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Abstract

We introduce a computational model capturing the high-level
features of the complementary learning systems (CLS) frame-
work. In particular, we model the integration of episodic mem-
ory with statistical learning in an end-to-end trainable neural
network architecture. We model episodic memory with a non-
parametric module which can retrieve past observations in re-
sponse to a given observation, and statistical learning with a
parametric module which performs inference on the given ob-
servation. We demonstrate on vision and control tasks that our
model is able to leverage the respective advantages of nonpara-
metric and parametric learning strategies, and that its behavior
aligns with a variety of behavioral and neural data. In partic-
ular, our model performs consistently with results indicating
that episodic memory systems in the hippocampus aid early
learning and transfer generalization. We also find qualitative
results consistent with findings that neural traces of memories
of similar events converge over time. Furthermore, without
explicit instruction or incentive, the behavior of our model nat-
urally aligns with results suggesting that the usage of episodic
systems wanes over the course of learning. These results sug-
gest that key features of the CLS framework emerge in a task-
optimized model containing statistical and episodic learning
components, supporting several hypotheses of the framework.

Introduction & Motivation
Complementary Learning Systems Framework
The complementary learning systems (CLS) framework hy-
pothesizes that learning in the brain requires the integration of
an episodic memory system and a statistical learning system.
The CLS framework suggests that statistical learning primar-
ily takes place in the neocortex and is necessary for powerful
inference, while an episodic memory system is present in the
hippocampus and is necessary for incorporating new obser-
vations quickly and robustly.

The CLS framework accounts for numerous observations
about hippocampal and neocortical function, which it uni-
fies into a single theoretical structure. The CLS framework
also offers a resolution to a weakness in connectionist mod-
els of learning: that such models have difficulty incorporat-
ing observations from new domains quickly without inter-
fering with previously acquired knowledge, a phenomenon
known as catastrophic interference (McCloskey & Cohen,
1989). The CLS framework suggests that episodic memory
allows for fast storage of new observations without disrupting
existing knowledge (Burgess, Maguire, & O’Keefe, 2002),

∗ Both authors contributed equally to this work.

and that over time, structure is discovered in these observa-
tions and subsequently incorporated into a powerful statisti-
cal learning system (McClelland, McNaughton, & O’Reilly,
1995).

The CLS framework has undergone some revision in recent
years. In particular, the REMERGE model suggests that re-
currency enables activation of multiple episodic memories at
once, allowing some degree of generalization through the re-
trieval of associated memories in the medial temporal lobe
(Kumaran & McClelland, 2012). More recent versions of
the theory also allow the hippocampus to manipulate natu-
ral statistics in its representations in a goal-dependent fashion
(Kumaran, Hassabis, & McClelland, 2016).

Modeling Approach & Aims
We constructed a computational model of complementary
learning systems by integrating a model of episodic memory
with a model of statistical learning in an end-to-end train-
able neural network architecture. We model episodic mem-
ory with a nearest neighbors-based memory module that can
retrieve past observations, and statistical learning with a para-
metric module that can perform inference on a given obser-
vation. We call this hybrid a “semiparametric” model. Cru-
cially, we do not constrain our model to leverage these com-
ponents in a particular way, allowing us to explore the role of
each over the course of learning.

To our knowledge, our approach is the first computational
model to integrate both parametric and nonparametric learn-
ing components into a single end-to-end trainable model.
Such an approach provides new avenues for modeling the
CLS framework.

We sought to compare our model’s behavior to relevant be-
havioral and neural results. We begin by outlining these re-
sults. Hippocampal lesions are known to impede new learn-
ing and induce temporally graded retrograde amnesia for re-
cent experiences (Winocur, 1990; Squire, 1992; J. J. Kim &
Fanselow, 1992). Other work suggests that damage to the
hippocampus hinders ability to generalize and transfer knowl-
edge across tasks, while basal ganglia lesions are detrimental
to overall learning performance (Myers et al., 2003). Clinical
studies on patients with Parkinson Disease reveal a similar
functional separations between learning and transfer general-
ization capabilities (Herzallah, Moustafa, & Misk, 2010). Ex-
periments with lidocaine injections in the hippocampus in rats
support the hypothesis that it is crucial to useful situational
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generalization (Packard & McGaugh, 1996). Hippocampal
lesions also prove detrimental to early learning, consistent
with the notion that the hippocampus underlies the recogni-
tion of novel patterns (S. M. Kim & Frank, 2009).

Recent evidence has challenged a strict dichotomy be-
tween a purely episodic hippocampus and slowly adjusting
statistical neocortex. Several experiments indicate a capacity
to link related, recently experienced memories (Zeithamova,
Schlichting, & Preston, 2012; Preston, Shrager, Dudukovic,
& Gabrieli, 2004; Dusek & Eichenbaum, 1997). Though neu-
ral traces of episodic memories are initially quite distinct, as
in the traditional view of the hippocampus, fMRI data indi-
cate that traces of memories with shared features show over-
lap after one week (Tompary & Davachi, 2017). Detailed
models of the hippocampus indeed suggest that some regu-
larities in memories may be uncovered by the hippocampus
itself, contradicting the most uncompromising theories of its
role as housing uncorrelated episodic traces (Schapiro, Turk-
Browne, & Botvinick, 2017).

Data show a decreasing dependence on episodic hippocam-
pal representations as learning progresses. For instance, the
behavior of rats on a water maze task reflects instance-based
learned representations initially and neocortical parametric
representations after a month of learning (Richards et al.,
2014). Behavior consistent with this account is also observed
in the aforementioned lidocaine experiment (Packard & Mc-
Gaugh, 1996).

In light of CLS theory and the experimental literature out-
lined above, we set out to devise a computational model with
the following high-level characteristics:

1. the model contains parallel episodic/nonparametric and
statistical/parametric components,

2. the parametric component uses representations in the non-
parametric component to form its own representations,

3. the episodic component may retrieve multiple related
memories in response to a relevant stimulus,

4. the behavior of the episodic component may be learned to
benefit task performance rather than directly reflect natural
statistics.

We test our model’s consistency with the following claims:

1. an episodic/nonparametric system aids in domain transfer
generalization,

2. an episodic/nonparametric system aids in rapid learning
from few examples,

3. a statistical/parametric system is important for attaining
good performance on difficult vision and reinforcement
learning tasks,

4. a model containing complementary learning systems will,
with learning, exhibit increasing representational overlap
for similar inputs,

5. such a model will rely increasingly on its statistical, para-
metric component as learning progresses.

Methods

Modeling CLS for Visual Recognition Tasks

We constructed a hybrid parametric and non-parametric deep
learning model designed to perform image classification.
This model consists of 1) a neural network that maps in-
put to an embedding space 2) a fully differentiable nearest-
neighbors-based classifier that operates on this embedding
space and 3) a classifier network that operates on both the
nearest-neighbors results and embedding space representa-
tion of an input image. This model architecture is dia-
grammed in Figure 1 and detailed in Algorithm 1.

To make our model end-to-end trainable, we use a differ-
entiable nearest-neighbors calculation that operates on data-
label pairs of the current batch during training. Given the
embedding vi of example i, we compute its squared dis-
tance di j = (vi− v j)

2 to the embedding of each example j,
j 6= i, in the current batch. From these, we compute weights
wi j = d−τ

i j where τ is a hyperparameter that modulates the
emphasis on tight clustering in embedding space (we used
τ = 2). The calculation outputs (unnormalized) class proba-
bilities Pa(ci = a)=∑ j 6=i wi j1[c j = a]. These probabilities are
concatenated with the embedding vi of the current example to
form the input to the final classifier network.

We trained our semiparametric model on the standard
MNIST and CIFAR-10 datasets for image classification. We
compared against a parametric baseline, identical to the semi-
parametric model but without the nearest-neighbor compo-
nent, and a nonparametric baseline which does not include
the parametric classifier network.

Figure 1: Architecture of our neural network model of com-
plementary learning systems. Our model is designed to gen-
erate a prediction given an input query and labeled example
queries. Out model incorporates nonparametric learning by
performing nearest neighbor-based retrieval in a learned em-
bedding space, and parametric learning by simultaneously in-
corporating inferences made on the embedding of the current
input. Gradients flow through the entire architecture. Our
model differs slightly when applied to control tasks, which is
elaborated in-text.
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Algorithm 1 Semiparametric Model of CLS
1: B: batch size.
2: (xi,ci): (example, label) pairs
3: c̃: one-hot encoding of class c
4: τ: cluster separation hyperparameter (set to 2)
5: for each batch do
6: for i = 1,2, . . . ,B do
7: Map example xi into embedding vi.
8: end for
9: for i = 1,2, . . . ,B do

10: for j = 1,2, . . . ,B, j 6= i do
11: di j← (vi− v j)

2

12: wi j← (di j)
−τ

13: end for
14: Estimate c̃i

′ = ∑ j 6=i wi jc j

15: Concatenate vi and c̃i
′, map to prediction ˆ̃ci

16: Train predicted label ˆ̃ci on actual label ci
17: end for
18: end for

Modeling CLS for Control Tasks
We also constructed a hybrid parametric and non-parametric
deep learning model for reinforcement learning tasks. The
model is similar in most regards to our model for visual
recognition, with minor changes made to suit the setting and
improve performance. In particular, as in deep Q learn-
ing (Mnih et al., 2015), the model learns to estimate values
of state-actions pairs (termed Q-values in the reinforcement
learning literature). Our memory embedding space stores Q-
values as well—in essence, these replace the role of class
probabilities in the image classification setting.

As in the classification setting, our model begins with a
trainable embedding network which maps raw inputs to an
embedding space. Our episodic memory module and differ-
entiable approximation to nearest neighbor-based classifica-
tion takes after (Pritzel, Uria, Srinivasan, & Puigdomènech,
2017). Throughout training, we store N-step approximations
to Q-values of observed state-action pairs in a dictionary,
along with their embeddings at observation time. We subse-
quently find a specified number (fixed at K = 50 in our exper-
iments) of neighbors with embeddings and stored Q-values.

The retrieval-based Q-value estimate is computed as in the
classification setting, but using only these nearest neighbors
for computational efficiency.

We apply a fully parametric Q-value prediction network to
the current observation. In the reinforcement learning setting
we interpret it as a correction to the output of the nonpara-
metric component; we find empirically that this better incor-
porates the nonparametric computation and improves perfor-
mance.

We trained our model on the Atari games Venture, Bowl-
ing, H.E.R.O., and Enduro (Bellemare, Naddaf, Veness, &
Bowling, 2013). We also trained it on a simple Unity-based
ball-rolling task (in which the objective is to collect twelve
fixed tokens in a square field under a time constraint) in or-
der to observe the algorithm’s behavior all the way through
convergence on a task, given our resource constraints.

Results & Discussion
Visual Recognition Tasks
We first observed that the semiparametric model matches
the final performance of the parametric baseline model on
MNIST and CIFAR-10.

Next, we tested each model on a domain adaptation prob-
lem. We trained to convergence on a subset of MNIST con-
taining half the available classes. Then we trained on n ex-
amples of unseen classes (”new domain”), varying n. We
found (Figure 2) that the nonparametric model gave good
performance most quickly on the new domain and that the
semiparametric model captured some of this advantage. The
same results hold when we include all classes in the second
(”expanded”) domain, demonstrating that the semiparamet-
ric model can adapt without catastrophic interference. On a
more challenging dataset, CIFAR-10, we performed a similar
adaptation experiment but allowing multiple iterations over
the training data in the second domain. We find that the semi-
parametric model adapts quickly. On CIFAR-10, the para-
metric baseline fails to learn on the expanded domain even
after 500 epochs, indicating that it struggles to learn new cat-
egories without interfering with existing knowledge.

We experimented with training all models on 1000-image
subsets of MNIST and CIFAR-10. As shown in Figure 4A,

Figure 2: Model validation accuracy after exposure to training examples from a new domain (unseen classes) or expanded
domain (unseen and previously seen classes).

538



Figure 3: (A) Image classification accuracies on MNIST and CIFAR-10 validation sets. (B) The model’s relative dependence
on nearest-neighbors-based information, as measured by the ratio of gradient magnitudes with respect to the model’s nearest-
neighbor and parametric components. (C) T-SNE and Isomap plots of the embedding space of each model after training,
color-coded by class.

the nonparametric baseline learns quickly, but not asympot-
ically well; the parametric model has asymptotically better
performance but initially requires more training time to learn.
Our semiparametric model, on the other hand, learns both
quickly and asymptotically well.

Our empirical results show that the semiparametric model
mimics advantageous properties of the nonparametric model
early in training but gradually converges toward the perfor-
mance of the parametric model. We show directly that this
phenomenon is due to initial reliance on the nonparametric
component of the model which wanes over time. To mea-
sure this reliance, we compute the magnitude of the gradient
of the model’s output with respect to the embedding space,
as a fraction of the magnitude of the gradient with respect to
the nearest-neighbors step. This metric serves as a first-order
approximation to the model’s relative dependence on nearest-
neighbors retrieval. Figure 4B provides empirical evidence
that this dependence increases over time, consistent with the
analogy to the psychological theory of CLS.

We analyzed the learned representations of each model,
employing the low-dimensional embedding techniques t-SNE
and Isomap. (Figure 4C). The embeddings for each trained
model map examples of the same class into local clusters.
However, it appears that the nonparametric model exhibits the
tightest clustering, followed by the semiparametric model.

Control Tasks
As our method was designed to capture the benefits of a non-
parametric nearest neighbors-based approach as well as those
of traditional powerful deep parametric models, we compare
our model to high-performing models in either category as
baselines: a nonparametric variant of the Neural Episodic

Control model (NEC) (Pritzel et al., 2017) and Double DQN
with rank-based prioritized experience replay (which we will
refer to as DDQN+) (Schaul, Quan, Antonoglou, & Silver,
2015). As the parametric baseline model trains slowly, we
took asymptotic performance figures from published results
and indicated them with dashed lines in Figure 3.

In early learning stages on the models tested, the semi-
parametric model matched or exceeded the baselines. We
conclude that the semiparametric model captures and some-
times enhances the early-learning advantage of nonparamet-
ric methods. This result is reasonable, as the decision in
the nonparametric baseline to weight neighbors according to
inverse distance in embedding space from the current state-
action is rather arbitrary. A more complex function of these
distances, or one dependent on the current state embedding,
might more accurately estimate the Q-function. Our method
appears to provide this functionality.

We found that semiparametric learning matches or exceeds
the asymptotic performance of NEC (Figure 4A). This re-
sult extended to games in which nonparametric learning gave
poor results even in early stages. On Enduro, for instance,
where NEC fails to learn, semiparametric learning did not
suffer the same issue. The semiparametric model exhibited
the same advantage on the Roll-a-ball task (Figure 4B).

We investigated our model’s dependence on nearest-
neighbors data relative to parametric learning over the course
of learning. We quantified this dependency with two ap-
proaches: 1) calculating the magnitude of the correction to
the nearest neighbors output over the course of training, and
2) by measuring a gradient magnitude ratio as in the classifi-
cation setting. In all tasks measured, including the Roll-a-ball
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Figure 4: Reinforcement learning results on (A) Atari games and (B) the Roll-a-ball task. (C) The model’s relative dependence
on its parametric component during training on Roll-a-ball, as measured by the magnitude of corrections to the nonparametric
Q-value estimates (left) and the ratio of gradient magnitudes with respect to the model’s parametric and nearest-neighbor
components (right).

task (Figure 4C), semiparametric learning appears to rely in-
creasingly on its parametric corrections to the nearest neigh-
bor results, as in the image classification setting. This is con-
sistent with the paradigm that purely nonparametric, nearest
neighbor-based methods become less advantageous as train-
ing progresses.

Conclusion
We introduced a neural network model of complementary
learning systems. Our model integrates nonparametric and
parametric learning computations, reflecting the broad roles
in the CLS framework of episodic memory in the hippocam-
pus and statistical learning in the neocortex. Our model is
end-to-end differentiable, allowing the embeddings of obser-

vations to be manipulated to optimize task performance, as
in modern CLS theory. Crucially, we make few assumptions
about how and when our model incorporates parametric ver-
sus nonparametric computations during learning by allowing
the details of this process to be learned by a neural network.

We have demonstrated that a model with these computa-
tional components exhibits properties consistent with neural
and behavioral data. We find, for instance, that the model’s
nonparametric component is crucial to its ability to generalize
across domain transfer and to learn rapidly from few obser-
vations, while its parametric component provides long-term
learning power. These results mirror observations of animal
and human subjects with impairments in the relevant brain re-
gions. Moreover, our model learns to depend increasingly on
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parametric representations as learning progresses, consisting
with behavioral studies and with the principles of CLS theory.
We also observe, even in the nonparametric module, increas-
ing representational overlap between qualitatively similar ob-
servations with learning, as has been observed in neural data.

We believe that analysis of such models can provide insight
into the role between statistical and episodic learning sys-
tems. One might, for instance, examine which episodes are
evoked by the memory retrieval process in response to a given
input and examine how they are incorporated into decision-
making. The model’s graceful performance in response to
domain transfer permits investigation into how observations
from an unseen distribution can be incorporated in a connec-
tionist model without catastrophic interference. Furthermore,
our model’s performance in comparison to traditional para-
metric and nonparametric models may make it of interest to
the machine learning community. Future work might update
our model to more concretely reflect neuroscientific under-
standing of memory consolidation.

Acknowledgments
We would like to thank Jay McClelland for his insights into
CLS, and to Emma Brunskill and Amir Zamir for guidance
on the computational component of this work.

References
Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M.

(2013). The arcade learning environment: An evaluation
platform for general agents. J. Artif. Intell. Res.(JAIR), 47,
253–279.

Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The hu-
man hippocampus and spatial and episodic memory. Neu-
ron, 35(4), 625–641.

Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus
and memory for orderly stimulus relations. PNAS, 94(13),
7109–7114.

Herzallah, M. M., Moustafa, A. A., & Misk, A. J. e. a. (2010).
Depression impairs learning whereas anticholinergics im-
pair transfer generalization in parkinson patients tested on
dopaminergic medications. Cog. and Behav. Neuro., 23(2),
98–105.

Jain, M. S., & Lindsey, J. (2018a). Deep semiparametric
learning. In progress.

Jain, M. S., & Lindsey, J. (2018b). Semiparametric reinforce-
ment learning. ICLR 2018 Workshop Track.

Kim, J. J., & Fanselow, M. S. (1992). Modality-specific ret-
rograde amnesia of fear. Science, 256(5057), 675–677.

Kim, S. M., & Frank, L. M. (2009). Hippocampal lesions im-
pair rapid learning of a continuous spatial alternation task.
PLoS One, 4(5), e5494.

Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What
learning systems do intelligent agents need? complemen-
tary learning systems theory updated. Trends in cognitive
sciences, 20(7), 512–534.

Kumaran, D., & McClelland, J. L. (2012). Generalization
through the recurrent interaction of episodic memories: a

model of the hippocampal system. Psychological review,
119(3), 573.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C.
(1995). Why there are complementary learning systems
in the hippocampus and neocortex: insights from the suc-
cesses and failures of connectionist models of learning and
memory. Psychological review, 102(3), 419.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic inter-
ference in connectionist networks: The sequential learn-
ing problem. In Psychology of learning and motivation
(Vol. 24, pp. 109–165). Elsevier.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., . . . Ostrovski, G. e. a. (2015).
Human-level control through deep reinforcement learning.
Nature, 518(7540), 529–533.

Myers, C. E., Shohamy, D., Gluck, M. A., Grossman, S.,
Kluger, A., Ferris, S., . . . Schwartz, R. (2003). Disso-
ciating hippocampal versus basal ganglia contributions to
learning and transfer. Journal of Cognitive Neuroscience,
15(2), 185–193.

Packard, M. G., & McGaugh, J. L. (1996). Inactivation
of hippocampus or caudate nucleus with lidocaine differ-
entially affects expression of place and response learning.
Neurobiology of learning and memory, 65(1), 65–72.

Preston, A. R., Shrager, Y., Dudukovic, N. M., & Gabrieli,
J. D. (2004). Hippocampal contribution to the novel use of
relational information in declarative memory. Hippocam-
pus, 14(2), 148–152.

Pritzel, A., Uria, B., Srinivasan, S., & Puigdomènech, A. e. a.
(2017). Neural episodic control. arXiv.

Richards, B. A., Xia, F., Santoro, A., Husse, J., Woodin,
M. A., Josselyn, S. A., & Frankland, P. W. (2014). Patterns
across multiple memories are identified over time. Nature
neuroscience, 17(7), 981.

Schapiro, A. C., Turk-Browne, N. B., & Botvinick, M. e. a.
(2017). Complementary learning systems within the hip-
pocampus: a neural network modelling approach to rec-
onciling episodic memory with statistical learning. Phil.
Trans. R. Soc. B, 372(1711), 20160049.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015).
Prioritized experience replay. arXiv.

Squire, L. R. (1992). Memory and the hippocampus: a syn-
thesis from findings with rats, monkeys, and humans. Psy-
chological review, 99(2), 195.

Tompary, A., & Davachi, L. (2017). Consolidation promotes
the emergence of representational overlap in the hippocam-
pus and medial prefrontal cortex. Neuron, 96(1), 228–241.

Winocur, G. (1990). Anterograde and retrograde amnesia
in rats with dorsal hippocampal or dorsomedial thalamic
lesions. Behavioural brain research, 38(2), 145–154.

Zeithamova, D., Schlichting, M. L., & Preston, A. R. (2012).
The hippocampus and inferential reasoning: building mem-
ories to navigate future decisions. Frontiers in human neu-
roscience, 6, 70.

541




