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ARTICLE

cyCombine allows for robust integration of single-
cell cytometry datasets within and across
technologies
Christina Bligaard Pedersen 1,2, Søren Helweg Dam1, Mike Bogetofte Barnkob 3, Michael D. Leipold 4,

Noelia Purroy5,6, Laura Z. Rassenti7, Thomas J. Kipps7, Jennifer Nguyen8, James Arthur Lederer 8,

Satyen Harish Gohil5,9,10, Catherine J. Wu 5,11 & Lars Rønn Olsen 1✉

Combining single-cell cytometry datasets increases the analytical flexibility and the statistical

power of data analyses. However, in many cases the full potential of co-analyses is not

reached due to technical variance between data from different experimental batches. Here,

we present cyCombine, a method to robustly integrate cytometry data from different bat-

ches, experiments, or even different experimental techniques, such as CITE-seq, flow cyto-

metry, and mass cytometry. We demonstrate that cyCombine maintains the biological

variance and the structure of the data, while minimizing the technical variance between

datasets. cyCombine does not require technical replicates across datasets, and computation

time scales linearly with the number of cells, allowing for integration of massive datasets.

Robust, accurate, and scalable integration of cytometry data enables integration of multiple

datasets for primary data analyses and the validation of results using public datasets.
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Protein expression-based single-cell cytometry has evolved
immensely over the past decades. While flow cytometry
remains a staple of both basic cell biology research and

clinical diagnostics1, the introduction of mass cytometry
(CyTOF) in 2009 increased the potential number of simulta-
neously measured markers to more than 452 as issues with signal
spillover between reporter molecules and autofluorescence of cells
were minimized3,4. More recently, spectral flow cytometry
enables the measurement of 40 features or more without com-
promising throughput5. Sequence barcoding-based cytometry,
such as CITE-seq, has even further increased the number of
markers to the hundreds by almost completely eliminating signal
spillover6, and single-cell mass spectrometry is promising to
increase feature counts even further7–9. Common to all these
technologies is the desire to integrate data from different
experiments, whether seeking to validate results using external
datasets or aiming to increase the breadth and/or depth of the
dataset used for a given study. This is rarely directly possible due
to technical variance arising from data being generated with
different antibody panels, reagent lots, or instruments; at different
times; by different operators; etc.10. The resulting technical var-
iance is commonly referred to as batch effects, and removing this
undesired variance has remained a major unsolved challenge.

While many proposed methods offer means to alleviate the
problem, the majority are designed for very specific applications,
requiring technical replicates to be included across all batches,
only enabling correction of batch effects in samples belonging to
specific conditions, or being designed to work only on a specific
type of cytometry data. These limitations preclude large-scale
integration of data from different experiments, a feature that has
become increasingly desired as more and more data is being
published.

In this work, we have developed the cyCombine method for
integration of cytometry data to overcome these challenges. We
show that cyCombine enables quantifiably accurate harmoniza-
tion of cytometry datasets, by removing the technical noise
between batches, while maintaining the biological signal. We
developed cyCombine to be independent of technical replicates
across batches, as well as robust enough to harmonize cytometry
data generated with different technologies.

Results
The cyCombine batch correction module. The main engine of
the cyCombine batch correction module is the tried and true
empirical Bayes method for removal of batch effects, ComBat11.
ComBat was first introduced in 2007 as a tool to address batch
effects in DNA microarray data, but the empirical Bayes model
has since proven useful for different types of bulk expression data.
However, ComBat is not directly applicable to single-cell data, as
it is designed to detect and remove technical variance between
samples from different batches, while preserving biological var-
iance between samples belonging to homogeneous conditions.
However, in single-cell cytometry data, each sample is often
characterized by vast heterogeneity in the expression patterns of
the different cell types, thus prohibiting explicit modeling of
technical and biological variance between samples.

In the cyCombine batch correction module, we address the
intra-sample heterogeneity by considering each cell as its own
sample and minimize the batch effects for groups of similar cells,
one group at a time. The grouping of similar cells is done using a
self-organizing map (SOM)12, with an 8 × 8 node grid. This
means that the cells will initially be clustered into 64 categories.
This will typically be enough to capture the diversity of peripheral
blood mononuclear cells, while ensuring that enough cells to
capture the biological variance among cells from the same

batches, as well as the technical variance between batches are
assigned to each cluster. The grid size can be adjusted if less or
greater heterogeneity is anticipated. Generally speaking, we would
advise to err on the side of overclustering, as long as the data set is
of sufficient size. This will not negatively affect the performance
of cyCombine, but will increase runtimes (for full discussion and
examples see https://biosurf.org/cyCombine). In order to ensure
that phenotypically similar cells cluster together across different
batches, the expression of each marker is initially standardized
within each batch. This is done either by transforming the
expression values to Z-scores, which works well for fairly low-
variance batches (e.g., data from different batches in an
experiment), or ranks, which works well for high-variance
batches (e.g., data stemming from different experiments or
technologies). The transformed data are then used to cluster the
cells using the SOM, and the node labels are assigned to the
original expression value cells (Fig. 1a).

The cyCombine panel merging module. To integrate data from
experiments designed with multiple panels of antibodies for
increased feature breadth, cyCombine includes a module for
panel integration. This module is likewise based on SOM clus-
tering of cells from the different panels using the overlapping
markers, followed by probability-based imputation of missing
channels by drawing expression values from multi-dimensional
kernel density estimates calculated on the cells from the opposing
panel (Fig. 1b). The clustering and multidimensional draws
ensure that co-expression patterns and frequencies of subtypes
are maintained and only “true” cell types are imputed (see Sup-
plementary Discussion).

cyCombine enables large-scale integration of multi-batch,
multi-panel cytometry data. In order to demonstrate that
cyCombine enables co-analysis of data from different experi-
mental batches, we generated a CyTOF dataset consisting of
128 samples, run in seven batches. The experiment contained two
conditions: 20 healthy donor (HD) samples and 108 chronic
lymphocytic leukemia (CLL) samples, collected from 56 patients
at two different time points. Samples were depleted of B cells in
order to isolate and study the phenotypes of the non-malignant
immune cells. Each sample was split in two and stained with two
different antibody panels, overlapping by 15 markers and dif-
fering by 40 markers (Supplementary Data 1).

First, batch effects were minimized in each panel, after which
batch effects of the 15 overlapping markers between the two panels
were minimized (Fig. 2a, b and Supplementary Figs. 1 and 2). Then,
the two panels were merged by imputing expression data from the
non-overlapping markers. The integrated dataset consisted of
12,858,678 cells and the expression of 55 markers. The combined
dataset was clustered based on a subset of 23 lineage markers using a
SOM12 and ConsensusCusterPlus13 to 45 meta-clusters, which were
labeled manually, merged, and cleaned-up into a total of 29 clusters
(Fig. 2c and Supplementary Fig. 4). The percentage of cells from
each sample assigned to each cluster correlated very strongly
(Pearson correlation coefficient= 0.9996) between cells derived from
the two panels. For both of the two panels, the batch correction
resulted in an earth mover’s distance (EMD) reduction of 0.66.
Biological variance was retained in both panels, as indicated by the
median absolute deviation (MAD) score between pre-batch and
post-batch correction samples being 0.02 for both panels, and as
shown in Supplementary Fig. 3, rare clusters are maintained after
correction.

Within the 29 clusters we identified a range of T, NKT,
myeloid, and NK cells populations (Fig. 2c and Supplementary
Fig. 4). Interestingly, we observed that the proportion of the T
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and NKT cell compartment was increased in CLL patients
(Fig. 2d), as were circulating stem cells (as identified by CD34+
expression), especially closer to treatment (Fig. 2e), suggesting
marrow stress with higher disease burden. In keeping with
previously published data14–16, we saw a decrease in naive CD8+
T cells, with corresponding increase in the CD8+ terminally
differentiated effector memory (TEMRA) population when
comparing close-to-treatment CLL samples to HDs (Supplemen-
tary Fig. 5). The use of HLA-DR in the staining further identified
groups of CD8+ and CD4+ effector memory T cells that
increased between CLL time point 1 and 2 with the CD4+ cluster
being specifically enriched for PD-1 (Fig. 2f, g and Supplementary
Fig. 5), similar to that reported by Elston et al.15. See also
Supplementary Discussion.

cyCombine removes technical variance and maintains biological
variance. Another scenario where batch correction is necessary is
for the integration of external datasets. This is relevant when vali-
dating findings in public datasets or when performing meta analysis
of multiple existing datasets. To demonstrate cyCombine’s cap-
ability to handle integration of data generated in different experi-
mental setups, we integrated CyTOF samples from two different
datasets. The two datasets were generated at different facilities, on
different versions of the CyTOF instrument, with different panels of
antibodies conjugated to different isotopes. Applying cyCombine
reduced the EMD by 0.76, making the two datasets directly com-
parable, and with an MAD score of 0.04, indicating minimal loss of
biological variance. As a testament to the robustness of cyCombine,
one dataset being B cell depleted did not affect the batch correction,
nor did the correction introduce B cells into the depleted batch
(Fig. 3).

When studying Fig. 3, it is noticeable that a small cluster (0.5%)
appears in the Dana-Farber Cancer Institute (DFCI) set in the same
UMAP position as the B cells from the Human Immune Monitoring
(HIMC) set (11.9%). We do not expect B cells in the DFCI set, so
one could suspect that this means that B cells have been artificially
introduced by cyCombine. However, when looking closer at these

cells it becomes evident that their marker expression before
correction is actually distinctly CLL cell-like, although with low
CD19 expression explaining their presence after depletion. This fits
with 82% of these cells originating from the CLL sample. While this
observation makes biological sense, it highlights an important
challenge when integrating cytometry: the breadth of the integrated
dataset is limited by the overlapping markers in the two panels. In
this example, the CLL cells are mislabeled as myeloid due to lack of
the CD5 marker for CLL cells and corresponding lack of typical
myeloid markers such as CD11b.

cyCombine enables cross-platform data integration. As cyCombine
is agnostic to marker distributions, it enables integration of datasets
generated on entirely different platforms. This can be highly useful in
cases where different single-cell technologies have been applied to
assess the same samples and one wishes to directly integrate the
results. It is also possible to integrate data from different studies, even
when the data was generated using different technologies. To
demonstrate this feature, we applied cyCombine to three healthy
donor peripheral blood mononuclear cell (PBMC) samples generated
by CyTOF (HIMC dataset), CITE-seq (Illumina dataset), and spectral
flow cytometry (Park et al. dataset5), respectively. While the raw data
from the three data types assume distinct groupings in UMAP space
(Fig. 4a), batch correction using cyCombine makes the data directly
comparable (Fig. 4b). The resulting EMD reduction was 0.69 (Fig. 4c)
and the MAD score 0.07. The clustering, subpopulation labeling, and
marker expression of cells indicates that data are comparable only
after correction (Fig. 4d–e and Supplementary Fig. 6).

cyCombine scales linearly with the number of cells. Another
desirable application of cyCombine is for integration of very large
cytometry datasets, e.g., from clinical trials or retrospective data
from clinical diagnostics. Both the computation time and the
memory requirements of cyCombine scale linearly with the
number of cells and features, and, for example, the correction of
15 markers measured on 12,858,678 cells across two panels ran in
7 min on a standard laptop and required 10 GB of memory. This

Fig. 1 cyCombine overview. a Batch correction workflow. First, expression values are transformed in each batch to enable co-clustering of samples from all
batches. After clustering, the transformed values are reverted to expression values and ComBat is applied to each self-organizing map (SOM) cluster.
b Panel merging workflow. Clustering is performed on overlapping markers, and the missing values for each cell in a panel are imputed using probability
draws from the kernel density estimates (kde) from co-clustered cells of the other panel.
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means that, while the memory requirements necessitate the use of
a high performance computer, cyCombine can be applied to
billions of cells in less than a day, and there is theoretically no
limitation on the number of different datasets that can be inte-
grated (for full runtime analysis see Supplementary Fig. 7 and
Supplementary Discussion).

cyCombine outperforms all existing methods. Several tools for
batch correction of both flow and mass cytometry data have been
published. We tested the performance of all maintained, peer-
reviewed tools: CytoNorm, CytofRUV, CytofBatchAdjust, and

iMUBAC and compared their performance to cyCombine. To
ensure a fair and broad comparison, we applied all tools to all the
datasets used in the respective publications. As these tools have
various limitations (e.g., designed to handle only one specific data
type or condition, or designed to be dependent on technical
replicates), each tool was tested only on datasets for which it was
explicitly designed and tested by the authors. cyCombine was the
only tool in the test that could handle every single dataset in full
and showed superior performance for all of them when com-
paring the EMD reduction and MAD score (Fig. 5a, b). Selected
density plots for the different tools and datasets are shown in

Fig. 2 Integration and analysis of 128 CyTOF samples from seven different batches and two different panels. a UMAP-based on expression of the 12
overlapping lineage markers included in the final clustering for both panels 1 and 2 before any batch correction. Using ~100,000 cells with equal sampling
from all batches. b Same as in a, but after batch correction both within and between batches. c UMAP for up to 4000 cells from each of the 128 samples
based on expression of the 23 clustering markers after removal of B, chronic lymphocytic leukemia (CLL), and poor-quality cells. Generated after panel
merging, clustering, and filtering, detailed labels in Supplementary Fig. 4. d, e Box plots comparing the cell type proportion of two overall cell types between
three sample groups: Healthy donor (HD) (n= 20), CLL time point 1 (T1) (n= 52), and CLL time point 2 (T2) (n= 56). The box plots show the medians
(solid line in boxes), 25th and 75th percentiles as lower and upper hinges of the boxes, and whiskers extend to the furthest data point within 1.5*
interquartile range from the hinges. Data points beyond this threshold are shown as circles. False discovery rates (FDRs) for the differential abundance
testing are added to the comparisons yielding significant (FDR < 0.01) results. Please note the use of different y axes. f Scatter plot for the proportion of
HLA-DR+ effector memory (EM) CD4+ T cells in paired CLL T1 and T2 samples. FDR value from differential abundance testing within the T and NKT cell
compartment. g Density plots for PD-1 expression levels in the HLA-DR+ EM CD4+ T cell population (panel 1 cells only) for the three sample groups: HD,
CLL T1, and CLL T2.
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Supplementary Figs. 8 and 9. Markers for the different datasets
were selected such that they illustrate the performance differences
between the benchmarked tools. One characteristic of the cor-
rections by iMUBAC is a tendency to over-correct some batches,
such that a peak is moved to become misaligned with the cor-
responding measurements in other batches. This is shown in
Supplementary Fig. 8g, where the high-expression peak of CD4 in
batch 2 is moved too far to the left, and in Supplementary Fig. 8k,
n, where negative-value peaks are introduced by iMUBAC, but
not by cyCombine. For CytoNorm, the changes between uncor-
rected and corrected are relatively small, but in some cases lower
peaks in some batches seem to be moved slightly away from the
zero-inflated distribution seen in uncorrected data, without a
clear reason (Supplementary Fig. 9a, b). For CytofRUV, the MAD
scores tend to be higher, reflecting a removal of biological var-
iance. This is also shown in the density plots, e.g., in Supple-
mentary Fig. 9a, f. Finally, CytofBatchAdjust appears to have a
tendency to introduce extra peaks, which are not found in the
uncorrected datasets (Supplementary Fig. 9d).

Discussion
Deeper cytometric characterization of cell populations can have
great implications, such as better diagnostics, development of
novel therapeutics, and identification of important markers of
immunity. However, a robust batch correction method is needed
in order to fully realize the potential of single-cell cytometry.
Correction of batch effects is often necessary to detect subtle
biological variance in multi-batch experiments, and it is almost
certainly a necessity for large-scale integration of data from dif-
ferent experiments.

In cyCombine, we handle cellular heterogeneity by applying
careful overclustering of the data using a SOM. Co-clustering of
data from all batches is enabled by an intermediary transformation
of the expression values. The subsequent batch correction is per-
formed using an empirical Bayes model, designed to reduce tech-
nical noise, while maintaining the biological signal. While others
have previously used the EMD as a metric to measure the reduc-
tion in technical variance, we additionally describe the use of the
MAD for quantifying the conservation of biological variance,

Fig. 3 cyCombine rank-based batch correction for an HD sample from the Human Immune Monitoring Center (HIMC) dataset and an HD and a CLL
sample from panel 1 of the Dana-Farber Cancer Institute (DFCI) data. a UMAP for all cells from the two datasets based on expression of the 12
overlapping markers used for manual gating before batch correction. Colored by dataset. b Same as in a, but faceted by dataset and colored by manually
assigned labels. c Earth mover’s distance (EMD) density plots for uncorrected and corrected data, per marker, per self-organizing map (SOM) node. The
EMD reduction was 0.76 and the MAD score was 0.04. d UMAP for all cells from the two datasets based on expression of the 12 overlapping markers
used for manual gating after batch correction. Colored by manually assigned labels (assigned before correction). e–h Same as in d, DFCI, but colored by
expression of CD5, CD19, CD20, and CD197 before batch correction.
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which is a feature that has been overlooked in the majority of
previously published methods.

Using these metrics, we demonstrate that cyCombine batch
correction is quantifiably more accurate than existing tools, and
through analysis of three different biologically relevant datasets,
we highlight the high degree of flexibility and robustness of our
method: cyCombine is independent of technical replicates across
batches and makes no assumptions about homology of marker
expression distributions. It is largely insensitive to sample and
batch sizes, as it handles batch correction for as few as eight cells
in each SOM partition11. The SOM overclustering step ensures
that both population abundances and cell phenotypes are
retained, such that if batch effects are not present in a dataset,
running the algorithm will not affect the expression values.

The primary limitations of cyCombine are inherited from
ComBat, namely that batches and experimental conditions can-
not be confounded. This means that at least one condition from
each batch must be present in at least one other batch. Addi-
tionally, it is important to note that, while the cyCombine panel
merging module enables imputation of non-overlapping features,
batch correction is only possible for features present in all
batches.

The accuracy of the imputations depends on the information
content of the overlapping markers. Imputation is based on draws
from multidimensional (kernel density estimated) distributions of
the marker(s) to be imputed in the panel where their expressions
were measured. In other words, the imputation is essentially a
copy of the expression of the given marker(s) from highly similar
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cells from the marker-containing panel. This means that cell
frequencies, marker distributions, and co-expressions are com-
pletely preserved. However, if the overlapping panel of markers is
not able to accurately co-cluster cells expressing the markers to be
imputed, the imputations will not be meaningful. As such,
imputed marker expressions should generally only be used for
visualization purposes, and we do not recommend basing dif-
ferential expression analyses directly on imputed values as this
can lead to inflated p values. Please refer to the panel merging
vignette at https://biosurf.org/cyCombine for deeper discussion
and thorough performance evaluation of cyCombine and other
panel merging tools.

Both the challenge and the possibilities presented here become
no less relevant when both the rate of growth and heterogeneity
of cytometry data increases as new technologies become more
prevalent. cyCombine scales linearly with the number of cells, and
we envision that cyCombine will catalyze an increase of large-
scale analyses of cytometry data. Of particular interest are
applications such as harmonization of clinical cytometry data,
which may enable better application of machine learning algo-
rithms for diagnostics, for example by enabling faster detection of
minimal residual disease in hematological cancers. A range of use
cases, including code and in-depth discussions, are available in
the cyCombine vignettes: https://biosurf.org/cyCombine.

Methods
The cyCombine package. cyCombine was designed with protein expression-based
cytometry data in mind, and the functions for data preparation are made to handle FCS
files. cyCombine assumes that the data has already been pre-gated (i.e., beads, dead cells,
doublets, debris, etc. have been removed). When using the built-in functions, the data
will be ArcSinh-transformed with a cofactor of choice (recommended cofactors are 5
for CyTOF, 150 for flow cytometry, and 6000 for spectral flow cytometry). For CyTOF
data, if counts are randomized, de-randomization is recommended17. However, the
modules of cyCombine are not limited to data in FCS format, but are designed to work
on any expression matrix that can be represented in an R data.frame—including CITE-
seq protein expression data etc. cyCombine contains functions for importing FCS files,
detection and correction of batch effects, plotting, evaluating batch correction, as well as
performing panel merging. All functions are described in detail in the reference manual
and the use case vignettes (https://biosurf.org/cyCombine).

The cyCombine batch correction module. cyCombine’s batch correction module
involves three separate steps: First, the expression of every marker is either Z-score
normalized or converted to ranks, individually for each batch. Z-scoring is
appropriate for similar datasets (e.g., multiple batches run on the same instrument
with the same antibody clones and reporter molecules), whereas ranking tends to
perform better for less similar datasets (e.g., data generated on different instru-
ments, with different antibody-clones, different reporter molecules, or with dif-
ferent technologies). A SOM12 is applied to the full normalized dataset. The grid
size of the SOM should reflect the expected heterogeneity and result in a slight
overclustering of the data. In cyCombine, the grid size defaults to 8 × 8, partitioning
cells into 64 clusters. Then, the SOM node labels are assigned to the original
expression value cells, a per cluster batch correction is applied using ComBat11, and
values are capped per-marker to the range of the input. The batch correction step
can be performed with or without the use of a non-batch cofactor, e.g., phenotype
or sample treatment. The cyCombine approach consequently allows for complex
study designs, where not all conditions may be present in each batch, and where
technical replicates were not included. It is possible to perform batch correction in
studies with more than two conditions, and one may integrate different datasets
with only one overlapping condition while accounting for this imbalance. The only
requirement is that at least one condition from each batch is present in at least one
other batch.

Batch correction performance metrics. In order to evaluate the performance of the
methods, we primarily applied an approach based on the EMD strongly inspired by
Van Gassen et al.18. The EMD has previously been suggested to be a good metric for
comparing protein expression distributions18,19. Briefly, the EMD was used to com-
pare the distribution of each marker within SOM nodes across batches. Generally, the
SOM nodes were determined post-batch correction using 8 × 8 grids, and the labels
were transferred to the uncorrected data so each cell had the same label in both the
uncorrected and corrected data. For an in-depth discussion, see the performance
benchmarking vignette at https://biosurf.org/cyCombine. The distributions were
binned with bin size= 0.1, and the EMDs for every marker for each pairwise batch
comparison were computed. These scores were determined for both the uncorrected
and corrected data, removing those values where both had an EMD< 2. The EMD
reduction is given as:

EMDreduction ¼
∑n

i¼1 EMDbeforei
� EMDafteri

� �

∑n
i¼1EMDbeforei

; ð1Þ

where n is the total number of comparisons (number of SOM nodes times the
number of markers times the number of pairwise batch comparisons). Furthermore,
we have developed a score that reflects the amount of variance removed during a
batch correction process. The score is based on the MAD and quantifies the variability
of each marker in the dataset before and after correction. In practice, it is calculated
very similarly to the EMD reduction: The MAD is calculated for the dataset after
performing a SOM-based clustering, and is calculated per cluster, per marker, and per
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Fig. 5 Performance evaluation of cyCombine and other previously published tools. a Heatmap showing the earth mover’s distance (EMD) reductions of
the batch correction tools run on various datasets. A reduction of 1 means a complete elimination of EMD, 0 means no change in EMD. The best-
performing setting was selected for each tool. b Heatmap showing the median absolute deviation (MAD) scores of the batch correction tools run on
various datasets. A score of 0 means a complete preservation of the biological variance of all markers in all batches. The best-performing setting was
selected for each tool. In both a and b, * denotes that the tool is dependent on technical replicates, which is not available in the dataset. † denotes that the
tool is only applied for healthy donor samples and utilizes subsampling. ‡ denotes that the tool only corrects non-replicates and evaluations are performed
on a subset of the full data.
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batch. So, the MAD is calculated per batch, whereas the EMD calculations are per-
formed for each pairwise batch–batch comparison. This means that the MAD score
quantifies intra-batch effects of the correction, and the EMD reduction quantifies
inter-batch effects. After calculating the MADs for both the corrected and uncorrected
datasets, the MAD score is calculated as the median of the absolute difference in
MAD per value:

MADscore ¼ medianni¼1 MADbeforei
�MADafteri

���
���

� �
; ð2Þ

where n is the total number of comparisons (number of SOM nodes times the
number of markers times the number of batches). For an introduction to EMD
reduction and MAD score, please see the performance benchmarking vignette at
https://biosurf.org/cyCombine.

The cyCombine panel merging module. cyCombine also contains two functions
for marker imputation. One function is designed with panel merging in mind and
imputes the expression values of non-overlapping markers across two datasets. It
works by first doing a SOM-based (defaults to an 8 × 8 grid) clustering of the
datasets based on all of the overlapping markers. Then, for each cell in one of the
datasets, the values for the missing markers are imputed by using the values from
cells in the other dataset that fall within the same SOM node. The imputations are
made by simulating a multi-dimensional kernel density estimate: Each cell’s
missing values are imputed by randomly drawing a cell from the other dataset and
adding a Gaussian error, which is based on a draw from a Normal distribution with
mean 0 and standard deviation corresponding to the bandwidth of each marker in
the training population. However, if there are less than 50 cells from the other
dataset within the SOM node, the values for the missing channels are set to NA as
imputation would be unreliable.

The other function was made for salvaging a single channel within a dataset in
selected batches. This can be useful in cases where one has a completely mis-
stained marker in a single batch. It relies on the same principles, but instead of
transferring information in one dataset to another, it utilizes intra-dataset batches.

Chronic lymphocytic leukemia cohort. CLL samples were obtained from the CLL
Research Consortium (CRC) based at the University of California, San Diego, from
patients who provided informed consent and as part of an institutional review
board approved protocol. All samples were anonymized by the CRC. The dataset
was generated at the DFCI and contained PBMC samples from 20 healthy donors
(5 from DFCI and 15 from HemaCare) and samples from 56 patients with CLL.
The latter were sampled at two distinct time points (T1 and T2), the mean time
between T1 and T2 was 58.7 months (sd= 47.4 months), and T2 was obtained
close to first treatment (mean= 4.5 months, sd= 10.4 months) (Fig. 6). For the 56
CLL patients, the mean age at diagnosis was 56.1 years (sd= 9.6 years), with
healthy donors being age-matched (mean= 56.7 years, sd= 4.5 years). Serial
samples from CLL patients along with PBMCs from healthy individuals were
collected in accordance with the Declaration of Helsinki and written informed
consent was obtained from all participants. No patients were compensated for their
donation. A proportion of healthy donors samples were obtained for Hemacare
and these donors were compensated for their time commitment during donation.

Immunophenotyping CLL cohort using mass cytometry. All patient and control
PBMC samples were thawed in RPMI-1640 media (ThermoFisher) supplemented
with 10% heat-inactivated FBS, sodium heparin (20 UI/mL) and 25 units/mL
benzonase nuclease (Life Technologies and Sigma-Aldrich). Samples were sub-
jected to B cell depletion using EasySep Human CD19 positive selection kit II
(Stem Cell Technologies) before resuspension in RMPI and 10% FBS.

The samples were spun down and aspirated. Five micromolar of cisplatin
viability staining reagent (Fluidigm) was added for two minutes and then diluted
with culture media. After centrifugation, Human TruStain FcX Fc receptor
blocking reagent (BioLegend) was used at a 1:100 dilution final in cell staining
buffer (CSB) (PBS with 2.5 g/L bovine serum albumin and 100 mg/L of sodium
azide, Sigma Aldrich) for 10 min followed by incubation with cell surface CyTOF
antibody panels for 30 min (Supplementary Data 1). All CyTOF antibodies were
obtained from the Harvard Medical Area CyTOF Antibody Resource and Core
(Lederer Lab, Brigham and Women’s Hospital, Boston, MA).

Sixteen percentage of stock paraformaldehyde (ThermoFisher Scientific)
dissolved in PBS was used at a final concentration of 4% formaldehyde for 10 min
in order to fix the samples before permeabilization with the FoxP3/Transcription
Factor Staining Buffer Set (ThermoFisher Scientific). The samples were incubated
with SCN-EDTA coupled palladium 20-sample barcoding reagents (Fluidigm) for
15 min, washed 3× in CSB, and then combined into a single 20 PBMC sample for
subsequent staining. Conjugated intracellular CyTOF antibodies (Supplementary
Data 1) diluted in the permeabilization buffer from the FoxP3/Transcription Factor
Staining Buffer Set were added into each tube and incubated for 30 min. Cells were
then fixed with 1.6% formaldehyde for 10 min.

The samples were processed in seven batches per antibody panel, each batch
containing both control and patient samples. During sample processing, some
samples were excluded due to dead cells or having too few cells to apply both
panels. The final dataset has measurements for a total of 128 samples, all of which
were included in the staining with panel 1, and 112 that were also stained with

panel 2. The 20 healthy donors were all stained with both panels. The CLL samples
stained with panel 1 consisted of 52 samples at T1 and 56 (all patients) at T2. For
panel 2, the numbers were 45 and 47, respectively. To identify single cell events,
DNA was labeled for 20 min with an 18.75 μM iridium intercalator solution prior
to acquisition. Samples were subsequently washed and reconstituted in cell
acquisition solution in the presence of EQ Four Element Calibration beads
(Fluidigm) at a final concentration of 1 × 106 cells/mL. Samples were acquired on a
Helios CyTOF Mass Cytometer (Fluidigm).

Analysis of CLL cohort mass cytometry data. The raw FCS files were normalized
to reduce signal deviation between samples over the course of multi-day batch acqui-
sitions, utilizing the bead standard normalization method established by Finck et al.20 as
implemented in the premessa R package21. The normalized files were then compen-
sated with a panel-specific spillover matrix to subtract cross-contaminating signals,
utilizing the CyTOF-based compensation method established by Chevrier et al.22 as
implemented in CATALYST v. 1.12.2. These compensated files were then deconvoluted
into individual sample files using a single-cell based debarcoding algorithm established
by Zunder et al.23 available in premessa v. 0.2.6. This was followed by pre-gating to live
intact singlet cells using FlowJo version 10 (Tree Star Inc) as shown in Supplementary
Fig. 10.

The pre-gated FCS files for each panel were read into R v. 4.0.024 using the
cyCombine prepare_data function, using de-randomization and ArcSinh-
transformation with cofactor= 5. The two panels consisted of a total of 6,027,290
and 6,831,388 cells. Subsequently, each panel was batch corrected using cyCombine
with scaling and an 8 × 8 SOM grid using CLL/HD status as cofactor. After
correction, all cells were clustered using an 8 × 8 SOM grid and the labels were
transferred to the uncorrected data. The EMD was calculated for each marker
comparing the batches and the EMD reductions and MAD scores between
corrected and uncorrected data were determined for each panel. The data from the
two panels was then co-batch corrected using the 15 overlapping markers with
scaling and an 8 × 8 SOM grid maintaining CLL/HD status as cofactor but using
panel as batch. After co-correction, the 40 (19+ 21) non-overlapping markers were
imputed using an 8 × 8 SOM grid and the resulting datasets were combined to a
single 55-marker dataset.

The 55-marker data was then clustered using a 10 × 10 SOM grid12 and
ConsensusClusterPlus v. 1.54.013 using 23 markers: CD3, CD4, CD8, CD45RA,
CD45RO, CD197, CD127, CD25, CD5, CD19, CD20, CD56, CD16, CD33, CD14,
HLA-DR, CD123, CD1c, CD1d, CD11c, CD11b, FCER1A, and CD34. The result
was extracted for 45 meta-clusters, and each of these was manually annotated based
on its marker expression. Among these clusters, there were eight pairs of clusters,
which displayed highly similar expression patterns. Consequently, each of these
sets were merged to a single final cluster, as previously described25, leaving 37
clusters. Four of those clusters were labeled as either B cells (CD19+ CD20+) or
CLL cells (CD19-lo CD20-lo CD5+), but because these populations can be
considered cells that escaped the applied depletion, we removed those clusters from
downstream analysis. Furthermore, four clusters displayed abnormal expression
patterns, e.g., lack of lineage markers. When considering the mean viability stain
for the clusters, it was observed that these four clusters all fell within the top-six
highest values. This, together with the abnormal expression patterns, indicated that
these clusters were composed of poor-quality cells, which we also excluded from
further analysis. This left a final set of 29 populations and 10,719,711 cells to study.

Differential abundance testing was carried out using an approach presented by
Weber et al.26 (testDA_voom). Each test included individual false discovery rate
(FDR)-correction for the populations included, but no correction was performed
between tests. Instead, a FDR-threshold of 0.01 was used for significance. When
relevant, the paired nature of the data was considered by using random effects. For
differential expression testing within clusters, we analyzed the cell originating from
each panel separately, meaning that no imputed values were included. The
methodology for differential expression testing was also derived from the work by
Weber et al.26 (testDS_limma), in which medians serve as the foundation of the
tests. Only markers not used for clustering were included in testing. Again,
pairedness was considered when appropriate, and an FDR-threshold of 0.01
was used.

HIMC healthy control sample. A single healthy donor PBMC sample (Human
Immune Monitoring Center (HIMC) healthy donor, ctrls-001, MATLAB-nor-
malized) was downloaded from FlowRepository (ID: FR-FCM-ZYAJ) and pre-
gated to live intact singlets in FlowJo version 10 (Tree Star Inc). The 174,601 cells
were processed in R using cyCombine with de-randomization and ArcSinh-
transformation with a cofactor= 5. For the integration with the CLL dataset, this
was followed by manual gating to 10 cell types based on the lineage markers, CD3,
CD4, CD8, CD14, CD19, CD20, CD33, CD45RA, CD56, CD161, CD197, and
HLA-DR. Unlabeled cells (n= 615) were discarded. For the three-datatype inte-
gration, the pre-gating was followed by clustering to 20 meta-clusters using a 6 × 6
SOM12 grid and ConsensusClusterPlus13 based on expression of 11 markers
overlapping with the healthy donor spectral flow cytometry (SFC) and CITE-seq
sets (CD3, CD4, CD8a, CD14, CD16, CD19, CD25, CD45RA, CD56, CD127, and
PD-1). These clusters were annotated manually based on protein expression levels,
and 8932 cells were removed due to ambiguous expression patterns.
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Flow cytometry dataset. The SFC dataset from Park et al.5 was downloaded from
FlowRepository (ID: FR-FCM-Z2QV). The dataset consists of samples from four
healthy donor PBMCs, which were frozen and thawed, stained with 40 different
antibodies in one panel, and analyzed using a 5-laser full spectrum flow cytometer
(Cytek Biosciences Aurora).

Pre-processing was carried out in FlowJo version 10 (Tree Star Inc). The dataset was
gated on lymphocytes, and singlets and non-debris were identified using forward and
side-scatter. Dead cells were excluded using live/dead stains. Data from these gates were
then exported in FCS format before further analysis in R: Using cyCombine, the data
was loaded and transformed using ArcSinh with a cofactor= 6000. A single sample
(donor 303444) with 582,005 cells was selected and clustered to 20 meta-clusters using a
6 × 6 SOM12 grid and ConsensusClusterPlus13 based on expression of 11 markers
overlapping with the healthy donor CyTOF and CITE-seq sets. The clusters were
annotated manually based on protein expression levels, and 21,307 cells were removed
due to ambiguous expression patterns.

Sequence barcoding-based dataset. The filtered feature/cell matrix from the
“10k PBMCs from a Healthy Donor—Gene Expression and Cell Surface Protein”
dataset was obtained from the 10× website (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.0/pbmc_10k_protein_v3). This data was

generated on the PBMCs of a single healthy donor stained with TotalSeq-B anti-
bodies. It was sequenced on an Illumina NovaSeq and processed by Cell Ranger
v. 3.0.0.

The TotalSeq expression matrix was processed in R using Seurat v. 4.0.027. First,
cells were filtered to maintain only those expressing between 200 and 2800 genes,
having less than 10,000 detected RNA molecules and 20,000 detected protein
molecules, and with a mitochondrial gene percentage below 10, leaving 6949 cells
for analysis. The protein portion of the data was normalized, scaled, and
dimensionality reduced to the 11 markers overlapping with the CyTOF and SFC
datasets, before applying Louvain clustering at a resolution of 0.2. The 12 resulting
clusters were manually annotated based on the expression levels of the 11
clustering proteins. Two clusters were considered to be doublets and excluded from
the downstream integration, leaving 6776 cells.

Integration of CLL and HIMC healthy donor sample. For the integration with the
HIMC healthy donor sample, two samples from the DFCI set (one CLL and one
HD) from panel 1, batch 5 were selected (before any batch correction was applied)
and manually gated to 10 cell types based on 12 lineage markers: CD3, CD4, CD8,
CD14, CD19, CD20, CD33, CD45RA, CD56, CD161, CD197, and HLA-DR.
Unlabeled cells (n= 4353) were considered to be representative of the low-quality
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cells, and were discarded along with any cells labeled as B cells, since these were
residual cells resulting from incomplete depletion. The HIMC sample was likewise
gated to ten populations using the same 12 lineage markers. This resulted in a total
of 352,210 cells, with 17 overlapping markers between the datasets (CD3, CD4,
CD8, CD14, CD19, CD20, CD25, CD27, CD33, CD45RA, CD56, CD127, CD161,
CD197, HLA-DR, ICOS, and PD-1). Datasets were batch corrected using
cyCombine with an 8 × 8 SOM grid with the rank normalization method (and
average ties method). Each set was considered a batch, and the HD/CLL status was
used as a cofactor. The result of the batch correction was evaluated with the EMD
reduction and MAD score as well as visual inspection of UMAP plots comparing
the location of each cell type (which was assigned separately) across datasets.

Integration of cross-platform datasets. The HIMC CyTOF sample, the SFC
sample, and the CITE-seq data were batch corrected together following the pre-
processing described in the section for each set. Before batch correction, each set was
downsampled to 6776 cells and to the 11 overlapping protein markers. This was
followed by cyCombine batch correction with an 8 × 8 SOM grid with the rank
normalization method (and average ties method). Each dataset was considered a batch
and no cofactors were considered. The result of the batch correction was evaluated
with the EMD reduction and MAD score as well as UMAP plots comparing the
location of each cell type (which was assigned separately) across datasets.

Benchmarking. We compared the performance of the cyCombine batch correction
module with four batch correction algorithms designed to work with mass cytometry
data: CytoNorm18, CytofRUV28, iMUBAC29, and CytofBatchAdjust30. Other tools
exist, both developed for flow and mass cytometry, including gaussNorm and
fdaNorm31,32, which the authors state are no longer supported, and the tools cydar33,
BatchEffectRemoval34, BatchEffectRemoval201835, SAUCIE36, and swiftReg37, which
are not included due to either not being peer-reviewed, not being maintained,
requiring a license, or being designed to work only on very specific cases, such as
harmonizing two technical replicates. We tested each included tool on the datasets
from the original publications and the set of datasets from other publications deemed
to be suitable by the authors of each tool; i.e., some tools require technical replicates
and not all datasets include these. Furthermore, we only tested each tool on datasets
from platforms for which the use is demonstrated in the original publication. For tools
with multiple tested settings, the setting with the best overall performance based on
both the EMD reduction and MAD score was recorded.

All five included tools were run on the CyTOF datasets originally presented in
the CytoNorm and CytofRUV papers, as well as the DFCI samples from batch 3 of
both panels 1 and 2, where each panel was considered a batch. We will refer to
these sets as the Van Gassen, Trussart, and DFCIb3 data, respectively. Additionally,
we batch corrected six CyTOF datasets and one SFC set without technical replicates
using cyCombine and iMUBAC. These datasets are the DFCI panel 1 and panel
2 sets, and five datasets presented in the iMUBAC article: Each of the three panels
of the Krieg dataset, as well as a CyTOF and a SFC set originally generated for
iMUBAC, which we refer to as OgishiCyTOF and OgishiSFC. An overview is
presented in Table 1. All CyTOF datasets were ArcSinh-transformed with a
cofactor= 5 for processing with all tools.

The Van Gassen dataset18 consists of 40 samples from two healthy controls.
They comprise unstimulated and stimulated samples each run ten times (ten
batches). Thirty-seven protein markers were measured. The Trussart dataset28

consists of 24 samples from nine healthy controls (HCs) and three CLL patients,
each run twice (two batches). Thirty-one protein markers were measured. The FCS
files were pre-processed with bead normalization and debarcoding according to the
script from the CytofRUV supplementary files (using CATALYST). The Krieg1,
Krieg2, and Krieg3 datasets38 comprise 30, 26, and 25 markers, and each contain
60 samples. They were, according to the original publication, processed as four
experimental batches. Three conditions are considered: Healthy donors (n= 20),
responders (n= 22), and non-responders (n= 18) to anti-PD-1 immunotherapy.

Each condition is included in each of the four batches. The dataset was pre-
processed according to the instructions in the iMUBAC article: DNA and viability
intercalators were used to exclude dead cells, doublets, and debris with the prepSCE
function from iMUBAC. The OgishiCyTOF dataset29 contains measurements on 38
protein markers and consists of 57 samples in seven batches. A total of three
conditions were included: Healthy (n= 50), MSMD (n= 5), and Salmonellosis
(n= 2). Some of the healthy samples are biological replicates. The dataset was pre-
processed according to the instructions in the iMUBAC article: DNA and viability
intercalators were used to exclude dead cells, doublets, and debris. The OgishiSFC
dataset29 measured 18 protein markers across 14 samples in two batches. A total of
three conditions were included: Healthy donors (n= 11) and two types of
autoimmune disease (n= 1 and n= 2). The dataset was pre-processed according to
the instructions in the iMUBAC article: The viability stain was used to exclude
dead cells and logicle transformation was used. The DFCI sets comprised two
conditions: Healthy donors and CLL samples. As mentioned, the panel 1 data
(DFCI1) had 36 measured markers, and the panel 2 data (DFCI2) had 34 markers.
The DFCIb3 set consisted of the samples originating from batch 3 in each of the
two panels, which had 15 overlapping markers. The DFCI samples were pre-
processed as described above.

When running CytoNorm, we used FlowSOM clustering with a 10 × 10 grid
and 25 final clusters (no downsampling). The batch effects were modeled using 101
quantiles. All protein markers were included. For the Van Gassen set, the
20 samples from healthy control 1 were used to model batch effects and the
20 samples from healthy control 2 were normalized. Evaluation of batch effect
reduction was carried out using only the samples from healthy control 2. For the
Trussart dataset, the CLL2 and HC1 samples were used as the technical replicates
(training data). The remaining 20 samples were used as validation data and the
evaluation of batch effect reduction was carried out using only the HC2-9, CLL1,
and CLL3 samples. For the DFCIb3 set, the CLL_08_T1 and HD_05 samples were
used as technical replicates, and the remaining 35 samples were used for evaluation.
Corrected values were capped at 300 to avoid problems with very large values
during evaluation.

For running CytofRUV, we used clustering with 20 clusters on lineage markers
only (24 for Van Gassen, 19 for Trussart, and 12 for DFCIb3). All markers were
corrected at varying values of k= {5, 10, 15, 20}. For the Van Gassen set, all healthy
control 1 samples were used as technical replicates (two sets of ten samples each).
For the Trussart set, the CLL2 and HC1 samples were used as the technical
replicates, and for the DFCIb3 set, the CLL_08_T1 and HD_05 samples were used.
All samples were included in the evaluation.

For running CytofBatchAdjust, all files were renamed according to the tool
requirements. For Van Gassen, PTLG021 was used as the reference batch and
the unstimulated healthy control 1 samples were used as anchors. We tested
CytofBatchAdjust with method= {95p, SD, quantile} and transformation=
{TRUE, FALSE}. For the Trussart set, HC1 was used as the anchor sample and
RUV1b samples as reference batch, whereas DFCIb3 correction used HD_05 as
the anchor and panel 1 as the reference batch. All markers were used for
correction and all samples were used in evaluation. Corrected values were
capped at 300 to avoid problems with very large values during evaluation.

iMUBAC was run largely according to the details in the original article. For all
datasets, only healthy donors were included in correction, and downsampling to
200,000 cells for each batch was applied for all datasets, except for the Krieg3
dataset, for which we downsampled to 50,000 cells per batch, and the OgishiSFC set,
for which 500,000 cells per batch were included. For the OgishiCyTOF set, only 47
local healthy donor samples were included as in the original publication (travel/
family controls excluded). All evaluations were based solely on the downsampled
datasets using all markers.

cyCombine was generally run on all available samples using the conditions
stated in the presentation of each dataset. We ran cyCombine with
norm_method= {scale, rank} on the full datasets with all markers.

Table 1 Datasets used for benchmarking study.

Dataset Instrument Samples Batches Conditions Cells (million) Markers FlowRepository ID Originally used for tool

Van Gassen43 CyTOF2.0 40a 10 2 6.2 37 FR-FCM-Z247 CytoNorm18

Trussart28 Helios 24a 2 2 8.6 31 FR-FCM-Z2L2 CytofRUV28

Krieg138 Helios(2.1) 60 4 3 1.1 30 FR-FCM-ZY34 iMUBAC29

Krieg238 Helios(2.1) 60 4 3 1.7 26 FR-FCM-ZY34 iMUBAC
Krieg338 Helios(2.1) 60 4 3 0.3 25 FR-FCM-ZY34 iMUBAC
OgishiCyTOF29 Helios 57a 7 3 12.4 38 FR-FCM-Z3YK iMUBAC
OgishiSFC29 Aurora 14 2 3 9.7 18 FR-FCM-Z3YL iMUBAC
DFCI1 Helios 128 7 2 6.0 36 FR-FCM-Z52G cyCombine
DFCI2 Helios 112 7 2 6.8 34 FR-FCM-Z52G cyCombine
DFCIb3 Helios 39a 2 2 1.9 15 FR-FCM-Z52G cyCombine

aCounting replicates as distinct samples.
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Runtime and memory requirements. We used the OgishiCyTOF dataset com-
prising seven batches and 38 protein markers for testing the runtime and memory
usage of the different tools. Several of the evaluated tools ran directly on FCS files;
therefore, running these tools on a range of different sizes required storing
downsampled versions of the original FCS files in new ones. This was done by
loading the original FCS files, disregarding non-overlapping columns, sampling to
the predefined sample sizes, and storing the resulting data in respective folders. By
storing the data this way, it was ensured that all tools were run on the same data at
each data size. The runtime and memory usage were measured for each tool for
every sample size using the UNIX command time -v. The Maximum resident set
size and the elapsed parameters in the output defined the memory usage and
runtime, respectively. The test was performed on 40 cores (although none of the
tools are fully parallelized, some sub functions are) on an HPE Apollo 2000 system
with up to 192 GB PC4 2933 RAM. The standard laptop was a 2018 MacBook Pro
with 16 GB 2400MHz DDR4 memory and a 2.6 GHz 6-Core Intel Core i7
processor.

Plots. UMAPs were generated using uwot v. 0.1.939 on no more than approxi-
mately 500,000 cells (to avoid overcrowding the plots). Samples were downsampled
if more cells were present, whereas all statistical analyses and clustering were done
on the full datasets unless otherwise specified. Plots were generated using ggridges
v. 0.5.240 and ggplot2 v. 3.3.341, and patchwork v. 1.1.142 was used for
combining plots.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The DFCI CyTOF data generated in this study have been deposited in the FlowRepository
database under accession code FR-FCM-Z52G. The HIMC CyTOF data used in this study
are available in the FlowRepository database under accession code FR-FCM-ZYAJ. The Park
flow data used in this study are available in the FlowRepository database under accession
code FR-FCM-Z2QV. The van Gassen CyTOF data used in this study are available in the
FlowRepository database under accession code FR-FCM-Z247. The Trussart CyTOF data
used in this study are available in the FlowRepository database under accession code FR-
FCM-Z2L2. The Krieg CyTOF data used in this study are available in the FlowRepository
database under accession code FR-FCM-ZY34. The Ogishi CyTOF data used in this study
are available in the FlowRepository database under accession code FR-FCM-Z3YK. The
Ogishi flow cytometry data used in this study are available in the FlowRepository database
under accession code FR-FCM-Z3YL. The CITE-seq data used in this study are available
from the 10X genomics website [https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_protein_v3].

Code availability
The cyCombine R package is available on Github: https://github.com/biosurf/
cyCombine/. Code to reproduce the analyses in this article is available at https://
biosurf.org/cyCombine.
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