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Thinning Algorithms for Remote Sensing Observations in 
Support of Ocean Data Assimilation 

 
By Juliana Matranga 

 

Abstract 

Data assimilation is a method to combine the numerical solutions calculated by circulation 

models with observations from different platforms in order to obtain an optimal estimate 

of the state of the system. The computational and numerical difficulties associated with 

processing the increasing number of observations necessitate the use of thinning 

techniques to reduce the number of data assimilated. In this thesis the impact of thinning 

two types of particularly voluminous data sets on the overall performance of an ocean data 

assimilation system were evaluated. In particular, an analysis of the ocean circulation 

along the U.S. West Coast with a 10 km resolution grid was performed, spanning a period 

of one year. Two different thinning methods were tested: an intelligent data thinning (IDT) 

algorithm to thin gridded satellite sea surface temperature (SST) and a simple thinning 

algorithm to reduce the volume of radial sea surface velocity measured by a network of 

coastal high frequency radars. The SST data were thinned by discarding data in regions 

with low spatial variability while retaining data in regions of high spatial variability. 

Conversely, the radar observations were averaged to create “super observations” 

consistent with the resolution of the model grid and prior assumptions about observation 

errors. The full and thinned data sets were assimilated using a 4-dimensional variational 

(4D-Var) data assimilation algorithm in the Regional Ocean Modeling System (ROMS). A 

statistical analysis of the diagnosed background and observation errors showed that the 

thinning experiments were well-behaved. Furthermore, the innovation and residual 

vectors (i.e. the difference between each observation and its prior and posterior model 



 ix 

counterpart) in all cases generally satisfied the assumption of Gaussian distributions. 

Additionally, the topology of a the total error covariance matrix of the data assimilation 

system was explored via its eigen space. The thinning experiments amplified the eigen 

spectrum, modified the condition number, and in particular thinning SST changed the 

aspect ratio of the hyperellipse defined by the covariance matrix to change. Lastly the 

impact of each type of observation on the analyses was quantified for the different thinning 

methods, suggesting that the radial velocities thinning was perhaps too severe, while the 

thinning of SST leveled the impact different observations had on the DA analysis. Overall 

results showed that the thinning did not significantly degrade the analysis, hence the next 

step will be to test these algorithms in a near-real time forecasting system. 
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1. Introduction  

1.1. Data Assimilation and Observation Thinning 

The process of data assimilation (DA) was originally created to deal with the chaotic nature 

of the atmosphere. Both the atmosphere and the ocean can be described as forced, 

dissipative dynamical systems with simple physical variables, e.g. temperature, pressure, 

wind or current velocity, etc., but complicated by the fact that these variables are inter-

related and change from one point to another, so very large grids are needed to characterize 

them (Lorenz, 1995). In general, the two main sources of information needed to study the 

state and evolution of geophysical fluid dynamics are provided by numerical models and 

observations. The goal of DA is to combine all available information to calculate an optimal 

approximation of the state of the atmosphere or ocean (Talagrand, 1997; hereafter T97). 

In a broad sense, DA consists of interpolating a prior or background solution from the 

model to the observation points, computing the difference between both values -called the 

innovation- and then interpolating back to the model grid points to correct the background 

values, to obtain a posterior solution, known as the analysis (T97). In this context, there 

are two primary objectives for the assimilation of data: the first is to improve the accuracy 

of the initial conditions for numerical weather prediction (NWP) and ocean forecasting, 

and the second, and more widely used in physical oceanography, is to reasonably describe 

the state of the system during a given period of time, via a so-called reanalysis of historical 

data (T97).  

 

Although the DA problem has a specific formulation (refer to section 2.2), the large 

dimension of the state variables and the inexact nature of observations and discretized 

physical equations ensure that the solution will have an associated uncertainty (T97; 
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Moore et. al., 2019; hereafter M19). Furthermore, many simplifying assumptions need to 

be made to identify a numerically tractable solution. In particular, the errors in the 

background state and the observations are generally assumed to be unbiased and 

described by Gaussian distributions with known covariances (M19; Lahoz et. al.,  2010). 

Currently there are two different approaches to DA: sequential and variational 

assimilation (T97; Edwards et. al., 2015; M19), which act respectively as filters and 

smoothers of the data. In sequential methods, such as the Kalman Filter, data are 

assimilated as and when observations become available, i.e. the analysis is performed at 

the observation times and the model is integrated between each successive analysis (T97; 

Edwards et. al., 2015). On the other hand, the goal of variational assimilation is to adjust 

a model background solution to all observations available during the assimilation window 

(T97). In 3-dimensional variational (3D-Var) DA, the time window is very short, and the 

observations are considered to correspond to one single common time much like the 

Kalman Filter, while in 4-dimensional variational DA (4D-Var) the observations times are 

respected, making it necessary to dynamically interpolate the ocean state vector in space 

and time (Figure 1) (Edwards et. al., 2015; M19). 

 

Figure 1 -  Representation of sequential and variational data assimilation schemes (from Edwards 
et. al. 2015). a) Represents a sequential data assimilation approach, such as a Kalman Filter, in 
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which the model is integrated forward in time until observations are available, and an analysis is 
then performed. The result in this example is 7 assimilation cycles to span a period of 8 time units. 
b) Represents 4D-Var, in which for the same 8 time units there is only one assimilation window, and 
the data throughout the entire time window contributes to the analysis, i.e. the analysis at any time 
in the window is affected by observations prior and posterior to that time, hence 4D-Var acts as a 
smoother.  
 
The DA analysis procedure is first briefly presented here to address the motivation for this 

thesis, although further details are given in section 2. Following the generally accepted DA 

notation of Ide et. al. (1997), the ocean state-vector is denoted 𝒙 and it comprises all the 

grid-point values of the model prognostic variables. The background and analysis are 

respectively denoted 𝒙! and 𝒙". The goal of DA is to find the best, linear, unbiased estimate 

(BLUE), which can be expressed as:  

𝒙" = 𝒙! +𝑩𝑯#(𝑯𝑩𝑯# +𝑹)$%*𝒚& −𝐻(𝒙!).   (1) 

where 𝒚&  is the observation vector consisting of all the observations from different 

platforms, and 𝑩  and 𝑹  are respectively the background error and observation error 

covariance matrices (T97; Moore et. al., 2011; hereafter M11). The non-linear observation 

operator 𝐻 transforms the model state vector to the observation locations in space and time, 

and 𝑯 is its tangent linearization (M11). The BLUE can then be interpreted as a correction 

applied to the background, and this correction takes the form of a weighted sum of the 

innovations 𝒅 = *𝒚& −𝐻(𝒙!).. The weights are given by 𝑲 = 𝑩𝑯#(𝑯𝑩𝑯# +𝑹)$% which is 

known as the Kalman gain matrix (M11). 

 

The number of observations 𝑁 in ocean DA, can very easily exceed 106, thus the 𝑁 ×𝑁 

matrix inversion (𝑯𝑩𝑯# +𝑹)$% can be a major practical challenge. While state-of-the-art 

observation platforms such as earth-orbiting satellites and radar networks yield valuable 

information about the earth system, the computational cost, bandwidth and storage 

constraints imposed by large data volumes can present significant challenges (Ochotta et. 

al., 2005; Ramachandran et. al. 2005). In addition, the large volume of data presents 
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further challenges for the DA system. High correlations in the background or observation 

errors can produce different problems. For example, for remote sensing observations 

closely separated in space and time, 𝑯𝑩𝑯# can have columns very similar to each other, 

becoming an ill-conditioned matrix. Furthermore, the inversion of (𝑯𝑩𝑯# +𝑹)$%  is 

calculated by solving an equivalent system of linear equations using an iterative conjugate 

gradient method (M11). Given the heterogeneous nature of the physical observations, 

preconditioning is a critical step in calculating the BLUE, and it is usually achieved by 

using the equivalent matrix (𝑹$%𝑯𝑩𝑯# + 𝑰)$% (M11). The evaluation of 𝑹$% is trivial if 𝑹 is 

a diagonal matrix, but this implies an unrealistic assumption of uncorrelated observation 

errors. 

 

All of the practical challenges outlined above can, to a certain extent, be ameliorated by 

data thinning which in NWP is considered to be an essential step before assimilating the 

data. Essentially, there are two classes of thinning algorithms: simple and intelligent. 

Simple algorithm techniques include random subsampling or combining several 

observations into one so-called “superobservation”. In this case, observations that are 

closely separated in space and/or time are combined into a single datum, which reduces 

considerably the dimension of 𝑯𝑩𝑯#  in (1) and improves the conditioning of the matrix 

inversion. Furthermore, the observations can be “superobed” or thinned in space to the 

extent that the resulting observation errors are approximately uncorrelated, which 

justifies the use of a diagonal 𝑹  in (1).  

 

In contrast to simple algorithms, intelligent data thinning (IDT) algorithms seek to reduce 

the number of observations while retaining as much information as possible (Lazarus et. 

al. 2010). In this study, two different thinning algorithms for ocean surface observations 
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were explored in a domain encompassing the California Current System (CCS). How the 

thinning affect the overall performance of DA as implemented in the Regional Ocean 

Modeling System  (ROMS) was then analyzed. One simple “superobing” technique was 

applied to thin radial sea surface velocity measured by a network of coastal high frequency 

(HF) radars, while an IDT algorithm was implemented to thin SST satellite observations. 

The IDT technique retains data in regions of high spatial variance, and discards data in 

regions of low spatial variance, as described in Ramachandran et. al (2005).  

 

1.2. The California Current System 

The focus of this study is the California Current System (CCS). The CCS is one of five 

Eastern Boundary Currents (EBCs) in the world ocean (the others being the Humboldt, 

Canary, Benguela and Leeuwin currents). Upwelling-favorable winds in all but the 

Leeuwin Current (off the west coast of Australia) promotes high primary production that 

sustain large marine ecosystems which in turn support economically important fisheries 

and that have a significant influence on the global carbon cycle (Carr and Kearns, 2003). 

In particular, the CCS, the system of currents in the North East Pacific subtropical gyre 

is an upwelling region of great interest not only because of its economic and environmental 

impacts, but also because much of what has been learnt here will be applicable to the other 

EBC regions.  

 

The CCS can be described as a confluence of different currents (Figure 2), some of which 

vary significantly between the winter and summer seasons. At the surface we find the 

equatorward California Current (CC), which is broad (~1000 km wide and 500 m deep) and 

slow (peak speed is ~10 cm/s)  (Marchesiello et. al., 2003). The CC is part of the 

equatorward branch of the subtropical gyre (Talley, 2011) and its eastern side flows above 
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the California Undercurrent (CUC), which is narrow (between 10 km and 40 km) flowing 

poleward over the continental slope (Marchesiello et. al., 2003). The nearshore currents 

are strongly seasonal, in response to the winds that drive them. During Spring/Summer 

there is a strong equatorward coastal jet, that forms in response to the characteristic 

upwelling of this region; and during the winter a poleward coastal current (the Davidson 

Current) develops.  

 

Figure 2: A schematic representation of the currents that form the CCS (from Checkley and Barth, 
2009) 
 

Three different water masses coincide in the CCS: Pacific Subarctic Water, North Pacific 

Central Water and Southern Water (Marchesiello et. al., 2003). The confluence of these 

different water masses, in addition to the coastal topographic features of the region, add 

to the complexity of the circulation described above. In particular, the phenomenon of 

coastal upwelling has been widely observed and studied, and its influence is far reaching, 

e.g. on climate and primary production. Upwelling of cold water plays a significant role in 
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climate, interacting with the atmospheric boundary layer via the marine layer and clouds 

(Dorman et. al., 2013). The atmospheric response to the cold water at the surface is the 

flow of off-shore thermally-driven winds (Dorman et. al., 2013). The seasonal upwelling of 

cool, nutrient-rich waters also gives rise to high levels of primary production, making this 

region seasonally and environmentally variable (Fiechter et. al. 2018).  

 

1.3. Data Sets  

The data sets used for this project span the CCS and were downloaded and post-processed 

by the Ocean Modeling Group at the UCSC Ocean Sciences Department. Our input data 

comes as Network Common Data Form (NetCDF) files, a widespread format in array-

oriented scientific data (https://www.unidata.ucar.edu/software/netcdf/), and in particular 

the format used for ROMS input and output data streams. Observations of sea surface 

height (SSH), salinity, ocean temperature and sea surface velocity were assimilated. All of 

the observations of different variables to be assimilated are merged to create a single 

observations NetCDF file. Observations were obtained from different sources; for example 

SSH and salinity are from the Copernicus Marine Service (CMEMS, 

https://marine.copernicus.eu/), and temperature observations are available from several 

platforms such as satellites, ocean gliders and free-drifting ARGO profiling floats. Our 

thinning efforts are focused on the voluminous subsets conformed by gridded SST, 

obtained from satellite data from the Operational Sea Surface Temperature and Ice 

Analysis (OSTIA, https://ghrsst-pp.metoffice.gov.uk/ostia-website/index.html) system, and 

radial sea surface velocity, obtained from a network of HF radars operated by the National 

Oceanic and Atmospheric Administration’s (NOAA) Integrated Ocean Observing System 

(IOOS, https://ioos.noaa.gov/). Figure 3 shows the typical extent of the HF radar coverage 
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along the U.S. West Coast and the HF radar antenna locations. Figure 4 shows a close up 

of the coverage in Central California 

 

Figure 3 – An example of the typical HF radar coverage along the U.S. West Coast. The location of 
the individual antenna is indicated by the black circles, while the colors show the measured radial 
velocities in m s-1. 
 
As part of the post-processing stage, SST data was averaged resulting in one observation 

per grid point per day, and sea surface velocity was averaged to obtain a daily map of 

observations. Data in this format are the input for the thinning algorithms described in 

section 2.3. The assimilation was performed using observations for a period of one year, 

from 2017-12-31 to 2019-01-02, with an assimilation window of 4 days (i.e. analogous to 

the assimilation cycle described in figure 1b), resulting in 92 consecutive assimilation 

cycles. The analysis for the final time in each assimilation cycle is used as the initial 

condition for the background of the following assimilation cycle. The geographical domain 

for this study encompasses the U.S. West Coast, extending between latitudes 30º N to 48º 
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N and longitudes 134º W to 116º W (see Figure 3).  This domain is designed to study the 

CCS. Although some of the assimilated observations correspond to different ocean depths, 

the data thinning is focused on the surface level.  

 

 

Figure 4 – A close-up example of HF radar coverage in Central California. The location of the 
individual antenna is indicated by the black circles, while the colors show the measured radial 
velocities in m s-1. 
 

The thesis is organized in the following way: Section 2 describes the model (ROMS), further 

details about the 4D-Var method used, and the implemented thinning algorithms. A set of 

preliminary single cycle experiments, and subsequent multiple cycles experiments are 

described in Section 3. Section 4 explores different ways to analyze and compare results of 

the different experiments, specifically calculating innovation statistics, performing a priori 

and a posteriori error consistency checks, analyzing the topology of the total error 

covariance matrix, and calculating the impact of each type of observation in the analysis. 
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Finally, section 5 summarizes the conclusions and outlines possible future avenues of work 

to continue researching the topics presented here. 

2. Methods   

2.1. The Regional Ocean Modeling System (ROMS) 

2.1.1 Model Description 

 
ROMS is a 3-dimensional, free-surface, terrain-following coordinate numerical model that 

solves the Navier-Stokes equations using the hydrostatic and Boussinesq approximations 

(Haidvogel et. al., 2008). The dynamical primitive equations are time-discretized using the 

third-order accurate linear multistep method leapfrog and Adams-Moulton corrector 

(www.myroms.com). The spatial discretization consists of a staggered grid that results 

from the vertical topography following coordinate z=z(x,y,s), and the Arakawa C-grid in 

the horizontal (Figure 5) (Haidvogel et. al., 2008). The terrain-following s-coordinate 

represents the vertical distance from the surface as a fraction of the local water column 

thickness, and it can be combined with nonlinear stretching (Shchepetkin and Williams, 

2004). 

 
 
Figure 5 – The ROMS staggered grid based on Arakawa C-grid 
(https://www.myroms.org/wiki/File:4dvar_staggered_grid_rho_cells.png) 
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Different modules constitute the dynamical kernel of ROMS. The nonlinear model 

(NLROMS) numerical design and algorithm are thoroughly described in Shchepetkin and 

Williams (2004). Of special interest for the DA application are the tangent linear model 

(TLROMS) and the adjoint of the tangent linear model (ADROMS). TLROMS represents 

a first-order Taylor expansion of NLROMS and yields the Jacobian of the dynamical 

operators of the nonlinear model (Moore et. al., 2004). ADROMS is the adjoint of the 

Jacobian operator and provides information about the sensitivity of the model solution to 

variations in the model variables, boundary conditions and parameters (Moore et. al., 

2004). TLROMS and ADROMS are critical components of the 4D-Var data assimilation 

system. The prognostic variables in the ROMS primitive equations are potential 

temperature (T), salinity (S), horizontal velocity (u,v), and sea surface displacement (z) 

(M11). Since the model is hydrostatic, vertical velocity is computed from the divergence of 

the horizontal velocity. As noted in section 1.1, the state vector 𝒙(𝑡') = (𝑇, 𝑆, 𝑧, 𝑢, 𝑣)# 

consists of all the values of the prognostic variables at every ocean grid point at time ti and 

it is propagated forward in time by NLROMS. The resulting circulation depends also on 

the surface forcing and lateral open boundary conditions, denoted respectively as 𝒇(𝑡')	and 

𝒃(𝑡')), and, following M11, can be represented as: 𝒙(𝑡') = 𝑀(𝑡' , 𝑡'(%)(𝒙(𝑡'$%), 𝒇(𝑡'), 𝒃(𝑡')). 

	

2.1.2 Model Configuration 

 
The ROMS model configuration used for this project consists of a 184x179x42 grid with a 

mean resolution dx~8.5km and dy~15km and 42 vertical levels and extends between 

latitudes 30º N to 48º N and longitudes 134º W to 116º W (Figure 6). Although some of the 

assimilated observations correspond to different ocean depths, the data thinning discussed 

in section 1.1 is focused on the surface level. The surface forcing boundary conditions were 
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computed from atmospheric fields from the Monterey Naval Research Laboratory’s 

Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS, 

https://www.nrlmry.navy.mil/coamps-web/web/view) and boundary conditions at the 

ROMS open boundaries from the Hybrid Coordinate Ocean Model (HYCOM, 

https://www.hycom.org/) global DA product. 

 
Figure 6 – The ROMS bathymetry and extent of the model domain for the CCS. 
 

2.2. 4-dimensional Variational Data Assimilation (4D-Var) 

Variational DA can be interpreted as an application of Bayes’ theorem, although 

representations in control theory and other fields lead to the same general results (T97; 

Edwards et. al., 2015; M19). According to Bayes’ theorem, the posterior conditional 

probability for the state vector 𝑥, given the observations 𝑦 is given by: 

𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦) 																																																																			(2) 

where 𝑝(𝑥)	denotes the prior distribution, 𝑝(𝑦|𝑥)	is the data distribution, and 𝑝(𝑦) is a 

normalizing constant (Edwards et. al., 2015). In the case of Gaussian distributions for the 
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background errors and observation errors, then 𝑝(𝑥|𝑦) ∝ exp	(−𝐽)*)  where, following the 

notation introduced in section 1.1: 

 

𝐽)* = (x − x+),𝐁$%(x − x+) + [y − H(x)],𝐑$%[y − H(x)]	.																																(3) 

The scalar 𝐽)* is usually referred to as the cost function and the goal of DA is to identify 

the vector 𝑥	that maximizes 𝑝(𝑥|𝑦), and hence minimizes 𝐽)* (Edwards et. al., 2015).  

 

M11 have developed and described three variants of 4D-Var algorithm that are supported 

by ROMS. In this study a dual formulation of 4D-Var that evolved from the physical-space 

statistical analysis system (4D-PSAS) (see the flow chart in Appendix B) has been used. 

The goal of 4D-Var is to find the BLUE over a finite time interval. Specifically, the 

observation operator 𝐻 in (1) includes NLROMS, while the linearized operator 𝑯 and the 

transpose 𝑯#  rely on TLROMS ad ADROMS respectively. In this way, information is 

dynamically interpolated in space and time via the dynamics that control the ocean 

circulation (M19).  

 

ROMS 4D-Var uses an iterative Gauss-Newton method based on an incremental approach 

to 4D-Var, and consists of calculating the increments δx- =	 (x- − x-$%) that minimize a 

sequence (known as inner-loops) of linearized approximations of 𝐽)*, that can be expressed 

as:  

𝐽-(δx-) = δx-
,𝐁$%δx- + (𝐝𝒏 −𝐇𝒏δx-),𝐑$%(𝐝𝒏 −𝐇𝒏δx-)																										(4) 

where 𝐝𝒏 is the innovation vector introduced in section 1.1, and the initial guess, x/, is the 

background state-vector (M11) so that:  

𝐝𝒏 = *𝐲 − H(x-$%)..																																																																											(5) 
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The solution x  is updated in during so-called outer-loops according to x- = x-$% + δx- 

(M11). In the 4D-Var experiments presented here 7 inner-loops and 2 outer-loops were 

used based on the operational real-time analysis-forecast that is run at UCSC in support 

of IOOS using the same ROMS configuration.  

At the end of the final outer-loop, the solution (posterior/analysis state vector) is then given 

by: 

𝒙" = 𝒙! + 𝜹𝒙"																																																																																(6) 

The solution of the 4D-Var problem consists of estimating the increment 𝜹𝒙", which in its 

dual form can be expressed as: 

𝜹𝒙" = 𝑩𝑯#(𝑯𝑩𝑯# +𝑹)$%*𝐲 − H(𝒙!).																																																	(7)	 

which leads to (1). 

As discussed in section 1.1, inverting the matrix (𝑯𝑩𝑯# +𝑹) represents one of the major 

computational challenges of 4D-Var. (𝑯𝑩𝑯# +𝑹)  is also referred to as the stabilized 

representer matrix and it represents the total error covariance in the observations space 

(Moore et. al., 2021; hereafter M21). According to (3) (or (4)) 4D-Var can be interpreted as 

a least squares problem that seeks to minimize the difference between the model and the 

observations, given certain background and prior errors (M11).  The dual form approach 

refers to the fact that the minimization is solved in the observation space, which in general 

has a dimension several orders of magnitude smaller than the state space.  This means 

that instead of estimating the state space increment 𝜹𝒙", the counterpart in observation 

space 𝒘" is identified, solving the system: 

𝒘" = (𝑯𝑩𝑯# +𝑹)$%𝐝																																																																					(8) 

As noted in section 1.1, the inverse in equation (8) is evaluated using a conjugate gradient 

algorithm which yields a reduced-rank factorization of the stabilized representer matrix. 
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Specifically, the Lanczos formulation of the conjugate gradient algorithm is applied to the 

rescaled stabilized representer matrix  𝑷 (M11) so that: 

𝑷 = 𝑹(𝑹$%𝑯𝑩𝑯# + 𝑰)																																																																		(9)  

𝑷$𝟏 ≈ 𝐕𝒎𝐓𝒎$𝟏𝐕𝒎𝑻(𝑯𝑩𝑯#𝑹$%).																																																							(10)  

To account for the fact that the state vector represents a variety of variables, with different 

physical units, the matrix 𝑷 is preconditioned with 𝑹$𝟏, which yields a non-dimensional 

matrix denoted here as 𝑷b, such that: 

𝑷𝒎c ≈ 𝐕𝒎𝑻𝒎𝐕𝒎𝑻 (𝑯𝑩𝑯#)																																																																								(11) 

 

where 𝐕𝒎 is the matrix of Lanczos vectors, with one vector calculated in each inner-loop as 

shown in the flow chart in Appendix B (M11, M21). In the experiments presented here, 

m=7. The matrix 𝑻𝒎 is symmetric, positive definite and tridiagonal, and it has the same 

eigen spectrum, and proportional eigenvectors (also referred to as Empirical Orthogonal 

Functions, EOFs, in this context) to 𝑷b, and its computation is trivial in any numerical 

computing environment, since 𝑻𝒎 is in this case an mxm matrix (M21). Equation 10 shows 

that 𝑷$𝟏 can be interpreted as a gain matrix applied to the innovation vector to calculate 

the BLUE of the circulation in observation space, so its properties are of considerable 

interest, and are explored in Section 4.3. 

 
Currently the UCSC Ocean Modeling and Data Assimilation group runs a daily near real-

time 4D-Var analysis of the CCS using the previous 4 days to produce an estimate of the 

physical state of the ocean (https://oceanmodeling.ucsc.edu/ccsnrt/). Figure 7 shows the 

typical output of the model for horizontal velocity, sea surface height, temperature and 

salinity for 2021-05-14. 
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Figure 7 – Typical output of  the near real-time 4D-Var assimilation performed daily by the UCSC 
Ocean Modeling team https://oceanmodeling.ucsc.edu/ccsnrt/ 
 
 
2.3. Thinning algorithms 

2.3.1. Radar Superobs 

 
Since radar is the instrument that provides the best observations to study storms, the 

problem of assimilating radar data has been historically studied in the context of NWP 

(Fabry and Meunier, 2020). In general, there are two types of operationally available radar 

data for NWP: reflectivity of hydrometeors and doppler radar winds (Fabry and Meunier, 

2020). Although both types of observations are difficult to assimilate in NWP, reflectivity 

is particularly challenging because its relation to the model state variables is complicated, 

and also due to the convective-scale, rapid and unstable nature of storms (Fabry and 

Meunier, 2020). On the other hand, doppler velocity is more widely used by many 

operational NWP centers to improve weather forecasts (Fabry and Meunier, 2020). In 

addition to the NWP foundations of radar DA, the installation of HF radar systems to 

monitor the coastal oceans around the world has generated multiple studies on the 

assimilation of surface currents in ocean models (Shulman & Paduan, 2008). Sea surface 

velocities measured by a network of 48 HF radars along the U.S. West Coast produce a 

high-density distribution of observations (Figures 3 and 4). Given the radial nature of 



 17 

radar observations, then close to the radar stations the density of observations is high, 

resulting in a large number of observations per model grid cell (Bick et. al. 2016; hereafter 

B16). Because on this, and in order to attenuate the effects of observation correlation, 

superobing discussed in section 1.1 is a common strategy that is used to thin radar data 

(Gustafsson et. al., 2018).  

 

In order to create an even distribution of observations in the surface velocity dataset 

described in section 1.2, and to minimize some of the potential issues discussed in section 

1.1, the superobing procedure described by B16 and Waller et. al. (2019) for NWP 

applications was adopted in the experiments described here. Superobing consists of 

averaging several radial bins to a single so-called superobservation, and is generally 

applied to each radar site individually (B16). The algorithm was implemented to allow 

changes in the resolution of the resulting superobservations by defining a set of parameters. 

Figure 9 shows a flow chart of the steps applied to each HF radar site.  With reference to 

Figure 9, to increase the resolution the parameter finer_grid_switch can be turned on, in 

which case superobservations are also assigned to intermediate points in between model 

grid points.  Resolution can also be decreased by increasing the parameter grid_step, which 

allows subsampling of the model grid while assigning superobservations. For each model 

grid point a pie-wedge area is defined (Figure 8) with an angle and range that depends on 

the distance from a point to the radar antenna location (B16). First, the radar bin closest 

to that grid point is located, which will be the location of the superobservation (B16). The 

value of the superobservation is calculated as the average of all the observations located 

inside the pie-wedge area (B16). The size of the area surrounding the grid point at a 

distance 𝑟/	 from the radar site is given by the range and the azimuth angle, calculated as: 

§ Width of range interval: L3√2 
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§ Azimuths at range 𝑟/	: φ = 2arctann(L3√2/2)/r/p 

where L3 is the grid is a tunable parameter that sets the spatial scale of averaging (B16). 

The default resolution is defined by the model configuration grid (corresponding to Lx=0.1 

degrees). The parameter min_number_obs defines the minimum number of observations 

required to create a superobservation. Figure 10 shows a flow chart describing the 

algorithm applied to every grid point in the sub-grid defined for each HF radar site.  

 

Figure 8 – Example of wedge-pie area used to calculate one superobservation in the vicinity of a 
radar site south of Monterey Bay. 
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Figure 9 – Flow chart of the logic applied to every HF radar site in the superobing algorithm. 
 

 

Figure 10 – Flow chart applied at each grid point in the vicinity of an HF  radar site to calculate a 
superobservation. 



 20 

 
2.3.2. An IDT algorithm for SST 

 
For the SST dataset an IDT algorithm based on Ramachandran et. al. (2005; hereafter R05) 

was implemented to retain data in regions with a high content of information (i.e. regions 

where the spatial variance is high, such as in the vicinity of temperature fronts) while 

eliminating redundant observations by subsampling regions with low variance. The data 

thinning is based in a quadtree decomposition of the model domain, in which data are 

recursively divided into four quadrants (R05). In a preprocessing step, data is normalized 

to the range (0,1), and a global mean for the dataset is calculated (R05). This global mean 

multiplied by a cutoff threshold results in an acceptable standard deviation that yields the 

cutoff variance within each quadrant (R05). For each quadrant an F-test is performed to 

statistically compare the variance of the quadrant (varQ) with the acceptable cutoff 

variance (varT) (R05). If the quadrant has a variance greater than the cutoff, the algorithm 

divides the region into 4 quadrants again, otherwise the recursive decomposition is 

terminated and the central data point of the quadrant is used as a thinned representative 

value for the whole quadrant (R05).  The pseudocode for this algorithm as presented in 

R05 is in Appendix A, and Figure 11 shows a flow chart of the logic applied to each 

quadrant under analysis.  

 

Figure 11 – Flow chart applied to each quadrant to detect regions of high spatial variance. 
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An example of how the quadrants are divided and the F-test calculated for a simulated 

velocity field is shown in Figure 12. Figures 12 a and 12 b respectively show the full and 

the thinned data set before and after applying the algorithm. The domain was divided into 

4 quadrants and the F-test was applied to the first quadrant (in this case lower left, Figure 

12 d). Since the variance of the quadrants was higher than the cutoff variance, this 

quadrant was divided into quadrants again (Figure 12 e). The F-test was applied again to 

the first of the new set of quadrants, resulting in the decision to divide into quadrants 

again. Finally in Figure 12 f, the variance of the quadrant is lower than the threshold 

variance, so the middle-point is retained and all the other values are discarded. Then the 

same logic was applied to the remaining quadrants. 

 
 
Figure 12 – An example on how the IDT algorithm recursively divides the domains into quadrants 
until the spatial variance is low enough to subsample the quadrant and move on to the next one. The 
2-dimensional velocity field was created as a random linear combination of 2D Gaussian 
distributions. 
 

The IDT algorithm was initially identified as a potential candidate for thinning gridded 

surface velocity estimates based on the HF radial measures. It is for this reason, the IDT 
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algorithm was first tested for u and v velocity fields in the form of random linear 

combinations of 2-dimensional Gaussian distributions illustrated in Figure 12, and then 

applied to gridded u and v fields from ROMS. Figure 13 shows the velocity fields before 

(Fig. 13 a) and  after (Fig 13 b) the thinning. Figure 13 b shows that after the thinning the 

remaining data still captures eddies and other circulation features that are characterized 

by high spatial variance while discarding information in more uniform areas.1  

 

Figure 13- IDT thinning algorithm applied to a ROMS velocity field.  
 

For the SST data different cutoff thresholds were tested to thin a dataset representative 

of a single day, and it was found that as the threshold increases (hence varT increases), 

the percentage of the total observations retained by the thinning algorithm decays 

 
1 Since HF radar radial observations would require a transformation to u and v 
coordinates in order to apply the IDT algorithm, and because the preliminary 
experiments based on the superobservation approach showed promising results, we 
decided to use the superobing approach for radar observations, and to extend the scope of 
this thesis to evaluate thinning of SST, a 2-dimensional field that was already part of the 
datasets used for this study.   
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exponentially (Figure 14). Increasing the threshold corresponds to the situation where 

data are retained based on a larger upper-limit for the variance.   

 

Figure 14: The percentage of the observations retained after thinning decreases exponentially as 
the threshold for the variance increases. The thresholds corresponding to 75%, 50% and 25% of total 
observations are highlighted in green, single cycle experiments were performed for these thresholds. 

3. Experiments 

3.1. Single cycle experiments for radar observations 

 
As a preliminary step before running experiments for the entire dataset spanning a full 

year, a series of experiments for the single DA cycle for the 4-day period 2017-12-31 to 

2018-01-03 were first performed. This allowed for algorithm testing and debugging and for 

exploring their fundamental properties before applying them to a longer time interval. The 

control experiment (sc.1) consists of assimilating all of the available data for the cycle, i.e. 

no thinning or superobing takes place in this case. A first set of experiments for radar 

observations (experiment sc.2 to sc.4) was based on a simple thinning, uniformly 

subsampling the radar observations. The following set of experiments (sc.A to sc.D) 

consisted of creating superobservations for each radar site at each observation time during 

the 4D-Var DA cycle, using different criteria for the grid resolution and the minimum 

number of observations used to compute a superobservation. Table 1 (Appendix C) 
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summarizes the criteria employed in each experiment, and Table 2 (Appendix C) shows 

the parameters described in section 2.3.1 that were defined for experiments sc.A to sc.D. 

Figure 15 shows examples of the different strategies used for computing superobservations 

using observation from a single radar site south of Monterey Bay. Experiments sc.A and 

sc.B (Figure 15 a) retain one superobservation per grid point, while in experiment sc.B a 

superobservation is retained  only if three or more observations were used to calculate it. 

The latter approach filters out data in regions where the observation error is known to be 

larger (i.e. far away from the radar). Figure 15 b shows the result of superobing with lower 

(experiment sc.C) or higher resolutions (experiment sc.D). 

 

 
 
Figure 15. Visual representation of superobing to the model grid resolution for a single HF radar 
site located south of Monterey. Squares represent the full data set for this radar site at this survey 
time, and circles represent the resulting superobservations.  
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A challenge in operational NWP and ocean forecasting is that the true state of the system 

is never known, so it can be difficult to quantify the relative performance of different 

approaches. We will return to thus issue in section 4. For now, one way to evaluate the 

impact of the different superobservation strategies on the 4D-Var circulation estimate is 

to calculate the root-mean-square (rms) difference between the model interpolated to the 

observation location and the corresponding observation (Edwards et. a., 2015). A similar 

approach was followed here, although the standard deviation of the innovation vector was 

calculated instead of the rms. For a large number of observations 𝑝  and a mean that tends 

to zero the standard deviation yields a similar measure of the error, and it can be compared 

with the square root of the expected error, which also represents an error in the form of a 

standard deviation. The differences between model and observations were calculated 

before and after the assimilation. These differences are respectively referred to as the 

innovation (Eq. 11) and residual (Eq. 12), and their standard deviations were calculated 

as shown according to equations (13) and (14).                          

𝒅! = 𝒚 −𝐻(𝒙!)																																																																																									(12) 

𝒅" = 𝒚 −𝐻(𝒙! + 𝜹𝒙")																																																																												(13) 

 

𝜎'--&4"5'&- = r 1
𝑝 − 1s(𝑑! − 𝜇!)'6

7$%

'8/

																																																																	(14) 

𝜎9:;'<="> = r 1
𝑝 − 1s(𝑑" − 𝜇")'6

7$%

'8/

																																																																				(15) 

 

where 𝜇!   and 𝜇"	respectively represent the mean of the innovation and the residual 

vectors. 𝑝 in this case represents the number of HF radar observations, and the innovation 

and residuals are calculated only for these observations. Figure 16 shows the results for 
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the single cycle experiments. Although sc.1 shows the lowest error after assimilation (in 

light blue), all the experiments show an improvement (i.e. lower error) after assimilation, 

even when keeping only 3.5% of the observations (experiment sc.C).  

 

For reference, Figure 16 also shows (in green) the expected error in the innovation 

computed from the diagonal of the stabilized representer matrix (𝑯𝑩𝑯# +𝑹) which, as 

shown in section 4.1, is the expected error covariance for the innovation vector 𝒅. Therefore, 

the green bars in Figure 16 can be thought of as the standard deviation of the expected 

probability density function of the innovations. In all cases, the single realization of the 

innovation vector lies further than one standard deviation from the mean. For case sc.1 

the standard deviation of the residual is lower than the expected error, and the same is 

true for sc.D, although the difference is smaller. For the subsampling experiments sc.2-4 

the residual error increases as the number of retained observation decreases, and for the 

superobing experiments sc.A-D the residual error and the expected errors are very similar. 

This preliminary error analysis indicates that, overall, the thinning algorithm applied to 

the HF radial observations is well-behaved and performing correctly. 

 

 
Figure 16 – Comparison between the expected error (green) and the estimated errors before (purple) 
and after assimilation (light blue) for the single cycle experiments thinning HFR observations. 
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Figure 17 – Expected and estimated errors before and after assimilation for single cycle experiments 
thinning SST.  
 

3.2 Single cycle experiments for SST observations. 

In order to emulate the idea of thinning the dataset to different resolutions, we tested 

several different thresholds for the SST dataset, and after visually inspecting the results 

(Figure 18) three different thresholds were chosen (highlighted in green in Figure 14) as 

candidates DA experiments. Table 3 (Appendix C) summarizes the single cycle (2017-12-

31 to 2018-01-03) experiments for SST thinning. 

Expected errors for the SST thinning experiments were calculated as explained in section 

3.1, using equations (11)-(14), but in this case 𝑝  refers to the remote sensed SST 

observations. In this case, the experiment using all the observations (sc.1, Figure 17) again 

has the lowest error after assimilation, with the error gradually and slightly increasing as 

more observations are discarded (sc.sst.2-4, Figure 17). The expected error is in all cases 

higher than the standard deviations of 𝒅! and 𝒅", and again the thinning strategy is well-

behaved. 
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Figure 18 - Representation of the SST field for a single survey time. Panel a shows the temperature 
field using all the available observations. Panels b, c and d show the same field after keeping 75%, 
50% and 25% of the total observations.  
 

3.3 Multiple cycle experiments 
 

Based on the preliminary analysis of the single cycle experiments of sections 3.1 and 3.2, 

a set of three DA experiments (Table 3, Appendix C) was designed using the dataset for 

the full year described in section 1.2.  A MATLAB script to create the observation files for 

all the experiments was created in a way to easily create files with all the available 

observations, or thinned observations for either one of both variables under analysis (i.e. 

radial velocities and/or SST). Also, any of the experiments tested for the single cycle can 

be set up for the multiple cycles.  Given that after the preliminary analysis, all of the single 

cycle experiments seemed feasible to be extended to more cycles, the criteria used to define 
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the multiple cycle experiments was to choose a thinning level that would allow an increase 

or decrease in the amount of discarded observations in future experiments. Exp01 was 

defined as a control test in which all the available observations were assimilated without 

thinning of any kind. For Exp02 and Exp03 only one of the observed variables was thinned 

(i.e. either surface radial velocities or SST) using the whole set for the other one. For Exp02 

radial velocities were thinned using the same parameters described for sc.B, in principle 

to test the analysis while having an observation resolution similar to the model grid (i.e. 

keeping one observation per grid point). On the other hand, Exp03 represents an extension 

of experiment sc.sst.2, which keeps approximately 50% of the SST observations.  The 

results of the multiple cycles experiments are discussed in the next section. 

 

4. Analysis 

In a strict sense, errors should be calculated as the difference between the analysis and 

the true state of the system. Since the true state is not known, a series of statistical 

analyses was performed (following the practice in NWP) to assess the reliability of the 

assimilation for each observing system. The covariance matrices 𝑩  and 𝑹  represent a 

priori estimates of the uncertainties associated with the background and the observations, 

and as shown in sections 1.1 and 2.2 they are essential components of the analysis state-

vector (Eq. 6). The accuracy of the solution depends on the statistical distributions for the 

background errors and observation errors, which are assumed to be normal and unbiased, 

but in reality they are not well known and very difficult to estimate (Desroziers et.al., 2005; 

Lahoz et.al., 2010). Nonetheless, it is important to test the efficacy of the underlying 

assumptions of normal, unbiased errors in order to place the experimental results in their 

proper context. 
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4.1. Innovation statistics  

One method to evaluate each experiment is to check if the error statistics assumed in the 

assimilation scheme are correctly specified based on the expected error statistics of the 

innovation vector, which can be rewritten as: 

𝐝 = *𝐲 − H(x). ≅ 𝜖/ −𝐇	𝜖!																																																																	(16)	 

𝜖/ and 𝜖! are respectively the vectors of observation and background errors. Assuming 𝜖/ 

and 𝜖! are uncorrelated, the statistical expectation of the vector of innovations should then 

satisfy the following relation (Desroziers et. al., 2005; hereafter D05): 

E[𝐝,𝐝] ≅ E[𝜖/,𝜖/] + 𝐇	E[𝜖!,𝜖!]𝐇,				.																																																					(17)	 

Equation (17) thus provides a global check on the specification of B and R (D05) since: 

E[𝐝,𝐝] = 𝐑 +𝐇𝐁𝐇,																																																																				(18) 

Figure 19 shows a time series of the square root of the mean squared innovations (blue) 

and the expected error represented by  y𝑇𝑟{𝐑 + 𝐇𝐁𝐇,}/𝑝 (cyan), where 𝑝 is the number of 

observations of the variable under analysis. For radial velocities (Figure 19 a-c), Exp01 

shows good agreement between the a priori expected and a posteriori calculated errors, 

especially between May and September. During the winter there is a sustained 

inconsistency where the expected total error seems to have been overestimated. Between 

mid-September and mid-October, and also in mid-November there are two localized 

periods of inconsistency. The thinning of radar observations (Exp02, Fig 19 b) exhibits 

inconsistencies during the summer when coastal upwelling is occurring. This suggests that 

perhaps different thinning strategies may be needed during different seasons to account 

for differences in the circulation patterns. Nonetheless, Exp03 (Fig 19 c, all radar 

observations) in which the expected error was adjusted based on Exp01 (as described in 

section 4.2) before running 4D-Var shows a better consistency throughout the year.  For 

the remotely sensed SST, the most problematic period is the upwelling season of spring 
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and summer, where there are large inconsistencies for all the experiments (Figs 19 d-f), 

and in particular for the case with thinned SST observations (Exp03, Fig 19 f).  

 

Figure 19 – Consistency check between expected errors  (cyan time series) and a statistical a 
posteriori estimation of the actual errors assumed for each experiment (blue time series). The green 
diamonds highlight the cycles corresponding to the SST and surface velocity fields shown in Figures 
20-22 
 

Figure 20 and 21 show seasonal snapshots of the 4D-Var analyses of SST and surface 

velocity, where upwelling is noticeable in panels c) and d). Figure 20 shows that, as 

expected, the coldest temperatures (~10º C) are observed during the winter in the northern 

part of the domain (Fig. 20 a), while in the spring (Fig. 20 b) they increase ~2 ºC in that 

same region. During the Summer (Fig. 20 c) the majority of the domain exhibit 

temperatures ~18 ºC, except for the southern part, where temperatures exceed the 20º C, 

especially in the south-east corner of the domain with a warm tongue that reaches 24 ºC. 

A notable departure from the warmer summer and fall temperatures can be observed along 

the central coast of California, where the characteristic cold upwelling yields temperatures 

~10 – 12 ºC. Figure 21 shows that the surface velocities are more energetic during the 

spring (Fig. 21 b) and summer (21 c)  
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Figure 20 - Snapshots of a representative 4D-Var analysis of SST  for each season. The cycles shown 
are a) 20180213_20180216, b) 20180512_20180515, c) 20180812_20180815 and d) 
20181112_20181115 and are highlighted in as green diamonds in Figure 19. 
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Figure 21 – Same as Fig. 20 except showing snapshots of representative 4D-Var analyses of surface 
velocity during each season. 
As shown in Figure 3  the HF radar network provides information about the nearshore 

circulation, particularly the coastal upwelling regions. The influence of seasonal upwelling 

along the California coast is very evident in Figs. 20 and 21 in the form of cold 

temperatures during Summer and Fall. These features are highlighted in Figure 22 which 

shows the SST and surface velocities in the vicinity of the California coast. It is at these 

times of the year that the expected a priori and a posteriori diagnosed errors in Fig. 19 

disagree the most. It is known that the model temperatures are biased at these times of 

the year (Veneziani et al, 2009) which is most likely a significantly contributing factor. 

 

Figure 22 - Close up of seasonal the 4D-Var SST and surface current analyses along the California 
coast, and notably the upwelling during the summer and fall  (c and d). The color bar was adjusted 
from Figure 20 to show variations in this part of the domain.  
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Since the innovations are expected to be unbiased and normally distributed, another way 

to compare the different experiments is to estimate the probability density functions (pdf) 

of the innovations, and evaluate the leading moments. In particular, given the seasonal 

dependencies identified in Figures 20-22, it is of interest to investigate how the structure 

of the pdf changes throughout the year. To do this, the pdf of the innovations was computed 

using a sliding window that spans five adjacent 4D-Var analysis cycles. The leading four 

moments of the pdfs were computed through time and are shown in Figure 23. Figure 23 

suggests that for radial velocities the distribution of the innovation is fairly normal and 

unbiased throughout the year, while for temperatures this assumption does not hold 

during the summer, where the model appears to present a positive bias consistent with the 

findings of Veneziani et al (2009).  

 

Figure 23 - Leading moments for the innovation pdfs for the multiple cycles experiments. a)-c) 
correspond to radial velocities innovations, and d)-e) correspond to remote SST. Note that the 
kurtosis (yellow line) is scaled by a factor of 0.1 for ease of presentation. 
 

To examine seasonal differences in the innovation distributions for remote SST, the year 

was divided in four periods, JFM, AMJ, JAS, OND, that respectively represent winter, 
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spring, summer and fall, and the pdf of the innovations for each period is shown in Figure 

24. Figure 24 a-e correspond to Exp01 (i.e. all observations) and Figures 24 f-j correspond 

to Exp03 (thinned remote SST). As expected from Figure 23, the spring and summer 

periods exhibit the largest departures from a normal distribution, with a higher (negative) 

bias and higher skewness, where in a normal distribution we would expect zero mean and 

zero skewness. The mean during all periods is smaller for Exp03 than Exp01, suggesting 

that thinning remote SST observations has attenuated the bias. The standard deviation is 

higher for Exp03 in all cases, and for both experiments is higher during the spring-summer 

period. The skewness for Exp03 is higher than in Exp01 except for the fall. The kurtosis 

in all cases is higher than the value of 3 expected for a Gaussian distribution, and it is 

higher for Exp01. Despite the described differences, overall the innovations for the 

experiment with all the observations (Exp01) and thinned observations (Exp03) have a 

similar behavior, suggesting that the thinning did not significantly improve or degrade the 

underlying 4D-Var hypothesis described in section 2.2. 

Figure 25 shows the distribution of all the innovation and residual vectors for the whole 

period of one year. In all cases the innovation and residual pdfs show a better agreement 

with a Gaussian distribution than the SST counterparts. However, in general all the 

distributions are similar to a normal distribution, and the thinning experiments did not 

significantly change this behavior.  
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Figure 24 - In addition to the sliding window moments show in Figure 23, the actual innovation 
pdfs (in blue) are plotted in this case for the SST for 4 seasons for Exp01 (all the observations, a-e) 
and Exp03 (thinned SST observations, f-j). In red is shown the shape of a normal distribution with 
the same mean and standard deviation as that of each blue pdf.  
 

 

Figure 25 - Distribution for innovations and residuals as respectively defined in equations (11) and 
(12), for HF radar observations (a.1 - c.2) and remote SST observations (d.1 - f.2) for the whole year 
spanned in Exp01, Exp02 and Exp03. 
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4.2. Background error and observation error consistency  

A widespread method used in NWP to check the consistency of the background and 

observation covariances individually (as opposed to the total expected error) based on the 

output of a data assimilation analysis has been presented by D05. Diagnosed a posteriori 

values for the background error and observation error variances (respectively Eq. 11 and 

Eq. 12) can be computed after performing the analysis, and then compared with the 

variances of the errors actually specified before the assimilation (D05). If inconsistencies 

are found (i.e. if diagnosed and actual variances differ significantly), the analysis can be 

performed again adjusting the observation and background error. Specifically, D05 showed 

that the average expected background error variance *𝜎'!.
6 and observation error variance  

(𝜎'&)6 for observation type 𝑖 and associated with a subset 𝑝' of the observations are given 

by: 

(𝜎@!)}6 =s
*𝑦A" − 𝑦A!.*𝑦A& − 𝑦A!. 𝑝'

~
7!

A8%

																																																								(19)	

(𝜎@&)}6 =s
*𝑦A& − 𝑦A".*𝑦A& − 𝑦A!. 𝑝'

~
7!

A8%

																																																								(20) 

where 𝑦A& corresponds to the value of observation j, and the superscripts a	and b	refer to the 

analysis and background values associated with the same observation (D05).  
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Figure 26 - Time series of the diagnosed (continuous lines) and a priori specified (dashed lines) 
errors for background (blue) and observations (green) 
 

Figure 26 shows a comparison between the square root of the diagnosed values of equations 

(19) and (20) and the a priori specified background and observation errors. The top row 

corresponds to HF radar observations, and the bottom row corresponds to SST. The radial 

velocities errors in Exp01 (Figure 26 a) show good agreement for observations error, 

although this agreement is reduced in the spring and summer. The background errors are 

inconsistent for most of the year, where diagnosed values are in general lower than the a 

priori errors. These results were used to adjust the background error for radial velocities 

in Exp02, and Exp03, specifying them as a fraction of the initial background errors for the 

period, which increased consistency of the radial velocities background errors (Figures 26 

b and 26 c, continuous and dashed blue lines). The observation errors for Exp02 (Figure 26 

b, thinned HF radar observations) are consistent during the winter, but they show higher 

inconsistencies during the rest of the year, especially in the summer. This disagreement 

indicates that the thinning might have had an unfavorable effect during the seasons in 

which surface currents tend to be more energetic (i.e. see Figures 21 and 22), and that 

different thinning strategies are perhaps appropriate during different seasons. Figure 26 



 39 

c shows an experiment with no thinning of HF radar observations, and after the a priori 

adjustment of the errors based on Exp01, the diagnostics show a better consistency. 

Summer is still the season with the higher differences between a priori and a posteriori 

estimated errors. In addition, for SST (Figure 26 d-f) all the experiments show good 

agreement during fall and winter, but errors are markedly inconsistent during the spring 

and summer. 

 

4.3. Properties of the total error covariance matrix 

As noted in sections 1.1. and 2.2, the BLUE of the ocean state-vector essentially depends 

on the properties of the stabilized representer matrix 𝑷 = (𝑯𝑩𝑯# +𝑹) , which can be 

interpreted as the total error covariance matrix in observation space. In general, the image 

of the unit sphere in ℝ-  under any ℝBC-	(𝑚 ≥ 𝑛)  matrix is an hyperellipse in ℝB 

(Trefethen & Bau, 1997, pg. 25-26). In particular in statistical applications it is useful to 

study the properties of the hyperellipse defined by a covariance matrix (Friendly et. al., 

2013). In this case, the semi-major axes of the hyperellipse are given by the eigenvectors 

of 𝑷 and their lengths are proportional to the square roots of the eigenvalues of 𝑷. It is of 

interest then to study how the different thinning strategies affect some of the properties 

of the hyperellipse defined by 𝑷 since, as discussed in section 1.1, the primary motivation 

for thinning the observations is to alleviate potential problems associated with the 

behavior of 𝑷. 

 

In practice, as discussed in section 2.2, the hyperellipse defined by 𝑷 can be characterized 

by the eigen space of its reduced rank non-dimensional counterpart 𝑷b  (equation 10). 

Furthermore, the eigenvalues of 𝑷b and those of the tridiagonal matrix 𝑻B are the same, 

and the EOFs of 𝑷b are given by 𝑽B𝝓 where 𝝓 denotes an eigenvector of 𝑻B  and  𝑽B is the 
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matrix of Lanczos vectors (M21). Thus, the properties of 𝑻B  obtained in each 4D-Var 

analysis can be calculated to obtain information about the error covariance hyperellipse. 

For example, the aspect ratio of the hyperellipse is given by the ratio of the largest and 

smallest eigenvalues which also represents the condition number of 𝑷b . Thus, the 

eigenvalues of 𝑻B provide a direct measure of how the condition number is influenced by 

thinning experiments presented here. Figure 27 a and 27 b respectively show how the 

condition number varies for the different radial velocities and SST thinning experiments. 

For radial velocities, the condition number for all the thinning experiments is slightly 

smaller than the experiment with all the observations (sc.1), which is what might be 

expected by reducing observation density through superobing thus reducing the linear 

dependence of the columns of 𝑷b. On the other hand, the SST thinning experiments present 

a different behavior, where the condition number for the thinning cases is larger than the 

case with all the observations. In this sense, the IDT algorithm seems to exhibit an 

undesired behavior, by detecting regions of high spatial variance, it reduces the dimension 

of the matrix but the retained columns are more similar to each other than before the 

thinning. This result puts in evidence the fact that both thinning techniques presented 

here use very different strategies. In the case of superobing, the initial data set has many 

observations in every cell defined by four adjacent grid points, and the aim of the thinning 

is to obtain one observation per grid point, in a restricted region of the domain (i.e. near 

the coast). The IDT algorithm begins instead with one SST observation for each grid point 

in the whole domain, and it aims to discard a lot of these observations that do not provide 

significant new information to the analysis.  

 

Figure 27 c and d show how the eigen spectrum of 𝑷b  changes after thinning the 

observations, suggesting that there is a change in the major axis of the hyperellipse defined 
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by the error covariance matrix. In this case, experiments thinning radial velocities (Fig 27 

c) and SST observations (Fig 27 d) similarly amplify the leading member of the eigen 

spectrum. The main difference in these cases is that for the HF radar thinning experiments 

(Fig 23 c), the ratio of the second largest to the largest eigenvalue is conserved (~0.3 in all 

cases), while for the SST (Fig 23 d) it is reduced in half after thinning (~0.3 for sc.1, vs 

~0.15 in all the other cases), suggesting that the aspect ratio of the hyperellipse changes 

in particular for the SST thinning experiments. 

 
Figure 27 – The condition number of 𝑷" for each of the single cycle experiments where thinning is 
applied to (a) HR radar observations, and (b) SST observations. The eigen spectra of 𝑷" for the same 
series of single cycle experiments are shown in (c) and (d). 
 

 

Figure 28 – rms contribution of different variables to leading EOF. The vertical axes have different 
scales for each row, with one order of magnitude of difference between adjacent rows. 
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The leading EOF is of particular interest because it defines the direction in the observation 

space associated with the largest fraction of total error variance. Since each dimension of 

𝑷" is associated with an individual observation, it is possible to quantify the contribution of 

different observation types to the leading EOF direction. With this in mind, Figure 28 

shows the rms of the elements of the leading EOF for each observation type. Although the 

main contributor for all cases is in situ salinity (by an order of magnitude, Figs 28 g, 28 h 

and 28 i), Figs 28 d, 28 e and 28 f indicate that the thinning of HF radar and SST 

observations causes a rotation of the leading EOF in the direction of favored more by SSH 

observations.  

 

4.4 Observation Impacts 
 

The analysis increment described in equation (7) can be also expressed as a linear 

combination of so-called array modes, leading to an alternative definition of the BLUE 

stated in (1): 

𝒙" = 𝒙! + ∑ 𝛼'𝚿'
)
'8%                         

 (21)_ 

where 𝚿' = 𝑩𝑯#𝑽B𝝓' denote the array modes that were introduced by Bennett (1985), and 

𝑽B𝝓'  are the EOFs of 𝑷b   (M21) introduced in section 4.3. The array modes therefore 

represent the projection of the EOFs of 𝑷b into the state-vector space via the transformation 

𝑯# (M21). The weight coefficients 𝛼' depend on the innovation vector and are given by 𝛼' =

𝜆'$%𝚿'
#𝑯#𝑹$%𝒅  . M21 have shown that the impact of each observation on the 4D-Var 

analysis can be quantified with the contribution of each observation. to the 𝛼' associated 

with the smallest eigenvalue 𝜆' . Figure 29 shows the contribution of each observation type 

to the 4D-Var analyses from the different thinning experiments. In Exp01 (Fig 29 a) the 

observation impact is dominated by SST, followed by in situ salinity and HF radar 
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observations. In this type of analysis SST observations seem to also have a high seasonal 

component, where the impacts are markedly higher during the summer. The analysis for 

Exp02 (Fig 29 b) shows that for the chosen superobing strategy, the HF radar observations 

have very little impact on the analysis, suggesting that the thinning strategy used was too 

severe. Figure 29 c shows that when SST are thinned, their impact decreases, but it still 

has a noticeable component, and the impact of HF radar observations is higher than in 

Exp01, leading to a more even distribution of observation impacts. 

 

 
Figure 29 – Observation impact on the analysis. 
 

5. Summary and conclusions   

In this thesis we implemented data thinning algorithms that are in general applied in 

operational NWP but here were applied in the context of a near real-time ocean data 

assimilation system. We explored the effects that data thinning has on the observation 

space and on the 4D-Var analysis. The BLUE of the ocean state-vector calculated by the 

4D-Var approach is directly related by the stabilized representer matrix, which represents 

the total error covariance, and therefore its dimension is determined by the dimension of 

the observation vector. Thinning observations changes the observation space, hence the 
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error covariance, and therefore it fundamentally affects the solution obtained after 

assimilating data. 

We have focused our thinning efforts on two types of remote sensed observations: HF radar 

radial velocities and satellite remote sensing observations of SST which form part of a 

multiple platform observing system for the California Current System. The HF radar 

observations were thinned by combining multiple observations into one superobservation 

per grid point. On the other hand, SST observations were thinned by detecting regions of 

high spatial variance and discarding redundant observations. Different experiments were 

performed for a single 4D-Var cycle to test and debug the thinning algorithms. In this 

context, the a priori and a posteriori analysis of the errors showed that thinning in general 

increased the errors, but the calculated uncertainties were still within a tolerable margin 

as evidenced by comparing with expected error variance.  

 

We then extended the experiments to run 4D-Var for a period of one year, which allowed 

a deeper exploration of the applied thinning schemes. Since evaluation of the results is 

neither simple or straightforward, different strategies were used to analyze and compare 

results among different experiments. An analysis of the innovations statistics is a useful 

and practical check on the behavior of the DA results, and routinely used to evaluate the 

performance of operational NWP systems. Since the innovations are expected to be 

normally distributed and unbiased, we checked that all the experiments showed a good 

agreement with this assumption, except during upwelling season, where the model is 

known to be biased. We also calculated the diagnosed statistics described by D05, where 

an analysis of the increments can be compared with the a priori defined background and 

observation errors. For the radial velocities, some inconsistencies found in Exp01 were 

corrected in subsequent experiments. For SST, the inconsistencies were more evident and 
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seasonal, suggesting that maybe a seasonal strategy should be taken to define the a priori 

errors. The statistical analysis showed that the thinning experiments did not seem to 

degrade the analysis, suggesting that these techniques could be further explored and 

systematically applied in this type of numerical ocean modeling system in the future.  

 

Another approach to study the results was based on numerical linear algebra, analyzing 

how thinning observations affected the eigen space defined by a reduced rank 

approximation of the total error covariance matrix. In both sets of single cycle thinning 

experiments the eigen spectrum was amplified. In the case of thinning radial velocities, 

the aspect ratio of the hyperellipse defined by the error covariance matrix was conserved, 

while in the SST thinning experiments the ratio of the second largest eigenvalue to the 

largest eigenvalue was reduced. The results of the thinning were further explored by 

estimating the impact of different types of observations on the analysis with the reduced 

rank array modes. This analysis provided a new insight in the thinning of radial velocities, 

where the approach taken seems to have drastically reduced the impact of HF radar 

observations on the analysis. This result suggests that a different strategy using a higher 

resolution for the superobservations could yield better results. On the other hand, thinning 

SST seems to have a good effect on evening out the impact each type of observation had on 

the analysis.  

 

This was a first attempt to apply techniques widely used in NWP in the context of ocean 

DA. The algorithms were implemented in a way to allow the use of different thinning 

methods for different observation platforms, and different thinning criteria could be also 

easily applied to different seasons. Based on the statistical analysis, a different treatment 

of the upwelling season could yield more satisfactory results. Furthermore, the results 
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obtained with the observation impact analysis suggest that different thinning strategies 

should be further explored, in particular for radial velocities. The thinning could be also 

extended to different types of observations in order to improve the characteristics of 

observation space that affect the 4D-Var analysis. The next step will be to evaluate the 

various thinning algorithms within the current near real-time analysis-forecast system 

that is run routinely at UCSC in support of U.S. IOOS and the Central and Northern 

California Ocean Observing System (CeNCOOS). 
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Appendices 

A – IDT pseudocode 

 

Pseudocode for IDT algorithm (from R05) 
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B - 4D-Var PSAS flow chart 
 

 
 
Flow chart for the PSAS variant of 4D-Var as implement in ROMS (from M11)  
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C - Tables 
 
 

Experiment Description Details 
Total 
observations 
(all variables) Total radar obs 

% of total 
radar 
observations 

sc.1 All 
observations No thinning  218,251 87,435 100.0 

sc.2 Thinning keep  1 every 2 
observations 174,534 43,718 50.0 

sc.3 Thinning keep  1 every 5 
observations 148,303 17,487 20.0 

sc.4 Thinning keep  1 every 10 
observations 139,560 8,744 10.0 

sc.A Superobs One superob per model 
grid point 141,365 10,549 12.1 

sc.B Superobs 

One superob per model 
grid point, only if there 
are 3 or more 
observations in the 
vicinity of that grid 
point 

136,957 6,141 7.0 

sc.C Superobs Lower resolution grid 133,864 3,048 3.5 

sc.D Superobs Higher resolution grid 156,209 25,393 29.0 
Table 1 – Description of preliminary single cycle experiments for radar observations. 
 
 
 

Experiment Lx grid_step min_number_obs finer_grid 

sc.A 0.1 1 1 off 
sc.B 0.1 1 3 off 
sc.C 0.2 2 3 off 
sc.D 0.05 1 1 on 

 
Table 2 – Parameters defined for each experiment in radar superobing algorithm. 
 
 

Experiment Description Details 

Exp 01 All observations No thinning  

Exp 02 Radial velocities superobs  - full SST Radial velocities superobs using criteria of sc.B 

Exp 03 Full radial velocities - Thinned SST  SST Thinned using criteria of sc.sst.1 
 

Table 3 – Experiments spanning a period of one year. 
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