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BICYCLE PATHS, ELASTICAE AND SUB-RIEMANNIAN

GEOMETRY

ANDREY ARDENTOV, GIL BOR, ENRICO LE DONNE, RICHARD MONTGOMERY,
AND YURI SACHKOV

Abstract. We relate the sub-Riemannian geometry on the group of rigid

motions of the plane to ‘bicycling mathematics’. We show that this geom-

etry’s geodesics correspond to bike paths whose front tracks are either non-
inflectional Euler elasticae or straight lines, and that its infinite minimizing

geodesics (or ‘metric lines’) correspond to bike paths whose front tracks are ei-

ther straight lines or ‘Euler’s solitons’ (also known as Syntractrix or Convicts’
curves).
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2 A. ARDENTOV, G. BOR, E. LE DONNE, R. MONTGOMERY, AND YU. SACHKOV

1. Introduction

An oriented line segment of fixed length ` moves in the Euclidean plane. We
think of the segment as a bicycle so that its end points mark the points of contact
of the front and back wheels with the ground. As the segment moves, its end points
trace a pair of curves, the front and back tracks. We impose the ‘no-skid’ condition
on the motion: the line segment must be tangent to the back track at each instant.
Any such motion of a line segment will be called a bicycle path. See Figure 1. We
define the length of a bicycle path to be the ordinary Euclidean length of its front
track.

`

f

b

Figure 1. The front and back tracks of a bicycle path (the dark and
light curves, respectively).

What are the minimizing bike paths? These are bike paths whose length mini-
mizes the length among all competing bike paths which connect two given place-
ments of the line segment.

We will say that two curves in the plane have the same shape if one curve can
be taken onto the other by a homothety, that is, a composition of an isometry and
a dilation. The width of a plane curve is the infimum of the distances between two
parallel lines which bound a strip containing that curve.

Theorem 1.1. The front track of a minimizing bicycle path is a straight line or
an arc of a non-inflectional elastic curve of width twice the bicycle length or less.
Every possible shape of non-inflectional elastic curve arises in this way.

soliton
Inflectional Non-inflectionalEuler’s

Figure 2. The family of elastic curves.

See Figure 2 for some examples of elastic curves, also known as elasticae, a
remarkable family of plane curves studied by Jacques Bernoulli (1691), Euler (1744)
and many others. (We recommend [22] for a nice historical review.) Elasticae can be
parameterized by elliptic functions. They are the planar curves having critical total
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curvature squared, among all curves with fixed length connecting two given points.
They are defined by the differential equation (1) below. Another characterization
of elasticae is as curves whose curvature varies linearly with the (signed) distance
to some fixed line, the directrix of the elastica. (Can you see this line for each
of the curves in Figure 2?). Theorem 1.1 provides yet another characterization
of elasticae, apparently new. In Figure 2 the Euler soliton and all the curves to
its right are ‘non-inflectional’: they have no points with null curvature. All the
elasticae to the left of the Euler soliton are inflectional. See Section 3.1 below for
more information on elasticae.

In Section 4 we derive relationships between the shapes and widths of the elas-
ticae of Theorem 1.1. In general, a bike path is not determined by its front track.
That is, for a given front track, there is a circle’s worth of corresponding back tracks,
each of which determined by the bicycle frame orientation at some fixed point of
the front track. However, for each of the minimizing bike paths of Theorem 1.1,
except those whose front track is a line segment, its front track, combined with the
condition that the bike path minimizes, does determine the back track. For a given
shape of a non-inflectional elastica there are two distinct types of minimizing bike
paths: one whose front track has width 2` and another of certain lesser width (de-
pending on the shape). We call them ‘wide’ and ‘narrow’ front paths. (Exception:
Euler solitons appear only in width 2`.) The shapes of the back tracks of these two
types are quite different. See Figure 7 and Proposition 4.5 for the full details.

Let us emphasize that Theorem 1.1 does not state that arbitrary subsegments
of a given non-inflectional elastica occur as front tracks of minimizing bike paths.
In fact, typically, the opposite is true. Consider for example Figure 3. It depicts
a geodesic bike path connecting two horizontal placements of the bike. Clearly,
this is not a minimizing path; a straightforward eastward ride will be much shorter.
Theorem 1.1 only states that short enough subsegments of this path are minimizing
between their endpoints. We do not address here how short is ‘short enough’. For
comprehensive results in that direction see [25, 26, 27]. According to our next
theorem, the fact that geodesics eventually fail to minimize, as depicted in Figure
3, is typical, with two exceptions.

Figure 3. A non-minimizing geodesic segment.

Theorem 1.2. An infinitely long bike path is a global minimizer, that is, all of its
compact subsegments minimize length between their end points, if and only if it is
one of the following two types:

(1) its front track is a straight line and its back track is a tractrix or a straight
line, or
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(2) its front track is an Euler soliton of width twice the bike length and its back
track is a tractrix.

See Figure 4. Furthermore, there is an isometric involution of the bicycle configu-
ration space which takes paths of one type to paths of the other, provided the back
track of the path is a tractrix and not a line. See Lemma 3.2.

In the soliton case, at the ‘highest point’ of the soliton curve, that is, at its point
of maximum curvature, the bike frame is oriented perpendicular to the directrix,
pointing away from it. For an explicit parametrization of the soliton and tractrix,
see Lemma 5.1 below.

Figure 4. Two infinite minimizing bike paths share the tractrix (light
curve) as a common back track; the two front tracks are a straight line
(dashed dark horizontal line) and an ‘Euler’s soliton’ (solid dark curve).

About the proofs. With one notable exception, the proofs of the two theorems
above, once set up in the appropriate language, reduce to standard calculations
with the geodesic equations of sub-Riemannian geometry. Such a calculation yields
Theorem 1.1 and ‘one half’ of Theorem 1.2; namely, that all geodesics, except the
two types mentioned in Theorem 1.2, are not globally minimizing (the argument
for the last statement is essentially contained in Figure 3). That bike paths whose
front track is a straight line are global minimizers follows directly from the defini-
tion of bike path length. What remains to show is that geodesics of Theorem 1.1
whose front tracks are Euler solitons are global minimizers. Here, the notable ex-
ception mentioned above, we found a surprisingly simple proof, inspired by ‘bicycle
mathematics’. The so called ‘bicycle transformation’ (or Darboux transformation
or Bäcklund transformation or flip) consists of rotating a bicycle by 1800 about its
rear end. It is easy to check that this transformation is an isometric involution on
the bicycle configuration space, so takes global minimizers to global minimizers.
Applying it to a (generic) global minimizer whose front track is a line, we obtain a
global minimizer whose front track is an Euler soliton, as depicted in Figure 4.

Comparison with Previous Works. One of us has published a series of works
[25, 26, 27] on the geodesics and their minimality (or ‘optimal synthesis’ in the
language of control theory) for this same subRiemannian geometry. These earlier
works focused only on the back wheel projection. The front wheel was not present.
What is new in our work is the focus on the front wheel projection and the realiza-
tion that the front wheel traces out elasticae. We could have derived our minimality
results by translating the earlier results from the back wheel over to the front wheel
but we have found it simpler and more illuminating to directly study the geodesics
from the front wheel point of view.

Our other new contributions are the subRiemannian involution taking straight
line tracks to Euler solitons (Lemma 3.2, Theorem 3.3) and the relations sketched
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in subsection 6.5 between the geodesics here and those occurring when rolling the
hyperbolic plane along the Euclidean plane as investigated by Jurdjevic [17, 18].

Computer graphics and animations. Most figures in this article were made
using the computer program Mathematica. They are complemented with some
‘bicycle mathematics’ animations, found on the web page https://www.cimat.

mx/~gil/bicycling/.

Acknowledgments. AA and YS were supported by the Russian Science Foun-
dation under grant 17-11-01387-P and performed in Ailamazyan Program Systems
Institute of Russian Academy of Sciences. E.L.D. was partially supported by the
Academy of Finland (grant288501 ‘Geometry of sub-Riemannian groups’ and by
grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group The-
ory ’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG
‘Geometry of Metric Groups’). GB was supported by CONACYT Grant A1-S-4588.

2. Wider Context

For a number of surprising theorems around bike paths, and their relations to
integrable systems, see [8].

The bicycling configuration space is diffeomorphic to the three-dimensional Lie
group SE2 of rigid motions of the plane (orientation preserving isometries). Its
length structure comes from a left-invariant sub-Riemannian metric on this group.
See Section 3.2 below for details. Such a structure is unique up to scale, [1, 9], and
that scale can be interpreted as the length of the bicycle frame. This structure,
from the perspective of the back wheel track, has been investigated by many authors
[13, 25, 26, 27, 15] and used to understand aspects of mammalian vision. In that
latter context the group SE2 is typically referred to as the “roto-translational group”
and the orientation of the bicycle frame is the crucial object, as optical processing in
the brain involves cells whose function is to perceive orientations of line segments.

Gershkovich and Vershik gave a general description and classification of left
invariant sub-Riemannian structures on three-dimensional Lie groups in [30], see
also [1]. In all cases the geodesic equations are those of ‘generalized elastica’.

On any metric space we can speak of ‘globally minimizing geodesics’ or, synony-
mously, ‘metric lines’: isometric embeddings of the real line into the metric space.
See [10]. What are the metric lines for a given sub-Riemannian structure? Theorem
1.2 answers this question for the bicycling case.

Hakavuouri and LeDonne [19] prove a number of powerful general theorems
regarding metric lines in sub-Riemannian geometries by implementing the operation
of “blowing down” a geodesic. Sufficient iterations of blow-down yield a line in a
Euclidean space. As a corollary, they prove that if a sub-Riemannian geometry Q
comes, like ours, with a sub-Riemannian submersion π to the Euclidean plane R2,
then (1) the projection of any metric line in Q must lie a bounded distance from
a line in the plane, and (2) if that planar line is given by x = 0 and if we write
the projected geodesic as (x(t), y(t)) then x(t) cannot be a non-constant periodic
function. Item (2) excludes all the elasticae of Theorem 1.2 besides the line and
the soliton from being metric lines.

We know five other rank 2 sub-Riemannian geometries besides our SE2 geometry
whose geodesics project to elasticae under a sub-Riemannian submersion onto the
Euclidean plane. (See the third paragraph of Section 3.2 for the definition of a
‘sub-Riemannian submersion’.) Two are Carnot geometries, one being the Engel

https://www.cimat.mx/~gil/bicycling/
https://www.cimat.mx/~gil/bicycling/
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group, whose growth vector is (2, 3, 4) (see [4, 3]), and the other, sometimes called
the Cartan group, being the unique Carnot group with growth vector (2, 3, 5) (see
[28]). (The growth vector of a Carnot group is its basic numerical invariant and
encapsulates the graded dimensions of its Lie algebra.) Another is the flat Martinet
geometry, see [2]. The remaining two are five-dimensional, arising from rolling a
constant curvature surface along the Euclidean plane, and have state spaces SO3×
R2 and PSL2(R)× R2. See [17, 18] for a derivation of elasticae as their geodesics.
In all five geometries the geodesics projecting to Euclidean lines are metric lines
and in the flat Martinet geometry these exhaust the set of metric lines. In the other
four geometries some of the geodesics which project onto solitons are also metric
lines. In the SO3 × R2 case all elasticae, and in particular all Euler solitons, arise
as projections of geodesics onto R2, but only some of the solitons, namely those
whose kink is ‘small enough’, arise as projections of metric lines.

Are all these occurrences of elasticae and Euler solitons in sub-Riemannian ge-
ometries related? There is a sub-Riemannian submersion from the Cartan group
onto the Engel group, so that the space of Engel geodesics embed into the space of
Cartan geodesics by horizontal lift. Similarly, the space of flat Martinet geodesics
embed into the space of Engel geodesics. The bike configuration space Q = SE2

can be constructed as a circle bundle associated to the hyperbolic rolling space
PSL2(R) × R2, viewed as a principal PSL2(R) bundle, and this fact and its re-
lated geometry allows us to embed the bike geodesics into the hyperbolic rolling
geodesics. See the last paragraph of Section 6.4 below. We leave the possibility
of uncovering relations between the other pairs of geometries and of some deeper
reason underlying the ubiquity of elasticae in sub-Riemannian geometry to future
researchers.

3. Concepts building to the proofs

3.1. Elasticae. An immersed plane curve is an elastica if its curvature κ(t), as a
function of arc length t, satisfies the 2nd order ODE

κ̈+
1

2
κ3 +Aκ = 0

for some constant A. See, for example, [31]. This is an equation of Newton’s type,
with potential 1

8κ
4 + 1

2Aκ
2. Consequently, there is a constant ‘energy’ B ∈ R such

that

(1)
1

2
(κ̇)2 +

1

8
κ4 +

A

2
κ2 = B.

We call the latter equation the ‘energy form’ of the elastica equation. If κ(t0) = 0
at some point then the energy equation asserts that B ≥ 0. Consequently, if B < 0
we must have that κ never vanishes along the curve. Since κ(t0) = 0 corresponds to
an inflection point of the curve, we call such elasticae ‘non-inflectional.’ Elasticae
for which B = 0, A < 0 are also non-inflectional and consist of the Euler solitons.
All non-inflectional elasticae, except the Euler solitons, have periodic curvature.

Equation (1) can be rewritten (by ‘completing the square’) as

(2) κ̇2 +

(
κ2

2
+A

)2

= 2B +A2.

Thus the parameters must satisfy 2B+A2 ≥ 0. The set of elasticae is invariant under
dilations. To dilate an immersed plane curve c(t) parameterized by arclength t by a
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factor λ > 0 we form c̃(t) = λc(t/λ). The dilated curve c̃(t) is still parameterized by
arclength and has curvature κ̃(t) = 1

λκ( tλ ). It follows by a direct computation that
the λ-dilate of an elastica satisfying equation (1) with parameters A,B satisfies a

new equation (1), now with rescaled parameters Ã = A/λ2, B̃ = B/λ4. Thus

(3) µ := −2B/A2 ≤ 1

is scale invariant and can be thought of as a ‘shape parameter’. Non-inflectional
elasticae correspond to B ≤ 0, that is, 0 ≤ µ ≤ 1, in which case A ≤ 0 as well. There
are 3 types of ‘exceptional’ elasticae, lines, circles and solitons. Lines correspond
to solutions of equation (1) with κ = B = 0, solitons to B = 0, A < 0, κ 6= 0, and
circles to µ = 1, that is, B = −A2, κ̇ = 0. See Figure 5.

Circles

Solitons A

B

µ = 1

µ = 0

µ = −2B/A2

Inflectional elasticae
N

o
n

-i
n

fl
ec

ti
o

n
al

el
as

ti
ca

e

Figure 5. Elasticae parameter space. The light and dark solid curves
parametrize inflectional (B > 0) and non-inflectional (B < 0) elasticae
(respectively) of ‘constant shape’, level curves of the shape parameter
µ = −2B/A2 of equation (3). The dashed heavy curve in the third
quadrant corresponds to the elasticae which appear as front tracks of
geodesic bike paths for fixed bike length ` = 1 (see Proposition 4.3,
where this curve is parametrized by a). Its intersection with the A-
axis (marked with a white dot) stands for the Euler soliton (a = 1
in equation (11)). Each non-zero level curve of µ in the third quadrant
intersects the dashed curve at 2 points, corresponding to the two sizes of
non-inflexional elasiticae appearing as front tracks of bicycle geodesics,
‘wide’ and ’narrow’ (to the left and right of the white dot, respectively).

3.2. Configuration space. Metric concepts. We begin by reformulating our
theorems in the language of sub-Riemannian and metric geometry.

Let ` > 0 be the bicycle length. Then the configuration space for bike motions
can be expressed as Q = {(b, f) ∈ R2 × R2 | ‖f − b‖ = `} ⊂ R2 × R2, where ‖ · ‖ is
the standard Euclidean norm on R2. It is easy to see that Q is a smooth manifold
diffeomorphic to R2 × S1. The no-skid condition defines a rank 2 distribution
D ⊂ TQ on Q by saying that a vector (ḃ, ḟ) ∈ T(b,f)Q belongs to D(b,f) if and only

if ḃ is a multiple of f − b. Bike paths are the integral curves of D.
D is a contact distribution. We prove this in Lemma 4.1 below. Alternatively, in

Section 6.3 we show how to identify Q with the space of (oriented) tangent lines to
the plane, also known as “contact elements” since they represent 1st order contact
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of curves. In this context D is the canonical contact distribution on this space of
contact elements, one of the first examples of a contact manifold. See for example
Appendix 4 of Arnol’d’s famous book, [5].

Let πf : Q → R2 be the front wheel projection, (b, f) 7→ f . D is transverse
to the fibers of πf , hence one can equip D with an inner product by pulling back
the Euclidean metric on R2 to Q by πf , then restricting to D. The 3-manifold Q,
together with the distribution D and the inner product on it, is an example of a
sub-Riemannian manifold. We constructed the inner product on D in such a way
that the front wheel projection is a sub-Riemannian submersion: for each q ∈ Q
the differential dπf (q) maps the 2-plane Dq isometrically onto Tπf (q)R2 = R2. This
sub-Riemannian structure is isometric to the standard sub-Riemannian structure
on the group SE2 studied in [13, 15, 25, 26, 27]. Up to scaling and isometries, it is
the unique left-invariant sub-Riemannian structure on SE2 of contact type.

SinceQ is connected andD is contact, the Chow-Rashevskii Theorem [23] implies
that any two points in Q are connected by a bicycle path. The length of such a
path is defined using the inner product on D, just as in Riemannian geometry. In
view of our construction of the inner product, the length of a bike path equals the
length of its front wheel projection to R2, as asserted in the introduction.

Defining the distance between two points of Q to be the infimum of the lengths
of the bike paths connecting them turns Q into a metric space. A minimizing
geodesic in Q is a bike path γ : I → Q, where I ⊂ R is a compact interval, realizing
the distance between its end points. A geodesic is a bike path γ : I → Q, where
I ⊂ R is an interval (possibly non-compact), such that every t0 ∈ I is contained in
a compact subinterval I ′ ⊂ I for which γ|I′ is a minimizing geodesic. In addition,
we require that if t0 is an interior point of I then t0 is also an interior point of
I ′. (This last condition excludes arbitrary concatenations of minimizing geodesics
from being geodesics.)

Theorem 1.1 states that the πf -image of any geodesic is a non-inflectional elastic
curve or a straight line. A metric line in Q is an infinite geodesic all of whose
compact subsegments are minimizing geodesics. Theorem 1.2 states that the πf -
image of any metric line is either a Euclidean line or an Euler soliton. (The ‘width’
of this soliton is twice the length of the bike frame.)

A sub-Riemannian isometry of Q is a diffeomorphism that preserves D and the
inner product on it.

Remark 3.1. Clearly, a sub-Riemannian isometry is a distance preserving home-
omorphism. The latter can be taken as a weaker ‘metric’ definition of isometry.
For a general sub-Riemannian manifold, the equivalence of the two definitions is
an open problem. For an equi-regular sub-Riemannian structure, such as our case
(or any homogeneous sub-Riemannian manifold), the two notions are equivalent
[11, 21].

By construction, the action of the group E2 of isometries of the plane R2 lifts
to an action on Q by sub-Riemannian isometries. An element g ∈ E2 acts on Q
sending (b, f) to (gb, gf) so that our sub-Riemannian submersion πf intertwines
the E2-action on Q with the standard action of E2 on R2. But these are not all
the sub-Riemannian isometries of Q. There is one extra symmetry that plays an
important role in our proof of Theorem 1.2.
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Lemma 3.2. The map Φ : Q → Q, (b, f) 7→ (b, 2b − f), which ‘flips’ the bike
frame about the back wheel is a sub-Riemannian isometry of Q. See Figure 6.

f̃ = 2b− f

bf
ṽ

v

Figure 6. Lemma 3.2: Flipping a bike about its back wheel.

Proof. Φ is the restriction of a linear map to Q ⊂ R2 × R2. Thus its derivative is
given by the same formula, (ḃ, ḟ) 7→ (ḃ, 2ḃ − ḟ). It clearly preserves the no-skid

condition hence it leaves D invariant. It remains to show that ‖ḟ‖ = ‖2ḃ− ḟ‖. Now

decompose orthogonally ḟ = ḟ‖+ ḟ⊥, ḃ = ḃ‖+ ḃ⊥, where ḟ‖, ḃ‖, are the orthogonal

projections along b− f . The bicycling no-skid condition implies ḃ⊥ = 0 and ‖b−
f‖ = const implies ḟ‖ = ḃ‖, hence ḟ‖ = ḃ. Thus 2ḃ− ḟ = 2ḟ‖ − (ḟ‖ + ḟ⊥) = ḟ‖ − ḟ⊥.

That is, 2ḃ− ḟ is the reflection of ḟ about b− f . It follows that ‖2ḃ− ḟ‖ = ‖ḟ‖. �

For completeness we describe the full group of isometries of Q.

Theorem 3.3. The group Isom(Q) of all sub-Riemannian isometries of Q is an
extension of E2 by the two-element group Z/2Z. This two-element group is gen-
erated by the isometric involution Φ which ‘flips the bike frame’, as described in
Lemma 3.2 above. Thus

Isom(Q) ' E2 o Z/2Z ' SE2 o (Z/2Z× Z/2Z).

The identity component of Isom(Q) is SE2, acting freely and transitively on Q
and so induces a sub-Riemannian isometry between Q and a left-invariant sub-
Riemannian metric on SE2.

We prove this theorem in the appendix. Hladky [16], in his final section, com-
putes that the Lie algebra of Isom(Q) is that of SE2. The same conclusion can
be drawn from the asphericity of the associated CR structure, as in [9, §7]. But
calculating the Lie algebra of Isom(Q) only describes the identity component of
Isom(Q), missing the ‘discrete part’ (or ‘isotropy representation”) of the isometry
group, as we do in the appendix.

4. The proof of Theorem 1.1 (and some more)

We prove a more detailed version of Theorem 1.1, subdividing the assertions
into 4 claims. Most of these claims do not hold for the ‘exceptional’ elasticae (line,
circle, soliton). We first describe the non-exceptional situation, then correct for the
exceptional elasticae.

Claim 1 (Theorem 1.1). The front track of each bicycle geodesic is a NIE (non
inflectional elastica) or a straight line.

Claim 2 (Wide and narrow). For a fixed bicycle frame of length `, each shape
of NIE appears as a front track in two different sizes, ‘wide’ and ‘narrow’: The
wide front tracks are NIE of width 2`. A narrow front track can have any width
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in (0, 2`), depending on its shape: the more circular is a narrow front track, the
narrower it is. See Figure 7.

Exceptions: the circle and the soliton appear as front tracks only with width 2`.

Figure 7. Two bicycling geodesics with front tracks (dark solid curve)
which are non-inflectional elasticae of the same shape but of different
size: ‘wide’ (left) and ‘narrow’ (right). In each of the two figures: the
horizontal dashed light line is the directrix, the light solid curve is the
back track, the arrow depicts the bicycle frame, pointing towards the
front wheel, at the moment of going through a point of maximum cur-
vature of the front track. See Proposition 4.7.

Claim 3 (Unique horizontal lift). Each non-linear NIE front track, wide or narrow,
has a unique horizontal lift to a bicycle geodesic. This lift is determined by the
back track found by the following rule: at points of maximum curvature of the front
track the bicycle frame is perpendicular to the front track, pointing ‘outside’ the
front track (that is, in the direction opposite to the acceleration vector of the front
track). See Figure 7 and our web animations [7].

The bicycle frame is also perpendicular to the front track at the points of mini-
mum curvature. For the wide NIE, the frame at this point also points outside the
front track. For the narrow NIE the frame points inside.

Exception: all horizontal lifts of a Euclidean line are globally minimizing bike
paths. Two of the lifts correspond to riding along the line, either forward or back-
wards, with the bike frame aligned with the line. The rest of the lifts correspond
to the back wheel tracing a tractrix of width ` (the light solid curve of Figure 4).

Claim 4 (Flipping a front track). There is a sub-Riemannian involution Φ : Q→ Q
on the bicycling configuration space, rotating the bicycle frame by 1800 about its
rear end. It acts on the space of bicycle geodesics, as well as their front tracks,
preserving the ‘narrow’ and ‘wide’ subclasses. Each NIE has its ‘length’ L: the
distance between two successive points along the curve of maximum (or minimum)
curvature, see Figure 11. The flip of a wide NIE is obtained by translating it by
L/2 along its directrix. The flip of a narrow NIE is obtained by a ‘glide reflection’:
translation by L/2 along the directrix followed by a reflection about it. See Figure 8.

Exceptions: the flip of the circle is the circle itself, the flip of the line is the
soliton, of width 2`, and vice versa.

4.1. Generalities on geodesics in sub-Riemannian geometry. To prove the
above 4 claims we review some general facts from sub-Riemannian geometry. For
more details see Chapter 1 of [23].

Let M be a smooth manifold. We can turn a smooth vector field X on M into a
fiber-linear function PX : T ∗M → R by the rule PX(q,p) = p(X(q)), where q ∈M
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Figure 8. The flips of bicycle geodesics with ‘wide’ (left) and ‘narrow’
(right) front tracks of the same shape. In each of the two figures: the
dashed dark curve is the ‘flip’ of the solid dark curve and vice versa, the
light solid curve is their common back track, the light dashed horizontal
line is their common directrix, the solid arrow indicates the bicycle frame
at a point of maximum curvature of the solid front track and the dashed
arrow indicates the bicycle frame at a point of minimum curvature of
the dashed front track. See Proposition 4.11.

and p ∈ T ∗qM . Consider a general rank r distribution D ⊂ TM , equipped with a
sub-Riemannian metric on D and an orthonormal frame X1, . . . , Xr ∈ Γ(D). Form
the corresponding fiber-linear functions Pi := PXi . Then the normal geodesics of
this sub-Riemannian structure are, by definition, the projections onto M of the
solutions to the standard Hamiltonian equation on T ∗M ,

(4) q̇ = ∂pH, ṗ = −∂pH, where H =
1

2

∑
i

(Pi)
2.

See Theorem 1.14 on page 9 of [23] for the full statement and later, a proof.
Normal geodesics parametrized by arc length correspond to solutions of equation

(4) with energy H = 1/2. Short enough segments of normal geodesics are length
minimizers, but the converse is not true, in general, due to the existence of singular
(or abnormal) geodesics. See [23], particularly Chapters 3 and 5. However, a basic
result of the theory is: if D is a contact distribution then all length minimizing
D-horizontal curves are normal geodesics. See the example at the top of page 59
in [23].

4.2. The bicycling geodesic equations. Let Q = {(b, f) ∈ R2×R2 | ‖b−f‖ = 1}
be the bicycling configuration space, equipped with the coordinates (x, y, θ), where
f = (x, y), b = f − (cos θ, sin θ), with associated global coordinate vector field
framing ∂x, ∂y, ∂θ. (We take, without loss of generality the bike length ` = 1. The
general case reduces to this case by an easy rescaling argument.) The conjugate
fiber coordinates on T ∗Q are px := P∂x , py := P∂y , pθ := P∂θ .

Lemma 4.1. The no-skid condition defines on Q a rank 2 distribution D ⊂ TQ,
the kernel of the 1-form

(5) η := dθ − cdy + sdx, where c = cos θ, s = sin θ.

It follows that η ∧ dη = −dx ∧ dy ∧ dθ is non-vanishing, hence D is a contact
distribution.

Proof. Let q(t) = (b(t), f(t)) be a curve in Q satisfying the non-skid condition. Let

v := f − b = (c, s) and decompose orthogonally ḟ = ḟ‖ + ḟ⊥, where ḟ‖, ḟ⊥ are the
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orthogonal projections of ḟ on v,v⊥, respectively. The condition ‖f − b‖ = const.

and the no-skid condition ḃ‖v are equivalent to ḟ‖ = ḃ. From f = b + v follows

ḟ = ḃ+v̇, hence ḟ‖ = ḃ is equivalent to v̇ = ḟ⊥ = ḟ− ḟ‖ = ḟ−〈ḟ ,v〉v. In coordinates,

this is θ̇ − cẏ + sẋ = 0. That is, q̇ ∈ Ker(η). �

Thus minimizing bike paths are arcs of normal geodesics. An orthonormal fram-
ing for D = Ker(η) is

(6) X1 := ∂x − s∂θ, X2 := ∂y + c∂θ,

with the associated

(7) P1 := PX1 = px − spθ, P2 := PX2 = py + cpθ.

The Hamiltonian equations associated to H =
[
(P1)2 + (P2)2

]
/2 are

ẋ = ∂pxH = P1 = px − spθ, ṗx = −∂xH = 0,
ẏ = ∂pyH = P2 = py + cpθ, ṗy = −∂yH = 0,

θ̇ = ∂pθH = pθ + cpy − spx, ṗθ = −∂θH = pθ(cpx + spy).
(8)

So px, py are constant, as well as H = (ẋ2 + ẏ2)/2. Fixing H = 1/2 thus means
that f(t) is parametrized by arc length. Rotations act on the space of solutions of
equations (8) by rotating (x, y), (px, py) and (c, s) simultaneously and shifting θ,
leaving pθ unchanged. So we can assume without loss of generality say py = 0 and
a := px ≥ 0. Equations (8) and H = 1/2 now become

(9) ẋ = a− spθ, ẏ = cpθ, θ̇ = pθ − as, ṗθ = acpθ, θ̇2 + a2c2 = 1.

Lemma 4.2. Let κ be the geodesic curvature of the front track f(t) = (x(t), y(t))
of a solution to equations (9).Then κ = pθ.

Proof. We calculate: κ = ẋÿ − ẏẍ = θ̇ + as = pθ. �

We can thus rewrite the unit speed geodesic equations (9) as

(10) ẋ = a− sκ, ẏ = cκ, θ̇ = κ− as, κ̇ = acκ, θ̇2 + a2c2 = 1.

We are now ready to prove the 4 claims.

4.3. Proving the 1st claim (Theorem 1.1).

Proposition 4.3. The curvature κ of the front track of a bicycle geodesic (solution
to equations (8)), as a function of arc length t, satisfies the ‘energy form’ of the
elastica equation (1),

κ̇2

2
+
κ4

8
+
Aκ2

2
= B,

with

(11) A = −a
2 + 1

2
, B = − (a2 − 1)2

8
.

That is, the front track is a non-inflectional elastica or a straight line.

Proof. The statement is invariant under rigid motions, so we can use instead equa-
tions (10). Then κ̇ = acκ and θ̇2 = (κ − as)2 = 1 − a2c2, which simplifies to
2asκ = κ2 + a2 − 1. Thus 4κ̇2 + (κ2 + a2 − 1)2 = 4a2κ2, which gives the stated
formula. �
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Remark 4.4. In the last paragraph of Section 6.4 below we sketch an alternative
proof of Claim 1. This alternative proof uses a relation between hyperbolic rolling
geodesics and bicycling geodesics and the fact that the hyperbolic rolling geodesics
had been already computed and shown to correspond to elasticae [17], [18].

4.4. Proving the 2nd claim. The ‘shape parameter’ of the front track is µ =
−2B/A2 = (a2 − 1)2/(a2 + 1)2 ∈ [0, 1]. Each µ ∈ (0, 1) has 2 preimages, a and 1/a,
one in (0, 1) the other in (1,∞). It follows that each NIE shape appears as a front
track for two values of a. Let us determine the widths of these front tracks. Let
κmax, κmin > 0 be the maximum and minimum value of κ along the front track.

Proposition 4.5. The front track of a solution to equations (10) with κ > 0 has
κmax = 1 + a and κmin = |1− a|. It follows that the width of the front track is

• 2 if 0 < a ≤ 1 (a ‘wide’ front track);
• 2/a if a > 1 (a ‘narrow’ front track).

See Figure 7.

Proof. Since κ̇ = 0 at κmax, κmin, these critical values must satisfy (κ2 +a2−1)2 =
4a2κ2 (see Proposition 4.3 and its proof). The solutions of this equation are κ =
±1±a. For 0 < a < 1 the positive solutions are 1±a, hence ∆κ = κmax−κmin = 2a.
For a > 1, the positive solutions are a ± 1, hence ∆κ = 2. From κ̇ = aẏ it follows
that ∆y = 2 in the 1st case and 2/a in the 2nd case, as needed. �

Remark 4.6. One can also use equations (10) to find the widths of the respective

back tracks:
(
1−
√

1− a2
)
/a for a ‘wide’ front track, and 2/a for a ‘narrow’ front

track (same as the width of the front track).

4.5. Proving the 3rd claim.

Proposition 4.7. Consider a solution of equations (10) with a > 0 and κ > 0
(this can always be arranged for a non-linear front track by appropriate reflections
about the x and y axes). Then

(1) θ = π/2 at a point where κmax occurs.
(2) θ = −π/2 at a point where κmin occurs and 0 < a < 1 (a ‘wide’ front

track).
(3) θ = π/2 at a point where κmin occurs and a > 1 (a ‘narrow’ front track).

See Figure 7.

Remark 4.8. The a = 1 case is either a soliton, where κ does not have a minimum,
or a straight line. The a = 0 case is that of the unit circle and is safely left to the
reader.

Proof. By equations (10), κ̇ = acκ = aẏ. Thus in all 3 cases, κ̇ = 0 implies
c = ẏ = 0, which implies s = ±1 and ẋ = ±1. We shall also use the formulas
κmax = 1 + a and κmin = |1− a| from Proposition 4.5, and ẋ = a− sκ of equations
(10).

(1) Substitute κ = 1+a in ẋ = a−sκ and get ẋ+s = a(1−s). If s = −1 then
ẋ = 2a+ 1 > 1, which is impossible, hence s = 1, ẋ = −1 and θ = π/2.

(2) If 0 < a < 1 then κmin = 1 − a. Substitute this in ẋ = a − sκ and get
ẋ + s = a(1 + s). If s = 1 then ẋ = 2a − 1. Together with 0 < a < 1 this
implies −1 < ẋ < 1 which contradicts ẋ = ±1. Hence s = −1, ẋ = 1 and
θ = −π/2 at a point where κmin occurs.



14 A. ARDENTOV, G. BOR, E. LE DONNE, R. MONTGOMERY, AND YU. SACHKOV

(3) If a > 1 then κmin = a− 1. Substitute this in ẋ = a− sκ and get ẋ− s =
a(1 − s). If s = −1 then ẋ = 2a − 1. Together with a > 1 this implies
ẋ > 1, which contradicts ẋ = ±1. Hence s = 1, ẋ = 1 and θ = π/2 at a
point where κmin occurs. �

4.6. Proving the 4th claim. Let γ be a bicycle geodesic. A vertex of γ is a point
on it where an extremum of the curvature of the front track occurs (κ̇ = 0). Our
involution Φ : Q → Q is a sub-Riemannian isometry, hence Φ ◦ γ is a geodesic as
well.

Lemma 4.9. If γ is a bicycle geodesic with a 6= 1 (that is, its front track is not a
line or soliton) then Φ maps vertices of γ to vertices of Φ ◦ γ.

Proof. Let γ(t) = (x(t), y(t), θ(t)), f(t) = (x(t), y(t)) its front track and v(t) =
(cos θ(t), sin θ(t)) the frame direction. By Proposition 4.7, the vertices of γ are the

points where the frame is perpendicular to the front track, 〈ḟ ,v〉 = 0. Let γ̃ = Φ◦γ.

Then f̃ = f−2v and ṽ = −v, hence 〈˙̃f , ṽ〉 = −〈ḟ−2v̇,v〉 = −〈ḟ ,v〉, since 〈v,v〉 = 1
implies 〈v, v̇〉 = 0. It follows that vertices of γ and γ̃ occur simultaneously. �

The statement of Claim 4 is invariant under rigid motions and time reparametriza-
tions, so we can assume, without loss of generality, that γ(t) = (x(t), y(t), θ(t))
satisfies equations (10) with a > 0, a 6= 1, κ > 0 and f0 = f(0) is a point where
κmax occurs. According to Proposition 4.7 and its proof we then have θ0 = π/2,

v0 = (0, 1), κ0 = 1 + a, ḟ0 = (−1, 0) and f̈0 = (0,−κ0) = −(0, 1 + a).

Now let f̃(t) be the front track of γ̃ = Φ ◦ γ. That is, f̃(t) = f(t)− 2v(t).

Lemma 4.10. (1)
˙̃
f0 = −ḟ0 = (1, 0), (2)

¨̃
f0 = (0, 1− a).

Proof. (1) From equation (10), θ̇ = κ − as. At t = 0, κ0 = 1 + a, θ0 = π/2,

hence θ̇0 = 1. Now v̇ = θ̇(−s, c), hence v̇0 = (−1, 0). Thus
˙̃
f0 = ḟ0 − 2v̇0 =

(−1, 0)− 2(−1, 0) = (1, 0).

(2) From equations (10), θ̈ = κ̇ − aθ̇c = acκ − ac(κ − as) = acs, hence θ̈0 = 0.

Thus v̈ = θ̈(−s, c) − θ̇2(c, s) implies v̈0 = (0,−1). It follows that
¨̃
f0 = f̈0 − 2v̈0 =

(0,−1− a)− 2(0,−1) = (0, 1 + a). �

f̃

f

f̈

ḟ

v0

¨̃
f

˙̃
f

ṽ0 f̃

f

f̈

ḟ

v0

¨̃
f

˙̃
f

ṽ0

Figure 9. The proof of claim 4 for ‘wide’ (left) and ‘narrow’ (right)
front tracks.
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We can conclude from the last lemma:

Proposition 4.11. For any bicycle geodesic γ with a 6= 0, 1, let γ̃ = Φ ◦ γ. Then

• if 0 < a < 1 (wide front track) then the front track of γ̃ is the result of
translating the front track of γ along its directrix for half its length;
• if a > 1 (narrow front track) then the front track of γ̃ is the result of

translating the front track of γ along its directrix for half its length, then
reflecting about the directrix.

See Figure 9.

5. The proof of Theorem 1.2.

We first prove half of Theorem 1.2, the ‘if’ part, without invoking Theorem 1.1.
Doing so illustrates some amusing bicycling mathematics.

By the ‘horizontal lift’ of a front track f(t) we mean any bicycle path (b(t), f(t))
whose front track projection is the given curve f(t). Since a Euclidean line is a
metric line in R2, and since πf preserves lengths when applied to bicycle paths,
every horizontal lift of a Euclidean straight line is a metric line in Q. However,
just because the front wheel moves in a straight line does not mean that the back
wheel moves along the same straight line. Indeed, the back wheel typically traces a
tractrix of width ` associated to the linear front track (unless at some moment the
back wheel lies on the straight line, in which case the back wheel also travels along
the same straight line.) See Figure 10.

`

Figure 10. A tractrix: the back wheel track (dark solid curve) when
the front wheel travels along a straight line (light solid horizontal line).
The ‘flipped’ front track is Euler’s soliton (light dashed curve).

Lemma 5.1. Let γ(t) = (b(t), f(t)) ∈ Q be a horizontal lift of the straight line
f(t) = (t, 0). Then either b(t) = (t±`, 0) or b(t) is a tractrix of width `. Explicitly,

b(t) = (t− ` tanh [(t− t0)/`] , ` sech [(t− t0)/`]) , t0 ∈ R.
The associated Euler soliton, obtained via the involution Φ, is

f̃(t) = 2b(t)− f(t) = (t− 2` tanh [(t− t0)/`] , 2` sech [(t− t0)/`]) .

Proof. From Lemma 4.1, the horizontality condition on γ is `θ̇ + sin θ = 0. The
general solution of this ODE is θ(t) = −2 cot−1

(
e(t−t0)/`

)
, provided that −π <

θ(0) < 0, from which the statement follows. (To get the solutions with 0 < θ(0) < π
note that the equation is invariant under θ → −θ.) �

Remark 5.2. Note that the tractrix b(t) of Lemma 5.1 tends to the earlier solu-
tions (t± `, 0), as the ‘phase parameter’ t0 → ±∞.
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We continue with the proof of the ‘if’ part of Theorem 1.2. Let c : R → R2 be
an arc length parametrization of a straight line and γ : R → Q any horizontal lift
of c. As discussed immediately above, any horizontal lift of a metric line must be
a metric line, hence γ is a metric line in Q. The back track of such a lift is either
a straight line or a tractrix of width `. In case the back track is a tractrix apply
Φ to γ and project back to arrive at c̃ = πf ◦ Φ ◦ γ. By the last lemma any such
c̃ is an Euler soliton of width 2`. Since isometries map metric lines to metric lines
the curve γ̃ = Φ ◦ γ is a metric line and so the Euler soliton c̃ is the projection of
a metric line. �

Note that we can construct any Euler soliton of width 2` in this way.

The rest of the proof of Theorem 1.2 (the ‘only if ’ part). We have just
proven that all infinite geodesics in Q whose front tracks are straight lines or Euler
solitons of width 2` are metric lines. To prove that there are no other metric lines
in Q we invoke Theorem 1.1. According to this theorem it suffices to eliminate
all the non-inflectional elasticae, other then the Euler soliton, as front tracks of
metric lines in Q. Our proof follows the idea suggested by Figure 3. Given any
non-inflectional elasticae f(t), other then the Euler soliton, where t is arc-length,
we can rigidly rotate it so that its directrix is horizontal, that is, f(t) = (x(t), y(t)),
where y(t) is periodic of some period T > 0 and x(t + T ) = x(t) + L for some
L > 0. By translations in x, y and t we can further assume that f(0) = (0, 0) is a
vertex of maximum curvature, so that x(0) = y(0) = 0 and θ(0) = π/2. (There are
explicit expressions for x(t) and y(t) in terms of elliptic functions but we will not
need these.)

Thus, after one period we have f(T ) = (L, 0). Because t is arc-length, the length
of the elastica segment between f(0) and f(T ) is T . But a straight horizontal line
segment is the shortest curve connecting f(0) to f(T ) and its length is L, so we
must have that L < T .

L

f(0) f(T )

`

Figure 11. A shortcut.

After N periods the length of the elastica segment between f(0) and f(NT )
is NT . As shown in Figure 11, we can find a shorter bike path between γ(0)
and γ(NT ) for N large enough, as follows: ride along a quarter circle of radius `
clockwise without moving the back wheel; then ride along a straight line eastwards
a distance of NL, then a quarter turn counterclockwise. The total length of this
path is π`+NL. For N > π`/(T − L) this is shorter that NT . �

Remark 5.3. Assuming Theorem 1.1, Theorem 1.2 follows from the results de-
scribed in [27] where the sub-Riemannian geodesics for a sub-Riemannian metric
on SE2 isometric to our metric on Q were studied and characterized as solutions
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θ(t) to a family of pendulum equations. Back in our problem, that angle θ is the
angle the bike frame makes with the x-axis. In [27] it was proved that a geodesic
minimizes for all time if and only if θ(t) ≡ const or θ(t) is a non-periodic homoclinic
solution of the pendulum problem. These conditions mean that the front track of
the bike moves along a straight line or is an Euler soliton.

6. Loose Ends and Scattered Wheels

6.1. Bicycling Correspondence. In the first part the proof of Theorem 1.2 (the
“if” part) we build the Euler soliton out of a Euclidean line by using the tractrix
back-wheel curve as an intermediary step. In the language of [8], the line and the
Euler soliton are in “bicycle correspondence” with each other, the tractrix mediating
the correspondence. Take any sufficiently smooth front wheel curve f(t). Choose
any one of its horizontal lifts γ(t) = (b(t), f(t)). There are a circle’s worth of such
lifts, corresponding to an initial choice of point b(t0) on the circle of radius ` about
f(t0). Apply the ‘flip’ isometry Φ of Lemma 3.2 to γ. Project Φ ◦ γ back to the

plane to arrive at the new front wheel curve f̃(t) = 2b(t) − f(t), which shares its

back wheel track b(t) with γ(t). Then the two front wheel curves f(t) and f̃(t)
are said to be in bicycle correspondence. There are thus a circle’s worth of bicycle
correspondents to f(t), corresponding to the circle’s worth of choices for b(t).

Question. Is a bicycle correspondent to a projected geodesic always a projected
geodesic?

No. The circle of radius ` is the projection of a geodesic corresponding to a back
track fixed at this circle’s center. Most bicycle correspondents of the circle are not
elastica and hence not projections of sub-Riemannian geodesics. It is interesting
to note that these correspondents to the circle are, instead, pressurized elasticae
which means their curvature κ satisfies the ODE κ̈+ 1

2κ
3 +Aκ = C with a nonzero

constant C. See Figure 12.

Figure 12. Pressurized elasticae (dashed curves), in bicycle correspon-
dence with a circle, sharing a common back track (light curve).

Question. Is every horizontal lift of a projected geodesic a geodesic?

No. We just saw this above with the case of the circle. Alternatively, see Claim 3
of Section 4.



18 A. ARDENTOV, G. BOR, E. LE DONNE, R. MONTGOMERY, AND YU. SACHKOV

6.2. Not of bundle type. For the most familiar sub-Riemannian submersions
M → B the answer to the preceding question is yes: every horizontal lift of every
projected geodesic is a geodesic. Examples include the Heisenberg group, Carnot
groups G with B = G/[G,G], the Hopf fibration examples S3 → S2 and the
various principal bundle examples in [23]. What makes these geometries different
from bicycling geometry, group-theoretically speaking, is that for them the group
of sub-Riemannian isometries acts transitively on each fiber.

Definition 6.1. A sub-Riemannian manifold M is of bundle type if it admits a
sub-Riemannian submersion π : M → B and a Lie subgroup H ⊂ Isom(M) such
that the fibers of π are orbits of H.

If M → B is of bundle type then, necessarily, every horizontal lift of a projected
geodesic is a geodesic. So, our bicycling sub-Riemannian geometry with its front
track projection πf : Q→ R2 cannot be of bundle type.

The front track submersion is a principal S1-fibration, so that its fibers are the
orbits of a free S1-action on Q, but this action cannot be an action by isometries,
as we have just seen. To see this fact directly, fix a base point q0 ∈ Q. Identify
SE2 ' Q, q0 7→ gq0. Then the induced sub-Riemannian structure on SE2 is
invariant under left-translations by SE2, while πf : SE2 → R2 is the quotient by
right-translations by S1 ⊂ SE2, the rotations about πf (q0) ∈ R2.

Remark 6.2. In fact, this S1-action is not even by contact symmetries: right
translation Rg by an element g ∈ S1 defines a map of SE2 which does not preserve
the contact distribution D. This failure is easily seen by observing that Rg acts on
a bike path in Q (a D-horizontal curve) by rotating the bike frame along the path
by a fixed angle, without changing the front track, producing ‘skidding’ of the back
wheel.

6.3. Other models for bicycling geometry. The bicycling configuration space
Q can be identified, SE2-equivariantly, with STR2, the space of unit tangent vectors
to the plane. Write elements of STR2 as pairs (b,v) where b ∈ R2 and v ∈ R2 is a
unit vector attached at the point b. Identify b with the location of the back wheel
and v with the direction of the frame. Then the isomorphism STR2 → Q is

(12) (b,v) 7→ (b, f), with f = b + `v

The induced contact distribution on STR2, also denoted as D, can be described
by the condition that its smooth integral curves (b(t),v(t)) satisfy ḃ(t) ∈ Rv(t).
Write b = (xb, yb) and v = (cos θ, sin θ), to define global coordinates (xb, yb, θ) on
STR2. In these coordinates a smooth curve (xb(t), yb(t), θ(t)) is horizontal if and
only if there is a smooth scalar function λ(t) such that ẋb = λ cos θ, ẏb = λ sin θ.
Eliminating λ, the contact distribution D is given by the vanishing of the contact
form

(13) (sin θ)dxb − (cos θ)dyb.

The vector fields

(14) S = ‘straight ahead’ = (cos θ)∂xb + (sin θ)∂yb

and

(15) T = “turn” = ∂θ
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clearly frame D.1 An integral curve of S corresponds to the bicycle moving along
a straight line passing through the bike frame. An integral curve of T corresponds
to a circus trick: the back wheel is stationary, marking the center of a circle about
which the front wheel traces a circle of radius `. To do this trick, the front wheel
must be turned at 90 degrees to the frame. The front wheel tracks of this line and
a circle are orthogonal. By basic geometric considerations we see that

〈S,S〉 = 1, 〈S,T〉 = 0, 〈T,T〉 = `2.

A second proof of Lemma 3.2. Consider the map Φ̃(xb, yb, θ) = (xb, yb, θ + π)

on STR2. One computes Φ̃∗S = −S, Φ̃∗T = T which shows that Φ̃ is a sub-
Riemannian isometry. In terms of our (b,v) representation of STR2 we have

(16) Φ̃((b,v)) = (b,−v).

Rewritten, using the isomorphism (12), the map (16) becomes the map Φ : Q→ Q
of the lemma. �

6.4. Bicycle parallel transport and hyperbolic geometry. Associated to a
sub-Riemannian submersion π : M → B and a path c : I → B we have a parallel
transport map. If the initial and final endpoints of c are f0 and f1 then this is a
map Ψ : π−1(f0)→ π−1(f1).

Question. Is parallel transport for bicycling an isometry between fibers?

No. One way to see this is via the following theorem.

Theorem 6.3 (Foote [14]). The parallel transport map for bicycling is a linear frac-
tional transformation of S1. Every linear fractional transformation can be obtained
by parallel transport along some closed curve.

There is no metric on the circle for which the the group PSL2(R) of linear frac-
tional transformations acts by isometries, so Foote’s theorem implies the ‘no’ an-
swer above. Again, if M were of bundle type then the answer to the above question
would be yes: parallel transport would be an H-map and hence an isometry.

Let us say a few words about what parallel transport involves for bicycling. Fix
a front path c joining two front wheel locations f0, f1 in the plane. The fiber π−1

f (f0)
is the circle of radius ` centered at f0. The points of this circle represent all ways of
placing the back wheel before bicycling the front wheel along the path c. Choosing
one such placement b0 ∈ π−1

f (f0) leads to a unique horizontal lift γ of c starting at

γ(0) = (b0, f0). Here we assume that c is parametrized by the unit interval [0, 1].
Writing γ(t) = (b(t), c(t)), we have that the parallel transport of b0 along c is
b(1), which is an element in the circle of radius ` about f1. So parallel transport, or
holonomy, along c is a diffeomorphism between two circles, one centered at f0, the
other at f1. Use translation and scaling to identify each circle with the standard
unit circle so that this parallel transport becomes a map of the standard unit circle
to itself. Foote’s Theorem above might be called the ‘first theorem’ of ‘bicycling
mathematics’. See [8].

Although the group PSL2(R) does not act isometrically on the circle, it does act
isometrically on the hyperbolic plane. In fact PSL2(R) equals the group of rigid
motions of that plane. The configuration space for rolling a hyperbolic plane on

1The notation ∂θ stands here for a different vector field from the one in equations (6), because
we used there different coordinates, (x, y, θ).
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the Euclidean plane can be identified with M := PSL2(R) × R2 and inherits, in a
canonical way, a rank 2 sub-Riemannian geometry such that the projection onto R2

is a sub-Riemannian submersion of bundle type. [17, 18] prove that its geodesics
project to planar elasticae, both inflectional and non-inflectional.

6.5. A heuristic proof of Theorem 1.1. Our bicycle configuration space Q
can be identified with the circle bundle associated to M → R2, where the structure
group PSL2(R) acts on the circle by fractional linear transformations, as per Foote’s
theorem. Associated with any plane curve c : I → R2 we have its hyperbolic rolling
parallel transport, an element k = k(c) ∈ PSL2(R) acting by left multiplication on
the fibers. The projection to R2 of a sub-Riemannian geodesic on M solves the
following iso-holonomic problem (see [24] and [23], Chapter 11, especially Theorem
11.8): among all plane curves c connecting given points f0 to f1 and having a fixed
hyperbolic transport k = k(c) ∈ PSL2(R), find the shortest. Now imagine fixing
the bicycle placement as well as the front wheel locations, which is to say, let us fix
back wheel locations b0,b1, writing them as bi = fi+`vi. Recall that k ∈ PSL2(R)
acts on the unit circle. Now, it may or may not be true that k(v0) = v1. If not,
let k vary. Consider all k ∈ PSL2(R) satisfying k(v0) = v1. For any such k form
the corresponding hyperbolic rolling geodesic c for which k(c) = k. Now, minimize
the lengths of all such c’s over all of the k’s satisfying the condition that they take
v0 to v1. The curve achieving this minimizer will be the front wheel projection of
a bike geodesic minimizing the length between (b0, f0) and (b1, f1), and will also
be itself a particular type of hyperbolic rolling geodesic. Since we know by [17, 18]
that hyperbolic rolling geodesics project to elasticae, we’re done!

What makes this proof heuristic? For one thing, the set of k’s over which we’re
minimizing is a non-compact set, so we have no guarantee that the minimum exists.
For another thing, the proof does not single out the non-inflectional elasticae from
all elasticae.

6.6. Open Questions. The bicycle correspondents of a curve c are the result of
the compositions c → πf ◦ Φ ◦ hc, where hc indicates any of the circle’s worth of
horizontal lifts of the front track c and where Φ is the flipping isometry of Lemma
3.2. There are a number of hints in [8] that the ‘transformation’ of forming bicycling
correspondents shares much in common with the Bäcklund transformations arising
in the theory of integrable PDE.

What is the family of curves that we get by forming the bicycle correspondents
of elastica? Repeat and form all the bicycle correspondents of all the curves in
this new family. What do we get now? Let us call this set the ‘2nd generation’ of
correspondents to elastica. Keep going. Does the procedure eventually close up,
or, do we get new curves at each generation? Do the curves at the n-th generation
satisfy some “nice” ODE? Are they projections of sub-Riemannian geodesics on
some sub-Riemannian geometry constructed iteratively from Q or PSL2(R)× R2?

We could also ride our bicycle on a sphere or hyperbolic plane. This change of
bicycling arena corresponds to investigating a left-invariant sub-Riemannian struc-
ture on either SO3 or PSL2(R), these being the unit tangent bundles and also the
group of rigid motions of the sphere or hyperbolic plane, respectively. (When bi-
cycling on the sphere of radius R one may need to insist that the frame’s length is
not equal to an integer multiple of Rπ/2 to avoid various pathologies. See [6] for
interesting relations that might arise between front and back wheel curves when
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the spherical frame length is Rπ/2.) How would our two main theorems change?
Are the front wheel projections of sub-Riemannian geodesics still elastica, meaning
curves whose geodesic curvatures satisfy equation 1? We guess so, but have not
checked and are open to surprises. Would bicycling on these non-Euclidean geome-
tries add to our understanding of how (or if) these different occurrences of elastica
in sub-Riemannian geometry are related? Perhaps.

Appendix A. Proof of Theorem 3.3 on Isometries

The group SE2 of orientation preserving isometries of the euclidean plane acts
freely and transitively by sub-Riemannian isometries on the bicycling configuration
space Q. Fixing a point q0 ∈ Q, we identify SE2 ' Q, g 7→ g ·q0. This identification
is SE2-equivariant, hence induces a left-invariant sub-Riemannian structure on SE2,
given by its value at the identity e ∈ SE2, a 2-dimensional subspace De ⊂ se2,
equipped with an inner product.

To determine the isometry group Isom(SE2) of this sub-Riemannian structure we
use two ingredients: (1) Cartan’s equivalence method, applied to the local classifica-
tion of 3-dimensional sub-Riemannian manifolds of contact type; (2) A calculation
of Aut(se2, De), the group of automorphism of the Lie algebra of SE2 preserving
the contact plane at e ∈ SE2 and the inner product.

(1) Let M be a 3-dimensional sub-Riemannian manifold of contact type (that is,
D ⊂ TM is bracket generating). Similar to the Riemannian case, one can use
the Cartan method of equivalence to construct a canonical connection on TM and
associated curvature tensor, whose vanishing is equivalent to M being ‘flat’, that is,
locally isometric to the maximally symmetric case, the sub-Riemannian structure
induced on S3 from S2 via the Hopf fibration S3 → S2, admitting a 4-dimensional
isometry group (the standard action of U2 on C2 ⊃ S3). In the non-flat case, such
as ours, the equivalence method shows that the isometry group, even the local one,
is at most 3-dimensional. It follows that the space isom(M) of sub-Riemannian
Killing fields (vector fields whose flow acts by sub-Riemannian isometries) is at
most 3-dimensional. A good reference for this circle of ideas is [20].

Now let G be a 3-dimensional connected Lie group with a left-invariant non-
flat sub-Riemannian structure of contact type. Let g = TeG be its Lie algebra,
equipped with the Lie bracket coming from the commutator of left-invariant vector
fields. Let L(G) ⊂ Isom(G) be the (isomorphic) image of the action of G on
itself by left translations. Then, by part (1) above, dim[Isom(G)] = 3. Let R(G)
be the right-invariant vector fields on G. They generate left translations, hence
R(G) ⊂ isom(G). But dim[isom(G)] ≤ 3, so R(G) = isom(G). Let Isome(G) be the
stabilizer of e in Isom(G), a discrete subgroup.

Lemma A.1. Isom(G) = L(G) o Isome(G). That is, L(G) is a normal subgroup
of Isom(G), L(G) ∩ Isome(G) = {e} and Isom(G) = L(G)Isome(G).

Proof. By our assumptions on G and dimensionality, L(G) is the identity com-
ponent of Isom(G) hence is a normal subgroup. If Lg ∈ L(G) ∩ Isome(G) then
e = Lg(e) = ge = g, hence g = e. Let f ∈ Isom(G) and g = f(e). Then
Lg−1 ◦ f ∈ Isome(G), hence f ∈ L(G)Isome(G). �
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Lemma A.2. The map Isome(G)→ GL(g), f 7→ dfe, is (a) injective, (b) its image
is contained in Aut(g, De), the group of Lie algebra automorphisms of g preserving
De and its inner product.

Proof. (a) An isometry of sub-Riemannian connected manifolds of contact type is
determined by its derivative at a single point (one can deduce it from the existence
of a canonical Riemannian metric on such a manifold). Hence f 7→ dfe is injective.

(b) An isometry of a sub-Riemannian manifold M acts on its algebra of Killing
vector fields isom(M) as an automorphism of Lie algebras. In our case, isom(G) =
R(G) and the evaluation map R(G)→ g is a Lie algebra anti-isomorphism, hence
dfe preserves the negative of the Lie bracket on g, and thus the Lie bracket itself,
that is, dfe ∈ Aut(g). Since f is a sub-Riemannian isometry and fixes e, it leaves
De invariant, acting on it by isometries. �

(2) After all these preliminaries, it remains to make some calculations in our case
of G = SE2, equipped with a left-invariant sub-Riemannian structure induced by
its action on the bicycling configuration space Q.

First, to show that such a sub-Riemannian structure is non-flat, we note that it
is of contact type (see Lemma 4.1) and that an even stronger statement is known to
hold; namely, that the CR structure associated to such a sub-Riemannian structure
on SE2 (they are all equivalent) is not flat (the CR structure associated to a sub-
Riemannian structure is obtained by keeping only the conformal structure on D,
‘forgetting scale’). See for example the calculation in §7 of [9]. This statement

was already known to É. Cartan, who classified all homogeneous 3-dimensional
CR structures [12]. We conclude that the group of sub-Riemannian isometries
Isom(SE2) is 3-dimensional, where the identity component is generated by left
translations of SE2 on itself. Alternatively, one can use the last section of [15] to
arrive at the same conclusion.

Next, we fix a basis of se2, given by the following Killing vector fields on R2,

∂x, ∂y, ∂θ = x∂y − y∂x,
satisfying

[∂x, ∂y] = 0, [∂θ, ∂x] = −∂y, [∂θ, ∂y] = ∂x.

Next fix q0 = (b0, f0) ∈ Q, where b0 = (−1, 0), f0 = (0, 0) (we assume ` = 1,
the general case follows easily from this case by a rescaling argument). In the
coordinates (x, y, θ) of Section 4.2, q0 is given by x0 = y0 = θ0 = 0. The actions
of ∂x, ∂y, ∂θ at b0 are ∂x, ∂y,−∂y, respectively and the no-skid condition at q0 is

ḃ‖∂x. It follows that a∂x + b∂y + c∂θ ∈ De ⊂ se2 if and only if b = c. Thus De is
span by X1 := ∂x, X2 := ∂y + ∂θ. They act at f0 = (0, 0) by ∂x, ∂y, respectively,
hence they form an orthonormal basis for De. Let X3 = [X1, X2] = ∂y.

Lemma A.3. Aut(se2, De) = {id, ϕ1, ϕ2, ϕ1ϕ2} = {id, ϕ1} · {id, ϕ2} ' Z2 × Z2,
where ϕ1, ϕ2 are given in the basis X1, X2, X3 by diag(1,−1,−1), diag(−1,−1, 1),
respectively.

Proof. One verifies easily that ϕ1, ϕ2 ∈ Aut(se2, De) and that they generate a
group {id, ϕ1, ϕ2, ϕ1ϕ2} = {id, ϕ1} · {id, ϕ2} ' Z2 × Z2. It remains to show that
any element ϕ ∈ Aut(se2, De) is in this group. The X1X3-plane (the linear span
of X1, X3) is the only 2-dimensional abelian ideal in se2, hence is ϕ-invariant. It
follows that the X1-axis, the intersection of the X1X3-plane and De, is ϕ-invariant.
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Being an isometry of De, ϕ(X1) = ε1X1, ϕ(X2) = ε2X2, with ε1, ε2 ∈ {1,−1}.
Being an automorphism, ϕ(X3) = ϕ([X1, X2]) = [ϕ(X1), ϕ(X2)] = ε1ε2X3. �

Next, we realize Aut(se2, De) by elements of Isome(SE2). With each element

f ∈ Isom(Q) is associated an element f̃ ∈ Isom(SE2) via the identification SE2 ' Q,
g 7→ gq0. For g ∈ SE2 ⊂ Isom(Q), g̃ = Lg. Let ρ ∈ E2 be reflection about the
x axis. Using complex notation, ρ(z) = z̄. Let gu,w ∈ SE2, z 7→ uz + w, where
u,w ∈ C and |u| = 1. Then ρgu,z0

= gū,z̄0
ρ. Hence ρ̃ · gu,w = gū,w̄. Similarly,

Φ̃ · gu,w = g−u,w−2u.

Lemma A.4. ϕ1 = dρ̃e, ϕ2 = df̃e, where ρ is reflection about the x axis, f = ρ′Φ,
and ρ′ is the reflexion about the line x = −1.

Proof. This is a routine verification. 1st verify that both ρ, f leave q0 fixed, so
ρ̃, f̃ ∈ Isome(SE2). Next check that dρ̃e : ∂x 7→ ∂x, ∂y 7→ −∂y, ∂θ 7→ −∂θ. It follows

that dρ̃e = ϕ1. Next check that df̃e : ∂x 7→ −∂x, ∂y 7→ −∂y, ∂θ 7→ −2∂y − ∂θ. It

follows that df̃e = ϕ2. �

Corollary A.5. Let Γ = {id, ρ,Φ, ρΦ} ⊂ Isom(Q), where ρ ∈ E2\SE2 (a reflection
about a line). Then Γ = {id, ρ} · {id,Φ} ' Z2 × Z2 and Isom(Q) = SE2 o Γ.

Proof. Clearly, SE2 ∩ Γ = {id}, so it remains to show that SE2 · Γ = Isom(Q). We
can assume, by conjugating by an element of SE2 that maps the fixed line of ρ
to the x-axis, that ρ is the reflection about the x-axis (the same ρ as in the last
lemma). By the previous lemmas, Isom(Q) = SE2 · Γ0, where Γ0 = Isomq0

(Q) =
{id, ρ, ρ′Φ, ρρ′Φ}. Now ρΦ ≡ ρ′Φ and Φ ≡ ρρ′Φ (mod SE2), hence SE2 · Γ =
SE2 · Γ0 = Isom(Q). �
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