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Identification 
of a hyperinflammatory sepsis 
phenotype using protein biomarker 
and clinical data in the ProCESS 
randomized trial
Kimberley M. DeMerle 1,2, Jason N. Kennedy 1,3, Chung‑Chou H. Chang 1,4, Kevin Delucchi 5, 
David T. Huang 1,3,6,7, Max S. Kravitz 8, Nathan I. Shapiro 8,9, Donald M. Yealy 3,6, 
Derek C. Angus 1,3,6, Carolyn S. Calfee 10 & Christopher W. Seymour 1,3,6,11*

Sepsis is a heterogeneous syndrome and phenotypes have been proposed using clinical data. Less 
is known about the contribution of protein biomarkers to clinical sepsis phenotypes and their 
importance for treatment effects in randomized trials of resuscitation. The objective is to use both 
clinical and biomarker data in the Protocol‑Based Care for Early Septic Shock (ProCESS) randomized 
trial to determine sepsis phenotypes and to test for heterogeneity of treatment effect by phenotype 
comparing usual care to protocolized early, goal‑directed therapy(EGDT). In this secondary analysis 
of a subset of patients with biomarker sampling in the ProCESS trial (n = 543), we identified sepsis 
phenotypes prior to randomization using latent class analysis of 20 clinical and biomarker variables. 
Logistic regression was used to test for interaction between phenotype and treatment arm for 60‑day 
inpatient mortality. Among 543 patients with severe sepsis or septic shock in the ProCESS trial, a 
2‑class model best fit the data (p = 0.01). Phenotype 1 (n = 66, 12%) had increased IL‑6, ICAM, and total 
bilirubin and decreased platelets compared to phenotype 2 (n = 477, 88%, p < 0.01 for all). Phenotype 
1 had greater 60‑day inpatient mortality compared to Phenotype 2 (41% vs 16%; p < 0.01). Treatment 
with EGDT was associated with worse 60‑day inpatient mortality compared to usual care (58% vs. 
23%) in Phenotype 1 only (p‑value for interaction = 0.05). The 60‑day inpatient mortality was similar 
comparing EGDT to usual care in Phenotype 2 (16% vs. 17%). We identified 2 sepsis phenotypes using 
latent class analysis of clinical and protein biomarker data at randomization in the ProCESS trial. 
Phenotype 1 had increased inflammation, organ dysfunction and worse clinical outcomes compared to 
phenotype 2. Response to EGDT versus usual care differed by phenotype.

Keywords Sepsis, Phenotypes, Biomarkers

Sepsis is common and deadly, accounting for up to one sixth of hospital  admissions1–3 and more than 19 million 
cases annually  worldwide1,2. Despite advances in the understanding of the biology and immune response in 
sepsis, significant controversy remains regarding the best approach to sepsis treatment. Most trials over the past 
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decade investigating new sepsis treatments have not found a mortality benefit to specific early and aggressive 
resuscitation approaches, including the Protocolized Care for Early Septic Shock (ProCESS)  trial4. Heterogeneity 
in host response, pathogen, and organ dysfunction in sepsis may explain the results of recent resuscitation trials. 
Patients that share clinical or biologic characteristics, termed phenotypes, may respond differently to treatment. 
Trials that report average treatment effects ignore this heterogeneity, even when explored in traditional subgroup 
analyses of single risk factors.

The Sepsis ENdotyping in Emergency CAre (SENECA) study found 4 sepsis phenotypes using routinely avail-
able clinical data at presentation to the emergency department (ED)5. Phenotypes were distinct from traditional 
subgroups by illness severity and differed in severity, laboratory abnormalities, organ dysfunction patterns, and 
short- and long-term outcomes. However, potentially important protein biomarkers were not included in the 
derivation of the phenotypes. Such biomarkers, including inflammatory cytokines, and markers of endothelial 
dysfunction or abnormal coagulation, contribute to phenotypes in acute respiratory distress syndrome, pancrea-
titis, and other acute conditions, yet have an unknown role in sepsis  classification6–8.

We sought to determine sepsis phenotypes using clinical and biomarker data with unsupervised machine 
learning in the ProCESS trial, correlate these phenotypes with clinical outcomes, and assess for differential treat-
ments effects by biomarker-based phenotypes. Protein biomarkers used in this analysis, that were not used in the 
derivation of the SENECA phenotypes, include interleukin-6 (IL-6), Plasminogen Activator Inhibitor-1 (PAI-1), 
and Intercellular Adhesion Molecule (ICAM). These biomarkers were used to create a phenotyping approach 
that is different from the SENECA phenotypes.

Methods
This project involved 3 steps. First, we used latent class analysis on protein biomarkers combined with clinical 
data to inform phenotypes in the ProCESS trial. Second, we explored the correlation of the sepsis phenotypes 
with a variety of sepsis biomarker variables that reflect changes in inflammation, coagulation, and endothelial 
function. We examined phenotype association with clinical outcomes, including admission to intensive care, 
vasopressor use and mechanical ventilation use, any-cause 60-day inpatient mortality and any-cause 365-day 
mortality. Third, we tested for differential treatment effects by phenotype by using regression models to evalu-
ate for statistical interactions between study arm (early, goal directed therapy (EGDT) vs. usual care) and sepsis 
phenotype.

Data
Clinical and biomarker data was obtained from the ProCESS  trial4. ProCESS enrolled 1341 patients with septic 
shock who were randomized 1:1:1 to protocol-based EGDT (N = 439), protocol-based standard care (N = 446) 
or usual care (N = 456) at 31 centers from 2008 to 2013. The primary outcome, 60-day inpatient mortality, is 
the same as the primary outcome of the original ProCESS trial. 60-day inpatient mortality captures inpatient 
mortality from any-cause at 60 days. We restricted our analysis to the subset of patients with data available for 
the biomarkers IL-6, PAI-1, and ICAM. Biomarker acquisition was predetermined on a subset of patient within 
financial limitations. The excluded cohort of patients was similar to the primary cohort (Table S1). Protocolized 
standard care was excluded from treatment effect models to be consistent with both the SENECA analysis of the 
ProCESS trial and the Protocolized Resuscitation in Sepsis Meta-Analysis (PRISM) meta-analysis, a harmonized 
dataset of patient- level data from 3 large randomized controlled trials in EGDT that investigated the treatment 
effect of protocolized EGDT versus usual  care9.

Clinical and biomarkers for latent class analysis
We selected 20 clinical and biomarker variables as candidates for phenotyping based upon prior models in the 
SENECA study and those that contributed to identification of a hyperinflammatory phenotype in acute respira-
tory distress syndrome (ARDS)5,7. Variables included age, vital signs (heart rate, respiratory rate, systolic blood 
pressure, temperature, body mass index (BMI)), markers of organ dysfunction or inflammation (creatinine, total 
bilirubin, platelet count, white blood cell count, urine output, glucose, albumin), organ support prior to rand-
omization (mechanical ventilation, vasopressor use). Additional laboratory values included were serum sodium 
and hematocrit. Baseline, pre-randomization values for IL-6, PAI-1, and ICAM were included, while we did not 
include others such as von Willebrand factor, Surfactant Protein D and soluble tumor necrosis factor-1 due to 
high missingness (> 75%) (Table S2). Multiple measurements prior to randomization occurred in approximately 
10% of the variables. When multiple measurements occurred, the nearest value prior to randomization was used 
for analysis. Full information maximum likelihood was used for missing data; no multiple imputation was used 
for missing data as the latent class procedure is robust to  missingness10

.

Correlation with clinical outcomes and differential treatment effects
To understand the correlation between phenotypes and biomarkers of host response, we studied biomarkers 
measured at baseline but not included in latent class as they may be hypothesis generating and reflect the under-
lying biology of the phenotypes. These biomarkers included angiopoietin-2 (Ang-2), prothrombin, E-selectin, 
tumor necrosis factor (TNF), interleukin-10 (IL-10), C-reactive protein, and D-dimer. While the latter six were 
previously studied in the SENECA analysis, Ang-2 was unique to this  analysis5. The primary clinical outcome 
measured in all 543 patients was 60-day inpatient mortality. Other clinical outcomes were hospital length of 
stay, intensive care use (ICU) and length of stay, and intravenous fluid volume (post-randomization). The test 
for heterogeneity of treatment effect by phenotype was restricted to between patients who received protocolized 
EGDT (N = 185) and usual care (N = 179).
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Statistical analysis
To derive the sepsis phenotypes, we assessed candidate variable missingness, distributions, and correlation. We 
excluded variables with a high degree of missingness, standardized the variables and used log transformation 
of non-normally distributed variables. For variables that were either below or above the limit of detection, we 
replaced with value with a value that was 0.5 and 2 times the lower and upper limit of detection, respectively. 
We assessed for outliers clinically and removed if appropriate, which occurred in less than 0.3% of variables. 
We evaluated correlation in order to inform sensitivity analysis of highly correlated variables (rho > 0.5). We 
used latent class analysis to derive the phenotypes on all 543 patients. Latent class analysis is a well-validated 
statistical model-based technique that identifies latent, or unobserved, classes within a population agnostic to 
outcome or treatment  variables11. To determine the optimal number of phenotypes (k), we evaluated the Bayes-
ian Information Criterion (BIC, preferable if lower), entropy (preferable if near 1.0), Vuong-Lo-Mendell-Rubin 
(VLMR) p-value, and class size (number of patients per phenotype). After assigning each patient a phenotype 
based on the greatest posterior probability of membership, we investigated distributions of probabilities for 
assigned and unassigned phenotypes. We used logistic regression to test heterogeneity of treatment effect by 
phenotype, considering a significant test of interaction for p < 0.05. Data was presented as mean (SD) or median 
[IQR], as appropriate.

Data analysis used Stata 15.1 (StataCorp, College Station, Texas) and Mplus 8.2 (Muthen and Muthen).

Ethics approval and consent to participate
The randomized controlled trial, A Randomized Trial of Protocol-Based Care for Early Septic Shock (ProCESS) 
(NCT00510835) was approved by the University of Pittsburgh Institutional Review Board and overseen by the 
Data Safety and Monitoring Board, and all methods were performed in accordance with their relevant guidelines 
and regulations. All study participants or their legal representatives provided written informed consent.

Results
Among 543 eligible patients, most were male (59.5%) with more than 2 co-morbidities (mean Charlson score 2.7 
(SD 2.7)) (Table 1). The mean APACHE III score was 62 (SD 23) and the median lactate was 2.5 mmol/L (IQR 
1.4–4.3 mmol/L). Nearly 90% of patients were admitted to the ICU with a mean ICU length of stay of 5 days (SD 
5 days). One in five patients required vasopressors or mechanical ventilation (pre-randomization).

Derivation of clinical and biomarker phenotypes
Latent class analysis suggested that a 2-class model provided a significant improvement in model fit as compared 
to one class model (VMLR p = 0.01, Table S3) There was no evidence that adding additional classes improved 
model fit (Table S3, Fig. S1). In the final model, phenotype 1 had 66 patients (12%) and phenotype 2 had 477 
patients (88%). The posterior probability of phenotype membership assigned phenotypes was high (pheno-
type1 = 0.90, SD 0.15; phenotype 2 = 0.98, SD 0.06) (Fig. S2). In sensitivity analyses where the highly correlated 
variables albumin, heart rate, urine output were removed, model fit was largely similar (Table S4).

Clinical characteristics, biomarkers, and outcomes by phenotypes
The 2 phenotypes had distinct clinical characteristics. For example, compared to phenotype 2, phenotype 1 had 
increased bilirubin and decreased white blood cell count and platelets (Fig. 1, Table 1). The 2 phenotypes also 
had distinct biomarker profiles, amongst the biomarkers not included in the latent class model. Phenotype 1 had 
increased levels of biomarkers reflecting inflammation, endothelial dysfunction and abnormal coagulation. For 
example, TNF (124 [349–287] vs. 20 [13–69]) and IL-10 (101 [22–966] vs. 35 [17–91]) were greater in phenotype 
1 versus phenotype 2, respectively (p < 0.01 for both) (Fig. 2, Table S5).

The phenotypes were prognostic of clinical outcomes. More patients were admitted to the intensive care unit 
in phenotype 1 compared to phenotype 2 (97% versus 88%, p = 0.03, Table 2), and 60-day inpatient mortality 
was greater in phenotype 1 (41% vs. 16%, p < 0.01, Fig. 3).

Differential treatment effects by phenotype
The treatment effect analysis was completed on 364 patients (n = 185 with EGDT and N = 179 with usual care). 
Balance of baseline covariates was preserved comparing treatment arms within phenotype (Table S6). In phe-
notype 1, treatment with protocolized EGDT was associated with worse 60-day inpatient mortality compared 
to usual care (58% vs. 23%), and not associated with outcome in phenotype 2 (16 vs. 17%, p-value for interac-
tion = 0.05). There was no differential treatment effect with protocolized EGDT versus usual care by phenotype 
at 365 days (p-value for interaction = 0.13, Fig. 4, Table S7). In a sensitivity analysis, we tested for evidence of 
differential treatment effects by severity of illness. The mean APACHE III score was greater in phenotype 1 
compared to phenotype 2 (70 (SD 22) versus 61 (SD 23), p = 0.003 (Table 1). There was no interaction between 
continuous APACHE III score and treatment with EGDT vs. usual care for 60-day inpatient mortality or 365-day 
mortality (p-values for interaction = 0.42 and p = 0.48, respectively, Fig. S3, Table S8).

Comparison to SENECAsepsis phenotypes
The hyperinflammatory phenotype 1 (N = 88, 12%) was similar to ProCESS patients with the delta clinical phe-
notype identified in the recent SENECA study (N = 89, 16%, Table S9). Phenotype 1 and the SENECA delta-type 
patients both had elevated serum lactate, total bilirubin, reduced platelets, and poor clinical outcomes (Table S9). 
We observed that biomarkers ICAM and IL-6 were higher in phenotype 1 and the delta SENECA phenotype, 
compared to phenotype 2 and non-delta SENECA phenotypes (p < 0.01 for both, Table S10).
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Discussion
In the ProCESS randomized trial, 2 sepsis phenotypes were identified using clinical and biomarker variables 
before randomization. The phenotypes had distinct clinical and biomarker profiles and were prognostic of clini-
cal outcomes. Phenotype 1 was characterized by increased inflammation and organ dysfunction and had worse 
clinical outcomes. Response to EGDT versus usual care differed by phenotype.

Our work extends the observations of the recent SENECA study that proposed clinical sepsis phenotypes 
(α, ß, y, and ∂) using routinely available data at presentation in the electronic health record, and validated these 
phenotypes in three clinical trials including ProCESS. These phenotypes were distinctfrom traditional subgroups 
by illness severity and organ failure burden, differed in laboratory abnormalities, were prognostic of clinical out-
comes, and, in computer simulation, had differential treatment effects by  phenotype5. We extend these results, by 
demonstrating that biomarkers are important in phenotype derivation. This finding is similar to how biomarker 
data is used in ARDS, where protein biomarkers are key to a hyperinflammatory phenotype, with elevated IL-6 
and ICAM-17. By including biomarkers in sepsis derivation models, these new findings refine previously pub-
lished clinical phenotypes and found new heterogeneity of treatment effect for EGDT. This analysis is novel in 
its use of both protein biomarkers and clinical data in the derivation of sepsis phenotypes.

The addition of protein biomarkers to clinical data confirmed a sepsis phenotype at the highest risk for poor 
outcomes and greater inflammatory biomarkers. Termed Phenotype 1, these patients resemble those found in the 
∂ SENECA group. Both Phenotype 1 and the ∂ phenotype were the least frequent and the most deadly, exhibiting 
similar patterns of inflammation, abnormal coagulation, and endothelial dysfunction. Future work that extends 
the integration of phenotypes beyond clinical and protein data to molecular markers from the transcriptome 
could further refine this hyperinflammatory  phenotype12,13. Current clinical, biomarker, and transcriptomic phe-
notyping strategies are not correlated, highlighting the need for future complementary approaches in precision 

Table 1.  Baseline characteristics by phenotype in the ProCESS randomized trial (N = 543). SD standard 
deviation, BMI body mass index, IQR interquartile range, ICAM intracellular adhesion molecule, IL-6 
interleukin-6, PAI-1 plasminogen activator inhibitor-1.

Variable Overall (n = 543) Phenotype 1 (n = 66, 12%) Phenotype 2 (n = 477, 88%)

Demographics

 Age, years, mean (SD) 60 (16) 61 (13) 60 (16)

 Gender, no. (%)

  Male 323 (59.5%) 47 (71.2%) 276 (57.9%)

  Female 220 (40.5%) 19 (28.8%) 201 (42.1%)

 Race, no. (%)

  White 380 (70.0%) 44 (66.7%) 336 (70.4%)

  Black 121 (22.3%) 15 (22.7%) 106 (22.2%)

  Other 42 (7.7%) 7 (10.6%) 35 (7.3%)

 Charlson comorbidity Index, mean (SD) 2.7 (2.7) 3.2 (2.7) 2.7 (2.7)

 Glasgow Coma Score, mean (SD) 13.6 (3.0) 13.7 (2.9) 13.6 (3.0)

 Apache III score, mean (SD) 61.7 (23.0) 69.6 (22.2) 60.6 (22.9)

Variables in phenotype model

 Albumin, g/dL, mean (SD) 3.1 (0.8) 2.7 (0.8) 3.1 (0.8)

 BMI, kg/m2, mean (SD) 28.2 (7.8) 27.8 (7.3) 28.2 (7.9)

 Serum creatinine, mg/dL, mean (SD) 2.3 (2.0) 2.1 (1.4) 2.3 (2.0)

 Glucose, mg/dL, mean (SD) 163 (119) 111 (54) 170 (124)

 Heart rate, beats/min, mean (SD) 113 (24) 116 (23) 112 (24)

 Hematocrit, %, mean (SD) 35 (7) 31 (7) 36 (7)

 Platelet count, in thousands, mean (SD) 229 (138) 73 (55) 250 (133)

 Respiratory rate, resps/min, mean (SD) 23 (7) 22 (7) 23 (7)

 Systolic blood pressure, mmHg, mean (SD) 100 (28) 102 (30) 100 (28)

 Sodium, mEq/L, mean (SD) 136 (7) 135 (7) 136 (6)

 Temperature, °C, mean (SD) 37.4 (1.6) 37.2 (1.7) 37.4 (1.6)

 Total bilirubin, mg/dL, mean (SD) 1.4 (1.9) 4.8 (3.5) 1.1 (1.1)

 WBC count, in thousands, mean (SD) 15 (9) 5 (6) 17 (9)

 Vasopressors, no. (%) 104 (19%) 15 (23%) 89 (19%)

 Mechanical ventilation, no. (%) 87 (16%) 12 (18%) 75 (16%)

 Urine output, mL/h, median [IQR] 11 [0–69] 8 [0–50] 12 [0–70]

 ICAM, ng/mL, median [IQR] 526 [332–851] 1320 [607–2425] 466 [310–683]

 IL-6, pg/mL, median [IQR] 344 [87–3003] 4841 [419–57,464] 281 [77–1774]

 PAI-1, ng/mL, median [IQR] 15 [8–27] 14 [8–37] 15 [8–27]
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medicine for  sepsis14. Such work will require a balance between mechanistic discovery and practical classifica-
tion at the bedside.

This study confirmed that response to sepsis resuscitation approaches differs by phenotype. The data extends 
previous in silico models in SENECA, which suggested the ProCESS trial would more often conclude for harm 
if the proportion of delta patients enrolled was  increased5. Although the mechanism is unclear, further study 
of the biologic mediators in treatment-related harm in specific patients is warranted. Future trial designs could 
consider the identification of sepsis phenotypes at enrollment, potentially enriching for specific phenotypes and 
treatment combinations.

This study has several limitations. First, this was a secondary analysis of a randomized controlled trial, which 
limits treatment conclusions until confirmed prospectively; however, these results can be used to inform inclusion 
criteria in future trials on a more personalized approach to sepsis resuscitation. Second, the decision to exclude 
the protocolized standard care arm from the treatment interaction model was post-hoc; however, this is consist-
ent with the SENECA analysis of the ProCESS trial and the PRISM meta-analysis. Third, there are many protein 
biomarkers to consider for sepsis phenotyping. We chose those markers proposed in prior work and available in 
the ProCESS  trial7. Fourth, missing data was present in the trial dataset. However, this dataset has less missing-
ness than other electronic health record analyses, where variable missingness can approach 90% HER analysis 
other  studies5. Furthermore, we used latent class analysis for clustering, a method robust to missing  data15,16. 
Fifth, patients enrolled in this subset of the ProCESS randomized trial may not be generalizable to other sepsis 
cohorts, and continued assessment of reproducibility is warranted. Sixth, we acknowledge that phenotype 1 was 
a small proportion of the trial dataset (12%). However, phenotype size is known to be variable and phenotype 
1 size is similar to the frequency of sepsis subclasses derived in the Molecular Diagnosis and Risk Stratification 
of Sepsis (MARS) cohort (34–41%), SENECA study (13–33%), and Recombinant Human Activated Protein C 
Worldwide Evaluation in Severe Sepsis (PROWESS) trial (4–22%)5,12,17.

Conclusions
We used latent class analysis to identify two severe sepsis phenotypes with distinct clinical and biomarker profiles 
in the ProCESS trial. Phenotype 1 has increased inflammation, organ dysfunction and worse clinical outcomes. 
Response to EGDT versus usual care differed by phenotype. Treatment with protocolized EGDT was associated 
with worse 60-day inpatient mortality in phenotype 1 compared to usual care, and not associated with change 
in outcomes in phenotype 2.

Figure 1.  Phenotype variables ranked by the difference in mean standardized value. Mean standardized 
difference of continuous variables comparing Phenotype 1 (green) and Phenotype 2 (blue). The variables are 
ranked on the x-axis by degree of separation from Phenotype 1 versus 2 with maximum positive degree of 
separation on the right to maximum negative degree of separation on the left. Bili bilirubin, ICAM intercellular 
adhesion molecule, IL-6 interlukin-6, HR heart rate, SBP systolic blood pressure, PAI-1 plasminogen activator 
inhibitor-1, RR respiratory rate, BMI body mass index, Temp temperature, HCT hematocrit, WBC white blood 
cell.
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Figure 2.  Heatmap of biomarkers by phenotype (N = 100). Heatmap showing the log of the fold change of the 
median biomarker value (column) per patient (row) for various markers of the septic host response grouped 
by those reflecting coagulation, endothelium and inflammation in a random selection of 100 patients from (A) 
phenotype 1 and (B) phenotype 2. Red represents greater median biomarker value for that phenotype compared 
to the median of the entire study, while green represents lower values of the biomarker compared to the median 
of the entire study. White cells are those in which the biomarker was not measured.

Table 2.  Clinical outcomes by phenotype (N = 543).

Outcomes Overall (n = 543) Phenotype 1 (n = 66, 12%) Phenotype 2 (n = 477, 88%) p-value

Admission to intensive care unit, no. (%) 485 (89%) 64 (97%) 421 (88%) 0.03

Intensive care length of stay, days, mean (SD) 5 (5) 6 (6) 4 (4) 0.06

Intravenous fluid (post random.), mL, mean (SD) 2816 (2099) 3207 (1964) 2763 (2114) 0.03

60-day inpatient mortality, no. (%) 103 (19%) 27 (41%) 76 (16%) < 0.01

90-day mortality, no. (%) 163 (30%) 36 (55%) 127 (27%) < 0.01

365-day mortality, no. (%) 216 (40%) 44 (67%) 172 (36%) < 0.01
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.

Received: 18 December 2023; Accepted: 26 February 2024
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