
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Gazelle: A Framework for Compositional Programming-Language Semantics and Reasoning

Permalink
https://escholarship.org/uc/item/5847p18d

Author
Alvarez, Mario McGilvray

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5847p18d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

GAZELLE: A Framework for Compositional Programming-Language Semantics and
Reasoning

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Mario M. Alvarez

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Philip Guo
Professor Jim Hollan
Professor Sorin Lerner
Professor Victor Vianu

2022

Copyright

Mario M. Alvarez, 2022

All rights reserved.

The dissertation of Mario M. Alvarez is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2022

iii

DEDICATION

To the pursuit of Truth,

and to everyone engaged in it

iv

EPIGRAPH

If there is no struggle,

there is no progress.

—Frederick Douglass

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Thesis Statement . 2
1.3 The GAZELLE Approach: An Overview 3
1.4 Related Work: Other Approaches to Language Composition and

Flexibility . 4
1.4.1 The Expression Problem 4
1.4.2 Datatypes á la Carte . 5
1.4.3 Automation for Adapting Datatypes and Proofs 8
1.4.4 Compositional Verified Compilation 8

1.5 The Rest of This Paper . 9

Chapter 2 GAZELLE: A Framework for Language Composition 12
2.1 GAZELLE Example - Composing Programming Languages 13

2.1.1 The Languages . 13
2.1.2 Composition . 15

2.2 A Lightweight Approach to Instruction-Language Composition . . . 24
2.2.1 State Composition: Examples and Intuitions 26
2.2.2 Information-Ordering In GAZELLE 31
2.2.3 Wrapper Types for Mergeable States 41
2.2.4 Composition and Preservation of Suprema 50
2.2.5 Summary . 53

2.3 Extending Composition to Multi-Step Executions 55
2.3.1 Syntax for GAZELLE’s Control-Flow Interpreter 55
2.3.2 GAZELLE Control-Flow Semantics 60

2.4 Summary . 66

vi

Chapter 3 Lifting: Using Partial Orders with Existing Languages 68
3.1 The Lifting Abstraction . 69

3.1.1 Lenses . 69
3.1.2 A Lens-Inspired Lifter Abstraction 70

3.2 Lifter Instances . 75
3.2.1 Identity Lifting . 75
3.2.2 Trivial Lifting . 76
3.2.3 Option Lifting . 77
3.2.4 Priority Lifting . 78
3.2.5 Tuple Liftings . 80
3.2.6 Merge Lifting and Orthogonality 81
3.2.7 Discussion . 84

3.3 Automating Lifter Instance Generation 84
3.3.1 The Automated Lifting Generator - An Example 84
3.3.2 Ad-Hoc Polymorphism in ISABELLE 87
3.3.3 Typeclasses for Lifter Inference 91
3.3.4 Automated Lifting Generation Internals - The schem lift

Polymorphic Constant . 95
3.3.5 Priority Functions in Liftings 100
3.3.6 Automated Lifting Generation - Scalability 100
3.3.7 Proof Automation for Lifting Correctness 101

3.4 Discussion . 104

Chapter 4 Reasoning About GAZELLE . 106
4.1 Hoare Logic: A Primer . 107
4.2 Hoare Logic for Single-Step Semantics 109
4.3 CPS-Flavored Hoare Logic . 112
4.4 CPS-Flavored Hoare Logic with Step-Counts 115
4.5 Soundness of Step-Counting Hoare Logic 118
4.6 Reasoning about Multi-Step Composition 120

4.6.1 Dominance and Toggling 120
4.7 Discussion . 124

Chapter 5 IMP: An Extended Example of GAZELLE in Practice 126
5.1 IMP’s Sub-Languages . 127

5.1.1 Arithmetic Language . 128
5.1.2 Boolean Language . 129
5.1.3 Variable-Store Language 130
5.1.4 Sequencing Language . 132
5.1.5 IMP-Control Language . 134
5.1.6 Discussion . 137

5.2 Liftings for Constructing IMP . 137
5.2.1 An Overview of IMP State 138

vii

5.2.2 Priority Protocol for IMP 141
5.2.3 Lifting Languages Without Control-Flow 142
5.2.4 Arithmetic Language . 144
5.2.5 Boolean Language . 146
5.2.6 Variable-Store Language 146
5.2.7 Sequencing Language . 148
5.2.8 IMP-Control Language . 149
5.2.9 IMP Semantics Definition 150

5.3 Hoare Rules for IMP . 151
5.3.1 Control-Flow-Free Instructions 151
5.3.2 Sequencing Rule . 153
5.3.3 If Rule . 153
5.3.4 While Rule . 155

5.4 IMP Example: Multiplication as Repeated Addition 157
5.4.1 Multiplication Program . 157
5.4.2 Multiplication Specification 158
5.4.3 Multiplication Proof . 159

Chapter 6 Conclusion . 163
6.1 Summary . 163
6.2 Ideas for Future Work . 164

6.2.1 Evaluating GAZELLE on More Case Studies 165
6.2.2 Library of Language Components 165
6.2.3 Porting GAZELLE to Other Proof Assistants 165
6.2.4 Fully Leveraging Bsup . 166
6.2.5 Reconciling Categorical Approach to Lenses with Gazelle

Liftings . 166

Bibliography . 168

viii

LIST OF FIGURES

Figure 1.1: Visual depiction of the expression problem 5

Figure 2.1: Visual depiction of lifting into the example language’s combined state; arrows
denote injection of data . 21

Figure 2.2: Definition of pcomps, which implements composition of instruction semantics 24
Figure 2.3: Visual depiction of is sup; arrows denote pleq 34
Figure 2.4: Visual depiction of is bub; arrows denote pleq 36
Figure 2.5: Visual depiction of is bsup; arrows denote pleq 36
Figure 2.6: Visual depiction of GAZELLE ordering typeclasses; arrows indicate inheritance 42
Figure 2.7: Definition of sem run, which implements multi-step execution for GAZELLE 56

Figure 3.1: Visual depiction of lifting example (arrows represent injection of data) . . . 85

Figure 5.1: Visual depiction of lifting into IMP’s combined state; arrows denote injection
of data . 140

ix

ACKNOWLEDGEMENTS

Thanks to my parents, for bringing me into this world and providing me with immeasurable

love and support during my time in it thus far. Your emotional and financial support during the

final months as I wrote this dissertation helped make it possible.

And to my brothers Gabe and Julian, whom I’m happy and proud to count as two of

my closest friends. You’ve been with me (at various times in person, remotely, and in spirit)

throughout this entire process, and I greatly appreciate that.

And to Gautam Mohan, who’s been like another brother to me, and another source of so

much support.

Thanks to Andrew Appel and Dave Walker, my research advisors at Princeton, who

inspired me to pursue programming languages research. Thanks as well to Joey Dodds, who

worked with me closely as I learned the ropes of using COQ during my senior year at Princeton.

Thanks to Gregory Malecha, whom I had the pleasure of working with in both my

undergraduate and graduate research, and who was always a source of encouragement, knowledge,

and patience.

Thanks to Sorin Lerner, my first Ph.D advisor, who influenced me to choose UCSD for

graduate school, and helped me get my footing in graduate research.

Thanks to Victor Vianu, my second Ph.D advisor, for being willing to take me on as an

advisee as I explored database verification and experimented with new (to me) research directions.

Thanks to Ranjit Jhala, my third Ph.D advisor, for taking me on as an advisee after I

returned from a year away from the Ph.D. I came to him with crazy idea that derived from my

experience in industry and was not particularly well aligned with his research program. He

advised me on the project anyway, and the result is this dissertation.

I’m deeply grateful to have gotten a second chance (or two, depending on how one counts)

to finish this degree. This is not something I take for granted. All three professors who have

advised me at different times in my Ph.D were taking a chance on me. I hope, in the end, that I

x

have done all of you proud.

I’d also like to thank the rest of my committee for helping to make this happen.

Credit is due also to ConsenSys, who offered me an internship when I was lost and

struggling in the middle of my Ph.D, funded a substantial part of my degree after I returned,

and provided me with a source of inspiration and research ideas driven by practical needs in the

blockchain industry. Bill Gleim, Gonçalo Sá, John Mardlin, Robert Drost, Joseph Chow, and Joe

Lubin deserve special mention.

And thanks to my peers at UCSD, who were with me through the good times as well

as the bad. To me, the Ph.D students and the community around them are what makes CS at

UCSD special. At various times you have been friends, research partners, colleagues, bandmates,

traveling companions, confidantes, roommates, and allies. These past eight years have probably

been the craziest years of my life. I’ve had experiences I hadn’t imagined I would have, and

been tested in ways I had never been before. I’m profoundly grateful that I got to share this

journey with you all. In no particular order (and not strictly limiting myself to UCSD students),

I’d specifically like to express gratitude to Dimo Bounov, Alex Sanchez-Stern, Anish Tondwalkar,

Elizabeth Hilbert, Erik Moyer, Shravan Narayan, John Renner, Valentin Robert, Peter Edge, Dan

Ricketts, Arjun Roy, Danilo Gasques, Akshay Balsubramani, Ariel Weingarten, Ming Kawaguchi,

and Alexander Bakst.

There are almost too many to name. If I’ve left your name off the list, or if you don’t think

your name belongs on the list but we interacted during our time at UCSD, know that you had an

impact on my time here and that I’m grateful.

Finally, thanks to the friends of Bill W., especially Daniel G., without whose wisdom and

support this dissertation would surely not exist.

xi

VITA

2014 A. B. in Computer Science magna cum laude, Princeton University

2015-2017 Graduate Teaching Assistant, University of California San Diego

2018 Master of Computer Science, University of California San Diego

2017- Researcher at ConsenSys Mesh (ConsenSys AG)

2022 Ph. D. in Computer Science, University of California San Diego

PUBLICATIONS

Mario M. Alvarez, “Using Reflective Separation-Entailment Solvers for Reasoning Formally
about C: Integrating the Verified Software Toolchain with the MirrorShard Solver” Princeton
undergraduate thesis, 2014

Daniel Ricketts, Gregory Malecha, Mario M. Alvarez, Vignesh Gowda, and Sorin Lerner “To-
wards Verification of Hybrid Systems in a Foundational Proof Assistant”, ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE), 2015

xii

ABSTRACT OF THE DISSERTATION

GAZELLE: A Framework for Compositional Programming-Language Semantics and
Reasoning

by

Mario M. Alvarez

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Ranjit Jhala, Chair

Formalizing the semantics of a programming language enables powerful techniques for

understanding the correctness of tooling related to that language (e.g. compilers) as well as for

understanding the correctness of programs written in that language. Traditional approaches to for-

malizing semantics lead to the production of monolithic systems whose components are difficult to

reuse. In this dissertation we describe GAZELLE, a system for composing programming-language

semantics out of reusable fragments. GAZELLE demonstrates an approach to surmounting these

obstacles, enabling greater reuse and thus potentially more efficient development of formalized

language semantics. Through an extended example, we show the usage of GAZELLE in practice

xiii

to formalize the IMP language and prove the correctness of an iterative IMP program. The entire

development of GAZELLE is done in ISABELLE, and all key results are foundationally verified

with machine-checked proofs.

xiv

Chapter 1

Introduction

1.1 Background

Formalization of programming language semantics has long been of interest to computer

scientists. If we can say with precision what our programs mean, in the sense of having a

mathematical or logical model of programs’ behavior, we can hope to better understand their

correctness. In the past few decades, the programming languages community has made significant

strides toward formalizing programming-language semantics within proof assistants, software

built for constructing and reasoning about mathematics. Importantly, proof assistants enable

machine-checked proofs: as long as we trust the proof assistant itself, we can know that any

purported proof checked by a proof assistant is mathematically valid.

As the scalability of proof assistants and commodity CPUs (in terms of compute per-

formance) has improved, the formal semantics community has produced a number of striking

machine-checked results, using a formalized language semantics to build machine-checked proofs

of correctness 1 for increasingly large and complicated software systems. For example, the COQ

[Tea22] theorem prover was used to prove the correctness of a compiler for the C language,

1“Correctness” here simply means “conforms to its (formal) specification”. Determining whether a program’s
specification corresponds to our intuitive notion of correctness for that particular program can, of course, be difficult.

1

COMPCERT [LBK+16]. COQ was also used to formally verify an operating system kernel,

CERTIKOS [GKR+15]. Another proof assistant, HOL4, was used to verify an implementation

of a Standard ML-like language, CAKEML [KMNO14].

As impressive as these results are, they all share a significant drawback: each of these

results took person-years’ worth of expert effort, and resulted in systems that are difficult to

build on or reuse components from. Researchers or developers undertaking a project to build, for

instance, a formally verified compiler for a new language will likely find that there is little code

or proofs they can reuse from prior efforts in compiler verification. This leads to duplication of

developer effort in separate verification efforts, and represents part of why, even today, developing

verified systems of any meaningful size remains a daunting task.

One important part of reducing the burden on developers of formally verified software is

enabling reuse. In this dissertation, we focus specifically on the problem of enabling reuse of

elements of formal programming language semantics. We do so by building a system, GAZELLE,

which has the aim of making it possible to construct a programming language semantics by

composition. GAZELLE is designed with an eye toward supporting reuse of existing formalizations,

enabling the user to build semantics by composing pieces that were developed separately, without

awareness of each other or of GAZELLE itself. GAZELLE also supports constructing program

logics consisting of proof-rules for reasoning about the semantics of languages defined by

composition; thus, GAZELLE enables reuse of reasoning principles as well as semantic definitions.

GAZELLE is developed using the ISABELLE [Wen] proof assistant, and all its associated proofs

are machine-checked.

1.2 Thesis Statement

By enabling construction of formal programming language semantics out of reusable parts,

the GAZELLE system facilitates building and reasoning about formal models of programming

2

languages.

1.3 The GAZELLE Approach: An Overview

To achieve its goal of enabling compositional programming language semantics, GAZELLE

makes use of elements drawn from several well-known approaches, combined together in a

novel way. GAZELLE breaks down language components to be composed to the granularity of

instructions operating over that component’s machine state. Each instruction has a denotational

semantics in the form of an ISABELLE function that describes how that instruction acts to update

the state. At this level, GAZELLE gives a formal account of merging together results obtained

by executing instructions from different language components, giving us a denotation for how

the combined language acts on a combined state, even in the presence of nontrivial interactions

between different components.

To compose these instructions together to form larger programs, GAZELLE makes use of

operational semantics, describing program execution by means of a simple, control-flow-based

virtual machine. This machine makes use of instructions’ denotational semantics at each execution

step and enables us to capture the meaning of full programs, not just single instructions. In doing

so, it also provides us a with an executable interpreter for running such programs.

Finally, GAZELLE enables reasoning about these compositions using axiomatic semantics

(reasoning rules for doing proofs about programs’ behavior) in the form of Hoare logic. GAZELLE

enables compositional axiomatic semantics, enabling reuse of individual language components’

proof rules when reasoning about the behavior of the combined language. Taken together, these

three pieces - denotational, operational, and axiomatic - complement each other to create a

powerful tool for compositional reasoning.

3

1.4 Related Work: Other Approaches to Language Composi-

tion and Flexibility

GAZELLE sits within or adjacent to several well-studied sub-fields of computer science.

Accordingly, there is a great deal of related work, far more than we could discuss in full detail

here. In this section, we will discuss work exemplifying several different research directions

related to GAZELLE’s problem and approach. Though not exhaustive, this will give a good sense

of the shape of the space of existing work, and GAZELLE’s place within it.

1.4.1 The Expression Problem

One way to understand the design space GAZELLE inhabits is through the lens of a

classic tradeoff in programming-language design: the expression problem. The expression

problem is a term coined by Wadler [Wad98] to capture the fact that most major programming

languages and paradigms did (and still do) allow extensibility along only one of two axes, but not

both. Specifically, some programming paradigms (notably functional programming with abstract

datatypes) make it easy to extend existing programs by adding new functions over existing

datatypes, but do not offer a way to change the datatype’s representation without refactoring

all the functions that use it. On the other hand, in other paradigms (notably object-oriented

programming), data representations used inside of an object can be easily changed, but changing

the set of primitive operations supported by an object requires refactoring (or at least recompiling)

code that uses the object to work with the new, changed interface.

The expression problem is to design a mechanism that allows for both kinds of extensibility.

We represent the problem space visually in figure 1.1.

Wadler’s original formulation of the problem had two other desiderata: namely, the solu-

tion be type-safe (without runtime casts), and that recompiling “client” code not be necessary

when extending a datatype (along either axis). For our purposes, since we are concerned with

4

No
Extensibility

Functional
Abstract Datatypes

Object-Oriented
Inheritance

Expression Problem
SolutionExtend

Supported
Operations

Extend Data Representation

Figure 1.1: Visual depiction of the expression problem

reasoning about datatypes being extended, we want two analogous (though not identical) condi-

tions: that there should be no loss of precision when reasoning about the extended version of the

datatype as compared to the original, and that existing theorems about the datatype are trivial

to adapt to the extended datatype. In [Wad98], Wadler also gave a solution to the expression

problem in Java, but it was later found to not be type-safe [ZO05].

Having set the stage, we’ll now take a look at a few families of approaches to variants of

the expression problem, as well as some other related approaches to language composition.

1.4.2 Datatypes á la Carte

One approach to solving the expression problem is what is sometimes called the á la carte

approach, after the paper that first proposed it, Swierstra’s Datatypes á la Carte (DTC) [Swi08].

This approach is usually deployed in a functional language ([Swi08] used HASKELL); its goal

is to enable flexibility in data representations (as we discussed earlier in this section, functional

data abstraction such as Haskell offers already allows for adding new functions over existing data

types). In this approach, the user expresses different language components as algebras. Each

algebra corresponds to a type constructor F which must support an evaluation function:

eval :: F x => x for result type x. Relying on the fact that the coproduct of two algebras is

an algebra, the user of DTC constructs an algebra corresponding to the composition of all desired

language features by taking the coproduct of the algebras corresponding to each feature. In DTC,

5

each language component represents a particular kind of syntax-tree node (which may include

sub-trees of the entire language, rooted at that node). The result is an interpreter that is able to

call the correct language component’s interpreter based on the syntax-tree (i.e. program) provided

as an argument, making recursive calls to handle sub-trees (if any are present).

DTC also offers some automation to enhance its usability. By making clever use of

HASKELL’s typeclass system, DTC enables the inference of injection and projection functions

that enable the user to avoid having to manually pack and unpack nested coproducts when defining

a combined language. It is worth noting that GAZELLE in fact uses something similar in its lifting

infrastructure (see chapter 3; specifically section 3.3.7). While the specifics of the approaches

differ, GAZELLE is certainly indebted to DTC for the basic idea of using typeclasses for this

purpose.

Unfortunately, the á la carte approach described in [Swi08], while convenient for building

interpreters, is not suitable for formal semantics: as Delaware et al. observe in [DdSOS13],

Swierstra’s solution relies on an unsound type-level fixed-point operator; a direct translation of

the original á la carte technique in a proof assistant would be rejected by the proof assistant

because of this unsoundness. The solution taken by [DdSOS13] - called Metatheory á la Carte

(MTC) - replaces this unsound fixed-point operator with a sound one. However, this soundness

comes at a price: in order to define functions using the sound type-level fixed-point operator,

the functions need to be expressed as Mendler-style folds, and operate over Church-encoded

data. These are rather significant restrictions on the structure of the formalizations that can be

developed and reasoned about using the Metatheory á la Carte approach. As with DTC, some of

these constraints are alleviated through the use of automation, but others - particularly the need to

use Mendler-encodings for recursion - are difficult not to expose to the user.

Nonetheless, the formal development of MTC is an impressive result, and is probably the

most similar in spirit to GAZELLE of existing work. Both MTC and GAZELLE aim to ease the

expression of formal semantics by enabling a compositional approach, and both support reasoning

6

about such compositional definitions. The primary differences are:

• MTC and GAZELLE impose different restrictions on the structure of programs: GAZELLE

does this by requiring a particular encoding of control flow (see section 2.3.2); MTC

requires Church and Mendler encodings.

• GAZELLE supports a more general class of compositions. MTC supports mixing together

existing language components, which may make use of each other’s results; however,

different components in MTC cannot override each other’s results (e.g. in the case study

presented in [DdSOS13], if a language contains the Arith component, then Arith is the

only way to assign values to arithmetic expressions). GAZELLE, in contrast, allows the

addition of new components that override or modify the behaviors of existing ones.

Another related approach that bears mentioning here is the construction of extensible

syntax trees described in [NJ17]. This work focuses on the problem of reducing code reuse in

building compilers, which often have multiple similar - but not identical - versions of the same

datatype, corresponding to different intermediate representations used within the compiler. The

solution proposed in [NJ17] is to define a single, extensible syntax tree type, with type parameters

that can be used to add or remove constructors (hence, add or remove different kinds of syntax

nodes), or change the parameters to existing nodes. On top of this core insight - that making

syntax types polymorphic in type parameters representing extensions can allow for generic

code that works over different extensions - [NJ17] also presents some typeclass and type-family

based automation that greatly simplifies the process of working with such extensible syntax in

HASKELL. The idea of using type parameters to generically extend syntax trees greatly influenced

GAZELLE’s approach to generic syntax (see section 2.3.2).

7

1.4.3 Automation for Adapting Datatypes and Proofs

Another important approach to the expression problem as it relates to improving reusability

of formal developments is to automate the process of proof repair. It commonly happens in proof-

assistant-based formalizations that changes to one datatype or definition will break a large number

of proofs in fairly predictable ways. [RYLG18] presents PUMPKIN PATCH, a system for finding

general patches for fixing proofs broken by such changes based on a user-supplied fix for any

one proof broken by a particular change. Similarly, [RYLG19] presents a type-theory-based

approach to automatically deriving new versions of functions and proofs based on certain classes

of changes to datatypes (those which can be captured as algebraic ornaments).

1.4.4 Compositional Verified Compilation

Finally, another line of work worth mentioning is [Ahm15]. This work represents an

approach to compositional compiler correctness: that is, developing a methodology for reasoning

about the correctness of compiled code, in a context where that code is being linked with some

other code that may not be written in the same language. It is relevant to the expression problem,

as well as to building extensible and interoperable language formalizations: the basic principle

behind [Ahm15] (along with other work in the same vein) is to “view compiler correctness as a

language interoperability problem” ([Ahm15, pg.15]; emphasis in original).

When composing two programs P1 and P2, respectively compiled by compilers for

languages L1 and L2, this approach first proposes identifying a suitable target language in which

to do reasoning, into which L1 and L2 must compile. Boundary terms are added to source

languages L1 and L2, which give a semantics to L2 programs from the point of view of L1 (and

vice versa). Reduction rules are defined for these boundary terms, describing, for instance, how

L1 terms wrapped in the boundary construct are mapped into L2. Having given a source-level

account of the semantics of the composition of L1 and L2, this approach next defines a logical

8

relation, relating (combined) source-language types to target-language terms. This logical relation

is then used to show the final result (that the compiler for L1 or L2 is compositionally correct;

that is, semantics preserving with respect to this logical relation).

A more recent example of work along this same line is [Ahm21].

While the relationship to the expression problem is somewhat less direct than in the other

research directions we have discussed, this work represents another important point in the design

space of building programming language semantics compositionally. Like GAZELLE, being able

to reason about programs in this compositional context is an explicit goal. While [Ahm15] and

similar work focus on correctness of compositions of outputs of different compilers, the fact that

this approach does so by building a semantics of the combined language for use when specifying

the correctness of the compiler makes it highly relevant. Investigating whether GAZELLE could

benefit from making use of boundary terms is an interesting potential direction for future work.

1.5 The Rest of This Paper

In the remainder of this dissertation, we describe in detail the GAZELLE system’s design

and implementation. We then demonstrate its utility by using it to develop a formalization of a

simple imperative language from separate, reusable components.

In chapter 2, we discuss the core of GAZELLE, which supports merging at the granularity

of individual instructions and states. We begin with a motivating example (section 2.1) of

defining a simple language by composition, introducing the primitives we’ll need to define in

order to compose language components. We proceed (in section (2.2) to discuss how we define

composition at the level of individual instructions by merging together their output states. In

doing so, we describe a series of domain-theory inspired abstractions (section 2.2.2) that enable

a precise definition of this merging operation in terms of least upper bounds in an information

ordering. We conclude the chapter with a discussion of GAZELLE’s general control-flow machine,

9

which allows us to extend our definition of merging from single instructions to entire programs

(section 2.3.2).

Next, in chapter 3, we discuss GAZELLE’s lifting subsystem, which enables the notions

of composition defined in chapter (2) to work on languages that are not aware of GAZELLE’s

information-ordering abstractions. Liftings allow the user to specify exactly how a language

component’s state fits into the combined state for the full language we are defining. In the process,

we discuss (section 3.3) how we leverage ISABELLE’s existing inference algorithms to allow

users to express these liftings an an intuitive way.

Having described how GAZELLE enables the construction of semantics by composition, in

chapter 4 we discuss how GAZELLE permits the definition of axiomatic semantics for reasoning

about programs whose semantics are given by composition. We define and show sound (with

respect to the semantics of the languages being composed) an unusual twist on Hoare logic, which

enables us to lift existing proof rules about language components in much the same way as we

were able to lift those components’ semantics in chapter 3. The result is a remarkably flexible

system for reasoning about languages defined by composition, enabling Hoare-style reasoning

without the assumption of a “closed world” of commands typical of a Hoare-style approach.

Finally, in chapter 5, we demonstrate an extended example of the usage of GAZELLE

that brings together all these pieces. We demonstrate the utility of GAZELLE by showing

that it is up to the task of formalizing a small, classic imperative language without sacrificing

compositionality. We then define, specify, and verify an iterative program in this language,

showing that formalizations created using GAZELLE can be reasoned about conveniently, with

the ability to reuse proof rules from individual language components’ formalizations when doing

proofs about the combined semantics.

Throughout this document, we give code snippets to illustrate various points. Much of

the code is drawn directly from the real implementation of GAZELLE. Unless otherwise noted,

these code snippets correspond to ISABELLE code meant to run in Isabelle2021. All code can

10

be found on GitHub at

https://github.com/mmalvarez/gazelle/tree/dissertation-latex.

11

Chapter 2

GAZELLE: A Framework for Language

Composition

In this chapter we describe the core implementation of the GAZELLE framework that sup-

port GAZELLE’s goal of allowing users to express and reason about the meaning of composition

of programming languages. The key ingredients are a general-purpose syntax, a domain-theory

inspired approach to describing composition of program states, and a minimalistic operational

semantics for expressing control-flow. Together, these pieces enable us to give formal meaning to

the notions of when the composition of two languages is well-defined, as well as what exactly

that composition looks like (including an executable interpreter for the combined language, if

we have such interpreters for the component languages). This formalization enables us to reason

formally about programs expressed in this system, as described in chapter 4.

12

2.1 GAZELLE Example - Composing Programming Languages

In this section, we walk through an example of using GAZELLE to construct a formal

programming language semantics by composition of smaller pieces. This example helps serve

both to motivate the GAZELLE project and to showcase its features.

2.1.1 The Languages

Suppose we have an existing implementation of an arithmetic language, as well as an

existing implementation of a memory-store. Perhaps these implementations come from different

codebases, and we would prefer not to modify their implementations. We want to use these

existing implementations - which we will call sub-languages or language components - to define

a combined language. The combined language will have an instruction set that is essentially the

union of the instruction sets of the components from which it is constructed.

Concretely, suppose we have a language of instructions for arithmetic on a three-register

machine (two inputs, one output):
datatype calc =
Add
| Sub
| Mul
| Div
| Const int
| Skip_Calc

type synonym calc_state = "(int * int * int)"

fun calc_sem :: "calc ⇒ calc_state ⇒ calc_state" where
"calc_sem Add (x, y, z) = (x, y, x + y)"
| "calc_sem Sub (x, y, z) = (x, y, x - y)"
| "calc_sem Mul (x, y, z) = (x, y, x * y)"
| "calc_sem Div (x, y, z) =

(x, y, divide_int_inst.divide_int x y)"
| "calc_sem (Const i) (x, y, z) = (x, y, i)"
| "calc_sem (Skip_Calc) t = t"

Suppose we also have a language implementing a memory-store mapping string names

13

to integer values1. To simplify the presentation, we assume that this memory language also has

access to three registers:
datatype reg_id =
Reg_a
| Reg_b
| Reg_c

datatype mem =
Read "String.literal" "reg_id"
| Write "String.literal" "reg_id"
| Skip_Mem

type synonym mem_state = "(int * int * int * (String.literal, int)
oalist)"

fun mem_sem :: "mem ⇒ mem_state ⇒ mem_state" where
"mem_sem (Read s r) (ra, rb, rc, mem) =

(case get mem s of
Some v ⇒
(case r of

Reg_a ⇒ (v, rb, rc, mem)
| Reg_b ⇒ (ra, v, rc, mem)
| Reg_c ⇒ (ra, rb, v, mem))

| None ⇒ (ra, rb, rc, mem))"
| "mem_sem (Write s r) (ra, rb, rc, mem) =

(case r of
Reg_a ⇒ (ra, rb, rc, update s ra mem)
| Reg_b ⇒ (ra, rb, rc, update s rb mem)
| Reg_c ⇒ (ra, rb, rc, update s rc mem))"

| "mem_sem (Skip_Mem) t = t"

We want to construct programs as sequences of instructions drawn from these two in-

struction sets. The operations will interact with each other by means of “overlapping” state, in

which parts of Calc’s state are mapped to parts of Mem’s state, and vice versa. To construct such

sequential programs, we of course need a notion of sequencing. This is provided by the

Seq language, which is provided as a standard language component in GAZELLE. We omit

details on GAZELLE’s Seq language-component for now; these details can be found in section

5.1.4.
1oalist is simply a datatype implementing such a store as an ordered association-list; update is used to insert a

new value

14

datatype seq =
Seq
| Skip_Seq

Finally, suppose we have a “language” that simply counts the number of operations it has

executed (having only one instruction, Op). We’d also like our combined language to have this

instruction-counting behavior.

datatype count =
Op
| Skip_Count

type synonym count_state = "int"

fun count_sem :: "count ⇒ count_state ⇒ count_state" where
"count_sem Op x = (x + 1)"
| "count_sem _ x = x"

We add this language component to the example to demonstrate GAZELLE’s generality:

GAZELLE supports more interesting notions of composition beyond simply sequencing operations

from different language-components.

2.1.2 Composition

Intuitively, we want to compose these languages so that

• The instruction-set of the combined language is the union of Calc, Mem, and Seq

• The semantics of sequencing operations is given by Seq (for brevity and clarity of exposi-

tion, we do not define Seq precisely here; details can be found in section 5.1.4)

• Calc and Mem share register state (allowing calculations to be written to memory, and

values from memory to be used in calculations)

• all instructions trigger Op’s logic for counting number of instructions executed (this count

is stored a register in the machine state separate from those used by Calc and Mem)

15

2.1.2.1 Manual Composition

We could achieve this composition without using GAZELLE, by manually writing a

composed semantics. This looks like the following:

type synonym composed_state =
"(int * int * int * (String.literal, int) oalist * int)"

datatype composed =
Calc calc
| Mem mem
| Sq "composed list"

fun composed_sem ::
"composed ⇒ composed_state ⇒ composed_state" where

"composed_sem (Calc i) (ra, rb, rc, mem, ct) =
(case calc_sem i (ra, rb, rc) of

(ra’, rb’, rc’) ⇒ (ra’, rb’, rc’, mem, count_sem Op ct))"
| "composed_sem (Mem i) (ra, rb, rc, mem, ct) =

(case mem_sem i (ra, rb, rc, mem) of
(ra’, rb’, rc’, mem’) ⇒

(ra’, rb’, rc’, mem’, count_sem Op ct))"
| "composed_sem (Sq []) st = st"
| "composed_sem (Sq (h#t)) st =

composed_sem (Sq t) (composed_sem h st)"

In this small example, we can already notice several downsides to the manual approach:

• count sem must be invoked separately for each case; ideally we would like to specify in a

single place each instruction Count should be executed for.

• Seq is treated very differently from the non-control-flow languages Calc and Mem. In a

sense we have cheated here: we would like Seq to be treated more like Count, since it

describes a behavior (go to the next instruction) to be executed along with each instruction.

By handling control-flow implicitly (through recursive calls to comp sem), we make it

much harder to accommodate composition with other language-components expressing

control-flow behavior.

16

• Relatedly, we are combining all of these semantics into a single ISABELLE function,

meaning we cannot naturally express and reason about nonterminating programs. 2

Running the manually composed code on an example input looks like the following. First

we define an example program and an initial state to begin executing:

definition example_prog :: "composed" where
"example_prog =

Sq
[Calc (Const 1)
, Mem (Write (STR ’’x’’) Reg_c)
, Calc (Const 2)
, Mem (Write (STR ’’y’’) Reg_c)
, Mem (Read (STR ’’x’’) Reg_a)
, Mem (Read (STR ’’y’’) Reg_b)
, Calc Add
, Mem (Write (STR ’’result’’) Reg_c)
]"

definition init_state :: "composed_state" where
"init_state =

(0, 0, 0, empty, 0)"

Then we invoke ISABELLE’s value command to compute the result.

value "composed_sem example_prog init_state"
— Result:
definition result where
"result =
(1, 2, 3,

Oalist
[(STR ’’result’’, 3), (STR ’’x’’, 1),
(STR ’’y’’, 2)],

8)"

This is as we would expect: x gets assigned 1; y gets assigned 2; and result gets

assigned 3, the result of the addition.

2While ISABELLE does allow nonterminating functions in its logic, they are treated as partially defined [Bre17].
This is unacceptable if, for instance, we want to distinguish between different nonterminating executions.

17

2.1.2.2 Composition Using GAZELLE

Implementing this composition in GAZELLE requires several pieces. First, we define a

combined syntax for the composed language:

datatype composed =
Calc calc
| Mem mem
| Sq

Next we define translation functions defining how the combined syntax corresponds with

the syntax of each language component. Notice how Cond overlaps with the syntaxes for

Calc and Mem, denoting that their executions take place at the same time, in parallel3:

fun calc_trans :: "composed ⇒ calc" where
"calc_trans (Calc x) = x"
| "calc_trans _ = Skip_Calc"

fun mem_trans :: "composed ⇒ mem" where
"mem_trans (Mem m) = m"
| "mem_trans _ = Skip_Mem"

fun seq_trans :: "composed ⇒ Seq.syn" where
"seq_trans Sq = Seq.Sseq"
| "seq_trans _ = Seq.Sskip"

fun count_trans :: "composed ⇒ count" where
"count_trans Sq = Skip_Count"
| "count_trans _ = Op"

After this, we define priority functions denoting how “collisions” between simultaneous

writes to different state components are to be resolved (writes at higher priorities supersede those

at lower priorities). For more information on how GAZELLE handles priorities, see sections

2.2.3.4 and 5.2.2. Note that Seq does not have its own priority function, as it is handled separately

(for details, see section 5.1.4).

fun calc_prio :: "(calc ⇒ nat)" where
"calc_prio Skip_Calc = 1"

3Seq overlaps as well, but this is less obvious - as we will see when discussing Seq in more detail (section
5.1.4), this is because Sskip has nontrivial behavior rather than being a no-op

18

| "calc_prio _ = 2"

fun mem_prio :: "mem ⇒ nat" where
"mem_prio (Skip_Mem) = 1"
| "mem_prio _ = 2"

fun count_prio :: "count ⇒ nat" where
"count_prio (Skip_Count) = 1"
| "count_prio Op = 2"

Then, for Calc and Mem, we define toggle functions describing which instructions those

languages are enabled for. This is helpful when reasoning about the combined semantics, as it

gives us stronger properties relating the behavior of these language-components in isolation to

the behavior of the combined language. (For more details, see section 4.6.1).

fun calc_toggle :: "composed ⇒ bool" where
"calc_toggle (Calc _) = True"
| "calc_toggle _ = False"

fun mem_toggle :: "composed ⇒ bool" where
"mem_toggle (Mem _) = True"
| "mem_toggle _ = False"

We can now begin defining the combined semantics. First, we give the combined state.

The state uses wrapper types (described in section 2.2.3) in order to facilitate the composition of

the different language-components’ semantics into a single, unambiguous behavior. The state

type looks like the following (note that the type parameter ’x in composed state’ represents

an extension field leaving open the possibility of further extensions to the combined-language

state later):

type synonym ’x swr =
"’x md_triv option md_prio"

definition Swr :: "’x ⇒ ’x swr" where
"Swr x = (mdp 0 (Some (mdt x)))"

type synonym (’x) composed_state’ =
"(int swr * int swr * int swr *
(String.literal, int) oalist swr * int swr * ’x)"

19

type synonym (’s, ’x) composed_state =
"(’s, ’x composed_state’) control"

To define the composed semantics, we need one more ingredient: liftings, which describe

how the states of each language-component are mapped into the state of the combined language.

Liftings are described in more detail in chapter 3; the schem lift construct makes use of the

automated lifting generator described in section 3.3. Briefly, the first argument to

schem lift assigns names each part (tuple-component) of the language-component’s state,

and the second argument describes how those parts correspond to parts of the combined state

(including details such as what wrappers are used, what priority-functions to use when updating

the priority attached to state pieces, etc).

definition calc_lift’ ::
"(calc, calc_state, _ composed_state’) lifting" where

"calc_lift’ =
schem_lift (SP NA (SP NB NC))

(SP (SPRC calc_prio (SO NA))
(SP (SPRC calc_prio (SO NB))
(SP (SPRC calc_prio (SO NC)) NX)))"

definition calc_lift ::
"(calc, calc_state,

(composed, _) composed_state) lifting" where
"calc_lift = no_control_lifting calc_lift’"

definition mem_lift’ ::
"(mem, mem_state, _ composed_state’) lifting"
where

"mem_lift’ =
schem_lift

(SP NA (SP NB (SP NC ND)))
(SP (SPRC mem_prio (SO NA))

(SP (SPRC mem_prio (SO NB))
(SP (SPRC mem_prio (SO NC))
(SP (SPRC mem_prio (SO ND)) NX))))"

definition mem_lift ::
"(mem, mem_state,

(composed, _) composed_state) lifting" where

20

Combined State:

Continuation

Error

Reg c

Reg a

Reg b

Memory

Count

CALC State:

Reg a

Reg b

Reg c MEM State:

Reg c

Reg a

Reg b

Memory

SEQ state:

Continuation

COUNT State:

Count

Figure 2.1: Visual depiction of lifting into the example language’s combined state; arrows
denote injection of data

"mem_lift = no_control_lifting mem_lift’"

definition count_lift’ ::
"(count, count_state, _ composed_state’) lifting" where

"count_lift’ =
schem_lift NA

(SP NX (SP NX (SP NX (SP NX (SP (SPRI (SO NA)) NX)))))"

definition count_lift ::
"(count, count_state,

(composed, _) composed_state) lifting" where
"count_lift = no_control_lifting count_lift’"

The overlaps between the different sub-language states, and how each contributes to the

combined state, can be visualized in figure 2.1.

Having defined all this, we can now put together a semantics for our combined language by

using GAZELLE’s pcomps operator to compose the lifted versions of each language-component’s

semantics. (For more information on pcomps, see section 2.2; specifically section 2.2.4). The

composition follows:

definition composed_sem ::
"composed ⇒

21

(composed, _) composed_state ⇒
(composed, _) composed_state" where

"composed_sem =
pcomps

[lift_map_t_s calc_trans calc_lift calc_toggle calc_sem
, lift_map_t_s mem_trans mem_lift mem_toggle mem_sem
, lift_map_s count_trans count_lift count_sem
, seq_sem_l_gen seq_trans]"

Running this program on an example input looks like the following. Again, we proceed

by defining the example program and its initial state:

definition example_prog :: "composed gensyn" where
"example_prog =

♢ Sq
[† Calc (Const 1)
, † Mem (Write (STR ’’x’’) Reg_c)
, † Calc (Const 2)
, † Mem (Write (STR ’’y’’) Reg_c)
, † Mem (Read (STR ’’x’’) Reg_a)
, † Mem (Read (STR ’’y’’) Reg_b)
, † Calc Add
, † Mem (Write (STR ’’result’’) Reg_c)
]"

definition init_state :: "(composed, unit) composed_state" where
"init_state =

(Swr [example_prog], Swr None, Swr 0,
Swr 0, Swr 0, Swr empty, Swr 0, ())"

There are two primary differences to notice here. First, we use special syntactic sugar

(† and ♢) to conveniently express the program’s syntax using GAZELLE’s syntax-tree datatype,

gensyn. For more on this, see section 2.3.1. We also need to take into account the wrapper

datatypes we are using when constructing the state - hence the use of Swr, which applies these

wrappings. For more about the wrappings used by GAZELLE, see section 2.2.3. As before, we

invoke ISABELLE’s value command to compute the result.

value "sem_run composed_sem 99 init_state"
— Result:
definition result where
"result =

22

Inl (mdp 18 (Some (mdt [])),
mdp 0 (Some (mdt None)),
mdp 16 (Some (mdt 1)),
mdp 16 (Some (mdt 2)),
mdp 16 (Some (mdt 3)),
mdp 10 (Some
(mdt (Oalist

[(STR ’’result’’, 3),
(STR ’’x’’, 1),
(STR ’’y’’, 2)]))),

mdp 9 (Some (mdt 8)), ())"

Further details of composition in GAZELLE will be explained later on (see in particular

section 2.2 and chapter 3). What is important to notice now is that the composition pcomps is

able to uniformly handle all of these language components, and that we are able to compose them

by wrapping the existing definitions; that is, without needing to duplicate or modify the code for

the language components (as was needed in the manual version for Seq and Count).

The GAZELLE version addresses each of the drawbacks we just listed in section 2.1.2.1.

We specify the semantics of each sub-language separately, and compose them in a uniform

way. Our approach to control-flow allows for handling of nonterminating programs. The

implementation details of the Seq language, along with the GAZELLE control-flow interpreter

(sem run), will be discussed later in section 2.3.2.

Other than the Count language-component, which we include to emphasize the generality

of the composition GAZELLE allows, the Comp language described here is actually a subset of

the IMP language defined later (chapter 5) in GAZELLE. Before discussing the full IMP language,

however, we will need to understand how GAZELLE renders possible this smaller example. In

particular, we need to discuss the definitions of pcomps (section 2.2) and sem run) (section 2.3).

We also need to discuss liftings (chapter 3). We will turn our attention to these definitions next.

23

type synonym (’syntax, ’state) langcomps =
"(’syntax ⇒ ’state ⇒ ’state) list"

fun pcomps :: "(’syntax, ’state :: Mergeable) langcomps ⇒
(’syntax ⇒ ’state ⇒ ’state)" where
"pcomps [] a b = b"
| "pcomps [lh] a b = lh a b"
| "pcomps (lh#lt) a b =

[ˆ lh a b, pcomps lt a b ˆ]"

Figure 2.2: Definition of pcomps, which implements composition of instruction semantics

2.2 A Lightweight Approach to Instruction-Language Compo-

sition

We just saw (in section 2.1) an intuitive example of how GAZELLE can be used to develop

a formalization of a programming language by composing smaller pieces together. In this section

we give a more precise characterization of what we mean by language composition, and in the

process give a mechanism by which we achieve it in the context of Gazelle. Our goal is to provide

a definition for the pcomps function we encountered in our introductory example (section 2.1).

Recall that the role of pcomps is to take a list of language-component semantics

((’a →’b →’b) list, for syntax type ’a and state type ’b) and combine them into a single

function giving the semantics of the combined language (’a →’b →’b).

The definition of pcomps is actually quite simple - it is essentially a fold of another

function bsup over the results of the list of language-component semantics being composed,

given as functions ’syntax →’state →’state ([ˆx, yˆ] is simply syntactic sugar for

bsup x y). This definition is given in figure 2.2.

Thus, in order to understand the definition of pcomps, it is necessary to understand this

bsup operator: how it is defined, and the intuitions behind it. The definition of bsup draws

on concepts from the world of denotational semantics and domain theory: in particular, the

notion of an information ordering. With pcomps, we can define composition for instructions

24

whose semantics can be given as a total function - that is, they always have a defined result, and

always terminate. We address issues related to nontermination in section 2.3.2 when discussing

control-flow. This stratification of language semantics is a common pattern used in language

formalizations [PAdAG+21b, ch.12].

For our purposes in this section, a language is anything that can be expressed as a total

function in Isabelle, f :: syntax ⇒state ⇒state, for some types syntax and state.

This function gives the execution of an instruction (of the syntax type) in terms of how it

operates on input program-states to produce output states (both of type state). To begin defining

composition, we restrict ourselves to compositions of languages that share both syntax and state

types. This is quite a severe restriction, but we show how to work around it through the use of

liftings in chapter 3.

When composing such languages, we have a situation that looks something like the

following:

definition f1 :: "syn ⇒ state ⇒ state"
where

"f1 x st =
— Actual implementation goes here
undefined"

definition f2 :: "syn ⇒ state ⇒ state"
where

"f2 x st =
— Actual implementation goes here
undefined"

definition composed :: "syn ⇒ state ⇒ state" where
"composed x st = (compose_states (f1 x st) (f2 x st))"

Intuitively, we want the function composed to do the following: take a syn and a

state, and return some notion of the “composition” of the resulting states (represented by

compose states in the listing above). Now, of course, we need to actually implement

compose states. Before giving the implementation, however, it will be helpful to have some

intuitions about what we expect from our state-composition operator - an informal specification

25

for what such composition should mean. In the next section (2.2.1), we explore by way of

examples what we want out of composition, which will lead us to an approach to what state-

composition should look like more generally, along with what other structure we should expect the

state type to have in order for such a composition to make sense. We will end up instantiating

compose states using the bsup primitive.

2.2.1 State Composition: Examples and Intuitions

To simplify the exposition further, we for now set aside the issue of syntax, taking f1

and f2 to have types state ⇒state. In other words, we are looking the the compositional

behavior of f1 and f2 at some particular instruction. The generalization to syntax-types with

multiple instructions is somewhat straightforward, but we can give a more satisfying account of it

after introducing GAZELLE’s lifting machinery (see chapter 3).

These examples may seem overly simplistic, but they in fact sketch the outline of the

three most important constructs used in GAZELLE’s approach to composition. One thing worth

noting is that the compositions described here work by “wrapping” around the f1 and f2; they

do not require changing the internals of the functions themselves. This is an important property

of GAZELLE: when composing denotational semantics of instructions from multiple languages,

we never need to modify the implementation of those languages.

2.2.1.1 Languages Operating on Distinct Tuple Components

We begin with an example where the intuitive meaning of composition is straightforward.

Suppose we have f1 and f2 of type syntax ⇒state1 * state2 ⇒state1 * state2.

Suppose further that f1 only reads from and writes to the state1 element of the tuple, and

that f2 only reads from and writes to state2. Equivalently (and foreshadowing a more general

approach that will be explored later on when we discuss lifting in chapter 3) we could view

f1 as fst o f1’ and f2 as snd o f2’ for appropriate f1’, f2’ (o here stands for function

26

composition).

In this case, we probably want the following for the composition of the two functions:

composed (x1, x2) = (f1’ x1, f2’ x2); that is, applying f1’ and f2’ componentwise

to the piece of the tuple to which they are applicable. Concretely, suppose our state type is a

pair (int * int), where f1 adds 1 to the first component and f2 subtracts 1 from the second

component. We would write this as:

type synonym state = "(int * int)"

definition f1 :: "state ⇒ state"
where

"f1 st =
(case st of

(x1, x2) ⇒ (x1 + 1, x2))"

definition f2 :: " state ⇒ state"
where

"f2 st =
(case st of

(x1, x2) ⇒ (x1, x2 - 1))"

definition composed_f1_f2 :: "state ⇒ state" where
"composed_f1_f2 x =
(case f1 x of (x1, _) ⇒
(case f2 x of (_, x2) ⇒
(x1, x2)))"

2.2.1.2 Languages Returning Optional Data

Suppose now we have two functions giving semantics to languages, f1 and f2, each of

which returns some optional data. More specifically, suppose they take a pair of a natural number

and an optional result flag. Intuitively, the natural number corresponds to a shared input and the

result flag corresponds to a shared output. However, to keep this exposition consistent with the

approach actually taken in GAZELLE, which treats the state uniformly and does not distinguish

between parts of the state used as inputs and parts of the state used as outputs, we simply treat

this as a pair of state-elements. The first element - the input - is always left unchanged, and the

27

second - the output - never affects the result of the function. Suppose, further, that f1 and f2

will never both return distinct non-None data (or, at least, that we only require composition to be

well-defined for cases where at least one result is None). That is, ∀x1 x2 . x1 = None ∨

x2 = None ∨ x1 = x2 for return values x1 from f1 and x2 from f2.

Concretely, suppose f1 and f2 update the result flag to signal the presence of particu-

lar natural numbers in their inputs (as before, we ignore the syntax argument to simplify the

presentation):

datatype flag =
IS_ONE
| IS_TWO

definition f1 :: "(nat * flag option) ⇒ (nat * flag option)" where
"f1 p = (case p of (x, _) ⇒

(x, (if x = 1 then Some IS_ONE
else None)))"

definition f2 :: "(nat * flag option) ⇒ (nat * flag option)" where
"f2 p = (case p of (x, _) ⇒

(x, (if x = 2 then Some IS_TWO
else None)))"

Here again, the intuitive meaning of composing f1 and f2 is fairly clear: to arrive at a

single result, we want x (the unchanged input) as our first component; we want Some IS ONE

if x = 1; we want Some IS TWO if x = 2; and we want None otherwise. One way of looking

at this composition is using the concept of information ordering appearing frequently in lattice

theory, domain theory, and other related formalisms [Sch88, pg.79]. If we consider None to be

“less informative” than Some x (for all choices of x), then what we are doing is running f1 and

f2 on the same state, allowing f1 and f2 to overwrite each other’s output if their own output is

“strictly more informative” than the output they are overwriting.

We could write the composition this way:

definition composed_f1_f2 ::
"(nat * flag option ⇒ nat * flag option)" where

"composed_f1_f2 x =
(case x of

28

(x1, x2) ⇒
(case f1 (x1, x2) of
(x1’, None) ⇒ f2 (x1, x2)
| (x1’, Some x2’) ⇒
(case f2 (x1, x2) of

(x1’’, None) ⇒ (x1’, Some x2’)
| (x1’’, Some x2’’) ⇒

— can’t occur for f1, f2 as defined above
undefined)))"

2.2.1.3 Prioritized Outputs

Finally, and with the general concept of information-ordering in mind, let’s look a third

example of composition. Suppose again we have two functions giving language semantics, f1

and f2. We’ll need to consider syntax for this example to be motivated, so (unlike the previous

examples) we present this one using a syntax of commands. Our setup is the following:
datatype syn =
op1
| op2

type synonym state = "(nat * nat * nat)"

definition f1 :: "syn ⇒ state ⇒ state" where
"f1 s x =
(case x of
(x1, x2, x3) ⇒
(case s of
op1 ⇒ (x1, x2, x1 + x2)
| op2 ⇒ (x1, x2, x1 - x2)))"

definition f2 :: "syn ⇒ state ⇒ state" where
"f2 s x =
(case x of
(x1, x2, x3) ⇒
(case s of
op1 ⇒ (x1, x2, x1 * x2)
| op2 ⇒ (x1, x2,

divide_nat_inst.divide_nat x1 x2)))"

That is, f1 and f2 each implement two different arithmetic operations; in f1, op1

corresponds to addition and op2 to subtraction; in f2, op1 corresponds to multiplication and

29

op2 to division. Without knowing more about what exactly we want out of our composition,

we can’t really say what it means to compose f1 and f2; there is no clear way to impose an

information-ordering on the data they produce.

However, suppose we further know that we want to define a composed language wherein

the meaning of op1 is given by f1 and the meaning of op2 is given by f2. A more general way

to view this sort of composition is that for each syntax element s, we assign natural-number

priorities to the results of f1 s x and f2 s x (for arbitrary state input x). These priorities

can be seen as inducing an explicit information-ordering: when composing f1 and f2, we take

whichever of the two outputs has strictly higher priority (as with the previous example, we assume

for now that one or the other result will be strictly greater).

If we want the assignment described above (op1 corresponds to f1, op2 corresponds to

f2) we might write this as follows:

definition priority_f1 :: "syn ⇒ nat" where
"priority_f1 x =
(case x of
op1 ⇒ 2
| op2 ⇒ 1)"

definition priority_f2 :: "syn ⇒ nat" where
"priority_f2 x =
(case x of
op1 ⇒ 1
| op2 ⇒ 2)"

definition composed_f1_f2 :: "syn ⇒ state ⇒ state" where
"composed_f1_f2 s x =
(if priority_f1 s > priority_f2 s then f1 s x
else (if priority_f2 s > priority_f1 s then f2 s x
else undefined — can’t happen for priorities as defined above))"

In the next section, we will see how we can generalize the intuitions behind these three

examples into a general framework for inducing information-orderings on program state types,

enabling us to define a general notion of state-composition (and, thus, language-semantics-

composition).

30

2.2.2 Information-Ordering In GAZELLE

GAZELLE uses several typeclasses to capture the behavior of types whose data satisfy

different notions of ordering 4. Gazelle also contains extensions of these typeclasses to implement

a notion we call mergeability - essentially, types where least upper bounds (if they exist) of

finite sets of elements can be computed. We can then give a concrete meaning to the notions of

state-composition sketched out above (section 2.2.1). Composing two states means computing

this least upper bound, and is only well-defined if such a least upper bound exists. In this section,

we describe how these typeclasses work to achieve this goal.

2.2.2.1 Typeclasses in Isabelle: A Primer

Here we give a brief introduction to typeclasses in general, as well as some details about

ISABELLE’s implementation of typeclasses that set it apart from more well-known typeclass

systems, such as the one found in HASKELL. For more detail about ISABELLE typeclasses, the

reader should refer to [Haf21]. Typeclasses in ISABELLE allow specification of a set of operations

on an abstract (i.e., parameterized) type, as well as facts about those operations. Instances

for different types can then be given, which requires giving concrete implementations of the

operations for that type, as well as proofs that the properties specified in the typeclass hold for

that type.

Typeclasses are used to restrict polymorphism. Isabelle/HOL primarily makes use of

parametric polymorphism: a function taking a parameter of a polymorphic type ’a, for instance,

must be able to handle a parameter of any type. Thus, such a function can make only very few

assumptions about how its parameter can be used. When implementing a function of type ’a

⇒’a, for instance, the only available choice is the identity function [Wad89]. 5 We know nothing

4ISABELLE contains its own implementation of orderings, including related typeclasses; they are largely not used
in this development. Primarily this is to enable flexibility around certain notions, such as completeness of partial
orders, of which GAZELLE only uses a rather weak form; and to avoid other complexities stemming from the more
general notions developed in the standard library.

5In fact, this is not quite true in ISABELLE. ISABELLE requires all types be inhabited, and defines a polymorphic

31

about the structure of a datum of type ’a that would let us modify it or create a new one, so all

we can do is return back the same input we were given.

This can be a useful approach to dealing with polymorphic data in many cases. Lists,

for instance, can operate uniformly no matter what type of data is stored in their elements;

the behavior of the cons and nil constructors, and of the case-analysis functions that let us

discriminate on list inputs, do not need information about the structure of the data within the

list. However, in many cases - such as in GAZELLE - we need to know something more about

the data we are working with. Consider, for example, a type of sorted lists - in order to be able

to implement basic operations such as insertion and deletion, the implementor must be able to

rely on the existence of an ordering function for list elements. As we will see shortly, we are in

a similar situation when trying to implement operations enabling us to meaningfully compose

together multiple states in GAZELLE. For these operations, in fact, we also need a notion of

ordering.

In the remainder of this section, we will discuss several notions of ordering used in

GAZELLE, along with their associated typeclasses. We will then discuss how this ordering

infrastructure enables us to merge together states while maintaining the kinds of guarantees

intuitively sketched out in section 2.2.1

2.2.2.2 Weak Partial Order Typeclass

We begin with the most basic notion of (information) ordering used in GAZELLE, a weak

partial order Pord Weak. A partial order on a data type ’a consists of a binary relation pleq,

written as <[, 6 on data of that type. While not strictly necessary for a binary relation to be valid as

a partial order, we will tend to assume pleq is computable. That is, it can meaningfully be viewed

constant undefined :: ’a. So the function (λx . undefined) is also a function from ’a ⇒’a,
at least in a strict sense. However it is not computationally meaningful; any attempt to use the undefined result
leads to a crash. See [Bre17] for more on this.

6We use this notation to avoid conflict with the notation < for the built-in less-than-or-equal-to operator in
Isabelle’s standard library.

32

as an executable function ’a ⇒’a ⇒bool, and we will often refer to pleq implementations as

functions for this reason. Another way to say this is that (in this development) we will tend to

work with datatypes having a decidable less-than-or-equal-to operator.

Weak partial orders are the most basic (having the weakest axioms) notion of ordering we

work with here. For a datatype with a pleq to be partially ordered, we require:

• Reflexivity: ∀(x :: ’a) . pleq x x

• Transitivity: ∀(x, y, z :: ’a) if pleq x y and pleq y z, then pleq x z.

We can write this in ISABELLE as follows:

class Pord_Weak =
fixes pleq :: "’a ⇒ ’a ⇒ bool" (infixl ⟨<[⟩ 71)
assumes

leq_refl : "pleq a a"
assumes

leq_trans : "pleq a b =⇒ pleq b c =⇒ pleq a c"

Orderings satisfying Pord Weak are missing an important property that makes them less

useful for our purposes - namely, they do not require antisymmetry, the property that ∀(x, y ::

’a), if pleq x y and pleq y x then x = y. We generally need this property in order to be

able to convert abstract facts about the relative order of pieces of data to concrete facts about their

exact contents. Nonetheless, many basic facts and utilities related to orderings do not depend on

antisymmetry; Pord Weak is a useful abstraction on which to prove these.

In particular, with Pord Weak we can define notions of upper bound and least upper

bound (also called supremum or sup) of sets in a standard way.

definition is_ub :: "(’a :: Pord_Weak) set ⇒ ’a ⇒ bool" where
"is_ub A a =

(∀ x ∈ A . pleq x a)"

An upper bound of a set of type S :: ’a is any datum of type ’a that is greater than or

equal to (according to pleq) all elements of the set S.

33

X Y

sup X Y

∀ S

∃

Figure 2.3: Visual depiction of is sup; arrows denote pleq

definition is_least :: "((’a :: Pord_Weak) ⇒ bool) ⇒ ’a ⇒ bool"
where
"is_least P a =

(P a ∧
(∀ a’ . P a’ −→ pleq a a’))"

A least datum x :: ’a satisfying a predicate P :: ’a → bool is any x satisfying

P that is also less than or equal to all other data satisfying P.

definition is_sup :: "(’a :: Pord_Weak) set ⇒ ’a ⇒ bool" where
"is_sup A a =

is_least (is_ub A) a"

The supremum or least upper bound of a set S :: ’a is simply that: the least upper bound

of the set, according to the definitions just given. For convenience, we also define predicates

has ub and has sup, which existentially quantify the (least) upper bound rather than giving it

explicitly.

definition has_ub :: "(’a :: Pord_Weak) set ⇒ bool" where
"has_ub A = (∃ s . is_ub A s)"

definition has_sup :: "(’a :: Pord_Weak) set ⇒ bool" where
"has_sup A = (∃ s . is_sup A s)"

We can graphically represent the supremum of two pieces of data as follows (figure 2.3):

At this point we define another notion on weak partial orders - biased supremum or bsup -

that will be useful later when defining merging of states.

34

2.2.2.3 Biased Supremum

Intuitively, suppose we are merging two statesx and y (of type

’a :: Pord Weak, equipped with an information ordering). When computing merge x y, it is

clear that if x and y have a least upper bound, then merge x y should be equal to this least upper

bound. In other words, if possible we’d like to return a result that is consistent with - that is, at

least as informative as - both x and y (upper bound). We’d also like to return the “informationally

minimal” such result (then least upper bound). However, x and y are not guaranteed to have a

least upper bound; we need to decide what to do in that case.

One option would be to have merge return a result wrapped in an option type; that is,

make it a partial function. We instead choose an approach that allows merge to be total and

always return a meaningful result that coincides with the least upper bound when one exists.

When no least upper bound exists, we “do the best we can” to return meaningful data that is

intuitively “as close as possible” to being a least upper bound. This is the role of bsup, which we

now define.

definition is_bsup :: "(’a :: Pord_Weak) ⇒ ’a ⇒ ’a ⇒ bool" where
"is_bsup a b s =

is_least (is_bub a b) s"

definition is_bub :: "(’a :: Pord_Weak) ⇒ ’a ⇒ ’a ⇒ bool" where
"is_bub a b s =

(pleq a s ∧
((∀ bd sd . pleq bd (b) −→

is_sup {a, bd} sd −→
pleq sd (s))))"

Similar to how we defined least upper bound above, we first define biased upper bound

(bub), and then define bsup as the least such biased upper bound. The definition of biased upper

bound - is bub - is more interesting. If is bub a b s holds, we say that s is a biased upper

bound of a and b, biased toward a. If this is the case, we know a <[s. That is, we know the

result will be consistent with a (this is why we say that we are biased toward a). However, we

also require that, s is consistent with “as much of the data in b as possible”. Formally, for any

35

X Y

bub X Y

∀ YD

sup YD X

∃

Figure 2.4: Visual depiction of is bub; arrows denote pleq

X Y

∀ bub X Y

bsup X Y

∃

Figure 2.5: Visual depiction of is bsup; arrows denote pleq

less-informative data consistent with b (bd in the listing above) having a supremum with a (sd in

the listing above being that supremum), then that supremum is less than the biased upper bound.

We graphically represent biased upper bound and biased supremum in figures 2.3 and 2.5.

Though not obvious from this definition, it turns out that is bsup a b s satisfies the

property that if a least upper bound of a and b exists, then s will equal this least upper bound (we

prove this in ISABELLE). Additionally, even when a least upper bound does not exist, we can still

rely on several properties that will hold on bsup no matter what.

Making more aggressive use of the full generality of bsup is future work.

36

2.2.2.4 Partial Order and Complete Partial Order

If we add antisymmetry to Pord Weak, we get a typeclass corresponding to data with a

partial ordering - Pord. In ISABELLE we implement this by extending the Pord Weak typeclass:

class Pord =
Pord_Weak +
assumes leq_antisym : "pleq a b =⇒ pleq b a =⇒ a = b"

As mentioned above, without antisymmetry it is difficult to prove facts about concrete

program states (most naturally expressed in terms of equalities) from information-ordering

inequalities. Notably, antisymmetry allows us to prove the uniqueness of least and greatest set

elements (thus, uniqueness of least upper bound as well as bsup).

Continuing to extend our partial-order abstraction, we next add an assumption of com-

pleteness. In its most general form, 7 completeness of a partial order states that any set which has

an upper bound also has a least upper bound. For our purposes here, it suffices and is convenient

to have a somewhat weaker formulation: namely, that finite sets of elements of a complete,

partially-ordered type have a supremum. This is because we intend to use the partially-ordered

datatypes as a means by which to merge program states corresponding to different language

fragments. In most reasonable use-cases (e.g. composing two or more existing languages), there

will only be a finite number of such fragments, so we need not worry about the existence of

suprema of infinite sets. (Indeed, in general, there is no reason to expect we could compute such

suprema even if they could be shown to always exist, and being able to produce an executable

interpreter by means of calculating these suprema is our goal here).

The typeclass for complete partial orders - Pordc - looks like this:

class Pordc =
Pord +
assumes complete2: "has_ub {a, b} =⇒ has_sup {a, b}"

7Several different definitions of completeness can be found in the literature; the one used here corresponds most
closely to directed-completeness, albeit in a weaker form restricted only to finite sets.

37

Because we are restricting ourselves to finite subsets, it suffices to show an even weaker

completeness axiom applying only to sets with two elements. We can then prove the more general

(finite)-completeness statement as a theorem by induction on the size of the finite set of elements

having an upper bound to show that it indeed has a least upper bound.

2.2.2.5 Additional Partial-Order Extensions

There are a few more related notions that need to be developed on top of the partial-

ordering infrastructure described above.

Often we will want to restrict ourselves to working with partial orders with a least element.

We call these Pordb (“partial order with base”); in the literature they are often called pointed

partial orders. They are defined as follows:

class Pord_Weakb = Pord_Weak +
fixes bot :: "’a" ("⊥")
assumes bot_spec :

"
∧

(a :: ’a) . pleq bot a"

class Pordb = Pord + Pord_Weakb

As we will see later in (section 2.2.4.1), when reasoning about merged states, we will

sometimes find it useful to be able to prove that the union of two finite sets each having a least

upper bound has its own least upper bound. Pordps (“partial order with pairwise suprema”)

captures this.

class Pordps =
Pord +
assumes pairwise_sup :

"has_sup {a, b} =⇒ has_sup {b, c} =⇒ has_sup {a, c} =⇒
has_sup {a, b, c}"

Some of the pordc datatypes we work with obey a particularly strong property: that any

finite set has an upper bound (hence, a least upper bound due to completeness):

class Pordc_all = Pordc +
assumes ub2_all : "

∧
a b . has_ub {a, b}"

38

Finally, we have typeclasses capturing two concepts that are somewhat orthogonal to the

notion of ordering but worth mentioning here because they are frequently combined with the

ordering typeclasses defined above. The more interesting of these, Okay, marks types having a

defined subset ok S that we consider to be suitable for projecting valid data out of.

class Okay =
fixes ok_S :: "(’a) set"

For example, the instantiation for option is

instantiation option :: (Okay) Okay
begin
definition option_ok_S : "(ok_S :: ’a option set) = (Some ‘ ok_S)"
instance proof qed
end

In other words, for any type ’a, the set ok S :: ’a option is just the set of all elements

constructed using Some x for x :: ’a. Note that unlike the other typeclasses we’ve seen thus

far, Okay does not come with any theorems; the fact that ok S corresponds to data that can

“validly be projected out” is entirely a matter of convention (indeed, it’s not fully clear what this

would mean in general). We will see Okay used later on (in section 4.3), when discussing how

we handle reasoning about merged program states and merged semantics functions.

Another typeclass of a more purely technical nature is Bogus, which assigns to a data

type a “default” element that can be returned when an operation has no valid result (for instance,

when trying to project a value of type ’a out of None :: ’a option). The reason this is

necessary is due to a quirk in Isabelle’s code generator: while all datatypes are inhabited [Bre17],

and so undefined :: ’a can always be returned instead of a valid result, we have observed

that code generation using undefined values is very brittle. When undefined is encountered

in executing code, it usually leads to a crash (typically a pattern-match error); even in code

that seems that it should avoid these cases, it will often happen that if an undefined is lurking

somewhere in the code it will get executed anyway, due to the fact that ISABELLE’s code generator

39

works with an eager evaluation order. 8

The Bogus typeclass definition is quite simple:

class Bogus =
fixes bogus :: "’a"

We give instances for all the datatypes we work with in GAZELLE. For example, the

following are the instances for natural numbers nat and ’a option.

instantiation nat :: Bogus begin
definition nat_bogus : "bogus = (0 :: nat)"
instance proof qed
end

instantiation option :: (Bogus) Bogus begin
definition option_bogus : "bogus = Some bogus"
instance proof qed
end

Note that the instance for ’a option requires that the parameter ’a itself implement

Bogus. While we could have chosen bogus :: ’a option to be None, this would violate

the spirit of the Bogus typeclass, since we generally want to regard None :: ’a option as

representing the lack of a valid ’a, whereas Bogus needs to return an arbitrary (but valid) ’a.

2.2.2.6 The Mergeable Typeclass

We now have the terminology and primitives needed to define exactly what we want to

require of a datatype for it to be suitable for supporting GAZELLE’s merging operations. We

want a complete partial order (possibly with a least element) for which the biased supremum of

any two pieces of data can be computed. This is captured in the Mergeable typeclass, which is

defined as follows:
8ISABELLE does support code generation into the lazy language HASKELL, but this is not as well integrated as

Isabelle’s default, ML-based code generator, which can be used easily from within Isabelle itself (for instance, when
trying to quickly compute the value of a constant using the value command.) Bogus allows us to avoid this
problem by instead using data that will not cause pattern-match errors that crash the program prematurely.

40

class Mergeable =
Pordc +
fixes bsup :: "(’a :: Pordc) ⇒ ’a ⇒ ’a" ("[ˆ _, _ ˆ]")

assumes bsup_spec :
"
∧

a b . is_bsup a b (bsup a b)"

That is, a Mergeable is any Pordc that additionally provides a function bsup, for which

bsup a b (also written as [ˆa, bˆ]) is the biased supremum of a and b as defined above

(section 2.2.2.3). Mergeable also has variants corresponding to complete partial orders having

least elements, pairwise suprema, and/or all suprema. For example, Mergeableb captures

Mergeable datatypes having a least element:

class Mergeableb = Mergeable +
Pordbc

2.2.2.7 Summary: GAZELLE’s Ordering Typeclasses

This concludes our discussion of the hierarchy of typeclasses used in GAZELLE to

characterize types supporting a useful merge operation (namely, bsup). In the next section, we

will see how we instantiate these typeclasses to create types suitable for representing program-

states that can be meaningfully merged. Figure 2.6 gives a schematic diagram of the typeclasses

described above, and how they inherit from each other.

2.2.3 Wrapper Types for Mergeable States

The ordering abstractions we’ve just defined (section 2.2.2) allow us to define what it

means to merge states, as long as the types of those states come equipped with a partial order.

However, most data types do not come with an obvious ordering, and for those that do, the “native”

ordering is generally not suitable as an information ordering. (Consider integers, for instance: 1

<= 2, but both represent distinct data; we want to consider neither to be more informative than

the other). The solution adopted by GAZELLE is to provide a set of “wrapper” types that can

be used to impose a partial-ordering structure on arbitrary data. In this section, we discuss the

41

Pord Weak

Pord

Pordc

Mergeable

Pord Weakb

Pordb

Pordbc

Mergeableb

Pordps

Pordc All

Figure 2.6: Visual depiction of GAZELLE ordering typeclasses; arrows indicate inheritance

42

most important of these wrapper-types and how they implement different pieces of the typeclass

hierarchy described in section 2.2.2.7.

It is worth emphasizing that the user need not use these wrapper types to take advantage of

GAZELLE’s tools for defining and reasoning about merged semantics. Any Mergeable datatype

will also work, including datatypes with more highly customized information orderings. These

can be defined by the user of GAZELLE.

2.2.3.1 Trivial Ordering

When faced with arbitrary datatype (that does not come with its own information ordering),

we have few options when trying to impose a useful ordering on that type. Because the datatype

represents some kind of program state, however, it is reasonable to assume that we can compute

an equality check on it. Leveraging this fact gives us the trivial ordering, in which we define <[

to be simply = (i.e., the equality on the underlying type). We use a wrapper datatype in case the

inner data already has another Pord ordering defined on it, since typeclasses in ISABELLE need

to have a single, unambiguous instance for a given type in order for typeclass inference on that

type to succeed. The wrapper datatype, as well as the instances for it, are given here:

datatype ’a md_triv =
mdt ’a

instantiation md_triv :: (_) Pord_Weak
begin
definition triv_pleq : "(a :: ’a md_triv) <[b = (a = b)"

The proofs are omitted here, but in our development we show that the trivial ordering

satisfies the laws of Pord (and, thus, also Pord Weak), by virtue of the fact that equality is also

transitive and reflexive. It also satisfies the Pordc completeness law: if s is an upper bound of

some set S, then S = {s}, and so s is also the least upper bound of S. Additionally, it obeys the

pairwise-supremum law (Pordps) as well as having a Mergeable instance:

instantiation md_triv :: (_) Mergeable
begin

43

definition triv_bsup : "[ˆ(a :: ’a md_triv), bˆ] = a"

However, the trivial ordering is not guaranteed to have a least element (indeed, will not

have a least element unless the type in question is isomorphic to the unit type; that is, has only a

single distinct element). Additionally, a trivially-ordered type on its own is not especially useful

for merging states - there are no least upper bounds for non-equal data, and bsup a b = a

for all a. Fortunately, we can do better than this in many cases. The remainder of the instances

described below make use of additional information to impose a more interesting ordering more

amenable to merging.

2.2.3.2 Ordering on Optional Data

When working with partial orders, one common trick [Sch88, pg.104] is to induce a least

element by fiat.9 Namely, we can take an existing partially ordered set and add a new element to

it defined to be less than or equal to all other elements in the set. We do precisely the same thing

in GAZELLE by creating a Pordb instance for the option type. In our context, the new (least)

element being added to the order is simply None, while Some x <[Some y iff x <[y. This

corresponds to the intuition sketched out in section 2.2.1.2. The implementation is as follows:

instantiation option :: (Pord_Weak) Pord_Weak
begin
definition option_pleq : "(x :: ’a option) <[y =
(case x of

None ⇒ True
| Some x’ ⇒

(case y of
None ⇒ False
| Some y’ ⇒ (pleq x’ y’)))"

Unlike with the trivial ordering, we require that the ’a data inside the ’a option type

be equipped with a Pord Weak ordering. This is the ordering used to compare two elements

9[Sch88] refers to this construction as lifting. It is related to but distinct from the notion of lifting defined in this
paper in chapter 3.

44

wrapped in Some constructors. The purpose of option as a wrapper type is to enable the

following Pord Weakb instance:

instantiation option :: (Pord_Weak) Pord_Weakb
begin

definition option_bot : "bot = (None :: ’a option)"

By using None as the least element, we are able to wrap any Pord Weak ordering to get

a new ordering with a base element (Pord Weakb). We define a Mergeable instance for ’a

option as follows:

instantiation option :: (Mergeable) Mergeableb
begin
definition option_bsup: "[ˆ(x :: ’a option), yˆ] =
(case x of

None ⇒ y
| Some x’ ⇒ (case y of

None ⇒ Some x’
| Some y’ ⇒ Some (bsup x’ y’)))"

option also has instances for Pordc, Pordps, and the others listed above in section

2.2.2, provided the base type (’a) satisfies the laws for those typeclasses.

2.2.3.3 Ordering on Tuples

When modeling programming-language states, we will need a treatment of compound

data consisting of multiple fields, each with possibly different types. We saw an example of this

in section 2.2.1.1. In GAZELLE, we find it convenient to model such data as tuples (product types)

10. Naturally, this means we will also want to have partial-ordering typeclass instances for tuple

types. N-tuples in ISABELLE are represented as nested pairs (for instance, the triple (a, b, c)

is just a shorthand way to write (a, (b, c)). So we turn our attention to defining orderings on

pairs of (ordered) data.

10While we do not explicitly address other ways of structuring data, such as records, the approaches described
here can be extended easily to other compound datatypes - especially in ISABELLE, where a record type is little more
than a fancy tuple with some extra syntactic sugar for field accesses and record construction [NPW21, pg.152].

45

When considering how to impose a partial order on a product type ’a * ’b, where ’a

and ’b each come equipped with a partial order, it might seem like there are a few natural options.

One option (the one we implement) is to say that (x1, y1) <[(x2, y2) only when both

components on the left-hand side are less than or equal to their corresponding components on

the right-hand side (that is, x1 <[x2 and y1 <[y2). Another seemingly reasonable choice

would be to use a lexicographic order: (x1, y1) <[(x2, y2) when either x1 <[x2 (with

x1 ̸=x2), or x1 = x2 and y1 <[y2. We choose the former for a few reasons:

• Since our goal is to establish an information ordering, it does not really make sense to

privilege one component of the tuple over the other when determining whether two tuples

are informationally compatible. Intuitively, for two tuples to be compatible, all their

components must respectively be compatible.

• In a lexicographic ordering, we cannot prove completeness without additional assumptions

on the first component - even if we assume the existence of a least element. To see this,

consider an ordered datatype where a <[b, a <[c, but b and c are not comparable. Then

the pairs (a, b) and (a, c) share as upper bounds (b, ⊥), (c, ⊥), but neither is less

than or equal to the other.

• Most of the benefits of lexicographic ordering for our purposes can be achieved using

the specialized md prio datatype, described below (section 2.2.3.4). The aforementioned

requirements on the first component impose so many requirements that we end would up

assuming that the first component look a lot like natural numbers anyway.

Here are our instances for products:
instantiation prod :: (Pord_Weak, Pord_Weak) Pord_Weak
begin

definition prod_pleq :
"(x :: ’a * ’b) <[y =
(case x of

(x1, x2) ⇒ (case y of
(y1, y2) ⇒ (pleq x1 y1 ∧ pleq x2 y2)))"

46

instantiation prod :: (Pord_Weakb, Pord_Weakb) Pord_Weakb
begin
definition prod_bot :

"(bot :: ’a * ’b) = (bot, bot)"

We show that product types (’a * ’b) additionally obey the laws of the other type-

classes listed above in section 2.2.2, assuming their components ’a and ’b do. The Mergeable

implementation is the following; we simply merge the tuple elements componentwise.

instantiation prod :: (Mergeableb, Mergeableb) Mergeableb
begin

definition prod_bsup :
"[ˆ a, b ˆ] =

(case a of
(a1, a2) ⇒ (case b of

(b1, b2) ⇒ (bsup a1 b1, bsup a2 b2)))"

One notable limitation here is that we require the existence of a least element (i.e., that

the elements of the tuple implement the Mergeableb typeclass rather than just Mergeable). It

turns out that without such a least element, we are unable to prove that the bsup implementation

satisfies the is bsup specification. This is one of many reasons the option instance (described

in section 2.2.3.2) is so useful.

2.2.3.4 Priority Ordering

The final important Pord and Mergeable instances are for the following type:

datatype ’a md_prio =
mdp nat ’a

In other words, ’a md prio is a pair of a natural number - the priority - and a piece of

data of type ’a. The goal of the ’a md prio wrapper type is to sort out conflicts when merging

data (of type ’a) that cannot be resolved simply by consulting the partial order defined for ’a.

This corresponds, for example, to the case we already saw in section 2.2.1.3, in which we have

two languages, each with the same two instructions, both writing the same piece of data. md prio

47

is used in such a situation: we assign (just as in the example) a priority to each language’s output,

and our final (merged) result is whichever of the two has greater priority.

We give a Pord Weak instance for ’a md prio (provided that we are dealing with a ’a

which itself has a Pord Weak instance):

instantiation md_prio :: (Pord_Weak) Pord_Weak
begin
definition prio_pleq :
"x <[y =

(case x of
mdp xi x’ ⇒
(case y of

mdp yi y’ ⇒
(if (xi ≤ yi) then

(if (yi ≤ xi) then
pleq x’ y’
else True)

else False)))"

Likewise, if ’a has a Pord Weakb instance, so does ’a md prio:

instantiation md_prio :: (Pord_Weakb) Pord_Weakb
begin

definition prio_bot :
"⊥ = mdp 0 bot"

This is simply (a special case of) a lexicographic approach: when comparing two data

of type ’a md prio, we first compare their natural-number priorities, then (if the priorities are

equal) we compare the data (of type ’a). Note that <= above is Isabelle’s built-in comparison

operator for natural numbers, not pleq. In order to prove the instances we need for ’a md prio,

we need to rely on further properties of comparisons on natural numbers - including linearity.

Linearity says that natural-number comparison admits a trichotomy law: for any n :: nat, n’

:: nat, n < n’ ∨n = n’ ∨n > n’. We also rely on the fact that natural numbers are not

dense; i.e., there is no natural number between 1 and 2, for example.

We provide instances for our other ordering typeclasses: ’a md prio is a Pord if ’a is;

is Pord Weakb if ’a is Pord Weakb; and is a Pordbc if ’a is a Pordbc. As with the instance

48

for product, we require the existence of a least element in order to show completeness.

We also show that if ’a is a Pordbc (that is, partial order with a least element and

completeness), ’a md prio is a Pordc all - that is, any two elements of type ’a md prio have

a least upper bound. For example, if we have x, y :: ’a incomparable, then the supremum of

mdp 1 x and mdp 1 y is mdp 2 ⊥. This is convenient but can also be dangerous, since ⊥ is

not likely to correspond to a meaningful datum (e.g. ⊥:: ’a option is None).

’a md prio also has a Mergeable instance, which is as follows (since Mergeable

depends on Pordc, we require a least element bot :: ’a md prio):

instantiation md_prio :: (Mergeableb) Mergeableb
begin

definition prio_bsup :
"bsup a b =

(case a of
mdp ai a’ ⇒

(case b of
mdp bi b’ ⇒

(if ai ≤ bi then
(if bi ≤ ai then

(if pleq b’ (bsup a’ b’) then
mdp ai (bsup a’ b’)
else mdp (1 + ai) bot)

else mdp bi b’)
else mdp ai a’)))"

This captures the intuition given in the examples above: for unequal priorities, we return

the datum with the larger priority, at that priority. For equal priorities, compute bsup of the

contained data a’ and b’, and check to see if it is the least upper bound (this will happen if and

only if b’ <[[ˆa’, b’ˆ]). If it is, we return this least upper bound of the data, at a priority

equal to the input priorities. If [ˆa’, b’ˆ] does not give a least upper bound for a’ and b’,

then no such least upper bound exists. In this case we return the least element, at a priority one

step higher.

49

2.2.3.5 Summary

At this point, we have described the key typeclasses and instances used by GAZELLE to

enable the merging behavior described in our motivating examples (from section 2.2.1). The

Mergeable instance for products allows us to handle our first example; the instance for option

handles the second; and md prio handles the third. Taken together, these provide a solid

foundation for formally defining merging of states (via bsup) in a meaningful way.

However, we still need to develop abstractions for reasoning about such merged data:

one of our goals, after all, is to enable composition and reuse not just of language semantics

but of tools for reasoning about them. Additionally, we still need to describe a way to make the

transition from the types used to represent state in existing language developments - which may

not be equipped with an information order - into the information-ordering framework we’ve just

described.

In section 2.2.4 and chapter 3, respectively, we will describe how we solve these problems,

completing the picture of the denotational fragment of GAZELLE. Before doing so, we must

define a few more notions related to information ordering in GAZELLE.

2.2.4 Composition and Preservation of Suprema

Now that we have defined biased supremum (bsup), (section 2.2.2.3), we have a means

of composing two states, as well as a way of saying whether that composition is meaningful.

Namely, the composition of states a and b is bsup a b, and the composition is well-defined

in the event that a and b have a least upper bound. This also gives us a way to describe the

composition of two semantics functions sharing a state and syntax type: compose f1 f2 =

(λsyn st . [ˆf1 syn st, f2 syn stˆ]) We can naturally extend this to compositions

of more than two functions, arriving at the definition we from figure 2.2.

As mentioned above, we essentially fold the binary composition bsup over the outputs

50

of the functions (i.e., states) to be composed. We know that, when a and b have a least upper

bound, the composition on states given by [ˆa, bˆ] is commutative. [ˆa, bˆ] is the least

upper bound of the set {a, b}, which equals the set {b, a}, whose least upper bound is [ˆb,

aˆ]; since least upper bounds are by definition unique, we therefore know [ˆa, bˆ] = [ˆb,

aˆ].

By a similar token, if we know the partial order we are working with is complete (Pordc)

we can also show bsup to be associative on states: [ˆ[ˆa, bˆ], cˆ] = [ˆa, [ˆb, cˆ]ˆ].

The proof of this fact is slightly nontrivial, but can be found in the formal development11.

When composing semantics functions using pcomps - rather than single states using

bsup - we also wish to show that the composition is commutative and associative under some

appropriate assumption. That assumption - the analogue of the existence of a least upper bound

when composing states - is defined as follows:

definition sups_pres ::
"(’a ⇒ (’b :: Pord) ⇒ ’b) set ⇒ (’a ⇒ ’b set) ⇒ bool" where

"sups_pres Fs S =
(∀ x syn Fs’ f .
x ∈ S syn −→
Fs’ ⊆ Fs −→
f ∈ Fs’ −→
(has_sup ((λ f . f syn x) ‘ Fs’)))"

We define this as a predicate - sups pres, short for “suprema are preserved” - that takes

a set of semantics functions, as well as a function assigning to each syntax element (of type ’a) a

set of “valid” states 12. The predicate says that, if

• we start in a valid state, x (valid for some piece of syntax syn), then

• for any nonempty subset Fs’ of our set of input functions Fs,

11Like all the other theorems discussed in this dissertation, this proof is machine-checked in ISABELLE; this one
can be found in Gazelle/Mergeable/Mergeable.thy

12The use of this parameter is to allow us to restrict ourselves to reasoning about states that can have data projected
out of them in a valid way (see section 2.2.2.5); without this added assumption the conclusion does not hold for state
types that have option or similar in them.

51

• the set of results after applying each f ∈Fs to syn and x has a least upper bound.

Under the assumption that the functions being composed using pcomps obey sups pres,

we can show that if two such lists of functions have the same set-representation, the result of

pcomps on those lists is the same. This implies, among other things, the commutativity and

associativity facts that we want. Formally, the theorem is:

lemma pcomps_set_eq :
assumes H : "sups_pres Fs S"
assumes Hf : "f ∈ Fs"
assumes Hl1 : "set l1 = Fs"
assumes Hl2 : "set l2 = Fs"
assumes Hx : "x ∈ S syn"
shows "pcomps l1 syn x = pcomps l2 syn x"

2.2.4.1 Proving sups pres

Proving sups pres directly using its definition is challenging, since it requires reasoning

about all subsets of functions in the set S of functions in question; in other words, in general we

might expect proofs of sups pres to grow exponentially with the size of S (i.e., linear in the

size of the power-set of S). Fortunately, it turns out that in many realistic cases we can get away

with a much simpler proof technique, provided we know a bit more about the functions in S.

First, we notice that proving sups pres is trivial for singleton sets and relatively straight-

forward for pairs.

lemma sups_pres_singletonI :
"
∧

S f .
sups_pres {f} S"

lemma sups_pres_pairI :
fixes Fs
fixes f
fixes S :: "’a ⇒ (’b :: Pord) set"
assumes Sups : "

∧
x s . x ∈ S s =⇒ has_sup {f1 s x, f2 s x}"

shows "sups_pres {f1, f2} S"

When working with state types that implement the Pordps typeclass (see section 2.2.2.5),

we can prove sups pres for finite sets of functions by proving that all pairs of functions obey

52

sups pres. This enables us to show sups pres with a polynomial (squared) rather than an

exponential amount of effort. One way to express this approach is using the following theorem,

which enables us to add elements to existing sets satisfying sups pres:
lemma sups_pres_insert :

fixes Fs
fixes f
fixes S :: "’syn ⇒ (’x :: Mergeableps) set"
assumes Hf : "sups_pres {f} S"
assumes HFs : "sups_pres (set fs) S"
assumes Pairwise : "

∧
g . g ∈ set fs =⇒ sups_pres {g, f} S"

shows "sups_pres (set (f#fs)) S"

Another important case where we can more easily prove sups pres is the case where we

are reasoning about datatypes that belong to the Pordc all typeclass (that is, types for which

completeness holds and for which all suprema are guaranteed to exist). This case arises frequently

in the extended IMP example in chapter 5, as well as in other contexts in which md prio is used

to wrap all state elements in priorities. In such cases, we can immediately derive sups pres for

all nonempty, finite sets of functions ’a ⇒’b ⇒’b, where ’b :: Pordc all:
lemma sups_pres_finite_all:

fixes Fs :: "(’a ⇒ (’b :: Pordc_all) ⇒ ’b) set"
assumes Nemp : "f ∈ Fs"
assumes Fin : "finite Fs"
shows "sups_pres Fs S"

While these special cases are quite useful due to how often they arise in practice (indeed,

these cases suffice to show all the sups pres proofs required in our formalization of IMP in

chapter 5), it is important to remember that sups pres is a more general notion and can handle

compositions of functions that are valid for more interesting reasons - albeit at the cost of requiring

additional proof effort.

2.2.5 Summary

In this section, we have covered how we use an information-ordering-based approach

to define composition of programming-language semantics in a precise way. In the following

53

sections, we will see how we extend this approach to handle control-flow by adding an operational

perspective to our notion of evaluation (section 2.3.2). Then, in chapter 3, we will cover how we

use liftings to adapt this approach to work with existing semantics functions and state types.

54

2.3 Extending Composition to Multi-Step Executions

Thus far (section 2.2), we have described how GAZELLE assigns meaning to individual

instructions in a way that enables a formal definition of merging of machine states (and, thus,

merging of instruction-language semantics). However, this still does not provide a complete

picture of composition of programming languages - real programs, after all, generally have

multiple instructions and some notion of control-flow providing an order to their execution. In

this section, we describe how we build on the framework developed so far to enable a formal

account of control-flow that still provides for state-level merging. This enables us to define full

executions of programs in GAZELLE-based languages, via the function sem run (which we saw

previewed in the introductory example, section 2.1.2.2). Additionally, we define propositional

notions of multi-step execution that are more useful for formal reasoning.

We give the definition of sem run in figure 2.7.

Recall from our introductory example (section 2.1.2.2) that program execution is defined

by applying sem run to the instruction semantics for the combined language being executed. In

order to explain sem run, we will begin by describing the syntactic structure used by sem run

to represent multi-instruction programs (section 2.3.1), and then provide different versions of

semantics defining execution (section 2.3.2), including sem run.

2.3.1 Syntax for GAZELLE’s Control-Flow Interpreter

When defining a general syntax representation for GAZELLE, we cannot know a priori

which languages are to be composed. Therefore we need to develop a syntactic and semantic ap-

proach that is agnostic to the specifics of the languages being composed; in other words, extensible.

As already mentioned (section 1.4), Trees That Grow [NJ17] describes one approach to making

programming language syntax representations more extensible. The paper essentially describes

“decorating” an existing language’s syntax tree with additional type-parameters. These parameters

55

type synonym (’full, ’mstate) control =
"(’full gensyn list md_triv option md_prio *

String.literal option md_triv option md_prio * ’mstate)"

type synonym (’syn, ’full, ’mstate) sem =
"’syn ⇒ (’full, ’mstate) control ⇒ (’full, ’mstate)

control"

type synonym ’x orerror =
"(’x + String.literal)"

type synonym (’syn, ’mstate) semc = "(’syn, ’syn, ’mstate)
sem"

fun sem_run :: "(’syn, ’mstate) semc ⇒ nat ⇒
(’syn, ’mstate) control ⇒

((’syn, ’mstate) control orerror)" where
"sem_run gs 0 m =

(case cont m of
Inr msg ⇒ Inr msg
| Inl [] ⇒ Inl m
| _ ⇒ Inl m)"

| "sem_run gs (Suc n) m =
(case cont m of
Inr msg ⇒ Inr msg
| Inl [] ⇒ Inl m
| Inl ((G x l)#tt) ⇒ sem_run gs n (gs x m))"

Figure 2.7: Definition of sem run, which implements multi-step execution for GAZELLE

56

can be later instantiated with datatypes describing extensions to the original (parameterized) type,

enabling the type to be extended without requiring modification.

Building on these insights, we begin by noticing that one need not start with an existing

programming language in order to take advantage of the use of type parameters to add new

syntax-tree nodes, or to enrich a syntax tree with further information. Instead, we can begin with

a datatype capturing trees indexed by a type parameter holding all node-level information. In

Isabelle, we can write that type as follows:

datatype (’x) gensyn =
G "’x" "((’x) gensyn) list"

’x gensyn is a type of trees of nodes, where each node contains a piece of data drawn

from an arbitrary data type ’x. At each node, we can have zero or more subnodes, which are

simply other gensyns of type same type (i.e., using the same type parameter ’w.) Using this

general tree, we can express a large subset of inductive, nested datatypes, a subset that intuitively

corresponds to useful notions of syntax trees.

For convenience, we define some “syntactic sugar” in the form of notations that make

gensyn syntax trees look more like syntax trees as we would write them without the GAZELLE

framework (we saw this notation used in the introductory example in section 2.1.2.2):

notation G ("♢ _ _" [15, 16])

abbreviation G0 ::
"’a ⇒ ’a gensyn" ("(† _)" [80] 81)where

"G0 x ≡ G x []"

♢ is essentially a synonym for G, the constructor for the ’x gensyn datatype. It constructs

a ’x gensyn node from a label (of type ’x) and a list of children (of type ’x gensyn list).

Generally, many nodes in a program’s syntax tree will be leaf nodes (i.e., their list of children

will be the empty list). For this common special case, we have also defined the † notation, which

allows us to elide the empty-list argument when constructing such nodes. Together, these two

notations help reduce syntactic noise and render GAZELLE syntax trees more readable.

57

To make this more concrete, let’s discuss a small example of using gensyn in defining

syntax trees for a simple arithmetic language supporting addition, subtraction, multiplication, and

integer literals. Without using gensyn, we can define it as a typical inductive datatype:

datatype arith_manual =
AmLit int
| AmPlus arith_manual arith_manual
| AmMinus arith_manual arith_manual

We can write a nested expression for (4+3)− (2+1) as follows:

definition example_manual :: arith_manual where
"example_manual =

AmMinus (AmPlus (AmLit 4) (AmLit 3))
(AmPlus (AmLit 2) (AmLit 1))"

Using gensyn, we can express this same language as follows:

datatype arith_label =
ALit int
| APlus
| AMinus

type synonym arith = "arith_label gensyn"

That is, we define a type of syntax-node labels (arith label), and then apply the

gensyn type constructor to it to obtain arith label gensyn, the type of gensyn trees labeled

with arith label labels. The syntax for (4+3)− (2+1) then looks like the following:

definition example :: arith where
"example =

G AMinus [G APlus [G (ALit 4) [], G (ALit 3) []],
G APlus [G (ALit 2) [], G (ALit 1) []]]"

Using the syntactic sugar for gensyn, we can express the same program a bit more

readably:

definition example_sugared :: arith where
"example_sugared =

♢ AMinus [♢ APlus [† ALit 4, † ALit 3]
, ♢ APlus [† ALit 2, † ALit 1]]"

58

There is a drawback to this approach to syntax. Namely, because G nodes are always

allowed to take arbitrary lists of child nodes, we have no way of enforcing that particular nodes

have particular numbers of children; in our example, for instance, nothing at the type level

prevents us from having ALit nodes with children, or from having APlus or AMinus nodes with

zero children. So the following syntax, unlikely to be meaningful given the intent of this syntax

type, is nonetheless permitted by Isabelle’s typesystem:

definition bad_arith :: arith where
"bad_arith =

♢ (ALit 1) [† APlus, † AMinus]"

This is an annoyance, but we are willing to tolerate it. For one thing, it is easy to rule

out such badly-formed syntax trees with further checks, defined in isabelle as functions e.g.

example lang ⇒bool. When reasoning about such programs, we then just need an additional

assumption that the program obeys this well-formedness predicate. Since ISABELLE’s typesystem

is rather limited in its expressive power compared to theorem-provers such as COQ [Tea22]

- ISABELLE does not have a built-in notion of dependent types, nor even of certain weaker

constructs such as generalized algebraic datatypes (GADTs) - when trying to express more

interesting constraints on the shape of syntax trees, we quickly run up against the limits of what

ISABELLE’s typesystem can capture. In situations where we need such constraints, we will have

no choice but to use well-formedness checks of the sort just described.

2.3.1.1 gensyn Type Parameters as Sub-Language Syntax

Setting aside for a moment the question of how exactly we handle control-flow (that is,

determining what instruction to execute next after executing an instruction), we can now bridge

the gap between instruction semantics of the sort we discussed previously (section 2.2) and the

behavior of GAZELLE’s virtual machine. Each node in the ’x gensyn syntax tree has a ’x

datum attached - this datum corresponds to a piece of syntax in an instruction language of the sort

we had discussed previously. That is, to execute a step of a GAZELLE program, we need simply

59

to invoke the function corresponding to the semantics of the instruction language (which is likely

to represent a merging of several sub-languages).

After executing a step, we now have a new state, and we are almost ready to continue

executing. The only remaining issue is selecting the next instruction. Next (in section 2.3.2), we

describe how we handle this issue (i.e., the issue of control-flow in GAZELLE), in the process

explaining the definition of the general interpreter sem run given in figure 2.7.

2.3.2 GAZELLE Control-Flow Semantics

To describe control flow in GAZELLE, we take an operational approach, describing

the execution of GAZELLE programs in terms of steps taken by a very simple virtual machine.

This is as opposed to the approach we took when defining the semantics of execution of single

instructions (see section 2.2, which had a denotational character. Operational semantics has a

significant advantage over denotational semantics for our purposes, when it comes to expressing

control flow. By taking an operational approach to control flow, we can express the execution

of non-terminating programs in a simple and succinct manner. The operational approach also

makes it straightforward to derive an executable interpreter for GAZELLE programs. In contrast,

with a pure-denotational approach, extra work will generally need to be done to derive a concrete

means of executing the program, as the mathematical objects denoting the programs may not be

trivial to translate into instructions a computer can execute [Sch88, pg.199]. Since, as mentioned

in section 1.3, our goals include producing an executable interpreter, an operational approach to

control-flow semantics is a clear win.

We assign an operational semantics to Gazelle programs in two closely-related forms: as

an executable interpreter, and as a predicate describing executions. First, we give the interpreter

for GAZELLE programs. This interpreter works on the gensyn syntax-tree datatype described

in section 2.3.1. The insight here is that all that is really needed is a protocol or convention by

which the “inner” single-step instruction language can signal to the “outer” interpreter what it

60

should execute next.

2.3.2.1 Single-Step GAZELLE Interpreter

We begin with some helpful type abbreviations.

type synonym (’full, ’mstate) control =
"(’full gensyn list md_triv option md_prio *

String.literal option md_triv option md_prio * ’mstate)"

type synonym (’syn, ’full, ’mstate) sem =
"’syn ⇒ (’full, ’mstate) control ⇒ (’full, ’mstate) control"

type synonym ’x orerror =
"(’x + String.literal)"

type synonym (’syn, ’mstate) semc = "(’syn, ’syn, ’mstate) sem"

The control type synonym corresponds to states that conform to GAZELLE’s control-

flow protocol. Such states must be a triple of

• A list of syntax trees to execute next (a sort of defunctionalized continuation [Dan08])

• A field for signaling errors (a String.literal)

• A field for “everything else” (which can, of course, be a further-nested tuple, or some other

compound data-structure).

The first two fields of control are each wrapped in md triv option md prio, which

enables them to be treated as ordered data for the purposes of merging. This formulation of

the control type imposes only the minimum amount of structure necessary for the control-

flow interpreter to know where to find the data corresponding to the next instruction to execute.

Otherwise, the interpreter does not need to know or care about the details of the representation of

the remainder of the state (more formally, the interpreter is parametrically polymorphic in the type

’mstate representing the remainder of the state). Another benefit to this representation is that

61

it allows us to treat the data corresponding to control-flow as “just another piece of data”: from

the point of view of GAZELLE’s ordering infrastructure, it does not really matter that the ’full

gensyn list md triv option md prio happens to represent a continuation. As long as

the sub-languages that manipulate control-flow state, and the control-flow interpreter, all agree on

where this data should be (i.e., the first component of the triple), no other special treatment is

needed.

The sem type is the type of instruction-language semantics to be used with the interpreter.

sem allows for a distinction between the type of syntax stored in the gensyn nodes in the

control argument (the type parameter ’full) and the type of syntax actually used by the

semantics function (the type parameter ’syn). In practice these may be the same type, in which

case we can use the semc type synonym. Separating these types allows for greater extensibility.

’syn allows individual sub-languages to pattern-match on syntactic elements belonging to that

sub-language without needing to know about the syntax representation of the entire combined

language, which may contain syntactic elements belonging to other sub-languages. On the other

hand, ’full allows the control-flow interpreter access to the entire syntax representation for the

language, which it can use to dispatch control to the correct sub-language (while still allowing for

further extension of the full language’s syntax). In section 2.1.2.2, saw how translation functions

are used to convert between these two syntax types when composing sub-languages; we will see

more of this in section 5.1.

definition cont :: "(’full, ’mstate) control ⇒ (’full gensyn list
orerror)" where
"cont m ≡

(case m of
((mdp _ (Some (mdt x))), (mdp _ (Some (mdt msg))), _) ⇒
(case msg of

None ⇒ Inl x
| Some msg ⇒ Inr msg)

| ((mdp _ None), _, _) ⇒
Inr (STR ’’Hit bottom in continuation field’’)

| ((mdp _ _), (mdp _ None), _) ⇒
Inr (STR ’’Hit bottom in message field’’))"

62

cont projects out the contents of the continuation field of a GAZELLE state ((’full,

’mstate) control). If the projection succeeds, we return the data (or error message) contained

in the state; otherwise, we return one of two special error messages indicating that the projection

failed due to absence of data (i.e., presence of ⊥) in one of the relevant fields.

For convenience, we also define a function payload, that gives the remaining fields of a

(’full, ’mstate) control that are not relevant to the GAZELLE control-flow interpreter

(i.e., are exclusively the domain of the language-component step semantics):

definition payload :: "(’full, ’mstate) control ⇒ ’mstate" where
"payload c =

(case c of
(_, _, m) ⇒ m)"

Next, we define an execution step for GAZELLE:

definition sem_step ::
"(’syn, ’mstate) semc ⇒
(’syn, ’mstate) control ⇒
(’syn, ’mstate) control orerror" where

"sem_step gs m =
(case cont m of

Inr msg ⇒ Inr msg
| Inl [] ⇒ Inr (STR ’’Halted’’)
| Inl ((G x l)#tt) ⇒ Inl (gs x m))"

A single step of GAZELLE consists of extracting the control-flow data from the provided

state. If that succeeds, we take the label from the first element of the list of continuations and use

it as the syntax argument for the instruction-language semantics (if the list is empty, we are done

executing). We then return the result of running the instruction-language semantics.

2.3.2.2 Multi-Step GAZELLE Interpreters

We give three definitions of multi-step execution in GAZELLE. The first is an interpreter,

convenient for executing programs (and allowing us to make the case that we have truly defined an

executable semantics). The latter two are predicates giving a propositional account of GAZELLE

63

execution. The predicates are more useful for reasoning and establishing proof rules about

GAZELLE execution. We prove suitable notions of equivalence relating all four semantics; these

proofs give us the flexibility to use whichever is most suitable for a given purpose without

worrying about potential discrepancies between these definitions.

2.3.2.2.1 Executable Interpreter The GAZELLE interpreter, sem run, takes a natural- num-

ber parameter (fuel) bounding the number of steps the interpreter takes before halting. This is

a standard technique [PAdAG+21a, ch.14] from the theorem-proving literature, allowing us to

express (potentially nonterminating, hence nontotal) interpreters as total functions from inputs to

outputs. Its definition was given in figure 2.7.

If sem run runs out of fuel before the program being run has halted, it simply returns the

current state of the program at the point where the fuel ran out.

2.3.2.2.2 Propositional Semantics We begin by defining a propositional notion of sem step:

inductive sem_step_p ::
"(’syn, ’mstate) semc ⇒ (’syn, ’mstate) control ⇒
(’syn, ’mstate) control ⇒ bool"
where

"
∧

gs m x l tt .
cont m = Inl ((G x l)#tt) =⇒
sem_step_p gs m (gs x m)"

We show that this is equivalent to sem step for execution steps that do not produce an

error:

lemma sem_step_p_eq :
"(sem_step_p gs m m’) = (sem_step gs m = Inl m’) "

With our propositional step construct, we can now describe multi-step execution propo-

sitionally. Our first semantics for multi-step execution is the reflexive-transitive closure of the

propositional step relation:

64

definition sem_exec_p ::
"(’syn, ’mstate) semc ⇒ (’syn, ’mstate) control ⇒
(’syn, ’mstate) control ⇒ bool" where

"sem_exec_p gs ≡
(rtranclp (sem_step_p gs))"

rtranclp is the reflexive-transitive closure operator for predicates that comes with

ISABELLE’s standard library. sem exec p has the advantage of simplicity (especially in that it

directly captures the intuition that multi-step execution is simply chaining together zero or more

steps of execution), but it has the disadvantage of not tracking the number of steps taken. This

makes it more difficult to relate directly to the interpreter we just defined, as well as creating

friction when attempting to formalize the step-indexed Hoare logic we later define in section 4.4.

Therefore, we define the following alternate predicate that takes an explicit step count:

inductive sem_exec_c_p ::
"(’syn, ’mstate) semc ⇒
(’syn, ’mstate) control ⇒ nat ⇒
(’syn, ’mstate) control ⇒ bool"
for gs :: "(’syn, ’mstate) semc"
where

Excp_0 :"sem_exec_c_p gs m 0 m"
| Excp_Suc :

"sem_step_p gs m1 m2 =⇒
sem_exec_c_p gs m2 n m3 =⇒
sem_exec_c_p gs m1 (Suc n) m3"

We show that sem exec p and sem exec c p are equivalent in the following sense:

lemma exec_c_p_imp_exec_p :
assumes H : "sem_exec_c_p gs m n m’"
shows "sem_exec_p gs m m’" using H

lemma exec_p_imp_exec_c_p :
assumes H : "sem_exec_p gs m m’"
shows "∃ n . sem_exec_c_p gs m n m’" using H

That is, if sem exec c p says that we can get from m to m’ for any n, then sem exec p

will also agree we can get from m to m’. Conversely, if sem exec p holds for m and m’, then we

can get from m to m’ using sem exec c p in n steps, for some value of n.

65

Finally, we relate the sem run interpreter to sem exec c p (and, hence, to sem exec p

due to the lemmas just described).
lemma sem_exec_c_p_run:

assumes "sem_exec_c_p gs m n m’"
assumes "cont m’ = Inl l"
shows "sem_run gs n m = Inl m’"

lemma sem_exec_c_p_run’ :
assumes "sem_run gs n m = Inl m’"
shows "∃ nmin . nmin ≤ n ∧ sem_exec_c_p gs m nmin m’"

The first lemma states that if we can get from m to m’ in n steps, and the final state m’

does not correspond to a crash (that is, its continuation field is Inl of a continuation rather than

Inr of an error message), then sem run will also take us from m to m’ in the same number of

steps.

Conversely, if sem run executes from m to m’ in n steps, the for some smaller or equal

number n’ steps, sem exec c p can get us from m to m’ in n’ steps. (We need to relax the

statement to talk about n’ rather than n, since sem exec c p will stop executing early if the

program halts before fuel runs out).

2.4 Summary

This completes our description of the core GAZELLE system for specifying and composing

language syntax and semantics. In this chapter we have discussed the following:

• An information-ordering framework for precisely specifying the meaning of merged (single-

step, denotational) language semantics (section 2.2)

• A generalized syntax language gensyn enabling syntax trees to be constructed using an

arbitrary labeling set (section 2.3.1)

• A general, operational system for dealing with control-flow in multi-step GAZELLE pro-

grams (section 2.3.2)

66

In the next chapter (chapter 3), we will discuss the lifting system adapting language

developments not aware of the information ordering systems described earlier in this chapter

(specifically in section 2.2).

In the subsequent chapter (chapter 4), we will discuss GAZELLE’s Hoare logic, which

enables reasoning about multi-step programs while enabling reuse of properties proven on sub-

languages. We will then (in chapter 5) examine an extended case-study detailing a realistic use

of GAZELLE to built an imperative language out of small, self-contained parts via composition.

In the process, we will fully flesh out the relationship between merging and control-flow in

GAZELLE.

67

Chapter 3

Lifting: Using Partial Orders with Existing

Languages

Previously (in section 2.2), we’ve discussed our framework for merging state types and

semantics functions in GAZELLE. The framework as described thus far, though, does not meet

the goals of GAZELLE: namely, to enable reuse of language components, including “off the shelf”

reuse of existing language developments with no (or minimal) changes. In particular, in order

to be able to use notions the notions we’ve developed around merging of states, it is necessary

to be working with state types that implement one of the Mergeable family of typeclasses (see

section 2.2.2). Additionally, primitives such as pcomps (see section 2.2.4) require the languages

being composed to share the same state and syntax representations. In this section, we describe

a lifting framework that enables us to overcome these restrictions by adapting existing formal

developments, with the support of automation to make such adaptation as painless as possible.

68

3.1 The Lifting Abstraction

3.1.1 Lenses

In order to define a suitable abstraction for adapting existing functions to work with

GAZELLE’s ordered state types, we draw inspiration here from existing work on lenses including

[FGM+05] and [PGW17], which capture the notion of a container with contents that can be “put

in” (i.e., updated) or taken out. A lens defines two primitive operations over two types, ’a (the

“contents”) and ’b (the “container”).

We would like to use a typeclass to express these operations and specifications, but this is

not possible in ISABELLE due to the restriction that typeclasses cannot have more than one type

parameter. Instead, we use a locale [Bal], a construct in ISABELLE that is similar to a typeclass,

1 but does not provide inference. Locales still allow us to package together a set of primitive

operations and axioms about them. As an ISABELLE locale, the definition of the lens abstraction

looks like the following:

locale lens =
fixes get :: "’b ⇒ ’a"
fixes put :: "’a ⇒ ’b ⇒ ’b"

locale lens_valid = lens +
assumes get_put :
"
∧

(a :: ’a) (b :: ’b) . get (put a b) = a"
assumes put_get :
"
∧

(b :: ’b) . put (get b) b = b"
assumes put_put :
"
∧

(a1 :: ’a) (a2 :: ’a) (b :: ’b) .
put a2 (put a1 b) = put a2 b"

The first law, get put, states that updating a container with its current contents leaves

the container unchanged. The second law, put get, states that, after updating the contents of a

container, the result of projecting out the contents will equal what was put in. These two laws

define what we call weak lenses. The third law put put, holds only for proper or strong lenses,
1indeed, Isabelle’s typeclasses are implemented as locales “under the hood”; see [Haf21]

69

and states that updating the contents of a container multiple times has the same result as applying

only the final update.

A lens-like abstraction is useful to us, because we can use it to “wrap” functions defined

on data inside the container to get new functions over the container type, without modifying the

implementation of the function itself. For instance, with this lens abstraction, we might write:

definition (in lens)
lens_lift :: "(’syn ⇒ ’a ⇒ ’a) ⇒ (’syn ⇒ ’b ⇒ ’b)" where

"lens_lift f syn st =
(put (f syn (get st)) st)"

That is, we project (get) out the contents of the full state type to obtain a sub-state of a

type that f can operate on, and then put that result back into the initial state to get a new, updated

state with f “mapped” over it (in the sense of mapping a functor). In fact, it should be noted that

in this example we could get away with using a functor - that is an abstraction providing only a

fmap operator equivalent to lens lift - it ends up being useful to have the additional structure

provided by a lens-like abstraction, especially when we begin adapting this abstraction to work

with the ordered datatypes we defined in section 2.2.2.

3.1.2 A Lens-Inspired Lifter Abstraction

The lens abstraction, as just described, is not quite appropriate for our use in GAZELLE.

One problem is that the get put law requires that updating a container with its current contents

will leave the container unchanged, but often we do not want this to be the case. For instance,

when updating the data in a priority type, we will often want to increment the priority, but this of

course means that updating a piece of priority data (’a md prio) with its contents will not be

equal to the original value as the priority will have changed. (put put has a similar problem.)

Another issue with get put is that it does not handle the case where the data inside the

container is not present - for instance, when trying to project out of a ’a option whose value is

None. The choice made in GAZELLE is to return a piece of bogus (see section 2.2.2.5) data in

70

such a case, but that means (ignoring the fact that we have yet to precisely define the lifter

instance for ’a option): get None = bogus,

put (get None) None = put bogus None = Some bogus,

so it is not the case that put (get x) x = x.

Nonetheless, we want to define an abstraction that intuitively captures the “spirit” of

lens, while allowing enough flexibility to permit the additional manipulation needed by GAZELLE’s

ordering mechanism. We begin by defining an analogue to weak lenses:
datatype (’syn, ’a, ’b) lifting =
LMake (LUpd : "(’syn ⇒ ’a ⇒ ’b ⇒ ’b)")

(LOut : "(’syn ⇒ ’b ⇒ ’a)")
(LBase : "(’syn ⇒ ’b)")

A lifting in GAZELLE consists of an update function LUpd (analogous to put above); a

projection function LOut (analogous to get above); and a “base” element LBase, used when

constructing new elements of the container type ’b. All of these are parameterized over a syntax

type ’syn, which enables their behavior (hence, the behavior of the lifting) to depend on the

specific command (i.e., piece of syntax) with which the lifting is being used. LMake is the name

of the function used to construct liftings.

LMap, which maps a function over a container type ’b using a lifting, provides an example

of how the syntax is passed through the lifting primitives when wrapping existing functions. It

implements a notion of mapping similar to a functor’s fmap [PGW17, pg.33] function. 2 We can

give the definition of LMap as:
definition LMap :: "(’syn, ’a, ’b) lifting ⇒

(’syn ⇒ ’a ⇒ ’a) ⇒
(’syn ⇒ ’b ⇒ ’b)"
where

"LMap l f s b =
LUpd l s (f s (LOut l s b)) b"

definition LNew :: "(’syn, ’a, ’b) lifting ⇒
’syn ⇒ ’a ⇒ ’b" where

"LNew l s a = LUpd l s a (LBase l s)"

2However, LMap is not guaranteed to obey the functor laws; we will see some “non-functorial” examples of
liftings shortly, in section 3.2.4.

71

Here are the axioms that define a valid (i.e. lawful) lifting:

locale lifting_sig =
fixes l :: "(’syn, ’a, ’b :: Pord_Weak) lifting"
fixes S :: "(’syn, ’b) valid_set"

locale lifting_putonly = lifting_sig +
assumes put_S : "

∧
s a b . LUpd l s a b ∈ S s"

locale lifting_valid_weak =
lifting_putonly +
assumes put_get : "

∧
a . LOut l s (LUpd l s a b) = a"

assumes get_put_weak :
"
∧

s b . b ∈ S s =⇒
b <[LUpd l s (LOut l s b) b"

We find it convenient to split the specification of valid liftings into several separate locales

that built on each other (similar to what was done for the Pord and Mergeable typeclasses

in section 2.2.2). The most basic specification is the law put S, which states that updating

a container using LUpd always leads to a valid result. “Valid” here is really a shorthand for

“has data that can be validly projected out, when syntax element s is used as a parameter for

the projection”. This is why S has type ’syn ⇒’b set rather than just ’b set: in general,

whether there are valid contents in the container might depend on, for instance, which field is

being accessed in a container with multiple fields.

The put get law is essentially the same as the law for lenses we just saw, but

get put weak is rather different. First, the law does not hold for all inputs, but only for ones that

are valid in the sense just described (in S s, where s is the syntax parameter to the update and

projection.) Just as important, we don’t require that the result of updating a container with its own

contents be equal to the original container (as in the lens laws above), but rather impose the weaker

requirement that it be informationally at least as large. This enables us to accommodate, for

instance, liftings that increment the priority field in a piece of ’a md prio data while updating

the contents.

Often - especially in the case of the md prio priority type - we care about a stronger

version of the get put law for liftings, which is as follows:

72

locale lifting_valid_ext = lifting_sig +
assumes get_put : "

∧
s a b . b <[LUpd l s a b"

locale lifting_valid = lifting_valid_weak + lifting_valid_ext

This law is (roughly) analogous to the put put law for lenses; it says that when we

update container b :: ’b with any data, regardless of the original contents of b, the result will

be informationally greater. We have further extensions versions of the lifting abstraction

corresponding to liftings that work sanely with the least element of types implementing the

typeclass Pordb, as well as with the ok S subsets of of types implementing Okay (section

2.2.2.5):

locale lifting_valid_base_ext = lifting_sig +
assumes base : "

∧
s . LBase l s = ⊥"

locale lifting_valid_ok_ext =
lifting_sig +
assumes ok_S_valid : "

∧
s . ok_S ⊆ S s"

assumes ok_S_put : "
∧

s a b . b ∈ ok_S =⇒ LUpd l s a b ∈ ok_S"

For Pordb types, we want LBase to coincide with the least element ⊥. For Okay types,

we require that, for any syntax s, the set of states valid according to the lifting (S s) is a superset

of the set of states valid according to the set ok S that comes with the Okay instance for that type.

We have a lifting extension corresponding to liftings that preserve suprema in a sense similar to

sups pres (see section 2.2.4). (Note that ‘ here is ISABELLE’s syntax for mapping a function

over a set).

locale lifting_presonly = lifting_sig +
assumes pres :

"
∧

v V supr f s .
v ∈ V =⇒
V ⊆ S s =⇒
is_sup V supr =⇒
supr ∈ S s =⇒
is_sup (LMap l f s ‘ V) (LMap l f s supr)"

Finally, we have another lifting valid extension that is used with liftings involving

types having the “pairwise-suprema” property described in section 2.2.4 (that is, implementing

73

the Pordps typeclass). For such liftings, we want to be sure that any supremum of three elements

in S s, all pairs of which have a supremum in S s, also have a supremum in S s:

locale lifting_valid_pairwise_ext =
fixes S :: "(’syn, ’b :: {Pordc, Pordps}) valid_set"
assumes pairwise_S :
"
∧

x1 x2 x3 s s12 s23 s13 s123 .
x1 ∈ S s =⇒
x2 ∈ S s =⇒
x3 ∈ S s =⇒
is_sup {x1, x2} s12 =⇒
s12 ∈ S s =⇒
is_sup {x2, x3} s23 =⇒
s23 ∈ S s =⇒
is_sup {x1, x3} s13 =⇒
s13 ∈ S s =⇒
is_sup {x1, x2, x3} s123 =⇒
s123 ∈ S s"

All of these extensions to the lifting abstraction are orthogonal in that all can be used

separately. ISABELLE’s locale system makes it easy to specify concatenations of existing locales.

When concatenating locales, we create a new locale that inherits all parameters and assumptions

from its parent locale(s). This enables us to easily define locales capturing exactly the properties

we desire, while maintaining a separation between the different orthogonal features. For instance,

we can define:

locale lifting_valid_ok_pres =
lifting_valid + lifting_valid_ok_ext + lifting_valid_pres_ext

There is one exception to the orthogonality of these extensions. The Okay extension and

Pordb extension have a particular interaction; namely, that the least element ⊥ cannot be a valid

state according to the lifting’s valid-set (S s, regardless of syntax element s). This interaction

that is captured with by the following locale:

locale lifting_valid_base_pres_ext = lifting_valid_pres_ext +
assumes bot_bad : "

∧
s . ⊥ /∈ S s"

Having introduced these notions of lifting, we are now ready to discuss how they are

implemented in GAZELLE for different ordered datatypes. These implementations (locale in-

74

stances) enable application of the machinery for operating on and merging partially-ordered states,

described in section 2.2.2, to existing functions not aware of this infrastructure, enabling such

functions to be adapted to work with richer or more complex state types than they were originally

defined on.

3.2 Lifter Instances

Next, we examine the instances GAZELLE uses to implement the lifting abstractions

just described.

3.2.1 Identity Lifting

We begin with a lifting that lifts from a type (which must already be equipped with an

ordering) into itself.

definition id_l ::
"(’x, ’a :: {Pord, Bogus}, ’a) lifting" where

"id_l =
LMake (λ s a a’ . a) (λ s a . a) (λ s . bogus)"

definition id_l_S :: "’x ⇒ ’a md_triv set" where
"id_l_S = (λ _ . UNIV)"

This definition, while simple, is worth unpacking because it can serve as a template for

understanding the more complex lifting definitions that follow. The first argument to LMake, the

update function LUpd, replaces the entire datum of type ’a with its data argument a (ignoring

the syntax argument s as well as the argument corresponding to the current data, a’). The

second argument to LMake, the projection function (LOut) simply returns the entire datum (again

ignoring the syntax argument). Finally, the third parameter to LMake (LBase), returns a bogus

value of type ’a. Because of the need to return an arbitrary yet computationally sensible bogus

value when implementing LBase, we require the Bogus typeclass constraint on the data type ’a.

75

We consider all data to be valid (have a valid projection) under the identity lifting; hence

the valid-set id l S x is simply the full set UNIV :: ’a md triv set (that is,

{ x :: ’a . True}) for any syntax element x.

3.2.2 Trivial Lifting

We continue with the trivial lifting, which lifts elements of type ’a into type

’a md triv (that is, a type isomorphic to ’a but implementing the Pord typeclass using a trivial

ordering - see section 2.2.3.1).

definition triv_l ::
"(’x, ’a :: Bogus, ’a md_triv) lifting" where

"triv_l =
LMake (λ s a _ . mdt a) (λ s b . (case b of (mdt b’) ⇒ b’))

(λ s . mdt bogus)"

definition triv_l_S :: "’x ⇒ ’a md_triv set" where
"triv_l_S = (λ _ . UNIV)"

This instance is straightforward: we use the constructor LMake to construct a lifting

instance that simply moves data into and out of the mdt constructor. The LBase (default element)

used by triv l returns bogus as a default element; for this reason, the data type being with

which triv l is being used needs to implement the Bogus typeclass. All data wrapped in

md triv are considered valid for the purposes of the lifting; hence, triv l S x is the full set

UNIV for any syntax element x, similar to id l.

triv l fulfills the axioms of lifting valid weak, as well as all the other locales

listed above, with the exception of lifting valid (that is, it fulfills the requirements of the

pairwise and pres locales, as well as the Okay locale if the underlying data type ’a implements

Okay). We cannot prove the axioms of lifting valid because successive updates may be

informationally incompatible. In order to implement these other instances, we will need to use

lifting instances for GAZELLE’s other wrapper types, in order to impose additional structure.

We discuss these next.

76

3.2.3 Option Lifting

Next, we have our implementation for lifting data into an option type. This lifting is

parameterized over another lifting: option l transforms a lifting from ’a to ’b into a lifting

from ’a to ’b option. In this sense, option l is really a lifting transformer rather than a

lifting in and of itself. This pattern of providing transformers that can be used to combine simpler

liftings into more complex ones will used throughout the remainder of this section, and plays a

key role in automatic inference of liftings (section 3.3).

definition option_l ::
"(’x, ’a, ’b) lifting ⇒ (’x, ’a, ’b option) lifting" where

"option_l t =
LMake (λ s a b .

(case b of
Some b’ ⇒ Some (LUpd t s a b’)
| None ⇒ Some (LUpd t s a (LBase t s))))

(λ s b . (case b of Some b’ ⇒ LOut t s b’
| None ⇒ LOut t s (LBase t s)))

(λ s . None)"

definition option_l_S ::
"(’s, ’b) valid_set ⇒ (’s, ’b option) valid_set" where

"option_l_S S s = (Some ‘ S s)"

If data is present, option l simply threads the lifting given as its parameter through the

Some constructor. The more interesting case is when data is not present (i.e., we are working

with None :: ’b option as a parameter to LUpd or LOut). In this case, we use the lifting

parameter’s LBase to come up with a default element and get around our lack of data. Of course,

the result of this will only be as useful as LBase of the wrapped lifting itself. For

option l, LBase is simply None.

Only elements corresponding to uses of the Some :: ’b option constructor are con-

sidered valid under option l. That is, unlike the previous liftings we discussed, we do not make

“get-put” guarantees (see section 3.1.1) when dealing with None data. For Some data, the data

must be valid under the lifting being wrapped; this explains the definition option l S.

77

option l implements all the lifting instances given above, provided the lifting being

wrapped in option l also implements those instances. Additionally, it is able to produce a

lifting satisfying lifting valid base ext even if the lifting it wraps does not. This is as one

would expect, given the role of the option type in both the lifting and ordering infrastructure of

GAZELLE; namely, inducing a base element in an ordered type that lacks one.

3.2.4 Priority Lifting

The priority lifting prio l plays an important role in GAZELLE’s lifting system, as it

allows us to transform liftings that are not aware of the existence of priorities into liftings that

operate on prioritized data. In the process of adding priority behavior to an existing lifting,

choices must be made about the specifics of this behavior. For this reason, we see some extra

parameters in prio l. Here is the definition:

definition prio_l ::
"(’x ⇒ nat) ⇒
(’x ⇒ nat ⇒ nat) ⇒
(’x, ’a, ’b) lifting⇒
(’x, ’a, ’b md_prio) lifting" where

"prio_l f0 f1 t =
LMake (λ s a b .

(case b of
mdp m b’ ⇒ mdp (f1 s m) (LUpd t s a b’)))

(λ s p . (case p of
mdp m b ⇒ LOut t s b))

(λ s . mdp (f0 s) (LBase t s))"

definition prio_l_S :: "(’x, ’b) valid_set ⇒
(’x, ’b md_prio) valid_set" where

"prio_l_S S s =
{ p . (case p of

mdp n x ⇒ x ∈ S s) }"

In this definition, ’x represents the syntax type. Unlike the liftings we saw previously,

prio l makes use of syntax in order to be able to modify the data’s priority based on syntax.

This ends up being useful when composing languages, since often an instruction in one language

78

corresponds to a “no-op” in another; in these cases, it is convenient to express the “no-op” effect

at a low priority so that its result can be overwritten by the other language’s result at a higher

priority. (We saw an example of something similar in section 2.2.1.3).

prio l takes, in order, the following arguments:

• A function f0 :: (’x ⇒nat), describing how to set the priority when constructing a

new piece of prioritized data (using LBase)

• A function f1 :: (’x ⇒nat ⇒nat), describing how to update the priority when up-

dating data (using LUpd)

• The lifting being adapted to work with a priority, of type (’x, ’a, ’b) lifting

prio l simply wraps LBase, LUpd, and LOut in an intuitive way - the operations of the

provided lifting are used on the data inside the ’b md prio, and the provided functions are used

to determine the priority of the output (with the ability to determine the priority based on syntax).

The validity of prio l is conditioned on the provided priority-updating functions f0 and

f1 being well-behaved (in addition to the standard requirement that the lifting being wrapped

be valid). In order to satisfy the axioms of lifting valid weak, we require the following

assumption:

locale prio_l_valid_weak’ =
fixes l :: "(’syn, ’a, ’b) lifting"
fixes f0 :: "’syn ⇒ nat"
fixes f1 :: "’syn ⇒ nat ⇒ nat"
assumes f1_nondecrease : "

∧
s p . p ≤ f1 s p"

We require that the priority not decrease when performing updates. Without this, we

would not be able to show that x <[LUpd s (LOut s x) x 3. We also require that the lifting

being wrapped by prio l itself satisfy lifting valid weak. If we assume, instead, that

3We could get away with a weaker assumption here, but in practice our usage of the priority type always conforms
to this law anyway, and using this version streamlines the proofs involved.

79

f1 strictly increases the priority (
∧
s p . p < f1 s p), we can do away with the assumption

of that the wrapped lifting satisfies the put-get law (we still require it to fulfill get-put, however.)

locale prio_l_valid_ext_strong’ =
fixes l :: "(’syn, ’a, (’b :: Pord_Weak)) lifting"
fixes S :: "’syn ⇒ ’b set"
fixes f0 :: "’syn ⇒ nat"
fixes f1 :: "’syn ⇒ nat ⇒ nat"
assumes f1_increase : "

∧
s p . p < f1 s p"

The other instances do not require additional assumptions, beyond the assumption that the

lifting being wrapped satisfies the stronger properties we are trying to show on prio l. Some of

the proofs involved, however, are rather nontrivial; the motivated reader can refer to the formal

development (in Gazelle/Lifter/Instances/Lift Prio) for details.

3.2.5 Tuple Liftings

Moving on, we have two liftings corresponding to the components of a tuple type

(fst and snd). We only discuss fst l (lifting into the first component) here, as snd l is

symmetrical. First, we give the definition:

definition fst_l ::
"(’x, ’a, ’b1 :: Pord_Weak) lifting ⇒
(’x, ’a, ’b1 * (’b2 :: Pord_Weakb)) lifting" where

"fst_l t =
LMake (λ s a b . (case b of (b1, b2) ⇒ (LUpd t s a b1, b2)))

(λ s x . (LOut t s (fst x)))
(λ s . (LBase t s, ⊥))"

definition fst_l_S :: "(’x, ’b1 :: Pord_Weak) valid_set ⇒ (’x, (’b1

* ’b2 :: Pord_Weakb)) valid_set" where
"fst_l_S S s =

{ b . case b of (b1, _) ⇒ (b1 ∈ S s) }"

fst l updates the first component of a tuple without touching the second. We require the

other (second) component of the tuple to have a least element (be of type Pord weakb), so that

we can construct a base element (LBase, the third parameter to LMake above) that guarantees

the second element does not have any data in it. Likewise, if we assume the second component

80

implements Pord weakb, we are able to implement each instance given in section 3.1.2 as long

as the first component implements that instance.

fst l and snd l do not give us the ability to combine liftings on separate components of

tuples into a single lifting - these liftings only allow us to “ignore” the other element in the pair.

The next lifting we will explore, merge l enables this, among other useful constructs.

3.2.6 Merge Lifting and Orthogonality

merge l handles cases where we wish to combine two liftings, both of which target the

same datatype, into a single lifting from a pair of elements representing the inner data of the

liftings being combined. It is defined as follows:

definition merge_l ::
"(’x, ’a1, ’b) lifting ⇒
(’x, ’a2, ’b) lifting ⇒
(’x, ’a1 * ’a2, ’b) lifting" where

"merge_l t1 t2 =
LMake

(λ s a b .
(case a of (a1, a2) ⇒

LUpd t1 s a1 (LUpd t2 s a2 b)))
(λ s b . (LOut t1 s b, LOut t2 s b))
(λ s . LBase t1 s)"

definition merge_l_S ::
"(’x, ’b :: Pord_Weak) valid_set ⇒
(’x, ’b :: Pord_Weak) valid_set ⇒
(’x, ’b) valid_set" where

"merge_l_S S1 S2 s = S1 s ∩ S2 s"

In a bit more detail: LUpd is defined as first applying one lifting’s update, then the other

(arbitrarily we choose to apply t2 first, then t1); LOut simply pairs the results of LOut on the

two liftings being merged; and LBase is chosen to be the base element of lifting t1 (we could

have just as easily chosen t2).

Naturally, it is not reasonable to expect that arbitrary pairs of liftings would be able to

be merged in this way. In order to characterize when merge l t1 t2 is well defined for some

81

particular t1 and t2, we define a notion we call orthogonality, which captures the intuition that

the two liftings’ updates commute with each other (and that their base elements are equal).

locale l_ortho’ =
fixes l1 :: "(’a, ’b1, ’c :: Pord) lifting"
fixes S1 :: "’a ⇒ ’c set"
fixes l2 :: "(’a, ’b2, ’c :: Pord) lifting"
fixes S2 :: "’a ⇒ ’c set"

locale l_ortho =
l_ortho’ +

assumes eq_base : "
∧

s . LBase l1 s = LBase l2 s"
assumes compat : "

∧
s a1 a2 . LUpd l1 s a1 (LUpd l2 s a2 b) =

LUpd l2 s a2 (LUpd l1 s a1 b)"
assumes put1_get2 : "

∧
s a1 . LOut l2 s (LUpd l1 s a1 b) = LOut

l2 s b"
assumes put2_get1 : "

∧
s a2 . LOut l1 s (LUpd l2 s a2 b) = LOut

l1 s b"
assumes put1_S2 : "

∧
s a1 . b ∈ S2 s =⇒ LUpd l1 s a1 b ∈ S2

s"
assumes put2_S1 : "

∧
s a2 . b ∈ S1 s =⇒ LUpd l2 s a2 b ∈ S1

s"

In words, we require the following in order for liftings l1 and l2 (with valid-sets S1 and

S2) to have a well-defined (i.e., valid as a lifting) composition using merge l:

• The base elements are equal (for all syntax elements)

• The two update operations commute

• Updating using l1 does not change the contents projected out by l2 (and vice versa)

• Elements in S2 s remain in S2 s after applying l1’s update, for all syntax elements

s. (And vice versa).

The intuition behind these restrictions - which are admittedly quite strong - is that they

capture the behavior of liftings corresponding to independent elements of a tuple (that is, with

no overlapping or shared state). This is our primary use of l ortho, and it is abstract enough

82

to enable us to express complex liftings (e.g. permutations and reassociations) on tuples by

composition. merge l satisfies lifting valid weak if both liftings (l1 and l2) individually

satisfy lifting valid weak, and l1 and l2 are orthogonal. Likewise, under the assumption of

orthogonality, merge l of l1 and l2 satisfies the assumptions of each of the other lifting-validity

locales defined in section 3.1.2, as long as l1 and l2 in turn both satisfy that locale’s assumptions.

It is reasonable to ask why we don’t use the bsup operator to define LUpd for

merge l (that is, replace the first parameter to LMake with

(λs a b . (case a of (a1, a2) ⇒[ˆLUpd t1 s a1, LUpd t2 s a2ˆ])). The an-

swer is that this version of merge l, while more general (in the sense that it allows a larger

number of liftings to be merged), in turn requires a stronger set of properties to hold on the

data types and liftings involved in the merge. Indeed, it was unclear whether such a property

allowing for this formulation of merge l to work while still being lax enough to apply to the

other lifting and data-wrapper constructs used by GAZELLE could be found. Additionally, this

stronger version of merge l is not particularly useful, as most of the cases in which we want to

apply merge liftings (e.g., composing the first and second components of a tuple) fit nicely into

the formulation given here.

We need to instantiate l ortho for the liftings that we hope to merge using merge l. We

prove the following instances:

• option l l1 and option l l2 are orthogonal if l1 and l2 are both valid and are

orthogonal.

• fst l l1 and fst l l2 are orthogonal if l1 and l2 are both valid and are orthogonal.

• snd l l1 and snd l l2 are orthogonal if l1 and l2 are both valid and are orthogonal.

• fst l l1 and snd l l2 are orthogonal if l1 and l2 both satisfy

lifting valid base

83

• If l1, l2, and l3 are all (pairwise) orthogonal, then merge l l1 l2 is orthogonal to

l3 (this can be seen as a kind of associativity law governing merge l).

Because orthogonality as we’ve defined it is commutative, we also have versions of all

of these instances with the order of the arguments flipped (e.g. snd l l1 and fst l l2 are

orthogonal).

3.2.7 Discussion

In this section, we have covered the abstractions used to construct the lifting functions

used to adapt program semantics to work with GAZELLE’s state types and their built-in orderings.

For further details on the locales and instances corresponding to the GAZELLE’s lifter subsystem,

the interested reader can refer to the Gazelle/Lifter directory in the formal development.

As presented here, the system is not very user-friendly. Because we are using locales

and do not have access to automated inference, we must instead rely on the user to construct the

instance they want to use by hand (or through some other means). One advantage to this lack of

inference is that we are no longer restricted to only being able to have a single instance at each

type, since we can rely on the user to resolve any ambiguity by giving an instance explicitly).

In GAZELLE we remediate this problem by providing a semi-automated approach to inferring

lifting instances; we describe this automation next.

3.3 Automating Lifter Instance Generation

3.3.1 The Automated Lifting Generator - An Example

To understand the goal of automated lifter instance generation, it will help to look at an

example. Suppose we have liftings

l1 :: (’x, ’p1, ’q1) lifting, l2 :: (’x, ’p2, ’q2) lifting, and

84

Combined State: (B, A)

B A

C Rest of state...

Sub-Language State: A B C

Figure 3.1: Visual depiction of lifting example (arrows represent injection of data)

l3 :: (’x, ’p3, ’q3) lifting. Suppose further that we start out with a language seman-

tics that operates over states (’p1 * (’p2 * ’p3)), and we want to lift this semantics to a

state of type ((’q2 * ’q1) * (’q3 * ’q4)). That is, we want to transform the ’p1, ’p2,

’p3 components using the liftings l1, l2, l3; at the same time, we want to commute the first

two components, reassociate the components, and end up with a larger state containing a type ’q4

not present in the input (which will be ignored by the lifting we want to generate). This example

may seem a bit contrived, but it is a reasonable representation of the kinds of liftings that will be

required by our case study on the IMP language (see chapter 5). Additionally, it showcases the

main kinds of structural transformations we need our liftings to perform. A schematic depiction

of this lifting is shown in figure 3.1.

We could write this lifting by hand, using the constructs defined in section 3.2. Specifying

liftings this way is inconvenient, however; such liftings are difficult both to read and to write.

Here is what the manual construction of this lifting looks like: 4.

definition my_lift_manual :: "
(’x, ’a1 :: Bogus, ’b1 :: Mergeableb) lifting ⇒
(’x, ’a2 :: Bogus, ’b2 :: Mergeableb) lifting ⇒
(’x, ’a3 :: Bogus, ’b3 :: Mergeableb) lifting ⇒
(’x, (’a1 * (’a2 * ’a3)),

((’b2 * ’b1) * (’b3 * (’b4 :: Mergeableb)))) lifting" where
"my_lift_manual l1 l2 l3 =

4In fact, without merge l, this would look far worse, since we would need liftings to explicitly handle the
commutation and association of the products involved; relying on the Mergeability of the data frees us from having
to work through such low-level details: we can determine each component’s lifting individually, then merge them all
together.

85

(merge_l (fst_l (snd_l l1))
(merge_l (fst_l (fst_l l2))

(snd_l (fst_l l3))))"

Making use of GAZELLE’s automation for lifter generation, we can implement this same

example in a way that more directly captures the intuition expressed in figure 3.1. Using this

automation, we can express the lifting in terms of which named fields in the input datatype map

to which named fields in the output datatype. This looks like the following:

definition my_lift :: "
(’x, ’a1 :: Bogus, ’b1 :: Mergeableb) lifting ⇒
(’x, ’a2 :: Bogus, ’b2 :: Mergeableb) lifting ⇒
(’x, ’a3 :: Bogus, ’b3 :: Mergeableb) lifting ⇒
(’x, (’a1 * (’a2 * ’a3)),

((’b2 * ’b1) * (’b3 * (’b4 :: Mergeableb)))) lifting" where
"my_lift l1 l2 l3 =
schem_lift (SP NA (SP NB NC))
(SP (SP (SINJ l2 NB) (SINJ l1 NA)) (SP (SINJ l3 NC) NX))"

We remark that the Bogus and Mergeableb annotations are only required because of

how general our setting is. If we were working with more concrete liftings or types already

satisfying these annotations, they would not be necessary.

We use specialized types to describe the structure of the state being lifted from (the

first argument to schem lift) as well as the structure of the state being lifted into (the second

argument). We call these structural descriptions schemas. The first argument (“left-hand side”)

schema is essentially an assignment of names to the different fields of the tuple. In this example,

we are referring to the first component of the tuple as NA, the second as NB, and the third as NC.

We require the user to assign names to all fields of the datatype being lifted from using such a

descriptor (intuitively, we need to cover all the data in the type being lifted from in order to satisfy

the lifting laws given in section 3.1.2). This is not as cumbersome as it might seem: since

(’a * ’b * ’c) is the same as (’a * (’b * ’c)), we could assign a single name to the

’b * ’c component if we didn’t care about treating its components separately.

86

The second (“right-hand side”) argument to schem lift is more interesting. Here, we

specify the structure of the type being lifted into, but we have some additional descriptors that

describe how exactly to perform the lifting: in this case, we use SINJ - “injection” - to use

our existing liftings l1, l2, l3 with the appropriate components. We also have the ability to

specify components left untouched by the lifting; by convention these are referred to using the

name NX5.

When we compute my lift, we end up with the same result as when we wrote the lifting

by hand; however, using the automated generator leads to code that more directly captures the

intuition behind the desired lifting, and thus is easier to read, write, and modify. 6

3.3.2 Ad-Hoc Polymorphism in ISABELLE

The automated lifting generation used by GAZELLE relies on a novel combination of

typeclasses and ad-hoc polymorphism that allows us to work around the relative weakness of

ISABELLE’s typeclass system and (ab)use ISABELLE’s built-in typeclass instance inference to

construct the lifting we want. By ad-hoc polymorphism, we refer to a specific facility within

ISABELLE that enables the declaration of polymorphic constants, which are allowed to have

different definitions at different types.

For instance, we can define a constant tyname that returns a string containing the name

of a type. To do so, we use the ’a itself type, which can be thought of as a type isomorphic

to unit (i.e., with a single element), that also carries around the type ’a (at type-checking time,

as types in ISABELLE are erased at runtime). We can construct an element of ’a itself (for

any ’a) with the constructor TYPE(’a). Here are some basic instances:

consts tyname :: "’a itself ⇒ char list"

5In fact, any other name would do; however, it is convenient to have a special name that can never match an
element from the left-hand side, and we use NX for this purpose

6Of course, this is a subjective judgment; in our experience working with constructing an IMP-like language out
of smaller components (chapter 5), the ability to work with liftings in this way was invaluable.

87

definition tyn_unit :: "unit itself ⇒ char list" where
"tyn_unit _ = ’’UNIT’’"

definition tyn_nat :: "nat itself ⇒ char list" where
"tyn_nat _ = ’’NAT’’"

adhoc overloading tyname
tyn_unit
tyn_nat

value "tyname (TYPE (nat))"
— Result:

’’NAT’’

We now have the desired polymorphic constant (of course, it only supports types we

explicitly give overloading instances for; application to other data types would lead to a type

error). Things get more interesting, however, if we decide we also want to print out datatypes

with type parameters, such as option and tuple types. Suppose, say, we want the result of

tyname (TYPE(nat option)) to be the string “NAT OPTION”. The problem is that, for such

definitions, we need to invoke the constant we are currently defining, in order to print the datatype

corresponding to the data inside the option or tuple. Naively, we might try to write:

definition tyn_option_bad ::
"(’a option itself ⇒ char list)" where

"tyn_option_bad _ =
(tyname (TYPE(’a))) @ ’’ OPTION’’"

adhoc overloading tyname
tyn_unit
tyn_nat
tyn_option_bad

— The following produces a type error:
— value [nbe] ”tyname (TYPE (unit option))”

(@ here is list concatenation). Everything seems to be working until the last (commented)

line, where we try to calculate the value of tyname for the unit option type. If we uncomment

88

this line, we get a type error stating that the instances of tyname are ambiguous. The problem

is that the occurrence of tyname inside the definition of tyname option bad does not have

enough type information to unambiguously choose an instance of tyname; due to the way

ISABELLE resolves polymorphic constants this ambiguity never goes away, leading to problems

when we try to execute tyname.

Fortunately, we can solve this problem by using a standard trick (seen for instance in

[Sch88, pg.97]) for encoding recursive functions: we add a parameter corresponding to the

function calling itself recursively, and use this parameter instead of explicit recursion. Then, we

“tie the knot” later, plugging the polymorphic constant in for this new parameter when listing the

instances. Concretely:
definition tyn_option ::
"(’a itself ⇒ char list) ⇒ (’a option itself ⇒ char list)"

where
"tyn_option t _ =

(t (TYPE(’a))) @ ’’ OPTION’’"

adhoc overloading tyname
tyn_unit
tyn_nat
"tyn_option tyname"

value [nbe] "tyname (TYPE (unit option))"
— Result:

’’UNIT OPTION’’

value [nbe] "tyname (TYPE (unit option option))"
— Result:

’’UNIT OPTION OPTION’’

By “opening up” the recursive occurrence of the polymorphic constant in this way, we

ensure that ISABELLE does not attempt to resolve the recursive occurrence of the constant until

there is enough type information to do so. This enables us to get the desired result. This trick

works for deeper levels of recursion, as can be seen with the second value line in the snippet

above.

89

Continuing with this running example, suppose we want to print a “default” result for

types that don’t have an overloading instance (say, the string “UHOH”). Unfortunately, there is

no way to do this without constructing overlapping instances. The naive approach - which leads

to resolution errors - might look like this:

definition tyn_noname_bad :: "’a itself ⇒ char list" where
"tyn_noname_bad _ = ’’UHOH’’"

adhoc overloading tyname
tyn_unit
tyn_nat
tyn_noname_bad
"tyn_option tyname"

— The following produces a type error:
— value [nbe] ”tyname (TYPE (nat))”

If, however, we are willing to construct a typeclass capturing all the types that don’t have

an overloading instance, we can do something almost as good:

class noname

instantiation bool :: noname
begin
instance proof qed
end

instantiation char :: noname
begin
instance proof qed
end

definition tyn_noname :: "(’a :: noname) itself ⇒ char list" where
"tyn_noname _ = ’’UHOH’’"

adhoc overloading tyname
tyn_unit
tyn_nat
tyn_noname
"tyn_option tyname"

value [nbe] "tyname(TYPE (bool))"
— Result:

90

’’UHOH’’

value [nbe] "tyname(TYPE (bool option))"
— Result:

’’UHOH OPTION’’

While this is admittedly a rather contrived example, it illustrates another trick we make

use of in the lifting generator: typeclass constraints factor into ad-hoc polymorphic constant

resolution, and can be used to disambiguate what would otherwise be ambiguous instances.

3.3.3 Typeclasses for Lifter Inference

Our goal is to enable the definition of schem lift, such that we can infer liftings from

schemas of the sort we saw in section 3.3.1. In order to do this, we will define schem lift as a

polymorphic constant. We will use a combination of ad-hoc overloading and typeclass constraints

similar to what we saw in section 3.3.2 in order to guide ISABELLE’s built-in typeclass and

instance inference to find the desired result, while avoiding ambiguous or overlapping instances.

To do this, we first need a number of type-definitions corresponding to schema-descriptor

elements, as well as several typeclasses used to guide the generation process. It should be noted

that these types and typeclasses are relatively trivial in nature; their use, as we will see shortly,

is to help constrain the search performed by the typesystem when generating a lifter instance.

Because we want to use typeclass inference to implement our lifting-instance generator, we need

to make sure all the relevant information is accessible to the type-inference system.

We define the schem typeclass, which will be used to capture types corresponding to

schemas. The typeclass has no data or properties attached to it; we simply use it to label datatypes

used in this inference process. We also define a typeclass basename (also without data or

properties) used to capture types corresponding to names.

class schem
class basename

91

Now we choose a fixed, finite set of names that will be used by the system (in GAZELLE

currently, these correspond to the letters A through K; as we’ll see later, this can be modified

easily.) For each letter (using A as an example), we define:

• a datatype nA, consisting of a single element NA (i.e., isomorphic to unit)

• a typeclass n A, containing only the type nA

• a typeclass hasntA, containing schema types that do not have the name NA in them

• an instantiation nA :: hasntZ for all other names Z in the set chosen above.

• an instantiation nA :: schem

We also declare a special name, nX, in exactly the same way as above (we assume X is

not in the set of names we chose), with one exception: nX does not have a corresponding

hasntX typeclass, but is still is a member of all hasntZ typeclasses for Z in the set of names.

We use this name as a sort of wildcard capturing parts of terms we don’t care about, as we will

see shortly.

In code, this looks like the following (assuming our chosen names are nA and nB):

datatype nA =
NA

datatype nB =
NB

class n_A
class hasntA

class n_B
class hasntB

instantiation nA :: schem begin
instance proof qed
end

instantiation nB :: schem begin
instance proof qed
end

92

instantiation nA :: basename begin
instance proof qed
end

instantiation nB :: basename begin
instance proof qed
end
instantiation nA :: hasntB begin
instance proof qed
end
instantiation nB :: hasntA begin
instance proof qed
end

We define several datatypes capturing the structure of our schema:
datatype (’a, ’b) sprod =

SP "’a" "’b"

datatype (’x, ’a) sprio =
SPR "(’x => nat)" "(’x => nat => nat)" "’a"

datatype ’a soption =
SO "’a"

datatype ’a sid =
SID "’a"

datatype (’x, ’da, ’db, ’a) sinject =
SINJ "(’x, ’da, ’db) lifting" "’a"

datatype (’a, ’b) smerge =
SM "’a" "’b"

sprod corresponds to product types (both on the left-hand and right-hand side of the

schema-inference constant schem lift); sprio corresponds to priority liftings on the right-

hand side; sid corresponds to usages of the identity lifting (by default, names correspond to

usages of the trivial lifting triv l); sinject corresponds to injecting existing liftings; and

smerge corresponds to right-hand side usages of the merge-lifting.

Each of these has a schema instance hand a hasntZ instance for each name Z. For

example, for sprod and soption, and for name nA we have:

93

instantiation soption :: (schem) schem begin
instance proof qed
end

instantiation soption :: (hasntA) hasntA begin
instance proof qed
end

instantiation sprod :: (schem, schem) schem begin
instance proof qed
end

instantiation sprod :: (hasntA, hasntA) hasntA begin
instance proof qed
end

The sprod type illustrates the reasoning behind why we bother defining all of the

hasntZ typeclasses. The intuition is that what we’d really like to have, for each name Z, is a

typeclass hasZ, capturing precisely those types which contain the name Z. Unfortunately, we

cannot define such a typeclass in ISABELLE. To see why, consider the following two instances:

instantiation sprod :: (hasZ, _) hasZ begin
instance proof qed end

instantiation sprod :: (_, hasZ) hasZ begin
instance proof qed end

ISABELLE will accept one or the other of these instance definitions, but not both, since

they overlap. Another way to look at this is that ISABELLE’s typeclass inference (at least, the

fragment we use here) can be implemented without backtracking, but in order for these instances

to be useful, backtracking would be necessary (first attempt to infer a hasZ instance for the first

tuple component; then, if that fails, attempt to infer for the second one).

We get around this problem by fixing a set of names as defined above. This then enables

us to construct hasntZ typeclasses for each Z, which now means we can turn the disjunctive

requirement that one of the tuple components has a Z to prove the product has a Z (which requires

backtracking) into a conjunctive requirement that all tuple components not have a Z in order to

prove that the product doesn’t have a Z. In other words, we simply apply de Morgan’s Law:

94

¬(A ∨B) = (¬A) ∧(¬B). As we will see, having a typeclass capturing the negation is suffi-

cient for our purposes.

3.3.4 Automated Lifting Generation Internals - The schem lift Poly-

morphic Constant

The typeclasses just described are used to constrain the (type-driven) inference of instances

for a polymorphic constant, schem lift. We now discuss the instances for schem lift, and

how their inference makes use of these typeclasses to construct our desired liftings. There are

five primary cases we need to handle here: bare names on the right-hand side, unary operators on

the right-hand side, products on the right-hand side, explicit merges on the right-hand side, and

products on the left-hand side. We cover these five cases, then describe how they all fit together.

We define a type alias (’s1, ’s2, ’x, ’a, ’b) schem lift to make the types of

the recursive instances more legible:

type synonym (’s1, ’s2, ’x, ’a, ’b) schem_lift =
"(’s1 ⇒ ’s2 ⇒ (’x, ’a, ’b) lifting)"

consts schem_lift ::
"(’s1 :: schem, ’s2 :: schem, ’x, ’a, ’b) schem_lift"

The type parameters to the schem lift type are as follows:

• ’s1 is the left-hand side schema (representing the type being lifted from).

• ’s2 is the right-hand side schema (representing the type being lifted into).

• ’x is the syntax type used in the generated lifting.

• ’a is the type the generated lifting will lift from.

• ’b is the type the generated lifting will lift into.

95

To handle bare names on the right-hand side, we for each name define an instance that

emits the trivial lifting. For NA, we have:

definition schem_lift_base_trivA ::
"(’n :: n_A, ’n, ’x, ’a :: Bogus, ’a md_triv) schem_lift" where

"schem_lift_base_trivA _ _ =
triv_l"

The interesting part here are the type constraints: we require the left- and right- hand

schema to be the same type, which must implement n A (i.e., both must be the type NA). Given

such a schema, we construct a lifting from ’a into ’a md triv.

Next, to handle unary operators on the right-hand side, we use option l as an example.

Its instance looks like the following:

definition schem_lift_option_recR ::
"(’n, ’ls, ’x, ’a, ’b2 :: Pord) schem_lift ⇒
(’n, ’ls soption, ’x, ’a, ’b2 option) schem_lift" where

"schem_lift_option_recR rec n s =
(case s of

SO s’ ⇒
option_l (rec n s’))"

The recR in the name reflects the fact that this instance recurses over the right-hand

schema. ’n is the left-hand side schema, while ’ls is the schema parameter to SO (the option

schema). The idea is that if we can infer (recursively) a lifting from type ’a to type ’b, with

’n on the left-hand side, then we can infer a lifting from ’a to ’b2 option by emitting

option l applied to the inferred lifting. This uses the same recursive-instance trick discussed

above in section 3.3.2.

The next important case we deal with is products (tuples) on the right-hand side. This

is where our hasntZ typeclasses come in handy. For each name (taking A as an example), we

define two instances corresponding respectively to injecting into the left and right side of the

product:

definition schem_lift_prod_recR_A_left ::
"(’n, ’ls, ’x, ’a, ’b2 :: Pord) schem_lift ⇒

96

(’n :: n_A, (’ls, ’rs :: hasntA) sprod,
’x, ’a, ’b2 * (’rest :: Pordb)) schem_lift" where

"schem_lift_prod_recR_A_left rec n s =
(case s of

SP ls rs ⇒
fst_l (rec n ls))"

definition schem_lift_prod_recR_A_right ::
"(’n, ’rs, ’x, ’a, ’b2 :: Pord) schem_lift ⇒
(’n :: n_A, (’ls :: hasntA, ’rs) sprod,
’x, ’a, (’rest :: Pordb) * (’b2)) schem_lift" where

"schem_lift_prod_recR_A_right rec n s =
(case s of

SP ls rs ⇒
snd_l (rec n rs))"

Each of these is quite similar to the instance for option, except for the type constraints.

With these instances, we require that either the first component of the tuple does not have an

A anywhere in it (with schem lift prod recR A right); or the second component does not

have an A. By constructing these instances in this way, we make certain that these instances will

not overlap and cause inference errors.

In order for these instances to work, we need to be able to recurse on the left-hand side

in such a way that the LHS schema has been reduced down to a single name before we use the

prod recR instances on the RHS. This is done using the schem lift recL instance, which

can be seen as the entry point for the entire inference procedure (in the typical case where the

LHS is a product representing compound data 7).

definition schem_lift_recL ::
"(’s1l, ’s2, ’x, ’a1l, ’b2) schem_lift ⇒
(’s1r, ’s2, ’x, ’a1r, ’b2) schem_lift ⇒
((’s1l :: schem, ’s1r :: schem) sprod,

’s2 :: schem,
’x,
((’a1l :: Bogus) * (’a1r :: Bogus)),
’b2 :: Mergeable) schem_lift" where

"schem_lift_recL recl recr s1 s2 =

7Tuples are the compound datatype of choice in GAZELLE, but supporting other datatypes with similar structure,
such as records, would not be difficult.

97

(case s1 of
SP s1l s1r ⇒

merge_l (recl s1l s2) (recr s1r s2))"

In this case, we need to recursively infer two liftings: one corresponding to recl (the

lifting from the first component s1l of the LHS tuple into the entire RHS, s2); the other

corresponding to recr (the lifting from the second component s1r of the LHS tuple into s2).

Since we are using merge l to combine these two liftings, the output type of the liftings b2 need

to be equal.

With this piece in place, we can now see the overall algorithm (run by ISABELLE’s

inference engine) for generating liftings: we recurse along the left-hand schema until we find a

single name; we then try to find the sole occurrence of that name on the right-hand schema; we

then use the path traversed to reach that name in order to construct a lifting from that name into

the entire right-hand side. We do this for each name on the left-hand side, then use merge l to

combine them all together.

One final case of note is the handling of explicit merges in the RHS schema (as opposed

to merges implicitly generated by the schem lift recL instance to handle products on the

left-hand side). As with schem lift prod recR, we need separate instances for each name.

These instances look like the following:

definition schem_lift_merge_recR_A_left ::
"(’n, ’ls, ’x, ’a, ’b2) schem_lift ⇒
(’n :: n_A, (’ls, ’rs :: hasntA) smerge,
’x, ’a, ’b2) schem_lift" where

"schem_lift_merge_recR_A_left rec n s =
(case s of

SM ls rs ⇒
(rec n ls))"

definition schem_lift_merge_recR_A_right ::
"(’n, ’rs, ’x, ’a, ’b2) schem_lift ⇒
(’n :: n_A, (’ls :: hasntA, ’rs) smerge,
’x, ’a, ’b2) schem_lift" where

"schem_lift_merge_recR_A_right rec n s =
(case s of

98

SM ls rs ⇒
(rec n rs))"

It should be noted that merge l occurs nowhere in these liftings; all the actual merging

takes place through the recursion on the left-hand side. In fact, these instances are nearly identical

to the instances for schem lift prod recR, the only difference being that fst l and

snd l are omitted (as well as removing the requirement that the “other” component not being

iterated into have a least element). In other words, we handle arbitrarily nested products as simply

a special case of merging!

In the end, we declare all of these definitions as schem lift instances. These are only a

subset of the instances actually declared - in GAZELLE we have a few (less useful) instances not

discussed here, as well as more names than just A and B. The interested reader can consult the

formal development

(in the directory Gazelle/Lifter/Velocity).

adhoc overloading schem_lift

"schem_lift_base_trivA"
"schem_lift_base_trivB"

"schem_lift_prod_recR_A_left schem_lift"
"schem_lift_prod_recR_A_right schem_lift"
"schem_lift_prod_recR_B_left schem_lift"
"schem_lift_prod_recR_B_right schem_lift"

"schem_lift_option_recR schem_lift"
"schem_lift_merge_recR_A_left schem_lift"
"schem_lift_merge_recR_A_right schem_lift"
"schem_lift_merge_recR_B_left schem_lift"
"schem_lift_merge_recR_B_right schem_lift"

"schem_lift_recL schem_lift schem_lift"

99

3.3.5 Priority Functions in Liftings

When defining liftings into datatypes involving the md prio wrapper, we often make use

of priority functions that describe how the priority field of the md prio is to be updated based

on which instruction is being executed. As described in section 3.2.4, these functions take a

syntax element and current priority, and return a new priority. When composing liftings using the

lifter generator, this is usually done through the SPRC schema element. SPRC (“Schema PRiority

Case”) takes such a priority function and a schema corresponding to a lifting to be used on the

contents of the md prio and creates a lifting that updates contents according to that lifting and

the priority according to the priority function. Another commonly-used schema primitive for

constructing priorities is SPRI (“Schema PRiority Increment”), which increments the priority

when updating data, ignoring the syntactic input.

3.3.6 Automated Lifting Generation - Scalability

A reasonable concern about the system just described is the number of extra definitions

and instances required to make it work. In particular, we require a linear number of types

and typeclasses; a linear number of instances of the polymorphic constant schem lift; and

a quadratic number of typeclass instances (since for each name Z, hasntZ needs a number of

instances equal to the number of total names minus one).

In the current version of GAZELLE, names A-K, plus X (a “dummy” name not matching

anything) are used. With this number of names, the inference-time performance of the system is

not noticeable (i.e., typeclass and polymorphic-constant resolution do not add an overhead readily

observable to the user). Investigating the precise limits of this approach in terms of number of

names is future work, but we are reasonably confident that the palette of names can be expanded

much further, certainly enough to enable the expression of liftings corresponding to complex,

deeply nested program states.

100

These is also the matter of generating the ISABELLE code that implements this system.

Since the fixed set of names are “baked-in” to the particular typeclasses and instances used by the

system, changing this set of names requires rewriting a quadratic amount of code. ISABELLE lacks

its own macro-system, so we make use of an external templating tool, VELOCITY [Dev06] to

handle automating the generation of these typeclass, instance, and constant definitions. By doing

so, we enable the user to modify the lifter-generation automation (including, most importantly,

changing the set of names) without needing to touch a large number of lines of code. One benefit

of VELOCITY is that it has an integration with ISABELLE’s JEDIT-based editor.

For more details on the full implementation of this inference system, as well as the code

generation, the interested reader can refer to the formal development

(in the directory Gazelle/Lifter/Velocity).

3.3.7 Proof Automation for Lifting Correctness

The system just described in 3.3 handles the generation of lifter instances, but provides

no guarantee of their validity (i.e., that they meet the lifter laws discussed in 3.1). Fortunately,

ISABELLE’s built-in proof automation makes it relatively painless to construct these proofs

without manual effort.

First, we define a system very similar to the one just described for inferring valid-sets for

liftings 8. We don’t describe it in detail here, but this valid-set inference uses the same structures

and patterns to infer the valid-sets corresponding to the lifting given by the same schema. Once

we have the valid-sets, we still need to show correctness of the lifting we inferred with respect to

the valid-set we inferred.

To do this, we observe that the structure of the proofs involved is rather straightforward:

primarily, we need to apply introduction rules corresponding to implementing the assumptions of

8We refer to these as “valid-sets” as a shorthand, but recall that they are actually functions mapping syntax
elements to their corresponding set of valid states; see the description above in section 3.1.

101

the locales corresponding to the lifting instances we inferred. For example, consider the locale

option l valid weak (defined above in section 3.2.3). After we define this locale, ISABELLE

automatically generates several proof rules for working with lifting valid weak instances;

the one relevant here is the following:

— option l valid weak.intro:

lifting_valid_weak ?l ?S =⇒ option_l_valid_weak ?l ?S

Considered in terms of “backwards” proof search (i.e., applying introduction rules starting

from the desired conclusion), this enables us to turn a proof search for

option valid weak l S into a search for lifting valid weak l S.

lifting valid weak, in turn, has its own lifting valid weak.intro theorem. So a large

part of the proof search we need consists of repeatedly applying such rules.

To handle the remainder of the proof search, we define 9 what looks a bit like an elimination

rule for option l valid weak. Because of the particular structure of the proofs we are looking

for, we can treat them as introduction rules in exactly the same way as the intro rules.

lemma (in option_l_valid_weak) ax :
shows "lifting_valid_weak (option_l l) (option_l_S S)"

lemma (in option_l_valid_weak) ax_g :
assumes "S’ = option_l_S S"
shows "lifting_valid_weak (option_l l) S’"

Both these rules express the fact that, to prove a lifting wrapped in option l is valid, it

suffices to prove (i.e., instantiate) option valid weak for that lifting. The difference between

the two rules is that ax requires the valid-set in the goal and the valid-set in the instance proof

for option l valid weak to match syntactically, while ax g generates a new variable S’ to

capture the valid-set. This allows more proofs to be found, but can result in a much slower proof

search since it will cause ISABELLE’s automation to apply set-based reasoning to try to show

equalities between the relevant valid-sets.
9The following rules are not automatically generated by ISABELLE, unlike the intro rule.

102

ISABELLE provides built-in automation that is quite good at dealing with the kinds of

proofs we need to construct when proving the validity of automatically-inferred liftings. In

particular, it provides a family of tactics (i.e., proof-generating programs) for solving problems

involving application of introduction and elimination rules as well as simplification by equality

facts [Wen, pg.238]. Of these tactics, fastforce can solve our goals quickly and reliably, but

has the drawback that it is “all-or-nothing”; if it fails, the user does not get helpful error messages

or proof state to enable debugging of what went wrong.

Fortunately, because we hook into this built-in automation by just providing lists of

theorems to the tactics, we can debug what is going on by applying less-aggressive tactics that

produce an intermediate proof state if they don’t fully solve the goal. The auto tactic is quite

useful for this purpose, although it tends to be much less aggressive about applying introduction

rules than fastforce (in cases where it cannot complete the proof, auto tends to return a proof

state with fewer introduction rules applied than one might expect).

Nonetheless, this approach (applying auto to debug broken theorem-lists) was more than

sufficient for debugging the generation of proofs for the instances inferred by the our automated

lifter-generator (indeed, even for hand-constructed ones that use the same primitives

triv l, option l, etc.) Such debugging should only be necessary when adding new types of

liftings to the lifting generator (which in turn will require adding new theorems to the list for

fastforce to apply), or when attempting to prove validity of an invalid lifting (an uncommon

case, as the lifter-inference system is designed so that instances that type-check are in fact valid).

Proving the validity of a lifting constructed using our inference system then ends up

looking like the following:

lemma lifting_valid_example :
"lifting_valid
(schem_lift (SP NC (SP NB NA))
(SP (SPRI (SO NA))

(SP (SPRC (λ _ . 1) (SO NB))
(SPRI (SO NC)))))

(schem_lift_S (SP NC (SP NB NA))

103

(SP (SPRI (SO NA))
(SP (SPRC (λ _ . 1) (SO NB))
(SPRI (SO NC))))) "

unfolding schem_lift_defs schem_lift_S_defs
by(fastforce intro: lifting_valid_standard

lifting_ortho_standard)

That is, the proof of correctness boils down to:

• Unfold the instance definitions for schem lift (and schem lift S, the equivalent for

valid-sets). schem lift defs and schem lift S defs are theorem-sets that simply

collect all these instance definitions.

• Perform the standard fastforce automation, with all relevant lifting introduction rules

(as described above) added to its standard rule-set10. We add orthogonality rules in a similar

manner.

We define a few different rule sets; the primary difference is whether the ax or

ax g versions of the “elimination” rules for locales are included. We have found that

lifting ortho standard, which uses the ax g formulations of the rules for all liftings except

merge l, to be a good compromise between generality and speed. For more details, the reader

can consult the formal development (Gazelle/Lifter/Auto Lifter Proofs.thy).

3.4 Discussion

In this chapter, we have discussed the lifting infrastructure of GAZELLE. Liftings in

GAZELLE enable us to reuse existing denotational semantics (given as functions) that may not be

aware of the partial-ordering typeclasses used by GAZELLE to define merging of program states.

Additionally, we have described an automated approach to generating lifting instances as well

10The standard rules correspond, e.g., to introduction and elimination rules from classical logic; common arithmetic
simplifications; and similar theorems of general-purpose use.

104

as correctness proofs for these instances, which helps to greatly ameliorate the lack of built-in

inference for liftings (which are too complex to capture using ISABELLE’s typeclasses).

Together with chapter 2, this chapter completes our tour of the components that enable

GAZELLE to construct programming languages out of separately-defined components. In the

following chapter (chapter 4), we will describe GAZELLE’s facilities enabling formal reasoning

about programming languages defined in this way. Having done so, we will have achieved the

last of GAZELLE’s remaining design goals. Then, in (chapter 5), we will show how all of these

components fit together by demonstrating the usage of GAZELLE to formalize an imperative

programming language, IMP.

105

Chapter 4

Reasoning About GAZELLE

In this chapter, we talk about how we enable support for reasoning on languages defined

in GAZELLE (as described in chapters 2 and 3). Just as GAZELLE enables language components

defined separately to be composed in a well-defined way, the goal of the reasoning infrastructure

for GAZELLE is to enable reasoning principles for separately-defined languages to be used

conveniently on the composition of those languages.

To support reasoning about multiple execution steps in the interpreter described in section

2.3.2, we define a Hoare logic for GAZELLE. Hoare logic ([PAdAG+21a, ch.2]) is a commonly-

used framework for reasoning about imperative programs. In Hoare logic, rules are defined

corresponding to statements in the language, which can then be composed in a structure mirroring

that of the original program. As with the multi-step interpreter semantics of GAZELLE, we give

two versions of Hoare logic, one of which carries with it an explicit step-count. The step-count

version of Hoare logic is useful for proving rules about possibly nonterminating constructs, such

as the for loop in the IMP language we will define later (see sections 5.1.5 and 5.3). The version

without the step count is more standard; by relating it to the step-count definition, we can build

confidence that the logic with step-counts is correct.

It should be noted that present a somewhat atypical formalization of Hoare logic, inspired

106

by the developments given in [ADH+14, ch.4] and [AB07]. In particular, we make use of their

notion of “CPS-flavored” (continuation-passing-style) Hoare logic. [ADH+14, pg.32] asserts that

such a formulation of Hoare logic is useful for reasoning about more complex control (such as

break and continue statements in C-style for-loops in [AB07]). We have found this approach

to Hoare logic to be a good match for GAZELLE’s general approach to control flow.

4.1 Hoare Logic: A Primer

In Hoare Logic, we prove statements about programs in the form of Hoare Triples, usually

written as {P} Prog {Q}. In such a triple, Prog is a program, P is a precondition on the program

state (i.e., a predicate state ⇒bool, for program state type state), and Q is another state

predicate representing a postcondition. The meaning of {P} Prog {Q} is the following: if P

holds before we execute Prog, and Prog terminates, then Q holds after the execution finishes.

We call this a partial correctness Hoare Logic, which means that the postcondition is only

guaranteed to hold if the program terminates, but we make no guarantee about termination. An

alternative approach is total correctness Hoare Logic, in which the meaning of {P} Prog {Q}

is instead that if P holds before executing Prog, then Prog terminates and Q holds afterwards.

In practice, total correctness Hoare logic requires an intermixing of termination conditions

(i.e., under what circumstances can we prove Prog terminates) with reasoning about pre- and

postconditions, which can be inconvenient. For this reason, we choose the partial-correctness

approach here, and consider termination proofs to be beyond the scope of this work.

The rules of Hoare logic generally correspond to statements in the language being reasoned

about, describing the behavior of such statements in terms of their pre- and postconditions, often

using other Hoare triples as assumptions. For instance, sequencing in an imperative language

might look like the following:

lemma HSeq :
assumes Hc1 : "{P1} c1 {P2}"

107

assumes Hc2 : "{P2} c2 {P3}"
shows "{P1} c1 ; c2 {P3}"

In words, this rule says that

• if we know that P2 holds after executing c1 as long as P1 holds before executing c1

• and we know that P3 holds after executing c2 as long as P2 holds before executing c2

• then we know that, if P1 holds before we execute the sequenced operations c1; c2 (that

is, “run c1, then run c2”), P3 holds after we are done

In addition to rules corresponding to statements in the language they are designed to

reason about, Hoare logics have an additional rule that does not correspond to a program statement

- this is the rule of consequence, stating that preconditions can be strengthened and postconditions

weakened without affecting the validity of a triple:

lemma HConseq :
assumes HP : "

∧
st . P’ st =⇒ P st"

assumes HQ : "
∧

st . Q st =⇒ Q’ st"
assumes H : "{P} c {Q}"
shows "{P’} c {Q’}"

In our context, it is important that we formally tie our Hoare logic to our programming-

language semantics, so that we can trust that our Hoare proofs are sound with respect to actual

program executions. In other words, we need to supply a definition of the Hoare triple in terms of

GAZELLE’s semantics. One standard approach would be to adopt something like the following.

Suppose for simplicity we have a type of programs (syntax) prog and a semantics sem :: prog

⇒state ⇒state ⇒bool, in which a nonterminating program is represented by the absence

of an element in the relation (i.e., if program p does not terminate starting in state s, then there is

no s’ such that sem p s s’ holds).

definition triple :: "(state ⇒ bool) ⇒ prog ⇒
(state ⇒ bool) ⇒ bool"
("{_} _ {_}")

108

where
"triple P c Q =
(∀ (st :: state) (st’ :: state) .

P st −→
sem c st st’ −→
Q st’)"

This is a straightforward expression of the intuition just given: if c terminates under a state

satisfying P, then Q holds afterwards. The disadvantage to this approach is that it makes it difficult

to deal with “non-local” control flow (e.g., code that breaks out of loops): under this definition

of Hoare triple, we are essentially committing to eventually ending up in a state satisfying Q.

However, a non-local control-flow construct might, for instance, cause us to skip over the state

where Q holds. Since Hoare rules mirror the structure of programs, this is a problem. Suppose

prog is a piece of a larger program we are trying to reason about. If prog contains within it

a statement that can escape prog (e.g., a goto statement), we don’t have enough information,

examining only prog, to say exactly where we will end up 1.

4.2 Hoare Logic for Single-Step Semantics

While the presentation of Hoare logic just given is not the solution we adopt for reasoning

about multi-step programs with control flow in GAZELLE, it does end up being useful for stating

properties about the single-step denotational semantics of language components. We give a

definition of Hoare triples for such semantics 2:

definition HT ::
"(’a ⇒ bool) ⇒ (’a ⇒ ’a ⇒ bool) ⇒ (’a ⇒ bool) ⇒ bool"
("{{_}} _ {{_}}" [0,0,0] 61) where

"HT pre x post =
(∀ a b . pre a −→ x a b −→ post b)"

1The ability to handle non-local control flow enabled a Hoare-style approach to reasoning about break and
continue statements in [AB07].

2the numbers preceding the where statements are priorities given to ISABELLE’s parser and are not relevant to
this discussion.

109

definition HTS ::
"(’x ⇒ ’a ⇒ ’a) ⇒
(’a ⇒ bool) ⇒ ’x ⇒ (’a ⇒ bool) ⇒ bool"
("_ % {{_}} _ {{_}}" [250,252,254,256])
where

"HTS sem pre x post =
HT pre (λ a b . sem x a = b) post"

HT captures a Hoare triple-style abstraction for predicates (’a ⇒’a ⇒bool) represent-

ing a language semantics; HTS, which is more useful, builds on HT to express Hoare triples for

executable single-step semantics taking a syntax argument (i.e., functions ’x ⇒’a ⇒’a, where

’x is the type of syntax elements). Note that one major difference from conventional presentations

of Hoare logic is that GAZELLE’s Hoare triples take a semantics function as a parameter (i.e., are

technically quadruples3). Most Hoare logics are designed to work with only one language, so the

semantics is “hard-wired” rather than passed as a parameter. Because GAZELLE is designed for

extensibility, we will usually need to be explicit about which semantics we are writing rules for;

hence, the need for an additional parameter.

The primary use-case for these definitions is when lifting facts about single-step language

components, expressed as Hoare triples using HTS, into facts about multi-step languages built out

of these components. We will see this in detail when discussing the GAZELLE implementation of

the IMP language (in chapter 5).

We define a some rules for characterizing the behavior of these Hoare triples under

merging and lifting (see section 2.2 and chapter 3). We first define lift pred noS s, which

enables us to lift predicates using GAZELLE’s lifting abstraction:

definition lift_pred_noS_s ::
"(’a1, ’b1) syn_lifting ⇒
(’a1, ’a2, ’b2 :: Pord) lifting ⇒
’b1 ⇒
(’a2 ⇒ bool) ⇒
(’b2 ⇒ bool)"

where
3We still refer to these constructs as “Hoare Triples”, in order to emphasize the similarity with the typical notion

developed in the literature, for instance [PAdAG+21a, ch.2].

110

"lift_pred_noS_s l’ l syn P st =
P (LOut l (l’ syn) st)"

lift pred noS s (so named because it does not consider membership in the lifting l’s

corresponding valid-set - hence “noS” - but does take a syntax-transforming function - hence

“ s”). This is a rather naive notion of predicate-lifting: to lift a predicate P using a lifting l, we

only check that P holds on the projection (LOut l) applied to the data in question.

With this definition, we can prove the rule Vlift for our single-step Hoare logic. This

rule allows us to translate from statements about a step in a sub-language to statements about a

step in the lifted version of the sub-language:

lemma Vlift :
assumes Valid : "lifting_valid_weak l S"
assumes V: "(sem) % {{P}} x {{Q}}"
assumes Syn : "l’ x’ = x"
shows "(lift_map_s l’ l sem) %

{{lift_pred_noS_s l’ l x’ P}}
x’
{{lift_pred_noS_s l’ l x’ Q}}"

Such lifting is usually done in the service of constructing a merged language (i.e., lifting

from a sub-language state type into a combined-language state type). When merging languages,

we can make use of the following rule:

lemma Vmerge :
assumes Pres : "sups_pres (set l) S"
assumes Sem : "f ∈ set l"
assumes P_S : "

∧
st . P st =⇒ st ∈ S x"

assumes V : "(f) % {{P}} x {{Q}}"
shows "(pcomps l) %

{{P}}
x
{{(λ st . ∃ st_sub . Q st_sub ∧ st_sub <[st)}}"

That is, suppose we have a list of compatible language-component semantics l, and

merge them together with pcomps, and that for some particular language in l, f, we can show

the Hoare triple f % {{P}} x {{Q}} (for command x). Then, as long as our precondition P is

111

strong enough to entail that the starting state is valid, if we run the combined language starting

in a state satisfying P, then Q holds on some state informationally smaller than the final state.

Specifically, Q holds on f x applied to the initial state; but the influence of the other languages in

l may lead to a greater result, on which Q may not hold.

Another way to look at this rule is that if the predicate Q is monotone (in the sense that

x <[x’ ⇒Q x ⇒Q x’), it will hold in the final (merged) state. We can capture this with the

following, alternative rule for merging:

lemma Vmerge_mono :
assumes Pres : "sups_pres (set l) S"
assumes Sem : "f ∈ set l"
assumes Mono : "Pord.is_monop1 Q"
assumes P_S : "

∧
st . P st =⇒ st ∈ S x"

assumes V : "(f) % {{P}} x {{Q}}"
shows "(pcomps l) %

{{P}}
x
{{Q}}"

Because of the restrictions on output predicates imposed by these rules, they do not lead

us to a general approach to reasoning about merged semantics (we will see in our discussion of the

implementation of Imp how we handle cases involving merges with less well-behaved predicates).

Nonetheless, they can be useful for reasoning about certain cases of merged languages. When

they apply, they can give a very straightforward account of the behavior of the result of the merged

languages.

4.3 CPS-Flavored Hoare Logic

In order to better support complex control-flow constructs, we adopt a different and

slightly counterintuitive definition of Hoare triples 4. First, we define immediate safety as:

definition imm_safe :: "(’syn, ’mstate) semc ⇒
4These definitions are heavily based on those given in [ADH+14, ch.4] for reasoning about multi-step executions.

112

(’syn, ’mstate) control ⇒
bool" where

"imm_safe gs m ≡
((cont m = Inl []) ∨
(∃ m’ . sem_step_p gs m m’))"

That is, an immediately-safe state is a state that is either halted or can take a step under

our semantics. We then define safety in terms of immedate safety:

definition safe :: "(’syn, ’mstate) semc ⇒
(’syn, ’mstate) control ⇒
bool" where

"safe gs m ≡
(∀ m’ . sem_exec_p gs m m’ −→ imm_safe gs m’)"

So a safe state is any state in which execution always leads to an immediately safe state,

regardless of how many execution steps are taken. (Note that nonterminating programs are safe

under this definition). Next, we define guardedness, which provides a notion of “safety under a

precondition P”:

definition guarded :: "(’syn, (’mstate :: Okay)) semc ⇒
(’mstate ⇒ bool) ⇒
’syn gensyn list ⇒ bool"

("|_| {_} _" [200, 202, 204])
where

"guarded gs P c =
(∀ m . m ∈ ok_S −→ P (payload m) −→
cont m = Inl c −→ safe gs m)"

Note the use of payload in the definition above, defined in section 2.3.2.1. payload

extracts the non-control-flow data from a GAZELLE state. We need to use this here, since our

goal is to have the predicates used in Hoare logic be independent of control flow; control flow is

to be handled by the Hoare logic itself, through the application and composition of rules. We can

write “when using gs as our single-step semantics, program c is guarded under predicate P” as

|gs| {-P-} c.

A few details here bear some discussion. First, we add the precondition that the state

m (over which guarded quantifies) be in ok S (that is, have valid data inside of it; see section

113

2.2.2.5); this is because, in our definition of Hoare triples, we will want this as an additional

assumption (so that, in turn, we can use the fact that the projections LOut will return meaningful

data when proving Hoare rules). Next, note that the predicate P is a predicate over ’mstate

rather than over the entire interpreter state (’syn, ’mstate) control. This is to enable

a separation of concerns between control-flow and Hoare predicates; if our Hoare predicates

were allowed to directly reference the continuation representing subsequent instructions to be

executed, it would be very difficult to write useful Hoare rules. When we discuss IMP we will

see a lifting no control l (in section 5.2.3), which bridges the gap between the full state with

control information and the state over which Hoare predicates operate.

Finally, notice that instead of c being a single command, we instead have a list of

commands (syn gensyn list) representing the next statements to be executed. When running

a program P, we will start with a singleton list Inl [P] in the cont field, but the list will likely

grow as the program executes.

We can now define Hoare triples in terms of guarded:

definition HT :: "(’syn, (’mstate :: Okay)) semc ⇒
(’mstate ⇒ bool) ⇒
’syn gensyn list ⇒
(’mstate ⇒ bool) ⇒ bool"
("|_| {-_-} _ {-_-}" [206, 208, 210])
where

"HT gs P c Q =
(∀ c’ . |gs| {Q} (c’) −→ |gs| {P} (c @ c’))"

Essentially, |gs| {-P-} c {-Q-} means that (using single-step semantics gs), if some

suffix continuation c’ is safe under Q, then prepending c to that suffix is safe under P. Notice

how this frees us from having to “commit” to the program actually ending up in a state satisfying

Q. If, for instance, we were to discard c’ somewhere in the course of executing c, we might never

reach a state where Q holds. As argued in [ADH+14, ch.4], being able to reason about safety

of programs is sufficient to allow us to reason about correctness of programs, provided we are

working in a language that has the ability to check the correctness condition at runtime and crash

114

the program if the condition is not met (thus turning a correctness property into a safety property).

Using this definition we can prove a version of the rule of consequence. We can also prove

the following general sequencing-like rule, which will be useful for implementing sequencing

and other constructs later (see chapter 5):

lemma HCat :
assumes H : "|gs| {- P1 -} c1 {- P2 -}"
assumes H’ : "|gs| {- P2 -} c2 {- P3 -}"
shows "|gs| {- P1 -} (c1 @ c2) {- P3 -}"

This rule allows us to append a suffix continuation c2 to an existing continuation c1; if

its precondition matches c1’s postcondition, then the postcondition of the concatenation is the

postcondition of c2. This is quite similar to a standard Hoare sequencing rule, but differs from it

in that there is no explicit mention of a program (syntax) corresponding to sequencing: this is

a sequencing rule that operates purely at the level of the program state representation. (We do

this to keep the rule general by not making unnecessary assumptions about the structure of the

language encoded in gs).

4.4 CPS-Flavored Hoare Logic with Step-Counts

When reasoning about loop constructs, we find it useful to make a further modification to

the Hoare logic formalism described above. We replace the notion of safety defined above with a

notion of safety for n steps:

definition safe_for :: "(’syn, ’mstate) semc ⇒
(’syn, ’mstate) control ⇒
nat ⇒ bool" where

"safe_for gs full n =
((∃ n0 full’ . n0 ≤ n ∧ sem_exec_c_p gs full n0 full’ ∧

cont full’ = Inl []) ∨
(∀ n0 . n0 ≤ n −→

(∃ full’ h t . sem_exec_c_p gs full n0 full’ ∧
cont full’ = Inl (h#t))))"

We say a program full is safe for n steps if either

115

• It halts without error in n or fewer steps, or

• It neither halts nor reaches an error state for n steps

This enables us to define an indexed notion of guardedness:

definition guarded :: "(’syn, ’mstate :: Okay) semc ⇒
(’mstate ⇒ bool) ⇒
nat ⇒
’syn gensyn list ⇒ bool"

("|#_#| {#_, _#} _" [210, 212, 214, 216])
where

"guarded gs P n c =
(∀ m . m ∈ ok_S −→
P (payload m) −→
cont m = Inl c −→
safe_for gs m n)"

So we write |#gs#| {#P, n#} c if c is guarded under P for n steps (we use # signs in

the notation to avoid collision with the notation defined above for standard guardedness, as well

as to suggest the indexed nature of the predicate). With this definition of guardedness we can

define a corresponding definition of Hoare triple:

definition HT :: "(’syn, ’mstate :: Okay) semc ⇒ (’mstate ⇒ bool)
⇒ nat ⇒ ’syn gensyn list ⇒ (’mstate ⇒ bool) ⇒ nat ⇒ bool"

("|#_#| {#-_, _-#} _ {#-_, _-#}"
[220, 222, 224, 226, 228, 230])

where
"HT gs P np c Q nq =

(∀ c’ . |#gs#| {#Q, nq#} (c’) −→ |#gs#| {#P, np#} (c @ c’))"

In other words, |#gs#| {#P, np#} c {#Q, nq#} means that for any c’ safe under Q

for nq steps, the concatenation c @ c’ is safe under P for np steps. One subtlety here is that np

is not required to be greater than nq. This might occur, for instance, in a program that looks like

the following pseudocode:

(* c *)

i f (cond == t r u e) {

116

d o s o m e t h i n g () ; (* 5 s t e p s o f c o m p u t a t i o n *) ;

c r a s h ;

}

(* c ’ *)

d o s o m e t h i n g () ; (* 10 s t e p s o f c o m p u t a t i o n *)

In this case, c @ c’ is safe under the precondition True (i.e., any initial state) for 5

computation steps (for simplicity, assume the step counter does not increase when evaluating

conditionals). However, to show this, we need to make use of the fact that c’ is safe for 10 steps

(if, for instance, c’ crashed immediately, c @ c’ would not be safe for 5 steps when cond =

false).

We can prove consequence and concatenation lemmas for this definition of Hoare logic;

naturally, these lemmas must take into account the indices carried around along with the Hoare

triples:

lemma HConseq :
assumes H : "|#gs#| {#- P’, np’ -#} c {#-Q’, nq’-#}"
assumes HP1 : "

∧
st . P st =⇒ P’ st"

assumes HP2 : "np ≤ np’"
assumes HQ1 : "

∧
st . Q’ st =⇒ Q st"

assumes HQ2 : "nq’ ≤ nq"
shows "|#gs#| {#-P, np-#} c {#-Q, nq-#}"

lemma HCat :
assumes H : "|#gs#| {#- P1, np1 -#} c1 {#- P2, np2 -#}"
assumes H’ : "|#gs#| {#- P2, np2 -#} c2 {#- P3, np3 -#}"
shows "|#gs#| {#- P1, np1 -#} (c1 @ c2) {#- P3, np3 -#}"

Worth noting is that this version of the rule of consequence (HConseq for the step-count

Hoare triples) allows us to decrease the step count attached to the precondition as we strengthen

the precondition, and to increase the step count attached to the conclusion as we weaken the

conclusion. This may seem counterintuitive, but recall that the step-count in the “conclusion” of

the Hoare triple corresponds to an assumption when unfolding the definition of the Hoare triple

117

(i.e., have arbitrary c’, and we get to assume c’ is safe for nq steps); whereas the step-count

attached to the “premise” of the Hoare triple actually corresponds to the conclusion when the

Hoare triple definition is unfolded (since our end goal is to prove safety for c @ c’ for np steps).

The concatenation lemma HCat is a straightforward extension of the one we saw above

for the non-step-counting Hoare logic.

This step-counting formulation of Hoare logic is necessary because of the generality

and open-endedness of GAZELLE’s syntax and instruction set. When reasoning about non-local

control flow (break and continue), [AB07] are able to perform an exhaustive case-analysis at

a key point in the proof of correctness of the rules for while and break/continue. We are not

able to make the same argument here, because of GAZELLE’s extensibility: our Hoare logic is

designed not to need to know exhaustively which other instructions might affect control-flow.

4.5 Soundness of Step-Counting Hoare Logic

While the step-counting formalism ends up being extremely useful when reasoning about

loops in GAZELLE, it is important to justify that the formalism is reasonable; that is, that when we

say |#gs#| {#P, np#} c {#Q, nq#} it means something along the lines of what one would

expect from a Hoare triple. This is especially important as adding an explicit step-count to Hoare

logic is a non-standard extension to an already (somewhat) non-standard development of Hoare

logic (in terms of its “CPS-flavor”). Otherwise, we run the risk of building a system that is not

useful, or even misleading.

In order to resolve this problem, we relate the step-counting Hoare logic back to the

CPS-flavored Hoare logic just developed (in section 4.4). To begin with, we define yet another

notion of Hoare triple - HT’ - that wraps the step-counting version of HT so as to hide the step

counts:

definition HT’ :: "(’syn, ’mstate :: Okay) semc ⇒ (’mstate ⇒ bool)
⇒ ’syn gensyn list ⇒ (’mstate ⇒ bool)⇒ bool"

118

("|_| {˜_˜} _ {˜_˜}" [250, 252, 254, 256])
where

"HT’ gs P c Q =
((∀ npost . ∃ npre . |#gs#| {#- P, (npre + npost) -#} c {#-

Q, npost -#}))"

That is, we say |gs| {˜P˜} c {˜Q˜} if, for any step-count npost, we can come up

with a npre such that, |#gs#| {#P, (npre + npost)#} c {#Q, npost#}. Unpacking this

further (and thinking about the quantifiers in terms of a game), that means that for any npost

and c’ provided by an adversary, where c’ is safe for npost steps, we must be able to show that

the concatenation c @ c’ is safe for npre + npost steps. Another way to put this, bearing in

mind that all these indices are nonnegative, is that we can come with an npre such that npost

≤npre and |#gs#| {#P, npre#} c {#Q, npost#}.

Our goal is to show that this definition of Hoare triples matches the non-step-counted,

CPS version of HT. Ideally we’d like to show that HT’ is sound and complete with respect to HT’.

The soundness lemma does indeed hold; it says the following:

lemma HT’_imp_HT :
assumes H : "|gs| {˜P˜} c {˜Q˜}"
shows "|gs| {-P-} c {-Q-}"

The completeness lemma, which we believe does not hold, would say the following:

lemma HT_imp_HT’ :
assumes "|gs| {-P-} c {-Q-}"
shows "|gs| {˜P˜} c {˜Q˜}"

Unfortunately, it appears that HT’ is a more informative (stronger) statement than HT.

When attempting to prove HT’ from HT, we reach a point where we need to show |gs| {-Q-}

c’ (for the arbitrarily chosen c’ fixed as part of the definition of HT’), so that we can use the

assumption |gs| {-P-} c {-Q-}. Unfortunately, all we know is that |#gs#| {#Q, npost#}

c’ (for npost fixed as part of the definition of HT’), and so we are stuck.

Despite not being able to prove completeness, showing soundness is still a key result,

since it means that if HT’ fails to be useful, its failure will be in that it is too strong; i.e., too hard

119

to prove, rather than too weak; i.e., not meaningful. As we show later when discussing the Hoare

logic for the IMP language, (section 5.3) we are able to prove and use a rich set of Hoare rules

using HT’ in practice, making this much less of a concern.

4.6 Reasoning about Multi-Step Composition

4.6.1 Dominance and Toggling

Putting together the Hoare logic just described with the formalization of language-

component composition described in chapter 2 gives us a very general framework for reasoning

about programs whose semantics are given by such compositions. However, the downside to this

generality is that, without further simplifying assumptions, such reasoning can be challenging. In

particular, we may have to break the Hoare-rule abstractions at certain points in order to show

that the rules do not interfere with each other.

Fortunately, in many instances of composition, we can make use of additional structure of

the languages and their interactions to dramatically simplify our reasoning and minimize the need

to break the modularity provided by the Hoare abstraction. One example we’ve already seen is

the Vmerge single-step Hoare rule in section 4.2. Another common case is when one language

can be shown to produce a result informationally greater than (or equal to) the merging of all

other languages it is being composed with, for particular instructions (syntax-elements). We call

this dominance and define it formally as:

definition dominant ::
"(’a ⇒ ’c ⇒ (’c :: Pord_Weak)) ⇒
(’a ⇒ ’c ⇒ ’c) set ⇒
’a set ⇒ bool"

("_ ↓ _ _" [250, 252, 254])
where
"(f ↓ S X) =

(∀ x b . x ∈ X −→
(is_sup ((λ g . g x b) ‘ S) (f x b)))"

120

That is, f dominates the set of functions S for syntax-set X if, the result of applying f to

any input b in X is the least upper bound of the result of mapping all functions in S over that

same input. We write this as f ↓ S X In practice we will often use ok S as the X parameter (for

more information on ok S, see section 2.2.2.5). From this definition we can easily derive:
lemma dominant_pcomps :

assumes Hpres : "sups_pres (set fs) (λ _ . ok_S)"
assumes Hne : "z ∈ set fs"
assumes H : "(f ↓ (set fs) X)"
assumes Xin : "x ∈ X"
assumes Bin : "b ∈ ok_S"
shows "(pcomps fs x b) = (f x b)"

That is, if the set S is compatible in the sense of sups pres for inputs which are in ok S

(i.e., have valid data inside them), S is nonempty, and f dominates S for a set of syntax elements

X, then the result of the composition of the functions in S when applied to a syntax element of the

specified set X and a valid input state will be equal to the result of applying f to that syntax and

input state. This lemma underlines the usefulness of dominance as an abstraction: when we can

show it holds, we can reduce reasoning about the composition of several functions to reasoning

about the behavior of the one function that is known to dominate the others (when reasoning

about instructions from the specified set X). We use the dominant abstraction to build a set of

modular proof-rules for the IMP language as part of our case study (see chapter 5).

When dealing with languages with extensible state types (i.e., languages having a type-

parameter corresponding to extensions to the state), we run into a subtlety that gets in the way

of showing dominance directly, even in cases where one would intuitively think it should hold.

Consider, for instance, a state with two wrapped integers (int md triv option md prio

* int md triv option md prio). Suppose further we have two semantics over the state

and a trivial instruction language with a single instruction (() :: unit). The first function,

sem1, increments the first component of the tuple, but is generic in the second component of the

tuple (this corresponds to the situation we encounter when using no control lifting; see

section 5.3.1). The second function has access to the full tuple state, and increments the second

121

parameter. sem1 p and sem2 p supply priority increments for sem1 and sem2 respectively, used

when merging their results (see section 3.2.4).

datatype syn =
Op1
| Op2

fun sem1 :: "syn ⇒ int ⇒ int" where
"sem1 Op1 x = (1 + x)"
| "sem1 _ x = x"

fun sem1_p :: "syn ⇒ nat" where
"sem1_p Op1 = 2"
| "sem1_p _ = 1"

fun sem2 :: "syn ⇒ (int * int) ⇒ (int * int)" where
"sem2 Op2 (x1, x2) = (x1, (2 + x2))"
| "sem2 _ x = x"

fun sem2_p :: "syn ⇒ nat" where
"sem2_p Op2 = 2"
| "sem2_p _ = 1"

type synonym state =
"int md_triv option md_prio *
int md_triv option md_prio"

definition sem1_lift ::
"(syn, int,

int md_triv option md_prio *
(’a :: Mergeableb)) lifting" where

"sem1_lift = schem_lift NA (SP (SPRC sem1_p (SO NA)) NX)"

definition sem2_lift :: "(syn, (int * int), state) lifting" where
"sem2_lift =

schem_lift (SP NA NB)
(SP (SPRI (SO NA)) (SPRC sem2_p (SO NB)))"

We would like to be able to show that the result of lifting sem1 by sem1 lift dominates

the result of lifting sem2 by sem2 lift, for instruction Op1. Intuitively, we know that for Op1,

sem1 lift will cause the first component’s priority to be incremented by 2, whereas sem2 lift

at Op1 will only increment by 1 for the first parameter. However, the second parameter will be left

122

untouched by the lifted sem1 (its structure is hidden behind the type variable ’a in sem1 lift),

yet it will be incremented by sem2 lift. Even though the data is left unchanged, we end up in a

situation where neither sem1 nor sem2 produces a larger result after lifting.

One might ask why it is necessary to increment the priority of the first component in

sem2 lift, since the data is not being modified. Unfortunately, in order for the lifting to obey

lifting valid strong, the priority must always strictly increase (since the lifting itself is not

aware that this parameter will never be changed by sem2). We want to work with liftings obeying

lifting valid strong whenever possible, as such liftings are far easier to reason about than

those merely implementing lifting valid (for details on this distinction, see section 3.1.2).

We need to adopt a different solution for such cases, which we refer to as toggling. The

idea is that when lifting a semantics that is designed to be a “no-op” on certain arguments, we

supply a Boolean predicate characterizing which syntax elements to run the semantics on, and

which to simply ignore, returning the original result unchanged:

definition
lift_map_t_s ::
"(’b1 ⇒ ’a1) ⇒
(’a1, ’a2, ’b2::Pord) lifting ⇒
(’b1 ⇒ bool) ⇒
(’a1 ⇒ ’a2 ⇒ ’a2) ⇒
’b1 ⇒ ’b2 ⇒ ’b2" where

"lift_map_t_s l’ l tg f syn st =
(if tg syn then lift_map_s l’ l f syn st
else st)"

definition toggle ::
"(’syn ⇒ bool) ⇒
(’syn ⇒ ’b ⇒ ’b) ⇒
(’syn ⇒ ’b ⇒ ’b)" where

"toggle tg f syn st =
(if (tg syn) then f syn st else st)"

When composing several toggled semantics, we have an easy way to prove dominance,

using the following theorem:

lemma dominant_toggles :
assumes Valid : "lifting_valid l1 S1"

123

assumes Fs_fin :
"finite (Fs :: (_ ⇒ (_ :: Mergeable) ⇒ _) set)"

assumes Fs_f1 : "lift_map_t_s l’1 l1 t1 f1 ∈ Fs"
assumes Toggle1 : "

∧
s . s ∈ X =⇒ t1 s"

assumes Toggles: "
∧

f . f ∈ Fs =⇒
f ̸= lift_map_t_s l’1 l1 t1 f1 =⇒
(∃ tg g . f = toggle tg g ∧ (∀ s . s ∈ X −→ ¬ tg s))"

shows "(lift_map_t_s l’1 l1 t1 f1) ↓ Fs X"

That is, if toggle predicate t1 is true for all syntax elements in X, the lifting of f1 using

t1 is in the set of functions Fs, and all other functions in Fs are toggled using a toggling predicate

that is false for all syntax elements in X, then the lifting of f1 dominates Fs for inputs X. Using

this fact, we can complete our example, defining toggling functions for our languages and making

use of dominant toggles to show that the lifted sem1 dominates the lifted sem2 on Op1:
fun sem1_toggle :: "syn ⇒ bool" where
"sem1_toggle Op1 = True"
| "sem1_toggle Op2 = False"

fun sem2_toggle :: "syn ⇒ bool" where
"sem2_toggle Op1 = False"
| "sem2_toggle Op2 = True"

definition sems :: "(syn ⇒ state ⇒ state) set" where
"sems = {lift_map_t_s id sem1_lift sem1_toggle sem1

,lift_map_t_s id sem2_lift sem2_toggle sem2}"

lemma sem1_dominant :
"(lift_map_t_s id sem1_lift sem1_toggle sem1) ↓ sems ({Op1})"

proof(rule dominant_toggles)

4.7 Discussion

This completes the picture of the reasoning framework offered by GAZELLE for con-

structing proofs about programs written using languages defined via composition in GAZELLE.

A theme here is that we adopt extremely general notions whenever possible, in order to enable

maximum expressiveness and maximally powerful reasoning. Such generality leads to challeng-

ing proofs, however, so we adopt some additional primitives (such as dominance and toggling)

124

in order to ease the proof burden for common cases. In chapter 5, when we discuss IMP, we

will see how these common cases largely suffice to build a program logic for and prove correct

programs in a nontrivial imperative language, while still allowing for interesting interactions

between language-components.

125

Chapter 5

IMP: An Extended Example of GAZELLE in

Practice

At this point, we have discussed the entire GAZELLE framework. GAZELLE enables

composition of separately-defined programming-language components (as described in chapter

2). GAZELLE enables retrofitting of existing formal developments of (denotational) language-

component semantics, enabling them to work with the its infrastructure via its lifting framework

(as described in chapter 3). Finally, GAZELLE supports reasoning about such compositions of

language components using Hoare logic (described in chapter 4).

To put everything together, we present an extended example of the usage of GAZELLE.

Namely, we show how it can be used to define a simple imperative language - quite similar to

the IMP language frequently presented in the literature (for instance, [PAdAG+21b, ch.12]) -

from self-contained components. We also show how GAZELLE enables reasoning about that

language using self-contained reasoning rules for each component. In the process, we will build

several components useful for implementing languages beyond IMP - in keeping with GAZELLE’s

goals of enabling reuse - and demonstrate useful patterns for productively using the GAZELLE

framework.

126

5.1 IMP’s Sub-Languages

IMP programs are defined as syn gensyn syntax trees, for the following combined

instruction-syntax syn:

datatype syn =
Sc "calc"
| Sm "Mem_Simple.syn"
| Sb "cond"
| Si "Imp_Ctl.syn’"
| Ss "Seq.syn"
| Ssk

Each sub-language of IMP injects into syn; each case of syn corresponds to one sub-

language of IMP. In particular:

• Sc injects an instruction from the Calc arithmetic language

• Sm injects an instruction from the memory-store language (Mem, called Mem Simple in the

formal development)

• Sb injects an instruction from the language Cond of boolean conditions

• Si injects an instruction from the Imp Ctl language implementing Imp’s conditional

control-flow

• Ss injects an instruction from the Seq language, implementing sequencing

• Ssk represents a no-op or “skip” instruction

In this section, we give an overview of these sub-languages, which we compose to

implement IMP using GAZELLE.

127

5.1.1 Arithmetic Language

We want our implementation of IMP to be able to perform arithmetic operations. This is

the responsibility of calc, a language giving access to the operations of a four-function calculator.

Its syntax is as follows:
datatype calc =
Cadd
| Csub
| Cmul
| Cdiv
| Cnum int
| Cskip

Cadd, Csub, Cmul, and Cdiv implement the basic arithmetic operations their names

imply. Cnum corresponds to an integer-literal instruction, and Cskip is an operation with no

effect. As we’ll see when defining the remaining language-components comprising IMP, it is

generally useful to have a such a “no-op” instruction in language-components used with GAZELLE

(for those that lack one, it is of course quite easy to extend the syntax and semantics to add one).

Such an instruction allows us to express the idea that one language-component does nothing while

an instruction exclusive to another language-component is being executed.

calc operates over what is essentially a three-register machine, represented as three

components of a triple:
type synonym calc_state =
"(int * int * int)"

The first two components are the arguments to the arithmetic operation being performed;

the third is the output of the operation. Cadd (and the other arithmetic operations) read their

inputs from the first two components and write to the third; Cnum writes its literal argument to the

third. Notice that from within Calc we don’t have a way of reading from the output or writing to

the inputs, nor any kind of control construct for sequencing arithmetic operations. All of these

will be provided by other language-components.

Here is the semantics of Calc:

128

fun calc_sem :: "calc ⇒ calc_state ⇒ calc_state" where
"calc_sem (Cadd) (x1, x2, x3) =

(x1, x2, x1 + x2)"
| "calc_sem (Csub) (x1, x2, _) = (x1, x2, x1 - x2)"
| "calc_sem (Cmul) (x1, x2, _) = (x1, x2, x1 * x2)"
| "calc_sem (Cdiv) (x1, x2, _) =

(x1, x2, divide_int_inst.divide_int x1 x2)"
| "calc_sem (Cnum i) (x1, x2, _) = (x1, x2, i)"
| "calc_sem (Cskip) st = st"

Calc injects into syn using the Sc constructor. To recover a Calc instruction from a

combined-language instruction, we use the following translation function:

fun calc_trans :: "syn ⇒ calc" where
"calc_trans (Sc x) = x"
| "calc_trans _ = Cskip"

We will see this pattern with the translation functions for the other sub-languages of

IMP (aside from seq, which requires some special handling). For any combined-language

instruction, if it corresponds to an injected instruction of our sub-language (in this case Sc x for

a calc instruction), we project out that sub-language instruction. Otherwise, we return the skip

instruction from the sub-language.

5.1.2 Boolean Language

Along similar lines to Calc, we define another language, Cond, corresponding to opera-

tions of Boolean logic. Such operations are important to expressing interesting conditions for the

Sif and SwhileC statements introduced below as part of the Imp Ctrl language-component.

Our approach to Boolean expressions is nearly identical to that for arithmetic. One

important point is that we do not have a separate Boolean type, instead choosing to represent

Boolean values as integers. This simplifies the process of defining the liftings necessary to

compose Cond with the other language-components. It should be emphasized, however, that

GAZELLE is not fundamentally restricted to unityped languages. Implementing languages with

more interesting notions of datatype is possible, and is future work.

129

The syntax of Cond is as follows:

datatype cond =
Seqz
| Sltz
| Sgtz
| Sskip_cond

Cond corresponds to a simple language of conditionals comparing a natural-number input

to zero. Much like Calc, Cond represents its state as a tuple:

type synonym cond_state = "int * int"

The first int represents the Boolean input; the second represents the output. The conver-

sion between bool and int is given as:

abbreviation encode_bool :: "bool ⇒ int" where
"encode_bool b ≡

(if b then 1 else 0)"

We give the semantics for Cond:

definition cond_sem :: "cond ⇒ cond_state ⇒ cond_state" where
"cond_sem x s =

(case s of (b, i) ⇒
(case x of

Seqz ⇒ (encode_bool (i = 0), i)
| Sltz ⇒ (encode_bool (i < 0), i)
| Sgtz ⇒ (encode_bool (i > 0), i)
| Sskip_cond ⇒ s))"

Cond injects into syn using the Sb constructor. To recover Cond instructions from syn,

we use the following translation function:

fun cond_trans :: "syn ⇒ Cond.cond" where
"cond_trans (Sb x) = x"
| "cond_trans _ = Sskip_cond"

5.1.3 Variable-Store Language

Next we introduce the Mem language, which provides access to a memory store mapping

String.literal names to int values. It has the following syntax:

130

datatype reg_id =
Reg_a
| Reg_b
| Reg_c
| Reg_flag

datatype syn =
Sread "str" "reg_id"
| Swrite "str" "reg_id"
| Sskip

Mem handles moving data between the registers used by Calc and Cond and the memory-

store. We use reg id to specify the register target of our reads and writes. Mem has access to all

the registers used by the other language components of IMP, laid out in a tuple along with the

memory-store itself. In order, the components of this state tuple are:

1. The Reg flag register, from which the if and while control-flow constructs (discussed

below) read their Boolean condition

2. The result register Reg c (an int), to which Calc and Cond write the results of their

operations

3. Input register Reg a (an int), from which Cond reads its input and Calc reads its first

input

4. Input register Reg b (an int), from which Calc reads its second input

5. The memory-store, which is an association-list mapping String.literal keys to int

values

We abbreviate this state type as state0. The semantics of Mem move values into and out

of the memory store, leaving the remaining tuple components untouched. Here is an excerpt of

the semantics function for Mem:

131

fun mem0_sem :: "syn ⇒ state0 ⇒ state0" where
"mem0_sem (Sread s r) (reg_flag, reg_c, reg_a, reg_b, mem) =

(case get mem s of
Some v ⇒
(case r of

Reg_a ⇒ (reg_flag, reg_c, v, reg_b, mem)
| Reg_b ⇒ (reg_flag, reg_c, reg_a, v, mem)
— ... remaining cases similar)

| None ⇒ (reg_flag, reg_c, reg_a, reg_b, mem))"
| "mem0_sem (Swrite s r) (reg_flag, reg_c, reg_a, reg_b, mem) =

(case r of
Reg_a ⇒

(reg_flag, reg_c, reg_a, reg_b, update s reg_a mem)
| Reg_b ⇒

(reg_flag, reg_c, reg_a, reg_b, update s reg_b mem)
— ... remaining cases similar)"

| "mem0_sem _ st = st"

get and update perform the association-list accesses. We have made the choice to ignore

reads from an undefined variable. We could instead have Mem signal an error to the interpreter

when it encounters such a situation, but this would require giving Mem access to the interpreter’s

error flag, which would complicate the liftings involved slightly.

Mem injects into syn using the Sm constructor. To recover a Mem instruction from syn, we

use the following translation function:

fun mem_trans :: "syn ⇒ Mem_Simple.syn" where
"mem_trans (Sm m) = m"
| "mem_trans _ = Mem_Simple.Sskip"

5.1.4 Sequencing Language

So far we have still not discussed the control-flow aspects of IMP. With GAZELLE, we

can separate the control-flow aspects of IMP from the remainder of the language; in fact, we can

even separate different parts of control-flow from each other. The Seq language serves as an

example of this pattern - it is a component that is suitable for use in any language that desires

sequencing behavior, and is not tied to the choice of other control-flow primitives used in IMP.

132

Syntactically, the sequencing language is quite straightforward: it consists of just two

node labels:
datatype syn =
Sseq
| Sskip

The state of the Seq language is a list of ’x gensyn syntax trees. This list will ultimately

be mapped via a lifting into the GAZELLE interpreter’s continuation field. We leave ’x, the type

of syntax-tree node labels for the entire combined language as a type parameter so that we can

compose Seq with other languages later on. Seq does not need to know the details of the node

labels’ contents, so this does not create any problems.

The semantics for Seq are given by the following evaluation function:
type synonym ’x state’ = "’x gensyn list"

definition seq_sem :: "syn ⇒ ’x state’ ⇒ ’x state’" where
"seq_sem x st =

(case st of [] ⇒ []
| (G s l)#t ⇒
(case x of
Sskip ⇒ t
| Sseq ⇒ l@t))"

Seq updates the list of syntax-trees representing the continuation. When it encounters

a root Sseq node with descendants at the head of the continuation list, it removes the node

from the list and adds its descendants to the list in its place. Once we connect Seq’s state to

the interpreter’s continuation field via liftings (see sections 5.1.4 and 5.2.7), this will cause the

GAZELLE control-flow interpreter to descend into subtrees rooted at Sseq nodes (i.e., execute

a the sequence of constructions contained therein). Otherwise, for non Sseq nodes (Sskip),

we simply discard the head of the continuation and replace the continuation with its tail. This

corresponds to moving on to the next instruction (the head is assumed to be executed by some

other language-component, Seq does not need to worry about the specifics of how this happens).

Seq injects into syn using the Ss constructor. To recover a Seq instruction from syn,

we use the following translation:

133

fun seq_trans :: "syn ⇒ Seq.syn" where
"seq_trans (Ss x) = x"
| "seq_trans _ = Seq.Sskip"

5.1.5 IMP-Control Language

Finally, we have the Imp Ctl language, which implements the conditional and looping

constructs used by our GAZELLE implementation of IMP. Imp Ctl’s syntax is as follows:

datatype syn’ =
Sif
| Sskip
| SwhileC

Note that we could easily have separated Sif and Swhile into distinct language compo-

nents if we wanted to break down Imp’s control-flow constructs on a finer granularity. The state

type for Imp (which we call ’x imp state’) is:

type synonym ’x imp_state’ = "’x gensyn list * int"

The first component corresponds to the control-flow information Imp Ctl needs to

manage (as with Seq, above; see section 5.1.4). The second field is the flag register used when

evaluating conditionals (and meant to be accessible by Mem, as noted above in section 5.1.3.)

Imp Ctl provides two branching control-flow primitives. The first is an if-statement.

if nodes are meant to have two children: the first corresponds to a boolean expression to evaluate

for the condition of the if; the second is the body.

The second primitive, SwhileC, is essentially a while loop without a built-in condition

1: it iterates the loop body until the beginning of an iteration at which the boolean flag is zero

(i.e., false).

To encode these compound statements, we make use of GAZELLE’s gensyn datatype:

an if-statement will look like ♢Sif [cond, body], and a while-loop will look like ♢SwhileC

1Omitting the condition leads to a more straightforward Hoare rule without sacrificing expressivity; a variant
with a condition could be supported easily.

134

[body]. The function giving the semantics for Imp Ctl is a bit more complicated than the ones

we’ve seen so far:

definition imp_ctl_sem :: "syn’ ⇒ ’x imp_state’ ⇒ ’x imp_state’"
where
"imp_ctl_sem x st =

(case st of
([], b) ⇒ ([], b)
| ((G z l)#t, b) ⇒

((case x of
Sskip ⇒ t
| Sif ⇒
(case l of

[body] ⇒ (if (b ̸= 0) then body#t else t)
| [cond, body] ⇒ cond# ((G z [body])#t)
| _ ⇒ [] — error)

| SwhileC ⇒
(case l of [body] ⇒

(if (b ̸= 0) then body # (G z [body]) # t
else t)

| _ ⇒ [] — error))
, b))"

The most noteworthy thing about imp ctl sem is the way that Sif is implemented. Sif

is evaluated in multiple steps:

1. We begin with (♢Sif [cond, body]) at the head of the continuation list

2. We tell the GAZELLE interpreter to execute cond first, then ♢Sif [body] (followed by

the original tail of the list)

3. After evaluating cond, we are left with ♢Sif [body], followed by the tail

4. We then execute ♢Sif [body], which involves checking the condition-flag register (which

will have already been set since we just executed cond). If the condition is true (nonzero),

we execute the body followed by the original tail. Otherwise, we just execute the tail.

In other words, Sif occurs in two variants: one, ♢Sif [cond, body] corresponds to an

if-statement that has not yet been evaluated (this is the version that will occur in the original syntax

135

tree of IMP programs being run by GAZELLE). The second variant, ♢Sif [body], corresponds

to the condition having been evaluated already, and causes the interpreter to branch based on the

value of the condition-flag register. This breaking-down of statements into multiple continuation

variants is inspired by techniques from the defunctionalization and continuation-passing style

literature (e.g. [Dan08] and [HB16]).

Another point worth observing here is the distinction between the values z (the syntax-

node label pulled out of the continuation field via case analysis) and x (the syntax-node label

given as input to imp ctl sem). Significantly, these two are of different types: z has type ’x,

a type in which imp ctl sem is parametrically polymorphic and thus cannot use for pattern-

matching; x, on the other hand, is in the form of a translated label (from the full language to

the Imp Ctl sub-language) of type syn’. This means that imp ctl sem can understand and

perform case-analysis on syntax node labels without needing access to a full definition of the

syntax of the combined language. All languages implementing flow, including Sseq, will exhibit

this behavior.

Due to the way the GAZELLE interpreter works (see section 2.3.2), x will always directly

correspond to the translation of z into Imp Ctl syntax. Because the manipulations performed

by imp ctl sem on the continuation field care only about the shape of the syntax trees involved

rather than the contents of the syntax-tree labels, we can still perform the manipulations while

leaving the labels’ type as a type parameter ’x in the actual state. In this way, we are able to

define useful control-flow primitives while maintaining modularity.

It should be noted that the cases where l = [] and x = Sif or x = SwhileC corre-

spond to errors: a childless Sif or SwhileC node is not syntactically valid. While we could

have made these interpreter errors, we choose instead to simply halt the program, since correct

handling of invalid syntax is not our focus here (such errors could be eliminated via a static

check).

Imp Ctl injects into syn using the Si constructor. To recover an Imp Ctl instruction

136

from syn, we use the following translation function:

fun imp_trans :: "syn ⇒ Imp_Ctl.syn’" where
"imp_trans (Si x) = x"
| "imp_trans _ = Imp_Ctl.Sskip"

5.1.6 Discussion

It is commonplace to separate, for instance, arithmetic-language semantics (which can

easily be given denotationally) from control flow (this is the approach taken in Software Founda-

tions’ formalization of Imp; see [PAdAG+21b, ch.14]). However, with GAZELLE we are able to

break down control-flow itself into isolated components, as evidenced here with the separation

between Seq and Imp Ctl. These semantics definitions, in and of themselves, do not tell the full

story of how these language-components fit together to give an implementation of IMP. For this,

we need to specify the liftings that show how the state types for each of these sub-languages map

into a common state-type for the combined language. We turn our attention there next.

5.2 Liftings for Constructing IMP

In this section, we give definitions for each language-component’s lifting, describing how

precisely each component contributes to the overall state-transitions of IMP (for more details on

liftings, see chapter 3). It should be noted that, while we focus here on liftings, in the development

we also construct corresponding valid-sets for the liftings, in order to be able to prove their validity.

These match the structure of their corresponding liftings, and are omitted for brevity. The inter-

ested reader can refer to the formal development for more information about the valid-sets used in

IMP. (Language-component definitions can be found in Gazelle/Language Components; the

composed IMP language can be found in Gazelle/Languages/Imp).

137

5.2.1 An Overview of IMP State

First, we define a combined state type for IMP. This state packages together all the

components of the state-types used by the language-component semantics defined above (section

5.1). This is not simply a tuple of all the language-component states side by side, however, as

some of the states overlap. For instance, the flag register used by Mem and the flag register from

which Imp Ctl reads its conditions need to be the same, so that IMP can branch based on the

results of memory reads.

To ease the expression of IMP’s combined state, we define a helpful type synonym ’x

swr, which captures the “standard wrapping” of putting the ’x data inside a nesting of wrapper

types:

• At the innermost layer, we have ’x, the data type we are embedding

• We wrap this in md triv to impose a trivial ordering on it (see section 2.2.3.1)

• We further wrap with option to add a least element to the ordering (see section 2.2.3.2)

• We finally wrap with md prio, in order to enable GAZELLE’s priority-ordering system to

handle conflicts when merging data (see section 2.2.3.4)

In code, we define this as:

type synonym ’a swr =
"’a md_triv option md_prio"

The combined state of IMP contains the following elements:

• The first component of the GAZELLE interpreter state: a list of syntax trees representing

the current continuation

• The second component of the GAZELLE interpreter state: a field for signaling errors with

an error message

138

• The flag register (an int)

• The result register, Reg c (an int)

• The first input register, Reg a (an int)

• The second input register, Reg b (an int)

• The memory-store

• A field of a parameterized type ’x, allowing the state to be extended further

Each of these fields (except for the last one, since we want to allow extensions flexibility

with respect to the ordering they choose on the remaining elements they add), is wrapped in the

standard wrapping given as the swr type. Putting this together, the state of IMP is

type synonym (’s, ’x) entire_state =
"(’s gensyn list md_triv option md_prio *

String.literal option md_triv option md_prio *
int md_triv option md_prio *
int md_triv option md_prio *
int md_triv option md_prio *
int md_triv option md_prio *
(String.literal,
int) oalist md_triv option md_prio *

’x)"

We can restate this a bit more simply. The first two fields come from the GAZELLE

control-flow system. Recall (see section 2.3.2) that the (’s, ’x) control type alias packages

a datum of type ’x with the interpreter-state fields. Therefore, the above is equivalent 2 to:

type synonym (’s, ’x) entire_state_alt =
"(’s, ’x imp_state’) control"

For a visual representation of the combined state structure of IMP, and its relationship to

the structures of the individual sub-languages’ states, see figure 5.1.

2In the codebase, this definition is inside of Mem Simple.thy and has qualified name
Mem Simple.state

139

IMP State:

Continuation

Error

Reg c

Reg a

Reg b

Reg flag

Memory

Ext :: ’b

CALC State:

Reg a

Reg b

Reg c

MEM State:

Reg flag

Reg c

Reg a

Reg b

Memory

Continuation

SEQ State:

COND State:

Reg a

Reg b

Reg c

IMP Control State:

Continuation

Reg flag

Figure 5.1: Visual depiction of lifting into IMP’s combined state; arrows denote injection of
data

140

5.2.2 Priority Protocol for IMP

We use priorities (see section 2.2.3.4) - calculated by priority functions based on syntax -

in order to control the interactions between language components on overlapping parts of IMP’s

state. In order to ensure that priorities are used consistently, we establish a protocol on the

meaning of priorities - more specifically, on the meaning of the priority increments - used by

priority functions defined later in this section.

The protocol for IMP is simple:

• A priority increment of 1 is used for data to which the language component does not intend

to write. (0 cannot be used, since we desire that our liftings satisfy lifting valid, which

requires that priorities always increase). This allows any language component writing at

any higher priority to override the data output in this way.

• A priority increment of 2 is used for data being written by the language component at a

“normal priority”. This priority is used in most cases when a write is intended.

• A priority increment of 3 is used for data being written at a “high priority”. Since 3 is the

highest priority increment used, a write at priority increment 3 will always override (i.e., be

informationally greater) than outputs at any other priority increment. This property is used

when merging the semantics of the sequencing language Seq and the Imp Ctl language of

other IMP control-flow constructs.

Of course, for more complex language compositions, a more complex priority protocol is

likely to be appropriate. For extensibility reasons, it may be valuable to leave some extra space in

between priority-increment levels, so that new language-components to be added later on can be

fit in to the existing priority structure without requiring a renumbering of the others.

141

5.2.3 Lifting Languages Without Control-Flow

Dividing the state of IMP (using control and imp state’) makes it easier to organize

the lifting constructs needed to adapt the semantics of Calc and Cond. These languages do not

interact at all (directly) with GAZELLE’s control-flow constructs. This means that we can lift the

semantics of, e.g., Calc by first building a lifting from calc state to ’x imp state’ (for ’x

arbitrary), and then injecting this lifting into a larger lifting that lifts from calc state into (’x,

’s) imp state.

The lifting no control lifting performs this composition:

definition no_control_lifting ::
"(’a, ’b1, ’b2 :: {Bogus, Pord}) lifting ⇒
(’a, ’b1, (’x, ’b2) control) lifting" where

"no_control_lifting l =
schem_lift NC (SP NX (SP NX (SINJ l NC)))"

Here we see the use of the SINJ schema descriptor to inject the existing lifting l to create

a lifting that lifts into states that are the same as those l lifts into but also take GAZELLE’s control-

flow data into account. (Recall that control is a triple of a continuation, an optional error mes-

sage, and a parameterized type representing the remainder of the state; no control lifting

accesses that remainder component via the input lifting l.) Our lifting-validity proofs (see section

3.3.7) guarantee that no control lifting l is valid if l itself is valid.

We can prove the following rule for no control lifting:

lemma HTS_imp_HT’’ :
fixes fs ::
"(’b ⇒ (’b, ’c) control ⇒
(’b, ’c :: {Bogus, Mergeableb, Okay}) control) list"

assumes H: "f % {{P’}} (l’ x) {{Q’}}"
assumes Valid : "lifting_valid_ok l S"
assumes Hf’ :

"f’ = lift_map_t_s l’ (no_control_lifting l) tg f"
assumes H0 : "gs = pcomps fs"
assumes Hpres : "sups_pres (set fs) (λ _ . ok_S)"
assumes Hseq : "seq_sem_l_gen lfts ∈ set fs"
assumes Skip : "lfts x = Sskip"
assumes Active : "tg x = True"

142

assumes Xin : "x ∈ X"
assumes Hnemp : "g ∈ (set fs - {seq_sem_l_gen lfts})"
assumes Hdom : "(f’ ↓ (set fs - {seq_sem_l_gen lfts}) X)"
assumes HP : "

∧
st . P st =⇒ P’ (LOut l (l’ x) st)"

shows
"|gs| {˜ (λ st . P st) ˜} [G x z]
{˜ (λ st . ∃ old_big small_new .
P old_big ∧
Q’ small_new ∧
st = LUpd l (l’ x) small_new old_big) ˜}"

The assumptions say the following:

• For any particular (fixed but arbitrary) syntax-element x:

• The Hoare triple f % {{P’}} syn {{Q’}} holds for syn = l’ x, where l’ is the

syntax-translation function used when lifting f, and x is the combined-language syn-

tax corresponding to an operation in the language f. Recall that this is a “single-step”

Hoare triple talking about execution of a language component for one step.

• The lifting l used to lift f is valid according to the specifications defined in section 3.1.2

• fs, the list of functions being composed, obeys sups pres (see section 2.2.4), and contains

the lifting of f as well as our sequencing language

• The lifted version of f is not equal to the sequencing semantics

• The lifting of f is dominant over all the other languages in fs - except sequencing - when

considering a syntax set X containing x

Then we can conclude that, when starting in a state satisfying P (a combined-language

state predicate assumed to imply P’ on the sub-state covered by P’), we end in a state satisfying

three clauses. First, there must be a previous state old big for which P held; there must be a

new sub-state small new for which Q’ (the conclusion of the Hoare rule for the sub-language)

143

holds; and finally the ending state of the combined language is given by updating the old big

state with the data from small new. (This characterization of the final state is reminiscent of the

traditional Hoare forward rule for assignment, given for instance in [PAdAG+21a, ch.2].)

It is important to emphasize what this rule achieves. For languages with no control-flow

behavior that dominate all other non-sequencing languages on any particular instruction, this rule

lets us get a Hoare rule for the combined language at that instruction that talks only about the

behavior of that one language, freeing us from having to worry about all others. This would be

unremarkable (a trivial consequence of the lemmas given in section 4.6.1) except that dominance

does not hold for arbitrary non-control-flow languages over the Seq language (that is, for instance,

Calc does not dominate Seq). This is because Seq needs to update the control-flow state after

executing each instruction, so it affects the part of the state the non-control-flow language is not

aware of, making it impossible for the non-control-flow language to return a result informationally

greater than Seq without also overriding its Seq’s control-flow behavior. The proof requires

some reasoning that is specific to Seq; it can be found in

Gazelle/Hoare/Hoare Step.thy.

We give the constructions of the control-flow-free languages using

no control lifting, beginning with Calc.

5.2.4 Arithmetic Language

We begin with the lifting for for the Calc language. The priority calculation for calc is

as follows:
fun calc_prio :: "(Calc.calc ⇒ nat)" where
"calc_prio (Cskip) = 1"
| "calc_prio _ = 2"

We return a priority-increment of one for Cskip instructions (no-ops, usually correspond-

ing to instructions from another sub-language), and two for Calc instructions. We will see a

similar pattern for most other sub-languages of IMP: we always increment the priority by at least

144

one (so that the resulting lifting can satisfy the laws of lifting valid; see section 3.1.2), and

some greater increment, usually two, otherwise.

The lifting for Calc is as follows:
definition calc_schemi where
"calc_schemi = (SP NA (SP NB NC))"
declare calc_schemi_def [simp]

definition calc_schemo where
"calc_schemo =

(SP NX
(SP (SPRC calc_prio (SO NC))
(SP (SPRI (SO NA))
(SP (SPRI (SO NB)) NX))))"

declare calc_schemo_def [simp]

definition calc_lift ::
"(Calc.calc, Calc.calc_state,
(’s, ’x :: {Bogus, Pord, Mergeableb, Okay, Pordps})
Mem_Simple.state) lifting" where

"calc_lift =
no_control_lifting (schem_lift calc_schemi calc_schemo)"

calc schemi (the “input schema”) simply assigns names A, B, and C to the three compo-

nents of Calc’s state-type for the purposes of the lifting generator (see section 3.3). The “output

schema” calc schemo is more interesting. It places NC (the third component of the input) into

the first component of the output, wrapping it using option and md prio, using calc prio

for its priority calculation. NA and NB are placed following NC in the output tuple, wrapped in

option and prio, using SPRI to specify that the priority should always be incremented. We then

use no control lifting to inject this entire lifting into GAZELLE’s state-type with control.

We use the following toggle function (for more on toggling, see section 4.6.1) when

merging Calc with the other components of Imp:
fun calc_toggle :: "syn ⇒ bool" where
"calc_toggle (Sc _) = True"
| "calc_toggle _ = False"

As one would expect, this function toggles Calc on for combined-language instructions

corresponding to injected Calc instructions, and off otherwise. Putting everything together, the

lifted Calc semantics is given as:

145

definition calc_sem_l ::
"syn ⇒ (’s, _) state ⇒ (’s, _) state" where

"calc_sem_l =
lift_map_t_s calc_trans calc_lift calc_toggle

calc_sem"

5.2.5 Boolean Language

The Boolean language Cond uses the following priority calculation:
fun cond_prio :: "Cond.cond ⇒ nat" where
"cond_prio (Sskip_cond) = 1"
| "cond_prio _ = 2"

The lifting for Cond is as follows:
definition cond_lift ::
"(Cond.cond, Cond.cond_state,

(’s, ’x :: {Bogus, Pord, Mergeableb, Okay, Pordps})
Mem_Simple.state) lifting" where

"cond_lift =
no_control_lifting

(schem_lift
(SP NA NB)
(SP (SPRC cond_prio (SO NA))

(SP (SPRI (SO NB)) NX))
:: (Cond.cond, Cond.cond_state,

(’x :: {Okay, Bogus, Mergeableb, Pordps})
state1) lifting)

"

Cond uses the following toggle-function:
fun cond_toggle :: "syn ⇒ bool" where
"cond_toggle (Sb _) = True"
| "cond_toggle _ = False"

The lifted Cond semantics is given as follows:

5.2.6 Variable-Store Language

For Mem, the variable-store language, we have a slightly more complicated priority

calculation. This is to ensure we update (at priority 2) only the fields required to perform the

146

operation, leaving open the possibility of further interactions with other languages. Mem has two

priority-calculation functions. The first, mem prio mem, computes the priority-increment for

updates to the memory store. The increment is 2 when the instruction being executed is Swrite,

and is 1 otherwise.
fun mem_prio_mem ::
"syn ⇒ nat" where

"mem_prio_mem (Swrite _ _) = 2"
| "mem_prio_mem _ = 1"

The second, mem prio reg, computes the priority for updates to each of the registers

used by Mem. For each register, Reg x, (where x = a, b, c, or flag), the increment is 2 when the

instruction being executed is Swrite Reg x, and is 1 otherwise.
fun mem_prio_reg ::
"reg_id ⇒ syn ⇒ nat" where

"mem_prio_reg r (Sread _ r’) =
(if r = r’ then 2 else 1)"

| "mem_prio_reg _ _ = 1"

Using these priority functions, we define the lifting:
definition mem_lift ::
"(Mem_Simple.syn, Mem_Simple.state0,
(’s, _ ::{Okay, Bogus, Mergeableb, Pordps}) state)
lifting" where

"mem_lift = no_control_lifting mem_lift1"

That is, we define a lifting mem lift1 that updates each component of its state according

to the priorities specified by mem prio mem and mem prio reg, corresponding to the operation

being performed. We then wrap this in no control lifting in order to lift into a state with

control-flow data.

We use the following toggle function for Mem:
fun mem_toggle :: "syn ⇒ bool" where
"mem_toggle (Sm _) = True"
| "mem_toggle _ = False"

Putting all these together, we define the lifted semantics for Mem:
definition mem_sem_l :: "syn ⇒ (’s, _) state ⇒ (’s, _) state" where
"mem_sem_l = lift_map_t_s mem_trans mem_lift mem_toggle mem0_sem"

147

5.2.7 Sequencing Language

To calculate priorities for Seq, we use the following priority function:

fun seq_prio :: "syn ⇒ nat" where
"seq_prio _ = 2"

Note that this means that regardless of instruction type, Seq will attempt to update the

control-flow data in the output state at priority 2. This matches the intuition that sequencing

behavior needs to be attached to all nodes - after executing any node, we need to proceed on to

the next instruction. The exception to this is, of course, the other control-flow constructs from

Imp Ctl, which can lead to different control-flow behavior (i.e., something other than proceeding

on to the next statement). As we will see shortly (section 5.2.8), Imp Ctl makes use of a higher

priority when writing to the control-flow state, in order to ensure that for such instructions it

overrides the result of the Seq language.

Lifting from our sequencing-language state (which only contains control-flow data) into

the full IMP state is given as follows:

definition seq_sem_lifting_gen ::
"(syn, ’x state’, (’x, ’a :: Pordb) control) lifting"
where

"seq_sem_lifting_gen = schem_lift
NC (SP (SPRC seq_prio (SO NC)) NX)"

That is, seq sem l gen simply injects into the continuation field of the combined state

using the priority increment given by seq prio (i.e., 2), leaving the rest of the state untouched.

Because we need Seq to be active for all syntax nodes, we do not define a toggle function for

Seq. This, in turn, means that we cannot reason about the relationship between Seq and the other

sub-languages using dominance; instead, we make use of HTS imp HT’’ (see section 5.2.3),

which provides us with an alternative approach for reasoning in the presence of sequencing.

The lifted Seq semantics is given as seq sem l below:

definition seq_sem_l_gen ::
"(’s ⇒ syn) ⇒

148

’s ⇒ ((’x, ’y :: Pordb) control) ⇒
((’x, ’y :: Pordb) control)" where

"seq_sem_l_gen lfts =
lift_map_s lfts
seq_sem_lifting_gen
seq_sem"

definition seq_sem_l ::
"syn ⇒
(’s, _ ::{Okay, Bogus, Mergeableb, Pordps}) state ⇒
(’s, _) state" where

"seq_sem_l = seq_sem_l_gen seq_trans"

5.2.8 IMP-Control Language

For the Imp Ctl language, we calculate priorities as follows:

definition imp_prio :: "(syn’ ⇒ nat)" where
"imp_prio x =
(case x of

Sskip ⇒ 1
| _ ⇒ 3)"

As noted in our description of IMP’s priority protocol (see section 5.2.2), a priority of 3

will suffice to override the Seq language’s behavior at nodes corresponding to Imp Ctl control-

flow instructions. In this way we handle the splitting of control-flow behavior between these two

language components. The lifting for Imp Ctl follows:

definition imp_sem_lifting_gen ::
"(syn’, ’x imp_state’,
(’x, _) state) lifting" where

"imp_sem_lifting_gen =
(schem_lift

(SP NA NB)
(SP (SPRC imp_prio (SO NA))

(SP NX (SP (SPRI (SO NB)) NX))))"

Specializing the type to the one we are using for Imp, we obtain:

definition imp_sem_lifting_spec where
"imp_sem_lifting_spec =

(imp_sem_lifting_gen ::

149

(_, _, (_, (_ ::
{Okay, Bogus, Mergeableb,
Pordps, Pordc_all}))
state) lifting)"

We use the toggle function imp toggle to ensure imp ctl is activated only on

Imp Ctl instructions:

fun imp_toggle :: "syn ⇒ bool" where
"imp_toggle (Si x) = (x ̸= Imp_Ctl.Sskip)"
| "imp_toggle _ = False"

Putting everything together, we obtain our lifted semantics for Imp Ctl:

definition imp_sem_l ::
"syn ⇒
(’s, (_ :: {Okay, Bogus, Mergeableb, Pordps, Pordc_all}))

state ⇒
(’s, (_ :: {Okay, Bogus, Mergeableb, Pordps}))

state" where
"imp_sem_l =

lift_map_t_s imp_trans imp_sem_lifting_spec
imp_toggle imp_ctl_sem"

5.2.9 IMP Semantics Definition

Having defined each sub-language’s lifted semantics, we can compose them using

pcomps in a straightforward manner:

definition sem_final ::
"syn ⇒
(’s, (_ :: {Okay, Bogus, Mergeableb, Pordps, Pordc_all}))
state ⇒

(’s, (_ :: {Okay, Bogus, Mergeableb, Pordps}))
state" where

"sem_final =
pcomps [calc_sem_l, mem_sem_l, cond_sem_l,

imp_sem_l, seq_sem_l]"

Notice that, while there is significant complexity in the definition of IMP from its con-

stituent sub-languages, this complexity is all contained in the definitions of the lifted semantics.

150

Once we have set these up, composing them becomes a straightforward matter of applying

pcomps. This is important to the modularity offered by GAZELLE: correctly wrapping the

semantics of sub-languages allows composition to be a simple operation that does not require

detailed knowledge of the implementation details of the components.

Figure 5.1 (referenced earlier in section 5.2.1) helps to visualize how the components’

states fit together. The “fitting together” is precisely what is accomplished by this application of

pcomps to the lifted semantics functions.

5.3 Hoare Rules for IMP

Thus far (in chapter 4), we have seen several general-purpose Hoare logic rules for

reasoning about GAZELLE programs. In order to reason about code in the IMP language we’ve

just defined, it will be necessary to prove several more rules relating to specific IMP instructions -

particularly where control flow is concerned.

5.3.1 Control-Flow-Free Instructions

For IMP instructions without control-flow, defining Hoare rules becomes a straightforward

matter of stating and proving a single-step rule (i.e., a rule relating only to the language-component

providing the instruction in question) and then using HTS imp HT’’ (see section 5.2.3) to convert

it into a rule about IMP as a whole. If our initial single-step rule is f % {{P’}} c {{Q’}}, we

need to choose P such that P on IMP’s full state implies P’ on the language-component’s state.

While HTS imp HT’’ has several premises, in the case of IMP most of these are easily

dispatched. The most interesting one involves showing that the language-component in question

is dominant over all language-components in IMP other than Seq. This is made simple, however,

due to the use of toggling in the definitions of the language components: we just need to show that

the language-component defining the semantics of the instruction the rule talks about it “toggled

151

on” for that instruction, and that the other language components (besides Seq) are toggled off.

The sups pres condition is also easily handled by virtue of IMP’s state being a member of

the Pordc all typeclass, allowing us to use the sups pres finite all lemma (see section

2.2.4.1).

We define Hoare rules in this way for each Calc, Cond, and Mem instruction. As a

representative example, we give the rule for addition below. First, we show the single-step Hoare

triple:

lemma HCalc_Cadd :
shows "Calc.calc_sem % {{P1}} (Cadd)

{{(λ st .
case st of (c1, c2, x) ⇒ x = c1 + c2 ∧
(∃ old . P1 (c1, c2, old)))}}"

The proof is straightforward: once we evaluate the definitions corresponding to

calc sem, the result follows immediately.

lemma Add_Final :
assumes P1_ok : "

∧
st . P st =⇒ st ∈ ok_S"

assumes HP : "
∧

st . P st =⇒ P’ (LOut calc_lift’ Cadd st)"
shows

"|(sem_final ::
syn ⇒
(syn, (_ ::{Okay,Mergeableb,Bogus, Pordps, Pordc_all}))

state ⇒
(syn, (_ ::{Okay,Bogus,Mergeableb, Pordps, Pordc_all}))

state)|
{˜ (λ st . P st) ˜} [G (Sc (Cadd)) z]
{˜ (λ st . ∃ old_big small_new . P old_big ∧

(case small_new of
(c1, c2, x) ⇒

x = c1 + c2 ∧ (∃ old . P’ (c1, c2, old))) ∧
st = LUpd calc_lift’ (Cadd) small_new old_big) ˜}"

To prove this triple, we first unfold Cadd into calc trans (Sc Cadd), and then apply

HTS imp HT’’ to HCalc Cadd.

For full details on these rules, the reader can consult the formal development

(Gazelle/Languages/Imp/Calc Mem Imp Hoare.thy).

152

5.3.2 Sequencing Rule

We give a Hoare rule for the sequencing language Seq next. Because the only instruction

in Seq is the sequencing instruction Sseq, a single rule suffices:

lemma HxSeq :
assumes H0 : "gs = pcomps fs "
assumes HF : "f = seq_sem_l_gen lfts"
assumes Hpres : "sups_pres (set fs) (λ _ . ok_S)"
assumes Hnemp : "g ∈ set fs"
assumes Hdom : "(f ↓ (set fs) {Sseq’})"
assumes H2 : "lfts Sseq’ = Sseq"
assumes H : "|gs| {˜ P1 ˜} cs {˜ P2 ˜}"
shows "|gs| {˜ P1 ˜} [G Sseq’ cs] {˜ P2 ˜}"

The proof is not terribly complicated and is mostly a matter of unfolding the relevant

abstractions and applying general-purpose theorems for manipulating facts about dominance,

safe for, and indexed Hoare triples. Notice, however, that the premises of this rule are quite

general: unlike the Add Final rule just given, we can use this sequencing rule on any semantics

defined as a composition of language-components, provided Seq is dominant over the other

components on the Sseq instruction.

5.3.3 If Rule

For Imp Ctl, we have two Hoare rules. The first is a rule for If:

lemma HxIf :
assumes H0 : "gs = pcomps fs"
assumes HF :

"f = lift_map_t_s lfts
(imp_sem_lifting_gen ::

(_, _,
(_, (_ :: {Okay, Bogus, Mergeableb, Pordps, Pordc_all}))

state)
lifting)

tg imp_ctl_sem"
assumes Tg : "tg (Sif’) = True"
assumes Hpres : "sups_pres (set fs) (λ _ . ok_S)"
assumes Hnemp : "g ∈ set fs"

153

assumes Hdom : "(f ↓ (set fs) {Sif’})"
assumes Hsyn : "lfts Sif’ = Sif"
assumes P1_valid : "

∧
st. P1 st =⇒ get_cond st ̸= None"

assumes P2_valid : "
∧

st . P2 st =⇒ get_cond st ̸= None"
assumes P1_oblivious :

"
∧

p p’ x rest .
P1 (mdp p x, rest) =⇒
P1 (mdp p’ x, rest)"

assumes P2_oblivious :
"
∧

p p’ x rest .
P2 (mdp p x, rest) =⇒
P2 (mdp p’ x, rest)"

assumes Hcond : "|gs| {˜ P1 ˜} [cond] {˜ P2 ˜}"
assumes Htrue :

"|gs|
{˜ (λ st . P2 st ∧ get_cond st = Some True) ˜}
[body]
{˜ P3 ˜}"

assumes Hfalse : "|gs|
{˜ (λ st . P2 st ∧ get_cond st = Some False) ˜}
[]
{˜P3˜}"

shows "|gs| {˜ P1 ˜} [G Sif’ [cond, body]] {˜ P3 ˜}"

The proof of this rule is in principle quite similar to the proof for the sequencing rule. The

main differences are that more definitions need to be added as hints to ISABELLE’s simplifier than

in the rule for Seq, because Imp Ctl’s state is more complex than that of Seq (and therefore, so

is the lifting it uses).

The interesting part of the proof is as follows: we take a step (evaluating the condition of

the If statement). At this point, if the condition-flag register is False, we are done (the Htrue

assumption, combined with the fact that H2 holds after executing cond). Otherwise, we step

through the remainder of the body of the If statement, and eventually apply Hfalse.

The structure of this proof is fairly typical for proofs of “If” Hoare rules; the primary in-

teresting difference is that we need to have pre- and post-conditions for the conditional expression

cond, since in principle cond could have side-effects. (In typical formalizations of IMP - for

154

instance, in [PAdAG+21b, ch.12] - this problem is avoided by specifying the behavior of boolean

operators by means of a side-effect-free expression language.) We also require that the predicates

P1 and P2 do not look at the priority field of the condition

(P1 oblivious and P2 oblivious) and only hold when the condition-flag register actually

contains a value

(P1 valid and P2 valid). For reasonable choices of predicates this is quite easy to show,

although it is an annoyance.

5.3.4 While Rule

The other rule for Imp Ctl corresponds to the loop construct SwhileC:

lemma HxWhileC :
assumes H0 : "gs = pcomps fs"
assumes HF :

"f = lift_map_t_s lfts
(imp_sem_lifting_gen :: (_, _,

(_, (_ :: {Okay, Bogus, Mergeableb, Pordps, Pordc_all}))
state)

lifting)
tg imp_ctl_sem"

assumes Tg : "tg (SwhileC’) = True"
assumes Hpres : "sups_pres (set fs) (λ _ . ok_S)"
assumes Hnemp : "g ∈ set fs"
assumes Hdom : "(f ↓ (set fs) {SwhileC’})"
assumes Hsyn : "lfts SwhileC’ = SwhileC"
assumes PX_valid : "

∧
st. PX st =⇒ get_cond st ̸= None"

assumes PX_oblivious :
"
∧

p p’ x rest .
PX (mdp p x, rest) =⇒
PX (mdp p’ x, rest)"

assumes Htrue :
"|gs|
{˜ (λ st . (PX st ∧ get_cond st = Some True))˜}
[body]
{˜PX˜}"

shows "|gs|
{˜PX˜}
[G SwhileC’ [body]]
{˜ (λ st . PX st ∧ get_cond st = Some False)˜}"

155

Recall that with SwhileC, we do not evaluate a conditional expression explicitly, instead

assuming that this has been done in the course of evaluating the body of the loop. In order to

prove this rule, we first need to prove a lower-level rule that makes explicit use of step-counts

(recall that our reason for introducing step-counts in section 4.4 was to be able to prove the

soundness of this rule):

lemma HxWhileC’ :
assumes H0 : "gs = pcomps fs"
assumes HF :

"f = lift_map_t_s lfts
(imp_sem_lifting_gen :: (_, _,

(_, (_ :: {Okay, Bogus, Mergeableb, Pordps, Pordc_all}))
state)

lifting)
tg imp_ctl_sem"

assumes Tg : "tg (SwhileC’) = True"
assumes Hpres : "sups_pres (set fs) (λ _ . ok_S)"
assumes Hnemp : "g ∈ set fs"
assumes Hdom : "(f ↓ (set fs) {SwhileC’})"
assumes Hsyn : "lfts SwhileC’ = SwhileC"
assumes PX_valid : "

∧
st. PX st =⇒ get_cond st ̸= None"

assumes PX_oblivious :
"
∧

p p’ x rest .
PX (mdp p x, rest) =⇒
PX (mdp p’ x, rest)"

assumes Htrue :
"
∧

nb2 . ∃ nb1’ .
|#gs#|
{#- (λ st. PX st ∧ get_cond st = Some True),

(nb1’ + nb2) -#}
[body]
{#- PX, nb2 -#}"

assumes NLs : "nl1 ≤ nl2"
shows "|#gs#|

{#- PX, nl1 -#}
[G SwhileC’ [body]]
{#- (λ st . PX st ∧ get_cond st = Some False), nl2 -#}"

Once we have HxWhileC’, proving HxWhileC is simple: we unfold the definition

of the Hoare triple |gs| {˜P˜} c {˜Q˜} to get an explicit (arbitrary) step-count, then apply

HxWhileC’ using this step-count to show the rule holds at that count.

156

The proof of HxWhileC’ goes roughly as follows: we proceed by induction on the

number of steps for which we want to show the entire program (♢SwhileC’ [body]) is safe. If

the step-count is 0, our result holds trivially. Otherwise, we take a step (which will place the body

of the loop onto the top of the continuation list), then run the body. We then check the value of

the flag register. If it is false, we have exited the loop and are done. Otherwise, we can apply our

inductive hypothesis (since we took at least one step, having taken one when pushing the loop

body onto the continuation stack). With a bit of massaging, we can use this to prove our goal.

From a user’s point of view HxWhileC works similarly to the rule HxIf, subject to

the same caveats about PX valid and PX oblivious. Of course, a loop invariant (PX in the

theorem statements above) must be provided.

5.4 IMP Example: Multiplication as Repeated Addition

To demonstrate the usefulness of this chapter’s formalization of IMP, we conclude with

the definition, specification, and verification of an example program. While small, this program

showcases the main challenge of verification of imperative programs: namely, describing loop

invariants for reasoning about iterative code, and using these invariants, along with the Hoare

rules for the language, to complete proofs for loop bodies.

5.4.1 Multiplication Program

Our choice for a program that demonstrates these features of GAZELLE is a program that

implements multiplication by means of repeated addition. We begin by placing one number to be

multiplied in memory at ’’arg1’’, and the other at ’’arg2’’. By the end of the execution,

memory location ’’acc’’ will store the result of the multiplication. Here is the code:

definition prog1 :: "int ⇒ int ⇒ syn gensyn" where
"prog1 i1 i2 =

♢ (Ss Sseq)

157

[† Sc (Cnum i1)
, † Sm (Swrite (STR ’’arg1’’) (Reg_c))
, † Sc (Cnum i2)
, † Sm (Swrite (STR ’’arg2’’) (Reg_c))
, † Sc (Cnum 1)
, † Sm (Swrite (STR ’’one’’) (Reg_c))
, † Sc (Cnum 0)
, † Sm (Swrite (STR ’’acc’’) (Reg_c))

, † Sm (Sread (STR ’’arg2’’) (Reg_c))
, † Sb Sgtz

, ♢ (Si SwhileC)
[♢ (Ss Sseq)

[† Sm (Sread (STR ’’arg1’’) (Reg_a))
, † Sm (Sread (STR ’’acc’’) (Reg_b))
, † Sc Cadd
, † Sm (Swrite (STR ’’acc’’) (Reg_c))
, † Sm (Sread (STR ’’arg2’’) (Reg_a))
, † Sm (Sread (STR ’’one’’) (Reg_b))
, † Sc Csub
, † Sm (Swrite (STR ’’arg2’’) (Reg_c))
, † Sm (Sread (STR ’’arg2’’) (Reg_c))
, † Sb Sgtz
]

]
]"

Note that while in this example the program itself is parameterized over the inputs to be

multiplied (i.e., prog1 really corresponds to a procedure for generating code that will calculate

the result for some specific pair of inputs), we could just as easily have assumed the inputs would

already be present in, for instance, memory locations ’’arg1’’ and ’’arg2’’ in the initial

state.

5.4.2 Multiplication Specification

The specification for prog1 is what one would expect: if our inputs are positive integers

(we restrict ourselves to this case for simplicity), we will find the result of multiplying these values

in memory at ’’acc’’ after the program runs. (There is a bit of unfortunate syntactic noise

158

induced by having to manually unwrap some of GAZELLE’s wrapper-types in the conclusion).

lemma prog1_spec :
assumes Hi1 : "0 < i1"
assumes Hi2 : "0 ≤ i2"
shows

"|(sem_final ::
(syn ⇒
(syn, (’x :: {Okay, Bogus, Mergeableb,

Pordps, Pordc_all}))
state ⇒

(syn, (_ :: {Okay, Bogus, Mergeableb,
Pordps})) state))|

{˜ (λ st . st ∈ ok_S) ˜}
[prog1 i1 i2]
{˜ (λ st . st ∈ ok_S ∧

(case st of
(reg_flag, reg_c, reg_a, reg_b, mem, xz) ⇒
(case mem of

(mdp p (Some (mdt mem’))) ⇒
get mem’(STR ’’acc’’) = Some (i1 * i2)

| _ ⇒ False)))
˜}"

5.4.3 Multiplication Proof

The proof that the multiplication program meets its specification is unfortunately cluttered

by tactic-style proofs, due to the fact that GAZELLE’s automation is not as optimized as it could be,

and so some “hand-holding” is required to get ISABELLE to understand the correctness of some

of the proof-steps involved (particularly steps involving application of the rule of consequence).

However, its structure quite closely matches the idealized version we give here.

As is typical in Hoare-logic reasoning about programs (e.g. in [PAdAG+21a, ch.2]), we

can give this idealized proof by annotating our program, showing what predicates hold before

and after each statement, and what Hoare rules are used to connect one predicate to the next. We

place these in comments inside the code, which looks like:

— this is a comment

We elide the fact that the state is Okay (in the sense of being in ok S) at all times, in order

159

to reduce noise and make the structure of the proof clearer. This property (membership in ok S)

is assumed to hold true on the program’s initial state, and is shown to hold true at each point

thereafter.

definition prog1_annotated :: "int ⇒ int ⇒ syn gensyn" where
"prog1_annotated i1 i2 =

— True
♢ (Ss Sseq)
[— True

† Sc (Cnum i1)
— reg c = i1

, † Sm (Swrite (STR ’’arg1’’) (Reg_c))
— reg c = i1; mem[”arg1”] = i1

, † Sc (Cnum i2)
— reg c = i2; mem[”arg1”] = i1

, † Sm (Swrite (STR ’’arg2’’) (Reg_c))
— reg c = i2; mem[”arg1”] = i1; mem[”arg2”] = i2

, † Sc (Cnum 1)
— reg c = 1; mem[”arg1”] = i1; mem[”arg2”] = i2

, † Sm (Swrite (STR ’’one’’) (Reg_c))
— reg c = 1; mem[”arg1”] = i1; mem[”arg2”] = i2; mem[”one”] = 1

, † Sc (Cnum 0)
— reg c = 0; mem[”arg1”] = i1; mem[”arg2”] = i2; mem[”one”] = 1

, † Sm (Swrite (STR ’’acc’’) (Reg_c))
— reg c = 0; mem[”arg1”] = i1; mem[”arg2”] = i2; mem[”one”] = 1; mem[”acc”] = 0

, † Sm (Sread (STR ’’arg2’’) (Reg_c))
— reg c = i2; mem[”arg1”] = i1; mem[”arg2”] = i2; mem[”one”] = 1; mem[”acc”] = 0

, † Sb Sgtz
— reg c = i2; reg flag = (i2 > 0) mem[”arg1”] = i1;
— mem[”arg2”] = i2; mem[”one”] = 1; mem[”acc”] = 0

— LOOP INVARIANT I: exists idx such that:
— reg flag = 1 iff idx > 0;
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx);
— i2 >= idx;
—
— holds initially for idx = i2

, ♢ (Si SwhileC)
[— I; reg flag = 1

♢ (Ss Sseq)
[— I; reg flag = 1.

— We can restate this as:
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx);

160

— i2 >= idx; idx > 0
† Sm (Sread (STR ’’arg1’’) (Reg_a))
— reg a = i1;
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx);
— i2 >= idx; idx > 0

, † Sm (Sread (STR ’’acc’’) (Reg_b))
— reg a = i1; reg b = i1 * (i2 - idx);
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx);
— i2 >= idx; idx > 0

, † Sc Cadd
— reg a = i1; reg b = i1 * (i2 - idx); reg c = i1 * (i2 - idx) + i1;
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx);
— i2 >= idx; idx > 0

, † Sm (Swrite (STR ’’acc’’) (Reg_c))
— reg a = i1; reg b = i1 * (i2 - idx); reg c = i1 * (i2 - idx) + i1;
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx) + i1;
— i2 >= idx; idx > 0

, † Sm (Sread (STR ’’arg2’’) (Reg_a))
— reg a = idx; reg b = i1 * (i2 - idx); reg c = i1 * (i2 - idx) + i1;
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx) + i1;
— i2 >= idx; idx > 0

, † Sm (Sread (STR ’’one’’) (Reg_b))
— reg a = idx; reg b = 1; reg c = reg c = i1 * (i2 - idx) + i1;
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx) + i1;
— i2 >= idx; idx > 0

, † Sc Csub
— reg a = idx; reg b = 1; reg c = idx - 1;
— mem[”arg1”] = i1; mem[”arg2”] = idx; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx) + i1;
— i2 >= idx; idx > 0

, † Sm (Swrite (STR ’’arg2’’) (Reg_c))
— reg a = idx; reg b = 1; reg c = idx - 1;
— mem[”arg1”] = i1; mem[”arg2”] = idx - 1; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx) + i1;
— i2 >= idx; idx > 0

, † Sm (Sread (STR ’’arg2’’) (Reg_c))
— reg a = idx; reg b = 1; reg c = idx - 1;
— mem[”arg1”] = i1; mem[”arg2”] = idx - 1; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx) + i1;
— i2 >= idx; idx > 0

161

, † Sb Sgtz
— reg a = idx; reg b = 1; reg c = idx - 1; reg flag = 1 iff idx’ > 0
— mem[”arg1”] = i1; mem[”arg2”] = idx - 1; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - idx) + i1;
— i2 >= idx
— let idx’ = idx - 1. Then:
— reg flag = 1 iff idx’ > 0;
— mem[”arg1”] = i1; mem[”arg2”] = idx’; mem[”one”] = 1;
— mem[”acc”] = i1 * (i2 - (idx’ + 1)) + i1 = i1 * (i2 - idx’);
— i2 >= idx’
— Therefore invariant I is reestablished for idx’

]
]
— I; reg flag = 0

]
— I; reg flag = 0"

For the full details of the proof, the reader can refer to the formal development. While the

actual proof is messier than this idealized version - owing mostly to the fact that GAZELLE’s au-

tomation for handling the implications generated by applications of the Hoare rule of consequence

could be improved - the basic structure is identical to that presented here.

162

Chapter 6

Conclusion

6.1 Summary

In this dissertation, we have described in detail the implementation and use of GAZELLE,

a system for constructing languages by composition from smaller parts and for formally reasoning

about such composed languages.

In chapter 1, we discussed the problem GAZELLE solves: making it easier to build formal

semantics for programming languages out of reusable components. We also discussed why that

problem matters: that lack of reuse contributes to the large amount of human effort that needs

to go into formalizing and reasoning about programming languages. Through the lens of the

expression problem, we talked about other approaches to this problem and related problems, and

how GAZELLE occupies a distinct niche in a rich design space.

In chapter 2, we introduced the GAZELLE approach in practice (section 2.1), demonstrat-

ing how GAZELLE can be used to construct a simple language out of several reusable components,

and contrasted the GAZELLE solution with a more ad-hoc, manual approach. We then discussed

the implementation of two key primitives: pcomps, for merging results of a single execution

step (figure 2.2) and sem run, for expressing multi-step executions (figure 2.7). These allow

163

GAZELLE to assign a precise meaning to language composition. In section 2.2 we discussed

the partial-order-based formalism that powers the definition of pcomps, and in section 2.3 we

discussed the generic, control-flow based interpreter that defines sem run.

Next, in chapter 3, we discussed GAZELLE’s lifting subsystem, for adapting existing code

to work with the partial orderings defined in section 2.2. In chapter 4, we then discussed how

GAZELLE enables building program logics for languages defined by composition, enabling reuse

of reasoning principles defined on the constituent sub-languages when reasoning about composite

languages. Finally, in chapter 5, we brought everything together with an extended example of

defining and reasoning about a simple but realistic programming language by composition, using

the GAZELLE framework.

At this point, we believe we’ve made the case that GAZELLE represents an interesting and

distinct approach to programming language semantics. It is our hope that this document helps

readers not only understand GAZELLE, but also inspires them to consider the use of GAZELLE

or a similar approach when building formalizations. We’ll end this dissertation with some ideas

about future directions for further work on GAZELLE.

6.2 Ideas for Future Work

The GAZELLE project achieved its initial aim: being able to express and enable reasoning

about imperative programs in IMP using a compositional approach. However, GAZELLE is

far from a finished project. Over the course of building GAZELLE many potential avenues for

improvement (both from a research and an engineering standpoint) have come to light. Here we

give an assortment of ideas about future directions for improving and building on GAZELLE. The

list is by no means complete - there are a number of interesting research directions still to be

pursued related to the GAZELLE system.

164

6.2.1 Evaluating GAZELLE on More Case Studies

While we believe that the IMP case study carried out as described in chapter 5 shows

the practicality and flexibility of GAZELLE, much could be gained from applying GAZELLE to

other language formalizations - particularly in terms of the reusability of components such as

Seq between languages with very different semantics. Previous versions of GAZELLE were able

to support implementation of a lambda-calculus (that is, a functional language rather than an

imperative one) evaluator that was able to reuse control-flow primitives from IMP. The current

version of GAZELLE should also be able to support this, and carrying out this evaluation would

no doubt lead to interesting insights. Modeling other programming paradigms using GAZELLE

(such as object-oriented programming) would similarly be likely to yield useful results that could

help improve GAZELLE.

6.2.2 Library of Language Components

After experimenting with applying GAZELLE to other languages, it should be possible

to distill the insights gained in this way to build a “standard library” of reusable components

(language semantics and proof rules) designed for use with GAZELLE, with an eye toward general

reusability across different language-modeling tasks. This could lower the barrier to entry for

using GAZELLE to formalize a new language, and further increase user productivity.

6.2.3 Porting GAZELLE to Other Proof Assistants

While GAZELLE as a framework is implemented in ISABELLE, the approach would likely

be useful in other proof assistants as well. Porting GAZELLE to COQ could be an interesting

project; COQ has a richer typesystem and also more powerful typeclass inference. However, the

fact that COQ requires constructive proofs might make the lifting of proof rules more challenging.

Adapting GAZELLE to work with COQ would not only increase the potential audience for

165

GAZELLE, it might also shed light on ISABELLE-specific assumptions that might be built into the

way GAZELLE is designed.

6.2.4 Fully Leveraging Bsup

We gave a definition for the bsup operator in section 2.2.2.3, but the careful reader

may have noticed that in the development described here, we only use the fact that bsup x

y computes the supremum of x and y when that supremum exists. Initially, we had hoped to

support use of bsup (and, hence, pcomps) to reason about situations where no supremum exists

between state elements being merged, but we had limited success doing so. Nonetheless, even

when no supremum is present, bsup still has some useful properties, including limited forms of

associativity laws. Understanding of whether bsup is structured enough to be useful without the

presence of a supremum could be an interesting direction. If, in fact, it is possible (at least in

some cases) to reason conveniently about bsup without assuming a supremum, this could have

significant implications for the choices of partial orders used in formalizing combined-language

states. For instance, the md prio wrapper type is very frequently used to force the existence of a

supremum, but has some undesirable qualities (see e.g. the discussion of dominance and toggling

in section 4.6.1). Being able to remove some of the need for md prio could be of great use.

6.2.5 Reconciling Categorical Approach to Lenses with Gazelle Liftings

While GAZELLE’s lifting system (described in chapter 3) draws inspiration heavily from

category-theoretic notions of lenses and other optics (as developed in e.g. [PGW17]), the precise

relationship between GAZELLE’s liftings and optics (as well as other related categorical constructs)

is not clear. GAZELLE’s definition of lifting as an abstraction (including the laws for reasoning

about them) is driven primarily by practicality: we sought out an abstraction that was suitable

for our purposes; namely, adapting existing semantics functions to work over ordered datatypes.

166

Having an understanding of the lifting abstraction from a more principled angle could help reveal

other, related abstractions that might also be useful in GAZELLE, and could even lead to a simpler

or cleaner definition for lifting itself.

167

Bibliography

[AB07] Andrew W. Appel and Sandrine Blazy. Separation Logic for Small-Step cminor.
In Klaus Schneider and Jens Brandt, editors, Theorem Proving in Higher Order
Logics, volume 4732, pages 5–21. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007. ISSN: 0302-9743, 1611-3349 Series Title: Lecture Notes in Computer
Science.

[ADH+14] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for
Certified Compilers. Cambridge University Press, Cambridge, 2014.

[Ahm15] Amal Ahmed. Verified Compilers for a Multi-Language World. page 17 pages,
2015. Artwork Size: 17 pages Medium: application/pdf Publisher: Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Ger-
many.

[Ahm21] Amal Ahmed. Semantic Soundness for Language Interoperability: Invited Pre-
sentation at the Combined 28th International Workshop on Expressiveness in
Concurrency and 18th Workshop on Structural Operational Semantics. Electronic
Proceedings in Theoretical Computer Science, 339:1–1, August 2021.

[Bal] Clemens Ballarin. Tutorial to Locales and Locale Interpretation. page 20.

[Bre17] Joachim Breitner. Isabelle functions: Always total, sometimes undefined – Blog
– Joachim Breitner’s Homepage, October 2017.

[Dan08] Olivier Danvy. Defunctionalized Interpreters for Programming Languages. Inter-
national Conference on Functional Programming, 43(9):12, September 2008.

[DdSOS13] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à
la carte. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages - POPL ’13, page 207, Rome, Italy,
2013. ACM Press.

[Dev06] The Apache Velocity Developers. Velocity Users’ Guide, 2006.

168

[FGM+05] J Nathan Foster, Michael B Greenwald, Jonathan T Moore, Benjamin C Pierce,
and Alan Schmitt. Combinators for Bi-Directional Tree Transformations. page 14.
ACM, January 2005.

[GKR+15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep
Specifications and Certified Abstraction Layers. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 595–608, Mumbai India, January 2015. ACM.

[Haf21] Florian Haftmann. Haskell-style type classes with Isabelle/Isar. page 24, 2021.

[HB16] Graham Hutton and Patrick Bahr. Cutting Out Continuations. In Sam Lindley,
Conor McBride, Phil Trinder, and Don Sannella, editors, A List of Successes That
Can Change the World, volume 9600, pages 187–200. Springer International
Publishing, Cham, 2016. Series Title: Lecture Notes in Computer Science.

[KMNO14] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
CakeML: a verified implementation of ML. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
179–191, San Diego California USA, January 2014. ACM.

[LBK+16] Xavier Leroy, Sandrine Blazy, Daniel Kastner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand. CompCert – A Formally Verified Optimizing
Compiler. page 8, 2016.

[NJ17] Shayan Najd and Simon Peyton Jones. Trees that Grow. Journal of Universal
Computer Science,, 23(1):42–62, January 2017. Publisher: Verlag der Technis-
chen Universität Graz.

[NPW21] Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel. A Proof Assistant
for Higher-Order Logic, December 2021.

[PAdAG+21a] Benjamin C. Pierce, Arthur Azevedo de Amorim, Marco Gaboardi, Michael
Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey.
Software Foundations Volume 2: Programming Language Foundations, August
2021.

[PAdAG+21b] Benjamin C. Pierce, Arthur Azevedo de Amorim, Marco Gaboardi, Michael
Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Software Founda-
tions Volume 1: Logical Foundations, August 2021.

[PGW17] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor Optics: Modu-
lar Data Accessors. The Art, Science, and Engineering of Programming, 1(2):7,
April 2017.

169

[RYLG18] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Adapting proof
automation to adapt proofs. In Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, pages 115–129, Los
Angeles CA USA, January 2018. ACM.

[RYLG19] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for
Proof Reuse in Coq. page 19 pages, 2019. Artwork Size: 19 pages Medium:
application/pdf Publisher: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
GmbH, Wadern/Saarbruecken, Germany Version Number: 1.0.

[Sch88] David Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. William C. Brown, December 1988.

[Swi08] Wouter Swierstra. Data types à la carte. Journal of Functional Programming,
18(04), July 2008.

[Tea22] The Coq Development Team. The Coq Reference Manual, March 2022.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer architecture -
FPCA ’89, pages 347–359, Imperial College, London, United Kingdom, 1989.
ACM Press.

[Wad98] Philip Wadler. The Expression Problem, November 1998.

[Wen] Makarius Wenzel. The Isabelle/Isar Reference Manual. page 356.

[ZO05] Matthias Zenger and Martin Odersky. Independently extensible solutions to the
expression problem. In In Proc. FOOL 12, 2005.

170

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Thesis Statement
	The Gazelle Approach: An Overview
	Related Work: Other Approaches to Language Composition and Flexibility
	The Expression Problem
	Datatypes á la Carte
	Automation for Adapting Datatypes and Proofs
	Compositional Verified Compilation

	The Rest of This Paper

	Gazelle: A Framework for Language Composition
	Gazelle Example - Composing Programming Languages
	The Languages
	Composition

	A Lightweight Approach to Instruction-Language Composition
	State Composition: Examples and Intuitions
	Information-Ordering In Gazelle
	Wrapper Types for Mergeable States
	Composition and Preservation of Suprema
	Summary

	Extending Composition to Multi-Step Executions
	Syntax for Gazelle's Control-Flow Interpreter
	Gazelle Control-Flow Semantics

	Summary

	Lifting: Using Partial Orders with Existing Languages
	The Lifting Abstraction
	Lenses
	A Lens-Inspired Lifter Abstraction

	Lifter Instances
	Identity Lifting
	Trivial Lifting
	Option Lifting
	Priority Lifting
	Tuple Liftings
	Merge Lifting and Orthogonality
	Discussion

	Automating Lifter Instance Generation
	The Automated Lifting Generator - An Example
	Ad-Hoc Polymorphism in Isabelle
	Typeclasses for Lifter Inference
	Automated Lifting Generation Internals - The schem_lift Polymorphic Constant
	Priority Functions in Liftings
	Automated Lifting Generation - Scalability
	Proof Automation for Lifting Correctness

	Discussion

	Reasoning About Gazelle
	Hoare Logic: A Primer
	Hoare Logic for Single-Step Semantics
	CPS-Flavored Hoare Logic
	CPS-Flavored Hoare Logic with Step-Counts
	Soundness of Step-Counting Hoare Logic
	Reasoning about Multi-Step Composition
	Dominance and Toggling

	Discussion

	Imp: An Extended Example of Gazelle in Practice
	Imp's Sub-Languages
	Arithmetic Language
	Boolean Language
	Variable-Store Language
	Sequencing Language
	Imp-Control Language
	Discussion

	Liftings for Constructing Imp
	An Overview of Imp State
	Priority Protocol for Imp
	Lifting Languages Without Control-Flow
	Arithmetic Language
	Boolean Language
	Variable-Store Language
	Sequencing Language
	Imp-Control Language
	Imp Semantics Definition

	Hoare Rules for Imp
	Control-Flow-Free Instructions
	Sequencing Rule
	If Rule
	While Rule

	Imp Example: Multiplication as Repeated Addition
	Multiplication Program
	Multiplication Specification
	Multiplication Proof

	Conclusion
	Summary
	Ideas for Future Work
	Evaluating Gazelle on More Case Studies
	Library of Language Components
	Porting Gazelle to Other Proof Assistants
	Fully Leveraging Bsup
	Reconciling Categorical Approach to Lenses with Gazelle Liftings

	Bibliography

