.

Figure S12: Absorption spectrum of benzo[*a*]tetracene (compound **P2**) in CHCl₃ (c=1.65x10⁻⁵ mol/l).

Name	Tetracenyl	C ₄ H ₄	P1	P2	P3	P4	Н
ZPE	0.226310	0.060905	0.285615	0.286268	0.281248	0.281863	0
E(B3LYP/6-311G**)	-692.633659	-154.780795	-846.989450	-847.004873	-846.909916	-846.916060	-0.502156
E(RMP2/6-311G**)	-690.531889	-154.288514	-844.425373	-844.443266	-844.340099	-844.344244	-0.499810
E(RMP2/G3Large)	-690.966739	-154.383997	-844.960768	-844.978495	-844.872958	-844.877076	-0.499810
E(CCSD(T)/6-311G**)	-690.723158	-154.344981	-844.654114	-844.671098	-844.574202	-844.577890	-0.499810
E(G3(CC,RMP2)//B3LYP/6-311G**)	-690.931698	-154.379560	-844.903894	-844.920059	-844.825812	-844.828860	-0.499810
Name	i0a	i0b	i1	i2	i3	i4	i5
ZPE	0.287577	0.287547	0.290775	0.290879	0.291880	0.295533	0.294573
E(B3LYP/6-311G**)	-847.415638	-847.415812	-847.485884	-847.497554	-847.445487	-847.507822	-847.560976
E(RMP2/6-311G**)	-844.824113	-844.823453	-844.903344	-844.904247	-844.867298	-844.932125	-844.979011
E(RMP2/G3Large)	-845.354853	-845.353986	-845.435478	-845.438041	-845.397936	-845.463615	-845.514553
E(CCSD(T)/6-311G**)	-845.071523	-845.070758	-845.144041	-845.148939	-845.110295	-845.174549	-845.217392
E(G3(CC,RMP2)//B3LYP/6-311G**)	-845.314687	-845.313743	-845.385401	-845.391854	-845.349053	-845.410506	-845.458361
Name	i6	i7	i8	ts i0a-i1	ts i0b-i2	ts i1-i3	tsi1-i6
ZPE	0.291951	0.295447	0.294554	0.287726	0.287310	0.286465	0.286760
E(B3LYP/6-311G**)	-847.445133	-847.502175	-847.558748	-847.413938	-847.411849	-847.421547	-847.422396
E(RMP2/6-311G**)	-844.865385	-844.929034	-844.979822	-844.822773	-844.8201	-844.84079	-844.842665
E(RMP2/G3Large)	-845.396518	-845.460381	-845.515234	-845.354283	-845.351437	-845.373084	-845.374859
E(CCSD(T)/6-311G**)	-845.109008	-845.170707	-845.217358	-845.069329	-845.066108	-845.080196	-845.081738
E(G3(CC,RMP2)//B3LYP/6-311G**)	-845.348190	-845.406607	-845.458215	-845.313112	-845.310136	-845.326025	-845.327171
Name	ts i1-P3	ts i2-P4	ts i3-i4	ts i6-i7	ts i4-i5	ts i7-i8	ts i5-P1
ZPE	0.282407	0.282923	0.291417	0.291429	0.289589	0.289536	0.286608
E(B3LYP/6-311G**)	-847.410163	-847.414689	-847.431462	-847.429282	-847.441203	-847.438393	-847.490212
E(RMP2/6-311G**)	-844.83341	-844.835759	-844.855602	-844.854703	-844.856282	-844.8552	-844.918895
E(RMP2/G3Large)	-845.367549	-845.369639	-845.387062	-845.386075	-845.389905	-845.388678	-845.455428

Table S1. Total energies and zero-point vibrational energies (ZPE) of various species (in hartree) calculated at different levels of theory.

E(CCSD(T)/6-311G**)	-845.06873	-845.070484	-845.0969	-845.095429	-845.098355	-845.09692	-845.148526
E(G3(CC,RMP2)//B3LYP/6-311G**)	-845.320462	-845.321441	-845.336944	-845.335371	-845.342389	-845.340862	-845.398451
Name	ts i8-P2						
ZPE	0.287690						
E(B3LYP/6-311G**)	-847.503982						
E(RMP2/6-311G**)	-844.933515						
E(RMP2/G3Large)	-845.469897						
E(CCSD(T)/6-311G**)	-845.163149						
E(G3(CC,RMP2)//B3LYP/6-311G**)	-845.411841						

Optimized Cartesian Coordinates (Å) and Vibrational Frequencies (cm^{-1}) of the Reactants, Intermediates, Transition States, and Products Involved in the Reaction Considered

Rea	ctants			
Vin	ylacetyle	ene C ₄ H ₄ , C _s , 1	A'	
6	0	0.121125	-1.700404	0.000000
6	0	-0.579921	-0.557132	0.000000
6	0	0.000000	0.743992	0.000000
6	0	0.453986	1.866353	0.000000
1	0	1.206897	-1.705189	0.000000
1	0	-0.382460	-2.662132	0.000000
1	0	-1.669070	-0.596050	0.000000
1	0	0.873491	2.846518	0.000000
Free	quencies			
229	.5891	339.436	1 558	.9958
588	.1117	631.211	4 714	.7025
899	.2819	944.597	4 101	3.3805
112	2.3708	1335.88	13 146	3.2716
169	0.9964	2223.97	97 315	8.4122
317	8.0551	3263.96	34 349	5.5663
Tet	racenyl ($C_{18}H_{11}, C_s, {}^2A'$		
6	0	4.766321	-1.069443	0.000000
6	0	3.545886	-1.677640	0.000000
6	0	2.337306	-0.908218	0.000000
6	0	2.440046	0.537733	0.000000
6	0	3.744749	1.129746	0.000000
6	0	4.867517	0.356083	0.000000
6	0	1.079472	-1.501028	0.000000
6	0	1.278018	1.300897	0.000000
6	0	0.000000	0.709356	0.000000
6	0	-0.102949	-0.736509	0.000000
6	0	-1.382211	-1.327904	0.000000
6	0	-2.541694	-0.563585	0.000000
6	0	-2.441686	0.885282	0.000000
6	0	-1.182359	1.474763	0.000000
6	0	-3.642312	1.670959	0.000000
6	0	-3.857944	-1.157414	0.000000
6	0	-4.878121	1.080868	0.000000
6	0	-4.915061	-0.327212	0.000000
1	0	-1.459549	-2.410632	0.000000
1	0	1.003587	-2.584050	0.000000
1	0	5.672096	-1.665238	0.000000
1	0	3.469031	-2.759896	0.000000
1	0	3.820647	2.212093	0.000000
1	0	5.848233	0.818172	0.000000
1	0	1.354388	2.383939	0.000000
1	0	-1.104359	2.557603	0.000000
1	0	-3.553217	2.752898	0.000000

1	0	-3.954904	-2.238335	0.000000
1	0	-5.785827	1.673044	0.000000
Free	quencies			
55.8	3035	89.7943	151.11	66
164	.4932	192.7749	270.8	226
306	.6091	318.0346	320.4	994
375	.0142	449.3911	454.6	502
474	.0641	479.6009	503.5	193
516	.5754	557.5206	559.2	.622
614	.4532	627.8280	643.6	932
708	.2034	748.5802	750.3	509
753	.2165	761.8123	773.9	106
778	.6988	786.2562	825.1	169
848	.0177	867.1980	867.3	511
886	.6552	891.6629	913.2	364
915	.5558	935.4292	965.3	929
972	.1860	995.9685	1021.	6618
103	0.7813	1136.1768	3 115	0.5542
115	3.1817	1187.3486	5 1192	2.6477
121	4.1061	1220.4771	127	5.9033
128	6.6144	1302.0681	131	1.5595
131	8.6289	1363.9516	5 138	0.7402
140	9.2621	1418.8069) 142	6.7386
144	7.4033	1469.5294	l 1492	2.5804
155	1.0934	1564.0333	3 158	0.6298
160	1.7965	1632.7276	5 164	6.9627
167	1.7268	3154.0172	2 315	5.2571
315	6.3674	3157.5588	3 315	8.0932
315	9.5852	3161.3034	4 316	3.4897
317	5.6816	3180.4837	7 318	7.6650

Intermediates

11100							
Van-der-Waals complex [i0a] C ₂₂ H ₁₅ , C ₁ , ² A							
6	0	-6.554770	-0.543686	0.142116			
6	0	-5.419488	-1.278200	-0.034026			
6	0	-4.128485	-0.657090	-0.020868			
6	0	-4.054435	0.775928	0.184721			
6	0	-5.275147	1.503954	0.365097			
6	0	-6.481683	0.869075	0.344808			
6	0	-2.954262	-1.380632	-0.197774			
6	0	-2.810282	1.396111	0.200576			
6	0	-1.615920	0.671595	0.022310			
6	0	-1.689802	-0.761367	-0.183279			
6	0	-0.494124	-1.485876	-0.361488			
6	0	0.747440	-0.863990	-0.345114			
6	0	0.824898	0.571628	-0.139553			
6	0	-0.351348	1.291768	0.036972			
6	0	2.110110	1.209751	-0.123708			
6	0	1.979609	-1.595001	-0.526494			
6	0	3.264192	0.493284	-0.298520			

6	0	3 126624	0 805164	0 402400
6	0	5.12002 4 6.802040	1 210562	-0.+72+77
6	0	0.002049	-1.310303	1.130712
0	0	7.392487	-0.233097	0.930221
0	0	7.378790	0.721081	-0.078525
6	0	7.233117	1.566137	-0.924970
1	0	-7.524649	-1.028035	0.129594
1	0	-5.474943	-2.350789	-0.187937
1	0	-5.218745	2.576518	0.518972
1	0	-7.397165	1.433179	0.482749
1	0	-3.010758	-2.453869	-0.351728
1	0	-2.754277	2.469409	0.354582
1	0	-0.549070	-2.559005	-0.515459
1	0	-0.297052	2.365040	0.191122
1	0	2.153081	2.283352	0.031692
1	0	1.944478	-2.668321	-0.683140
1	0	4.237337	0.970436	-0.287126
1	0	7.023697	-2.014338	1.943844
1	0	5.920125	-1.496360	0.548727
1	0	8.467554	-0.099341	1.562825
1	0	7.102933	2.301854	-1.680187
Freque	encies			
5.5362	2	10.0720	11	1.9095
24.558	3	32.9361	45	5.6074
58.330	3	90.6818	15	52.2017
164.93	99	193.2997	22	27.8122
271.36	544	306.7770	31	18.2110
319.41	99	321.0726	37	74.7652
449.41	57	454,1988	47	74.0833
479.62	200	503 4291	5	17.0049
557 57	33	559 1545	54	59 7155
614 25	81	627 9628	64	13 6516
645 47	35	680 9374	7()3 5523
707 73	33	7/9/1592	74	50.7977
753 10	17	761 7002	75	7/ 5800
783.17	27	786 1/13	8	74.5055
8/7 07	'27 '78	867 1168	86	57 3/10
886.35	10	801.0661	80	07.0410
013.26	5/1) 5/1	015 4744	03	2.2375
913.20	9 4 1 940	071 2220	9.	77 2061
904.39	49 101	9/1.2339	9. 1 1(2.2901
1020 7	256	1112 207	+ 10 7 11	127 0005
1050.7	500	1112.297	/ 11 7 11	137.0093
1100.4	-502	1155.552	/ II	187.3238
1192.8	922	1213.982		220.3887
12/6.6	469	1286.4974		301.9798
1311.3	952	1318.955		322.0557
1364.0	150	1380.577.	5 14	109.2662
1418.6	0805	1426.7870		143.8334
1447.8	383	1469.900	$1 \qquad 1^2$	192.5901
1550.9	353	1563.790.	3 1 <u>5</u>	080.5985
1601.8	466	1632.4898	8 16	546.9653
166	8.1338	1671.67	56 220	2.1073
-----	----------	-----------------	-----------------------------	-----------
313	5.2283	3143.80	92 315	3.9545
315	5.2286	3156.20	95 315	7.4667
315	7.9821	3159.53	17 316	1.1351
316	3.3580	3175.53	45 318	0.9836
318	7.5490	3233.38	74 347	6.1939
Var	n-der-Wa	aals complex [i	$[0b] C_{22}H_{15}, C_{10}$	^{2}A
6	0	-6.799973	-0.725782	0.133240
6	0	-5.622252	-1.412715	0.112553
6	0	-4.366741	-0.724344	0.063116
6	0	-4.375124	0.724954	0.035386
6	0	-5.637966	1.401271	0.058701
6	0	-6.808162	0.703036	0.105909
6	0	-3.150687	-1.398376	0.041134
6	0	-3.166437	1.410143	-0.012614
6	0	-1.930175	0.736075	-0.035116
6	0	-1.921653	-0.713133	-0.007403
6	0	-0.684137	-1.387234	-0.029878
6	0	0.521689	-0.700283	-0.077635
6	0	0.516741	0.751675	-0.105486
6	0	-0.701110	1.422280	-0.083572
6	0	1.765244	1.457025	-0.154682
6	0	2.960579	0.788935	-0.175831
6	0	2.902044	-0.617930	-0.146996
6	0	1.796033	-1.379622	-0.100997
6	0	6.619068	-0.775876	-0.173625
6	0	7.751145	-0.363112	-0.187184
6	0	9.086827	0.122206	-0.249528
6	0	9.837979	0.415219	0.817156
1	0	-0.677392	-2.472464	-0.009124
1	0	-3.145454	-2.483821	0.061925
1	0	-7.742226	-1.260690	0.170706
1	0	-5.616016	-2.497462	0.133289
1	0	-5.643260	2.486044	0.037915
1	0	-7.756335	1.228372	0.123094
1	0	-3.172140	2.495632	-0.033395
1	0	-0.708508	2.507654	-0.104266
1	0	1.747032	2.542209	-0.175002
1	0	3.905521	1.318092	-0.212664
1	0	1.822729	-2.464247	-0.081139
1	0	5.617988	-1.136583	-0.149481
1	0	9.498104	0.253039	-1.247619
1	0	9.461734	0.296456	1.826267
1	0	10.850630	0.781298	0.699611

Frequencies

2.8844	3.0389	10.2265
18.1095	28.5245	48.9617
56.1781	89.9981	151.4397
165.2000	192.9607	226.0404

271.0158	306.8382	318.4107
320.7680	321.2072	374.2448
449.5644	452.4357	474.1042
479.5787	503.6155	516.4859
557.2488	557.5855	558.7429
614.6683	627.7413	643.5942
687.4574	698.8636	704.4438
706.1866	748.2595	750.1462
753.1504	761.7709	774.1238
779.3950	786.3494	822.9185
848.1396	867.2908	867.4101
886.5538	891.2031	892.8214
913.5042	915.7033	935.3775
953.5269	966.9538	972.5160
996.3576	1010.4347	1021.7036
1030.8055	1111.6723	1136.6893
1150.5789	1154.0571	1187.4754
1192.6249	1214.0761	1220.5372
1275.8007	1286.6270	1302.1371
1311.4560	1318.7834	1321.0314
1363.8146	1380.5698	1409.2016
1418.8257	1426.7388	1443.3444
1447.1523	1469.7288	1492.5642
1550.7259	1563.5485	1580.6488
1602.3246	1632.5237	1646.9197
1668.1124	1671.7406	2200.9260
3134.3362	3146.3916	3154.7350
3156.2377	3157.0719	3158.2510
3159.2730	3160.3773	3162.0188
3163.8800	3175.9263	3183.3783
3187.9006	3235.2765	3445.9209

[i1] C₂₂H₁₅, C₁, ²A

6	0	-6.263752	-0.910152	0.220358
6	0	-5.053291	-1.531571	0.129460
6	0	-3.837928	-0.775824	0.065152
6	0	-3.922098	0.670706	0.098909
6	0	-5.216559	1.276903	0.194719
6	0	-6.346692	0.515994	0.253479
6	0	-2.589810	-1.382048	-0.027858
6	0	-2.752834	1.420946	0.037334
6	0	-1.485176	0.816044	-0.057188
6	0	-1.400626	-0.630898	-0.090809
6	0	-0.131286	-1.235918	-0.185791
6	0	1.036551	-0.485522	-0.248192
6	0	0.950870	0.960077	-0.214956
6	0	-0.294610	1.567473	-0.121163
6	0	2.169961	1.710524	-0.282364
6	0	2.331574	-1.091449	-0.347741
6	0	3.376805	1.087429	-0.373867
6	0	3.473778	-0.345343	-0.412888

6 0	4.844701	-0.987994	-0.518916
6 0	5.698234	-0.730139	0.695906
6 0	6.935818	-0.141431	0.645488
6 0	8.037418	0.384300	0.588697
1 0	-0.068576	-2.319592	-0.210806
1 0	-2.527252	-2.465726	-0.052640
1 0	-7.174939	-1.495710	0.268457
1 0	-4.989887	-2.614460	0.104464
1 0	-5.279036	2.359863	0.219382
1 0	-7.319441	0.989214	0.325972
1 0	-2.816075	2.504584	0.062049
1 0	-0.356715	2.651170	-0.097076
1 0	2.112125	2.793834	-0.259335
1 0	2.387973	-2 175642	-0 376243
1 0	4 289275	1 672218	-0.418787
1 0	4 717435	-2 069932	-0.651305
1 0	5 362837	-0.618693	-1 408947
1 0	5 200503	-0.010095	1 662811
1 0	8 996400	0.838827	0.545381
1 0	0.770-00	0.050027	0.545501
Frequencies			
20.5452	23.7507	49.159	99
76.1183	109.5281	128.40	545
160.3042	180.0807	193.1	1186
245.8337	258.3268	290.0	5013
316.7418	353.8783	369.2	2798
389.1321	399.7064	448.2	2239
462,4660	473.8720	477.3	3235
481.4125	486,7099	520.2	2828
543.2822	561.1750	597.0	5259
607.5463	638.5141	646.	1441
649.1577	655.3639	733.4	4839
748.9193	751.7852	763.9	9314
766.8735	771.3010	778.0	0851
811.8252	823.4773	846.8	8904
858.7991	868.7161	881.0)445
887.5915	899.0858	916.	1278
923.3655	926.9170	972.4	4123
973.8952	983.7547	995.	7310
1021.8328	1026.896	5 114	1.0882
1147.1979	1150.0770) 116	6.2610
1172.9557	1187.5982	2 120	2.2261
1204.8954	1223.537	5 122	9.7218
1290.8429	1295.733	7 129	8.2664
1317.0400	1319.579	7 134	5.2706
1368.7969	1397 202	2 140	1.5144
1412.1043	1425.5749	- 110	8.5510
1465.5990	1473 502	5 148	7.2812
1501.9996	1556 180	5 157	8.2490
1582.9734	1611.127	5 164	8.2415
1664.9385	1678.540	5 201	3.8815

3003.7631		3061.3222	3061.3222		3151.7972	
3151.9745 3154.5790		0 3156.1617				
3157.2162		3158.7990	5	3159.4087		
3160.9518		3163.7267		3175.9843		
3178.4	163	3187.9593	3	3468.321	0	
[i2] C2	H15. C	$^{1}.^{2}A$				
6	0	-5.864807	-1.66303	5 0.0	29470	
6	0	-4.551111	-2.02508	3 0.0	76430	
6	0	-3.511316	-1.03979	3 0.0	39132	
6	0	-3.887589	0.357534	-0	050276	
6	0	-5.280926	0.687404	-0	096951	
6	0	-6 235554	-0 28554	0 -0	058562	
6	0	-2.164255	-1 37940	1 00	85871	
6	0	-2 892528	1 327985	i -0	087717	
6	0	-1 525607	0.99/201	-0	040946	
6	0	-1 1/18512	-0 /0365	1 0.0	18997	
6	0	0.217705	-0.73823	3 0.0	106721	
6	0	1 21/1978	0.73025	5 0.0	60318	
6	0	0.835500	1 620/03		00310	
6	0	0.033339	1.02949	-0.	030732	
6	0	1 970521	2 609700	· · · ·	070302	
6	0	1.079321	2.000/90	5 -0. 5 0	000404	
0	0	3.189339	2.242480	-0.	019100	
0	0	5.578795 2.601027	0.802032	2 0.0 4 0.1	00926	
0	0	2.001057	-0.100/0	4 0.1	07562	
0	0	5.021184	0.545110	1 0.1	2/303	
0	0	5.505885	-0.03900	4 0.2	.30993	
6	0	6.14/623	-1.84809	1 0.3	63/40	
6	0	6.531/45	-2.68327	/ -0.	684352	
1	0	0.499647	-1./8443	2 0.1	64331	
1	0	-1.882950	-2.42589	8 0.1	52996	
1	0	-6.640331	-2.42009	3 0.0	158673	
1	0	-4.269226	-3.07070	8 0.1	43309	
1	0	-5.561876	1.733294	-0.	163860	
1	0	-7.286156	-0.02033	6 -0.	094704	
1	0	-3.174500	2.374344	-0.	154890	
1	0	-0.790928	3.016714	-0.	146345	
1	0	1.605425	3.656306	- 0.	137701	
1	0	3.966250	2.999604	-0.	048679	
1	0	2.878363	-1.14777	4 0.1	76728	
1	0	5.686846	1.409988	3 0.0	68746	
1	0	6.329499	-2.19689	2 1.3	81320	
1	0	6.378764	-2.39392	8 -1.	716057	
1	0	6.992709	-3.64113	5 -0.	483455	
Froque	ncios					
22 126	0	38 1072	10	0/51		
22.120 85 067	ァ う	30.1072 111 5207	40 10	.74JI 1 7527		
158 06	∠ 21	17/ /202	12	т.2332 N8 6516		
1.00.20	<u> </u>	1/4.4002		00.0010		

223.7139

307.5765

264.7284

332.4447

287.1400

362.5040

396.5	562	408.8140	457	.3416
469.1	835	474.8214	481	.1055
508.3	275	530.2579	540	.0867
553.7	592	581.4630	606	.0663
613.8	205	639.0326	649	.4335
731.0	742	744.4775	749	.4376
750.1	634	762.0274	762	.5478
767.8	842	774.7784	791	.4787
836.3	369	839.6969	845	.6799
856.2	989	877.9800	881	.4302
901.7	915	913.3078	921	.5327
926.8	618	934,9498	938	.0697
971.5	073	976.5409	982	.9544
995.1	817	1021.4273	108	2.4634
1147	6937	1149 8675	5 11	68 1192
1174	4796	1187 5873	× 11	91 2398
1204	0563	1223 /000	11^{-11}	30 01//
1204.	1382	1223.490	12 13	01 1/03
1205.	5078	1292.1355	13	51 0734
1310.	<i>A</i> 115	1323.7201	. 13. 2 14	12 1561
1300.	0057	1394.242.) 14	25 5670
1413.	2206	1423.3971	. 14	55.5079 00 5524
1408.	.3300	1485.0557		90.5524
1502.	2007	1554.3499		13.8923
1581.	.3097	1609.0268	5 I6	45.6416
1658.	.314/	16/4.2029		83.8/26
3057.	6118	3094.0946	31	50.0048
3153.	.5307	3155.1947	31	55.9601
3156.	.9544	3158.4297	31.	59.2988
3162.	.5307	3163.6988	3 31	74.5123
3175.	.2259	3187.2843	3 32	51.0126
[i 3] (22H15	C_1 ² A		
6	0	-6 204783	-1 237971	0 156823
6	0	-4 949403	-1 754828	0.028588
6	0	-3 798183	-0.902392	0.011966
6	0	-3 995998	0.528058	0.134811
6	0	-5 333801	1.022776	0.154011
6	0	-6 399829	0 172338	0.207197
6	0	-2 506438	-1 400816	-0.117375
6	0	2.300+38	1 371344	0.120632
6	0	-2.009900	0.875700	0.120032
6	0	-1.379112	0.554803	-0.009792
6	0	-1.361133	1 051606	-0.132011
0	0	-0.006910	-1.031000	-0.205591
0	0	1.038494	-0.211055	-0.277572
0	0	0.855054	1.219993	-0.154214
0	U	-0.431431	1./22144	-0.025280
0	0	2.0028/1	2.070389	-0.1/2336
0	0	2.372560	-0.723709	-0.4101//
6	0	3.200336	1.4/8608	-0.301611
6	0	3.473974	0.094638	-0.428021
6	0	4.884372	-0.423278	-0.561082

6 0	7.101842	-0.642593	0.583630
6 0	8.225525	-1.048913	0.455782
6 0	5.729740	-0.161938	0.710386
1 0	0.077100	-2.123424	-0.355571
1 0	-2.358085	-2.472409	-0.209463
1 0	-7.066676	-1.895509	0.167779
1 0	-4.800524	-2.825613	-0.063495
1 0	-5.481728	2.093690	0.359158
1 0	-7.406605	0.561692	0.378912
1 0	-3.038909	2.442832	0.212647
1 0	-0.598199	2.793779	0.066173
1 0	1.882325	3.145543	-0.084576
1 0	2.502101	-1.798636	-0.504150
1 0	4.866857	-1.495607	-0.768640
1 0	5 376935	0.060835	-1 410017
1 0	9 221299	-1 403570	0 351465
1 0	5 250346	-0.645052	1 568665
1 0	5 736016	0.043032	0.0238/17
1 0	5.750010	0.912+19	0.723047
Frequencies	s		
23 9573	38 7664	60.03	67
65 8236	95 8368	139.2	870
143 8204	167 7279	190	7308
241 6654	249 5154	293	7118
319 3610	249.3134	365	0080
371 3331	385 6851		0112 0112
459 8250	470 2127	442	3826
437.6230	513 7021	542	0330
558 8527	600 5031	634	5805
637 3745	6/6 9351	665	6/38
676 8587	708 6682	740	.0438 2087
750 4206	708.0082	742	4032
750.4290	733.2090	702	.4032
709.4492 920.0295	772.4900	773. 945	.0203
020.930J	029.4174	04J	.0132 2072
830.0148	012.4043 012.5006	010	.09/3
092.2437	915.3900	919	.9360
921.4013	941.0029	907.	.3449
972.0080	990.0204	1013	1.3020 11.0266
1021.9300	1029.4413		44.9200
1149.000/	11/3.8/21		80.0003
1109.3934	1198.2183		14.0097
1220.0012	1238.0373		04.2354
1289.6244	1302.2083		06.3468
1314.2455	1319.9283		60.4195
1368.5509	1388.4292		02.9337
1421.4200	1424.4316) I4.	39.0078
14/0.0948	14/6.8//6) 14	91.0/14
1494.8282	1553.0904	H 150	0/.8300
1581.5562	1607.5536	$) \qquad 16$	38.2352 21.2795
164/.643/	16/1./023	$5 \qquad 22$	21.3785
3022.5961	3039.4774	F 30:	52.2399

3089	9.2419	3144.35	84 315	4.4880	
3155./351		3156.62	09 315	3157.7086	
3159	9.2593	3161.04	00 316	3.4439	
317:	5.6985	3187.69	00 347	7.8852	
[i4]	C ₂₂ H ₁₅ ,	$C_1, {}^2A$			
6	0	6.132517	-0.761559	0.074455	
6	0	4.948571	-1.438982	0.057482	
6	0	3.698687	-0.740827	0.028222	
6	0	3.717120	0.707799	0.016980	
6	0	4.984800	1.374025	0.035605	
6	0	6.150820	0.666702	0.063356	
6	0	2.475762	-1.404893	0.010391	
6	0	2.512020	1.402686	-0.011310	
6	0	1.271129	0.739131	-0.029612	
6	0	1.253088	-0.710290	-0.018139	
6	0	0.008095	-1.374290	-0.036078	
6	0	-1.192253	-0.679748	-0.065097	
6	0	-1.175041	0.768822	-0.076713	
6	0	0.044588	1.434008	-0.058289	
6	0	-2.426494	1.460445	-0.091129	
6	0	-2.463143	-1.344676	-0.096209	
6	0	-3.620665	0.791498	-0.104168	
6	0	-3.639472	-0.659711	-0.128423	
6	0	-4.973476	-1.360183	-0.282009	
6	0	-6.003819	0.802331	0.241243	
6	0	-4.914421	1.497020	-0.038286	
6	0	-6.128666	-0.652003	0.475310	
1	0	-0.005559	-2.460006	-0.028862	
1	0	2.462284	-2.490594	0.018883	
1	0	7.070882	-1.304173	0.096554	
1	0	4.934094	-2.523922	0.065894	
1	0	4.998209	2.458963	0.027162	
1	0	7.102822	1.185319	0.077221	
1	Õ	2.526322	2.488342	-0.019721	
1	Õ	0.057855	2.519631	-0.064323	
1	0	-2.417372	2.545995	-0.070423	
1	Õ	-2.469303	-2.430813	-0.112760	
1	Õ	-5.233902	-1.366414	-1.348006	
1	Õ	-4.897955	-2.403763	0.034852	
1	Ő	-4.922324	2.576247	-0.163781	
1	Ő	-6.073867	-0.856537	1.552498	
1	0	-7.090678	-1.042104	0.129324	
Free	uencies				

36.6663	67.0975	96.0610
119.1292	138.8985	162.3767
227.7477	235.8674	246.3727
262.6874	321.5431	346.7917
363.9834	382.8320	402.6574
453.1723	470.4961	472.5478

477.2661	482.2314	501.0869
542.4775	548.4496	569.7368
627.8494	646.1462	656.8057
700.9068	723.2065	735.0959
750.2702	756.2987	764.8675
766.4589	775.2450	784.6377
821.1178	832.5046	845.2482
849.7965	873.0987	879.4963
892.9321	900.0633	902.0095
916.7436	923.0409	925.6265
936.0907	970.6506	976.9170
994.5382	1020.3525	1022.5888
1134.0067	1151.5083	1154.6260
1176.7849	1187.5889	1198.9595
1199.4072	1208.2397	1224.5105
1231.4561	1253.7081	1290.5168
1294.7517	1312.9475	1316.7427
1320.7157	1323.6198	1350.4598
1367.3697	1393.1969	1407.1173
1424.1101	1442.2595	1466.0205
1474.1034	1475.0442	1477.8347
1493.6263	1554.0087	1578.1725
1582.3811	1610.8924	1645.2546
1663.1380	1674.7118	1681.7240
3001.8625	3009.3872	3053.6232
3068.7004	3141.7755	3148.5687
3152.8850	3154.0447	3155.4118
3156.3728	3157.7031	3159.3495
3162.3294	3174.8094	3186.9759

[i5] C₂₂H₁₅, C_s, ²A"

0	3.783442	-4.905767	0.000000
0	3.764881	-3.539813	0.000000
0	2.530257	-2.819299	0.000000
0	1.292976	-3.569557	0.000000
0	1.361561	-4.998544	0.000000
0	2.564082	-5.645648	0.000000
0	2.480158	-1.424639	0.000000
0	0.080916	-2.881511	0.000000
0	0.023466	-1.476143	0.000000
0	1.264241	-0.725427	0.000000
0	1.203811	0.688563	0.000000
0	0.000000	1.371175	0.000000
0	-1.244155	0.623169	0.000000
0	-1.197188	-0.771258	0.000000
0	-2.462919	1.345543	0.000000
0	-0.072420	2.804467	0.000000
0	-2.505536	2.737769	0.000000
0	-1.252732	3.481217	0.000000
0	-1.278590	5.000795	0.000000
0	-3.734137	3.445561	0.000000
	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

6 0	-3.779621	4.857827	0.000000
6 0	-2.645945	5.614125	0.000000
1 0	2.133663	1.249320	0.000000
1 0	3.409383	-0.862846	0.000000
1 0	4.728069	-5.437869	0.000000
1 0	4.692421	-2.976693	0.000000
1 0	0.433468	-5.560721	0.000000
1 0	2.599858	-6.729248	0.000000
1 0	-0.847502	-3.444522	0.000000
1 0	-2.126707	-1.332218	0.000000
1 0	-3.396397	0.791093	0.000000
1 0	0.864172	3.356110	0.000000
1 0	-0.717435	5.374147	0.869302
1 0	-0.717435	5.374147	-0.869302
1 0	-4.658797	2.879390	0.000000
1 0	-4.748073	5.347387	0.000000
1 0	-2.707975	6.696889	0.000000
Frequencies			
34.2274	50.6419	81.51	76
116.4370	118.4234	156	.1042
220.2036	237.2743	241	.7430
259.6944	335.0895	347	.5361
360.5197	393.0157	450	.6435
459.4596	473.3230	476	.1088
478.6440	484.9548	507	.5671
545.6887	573.1846	582	.8532
630.7587	644.7639	649	.6093
674.8892	714.5608	725	.8376
736.2211	750.2653	754	.9875
763.1437	772.8901	786	.1390
795.7206	833.8085	837	.7658
843.7462	862.2099	880	.3835
884.9730	890.0379	906	.0713
909.2138	914.4283	929	.9101
953.1674	955.5847	968	.1865
970.3737	992.8717	1024	1.8936
1073.2489	1142.1750) 11-	49.1874
1160.6227	1184.981	1 11	86.4046
1188.9409	1202.4247	7 12	11.2446
1227.2726	1240.1003	3 12	89.9932
1292.8471	1302.4998	8 13	13.2138
1316.3500	1323.527	7 13	60.3775
1375.9929	1401.8294	4 14	05.3806
1418.6473	1423.3074	1 14	37.6638
1447.7771	1464.133	1 14	88.6652
1496.2551	1527.7529) 15	49.2413
1574.7057	1579.3468	8 16	07.4399
1626.2735	1647.4694	1 16	66.3406
2973.5632	2979.880	5 31	40.9063
3152.3943	3153.4475	5 31	54.2069

3155.1424	3156.2162	3157.3331
3159.4272	3162.0928	3170.0746
3174.5149	3180.7353	3186.8224

[i6] $C_{22}H_{15}$, C_s , ²A'

6	0	6.004426	-1.579785	-0.000088
6	0	4.701424	-1.982218	0.000030
6	0	3.633910	-1.027146	0.000024
6	0	3.968610	0.382792	-0.000123
6	0	5.351527	0.755826	-0.000246
6	0	6.334422	-0.189627	-0.000227
6	0	2.296270	-1.408108	0.000170
6	0	2.944772	1.324334	-0.000130
6	0	1.588587	0.948255	0.000012
6	0	1.253664	-0.462443	0.000187
6	0	-0.103634	-0.843249	0.000400
6	0	-1.120612	0.102082	0.000348
6	0	-0.789700	1.522063	0.000134
6	0	0.546025	1.898037	0.000007
6	0	-1.869091	2.468086	0.000121
6	0	-2.501677	-0.195115	0.000414
6	0	-3.170919	2.069782	0.000145
6	0	-3.536099	0.667752	0.000020
6	0	-4.996103	0.277144	-0.000443
6	0	-6.649373	-1.593326	-0.000138
6	0	-7.820467	-1.862846	-0.000045
6	0	-5.232370	-1.243561	-0.000289
1	0	-0.359627	-1.896908	0.000594
1	0	2.045446	-2.464361	0.000281
1	0	6.801870	-2.314231	-0.000077
1	0	4.450193	-3.037688	0.000136
1	0	5.601883	1.811558	-0.000356
1	0	7.376921	0.108011	-0.000314
1	0	3.195853	2.380618	-0.000256
1	0	0.799511	2.953950	-0.000067
1	0	-1.624639	3.524959	0.000147
1	0	-3.967688	2.807892	0.000293
1	0	-5.487986	0.718546	0.873587
1	0	-5.487046	0.718192	-0.875207
1	0	-8.853733	-2.108922	0.000121
1	0	-4.746174	-1.686907	0.875508
1	0	-4.746328	-1.687079	-0.876083
Frequ	iencies			

32.6567	38.9755	54.6266
58.6168	90.6034	127.6826
146.2034	170.6133	173.6594
227.8812	278.2670	285.5055
312.8205	337.4489	353.9201
376.1888	389.5499	438.7435
471.4678	477.1628	482.1409

501.4283	516.1991	530.6741
559.9671	568.5251	605.0875
638.4261	645.8457	662.9695
676.2594	717.7501	748.3471
748.5944	752.1552	763.3941
767.2625	769.4674	774.7033
803.3639	836.9624	848.5075
863.6169	877.0377	884.8444
912.4785	916.1111	927.8898
952.5486	965.8953	972.7117
989.0566	996.8883	1022.2758
1034.2534	1035.5454	1139.3397
1149.9076	1152.8887	1174.2605
1188.7073	1197.8479	1205.4941
1221.5420	1242.6865	1271.8103
1297.1603	1302.7198	1310.4703
1311.9541	1320.8642	1360.2330
1380.3123	1388.8975	1406.7578
1411.3934	1430.0290	1448.2555
1473.4781	1483.0933	1487.3662
1491.4750	1543.1038	1559.7088
1581.3333	1611.2737	1645.7034
1665.2854	1676.7350	2222.3905
3019.0394	3028.7049	3040.3237
3063.0488	3150.1373	3154.2060
3156.9321	3158.9373	3159.3095
3163.8666	3174.0917	3174.5700
3176.4828	3188.5646	3477.2663

[i7] C₂₂H₁₅, C₁, ²A

	- ,			
6	0	5.751104	-1.281844	0.017719
6	0	4.471047	-1.750426	-0.016111
6	0	3.354877	-0.852122	-0.009689
6	0	3.616410	0.573368	0.033794
6	0	4.978624	1.016403	0.068212
6	0	6.008885	0.123300	0.060507
6	0	2.039542	-1.301502	-0.043884
6	0	2.545883	1.460129	0.041344
6	0	1.211044	1.012342	0.006944
6	0	0.948818	-0.410701	-0.038432
6	0	-0.386296	-0.860612	-0.074464
6	0	-1.468082	0.014573	-0.073549
6	0	-1.198779	1.440919	-0.015347
6	0	0.115402	1.894107	0.020328
6	0	-2.301061	2.349513	0.011734
6	0	-2.845419	-0.428237	-0.119716
6	0	-3.583988	1.889524	-0.014366
6	0	-3.873466	0.495521	-0.078935
6	0	-5.314424	0.033819	-0.191363
6	0	-4.438559	-2.226050	0.079858
6	0	-3.199288	-1.866145	-0.202652

6 0	-5.561131	-1.343721	0.468556
1 0	-0.551927	-1.930441	-0.094577
1 0	1.844875	-2.369203	-0.076736
1 0	6.585430	-1.974159	0.012379
1 0	4.275001	-2.817106	-0.048611
1 0	5.173784	2.083254	0.100695
1 0	7.034514	0.473771	0.086855
1 0	2.740555	2.527759	0.075124
1 0	0.301997	2.962822	0.063494
1 0	-2.096310	3.413644	0.058722
1 0	-4.411514	2.591323	0.009577
1 0	-5.988245	0.778797	0.241184
1 0	-5.569446	-0.042253	-1.257536
1 0	-2.442317	-2.593794	-0.470939
1 0	-6.530379	-1.740726	0.153872
1 0	-5.592868	-1.256636	1.563569
Frequencies			
42.5180	58.9129	94.99	977
120.5468	129.6995	172	.4701
186.7579	231.8876	267	.3398
292.4021	293.8065	343	.3816
363.3985	381.9564	409	.5785
437.9047	472.1342	476	.8068
480.5847	501.9270	506	.1302
539.2855	552.1875	573	.5061
597.9519	618.0756	642	.1666
687.0117	719.1952	735	.6489
749.4268	756.1073	762	.5582
766.7667	774.0419	796	.8282
808.0421	828.4955	845	.7083
846.6486	859.6267	881	.2336
883.0622	909.9049	913	.3041
914.1357	929.4474	968	.4828
971.4684	979.9175	986	.9981
995.0727	1018.1159	102	1.4210
1098.9375	1148.8940) 11	51.7983
1168.8859	1187.2619) 11	91.8836
1196.4633	1208.8087	7 12	23.1296
1233.3666	1249.7180) 12	73.7312
1304.2505	1308.7178	3 13	17.7340
1324.8504	1347.2988	3 13	64.2396
1371.1911	1392.3015	5 14	12.7605
1419.0032	1429.2171	l 14	55.4815
1464.7341	1474.2961	l 14	83.2090
1499.3438	1550.8681	15	60.0463
1580.9909	1607.0662	2 16	44.3333
1647.1909	1671.8242	2 16	83.8069
2987.8176	2997.5767	7 30.	58.8436
3062.0096	3153.3996	5 31	54.3534
3155.5265	3157.2001	31	58.3687

3162.4002	3167.2813	3174.9338
3175.0853	3187.1188	3189.6028

[i8] C₂₂H₁₅, C_s, ²A"

6	0	-5.766908	-1.223270	0.000000
6	0	-4.792966	-0.267014	0.000000
6	0	-3.407565	-0.624931	0.000000
6	0	-3.057121	-2.029800	0.000000
6	0	-4.113252	-2.996143	0.000000
6	0	-5.421670	-2.608321	0.000000
6	0	-2.391969	0.329312	0.000000
6	0	-1.713270	-2.395116	0.000000
6	0	-0.685499	-1.435407	0.000000
6	0	-1.034795	-0.032696	0.000000
6	0	0.000000	0.931412	0.000000
6	0	1.341775	0.588200	0.000000
6	0	1.685800	-0.822175	0.000000
6	0	0.680237	-1.780896	0.000000
6	0	3.064703	-1.198258	0.000000
6	0	2.420848	1.582363	0.000000
6	0	4.048866	-0.248994	0.000000
6	0	3.755406	1.136301	0.000000
6	0	4.911971	2.113041	0.000000
6	0	2.159802	2.975075	0.000000
6	0	3.208761	3.927480	0.000000
6	0	4.515462	3.555210	0.000000
1	0	-0.298329	1.972258	0.000000
1	0	-2.655747	1.382647	0.000000
1	0	-6.812460	-0.936514	0.000000
1	0	-5.054745	0.786003	0.000000
1	0	-3.850451	-4.048880	0.000000
1	0	-6.210509	-3.352102	0.000000
1	0	-1.449508	-3.448342	0.000000
1	0	0.955629	-2.831088	0.000000
1	0	3.315460	-2.253383	0.000000
1	0	5.090297	-0.556917	0.000000
1	0	5.561074	1.907628	0.867586
1	0	5.561074	1.907628	-0.867586
1	0	1.141765	3.338030	0.000000
1	0	2.950314	4.981520	0.000000
1	0	5.304443	4.299277	0.000000
Freque	ncies			
43.657	8	48.5990	91.3068	
109.22	06	118.5403	156.34	46
184.01	25	231.0120	260.36	58

184.0125	231.0120	260.3658
289.4348	299.4394	342.6412
377.7183	392.4977	444.1647
465.1705	471.9477	476.5876
477.4816	506.9025	528.1720
533.2555	545.0077	599.2394

614.1039	620.0557	642.9779
670.8861	712.1480	726.2827
733.1693	744.6076	751.1445
765.5665	773.0472	791.8843
795.5440	803.8186	845.9076
847.9368	855.9136	879.0832
884.2049	907.3545	910.3207
929.5032	936.0243	945.6559
963.5614	969.3321	970.1667
989.3709	994.4791	1023.7903
1074.1231	1127.5281	1151.3624
1154.5245	1181.9076	1186.0401
1189.4105	1202.6091	1204.1409
1219.4590	1232.4305	1251.5766
1280.2527	1295.3301	1308.4079
1316.6992	1319.9877	1370.2389
1377.6643	1390.3646	1412.6264
1424.4283	1431.8751	1441.5337
1448.7858	1458.7469	1485.7752
1502.8541	1522.0720	1558.4767
1581.0641	1588.6099	1600.9415
1627.9822	1645.0048	1669.3602
2935.8382	2939.6780	3148.8587
3153.5824	3153.9765	3154.9999
3156.9743	3158.2851	3162.2200
3174.1341	3174.5179	3174.8796
3183.7709	3187.0775	3210.8424

Products

Products				
Pen	tacene	P1 $C_{22}H_{14}$, D_{2h} ,	${}^{1}A_{1}$	
6	0	0.000000	0.715877	-6.108056
6	0	0.000000	1.408418	-4.935298
6	0	0.000000	0.726752	-3.672673
6	0	0.000000	-0.726752	-3.672673
6	0	0.000000	-1.408418	-4.935298
6	0	0.000000	-0.715877	-6.108056
6	0	0.000000	1.406070	-2.464267
6	0	0.000000	-1.406070	-2.464267
6	0	0.000000	-0.727500	-1.224502
6	0	0.000000	0.727500	-1.224502
6	0	0.000000	1.406570	0.000007
6	0	0.000000	0.727498	1.224499
6	0	0.000000	-0.727498	1.224499
6	0	0.000000	-1.406570	0.000007
6	0	0.000000	-1.406075	2.464280
6	0	0.000000	1.406075	2.464280
6	0	0.000000	-0.726749	3.672667
6	0	0.000000	0.726749	3.672667
6	0	0.000000	-1.408430	4.935300
6	0	0.000000	-0.715886	6.108042
6	0	0.000000	0.715886	6.108042

6	0	0.000000	1.408430	4.935300
1	0	0.000000	2.492186	0.000014
1	0	0.000000	2.491786	-2.464840
1	0	0.000000	1.245313	-7.054147
1	0	0.000000	2.493428	-4.935053
1	0	0.000000	-2.493428	-4.935053
1	0	0.000000	-1.245313	-7.054147
1	0	0.000000	-2.491786	-2.464840
1	0	0.000000	-2.492186	0.000014
1	0	0.000000	-2.491790	2.464840
1	0	0.000000	2.491790	2.464840
1	0	0.000000	-2.493438	4.935040
1	0	0.000000	-1.245283	7.054154
1	0	0.000000	1.245283	7.054154
1	0	0.000000	2.493438	4.935040
Free	juencies			
36.9	372	70.8468	101.33	342
118	.8825	148.6387	192.	5705
238	.2499	240.3757	263.	5255
293	.1078	348.8996	362.	0635
379	.0631	453.9768	469.	3631
471	.2086	476.5719	478.	3173
490	.8600	512.5213	526.	0945
553	.7031	579.0195	616.	3955
639	.3335	647.1557	715.	7635
724	.8646	744.2496	745.	5198
751	.5275	752.3959	761.	9549
770	.6333	774.2176	795.	3146
837	.4540	839.8434	840.	1706
846	.9556	874.0640	887.	7721
889	.0408	900.6767	915.	6712
921	.1544	922.0935	936.	3605
972	.3674	972.8098	995.	1909
995	.2180	1016.2102	1018	8.9658
1134	4.3424	1143.6215	5 115	58.0467

1188.1129

1210.1757

1294.5554

1318.6447

1376.1037

1418.8759

1477.2417

1542.4239

1578.7263

1641.8767

1184.5370

1207.2872

1251.0512

1312.3943

1359.0245

1416.9080

1434.0870

1493.1196

1576.5291

1633.4264

1673.6068

3155.3207

3158.0236

3162.5764

3175.5256

3153.59003154.92653157.00203157.04943159.48713160.43343163.51203175.48983187.37703187.5640

1200.2043

1242.1231

1295.2730

1333.5980

1410.6469

1426.6966

1477.8486

1557.6422

1593.8411

1672.7733

Ben	zo[a]te	traphene P2 C2	$_{22}H_{14}, C_s, {}^1A'$
6	0	5 687600	-1 308107

Benzo	[a]tetra	apnene PZ C22f	A_{14}, C_{s}, A_{s}	
6	0	5.687699	-1.398107	0.000000
6	0	4.748835	-0.407302	0.000000
6	0	3.351634	-0.715518	0.000000
6	0	2.951374	-2.106145	0.000000
6	0	3.971227	-3.109878	0.000000
6	0	5.293030	-2.769463	0.000000
6	0	2.370523	0.274767	0.000000
6	0	1.594076	-2.422793	0.000000
6	0	0.603790	-1.427526	0.000000
6	0	1.002199	-0.039360	0.000000
6	0	0.000000	0.960520	0.000000
6	0	-1.350396	0.662296	0.000000
6	0	-1.743319	-0.733081	0.000000
6	0	-0.777140	-1.723989	0.000000
6	0	-3.144625	-1.069449	0.000000
6	0	-2.398391	1.690008	0.000000
6	Õ	-4.099086	-0.113353	0.000000
6	0	-3 762001	1 289870	0.000000
6	0	-2 116095	3 069325	0.000000
6	0	-3 126692	4 015387	0.000000
6	0	-4 468617	3 614967	0.000000
6	0	-4 775418	2 267449	0.000000
1	0	0 332625	1 991257	0.000000
1	0	2 671745	1.337078	0.000000
1	0	6742875	1.517578	0.000000
1	0	0.742073	-1.149114	0.000000
1	0	2.040320	0.055565	0.000000
1	0	5.070028	-4.132431	0.000000
1	0	0.034304	-5.541201	0.000000
1	0	1.292703	-3.403874	0.000000
1	0	-1.088502	-2.704080	0.000000
1	0	-3.416294	-2.119801	0.000000
1	0	-5.149498	-0.384976	0.000000
1	0	-1.089097	3.411196	0.000000
1	0	-2.8/5122	5.069934	0.000000
1	0	-5.259510	4.356279	0.000000
1	0	-5.811023	1.943499	0.000000
Freque	encies			
44.173	6	54.4339	102.799	0
120.01	02	140.9920	188.55	516
224.77	42	233.3061	293.64	93
299.54	56	324.3628	381.84	16
393.64	.62	427.8326	457.50)52
471 90	0 <u>2</u> 078	478 4864	483.19	027
518 44	-02	529,4142	547.25	540
549 59	05	565 0876	599.87	269
639 64	-80	647 2516	687.92	259
724 13	10	745 7262	750.80	000
753 38	10	756 5726	767 97	241
, 55.50		, 50.5720	101.72	

774 62	10	701 6178	700 7	360
015 42	10	/91.01/0	199.1	309
815.42	88	847.7844	849.6	218
861.50	27	8//.98/9	885.5	935
891.24	-56	909.4221	914.6	000
930.38	41	953.5218	970.8	012
981.43	81	991.6796	995.3	913
1002.0	849	1024.801	7 1065	5.8179
1127.9	428	1150.723	3 1157	7.7254
1173.5	944	1188.051	5 1190	0.1082
1208.1	110	1221.645	9 1233	3.9241
1255.3	616	1270.525	9 1298	3.3613
1306.4	595	1318.257	6 1325	5.9889
1350.0	025	1374.123	6 1383	3.0926
1416.1	358	1425.304	9 1445	5.6003
1449.3	924	1471.977	1 1486	5.8965
1499.4	567	1526.459	3 1562	2.5100
1585.3	778	1592.278	1 1616	5.0674
1641.8	422	1656.834	7 1661	1.3940
1672.7	266	3153.829	7 3154	1.7902
3156.1	502	3157.500	7 3158	3.6350
3159.5	841	3162.627	8 3168	3.6709
3175.2	104	3175.699	4 3178	3.8544
3186.0	460	3187.357	6 3198	8.7592
(E)-2-(but-1-e	en-3-vn-1-vl)a	nthracene P3	$C_{22}H_{14}$, C_{1} , ¹ A
(1) - (vut I v			$\nabla_{22114}, \nabla_{1}, 11$
6	0	-6 014631	-1 501344	0.002463
6 6	0	-6.014631 -4 721109	-1.501344 -1.931437	0.002463
6 6 6	0 0 0	-6.014631 -4.721109 -3.632688	-1.501344 -1.931437 -0.999643	0.002463 -0.027723 -0.015223
6 6 6	0 0 0	-6.014631 -4.721109 -3.632688 -3.937008	-1.501344 -1.931437 -0.999643 0.417076	0.002463 -0.027723 -0.015223 0.030458
6 6 6 6	0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486	-1.501344 -1.931437 -0.999643 0.417076 0.819090	0.002463 -0.027723 -0.015223 0.030458 0.060969
6 6 6 6	0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510
6 6 6 6 6 6	0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510
6 6 6 6 6 6 6	0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138
6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 1.545932	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795
6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 1.240891	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 0.485150	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032004 \end{array}$
6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 0.890207	$\begin{array}{c} 0.002463 \\ -0.027723 \\ -0.015223 \\ 0.030458 \\ 0.060969 \\ 0.047510 \\ -0.045299 \\ 0.043138 \\ 0.012795 \\ -0.032904 \\ 0.063453 \end{array}$
6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 0.048615
6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446206	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 -0.048615 0.005414
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 0.481542	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1 856224	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 -0.048615 -0.005414
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.270026	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032904\\ -0.063453\\ -0.048615\\ -0.005414\\ 0.024074\\ 0.024074\\ 0.001021\end{array}$
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 0.276406	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 -0.048615 -0.005414 0.024074 -0.001921 0.079827
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032904\\ -0.063453\\ -0.048615\\ -0.005414\\ 0.024074\\ -0.001921\\ -0.078837\\ 0.032970\end{array}$
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853 3.226463	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.52542	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032904\\ -0.063453\\ -0.048615\\ -0.005414\\ 0.024074\\ -0.001921\\ -0.078837\\ -0.032279\\ 0.06322222\\ 0.06322222\\ 0.06322222222222222222222222222222222222$
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853 3.226463 3.550951	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 -0.048615 -0.005414 0.024074 -0.001921 -0.078837 -0.032279 -0.060920
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853 3.226463 3.550951 4.964223	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542 0.157919	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 -0.048615 -0.005414 0.024074 -0.001921 -0.078837 -0.032279 -0.060920 -0.079220
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853 3.226463 3.550951 4.964223 5.481251	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542 0.157919 -1.070592	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 -0.048615 -0.005414 0.024074 -0.001921 -0.078837 -0.032279 -0.060920 -0.079220 0.127572
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853 3.226463 3.550951 4.964223 5.481251 6.866550	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542 0.157919 -1.070592 -1.359750	0.002463 -0.027723 -0.015223 0.030458 0.060969 0.047510 -0.045299 0.043138 0.012795 -0.032904 -0.063453 -0.048615 -0.005414 0.024074 -0.001921 -0.078837 -0.032279 -0.060920 -0.079220 0.127572 0.083012
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853 3.226463 3.550951 4.964223 5.481251 6.866550 8.039045	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542 0.157919 -1.070592 -1.359750 -1.641208	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032904\\ -0.063453\\ -0.048615\\ -0.005414\\ 0.024074\\ -0.001921\\ -0.078837\\ -0.032279\\ -0.060920\\ -0.079220\\ 0.127572\\ 0.083012\\ 0.054877\\ -0.05487\\ -0.05487\\ -0.05487\\ -0.05487\\ -0.0548\\ -0.0$
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{r} -6.014631\\ -4.721109\\ -3.632688\\ -3.937008\\ -5.311486\\ -6.314442\\ -2.304587\\ -2.893610\\ -1.545932\\ -1.240891\\ 0.106520\\ 1.151768\\ 0.844327\\ -0.481542\\ 1.938219\\ 2.517853\\ 3.226463\\ 3.550951\\ 4.964223\\ 5.481251\\ 6.866550\\ 8.039045\\ 0.334471\\ \end{array}$	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542 0.157919 -1.070592 -1.359750 -1.641208 -1.951099	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032904\\ -0.063453\\ -0.048615\\ -0.005414\\ 0.024074\\ -0.001921\\ -0.078837\\ -0.032279\\ -0.060920\\ -0.079220\\ 0.127572\\ 0.083012\\ 0.054877\\ -0.097712 \end{array}$
$ \begin{array}{c} 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{r} -6.014631\\ -4.721109\\ -3.632688\\ -3.937008\\ -5.311486\\ -6.314442\\ -2.304587\\ -2.893610\\ -1.545932\\ -1.240891\\ 0.106520\\ 1.151768\\ 0.844327\\ -0.481542\\ 1.938219\\ 2.517853\\ 3.226463\\ 3.550951\\ 4.964223\\ 5.481251\\ 6.866550\\ 8.039045\\ 0.334471\\ -2.076850\\ \end{array}$	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542 0.157919 -1.070592 -1.359750 -1.641208 -1.951099 -2.469847	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032904\\ -0.063453\\ -0.048615\\ -0.005414\\ 0.024074\\ -0.001921\\ -0.078837\\ -0.032279\\ -0.060920\\ -0.079220\\ 0.127572\\ 0.083012\\ 0.054877\\ -0.097712\\ -0.079466\end{array}$
$\begin{array}{c} 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 $	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	-6.014631 -4.721109 -3.632688 -3.937008 -5.311486 -6.314442 -2.304587 -2.893610 -1.545932 -1.240891 0.106520 1.151768 0.844327 -0.481542 1.938219 2.517853 3.226463 3.550951 4.964223 5.481251 6.866550 8.039045 0.334471 -2.076850 -6.827869	-1.501344 -1.931437 -0.999643 0.417076 0.819090 -0.104779 -1.408873 1.336547 0.932265 -0.485159 -0.890207 0.030199 1.446296 1.856234 2.370936 -0.376496 1.936159 0.532542 0.157919 -1.070592 -1.359750 -1.641208 -1.951099 -2.469847 -2.218192	$\begin{array}{c} 0.002463\\ -0.027723\\ -0.015223\\ 0.030458\\ 0.060969\\ 0.047510\\ -0.045299\\ 0.043138\\ 0.012795\\ -0.032904\\ -0.063453\\ -0.048615\\ -0.005414\\ 0.024074\\ -0.001921\\ -0.078837\\ -0.032279\\ -0.060920\\ -0.079220\\ 0.127572\\ 0.083012\\ 0.054877\\ -0.097712\\ -0.079466\\ -0.007535\end{array}$

1	0	-5.538817	1.879430	0.095191
1	0	-7.350163	0.214700	0.070968
1	0	-3.122090	2.397380	0.077343
1	0	-0.708850	2.917346	0.056380
1	0	1.718749	3.433090	0.023694
1	0	2.724535	-1.439900	-0.132344
1	0	4.040467	2.653232	-0.028583
1	0	5.661599	0.970017	-0.265897
1	0	4.828529	-1.909842	0.352777
1	0	9.073732	-1.879384	0.026782
Frea	uencies			
26.6	679	49.2484	60.55	63
77.7	112	94.4860	141.73	807
150	3625	184,6056	191	7577
239	5879	282,7773	296	1399
321	1535	346 7392	384	7901
396	8010	441 8867	453	1841
471	6293	475.8071	481.	7743
503	0620	523,2069	541	8448
571	4904	618,1581	624	4885
628.	2921	639.0155	649.	5312
680	9279	732.0417	750	6111
757.	7040	763.5156	765.	1915
775.	1462	776.9621	807.	0585
844.	4545	851.0127	854.	7858
868.	2697	882.9391	885.	4167
897.	8008	914.0552	921.	9064
929.	7278	972.3753	976.	5251
984.	4502	990.8747	996.	3091
1021	.6645	1037.290	0 114	9.2249
1150).2928	1169.3410	0 118	3.8589
1188	3.2008	1205.725	6 122	24.1685
1236	5.0678	1284.4320	6 129	94.3901
1301	.5922	1318.437	3 132	24.7743
1330).8759	1355.799	9 137	/0.1036
1400).0149	1412.9240	0 142	25.3388
1436	5.8770	1465.5169	9 148	86.2760
1500).6508	1553.2780	0 157	73.6081
1581	.2488	1609.657	7 163	86.7816
1649	9.4940	1668.314	1 167	9.9734
2193	3.2758	3138.6778	8 315	50.6863
3154	1.4346	3156.151	1 315	57.1124
3158	3.6464	3159.358	6 316	50.4300
3163	3.5802	3168.495	7 317	5.9712
3177	7.1754	3187.8504	4 347	7.2352

2-(but-3-en-1-yn-1-yl)anthracene P4 $C_{22}H_{14}$, C_s , ¹A'

6	0	-6.124511	1.632576	0.000000
6	0	-4.832433	2.068472	0.000000
6	0	-3.740471	1.141059	0.000000

6	0	1 020081	0 277205	0.000000
6	0	-4.039081 5 /11076	-0.277505	0.000000
6	0	-3.411070	-0.083392	0.000000
6	0	-0.418733	1 556226	0.000000
6	0	-2.415500	1.330230	0.000000
0	0	-2.991008	-1.192/18	0.000000
6	0	-1.045855	-0.782210	0.000000
6	0	-1.346660	0.636821	0.000000
6	0	0.000000	1.047842	0.000000
6	0	1.047379	0.131284	0.000000
6	0	0.746764	-1.286920	0.000000
6	0	-0.577164	-1.702247	0.000000
6	0	1.843287	-2.210985	0.000000
6	0	3.132141	-1.780208	0.000000
6	0	3.442560	-0.370208	0.000000
6	0	2.412711	0.544079	0.000000
6	0	4.799585	0.047782	0.000000
6	0	5.966615	0.374806	0.000000
6	0	7.314978	0.808669	0.000000
6	0	8.381869	-0.002178	0.000000
1	0	0.224650	2.109881	0.000000
1	0	-2.189841	2.618617	0.000000
1	0	-6.940616	2.346232	0.000000
1	0	-4.608388	3.130056	0.000000
1	0	-5.634986	-1.747381	0.000000
1	0	-7.453246	-0.089923	0.000000
1	0	-3.215883	-2.254997	0.000000
1	0	-0.800658	-2.764653	0.000000
1	0	1.623451	-3.273401	0.000000
1	0	3.952686	-2.487077	0.000000
1	0	2.637719	1.604439	0.000000
1	0	7.466821	1.885814	0.000000
1	Ő	8 275905	-1 080443	0.000000
1	0	9.386395	0.402609	0.000000
Freque	ncies			
26.185	5	43.7681	47.9848	
68.789	3	98.5270	139.2949)
147.33	50	183.6825	185.18	30
238.04	50	270 7992	289.26	01
303.82	20 24	332,4359	381 73	22
396 52	83	433 6815	452.60	53
470.20	34	475 5807	481 79	93
505.40	27 47	532 8421	543.48	69
572 /1		600 2050	625 74	07
630 78	01 26	651 5762	686.60	37
602.87	20 60	732 2310	750.84	32 24
760 76	00 26	761 0522	130.04 761.06	2 4 07
700.70	20 08	200 1175	/04.90 Q1/ 20	70 70
915 00	70 80	007.11/3	014.30	70
043.90	07 16	03/.01/1	0/0.09 010 cf	17 00
001./9	10 50	700.4/34 025 0050	71U.03	7U 16
714./1	32	923.0939	938.4/	40

939.3666	972.3544	981.6899
988.4120	996.2921	1006.1574
1022.0441	1095.1126	1150.3029
1150.6608	1164.2407	1188.0843
1203.5719	1219.4988	1223.9479
1268.6251	1292.3478	1298.8069
1316.1341	1319.2928	1322.8545
1335.2892	1369.0080	1392.1462
1411.8716	1424.1517	1434.2674
1448.8354	1463.1984	1487.7687
1499.1501	1549.4891	1569.9822
1581.1635	1608.6482	1645.4987
1650.8284	1666.4986	1674.7921
2290.7146	3129.4830	3146.2034
3154.6853	3156.5479	3157.6240
3159.1814	3160.6317	3163.5074
3164.8821	3175.9351	3179.2717
3187.9019	3193.2977	3235.7605

Transition states

Transition states					
[i0a]	$] \rightarrow [i1]$	$C_{22}H_{15}, C_1, {}^2A$			
6	0	-6.404207	-0.777460	-0.078251	
6	0	-5.213503	-1.441672	-0.100588	
6	0	-3.970266	-0.731143	-0.053775	
6	0	-4.005260	0.716219	0.018216	
6	0	-5.280844	1.368261	0.039191	
6	0	-6.438619	0.649460	-0.007282	
6	0	-2.741483	-1.381718	-0.075122	
6	0	-2.808776	1.422739	0.064351	
6	0	-1.559778	0.772534	0.043153	
6	0	-1.524590	-0.674827	-0.028764	
6	0	-0.274230	-1.324777	-0.049891	
6	0	0.919896	-0.617033	-0.003791	
6	0	0.887460	0.832825	0.068038	
6	0	-0.342764	1.480267	0.089312	
6	0	2.124857	1.557853	0.114997	
6	0	2.206698	-1.270638	-0.024699	
6	0	3.329936	0.909195	0.094689	
6	0	3.308661	-0.498741	0.022914	
6	0	5.688583	-1.590366	-0.051512	
6	0	6.532417	-0.743847	0.572921	
6	0	7.228192	0.309597	-0.071210	
6	0	7.832302	1.216603	-0.588767	
1	0	-7.336802	-1.329190	-0.114320	
1	0	-5.187346	-2.525030	-0.154488	
1	0	-5.306031	2.451658	0.093072	
1	0	-7.396590	1.156793	0.009331	
1	0	-2.716360	-2.465812	-0.129076	
1	0	-2.834457	2.506852	0.118233	
1	0	-0.247809	-2.408737	-0.103872	
1	0	-0.369847	2.564288	0.142979	

1	0	2.087261	2.641655	0.167953
1	0	2.246294	-2.354408	-0.079775
1	0	4.266632	1.453666	0.129631
1	0	5.226028	-2.404384	0.490754
1	0	5.547785	-1.559124	-1.124075
1	0	6.688334	-0.836533	1.644537
1	0	8.364831	2.008323	-1.055662
Freq	uencies			
-101	.7589	10.9760	21.8	358
28.8	085	58.5803	67.756	56
91.6	005	149.0297	165.05	594
179.	0331	196.1012	228.0	0040
272.	3726	308.7512	314.9	9935
321.	1280	360.0087	376.2	2103
450.	0875	457.6085	474.0)724
479.	6673	499.6394	517.6	5322
554.	7183	559.2133	560.5	5522
607.	9874	628.1366	631.4	1683
643.	8372	677.6176	714.1	1928
718.	2564	749.4845	752.5	5026
754.	0041	761.6517	774.6	5341
782.	1919	785.0376	827.3	3795
848.	0662	865.5390	867.5	5427
874.	2616	886.5852	895.5	5697
913.	1595	915.2998	923.5	5560
938.	0606	971.1084	972.1	1091
984.	9915	995.4402	1021.	6235
1031	1.6276	1112.8462	2 113	8.5594
1150).2963	1154.8419) 118	7.3121
1194	4.2101	1214.8932	2 122	0.4745
1279	9.7361	1286.9945	5 130	2.3867
1305	5.7732	1311.4643	3 131	9.2862
1364	1.2946	1381.6278	3 140	9.3369
1418	8.8805	1426.9291	. 143	6.2651
1449	9.3820	1469.3157	7 149	2.8173
1552	2.2203	1565.4900) 158	0.6136
1596	5.8292	1609.0514	163	2.3660
1646	5.8453	1671.5883	3 218	4.0708
314().6387	3148.5991	315	3.1810
3154	4.2601	3155.8129	315	5.9185
3157	7.0516	3158.6753	315	9.9816
3162	2.9416	3175.3129) 317	9.6626
3187	7.3746	3248.7783	3 347	5.7889

$[i0b] \rightarrow [i2] C_{22}H_{15}, C_1, {}^{2}A$

6	0	-6.195099	-1.284610	0.171794
6	0	-4.948852	-1.763051	-0.106515
6	0	-3.800732	-0.907414	-0.056819
6	0	-3.993094	0.484998	0.297450
6	0	-5.321679	0.940107	0.581116

6	0	-6.384645	0.088153	0.521011
6	0	-2.518460	-1.367526	-0.335435
6	0	-2.890643	1.330355	0.350929
6	0	-1.588430	0.873343	0.070529
6	0	-1.395793	-0.519077	-0.283774
6	0	-0.092352	-0.975629	-0.564226
6	0	1.008198	-0.129782	-0.510260
6	0	0.817486	1.265174	-0.155151
6	0	-0.465769	1.722500	0.122631
6	0	1.959098	2.132516	-0.098409
6	0	3.216672	1.668457	-0.373916
6	0	3.354034	0.307510	-0.721658
6	0	2.347507	-0.584969	-0.793844
6	0	5.673899	-0.491749	-1.260579
6	0	6.334494	-0.522172	-0.241983
6	0	7.039187	-0.492352	0.983759
6	0	7.053285	-1.491091	1.878856
1	0	0.052091	-2.018431	-0.829444
1	Ő	-2.375383	-2.410628	-0.600603
1	0	-7.054215	-1.944647	0.129974
1	0	-4 804868	-2.805300	-0.371634
1	Ő	-5 464690	1.982530	0.846159
1	Ő	-7.384307	0.447111	0.738357
1	Ő	-3 034253	2 373382	0.616271
1	0	-0.610608	2.765177	0.388483
1	Ő	1.804657	3.173085	0.170701
1	Ő	4 079577	2 323105	-0.328104
1	Ő	2.506626	-1.627249	-1.053659
1	0	5.311256	-0.562581	-2.257146
1	0	7.603482	0.415013	1.186005
1	0	6.503031	-2.409305	1.712713
1	0	7.617746	-1.403423	2.798891
Freque	ncies			
-192.13	378	4.4244	14.210	02
37.788	7	46.1742	64.4743	
88.189	7	101.1469	155.561	7
167.53	30	194.7001	229.49	90
271.59	16	304.4772	308.09	49
319.87	18	337.1152	376.74	03
449.77	55	459.9058	473.92	31
479.66	43	494.2300	517.18	92
548.76	93	560.8675	561.42	51
595.14	71	627.4319	643.78	70
657.46	73	672.0059	695.29	70
717.17	12	749.2126	753.03	41
754.21	79	761.7663	774.43	54
782.85	99	785.5505	831.22	81
848.07	07	866.9904	868.03	77
883.49	48	886.9829	898.67	67
912.86	34	915.2604	933.77	57

940.	6974	966.9532	2 9	71.3234
994.	9330	1000.784	1 1	021.5239
1029	9.4801	1111.67	41	1137.7599
1150	0.1619	1153.42	69	1187.1362
1194	4.2333	1214.96	14	1220.3707
1280	0.0843	1286.89	76	1302.3397
131	1.5613	1316.14	69	1319.1691
1364	4.2599	1381.89	37	1409.1683
1418	8.9794	1426.82	51	1440.9783
1448	8.7036	1468.86	01	1492.6659
1552	2.2045	1565.72	74	1580.5837
1597	7.2965	1632.12	86	1642.2619
1646	5.7595	1671.50	25	2117.0742
3133	3.7539	3147.86	64	3148.9466
315	1.5403	3153.60	65	3155.3953
3156	5.5311	3158.21	38	3159.4356
3162	2.5613	3174.96	58	3176.6137
3187	7.0613	3238.43	55	3457.8509
[i1]	→ P3 +	H C ₂₂ H ₁₅ , C ₁ , 2	^{2}A	
6	0	-6.046506	-1.50663	-0.013855
6	0	-4.752177	-1.93560	-0.004890
6	0	-3.665203	-1.00232	0.000242
6	0	-3.971420	0.414503	-0.004332
6	0	-5.346413	0.81539	-0.013789
6	0	-6.348231	-0.10992	-0.018380
6	0	-2.336131	-1.41037	0.009255
6	0	-2.929022	1.33550	7 0.000530
6	0	-1.580931	0.932279	9 0.009745
6	0	-1.274105	-0.48525	0.014251
6	0	0.074563	-0.88910	0.023567
6	0	1.117669	0.03272	0.025760
6	0	0.808799	1.448763	3 0.023890
6	0	-0.517383	1.85776	7 0.015836

0	-2.929022	1.335507	0.000530
0	-1.580931	0.932279	0.009745
0	-1.274105	-0.485256	0.014251
0	0.074563	-0.889103	0.023567
0	1.117669	0.032721	0.025760
0	0.808799	1.448763	0.023890
0	-0.517383	1.857767	0.015836
0	1.902229	2.374490	0.036357
0	2.485677	-0.373026	0.034009
0	3.190833	1.940939	0.043597
0	3.514966	0.537514	0.033640
0	4.933031	0.159668	0.045948
0	5.438102	-1.093283	-0.115638
0	6.807507	-1.407807	0.010182
0	7.972303	-1.708727	0.108258
0	0.303930	-1.950250	0.026883
0	-2.106911	-2.471573	0.012487
0	-6.858773	-2.224630	-0.017676
0	-4.522478	-2.995969	-0.001505
0	-5.575224	1.875958	-0.017289
0	-7.384451	0.208704	-0.025569
0	-3.158973	2.396555	-0.002943
0	-0.746074	2.919052	0.014294
0	1.681683	3.436687	0.040057

1 0	2.692729	-1.437266	0.057210
1 0	4.004515	2.658059	0.047815
1 0	5.394561	0.955725	-1.866724
1 0	5.625949	0.944308	0.334045
1 0	4.781247	-1.915749	-0.384109
1 0	8.999335	-1.964587	0.197930
Frequenc	ies		
-522.8350) 28.607	1 44.	1487
62.7161	78.1823	95.5	146
137.3255	150.6938	8 180	.4048
191.8957	221.4464	4 273	.8065
283.5861	306.4827	7 321	.8102
330.9317	363.1744	4 388	.2801
395.3982	442.0869	9 450	.6516
470.6610	475.5413	3 481	.6488
501.7846	523.3018	8 541	.9590
571.4222	617.392	1 622	.6488
629.4162	639.0515	5 649	.5490
680.1006	732.1392	2 750	.7485
757.7538	763.954	1 765	.3251
775.2870	776.5402	2 807	.2032
844.5377	850.4672	2 854	.6648
856.2301	880.8678	8 884	.4601
897.0051	914.3039	9 921	.9166
929.4667	972.445	5 976	.8875
984.0761	989.1032	2 996	.4526
1021.944	8 1041.62	.28 11	48.8153
1150.474	4 1169.22	.28 11	78.3963
1188.212	0 1205.63	04 12	24.0555
1234.788	5 1283.07	58 12	94.4683
1301.094	9 1311.40	070 13	18.7141
1325.143	4 1350.98	15 13	69.9659
1399.012	4 1412.61	05 14	25.3379
1437.711	3 1465.13	46 14	86.2544
1499.998	9 1553.69	21 15	73.8496
1581.417	6 1601.79	63 16	10.1842
1645.997	5 1660.46	45 16	74.7310
2179.881	0 3144.10	31 31	54.5562
3156.224	5 3157.12	.23 31	57.4742
3159.176	6 3159.78	31 31	61.4469
3163.679	6 3170.31	35 31	76.0635
3178.686	2 3188.00	46 34	76.0473
$[i1] \rightarrow [i3]$	3] $C_{22}H_{15}$, C_1 , ² A		

L J		,,		
6	0	6.313547	-0.727368	-0.149930
6	0	5.131904	-1.407607	-0.131971
6	0	3.880299	-0.712771	-0.072684
6	0	3.896475	0.736182	-0.031940
6	0	5.163134	1.405299	-0.052894
6	0	6.329437	0.701087	-0.109784

6	0	2.660471	-1.379648	-0.053244
6	0	2.691609	1.427848	0.025712
6	0	1.451737	0.760921	0.045767
6	0	1.435210	-0.687786	0.005111
6	0	0.194525	-1.354490	0.025234
6	0	-1.013292	-0.667649	0.081804
6	0	-0.993335	0.785655	0.123272
6	0	0.225263	1.452108	0.104293
6	0	-2.249804	1.491892	0.186363
6	0	-2.273427	-1.356506	0.101077
6	0	-3.383761	0.762060	0.195362
6	0	-3.444045	-0.657218	0.154619
6	0	-4.868174	-1.178204	0.160831
6	0	-6.915548	0.291764	-0.254561
6	0	-7.883894	0.532523	-0.933817
6	0	-5.750370	0.036027	0.525959
1	0	0.184643	-2.439726	-0.005775
1	0	2.648747	-2.464907	-0.083889
1	0	7.252724	-1.267121	-0.194992
1	0	5.119385	-2.492134	-0.162490
1	0	5.174685	2.489834	-0.022453
1	0	7.280382	1.221547	-0.125052
1	0	2.703820	2.513094	0.056087
1	0	0.236249	2.537257	0.135333
1	0	-2.245438	2.576668	0.223624
1	0	-2.268836	-2.442721	0.073760
1	0	-5.141635	-1.550986	-0.830475
1	0	-5.007989	-2.002792	0.865383
1	0	-8.740300	0.738878	-1.527289
1	0	-4.852216	0.928692	0.332073
1	0	-5.931987	0.129708	1.598689
Frequ	iencies			
-1650).4336	23.1381	1 52	.4637
68.36	82	93.3585	118.83	45
139.5	673	181.9216	193.2	2734
228.4	217	249.9315	264.0	0616
292.9	738	341.2263	348.3	8151
375.3	196	405.7546	451.	3932
458.7	435	463.8599	474.	1679
479.8	409	513.6593	535.	9498
544.1	038	586.0177	594.	8277
622.8	584	624.1935	642.	8441
654.9	253	668.5931	719.	9807
746.7	851	750.0717	757.4	4502
762.0	842	773.4937	774.	9772
818.0	373	828.1287	838.	5708
845.9	222	863.2593	873.3	8256
880.1	710	894.6744	914.	5333
919.8	806	923.6401	947.0	5404
959.0	062	971.5868	995.	3205

1021.6	323	1023.4543	3 1074	7126
1145 3	869	1148 487	7 1165	5669
11861	534	1188 1128	R 1190	8341
1214.8	055	1223 2066	5 1256	3454
1211.0	310	1223.200	$\frac{1250}{1301}$	1511
12/3.4	086	1313 269	8 1316	5093
1361.8	799	1364 8066	5 1310. 5 1389	2203
1/0/ 8	078	1/22 9514	5 1307. 5 1423	2203
1439 7	254	1471 1616	5 1423. 5 1480	1153
1/07 8	0/9	1555 578	1 - 1576	7357
158/13	307	1608 1764	5 16/3	9515
16/19.8	118	1665 062	1671	9402
2168.7	515	3039 370	7 3067	88/16
2100.7	111	31/6 0/09	7 5007. R 3153	6/63
3155 1	815	3156 2423	3 3155. 3 3157	2610
3159.1	210	3160.0129	3 3157.	2010 8450
2175.2	516	2187 210	3 3102.	04J0 2167
5175.2	510	5167.5102	2 3473.	5107
$[i1] \rightarrow$	[i6] C ₂	$_{2}H_{15}$ C ₁ ^{2}A		
6	$\begin{bmatrix} \mathbf{I} \mathbf{O} \end{bmatrix} \mathbf{C}_2$	-5 775931	-1 611779	0.056645
6	0	-4 465510	-1 977101	0.151485
6	0	-3 419601	-1 000841	0.078506
6	0	-3 785318	0 390276	-0.099237
6	0	-5 175169	0.724207	-0.193559
6	0	-6 136401	-0 240191	-0.118563
6	0	-2 075191	-1 343965	0.172083
6	0	-2 783324	1 351802	-0.172003
6	0	-1 /19933	1.013967	-0.078568
6	0	-1.417733	-0 377646	0.099422
6	0	0 310454	-0.718673	0.077422
6	0	1 307540	0.245030	0.120253
6	0	0.944565	1 646781	-0.058907
6	0	-0 399539	1.983700	-0.152623
6	0	1 989617	2 629730	-0.133693
6	0	2 698102	-0.018083	0.155075
6	0	3 307927	2 289813	-0.040695
6	0	3.677807	0.916983	0.139255
6	0	5.079973	0.358771	0.137233
6	0	5 552986	-2 111473	-0 198769
6	0	6.085608	-2.111475	-0.891070
6	0	0.085008	-2.944705	0.091070
1	0	4.007107	1 758750	0.378072
1	0	1 801628	-1.756757	0.324107
1	0	-1.001020	-2.380133	0.304900
1	0	-0.330438	-2.302097	0.113004
1 1	0	-+.171403 5 //Q150	-3.010439	0.204420
1	0	-J.4401J0 7 184401	1.703034	-0.320090
1 1	0	-7.104401	2 302055	0.191032
1	0	-3.03/104	2.373733	0.30377/
1	0	-0.0/0390	J.U2499U 2 667200	-0.200010
1	0	1.702504	3.00/399	-0.20/033
1	U	4.077013	3.033634	-0.100267

1	0	5.620074	0.468011	-0.695239
1	0	5.670671	0.872323	1.015731
1	0	6.562116	-3.675989	-1.496338
1	0	3.622698	-1.161910	0.401165
1	0	4.960222	-1.341888	1.667385
Frequ	uencies			
-1647	7.4334	30.582	22 47.	5051
66.79	987	86.0765	120.31	63
140.7	7834	168.9902	2 216.7	272
218.1	307	229.9988	3 288.3	3275
298.9	0883	337.8962	2 356.8	3214
382.9	982	400.0524	432.0	0087
467.4	158	473.1485	5 477.e	5987
512.3	3690	525.0718	530.8	8918
548 9	262	557 5146	5 580 e	5905
603.8	8907	623 9078	640 ()540
662 <i>4</i>	L184	667 6049	7287	7965
744 7	756	750 3457	720.1	909
763 ()781	730.3197	730.2	7516
797.0)128	841 5290	8/69	9252
8/7 0)256	863 2237	7 883 0	232
807 0	230	012 2082	005.	1677
025.2	2787	036 081/	070 1	555
071 0)207)507	905 6167	r 970.1 7 997 1	163
1010	/081	1021.85	/2 107	A AAQO
11/3	0/60	1150 /0	$\frac{107}{81}$	4.44 <i>)</i> 0 0 706/
1192	7050	1187.04	88 110	0.770 4 4 6546
1207	.7039 4075	1221.04	119	0.7301
1207	5633	1221.20	13 124 124 120 120 120 120 120 120 120 120	7 0880
12/2	8860	1207.33	$\frac{12}{33}$ $\frac{123}{133}$	1.5018
1304	.0007 /078	1360.78	16 138	4.5710 8.0518
1/05	7302	1/1/ 05	10 130 25 142	8 9122
1405	6140	1414.05	23 142	5 7570
1404	8442	1479.90	20 140	2.7 <i>3</i> 73 8.6403
1581	0532	1607.02	05 155 05 164	5 8216
1655	0550	1665.28	75 10 4 73 167	3.8210
2167	0024	3030 14	+3 107 85 306	0.7153
2007	.992 4 0660	2151 50	55 315	2 1066
2155	.0000	3131.39	33 313	3.4000 8.2705
3155	.7010 8670	3137.77	21 313 317	0.2703 2 0611
3175	.8070	3170.38	14 347	5.3424
	D 4 · · ·) <u>,</u>	
[12] -	$\rightarrow P4 + $	H $C_{22}H_{15}, C_{1}, 4$	A	0.010553
6	0	6.099/05	-1.515333	-0.010553
6	0	4.806095	-1.944966	0.028968
6	U	3./18096	-1.013157	0.013569
6	U	4.022154	0.402744	-0.045219
6	0	5.396308	0.804452	-0.085166
6	0	6.399348	-0.119479	-0.068502
6	0	2.389584	-1.421880	0.053177

6	0	2.978489	1.322401	-0.060866
6	0	1.631346	0.918379	-0.021036
6	0	1.326847	-0.498171	0.037923
6	0	-0.021531	-0.902687	0.077994
6	0	-1.064265	0.018188	0.062672
6	0	-0.758835	1.433780	0.003444
6	0	0.566514	1.842795	-0.036324
6	0	-1.851859	2.361870	-0.009512
6	0	-3.142126	1.936990	0.032212
6	0	-3.454613	0.530756	0.085095
6	0	-2.432060	-0.388190	0.103848
6	0	-4.818523	0.102106	0.103518
6	0	-5.904968	-0.407986	-0.120294
6	0	-7.208974	-0.911829	-0.307259
6	0	-7.586151	-2.173847	-0.046059
1	0	-0.250359	-1.962909	0.122280
1	0	2.161759	-2.482451	0.097409
1	0	6.912859	-2.232233	0.001823
1	0	4.577903	-3.004744	0.073087
1	0	5.623567	1.864437	-0.129127
1	0	7.434956	0.199752	-0.099164
1	0	3.206918	2.382864	-0.104885
1	0	0.794136	2.903383	-0.080270
1	0	-1.628450	3.422633	-0.051453
1	0	-3.959733	2.646862	0.027782
1	0	-2.661788	-1.446430	0.149341
1	0	-5.320304	1.054948	1.815946
1	0	-7.940357	-0.207327	-0.697069
1	0	-6.888638	-2.905728	0.343078
1	0	-8.605945	-2.494656	-0.218557
Freque	ncies			
-610.75	519	29.6532	36.39	39
47.510	6	75.2264	97.6815	
112.62	96	136.6585	150.93	55
182.45	19	209.1979	234.83	78
255.79	45	286.6491	308.97	28
329.46	18	378.0588	394.57	47
416.00	27	439.7310	469.58	32
475.38	10	479.8854	483.01	20
520.32	04	526.7954	544.31	54
573.80	51	591.5254	626.62	96
639.75	00	651.1021	686.00	13
694.06	27	732.4461	750.95	19
760.99	92	764.6185	765.25	66
775.75	51	810.9107	813.34	75
846.14	66	857.2271	870.60	15
881.94	87	901.1038	911.82	35
914.88	93	926.1942	936.62	75
939.20	71	972.4654	981.59	25
989.02	57	996.4647	999.76	27

1022.1391	1094.8942	1150.3697
1150.6331	1164.9618	1188.1495
1203.6282	1218.5712	1223.8706
1262.2947	1292.2784	1298.4903
1315.1462	1316.1665	1321.5478
1335.6124	1368.5256	1392.4180
1411.7760	1424.4268	1434.8417
1446.4643	1463.6245	1486.9558
1499.3004	1550.3821	1569.9643
1581.2393	1608.5519	1639.7548
1645.9220	1657.4196	1673.8148
2214.1889	3130.9223	3147.5469
3154.9171	3156.7318	3157.8244
3159.4404	3160.7855	3163.6924
3166.0444	3176.0433	3180.7152
3187.9724	3195.6815	3238.3995

[i3] → **[i4]** C₂₂H₁₅, C₁, ${}^{2}A$

6	0	6.153523	-0.775120	0.187466
6	0	4.965822	-1.444202	0.147288
6	0	3.722107	-0.737752	0.068739
6	0	3.751744	0.710729	0.032536
6	0	5.023801	1.367942	0.077106
6	0	6.182812	0.652980	0.151845
6	0	2.496099	-1.392951	0.026433
6	0	2.553891	1.413674	-0.043722
6	0	1.308475	0.759094	-0.086769
6	0	1.278988	-0.689670	-0.050536
6	0	0.032068	-1.345256	-0.093969
6	0	-1.165450	-0.644363	-0.170466
6	0	-1.133359	0.804945	-0.206258
6	0	0.088625	1.462117	-0.164216
6	0	-2.391704	1.505611	-0.275084
6	0	-2.433623	-1.313674	-0.215528
6	0	-3.534057	0.793205	-0.329801
6	0	-3.617953	-0.629330	-0.298912
6	0	-4.949167	-1.341178	-0.400712
6	0	-6.086977	0.584822	0.596492
6	0	-5.622008	1.677673	0.316009
6	0	-5.996216	-0.871481	0.648893
1	0	0.011230	-2.430561	-0.067421
1	0	2.473716	-2.478219	0.053430
1	0	7.086801	-1.323680	0.246865
1	0	4.942752	-2.528706	0.174254
1	0	5.045839	2.452443	0.050007
1	0	7.137948	1.164967	0.184816
1	0	2.577001	2.498873	-0.070905
1	0	0.109839	2.547291	-0.191269
1	0	-2.383965	2.592051	-0.278176
1	0	-2.437095	-2.400485	-0.195495
1	0	-5.373389	-1.159450	-1.394323

1	0	-4.801604	-2.419764	-0.301889
1	0	-5.498266	2.728316	0.192644
1	0	-5.694938	-1.184213	1.654534
1	0	-6.960498	-1.345747	0.441920
Free	mencies			
-360) 7739	32 4482	56	5 2135
79 5	668	105 9412	116	5761
156	2314	181 0771	21	5 6086
247	9548	255 4918	29	7 4865
327	2985	342 4087	36	1 7956
374	2255	405.6061	45	8.2714
465	.1845	473.6666	474	4.4651
479	.8417	526.2778	54	1.1252
549	.5925	588.5313	63.	3.8346
645	.7422	655.1424	65	9.3144
716	.6280	725.4310	734	4.2061
749	.8798	756.5063	76	2.7076
766	.4765	774.8126	81	0.2533
825.	.4926	844.2333	854	4.1960
858.	.8773	869.9240	87	9.3621
893	.0667	897.4446	912	2.9179
919.	.5259	931.5727	94	1.7808
970.	.6282	994.3586	99:	5.9996
102	1.9050	1028.380	1 1	146.4933
114	9.1318	1176.953	9 1	185.8888
118	9.3465	1195.238	3 12	215.4088
121	9.2093	1227.000	6 12	269.1345
128	8.5795	1302.445	2 1.	313.4324
131:	5.5889	1325.645	7 1.	353.9751
1364	4.5245	1389.025	4 14	402.8949
142	2.1980	1425.411	4 14	439.6432
146	9.2942	1476.260	8 14	480.8331
1492	2.6696	1553.648	9 1:	570.9574
158	1.4963	1600.811	4 10	636.0724
164	6.8391	16/1.356	8 20 6	068.9630
302	3.4459	3028.078	6 30	060.8373
307	/.153/	3138.988	2 3	141.3432
315	2.6001	3154.502	8 3. 0 2:	155.6215
313	/.4496	3138.301	8 3. 1 2.	102.0759
3174	4.6160	3180.784	4 34	435.3430
[i4]	→ [i5] C	$C_{22}H_{15}, C_1, {}^2A$		
6	0	6.135086	-0.749016	-0.082238
6	0	4.951296	-1.429407	-0.069686
6	0	3.701842	-0.734409	-0.034622
6	0	3.716740	0.712777	-0.012630
6	0	4.981515	1.382281	-0.026928

0	0	0.135080	-0.749016	-0.082238
6	0	4.951296	-1.429407	-0.069686
6	0	3.701842	-0.734409	-0.034622
6	0	3.716740	0.712777	-0.012630
6	0	4.981515	1.382281	-0.026928
6	0	6.150183	0.677663	-0.060549
6	0	2.477665	-1.402012	-0.021298
6	0	2.508204	1.404814	0.021334

6	0	1.269937	0.737861	0.035258
6	0	1.256327	-0.711450	0.012837
6	0	0.009756	-1.379653	0.027555
6	0	-1.190119	-0.690819	0.060224
6	0	-1.180134	0.759956	0.082084
6	0	0.041212	1.428816	0.070266
6	0	-2.426539	1.446324	0.094462
6	0	-2.460389	-1.362222	0.090429
6	0	-3.636174	0.776115	0.103297
6	0	-3.635882	-0.681462	0.129138
6	0	-4.971754	-1.386385	0.309269
6	0	-5.977891	0.775741	-0.494457
6	0	-4.915111	1.446071	0.083237
6	0	-6.053218	-0.628671	-0.441183
1	0	0.000362	-2.465409	0.014662
1	0	2.467294	-2.487660	-0.038194
1	0	7.074307	-1.289891	-0.108941
1	0	4.939355	-2.514279	-0.086284
1	0	4.992382	2.467133	-0.010545
1	0	7.100721	1.198999	-0.071110
1	0	2.519718	2.490374	0.037581
1	0	0.050815	2.514319	0.084286
1	0	-2.421779	2.531821	0.076294
1	0	-2.460662	-2.448352	0.113770
1	0	-4.916429	-2.428501	-0.014806
1	0	-5.215820	-1.403926	1.380558
1	0	-4.981792	2.487764	0.378910
1	0	-6.961845	0.146695	0.125624
1	0	-6.701937	-1.156572	-1.136589
Freque	encies			
-1659.	.3021	36.6081	67.0)578
94.972	26	119.7247	139.76	10
162.69	913	231.7051	238.5	063
245.74	196	262.8929	335.32	205
349.49	951	361.9240	387.5	767
448.01	164	463.4875	469.0	719
475.64	417	480.4685	492.0	172
506.35	561	545.7786	556.6	647
579.21	182	630.1099	645.1	762
651.30)61	688.9137	722.00	055
729.09	925	746.5985	750.9	009
758.31	194	762.8283	767.0	556
774.20)47	794.3308	816.3	602
838.07	747	843.3098	846.2	540
868.95	534	882.1577	887.2	978
898.59	906	912.2531	919.2	697
927.71	186	929.4891	969.8	164
987.35	567	994.2846	1024.4	-014
1075.8	8847	1134.9014	4 1151	.9945
1153.6	5808	1184.6507	7 1188	3.0226

1193.9226	1202.0021	1218.4466
1224.6187	1236.1039	1278.7987
1290.9245	1297.7789	1300.8332
1311.3255	1320.4066	1326.4823
1351.8483	1376.4796	1396.1546
1403.4916	1420.4306	1426.4714
1439.4797	1455.1818	1473.3245
1487.7483	1494.5896	1538.0580
1555.4470	1580.0476	1608.2997
1633.9822	1651.7705	1668.8101
2087.2950	2990.5890	3070.2133
3128.1607	3147.5206	3152.9585
3154.7988	3155.6972	3156.3777
3157.8181	3158.0858	3160.7142
3162.7166	3175.0534	3187.2487

$[i5] \rightarrow P1 + H C_{22}H_{15}, C_1, {}^{2}A$

6	0	6.140128	0.731069	-0.012857
6	0	4.963361	1.417892	-0.028131
6	0	3.705133	0.730080	-0.015870
6	0	3.712097	-0.722122	0.013386
6	0	4.977036	-1.397713	0.028548
6	0	6.147040	-0.699471	0.015920
6	0	2.492054	1.403714	-0.030887
6	0	2.505714	-1.407383	0.025843
6	0	1.263964	-0.734776	0.010859
6	0	1.257145	0.719354	-0.018685
6	0	0.027747	1.392914	-0.033800
6	0	-1.191988	0.708307	-0.021008
6	0	-1.185493	-0.746086	0.008809
6	0	0.041417	-1.419707	0.023684
6	0	-2.422661	-1.429579	0.018142
6	0	-2.436260	1.381823	-0.032234
6	0	-3.634238	-0.754415	0.000366
6	0	-3.638852	0.698063	-0.018687
6	0	-4.910210	1.377280	-0.021226
6	0	-4.891283	-1.441976	-0.019288
6	0	-6.072571	-0.756783	-0.073103
6	0	-6.085010	0.665737	-0.091163
1	0	7.083467	1.265264	-0.022336
1	0	4.957832	2.502644	-0.049832
1	0	4.982009	-2.482467	0.050484
1	0	7.095516	-1.224455	0.027725
1	0	2.487464	2.489169	-0.052563
1	0	2.511494	-2.492829	0.047959
1	0	0.022714	2.478251	-0.054986
1	0	0.046366	-2.505047	0.045661
1	0	-2.419538	-2.515084	0.034473
1	0	-2.441038	2.467355	-0.042667
1	0	-5.065057	1.894543	2.007303
1	0	-4.916801	2.456694	-0.117130

1	0	-4.885301	-2.526773	-0.004613
1	0	-7.012794	-1.295406	-0.103959
1	0	-7.031950	1.190814	-0.137229
Freque	encies			
-507.2	356	36.7277	69.14	452
100.77	07	118.6211	144.5	595
189.44	-05	221.8939	237.3	799
249.15	96	260.9301	289.7	518
322.86	06	350.9988	363.3	165
382.99	16	454.0280	469.0	431
473.51	71	477.4774	489.9	009
492.75	98	512.0279	527.5	319
553.59	62	579.0628	615.1	124
638.54	78	646.5660	713.7	507
724.59	14	744.0873	746.1	305
749.53	53	756.9671	761.6	441
772.07	22	776.0202	794.4	838
837.23	08	839.3083	842.4	728
854.30	93	874.9076	887.1	992
889.04	-38	900.6316	915.0	467
920.54	40	921.9470	935.8	144
970.50	44	972.4183	991.6	682
995.43	08	1018.5788	1025.	1485
1137.4	673	1138.401	9 1154	4262
1178.2	386	1187.294	9 1198	3.7929
1199.7	129	1208.315	5 1241	.0206
1249.3	375	1294.540	2 1295	5.0154
1312.0	035	1318.337	5 1331	.6082
1361.4	062	1374.923	1 1387	2733
1411.8	731	1417.976	6 1419	9.4080
1429.0	280	1474.815	4 1475	5.5610
1493.0	508	1534.882	3 1542	2.5852
1553.0	541	1576.469	3 1587	7.7828
1627.7	101	1632.526	9 1656	5.2356
16/1.3	731	3154.405	1 3156	0.0166
3156.2	854	3157.933	7 3158	3.3023
3159.8	458	3161.179	8 3162	2.0230
3163.6	661	3170.418	9 3175	0.8280
3180.0	050	3187.765	5 3191	
RО		$\mathbf{H} \subset \mathbf{A}$		
$[10] \rightarrow$	$[1/] C_2$	$_{2}H_{15}, C_{1}, A$	1 2000 65	0.017200
6	0	5.//40/6	-1.309065	-0.01/298
0	0	4.492380	-1.702432	-0.124/62
0	0	3.382183 2.650094	-0.83830/	-0.073303
0	0	5.050984 5.014257	0.330099	0.095/62
0	0	J.U14237	0.903300	0.204044
0	0	0.039030	U.U833/8 1 201650	0.149/43
0	0	2.003320	-1.29103U 1 110107	-0.180033 0.147200
0	0	2.30011/	1.44848/ 1.010125	0.14/290
0	U	1.249231	1.019133	0.039823

6	0	0.979963	-0.395576	-0.128410
6	0	-0.356045	-0.828103	-0.235551
6	0	-1.423323	0.062550	-0.183020
6	0	-1.152379	1.485688	-0.017755
6	0	0.164413	1.916123	0.088965
6	0	-2.265470	2 385178	0.028956
6	0	-2.785485	-0 316430	-0 289595
6	0	-3 547186	1 932856	-0.076971
6	0	-3 844443	0 531907	-0 239786
6	0	-5 284393	0.075567	-0 379260
6	0	-4 663931	-2 153736	0.421294
6	0	-3 532440	-2 511075	0.129432
6	0	-5 665158	-1 101732	0.129432
1	0	-0 552921	-1 885905	-0.367500
1	0	1 86/1799	-2 351180	-0.306765
1	0	6 60/015	-2.005482	-0.057932
1	0	<i>4</i> 201001	-2.003482	-0.05752
1	0	4.291001	2.021023	-0.231399
1	0	7.065617	2.042070	0.330793
1	0	2 787560	2 507000	0.233120
1	0	0.366304	2.307900	0.273028
1	0	2 068574	2.973904	0.213823
1	0	-2.006574	5.444520 2.626454	0.134304
1	0	-4.3/30/0	2.030434	-0.041302
1	0	-3.939031	0.913777	-0.100090
1	0	-3.402363	-0.249771	-1.409043
1	0	-2.063031	-3.132094	-0.030330
1	0	-0.009401	-1.436070	0.313030
1	0	-3.093079	-0.703030	1.004388
Freque	encies			
-380.54	410	36.8616	41.54	33
83.301	8	98.1308	105.785	6
156.91	14	181.5824	187.04	190
245.69	70	287.7649	292.01	130
323.11	55	337.2191	355.78	328
388.32	03	401.0912	464.72	299
471.09	47	475.5271	476.71	196
497.30	21	517.5993	534.13	327
557.49	62	591.0864	619.75	569
635.13	32	642.2115	644.28	353
716.21	71	730.1658	734.69	977
749.63	34	757.6689	762.35	561
770.50	36	773.9738	795.99	959
806.00	08	845.2648	856.11	156
857.26	55	876.5867	880.00)99
904.81	98	908.6162	912.15	507
932.77	79	961.8376	971.15	573
984.32	83	994.7885	995.01	148
1021.0	396	1022.3374	4 1141	.9930
1149.1	581	1152.6526	5 1170	.3876
1187.6	155	1201.8828	8 1207	.1545

1220.2553	1221.8981	1260.9942
1284.9319	1299.4653	1307.9367
1320.8858	1323.2189	1358.6042
1369.4342	1383.2253	1404.7383
1410.1052	1429.0538	1447.1762
1474.3400	1481.9945	1485.8564
1492.4891	1533.5688	1556.2151
1580.4131	1606.1750	1643.8844
1652.5107	1672.4130	2057.5693
3025.3827	3027.1530	3060.1575
3073.7023	3145.8926	3151.5638
3154.3766	3156.6312	3157.5967
3162.1802	3171.9909	3174.7746
3175.0875	3187.0404	3438.3791

 $[i7] \rightarrow [i8] C_{22}H_{15}, C_1, {}^{2}A$

6	0	-5.743202	-1.290241	-0.022015
6	0	-4.460168	-1.754894	-0.006276
6	0	-3.348859	-0.853056	-0.002682
6	0	-3.614754	0.570573	-0.016222
6	0	-4.977276	1.010088	-0.032393
6	0	-6.005510	0.113166	-0.035138
6	0	-2.029166	-1.298660	0.013380
6	0	-2.545195	1.461625	-0.014940
6	0	-1.210555	1.017261	0.001983
6	0	-0.944549	-0.405196	0.020012
6	0	0.396270	-0.851126	0.040762
6	0	1.469198	0.026655	0.058478
6	0	1.198989	1.451880	0.007460
6	0	-0.115605	1.903536	-0.012367
6	0	2.301332	2.358757	-0.042714
6	0	2.850979	-0.427319	0.115709
6	0	3.590887	1.898629	-0.036076
6	0	3.884437	0.515480	0.049195
6	0	5.330994	0.062552	0.182538
6	0	4.407886	-2.238739	-0.286510
6	0	3.210884	-1.814581	0.273361
6	0	5.490492	-1.342516	-0.365214
1	0	0.575189	-1.919434	0.024597
1	0	-1.830564	-2.366017	0.023817
1	0	-6.574813	-1.985801	-0.024745
1	0	-4.260260	-2.821287	0.003600
1	0	-5.176105	2.076703	-0.042560
1	0	-7.032253	0.461152	-0.047489
1	0	-2.743670	2.529004	-0.028488
1	0	-0.305734	2.971866	-0.048720
1	0	2.097716	3.422825	-0.094433
1	0	4.413931	2.605269	-0.076108
1	0	6.002042	0.751585	-0.339228
1	0	5.626919	0.102298	1.241756
1	0	2.517233	-2.517021	0.719990

1	0	5.542240	-2.426715	0.374969
1	0	6.323082	-1.567660	-1.028935
Frec	juencies			
-158	37.0004	43.1387	7 57	.8186
98.7	375	115.1176	122.20	079
173	.2746	186.5964	232.4	4095
268	.5164	291.3322	299.	7977
341	.7175	375.0500	395.	7581
437	.1176	467.0842	473.	0975
478	.4305	490.1924	502.4	4281
521	.7717	539.6929	556.	9071
594	.4577	615.8846	622.	9841
642	.1552	676.9057	705.	1831
725	.0625	745.1656	750.	6918
754	.1552	763.0414	770.	6828
774.	.5583	798.5681	802.	6075
847	.4153	849.3518	857.	9812
867	.0026	886.2910	910.	0667
912	.5839	919.9718	928.	8373
946	.3848	962.6625	970.	8804
995.	.0055	995.6379	1023	.3298
107	6.0116	1108.142	3 115	0.8851
115	2.4394	1182.308	0 118	8.7533
119	3.2591	1204.664	9 122	0.2962
122	1.9820	1231.683	7 125	5.1847
127	9.2639	1289.472	2 130	3.3821
131	0.3190	1318.497	4 134	5.5827
136	0.2421	1374.785	7 138	5.0564
140	9.8054	1422.704	9 142	7.3555
143'	7.4282	1456.346	3 145	8.4035
148	3.1373	1499.778	3 152	9.3009
155	6.1992	1580.539	5 159	0.3846
162	5.6318	1643.528	3 166	9.5026
209	7.1774	2968.201	8 305	0.0481
312	0.1491	3152.720	3 315	4.1562
315	6.0443	3157.608	8 315	8.4583
316	2.6724	3166.195	1 317	4.7751
317	5.1867	3184.813	1 318	7.2757
[i8]	\rightarrow P2 +	H C ₂₂ H ₁₅ , C ₁ , ^{2}A	A	
6	0	5.754258	-1.279499	0.027686
6	0	4.472659	-1.749167	0.029499
6	0	3.358633	-0.851493	0.014363

6	0	4.472659	-1.749167	0.029499
6	0	3.358633	-0.851493	0.014363
6	0	3.619011	0.571958	-0.002959
6	0	4.978970	1.017145	-0.004193
6	0	6.011074	0.124151	0.010576
6	0	2.039428	-1.301884	0.015831
6	0	2.544589	1.459417	-0.017556
6	0	1.214730	1.008688	-0.016101
6	0	0.953850	-0.411801	0.000809
6	0	-0 388397	-0.861641	0.001333
--------	--------	-----------	----------------	-----------------------
6	0	-1 464838	0.006427	-0.013043
6	0	-1 196051	1 430822	-0.027006
6	0	0 110474	1.888636	-0.029197
6	0	-2 300858	2 353943	-0.035080
6	0	-2.300030	-0 116851	-0.033000
6	0	-2.000707	1 020767	-0.013777
6	0	3 000320	0.518057	-0.023337 0.013381
6	0	5 255254	0.010057	-0.013381
6	0	3 220428	1 202720	0.010940
6	0	-3.220428	-1.000700	-0.034340
6	0	-4.346390	-2.211194	-0.072464
0	0	-3.3/2342	-1.200020	-0.00/033
1	0	0.308438	-1.9/1030	0.039301
1	0	4.2/0851	-2.816283	0.042618
1	0	5.1/3688	2.084447	-0.01/084
1	0	/.036419	0.4/6355	0.009507
1	0	1.845038	-2.370062	0.028922
1	0	2.738805	2.527539	-0.030120
1	0	-0.548772	-1.932648	0.015660
1	0	0.294254	2.958555	-0.039893
1	0	-2.078508	3.415690	-0.045819
1	0	-4.402232	2.630947	-0.022147
1	0	-5.647029	0.366464	1.895907
1	0	-6.033379	0.835827	-0.102013
1	0	-2.451644	-2.570396	-0.039659
1	0	-4.786447	-3.268038	-0.113602
1	0	-6.609585	-1.578806	-0.100794
Frequ	encies			
-679.0)496	43.1891	52.7	166
100.0	731	119.2741	140.0	231
186.0	739	218.2231	232.5	603
271.1	715	291.4544	301.0	155
326.4	499	365.0772	383.9	442
395.5	388	458.2065	459.2	267
471.3	190	478.2455	483.4	254
517.4	374	530.5563	548.3	429
558.7	254	564.7446	599.8	253
638.8	468	646.1817	687.1	669
724.1	378	745.2108	751.1	356
751.7	991	757.4249	767.6	502
774.5	719	798.9158	805.1	361
815.8	268	847.8978	849.5	772
862.5	412	881 4540	888.6	318
894.0	884	910 3581	914 7	979
930.3	083	967 7166	971.2	374
981.8	082	995 8891	996 7	283
1006	0048	1024 710	9 106/	4004
1120	9785	1150 / 29) 1154	5 7469
1160	9687	1186 874	3 1190	9534
1207	7480	1221 777	8 177 <i>4</i>	58179
1201.	, 100	1441.111	5 1220	

1252.2588	1267.2509	1297.6535
1305.9110	1317.5003	1324.5645
1341.0236	1374.0334	1382.0873
1415.7646	1425.1368	1443.9633
1446.7594	1467.6736	1479.4096
1497.8583	1524.0678	1561.7614
1582.8487	1585.1342	1610.6751
1622.8530	1650.7397	1654.2670
1671.6550	3154.3591	3155.6193
3157.4164	3158.2422	3160.0491
3163.0344	3165.6658	3172.0534
3175.5522	3177.5076	3180.2521
3187.6442	3189.7720	3201.0641

References

- a) L. Zhao, et al., *ChemPhysChem* 2019, 20, 1437; b) L. Zhao, et al., *J. Phys. Chem. Lett.* 2018, 9, 2620; c) L. Zhao, R. I. Kaiser, B. Xu, U. Ablikim, M. Ahmed, M. M. Evseev, E. K. Bashkirov, V. N. Azyazov, A. M. Mebel, *Nat. Astron.* 2018, 2, 973; d) L. Zhao, R. I. Kaiser, B. Xu, U. Ablikim, M. Ahmed, D. Joshi, G. Veber, F. R. Fischer, A. M. Mebel, *Nat. Astron.* 2018, 2, 413; e) L. Zhao, R. I. Kaiser, B. Xu, U. Ablikim, M. Ahmed, M. M. Evseev, E. K. Bashkirov, V. N. Azyazov, A. M. Mebel, *Angew. Chem. Int. Ed.* 2019, 59, 4051; *Angew. Chem.* 2020, *132*, 4080; f) T. Yang, R. I. Kaiser, T. P. Troy, B. Xu, O. Kostko, M. Ahmed, A. M. Mebel, M. V. Zagidullin, V. N. Azyazov, *Angew. Chem. Int. Ed.* 2017, *56*, 4515; *Angew. Chem.* 2017, *129*, 4586.
- [2] a) Y. Y. Li, L. D. Zhang, Z. Y. Tian, T. Yuan, J. Wang, B. Yang, F. Qi, *Energy Fuels* 2009, 23, 1473; b) Y. Y. Li, L. D. Zhang, Z. Y. Tian, T. Yuan, K. W. Zhang, B. Yang, F. Qi, *Proc. Combust. Inst.* 2009, 32, 1293; c) P. Oßwald, H. Güldenberg, K. Kohse-Höinghaus, B. Yang, T. Yuan, F. Qi, *Combust. Flame* 2011, 158, 2; d) F. Qi, *Proc. Combust. Inst.* 2013, 34, 33; e) F. Qi, R. Yang, B. Yang, C. Q. Huang, L. X. Wei, J. Wang, L. S. Sheng, Y. W. Zhang, *Rev. Sci. Instrum.* 2006, 77, 084101; f) B. Yang, et al., *Proc. Combust. Inst.* 2007, 31, 555; g) B. Yang, P. Oßwald, Y. Li, J. Wang, L. Wei, Z. Tian, F. Qi, K. Kohse-Höinghaus, *Combust. Flame* 2007, 148, 198; h) L. D. Zhang, J. H. Cai, T. C. Zhang, F. Qi, *Combust. Flame* 2010, 157, 1686.
- [3] M. Zagidullin, R. Kaiser, D. Porfiriev, I. Zavershinskiy, M. Ahmed, V. Azyazov, A. Mebel, J. *Phys. Chem. A* **2018**, *122*, 8819.
- [4] a) A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 1999, 110, 7650; b) L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys. 1999, 110, 4703; c) L. A. Curtiss, K. Raghavachari, P. C. Redfern, A. G. Baboul, J. A. Pople, Chem. Phys. Lett. 1999, 314, 101.
- [5] M. J. Frisch, et al., *Gaussian 09, Revision A.1 Gaussian Inc., Wallingford CT* 2009.
- [6] H. J. Werner, et al., *MOLPRO*, version 2010.1, <u>http://www.molpro.net</u> 2010, (University College Cardiff Consultants Ltd, United Kingdom).
- [7] a) Y. Hidaka, K. Tanaka, M. Suga, *Chem. Phys. Lett.* **1986**, *130*, 195; b) Y. Hidaka, H. Masaoka, H. Oshita, T. Nakamura, K. Tanaka, H. Kawano, *Int. J. Chem. Kinet.* **1992**, *24*, 871.
- [8] a) C. Kitamura, N. Taka, T. Kawase, *Res. Chem. Intermed.* 2013, *39*, 139; b) M. Watanabe, T.-H. Chao, C.-T. Chien, S.-W. Liu, Y. J. Chang, K.-Y. Chen, T. J. Chow, *Tetrahedron Lett.* 2012, *53*, 2284.
- [9] a) T. R. Criswell, B. H. Klanderman, *J. Org. Chem.* **1974**, *39*, 770; b) C. Sanchez-Sanchez, et al., *J. Am. Chem. Soc.* **2017**, *139*, 17617.
- [10] D. Kato, H. Sakai, N. V. Tkachenko, T. Hasobe, Angew. Chem. Int. Ed. 2016, 55, 5230; Angew. Chem. 2016, 128, 5316.
- [11] D. J. Pollart, B. Rickborn, J. Org. Chem. 1986, 51, 3155.
- [12] D. García, F. Foubelo, M. Yus, *Tetrahedron* **2008**, *64*, 4275.
- [13] G. W. Gribble, E. J. Holubowitch, M. C. Venuti, *Tetrahedron Lett.* 1977, 18, 2857.