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The oral surface of sea stars is lined with arrays of tube feet that enable them
to achieve highly controlled locomotion on various terrains. The activity of
the tube feet is orchestrated by a nervous system that is distributed through-
out the body without a central brain. How such a distributed nervous system
produces a coordinated locomotion is yet to be understood. We develop
mathematical models of the biomechanics of the tube feet and the sea star
body. In the model, the feet are coupled mechanically through their struc-
tural connection to a rigid body. We formulate hierarchical control laws
that capture salient features of the sea star nervous system. Namely, at the
tube foot level, the power and recovery strokes follow a state-dependent
feedback controller. At the system level, a directionality command is com-
municated through the nervous system to all tube feet. We study the
locomotion gaits afforded by this hierarchical control model. We find that
these minimally coupled tube feet coordinate to generate robust forward
locomotion, reminiscent of the crawling motion of sea stars, on various
terrains and for heterogeneous tube feet parameters and initial conditions.
Our model also predicts a transition from crawling to bouncing consistently
with recent experiments. We conclude by commenting on the implications of
these findings for understanding the neuromechanics of sea stars and their
potential application to autonomous robotic systems.
1. Introduction
Echinoderms are a group of marine invertebrates that use tube feet to achieve
remarkable locomotion tasks. Sea stars, for example, have an oral surface that
is lined with hundreds of tube feet used to crawl on various terrains, from
smooth sand and glass surfaces to rocky substrates (figure 1). To achieve
these feats of locomotion, individual tube feet are equipped with integrated
sensing and actuation, and the activity of arrays of tube feet is orchestrated
by a nervous system that is distributed throughout the body. How the distrib-
uted nervous system and numerous tube feet interact to give rise to the
coordinated motion has long been a question of interest for researchers. In
1945, Smith put forward a plan of neuron configuration and axon distribution
based on behavioural experiments and neuroanatomy [2]. Lacking a brain, the
central nervous system comprises a ring nerve at the centre of the body with
radial nerves that innervate the tube feet and extend to a simple eye at the
distal tips of each arm and innervates the tube feet [3–6]. The behaviour of
tube feet was studied later by recording the stepping phases—power and recov-
ery strokes—that each tube foot undergoes during locomotion [7–10]. While all
tube feet step in the same direction during walking, Kerkut’s studies showed an
absence of determinate phase relationship in the steps of different feet,
suggesting the ability for individual action within each tube foot [3,11].
Taken together, these experimental findings hint at the presence of a hierarch-
ical structure within the nervous system of sea stars. There seems to be a
central communication from the radial and ring nerves through which a
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Figure 1. Sea stars: (a) The common sea star Asterias rubens (source: Shutterstock), (b) close-up on the tube feet lining the ventral surface of Asterias rubens (source:
Symbiotic Service, San Diego), (c) bounce gait in Asterias forbesi [1], (d ) schematic of Asterias rubens, showing nervous system comprising a circumoral nerve ring and
radial nerves, (e) tube foot anatomy for an adult sea star, ( f ) muscles are innervated by neurons located in the radial nerves and nerve ring. Activation of podia and
ampulla muscles lead to contraction, extension and bending of the tube feet, (g) schematic of our mechanical model of the sea star and tube feet inspired actuators,
with inset showing contractile, passive and dissipative force elements along each tube foot, (h) hierarchical motor control of the tube feet consisting of global
directionality commands issued by the radial nerves and nerve ring and local sensory–motor feedback loops at the tube foot level. (Online version in colour.)
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dominant direction of motion emerges, while the tube feet are
individually capable of sensing and actuation.

More recently, there has been a growing effort to understand
distributed control in biology, in part due to their potential
applications inautonomous robotic systems [12–16]. Specifically,
there have been multiple studies on how a direction of motion
emerges from the distributed nervous systems in echinoderms,
such as brittle stars and sea urchins [6,17–21]. These studies,
although acknowledging the hypothesis of a hierarchical control
mechanism in echinoderms, focus mostly on the centralized,
system-level control, namely the directionality command and
how it is transferred through the nerve ring. They lack details
on how localized sensing and actuation at the tube feet level
comes into play.

In this study, we introduce a mathematical model of sea
star locomotion based on hierarchical control laws with
local sensory–motor feedback loops at the tube foot level
and a global directionality command at the system level.
These control laws are implemented in mechanical models
of the sea star that take into account salient features of the
tube feet biomechanics as muscular hydrostats with no
rigid skeletal support [22]. Each tube foot is modelled as a
soft actuator that generates state-dependent active forces.
The tube feet control has no explicit communication of state
between tube feet. Each tube foot is an autonomous entity
that receives a global command about the direction of
motion. Besides a shared directionality command, the tube
feet are coupled only structurally through their attachment
to a rigid body representation of the sea star.

We examine the sea star locomotion in the context of this
mathematical model. We particularly focus on two distinct
modes of locomotion exhibited by sea stars: crawling and
grounded bouncing. When stimulated, sea stars across var-
ious species are reported to exhibit a bounce gait in which
they coordinate their feet to increase their speed [23–26].
This bounce gait is characterized by amplified vertical oscil-
lations and a discernible frequency and wavelength of
motion; see figure 1c. On the other hand, the crawl gait has
a lower locomotion speed, dampened oscillations and irregu-
lar trajectory of motion for which it is difficult to identify a
frequency and wavelength. The bounce gait, which usually
happens when tens of tube feet synchronize into alternating
groups, raises new and interesting questions. Is there an
underlying mechanism for sea stars to coordinate not only
their direction of motion but also the actuation of tens of
tube feet? Or does the transition to bouncing happen as a
result of the collective dynamics of individual and minimally
coupled tube feet? We address these questions by performing
numerical experiments based on our mathematical model.

The organization of this work is as follows. In §2, we
develop an abstract representation of the tube feet as soft actua-
tors that can generate active pushing and pulling forces, and we



Table 1. Sea star parameters (based on [7,27,28]).

adult

Asterias rubens

body diameter 10–30 cm

wet weight 3.25–6 g

dry weight 9–15 g

number of tube feet ≈1000
tube feet length 1.25–8 mm

force per tube foot weight/0.1 × (number of tube feet)
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model the sea star as a rigid body connected to an array of soft
actuators. Though the model is abstract, we choose parameter
values consistent with measurements of the common sea star
Asterias rubens given in table 1. An adult Asterias rubens usually
grows up to be 10–30 cm in diameter, with five arms each
equipped with hundreds of tube feet. Specifically, we choose
the parameter governing the active force per tube foot to be
consistent with Kerkut’s estimation that only 10% of the total
number of the tube feet are needed to support the sea star’s
submerged weight [7]. We mathematically couple the hierarch-
ical control laws described above to the equations of motion
governing the body mechanics. The results of the models are
presented and discussed in §3. We conclude in §4 by comment-
ing on the advantages and limitations of our modelling
approach and on the implications of our findings for under-
standing the distributed nervous systems of echinoderms and
for developing soft robotic systems.
2. Mathematical modelling
2.1. Tube feet mechanics
Each tube foot consists of a cylindrical channel, called a
podium, capped by a bladder-like structure called an
ampulla; see figure 1d–f. The interior space of the ampulla
is continuous with the interior of the podium, such that
interstitial fluid moves freely between these two spaces. The
walls of both the podium and ampulla include layers of
connective-tissue fibres that are stiff in tension (light blue
lines in figure 1e,f ) and superficial layers of muscle that
serve to generate tension in the direction of the muscle
fibres (orange lines in figure 1e,f ). In the podium, the connec-
tive-tissue fibres are arranged helically to favour elongation
of the podium under pressure, and the muscle fibres are
arranged longitudinally [29]. The ampulla is characterized
by longitudinally oriented connective-tissue fibres and
circumferential muscles.

Experimental observations suggest that the podium is
extended by contraction of the circumferential muscles in the
ampulla. This action generates pressure that expels the intersti-
tial fluid from the ampulla into the podium (figure 1f).
Relaxation of the ampullar muscles causes the podium to
retract. Retraction of the podium can be continued further
through active contraction of the podium’s longitudinal
muscles, which expels water from the podium into the
ampulla. Further, a subset of these muscles could be activated
to presumably bend the podium, provided the circumferential
muscles of the ampulla maintain tension to prevent fluid flow
from the podium. This model for the biomechanics of individ-
ual tube feet provides a starting point for a mathematical
description of these biological soft actuators and the premise
for designing engineered counterparts.

It is worth noting that the principles of operation of the
tube feet as muscular hydrostats share similarities with pneu-
matic artificial muscles such as the McKibben actuators that
convert hydraulic pressure into mechanical work. A math-
ematical relationship between the tensile forces and the
length of these actuators can be obtained from first principles
[30,31]. Similarly, force generation in the tube feet can be
modelled by taking into account the balance between fluid
pressure and wall stress in the ampulla and podium [29,32].
Our goal here is to formulate an abstract model of each
tube foot as an actuator capable of producing active pushing
and pulling forces, without looking into the details of force
generation by muscle activation in the ampulla and podium.

To mathematically describe the behaviour of a tube foot,
we must model the forces it generates during its power
and recovery stroke, that is, we must model its attachment
and detachment dynamics. We postpone the attachment–
detachment issue to §2.3. To fix ideas, we consider a
weight-carrying tube foot with the base of the podium
attached to a flat horizontal plane. We assume that the tube
foot cannot bend actively when attached; in other words, it
cannot generate active moments during attachment, only
active longitudinal forces. By contracting the ampulla and
extending the podium, the tube foot produces an active pushing
force; more precisely, by the law of action and reaction, the tube
foot produces a pair of forces pushing onto both the plane of
attachment and the load it is carrying. Inversely, an active
pulling force can be generated by contracting the podium and
expanding the ampulla. Clearly, active pulling requires
additional contact forces to ensure the podium maintains con-
tact with the ground, through friction, suction or chemical
adhesion [33–35]. This active force model can be thought of
as a state-dependent controller, where the magnitude and
sign of the active force depend on the state of the tube foot,
namely, its length and activation mode (pushing or pulling),
while its direction is always acting longitudinally along the
tube foot. In tandem with these active pushing and pulling
forces, the tube foot experiences restoring elastic forces due to
the connective tissues. Its extension or contraction is dampened
by viscous resistance due to the interstitial fluid movement. Put
together, each tube foot can be modelled as a soft actuator with
(i) an active force generating element Fa that is either pushing or
pulling, (ii) a passive restoring force element Fp and (iii) a vis-
cous damping element Fd, all acting along the length of the
tube foot, as shown in the inset of figure 1g.

Let l be the length of the tube foot, with lmin and lmax

being its minimum and maximum length. We consider the
restoring elastic force Fp to be linear Fp =−kp(l− lo), where lo
is the length at which the connective fibres are unstretched.
We also consider a linear damping force of the form
Fd ¼ �cd_l. Inspired by Hill’s muscle model [36,37], we use a
piecewise linear force–length relation to model the active
force Fa generated in the tube foot, namely, we write

Fa ¼ FmaxF(l), (2:1)

where Fmax is a scalar constant denoting the maximum force
generated in the tube foot, and Φ(l ) is a length-dependent
function that describes the force profile. We let lc denote the
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Figure 2. Tube foot inspired soft actuator: when attached to a substrate, a tube
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magnitude depends on the tube foot length l. (Online version in colour.)
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length at which the active force is maximum as shown in
figure 2. When in a pushing state, Φ(l ) is given by

Fpush(l) ¼
(l�lmin)
(lc�lmin)

, lmin , l , lc,
(l�lmax)
(lc�lmax)

, lc , l , lmax,

0, l , lmin and l . lmax:

8><
>: (2:2)

Similar expressions can be obtained for pulling; the pushing
and pulling force profiles are shown in figure 2 as a function
of length. Here, the pushing and pulling force profiles
are symmetric.

Sea stars employ tube feet to generate a diverse array of
motion. However, it is instructive first to explore the theoreti-
cal situation of vertical extension and contraction of a single
tube foot carrying a weight mg, where m is mass and g is
the gravitational constant. In this vertical ‘standing’ regime,
the length of the tube foot l coincides with the vertical pos-
ition y of the mass. The equation of motion can be obtained
from a straightforward application of Newton’s third law

Fa � kp(l� lo)� cd_l� amg ¼ m€l: (2:3)

Here, we introduced a parameter α = (1− ρ/ρs) to account for
the buoyancy effects by considering the densities ρ and ρs of
water and the sea star, respectively, with ρ/ρs < 1. The par-
ameter α = (1− ρ/ρs)∈ [0, 1]: α = 1 corresponds to the dry
weight of the sea star and α = 0 corresponds to a neutrally
buoyant sea star. Without loss of generality, we set α = 1
while the value of mg can be set independently.

It is useful for writing the equations of motion
in non-dimensional form to introduce the length scale L =
lmax− lmin. We also introduce two time scales: an inertial
time scale Tg ¼

ffiffiffiffiffiffiffiffi
L=g

p
obtained by balancing the weight

and inertial forces (mg � mL=T2
g ) and a relaxation time

scale Td = cd/kp obtained by balancing the damping and pas-
sive spring forces (cd L/Td ∼ kp L). Small values of Tg describe
a system where the weight is large compared to the inertial
forces, whereas large values of Td imply that damping is
dominant. Observations of sea star locomotion suggest
strong damping and weak inertial forces. We thus choose
Tg < 1 and Td > 1 such that the non-dimensional ratio Td/Tg

is larger than 1.
We rewrite equation (2.3) in non-dimensional form using
the length scale L = lmax − lmin, and the relaxation time scale
Td = cd/kp,

m€lþ cd_lþ kp(l� lo) ¼ Fa �mg: (2:4)

Here, all parameters and variables are non-dimensional.
Specifically, cd = 1, kp = 1, and Fa and mg are equal to the
value of their dimensional counterparts divided by kp L. In
(2.4), μ =mg/γ is a non-dimensional mass parameter, with
g ¼ T2

d=T
2
g ¼ (c2d=k

2
p)=(L=g) � 1.

We consider the active force element Fa generates either a
contractile (pulling) or an extensile (pushing) force as accord-
ing to the following state-dependent control law: if the tube
foot reaches a length l≤ lmin, the active force is zero and the
tube foot cannot contract further, the controller requires that
it extends by producing a pushing force Fa following the pro-
file in figure 2 shown in solid line. Alternatively, if l≥ lmax, the
controller requires the tube foot to contract by producing a
pulling force Fa following the profile in figure 2 shown in
dashed line.

We rewrite equation (2.4) in light of this state-dependent
controller: the expression forFa switches frompushing to pulling
and vice-versa, depending on the state of the tube foot. We
employ a change of variable from l to ℓ defined as follows

‘ ¼ l� lmin, pushing,
lmax � l, pulling:

�
(2:5)

The expressions forΦpush andΦpull, when expressed in terms of
ℓ satisfy the symmetry property: Φpush(ℓ) =−Φpull(ℓ) =Φ(ℓ),
which follows directly from (2.2) and (2.5),

F(‘) ¼
‘

L�D , 0 , ‘ , L� D,
L�‘
D , L� D , ‘ , L,

0, ‘ , 0 and ‘ . L:

8>><
>>: (2:6)

Here, Δ denotes the change in length from where the active
force is maximum to where it decays to zero (figure 2).
Namely, Δ = lmax− lc when pushing and Δ = lc− lmin when
pulling, and by the symmetry property considered here, both
values are equal. We also introduce δ = lo− lmin for pushing
and δ = lmax− lo for pulling, which we take to be equal. We get
a simplified expression of equation (2.4) during pushing
and pulling,

m€‘þ cd _‘þ kp‘ ¼ FmaxF(‘)þ kpd+mg, (2:7)

Here, −mg is for pushing and +mg is for pulling.
Equation (2.7) has several important consequences. The

most important is that the weight acting on the tube foot
breaks the extensile/contractile symmetry of the actuator:
when standing on a horizontal flat surface, gravity aids the
tube foot during contraction and acts against it during exten-
sion. Active pushing forces are imperative to carry the sea
star’s weight but tube feet can be made to contract passively
under the gravity. Indeed, experimental observations suggest
that sea stars relax from actively pulling by allowing their
tube feet to buckle passively under weight. When pushing
and pulling are both active as in the model considered here,
a weight-carrying tube foot takes a longer time to fully
extend from lmin to lmax than to fully contract from lmax to
lmin. Lastly, the vertical oscillations afforded by equation (2.7)
are unstable to all non-vertical perturbations unless multiple
tube feet are put to work together as shown later.
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2.2. Body mechanics
We model the sea star as a rigid body of mass m connected to
a series of N tube feet separated by a constant distance d, as
shown in figure 1g. Let (x, y) denote the position of the
centre of mass of the sea star in the inertial frame (ex, ey),
and β denote its tilting angle measured from the x-axis in
the anti-clockwise direction. The signed position of the base
point of each tube foot n relative to the sea star centre of
mass is dn, such that dn+1− dn = d, n = 1,…, N. The kinematic
state of each tube foot is described by its length ln and incli-
nation angle θn measured from the y-axis in the anti-
clockwise direction.

The balance laws for the forces and moments acting on
the sea star body are given by

x�dir: � cx _xþ
X
n

Fn sin un ¼ m€x,

y�dir: � cy _y�mgþ
X
n

Fn cos un ¼ m€y,

and tilt: � cb _bþ
X
n

Fndn cos (un � b) ¼ I€b:

9>>>>>>>=
>>>>>>>;

(2:8)

where I is the moment of inertia of the sea star body and cx, cy
and cb are the internal translational and rotational damping
parameters, all expressed in dimensionless form. Here, to
simplify the problem, we do not compute the damping
force cd_ln exerted by individual tube feet. Instead, we account
for external damping effects from the environment in terms
of lumped damping parameters cx, cy and cb.

The force Fn exerted by tube foot n on the sea star body
acts along the direction of the tube foot,

Fn ¼ Fa,n � kp(ln � lo): (2:9)

The active force Fa,n of tube foot n is either a pushing or pull-
ing force depending on its state ln and θn. The active force
profile follows directly from equations (2.1) and (2.2) and it
is depicted in figure 2.

To close the system of equations (2.8) and (2.9), note that
the tube feet exert forces on the sea star body only when they
are attached to the ground, that is to say, during the tube foot
power stroke. When attached, the state (ln, θn) of the tube feet
must satisfy the following constraint equations

xn � ln sin un ¼ xþ dn cosb
and ln cos un ¼ yþ dn sinb,

)
(2:10)

where xn denotes the location of attachment of tube feet n on
the ground. In this formulation, the length and orientation of
the tube feet during attachment are slaved to the position and
orientation of the sea star body. Equations (2.8), (2.9) and
(2.10) form a differential-algebraic system of 3 + 2N equations
for 3 + 2N unknowns (x, y, β, ln, θn) provided that we define
control rules for the tube feet attachment and detachment
as discussed in §2.3.
2.3. Hierarchical control laws
We propose a hierarchical motor control of the tube feet
consisting of global and local components: (i) a global direction-
ality command—descending from the nerve ring and radial
nerve—responsible for communicating the step direction to all
tube feet [2], and (ii) local sensory–motor feedback loops at
the individual tube feet level that dictate the powerand recovery
stroke of the tube foot, that is to say, the decisions to push or pull
and attach or detach. The only coupling between tube feet is
via their structural attachment to the sea star body, as depicted
schematically in figure 1h.

We implement the control law with the aforementioned
global–local characteristics into equations (2.8)–(2.10) as
follows. At the global sea star level, all actuators are directed
using an open-loop control command that specifies the step
direction e; here the step direction is either in the negative
or positive x-direction e = ±ex. At the local tube feet level,
each actuator senses its own state (ln, θn) and accordingly
decides to push, pull or detach and reattach. The local
state-dependent control law can be summarized as follows.
In the power stroke phase, for ln < lmax, the actuator n decides
to push or pull based on its orientation θn relative to the
direction of motion.

For ln , lmax:
sin un ex � e . 0: pull,
sin un ex � e , 0: push:

�
(2:11)

When ln > lmax, the actuator detaches, takes a step of size Δθn
in the direction of motion, then reattaches to the ground (elec-
tronic supplementary material, movie S1). These actions
constitute the recovery stroke phase. The duration of the
recovery stroke, the period from detachment to reattachment,
is denoted τn. For τn = 0, the reattachment satisfies

xþn ¼ dn þ lþn sinDun ex � e and lþn ¼ l�n cos un
cosDun

: (2:12)

Here, l�n and lþn denote the length of the tube foot right before
and right after its recovery stroke, and xþn is the point of
attachment of the base of the tube foot right after recovery.
3. Results
To illustrate the hierarchical, state-dependent controller, we
apply it first to the simple example of a point mass connected
to two tube feet joined at their base d = 0, as shown in
figure 3a. The two tube feet are initially oriented such that one
tube foot is in a pushing state and the other in a pulling state.
We set Fmax = 2, mg= 1, γ = 10, and cx = cy = 1. The step size
Δθ = π/6 is equal for both feet, and the feet have characteristic
lengths lmin = 1, lmax = 2, lo = 1.5 and lc = 1.9. We follow the hier-
archical control laws detailed in §2.3: both feet are instructed to
step in the positive x-direction e = ex. Other than this global
directionality command, all details of the power stroke and
the transition to recovery stroke (all decisions to push or pull,
or to detach and reattach) are done locally, at the tube foot
level. There is no communication between the two feet other
than their mechanical coupling via their attachment to the
same mass. We solve the differential–algrebraic system of
equations (2.8) and (2.10) numerically, where the active com-
ponent of Fn in equation (2.9) is dictated by the state (ln, θn) of
each tube foot (n = 1, 2). Although the controller does not expli-
citly impose a coordination pattern between the two feet, a clear
anti-phase coordination emerged in time, and the body oscil-
lated in the vertical direction and moved forward in the
horizontal direction. The anti-phase coordination is reflected
in the angles of the tube feet and the active forces shown in
figure 3b,c. This walking motion is fundamentally distinct
from existing models of bipedal walking [38–40]: (i) the feet
here are ‘soft’ in the sense that they offer no resistance to bend-
ing nor do they produce active moments during attachment;
they only produce and sustain longitudinal forces along the
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movie S1). (Online version in colour.)
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foot length; (ii) there is no prescribed time period for attach-
ment; the duration of each attachment cycle emerges from the
state-dependent controller; (iii) the controller itself imposes no
a priori coordination between the feet. Each tube foot follows
its own local sensory–motor control feedback loops, without
information about the state of the other foot; coordination
emerges from mechanical coupling to the point mass. We next
expand on these ideas in the context of arrays of soft actuators.

We investigate the motion of the sea star model connected
to 10 tube feet. Specifically, we model the sea star as a rigid
body, with mass μ and moment of inertia I = 0.04μD2,
whose shape is reconstructed from a side view image of an
actual sea star. The sea star damping parameters are set to
cx = cy = 1, cb ¼ 10. The tube feet are aligned in a single line,
separated by distance d = 1, as shown in figure 1g. The
length parameters and step size of the tube feet are held at
the same values as above throughout this study. We explore
the behaviour of the sea star model as a function of the maxi-
mum active force Fmax per tube foot, the sea star weight mg,
and the intrinsic damping parameter γ. We emphasize that
the tube feet are modelled as massless actuators, that sustain
and produce longitudinal forces only, with no additional
constraints to prohibit intersection between neighbouring feet.

The behaviour of the sea star body and tube feet is
shown in figure 4 for mg = 1.5, γ = 50, Fmax = 1 (left
column) and Fmax = 1.35 (right column), both starting from
zero initial velocity and the same randomly oriented feet.
When Fmax = 1 (left column), the sea star moves in the
x-direction, with small vertical and angular oscillations
reminiscent of the crawl gait observed in actual sea stars.
For Fmax = 1.35 (right column) the mode of locomotion is
reminiscent of the bounce gait observed in sea stars and
shown in figure 1c [23–26]; namely, it is characterized by a
distinguishable bounce frequency at the sea star level and
two anti-phase clusters of tube feet, resembling the bipedal
locomotion in figure 3. A fast Fourier transform of the domi-
nant frequencies and amplitudes of vertical oscillations
clearly indicate the increase in amplitude and the existence
of a dominant frequency of oscillations in the bounce gait,
see figure 5a.

In crawling and bouncing, the tube feet start from the
same initial orientation with no clear coordination between
them in the first few steps. But, as time progresses, a coordi-
nation pattern emerges solely from the mechanical coupling
between the tube feet and the sea star body. The coordination
pattern is not restricted to adjacent feet, and it differs substan-
tially between the crawling and bouncing gaits, as clearly
reflected in the plots of sinθn, length ln and active force Fa,n
along each tube foot (n = 1,…, 10) shown in figure 4c–e.
The tube feet are labelled consecutively such that two feet
with labels n and n + 1 are adjacent. The feet develop a
coordination pattern in time that is not restricted to adjacent
feet; in the crawling motion, tube feet 2, 7 and 10 coordinate
their motion while in the bouncing motion, tube feet 2, 3, 6, 7
and 9 coordinate their motion. The active forces generated in
the crawling gait are weaker. The duration of the power
stroke (time from attachment to detachment) is approxi-
mately 35% longer in the crawling gait than in the
bouncing gait, which is consistent with our experimental
observations (results not yet published).

To quantify the degree of coordination and highlight the
difference in coordination between crawling and bouncing, we
sort the tube feet into subsets, or clusters, that contain tube
feet of similar inclination angles θn; namely, tube feet of angles
θn within an angular tolerance ε = π/50 from each other
belong to the same cluster. The number of clusters Nc lies in
the range 2≤Nc≤N. The case Nc = 1 is equivalent to a single
tube foot,which cannot stably carryaweight andmove forward.
For Nc = 2, the tube feet are coordinated into two groups. For
Nc =N, the feet exhibit maximum disorder. The degree of
coordination is measured via a coordination order parameter
defined as p(t) = 2/Nc(t), where p(t)∈ [0.2, 1]; p= 1 corresponds
to the tube feet split in two clusters, exhibiting thehighest degree
of coordination for stable locomotion (similar to bipedal loco-
motion), whereas lower values of p indicate larger number of
clusters and lower degree of coordination.

In figure 5b, we plot the (time-averaged) coordination
order parameter p(t) as a function of time for the two examples
in figure 4. In the bouncing gait, the coordination order par-
ameter converges to 1 while in the crawling gait, it hovers
around approximately 0.3. By way of visualization, we map
the inclination angle of each tube foot to a point on the unit
circle, zn(t) ¼ eiun(t), for n = 1,…, N, where zn(t) indicates the
position of the nth actuator in the complex plane. Note that
the range of angles of the tube feet covers a small portion of
the unit circle, since we fixed the step size to π/6. To make
the clusters more discernible, we rescale θn to πθn(t)/θmax to
lie in the range [0, 2π]. Here, θmax is the maximum inclination
angle reached in a given simulation. A depiction of the scaled
tube feet angles on the unit circle is shown for a snapshot at
t = 50 in figure 5b; clearly in the bounce gait, the tube feet
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angles belong to two clusters, where the feet in the same
cluster are not necessarily adjacent spatially.

We gauge the robustness of the crawling behaviour
shown in figure 4 (left column) to variations in the par-
ameters of the tube feet. To this end, we perturb the initial
conditions of the tube feet randomly from a normal distri-
bution with mean values centred at the initial conditions in
figure 4. We vary the standard deviation from 0 to 50% of
the maximum possible initial inclination angle θmax = π/3.
This value of θmax is set such that it automatically ensures
that ln(0)≤ lmax, for all n. For each standard deviation, we
perform Monte Carlo simulations with 20 random initial
conditions. For a fraction of initial conditions, the sea star
fails to produce stable forward movement. We report the fail-
ure rate in figure 6a. The failure rate tends to increase as the
standard deviation of the noise increases. For the initial con-
ditions that produce stable locomotion, we quantify the total
horizontal displacement of the body at end of the integration
time, as well as the average vertical position and average
coordination order parameter, both averaged over the
period from t = 80 to t = 100. The results are shown in
figure 6b–d, where the black dots represent individual
realizations of the Monte Carlo simulations, while the solid
lines and shaded areas correspond to the mean and standard
deviation of the results. It is clear from the tight standard
deviations in the x- and y-displacements that the overall
locomotion of the sea star is robust to variations in
initial conditions, even when the details of the tube feet
coordination varies.

We next explore the robustness of locomotion to hetero-
geneity in the tube feet actuation. Namely, we vary the
active force in each tube foot independently, by choosing
Fmax for each tube foot randomly from a normal distribution
with mean value centred at Fmax = 1 and a standard deviation
ranging from 0 to 50% of Fmax; that is, the magnitude of the
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active forces produced in each tube foot varies across all 10
tube feet. The results of these variations on the overall sea
star behaviour and tube feet coordination are shown in
figure 7. Similar to variations in initial condition, the failure
rate generally increases with increasing standard deviation.
However, in comparison to variations in initial conditions,
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heterogeneity in Fa across tube feet produces larger variations
in the tube feet coordination as well as in the overall displa-
cement of the sea star body.

We next comment on the robustness of the crawling
motion to variations in the substrate itself. We consider
the sea star with the same parameter values and initial con-
ditions shown in figure 4(i), and we investigate its ability to
crawl on wavy terrains in figure 8 and up stair-like terrains
in figure 9. The wavy substrate is described by a sinusoidal
function of amplitude a = 0.2 and wavelength λ = 1 in
figure 8a and a = 0.3, λ = 5 in figure 8b. The stair-like terrain
is described by stair width w = 5 and height h = 0.5 in
figure 9a and w = 1, h = 0.25 in figure 9b. In all cases, the
sea star moves robustly with adjustments made neither to
the control model itself nor to the mechanical parameters.
This robustness is mediated by the decentralized local sen-
sory–motor feedback loops at the individual tube foot
level, where the control action itself depends on the state
of the tube foot.

A few comments on the robustness of the bouncing gait
are in order. By conducting similar numerical experiments
(see electronic supplementary material, movies S6–S9), we
found that the bouncing gait is robust for weak noise
(standard deviation ≤10–15%) and weak perturbations in
the substrate. For larger values of noise or substrate pertur-
bations, the distinct bouncing frequency is lost and the
trajectories of stable locomotion resemble the crawling gait,
albeit at the higher value of Fmax = 1.35.

Last, we analyse the locomotion modes on flat horizontal
terrains as a function of the maximum active force Fmax per
tube foot, the sea star weight mg, and the sea star damping
parameter γ. Specifically, we look at three cross-sections of
the three-dimensional parameter space (Fmax, mg, γ), while
keeping the initial conditions and all other parameter
values as in figure 4. In figure 10a, we investigate the sea
star behaviour as a function of Fmax and mg. For weak tube
feet (tube feet where Fmax is small), the motion is unstable
and the sea star can neither crawl nor bounce. As Fmax

increases for a given mg, the sea star first crawls, then tran-
sitions to a bouncing mode, provided that the weight
exceeds a minimum value. This suggests that inertial effects,
though small, seem necessary for the bouncing motion to
appear. The transition from crawling to bouncing happens
abruptly with the coordination order parameter increasing
sharply to 1. As Fmax increases further, the motion becomes
unstable again, implying that, for stable locomotion, the
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maximum active force per tube foot should be bounded
between an upper and a lower limit. The lower limit seems
to increase linearly with mg for light sea stars and becomes
independent of the weight as the sea star weight exceeds
mg≈ 1.75. Meanwhile, the upper limit seems to increase
linearly with mg, with an approximate slope of 0.7.

The sea star behaviour as a function of Fmax and γ, for
mg = 2, exhibits a similar trend in the transition from crawling
to bouncing as Fmax increases (figure 10b). Once again, we
observe that in order to achieve stable locomotion, Fmax

should be bounded above and below. The importance of iner-
tial effects for bouncing is clear in these results as well. As γ
increases, inertial effects decrease, inducing a transition back
to crawling for a given value of Fmax.

The sea star behaviour as a function of mg and γ, for
Fmax = 1.5, is shown in figure 10c. The behaviour is consistent
with the previous observations: increasing γ decreases the
inertial effects and decreases the region of the parameter
space where bouncing occurs. Further, for a given γ, at
lower load mg, the sea star bounces but as mg increases, it
transitions to crawling, similar to the effect of increasing mg
for a constant Fmax in figure 10a.

To examine the energetic cost of the bouncing and
crawling gaits, we define the cost of locomotion as the
(time-averaged) active power input by all tube feet per hori-
zontal distance travelled by the sea star, namely,

cost of locomotion ¼ hPai
x�distance

, (3:1)
where Pa ¼
P

n Fa,n_ln. We compute the cost of locomotion for
the results in figure 10, shown separately in figure 11 for
clarity. The bouncing gait is correlated with a higher cost of
locomotion, implying a trade-off between speed and effi-
ciency. Bouncing gaits are characterized by higher speeds
and also higher costs, which implies lower efficiency.
4. Conclusions
This study examined the control laws that underly loco-
motion in sea stars, as a model system for the control of
distributed sensors and actuators. Sea stars use hundreds of
tube feet to walk over various terrains. The tube feet seem
to coordinate the direction of their power stroke, regardless
of their arm’s position, with the direction of walking, whereas
the power and recovery strokes of individual tube feet seem
to be governed locally at the tube foot level. Here, we devel-
oped a mathematical model of each tube foot as a soft
actuator, consisting of active, passive and dissipative force
elements, that can actively extend or contract, generating
active pulling or pushing forces on the substrate and the
sea star body. We then studied the dynamics of the sea star
driven by an array of such soft actuators. The tube feet
were actuated according to a hierarchical motor control,
where the direction of motion is globally communicated to
all tube feet, while each foot is actuated according to local
sensory–motor feedback loops. In these feedback loops, the
feet use minimal sensory information (their own inclination
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angle and length) and generate active forces accordingly. The
feet are coupled only mechanically through their structural
connections to the sea star body. We found that the collective
effect of the tube feet can lead to stable crawling motion of
the sea star body. The model also exhibited robustness to per-
turbations in initial condition and heterogeneity in the ability
of the tube feet to generate active forces, as well as to irregu-
larities in the substrate geometry.

Recent reports show that as a part of their escape
response, sea stars can coordinate their numerous tube feet
into alternating groups, in a gait known as bouncing, to
increase their speed of locomotion [23–26]. We hypothesized
that this transition to bouncing can occur in the context of the
same hierarchical motor control used in crawling. To test this
hypothesis, we varied the maximum active force Fmax per
tube foot, the sea star weight mg, and the sea star damping
parameter γ. We identified a major transition in the coordi-
nation of the tube feet as we increased Fmax and decreased
mg and γ. These transitions are invariably associated with
an increase in the active work done by the tube feet relative
to the work dissipated due to damping or required to lift
the weight of the sea star. During bouncing, the tube feet syn-
chronized into two clusters, which is clearly reflected in the
temporal evolution of their inclination angles, lengths and
active force. The clusters are not restricted to adjacent tube
feet. Moreover, the vertical oscillations of the body were
amplified, and followed a discernible frequency and wave-
length; which are characteristics observed in the bounce
gait in sea stars. We quantified the level of coordination in
the tube feet, by introducing a coordination order parameter
that takes values between 0.2 and 1. The coordination order
parameter varied between 0.2 and 0.5 in the crawling
motion, and stayed near 1 in the bouncing motion.

To understand why the bounce gait is a part of the sea
stars escape response as opposed to their normal mode of loco-
motion, we computed the cost of locomotion of the crawl and
bounce gaits. We defined the cost of locomotion as the average
active power consumed per horizontal distance travelled
during a specific locomotion time. We found a strong corre-
lation between the coordination order parameter and the
cost of locomotion. More specifically, we found that higher
tube feet coordination, characteristic of the bounce gait, con-
sumes more power and therefore comes at a higher cost.
This suggests that although the bouncing motion can increase
the speed of locomotion in sea stars, it is not always favourable
for them in terms of power consumption.

A few comments on the advantages and limitations
of the mathematical model are in order. Our low order
model intimately couples the neural sensory–motor control
to the physical system and its action on the environment,
i.e, substrate. This approach is consistent with the theme of
‘embodied intelligence’ or ‘embodiment’ [41–44]. It reflects
essential elements in the current understanding of how
sea stars control locomotion based on neuroanatomy and
behaviour experiments [2,7–9] in the form of a higher-level
representations of the neural circuits underlying locomo-
tion as feedback control laws. However, our model does
not describe the details of the physiology, connectivity and
activity of these neural circuits [45,46]. From a mechanical
standpoint, our model neglects many of the complications in
sea stars, including details of the tube feet biomechanics
as muscular hydrostats [22,32,47] and deformations along
the arms [48–52]. Another limitation of this study is that
it considers a two-dimensional model to study locomotion in
one dimension. Future extensions of this work will include
the more complicated dynamics required to undertake
turning manoeuvres.

In ongoing work, we are extracting experimental
measurements from juvenile and adult sea stars in order to
perform quantitative comparisons with the model. Prelimi-
nary experimental measurements support the conclusion
that the bouncing gait is characterized by high values of
coordination order parameter. In addition, we are imple-
menting a bias in the active pulling and pushing force in
the model itself. This is motivated by experiments which
suggest that the tube feet mostly exert pushing forces while
moving on flat substrates, whereas they employ pulling
forces to walk on inclined or vertical surfaces.

We close by noting that gait transitions, reminiscent of the
transition from crawling to bouncing reported here, are
observed in various forms of animal locomotion including
the walking to running transition in humans. In insects, a
transition from tetrapod to tripod motion is observed when
walking at higher stepping frequencies. In the tripod gait,
the legs coordinate into two groups: three legs in contact
with the substrate and three in a swing phase [53,54]. Centi-
pedes also use numerous feet to locomote [16], and although
the underlying mechanisms for force generation are funda-
mentally distinct from those of sea star tube feet, the two
systems exhibit similarities in the spatio-temporal patterns
of attachment and detachment that are worth exploring in
future works.
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