
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Scalable Representations for Vision and Robotics

Permalink
https://escholarship.org/uc/item/5856n00x

Author
Xiao, Tete

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5856n00x
https://escholarship.org
http://www.cdlib.org/

Scalable Representations for Vision and Robotics

By

Tete Xiao

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Jitendra Malik

Associate Professor Anca Dragan
Doctor Ross Girshick

Spring 2023

Scalable Representations for Vision and Robotics

Copyright 2023
by

Tete Xiao

1

Abstract

Scalable Representations for Vision and Robotics

by

Tete Xiao

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Artificial intelligence systems have shown remarkable advancements in recent
years. However, the challenge of scalability and generalization to real-world problems
remains a significant issue. In this thesis, we explore the three key components
of building scalable artificial intelligence systems for computer vision, including
model optimizability, learning objectives, and large-scale datasets, and apply these
outcomes for robotics.

Our work begins with an examination of the optimizability of vision transformers,
proposing a new set of optimizability metrics and an alternative design for their
patchify stem. Next, we introduce a contrastive self-supervised learning objective that
reduces inductive biases in self-supervised learning, resulting in superior performance
across various datasets. We then showcase the effectiveness of self-supervised visual
pre-training from real-world images for learning motor control tasks from pixels,
outperforming supervised baselines and matching oracle state performance.

Expanding on this, we explore self-supervised visual pre-training on images
from diverse, in-the-wild videos for real-world robotic tasks, demonstrating the
effectiveness of pre-trained representations across a range of tasks and embodiments.
In addition, we present a sim-to-real learning-based approach for real-world humanoid
locomotion using a causal Transformer, marking the first fully learning-based method
for real-world full-sized humanoid locomotion. Finally, we conclude the thesis and
discuss potential future directions for further research in the field.

i

To my parents

ii

Contents

List of Figures v

List of Tables xii

Acknowledgments xv

1 Introduction 1

2 Optimizability of Scalable Models:
A Study of Vision Transformers 3
2.1 Introduction . 3
2.2 Related Work . 5
2.3 Vision Transformer Architectures . 7
2.4 Measuring Optimizability . 9
2.5 Stability Experiments . 10

2.5.1 Training Length Stability . 10
2.5.2 Optimizer Stability . 12
2.5.3 Learning Rate and Weight Decay Stability 13
2.5.4 Experimental Details . 13

2.6 Peak Performance . 14
2.7 Additional Study and Experimental Details 16
2.8 Conclusion . 24

3 Reducing Inductive Bias in Contrastive Self-Supervised Learning 25
3.1 Introduction . 25
3.2 Background: Contrastive Learning Framework 26
3.3 LooC: Leave-one-out Contrastive Learning 28
3.4 Experiments . 30
3.5 Related Work . 36
3.6 Conclusions . 37

Contents iii

4 Masked Visual Pre-training for Motor Control 38
4.1 Introduction . 38
4.2 Masked Visual Pre-training for Motor Control 40

4.2.1 Masked Visual Pre-training 40
4.2.2 Learning Motor Control from Pixels 41

4.3 Benchmark Suite . 42
4.4 Experimental Setup . 44
4.5 Experimental Results . 45

4.5.1 Sample Complexity . 45
4.5.2 Pre-training Framework Comparison 46
4.5.3 Comparison to In-domain Training Framework 46
4.5.4 Ablations . 47
4.5.5 Representation Analysis . 48

4.6 Related Work . 49

5 Real-World Robot Learning with Masked Visual Pre-training 52
5.1 Introduction . 52
5.2 Related Work . 54
5.3 Framework . 54

5.3.1 Masked Visual Pre-training 54
5.3.2 Real-World Robot Learning 56

5.4 Experimental Setup . 56
5.5 Experimental Results . 58

5.5.1 Basic Motor Control . 59
5.5.2 Visually Diverse Scenes and Objects 59
5.5.3 Scaling Model and Data Size 61
5.5.4 Comparison to Concurrent Work 62
5.5.5 Ablation Studies . 62
5.5.6 Case Study: Multi-finger Hand 64
5.5.7 Data Collection . 65
5.5.8 Evaluation Protocol . 66

5.6 Conclusion . 67

6 Learning Humanoid Locomotion with Transformers 68
6.1 Introduction . 68
6.2 Related Work . 70
6.3 Method . 71

6.3.1 Model Architecture . 72
6.3.2 State-policy Supervision . 73

Contents iv

6.3.3 Joint Optimization with Reinforcement Learning 73
6.4 Experimental Setup . 74

6.4.1 Digit Humanoid Robot . 74
6.4.2 Simulation Environment . 74
6.4.3 Reward . 75
6.4.4 Reinforcement Learning Algorithm 79
6.4.5 Neural Network Model . 79

6.5 Experiments . 80
6.5.1 Simulation Experiments . 80
6.5.2 Real-World Experiments . 81
6.5.3 Dirty Laundry . 85

6.6 Conclusion . 86

7 Summary and Future Directions 87

Bibliography 88

v

List of Figures

2.1 Early convolutions help transformers see better: We hypothesize that the
substandard optimizability of ViT models compared to CNNs primarily
arises from the early visual processing performed by its patchify stem,
which is implemented by a non-overlapping stride-p p × p convolution,
with p = 16 by default. We minimally replace the patchify stem in
ViT with a standard convolutional stem of only ∼5 convolutions that
has approximately the same complexity as a single transformer block.
We reduce the number of transformer blocks by one (i.e., L − 1 vs.
L) to maintain parity in flops, parameters, and runtime. We refer to
the resulting model as ViTC and the original ViT as ViTP . The vast
majority of computation performed by these two models is identical, yet
surprisingly we observe that ViTC (i) converges faster, (ii) enables, for the
first time, the use of either AdamW or SGD without a significant accuracy
drop, (iii) shows greater stability to learning rate and weight decay choice,
and (iv) yields improvements in ImageNet top-1 error allowing ViTC to
outperform state-of-the-art CNNs, whereas ViTP does not. 4

2.2 Training length stability: We train 9 models for 50 to 400 epochs on
ImageNet-1k and plot the ∆top-1 error to the 400 epoch result for
each. ViTC demonstrates faster convergence than ViTP across the model
complexity spectrum, and helps close the gap to CNNs (represented by
RegNetY). 11

2.3 Optimizer stability: We train each model for 50 to 400 epochs with
AdamW (upward triangle .9513.6▲) and SGD (downward triangle .9513.6▼).
For the baseline ViTP , SGD yields significantly worse results than AdamW.
In contrast, ViTC and RegNetY models exhibit a much smaller gap
between SGD and AdamW across all settings. Note that for long schedules,
ViTP often fails to converge with SGD (i.e., loss goes to NaN), in such
cases we copy the best results from a shorter schedule of the same model
(and show the results via a dashed line). 11

List of Figures vi

2.4 Hyperparameter stability for AdamW (lr and wd): For each model,
we train 64 instances of the model for 50 epochs each with a random
lr and wd (in a fixed width interval around the optimal value for each
model). Top: Scatterplots of the lr , wd, and lr ·wd for three 4GF models.
Vertical bars indicate optimal lr , wd, and lr ·wd values for each model.
Bottom: For each model, we generate an EDF of the errors by plotting
the cumulative distribution of the ∆top-1 errors (∆ to the optimal error
for each model). A steeper EDF indicates better stability to lr and wd
variation. ViTC significantly improves the stability over the baseline ViTP

across the model complexity spectrum, and matches or even outperforms
the stability of the CNN model (RegNetY). 12

2.5 Hyperparameter stability for SGD (lr and wd): We repeat the setup
from Figure 2.4 using SGD instead of AdamW. The stability improvement
of ViTC over the baseline ViTP is even larger than with AdamW. E.g.,
∼60% of ViTC-18GF models are within 4% ∆top-1 error of the best result,
while less than 20% of ViTP -18GF models are (in fact most ViTP -18GF
runs don’t converge). 13

2.6 Peak performance (epoch training time vs. ImageNet-1k val top-1 error):
Results of a fair, controlled comparison of ViTP , ViTC , and CNNs. Each
curve corresponds to a model complexity sweep resulting in a training
speed spectrum (minutes per ImageNet-1k epoch). Left: State-of-the-art
CNNs. Equipped with a modern training recipe, ResNets are highly
competitive in the faster regime, while RegNetY and Z perform similarly,
and better than EfficientNets. Middle: Selected CNNs compared to ViTs.
With access to only ImageNet-1k training data, RegNetY and ResNet
outperform ViTP across the board. ViTC is more competitive with CNNs.
Right: Pretraining on ImageNet-21k improves the ViT models more
than the CNNs, making ViTP competitive. Here, the proposed ViTC

outperforms all other models across the full training speed spectrum. . . 15
2.7 Stem normalization and non-linearity: We apply BN and ReLU after

the patchify stem and train ViTP -4GF (left plot), or replace BN with
layer norm (LN) in the convolutional stem of ViTC-4GF (middle plot).
EDFs are computed by sampling lr and wd values and training for 50
epochs. The table (right) shows 100 epoch results using best lr and wd
values found at 50 epochs. The minor gap in error in the EDFs and at
100 epochs indicates that these choices are fairly insignificant. 17

List of Figures vii

2.8 Deeper models: We increase the depth of ViTP -4GF from 12 to 48
blocks, termed as ViTP -16GF (48 blocks), and create a counterpart with
a convolutional stem, ViTC-16GF (47 blocks); all models are trained
for 50 epochs. Left: The convolutional stem significantly improves error
and stability despite accounting for only ∼2% total flops. Middle, Right:
The deeper 16GF ViTs clearly outperform the shallower 4GF models
and achieve similar (slightly worse) error to the shallower and wider
18GF models. The deeper ViTP also has better lr/wd stability than the
shallower ViTP models. 18

2.9 Complexity measures vs. runtime: We plot the GPU runtime of models
versus three commonly used complexity measures: parameters, flops, and
activations. For all models, including ViT, runtime is most correlated
with activations, not flops, as was previously shown for CNNs. 19

2.10 Impact of training recipes on convergence: We train ViT models using
the DeiT recipe vs. our simplified counterpart. Left and middle: ∆top-1
error of 4GF and 18GF models at 50, 100 and 200 epoch schedules, and
asymptotic performance at 400 epochs. Right: Absolute top-1 error of
18GF models. Removing augmentations and using model EMA accelerates
convergence for both ViTP and ViTC models while slightly improving
upon our reproduction of DeiT’s top-1 error. 23

3.1 Self-supervised contrastive learning relies on data augmentations as de-
picted in (a) to learn visual representations. However, current methods
introduce inductive bias by encouraging neural networks to be less sensi-
tive to information w.r.t. augmentation, which may help or may hurt. As
illustrated in (b), rotation invariant embeddings can help on certain flower
categories, but may hurt animal recognition performance; conversely color
invariance generally seems to help coarse grained animal classification,
but can hurt many flower categories and bird categories. Our method,
shown in the following figure, overcomes this limitation. 27

List of Figures viii

3.2 Framework of the Leave-one-out Contrastive Learning approach, il-
lustrated with two types of augmentations, i.e., random rotation and
color jittering. We generate multiple views with leave-one-out strategy,
then project their representations into separate embedding spaces with
contrastive objective, where each embedding space is either invariant to
all augmentations, or invariant to all but one augmentation. The learnt
representation can be the general embedding space V (blue region), or the
concatenation of embedding sub-spaces Z (grey region). Our results show
that either of our proposed representations are able to outperform baseline
contrastive embeddings and do not suffer from decreased performance
when adding augmentations to which the task is not invariant (i.e., the
red X’s in Figure 1). 29

3.3 Top nearest-neighbor retrieval results of LooC vs. corresponding invari-
ant MoCo baseline with color (left) and rotation (right) augmentations on
IN-100 and iNat-1k. The results show that our model can better preserve
information dependent on color and rotation despite being trained with
those augmentations. 34

3.4 Histograms of correct predictions (activations×weights of classifier) by
each augmentation-dependent head from IN-100 and iNat-1k. The clas-
sifier on IN-100 heavily relies on texture-dependent information, whereas
it is much more balanced on iNat-1k. This is consistent with the improve-
ment gains observed when learning with multiple augmentations. 36

4.1 We explore learning visual representations from large scale collections of
images “in the wild”, e.g., from YouTube or Egocentric videos, and using
them to learn to perform a range of different motor control tasks from
pixels. Please see the supplementary materials for videos. 39

4.2 Masked visual pre-training for motor control: Left: We first pre-train
visual representations using self-supervision through masked image model-
ing from real-world images. Right: We then freeze the image encoder and
train task-specific controllers on top with reinforcement learning (RL).
The same visual representations are used for all motor control tasks. . . 40

4.3 Sample complexity: We plot the success rate as a function of environment
steps on the 8 PixMC tasks. Each task uses either the Franka arm with
a parallel gripper or the Kuka arm with a multi-finger hand. The MVP
approach outperforms the supervised baseline on all tasks and closely
matches the oracle state model (considered the upper bound of RL) on 6
tasks at convergence. The result shows that self-supervised pre-training
improves representation quality for motor control tasks. 43

List of Figures ix

4.4 Pre-training framework: MVP vs. CLIP and MoCo visual pre-training
frameworks. 45

4.5 In-domain training comparisons: MVP vs. state-of-the-art methods on
two benchmarks. 45

4.6 Ablation studies: pre-training data, encoder sizes, sensors, and action
learning framework. 47

4.7 Disentangles shape and color: The robots are trained to pick up a blue
box of 4.5cm side length. At test time, we add a distractor in terms of
color (blue vs. green), shape (cube vs. sphere), or size (4.5cm vs. 6cm),
shown at the top. MVP maintains high success rates for color and shape,
whereas the scale ambiguity is likely due to single first-person camera
setup. 49

4.8 Handles objects of various shapes: We import three additional objects
(i.e., can, mug, and banana) from the YCB dataset and re-train the
controller to pick up the individual object category. The Kuka robot with
the Allegro hand can pick up all objects with at least 50% success rate.
These results highlight the generality of our visual representations. 49

4.9 Attention maps visualization. We observe that MVP models (c) capture
a notion of objects which is not represented by the supervised recognition
models (b). Note that our approach is self-supervised and the represen-
tations emerges automatically. Interestingly, the results are surprisingly
consistent across the different attention heads (3 shown here). 50

5.1 Real-world robot learning with masked visual pre-training. We learn
visual representations from a massive collection of Internet and egocentric
data. We pre-train representations with masked image modeling, freeze
the encoder, and learn control policies for robotic tasks on top. 53

5.2 One encoder for all robots and tasks. We train control policies per task,
on top of the frozen encoder. The same vision encoder is used for all
downstream robotic tasks and embodiments. 55

5.3 Real-world robotic tasks. We perform extensive real robot evaluations
using a 7 DoF robot arm with a parallel jaw gripper. Our tasks include
basic motor control skills (reaching a red block, pushing a wooden cube,
and picking a yellow cube), variations in scenes (closing a fridge), objects
(picking fruits), and scenes and objects (picking a detergent bottle from a
cluttered sink). 56

List of Figures x

5.4 Comparison to vision encoders. We compare our approach to visual
encoders trained with CLIP, supervised learning on the ImageNet, and
from scratch on the task at hand. In all cases, we observe that our
approach consistently outperforms the baselines by a considerable margin. 58

5.5 Sample complexity. We show the performance of our approach as the
number of demonstrations varies from 20 to 80. CLIP performance at 80
demonstrations is shown with a dashed lined for reference. Our approach
is comparable to CLIP using only half the number of demonstrations. . . 58

5.6 Variations in scenes and objects. We compare our approach to CLIP
on tasks with variations in scenes (closing the fridge), objects (picking
fruits), and scenes and objects (picking an object from a cluttered sink).
The models are ViT-Base. Our approach considerably outperforms CLIP
and the gap is larger than in simpler settings (see Figure 5.4). This may
suggest that our representations capture more precise spatial structure
that is helpful for robotic tasks in more realistic contexts. 60

5.7 Scaling model and data. We study the scaling properties of our approach.
We observe that scaling the model size alone from ViT-S to ViT-B while
keeping the dataset fixed (HoI image collection; see text for details) does
not improve the performance and even hurts (left). However, when we
scale both the model and data (our massive Ego image collection; see
text for details) we see clear benefits from a larger model. The trend
continues when going further from the 86M ViT-B to the 307M ViT-L
model (middle & right). Moreover, the gains are larger for harder tasks
(right). 61

5.8 Ablation studies. We conduct ablation studies on the camera setups; input
modality; commonly used image augmentations; from-scratch training
architecture; CLIP pre-training architecture, and end-to-end finetuning
on downstream tasks. See Section 5.5.5 text for more details. 63

5.9 Multi-finger hand. We show that our framework readily generalizes to a
different robot morphology. We experiment with finger reaching, using
seen and unseen objects, and cube flipping. 64

5.10 Data collection. We show our setup for collecting demonstrations in the
real world with human operation. Left: We collect xArm demonstrations
using an HTC Vive VR controller. Right: We collect Allegro hand
demonstrations using an Meta Quest 2 device. See text for more details. 65

List of Figures xi

6.1 Humanoid locomotion. We present a learning-based approach for hu-
manoid locomotion and evaluate it on a full-sized real-world Digit robot.
Our policies are trained entirely in simulation and successfully transferred
to real hardware zero-shot. Our robot can adapt to external disturbances
such as carrying a backpack or a handbag; being pushed by a stick, pulled
by cables, or having a yoga ball thrown at it. Moreover, it can walk over
terrains with different friction, texture, and geometry. 69

6.2 Humanoid Transformer. Our neural network controller is a causal
Transformer model trained by autoregressive prediction of future ac-
tions from the history of observations and actions. We hypothesize that
the observation-action history contains useful information about the world
that a powerful Transformer model can leverage to adjust its actions
in-context. 71

6.3 External disturbance. We include carrying constant loads and withstand-
ing external forces. See also Figure 6.1. 81

6.4 Rough terrain. The controller undergoes tests on eight different types
of challenging terrain in the laboratory, with three being depicted in the
figure (slippery surfaces, cables, and rubber). The robot is instructed to
walk forward at a constant velocity of 0.15 m/s. See also Figure 6.1. . . . 83

6.5 Adaptation, steps. We test the robot’s ability to climb steps despite
the controller not being exposed to such terrains. We observe that the
controller initially makes a mistake, but quickly adapts by lifting the leg
faster and higher on the second attempt, which suggests adaptability of
the controller. 84

6.6 Adaptation, motor malfunction. We simulate a sudden malfunction of
the left knee motor by decreasing its PD gains by 50%. The figure shows
the changes in the position, velocity, and torque of both the left and right
knee motors, with the vertical dashed line indicating the moment of the
simulated malfunction. Despite the critical role of knee motors in the
robot’s balance, our approach is able to dynamically adjust and stabilize,
demonstrating its ability to adapt in-context. 85

6.7 Emergent arm swing. We find that our Transformer-based controller
leads to emergent human-like arm swing behaviors in coordination with
leg movements. 86

6.8 Arm swing analysis. The learned humanoid locomotion in our experi-
ments exhibits human-like arm swing behaviors in coordination with leg
movements, i.e., a contralateral relationship between the arms and the legs. 86

xii

List of Tables

2.1 Model definitions: Left: Our ViTP models at various complexities, which
use the original patchify stem and closely resemble the original ViT models.
To facilitate comparisons with CNNs, we modify the original ViT-Tiny,
-Small, -Base, -Large models to obtain models at 1GF, 4GF, 18GF, and
36GF, respectively. The modifications are indicated in blue and include
reducing the MLP multiplier from 4× to 3× for the 1GF and 4GF models,
and reducing the number of transformer blocks from 24 to 14 for the
36GF model. Right: Our ViTC models at various complexities that use
the convolutional stem. The only additional modification relative to the
corresponding ViTP models is the removal of 1 transformer block to
compensate for the increased flops of the convolutional stem. We show
complexity measures for all models (flops, parameters, activations, and
epoch training time on ImageNet-1k); the corresponding ViTP and ViTC

models match closely on all metrics. 8
2.2 Peak performance (grouped by model family): Model complexity and

validation top-1 error at 100, 200, and 400 epoch schedules on ImageNet-
1k, and the top-1 error after pretraining on ImageNet-21k (IN 21k) and
fine-tuning on ImageNet-1k. This table serves as reference for the results
shown in Figure 2.6. Blue numbers: best model trainable under 20
minutes per ImageNet-1k epoch. Batch sizes and training times are
reported normalized to 8 32GB Volta GPUs (see Appendix). Additional
results on the ImageNet-V2 test set are presented in the Appendix. . . . 16

2.3 Stem designs: We compare ViT’s standard patchify stem (P) and our
convolutional stem (C) to four alternatives (S1 - S4) that each include a
patchify layer, i.e., a convolution with kernel size (> 1) equal to stride
(highlighted in blue). Results use 50 epoch training, 4GF model size, and
optimal lr and wd values for all models. We observe that increasing the
pixel size of the patchify layer (S1 - S4) systematically degrades both
top-1 error and optimizer stability (∆) relative to C. 17

LIST OF TABLES xiii

2.4 Learning rate and weight decay used in §2.5: Left: Per-model lr and
wd values used for the experiments in §2.5.1 and §2.5.2, optimized for
ImageNet-1k at 50 epochs. Right: Per-model lr and wd ranges used for
the experiments in §2.5.3. Note that for our final experiments in §2.6, we
constrained the lr and wd values further, using a single setting for all
CNN models, and just two settings for all ViT models. We recommend
using this simplified set of values in §2.6 when comparing models for fair
and easily reproducible comparisons. All lr values are normalized w.r.t. a
minibatch size of 2048. 21

2.5 Ablation of data augmentation and regularization: We use the lr and wd
from Table 2.4 (left), except for ViTP -18GF models with RandAugment
which benefit from stronger wd (we increase wd to 0.5). Original DeiT
ablation results are copied for reference in gray (last column); these use a
lr/wd of 1e−3/0.05 (lr normalized to minibatch size 2048), which leads
to some training failures (we note our wd is 5-10× higher). Our default
training setup (first row in each set) uses AutoAugment, mixup, CutMix,
label smoothing, and model EMA. Compared to the DeiT setup (second
row in each set), we do not use erasing, stochastic depth, or repeating.
Although our setup is equally effective, it is simpler and also converges
much faster (see Figure 2.10). 22

3.1 Classification accuracy on 4-class rotation and IN-100 under linear eval-
uation protocol. Adding rotation augmentation into baseline MoCo signif-
icantly reduces its capacity to classify rotation angles while downgrades
its performance on IN-100. In contrast, our method better leverages the
information gain of the new augmentation. 30

3.2 Evaluation on multiple downstream tasks. Our method demonstrates
superior generalizability and transferability with increasing number of
augmentations. 31

3.3 Evaluation on datasets of real-world corruptions. Rotation augmentation
is beneficial for ON-13, and texture augmentation if beneficial for IN-C-100. 33

3.4 Comparisons of concatenating features from different embedding spaces
in LooC++ jointly trained on color, rotation and texture augmenta-
tions. Downstream tasks show nonidentical preferences for augmentation-
dependent or invariant representations. 33

3.5 Comparisons of LooC vs. MoCo trained with all augmentations. 35

LIST OF TABLES xiv

4.1 Existing benchmarks: Compared to existing benchmarks, ours features a
unique combination of hand-designed tasks, dense rewards, and complex
robots (e.g., multi-finger hands). Crucially, it leverages a fast simulator
and provides distributed training for scaling learning-based motor control
from pixel observations. 41

5.1 Comparison to concurrent work. All of our vision models, trained
with image-only self-supervision, considerably outperform the strongest
available R3M model trained on paired video-language labels from Ego4D.
The gains are larger for larger models. Evaluated on the PickFruit task. . 62

6.1 Domain randomization. We show the types of randomization and their
corresponding ranges. Additive randomization adds a value drawn from
a specified range to the original value. Scaling randomization multiplies
the original value by a value drawn from a specified range. The range is
specified as a lower and upper bound for a uniform distribution or as a
mean and std for a Gaussian distribution. 76

6.2 Input commands. We independently generate commands for forward/backward
walking, sideway walking, and turning. The input is set to zero if the
sampled value falls below the specified threshold. The commands are
re-sampled periodically at fixed intervals. 77

6.3 Observation and state spaces. The state policy’s actor and the critics of
both policies utilize states as input. 78

6.4 Hyperparameters of PPO. 79
6.5 Evaluation results in simulation. We compare our approach to an MLP

baseline, a CNN baseline, an LSTM baseline, and the company controller
developed by Agility robotics. We observe that our approach outper-
forms the neural network baselines considerably and shows respectable
performance compared to the state-of-the-art company controller. 80

xv

Acknowledgments

My time at Berkeley has been marked by the lovely Berkeley Hills and the beautiful
Cal campus with enriching academic environment. As I reach the culmination of my
PhD journey, I am filled with a deep sense of gratitude for the individuals who have
supported, guided, and accompanied me throughout this adventure.

I would like to express my deepest appreciation to my PhD advisor, Trevor
Darrell. Trevor has been an incredible mentor throughout this journey. He has
granted me the freedom to pursue ideas, while his encouragement has motivated me
to push the boundaries of knowledge. Trevor’s mentorship has been instrumental in
my growth over the past four years, and I am truly grateful for the opportunity to
learn from him.

I would also like to extend my gratitude to my committee members, Anca Dragan,
Jitendra Malik, and Ross Girshick, for their thoughtful feedback and valuable insights,
which have greatly contributed to the improvement of my thesis work.

I am grateful for the collaboration I shared with my closest collaborator, Ilija
Radosavovic, whose expertise and friendship have enriched many works in this thesis.
I have been fortunate to share this journey with my (other) lab mates, Tim Brooks,
Bill Peebles, Yu Sun, Haozhi Qi, and many others. Their camaraderie and support
have been invaluable, and I have learned much from each one of them.

My heartfelt thanks go to the experts I have had the privilege of working
alongside, including Ross Girshick, Piotr Dollár, Jitendra Malik, Alyosha Efros,
Pieter Abbeel, Koushil Sreenath, and Kurt Keutzer, as well as my collaborators, Ilija
Radosavovic, Xiaolong Wang, Colorado Reed, Bike Zhang, Alex Kirillov, Stephen
James, Eric Minton, Hanzi Mao, Nikhila Ravi, and Lerrel Pinto. Their expertise
have significantly shaped my academic development. I am eternally grateful to my
past mentors, especially the late Jian Sun, whose teachings continue to guide me.

A special mention goes to the wonderful staff at the Berkeley AI Research Lab.
Their dedication and hard work have supported my research and activities a lot.

I cherish the support and connection I have with Yingcheng Liu, Huiwen Chang,
Hexiang Hu, and Haoyue Shi, as well as my college friends Borui Jiang and Ruixuan
Luo. Our shared experiences and memories are among the most priceless treasures

Acknowledgments xvi

of my life. I am also fortunate to have my closest friends Junjie Yu and Ziqi Lu, who
have been by my side through life’s many ups and downs. Their unwavering support
has been a pillar of strength throughout this journey.

Finally, I would like to express my sincere gratitude to my parents, for their
unconditional love and support throughout my life, and for giving me the courage to
pursue my goals. Their influence has shaped me into the person I am today, and I
cannot thank them enough for their selflessness and dedication.

To all those who have contributed to this journey, both named and unnamed,
I am deeply grateful. Your influence has shaped my academic trajectory and will
remain an integral part of my story and life.

1

Chapter 1

Introduction

In 2012, the landscape of artificial intelligence (AI) experienced a groundbreaking
moment with the advent of AlexNet [1]. Utilizing the power of high-performing
GPU accelerators, AlexNet significantly reduced the top-5 error in the ImageNet
Large Scale Visual Recognition Challenge [2] to 15.3%, a remarkable improvement
of over 10% compared to the previous year’s best result of 26.1%. This achievement
fueled rapid advancements in AI, and within a mere three years, researchers designed
increasingly sophisticated neural networks that leveraged enhanced computational
power to achieve even lower error rates of 11.2%, 6.7%, and 3.6%, surpassing human-
level performance (5%) [3].

One key aspect of these developments is the concept of task-specific representation
learning. Models are trained on fixed datasets and excel at tasks within the scope of
these datasets. However, they often struggle to generalize beyond the confines of
the training data [4,5], which poses challenges for their applicability to real-world
problems, particularly in unstructured environments like those encountered by robots
in everyday situations. Thus, the task-specific representation learning paradigm
faces scalability limitations.

A major milestone in the AI domain came with the introduction of GPT-3 [6], a
revolutionary generative pre-trained transformer model that significantly expanded
the frontier of natural language processing (NLP). GPT-3 achieved exceptional
performance across a wide range of NLP tasks through three critical factors: (1)
high-capacity transformer models [7], (2) self-supervised objectives that do not overly
rely on human labels [8, 9], and (3) the use of diverse, real-world data from the
Internet [8,9]. These factors emphasize the importance of integrating the right model,
learning objective, and data to build scalable systems [10].

In light of these advances, this thesis aims to extend the scalable paradigm to
the fields of computer vision and robotics, ultimately pursuing the development

2

of general AI systems. We explore the three key components of creating scalable
systems, including model optimizability, learning objectives, and large-scale datasets,
and applying these outcomes for robotics.

In Chapter 2, we examine the optimizability of vision transformers (ViT) [11], a
novel family of models derived from the high-capacity transformer models used in
NLP. We propose a new set of optimizability metrics to analyze these high-capacity
models and suggest an alternative design for their patchify stem, which significantly
enhances optimization stability and peak performance.

Chapter 3 introduces a contrastive self-supervised learning objective that does not
presume knowledge of specific, task-dependent invariances, reducing inductive biases
in self-supervised learning. By constructing separate embedding spaces for varying
and invariant factors, our model captures information across each augmentation and
demonstrates superior performance across various datasets.

In Chapter 4, we showcase the effectiveness of self-supervised visual pre-training
from real-world images for learning motor control tasks from pixels. We first train
the visual representations using masked modeling of natural images. Subsequently,
we freeze the visual encoder and train neural network controllers on top with
reinforcement learning. Without performing any task-specific fine-tuning of the
encoder, the same visual representations are used for all motor control tasks. To the
best of our knowledge, this is the first self-supervised model to leverage real-world
images at scale for motor control. Our results consistently outperform supervised
baselines, sometimes even matching the oracle state performance.

Chapter 5 extends the work of the previous chapter, exploring self-supervised
visual pre-training on images from diverse, in-the-wild videos for real-world robotic
tasks. We demonstrate the effectiveness of pre-trained representations across a range
of real-world robotic tasks and embodiments. Our encoder consistently outperforms
other approaches, including CLIP [12], supervised ImageNet pre-training, and training
from scratch. We also highlight the benefits of scaling visual pre-training for robot
learning.

In Chapter 6, we present a sim-to-real learning-based approach for real-world
humanoid locomotion using a causal Transformer trained by autoregressive prediction
of future actions from the history of observations and actions. Our controller is
trained on an ensemble of randomized environments in simulation and successfully
deployed to the real world zero-shot, marking the first fully learning-based method
for real-world full-sized humanoid locomotion.

Lastly, in Chapter 7, we conclude this thesis and discuss potential future directions
for further research in the field.

3

Chapter 2

Optimizability of Scalable Models:
A Study of Vision Transformers

2.1 Introduction
Vision transformer (ViT) models [11] offer an alternative design paradigm to

convolutional neural networks (CNNs) [13]. ViTs replace the inductive bias towards
local processing inherent in convolutions with global processing performed by multi-
headed self-attention [7]. The hope is that this design has the potential to improve
performance on vision tasks, akin to the trends observed in natural language pro-
cessing [9]. While investigating this conjecture, researchers face another unexpected
difference between ViTs and CNNs: ViT models exhibit substandard optimizability.
ViTs are sensitive to the choice of optimizer [14] (AdamW [15] vs. SGD), to the
selection of dataset specific learning hyperparameters [11,14], to training schedule
length, to network depth [16], etc. These issues render former training recipes and
intuitions ineffective and impede research.

Convolutional neural networks, in contrast, are exceptionally easy and robust
to optimize. Simple training recipes based on SGD, basic data augmentation, and
standard hyperparameter values have been widely used for years [17]. Why does this
difference exist between ViT and CNN models? In this paper we hypothesize that the
issues lies primarily in the early visual processing performed by ViT. ViT “patchifies”
the input image into p×p non-overlapping patches to form the transformer encoder’s
input set. This patchify stem is implemented as a stride-p p × p convolution, with
p = 16 as a default value. This large-kernel plus large-stride convolution runs counter
to the typical design choices used in CNNs, where best-practices have converged to
a small stack of stride-two 3 × 3 kernels as the network’s stem (e.g., [18–20]).

To test this hypothesis, we minimally change the early visual processing of ViT

2.1. INTRODUCTION 4

16x16 conv,
stride 16

3x3 conv,
stride 1 or 2

1x1 conv,
stride 1

N
orm

M
ulti-H

ead
A

ttention

N
orm

M
LP+ +

(L-1) ×

N
orm

M
ulti-H

ead
A

ttention

N
orm

M
LP+ +

L ×

Ours (termed ViTC, same runtime):
ü Robust to lr and wd choice
ü Converges quickly
ü Works with AdamW, and also SGD
ü Outperforms sota CNNs on ImageNet

Original ViT (baseline, termed ViTP):
o Sensitive to lr and wd choice
o Converges slowly
o Works with AdamW, but not SGD
o Underperforms sota CNNs on ImageNet

patchify (P) stem

×n
convolutional (C) stem

stem flops ≈ 1 transformer block

transformer block

transformer block

Figure 2.1: Early convolutions help transformers see better: We hypothesize that the
substandard optimizability of ViT models compared to CNNs primarily arises from the early
visual processing performed by its patchify stem, which is implemented by a non-overlapping
stride-p p × p convolution, with p = 16 by default. We minimally replace the patchify stem
in ViT with a standard convolutional stem of only ∼5 convolutions that has approximately
the same complexity as a single transformer block. We reduce the number of transformer
blocks by one (i.e., L − 1 vs. L) to maintain parity in flops, parameters, and runtime. We
refer to the resulting model as ViTC and the original ViT as ViTP . The vast majority
of computation performed by these two models is identical, yet surprisingly we observe
that ViTC (i) converges faster, (ii) enables, for the first time, the use of either AdamW or
SGD without a significant accuracy drop, (iii) shows greater stability to learning rate and
weight decay choice, and (iv) yields improvements in ImageNet top-1 error allowing ViTC

to outperform state-of-the-art CNNs, whereas ViTP does not.

by replacing its patchify stem with a standard convolutional stem consisting of only
∼5 convolutions, see Figure 2.1. To compensate for the small addition in flops, we
remove one transformer block to maintain parity in flops and runtime. We observe
that even though the vast majority of the computation in the two ViT designs is
identical, this small change in early visual processing results in markedly different
training behavior in terms of the sensitivity to optimization settings as well as the
final model accuracy.

In extensive experiments we show that replacing the ViT patchify stem with
a more standard convolutional stem (i) allows ViT to converge faster (§2.5.1), (ii)
enables, for the first time, the use of either AdamW or SGD without a significant
drop in accuracy (§2.5.2), (iii) brings ViT’s stability w.r.t. learning rate and weight
decay closer to that of modern CNNs (§2.5.3), and (iv) yields improvements in
ImageNet [2] top-1 error of ∼1-2 percentage points (§2.6). We consistently observe
these improvements across a wide spectrum of model complexities (from 1G flops to
36G flops) and dataset scales (ImageNet-1k to ImageNet-21k).

These results show that injecting some convolutional inductive bias into ViTs can

2.2. RELATED WORK 5

be beneficial under commonly studied settings. We did not observe evidence that
the hard locality constraint in early layers hampers the representational capacity of
the network, as might be feared [21]. In fact we observed the opposite, as ImageNet
results improve even with larger-scale models and larger-scale data when using
a convolution stem. Moreover, under carefully controlled comparisons, we find
that ViTs are only able to surpass state-of-the-art CNNs when equipped with a
convolutional stem (§2.6).

We conjecture that restricting convolutions in ViT to early visual processing
may be a crucial design choice that strikes a balance between (hard) inductive
biases and the representation learning ability of transformer blocks. Evidence comes
by comparison to the “hybrid ViT” presented in [11], which uses 40 convolutional
layers (most of a ResNet-50) and shows no improvement over the default ViT. This
perspective resonates with the findings of [21], who observe that early transformer
blocks prefer to learn more local attention patterns than later blocks. Finally we
note that exploring the design of hybrid CNN/ViT models is not a goal of this work;
rather we demonstrate that simply using a minimal convolutional stem with ViT is
sufficient to dramatically change its optimization behavior.

In summary, the findings presented in this paper lead us to recommend using a
standard, lightweight convolutional stem for ViT models in the analyzed dataset scale
and model complexity spectrum as a more robust and higher performing architectural
choice compared to the original ViT model design.

2.2 Related Work
Convolutional neural networks (CNNs). The breakthrough performance of the
AlexNet [1] CNN [13, 22] on ImageNet classification [2] transformed the field of
recognition, leading to the development of higher performing architectures, e.g.,
[17,18,23,24], and scalable training methods [25,26]. These architectures are now
core components in object detection (e.g., [27]), instance segmentation (e.g., [28]),
and semantic segmentation (e.g., [29]). CNNs are typically trained with stochastic
gradient descent (SGD) and are widely considered to be easy to optimize.
Self-attention in vision models. Transformers [7] are revolutionizing natural language
processing by enabling scalable training. Transformers use multi-headed self-attention,
which performs global information processing and is strictly more general than
convolution [30]. Wang et al. [31] show that (single-headed) self-attention is a form
of non-local means [32] and that integrating it into a ResNet [17] improves several
tasks. Ramachandran et al. [33] explore this direction further with stand-alone self-
attention networks for vision. They report difficulties in designing an attention-based

2.2. RELATED WORK 6

network stem and present a bespoke solution that avoids convolutions. In contrast,
we demonstrate the benefits of a convolutional stem. Zhao et al. [34] explore a
broader set of self-attention operations with hard-coded locality constraints, more
similar to standard CNNs.
Vision transformer (ViT). Dosovitskiy et al. [11] apply a transformer encoder to
image classification with minimal vision-specific modifications. As the counterpart
of input token embeddings, they partition the input image into, e.g., 16 × 16 pixel,
non-overlapping patches and linearly project them to the encoder’s input dimension.
They report lackluster results when training on ImageNet-1k, but demonstrate
state-of-the-art transfer learning when using large-scale pretraining data. ViTs
are sensitive to many details of the training recipe, e.g., they benefit greatly from
AdamW [15] compared to SGD and require careful learning rate and weight decay
selection. ViTs are generally considered to be difficult to optimize compared to
CNNs (e.g., see [11, 14, 16]). Further evidence of challenges comes from Chen et
al. [35] who report ViT optimization instability in self-supervised learning (unlike
with CNNs), and find that freezing the patchify stem at its random initialization
improves stability.
ViT improvements. ViTs are gaining rapid interest in part because they may
offer a novel direction away from CNNs. Touvron et al. [14] show that with more
regularization and stronger data augmentation ViT models achieve competitive
accuracy on ImageNet-1k alone (cf . [11]). Subsequently, works concurrent with
our own explore numerous other ViT improvements. Dominant themes include
multi-scale networks [36–40], increasing depth [16], and locality priors [21, 36, 41–43].
In [21], d’Ascoli et al. modify multi-head self-attention with a convolutional bias
at initialization and show that this prior improves sample efficiency and ImageNet
accuracy. Resonating with our work, [36,41–43] present models with convolutional
stems, but do not analyze optimizability (our focus).
Discussion. Unlike the concurrent work on locality priors in ViT, our focus is
studying optimizability under minimal ViT modifications in order to derive crisp
conclusions. Our perspective brings several novel observations: by adding only ∼5
convolutions to the stem, ViT can be optimized well with either AdamW or SGD
(cf . all prior works use AdamW to avoid large drops in accuracy [14]), it becomes
less sensitive to the specific choice of learning rate and weight decay, and training
converges faster. We also observe a consistent improvement in ImageNet top-1
accuracy across a wide spectrum of model complexities (1G flops to 36G flops)
and dataset scales (ImageNet-1k to ImageNet-21k). These results suggest that a
(hard) convolutional bias early in the network does not compromise representational
capacity, as conjectured in [21], and is beneficial within the scope of this study.

2.3. VISION TRANSFORMER ARCHITECTURES 7

2.3 Vision Transformer Architectures
Next, we review vision transformers [11] and describe the convolutional stems

used in our work.
The vision transformer (ViT). ViT first partitions an input image into non-
overlapping p × p patches and linearly projects each patch to a d-dimensional feature
vector using a learned weight matrix. A patch size of p = 16 and an image size
of 224 × 224 are typical. The resulting patch embeddings (plus positional embed-
dings and a learned classification token embedding) are processed by a standard
transformer encoder [7, 44] followed by a classification head. Using common network
nomenclature, we refer to the portion of ViT before the transformer blocks as the
network’s stem. ViT’s stem is a specific case of convolution (stride-p, p × p kernel),
but we will refer to it as the patchify stem and reserve the terminology of convolu-
tional stem for stems with a more conventional CNN design with multiple layers of
overlapping convolutions (i.e., with stride smaller than the kernel size).
ViTP models. Prior work proposes ViT models of various sizes, such as ViT-Tiny,
ViT-Small, ViT-Base, etc. [11, 14]. To facilitate comparisons with CNNs, which
are typically standardized to 1 gigaflop (GF), 2GF, 4GF, 8GF, etc., we modify the
original ViT models to obtain models at about these complexities. Details are given
in Table 2.1 (left). For easier comparison with CNNs of similar flops, and to avoid
subjective size names, we refer the models by their flops, e.g., ViTP -4GF in place of
ViT-Small. We use the P subscript to indicate that these models use the original
patchify stem.
Convolutional stem design. We adopt a typical minimalist convolutional stem design
by stacking 3 × 3 convolutions [18], followed by a single 1 × 1 convolution at the
end to match the d-dimensional input of the transformer encoder. These stems
quickly downsample a 224 × 224 input image using overlapping strided convolutions
to 14×14, matching the number of inputs created by the standard patchify stem. We
follow a simple design pattern: all 3 × 3 convolutions either have stride 2 and double
the number of output channels or stride 1 and keep the number of output channels
constant. We enforce that the stem accounts for approximately the computation of
one transformer block of the corresponding model so that we can easily control for
flops by removing one transformer block when using the convolutional stem instead
of the patchify stem. Our stem design was chosen to be purposefully simple and we
emphasize that it was not designed to maximize model accuracy.
ViTC models. To form a ViT model with a convolutional stem, we simply replace the
patchify stem with its counterpart convolutional stem and remove one transformer
block to compensate for the convolutional stem’s extra flops (see Figure 2.1). We

2.3. VISION TRANSFORMER ARCHITECTURES 8

model ref hidden MLP num num flops params acts time
model size mult heads blocks (B) (M) (M) (min)

ViTP -1GF ∼ViT-T 192 3 3 12 1.1 4.8 5.5 2.6
ViTP -4GF ∼ViT-S 384 3 6 12 3.9 18.5 11.1 3.8
ViTP -18GF =ViT-B 768 4 12 12 17.5 86.7 24.0 11.5
ViTP -36GF 3

5ViT-L 1024 4 16 14 35.9 178.4 37.3 18.8

model hidden MLP num num flops params acts time
size mult heads blocks (B) (M) (M) (min)

ViTC-1GF 192 3 3 11 1.1 4.6 5.7 2.7
ViTC-4GF 384 3 6 11 4.0 17.8 11.3 3.9
ViTC-18GF 768 4 12 11 17.7 81.6 24.1 11.4
ViTC-36GF 1024 4 16 13 35.0 167.8 36.7 18.6

Table 2.1: Model definitions: Left: Our ViTP models at various complexities, which use
the original patchify stem and closely resemble the original ViT models. To facilitate
comparisons with CNNs, we modify the original ViT-Tiny, -Small, -Base, -Large models
to obtain models at 1GF, 4GF, 18GF, and 36GF, respectively. The modifications are
indicated in blue and include reducing the MLP multiplier from 4× to 3× for the 1GF
and 4GF models, and reducing the number of transformer blocks from 24 to 14 for the
36GF model. Right: Our ViTC models at various complexities that use the convolutional
stem. The only additional modification relative to the corresponding ViTP models is the
removal of 1 transformer block to compensate for the increased flops of the convolutional
stem. We show complexity measures for all models (flops, parameters, activations, and
epoch training time on ImageNet-1k); the corresponding ViTP and ViTC models match
closely on all metrics.

refer to the modified ViT with a convolutional stem as ViTC . Configurations for
ViTC at various complexities are given in Table 2.1 (right); corresponding ViTP and
ViTC models match closely on all complexity metrics including flops and runtime.
Convolutional stem details. Our convolutional stem designs use four, four, and six
3 × 3 convolutions for the 1GF, 4GF, and 18GF models, respectively. The output
channels are [24, 48, 96, 192], [48, 96, 192, 384], and [64, 128, 128, 256, 256, 512],
respectively. All 3 × 3 convolutions are followed by batch norm (BN) [25] and then
ReLU [45], while the final 1 × 1 convolution is not, to be consistent with the original
patchify stem. Eventually, matching stem flops to transformer block flops results in
an unreasonably large stem, thus ViTC-36GF uses the same stem as ViTC-18GF.
Convolutions in ViT. Dosovitskiy et al. [11] also introduced a “hybrid ViT” architec-
ture that blends a modified ResNet [17] (BiT-ResNet [46]) with a transformer encoder.
In their hybrid model, the patchify stem is replaced by a partial BiT-ResNet-50 that
terminates at the output of the conv4 stage or the output of an extended conv3
stage. These image embeddings replace the standard patchify stem embeddings. This
partial BiT-ResNet-50 stem is deep, with 40 convolutional layers. In this chapter,
we explore lightweight convolutional stems that consist of only 5 to 7 convolutions
in total, instead of the 40 used by the hybrid ViT. Moreover, we emphasize that
the goal of our work is not to explore the hybrid ViT design space, but rather to
study the optimizability effects of simply replacing the patchify stem with a minimal
convolutional stem that follows standard CNN design practices.

2.4. MEASURING OPTIMIZABILITY 9

2.4 Measuring Optimizability
It has been noted in the literature that ViT models are challenging to optimize,

e.g., they may achieve only modest performance when trained on a mid-size dataset
(ImageNet-1k) [11], are sensitive to data augmentation [14] and optimizer choice [14],
and may perform poorly when made deeper [16]. We empirically observed the general
presence of such difficulties through the course of our experiments and informally
refer to such optimization characteristics collectively as optimizability.

Models with poor optimizability can yield very different results when hyperpa-
rameters are varied, which can lead to seemingly bizarre observations, e.g., removing
erasing data augmentation [47] causes a catastrophic drop in ImageNet accuracy
in [14]. Quantitative metrics to measure optimizability are needed to allow for more
robust comparisons. In this section, we establish the foundations of such comparisons;
we extensively test various models using these optimizability measures in §2.5.
Training length stability. Prior works train ViT models for lengthy schedules, e.g.,
300 to 400 epochs on ImageNet is typical (at the extreme, [36] trains models for 1000
epochs), since results at a formerly common 100-epoch schedule are substantially
worse (2-4% lower top-1 accuracy, see §2.5.1). In the context of ImageNet, we define
top-1 accuracy at 400 epochs as an approximate asymptotic result, i.e., training
for longer will not meaningfully improve top-1 accuracy, and we compare it to the
accuracy of models trained for only 50, 100, or 200 epochs. We define training length
stability as the gap to asymptotic accuracy. Intuitively, it’s a measure of convergence
speed. Models that converge faster offer obvious practical benefits, especially when
training many model variants.
Optimizer stability. Prior works use AdamW [15] to optimize ViT models from
random initialization. Results of SGD are not typically presented and we are only
aware of Touvron et al. [14]’s report of a dramatic ∼7% drop in ImageNet top-1
accuracy. In contrast, widely used CNNs, such as ResNets, can be optimized equally
well with either SGD or AdamW (see §2.5.2) and SGD (always with momentum) is
typically used in practice. SGD has the practical benefit of having fewer hyperpa-
rameters (e.g., tuning AdamW’s β2 can be important [48]) and requiring 50% less
optimizer state memory, which can ease scaling. We define optimizer stability as
the accuracy gap between AdamW and SGD. Like training length stability, we use
optimizer stability as a proxy for the ease of optimization of a model.
Hyperparameter (lr, wd) stability. Learning rate (lr) and weight decay (wd) are
among the most important hyperparameters governing optimization with SGD and
AdamW. New models and datasets often require a search for their optimal values as
the choice can dramatically affect results. It is desirable to have a model and optimizer

2.5. STABILITY EXPERIMENTS 10

that yield good results for a wide range of learning rate and weight decay values.
We will explore this hyperparameter stability by comparing the error distribution
functions (EDFs) [20] of models trained with various choices of lr and wd. In this
setting, to create an EDF for a model we randomly sample values of lr and wd and
train the model accordingly. Distributional estimates, like those provided by EDFs,
give a more complete view of the characteristics of models that point estimates
cannot reveal [20, 49]. We will review EDFs in §2.5.3.
Peak performance. The maximum possible performance of each model is the
most commonly used metric in previous literature and it is often provided without
carefully controlling training details such as data augmentations, regularization
methods, number of epochs, and lr , wd tuning. To make more robust comparisons,
we define peak performance as the result of a model at 400 epochs using its best-
performing optimizer and parsimoniously tuned lr and wd values (details in §2.6),
while fixing justifiably good values for all other variables that have a known impact
on training. Peak performance results for ViTs and CNNs under these carefully
controlled training settings are presented in §2.6.

2.5 Stability Experiments
In this section we test the stability of ViT models with the original patchify (P)

stem vs. the convolutional (C) stem defined in §2.3. For reference, we also train
RegNetY [49, 50], a state-of-the-art CNN that is easy to optimize and serves as a
reference point for good stability.

We conduct experiments using ImageNet-1k [2]’s standard training and validation
sets, and report top-1 error. Following [50], for all results, we carefully control
training settings and we use a minimal set of data augmentations that still yields
strong results, for details see §2.5.4. In this section, unless noted, for each model we
use the optimal lr and wd found under a 50 epoch schedule (see Appendix).

2.5.1 Training Length Stability
We first explore how rapidly networks converge to their asymptotic error on

ImageNet-1k, i.e., the highest possible accuracy achievable by training for many
epochs. We approximate asymptotic error as a model’s error using a 400 epoch
schedule based on observing diminishing returns from 200 to 400. We consider a
grid of 24 experiments for ViT: {P , C} stems × {1, 4, 18} GF model sizes × {50,
100, 200, 400} epochs. For reference we also train RegNetY at {1, 4, 16} GF. We
use the best optimizer choice for each model (AdamW for ViT models and SGD for

2.5. STABILITY EXPERIMENTS 11

50 100 200 400
training epochs

0

2

4

6

8

10

to
p-

1
er

ro
r

1GF models
ViTP

ViTC

RegNetY

50 100 200 400
training epochs

4GF models
ViTP

ViTC

RegNetY

50 100 200 400
training epochs

18GF models
ViTP

ViTC

RegNetY

name

Figure 2.2: Training length stability: We train 9 models for 50 to 400 epochs on ImageNet-
1k and plot the ∆top-1 error to the 400 epoch result for each. ViTC demonstrates faster
convergence than ViTP across the model complexity spectrum, and helps close the gap to
CNNs (represented by RegNetY).

50 100 200 400
training epochs

15
20
25
30
35
40
45
50

to
p-

1
er

ro
r

1GF models
ViTP

ViTC

RegNetY

50 100 200 400
training epochs

4GF models
ViTP

ViTC

RegNetY

50 100 200 400
training epochs

18GF models
ViTP

ViTC

RegNetY

name

Figure 2.3: Optimizer stability: We train each model for 50 to 400 epochs with AdamW
(upward triangle ▲) and SGD (downward triangle ▼). For the baseline ViTP , SGD yields
significantly worse results than AdamW. In contrast, ViTC and RegNetY models exhibit
a much smaller gap between SGD and AdamW across all settings. Note that for long
schedules, ViTP often fails to converge with SGD (i.e., loss goes to NaN), in such cases we
copy the best results from a shorter schedule of the same model (and show the results via
a dashed line).

RegNetY models).
Results. Figure 2.2 shows the absolute error deltas (∆top-1) between 50, 100, and 200
epoch schedules and asymptotic performance (at 400 epochs). ViTC demonstrates
faster convergence than ViTP across the model complexity spectrum, and closes much
of the gap to the rate of CNN convergence. The improvement is most significant
in the shortest training schedule (50 epoch), e.g., ViTP -1GF has a 10% error delta,
while ViTC-1GF reduces this to about 6%. This opens the door to applications that
execute a large number of short-scheduled experiments.

2.5. STABILITY EXPERIMENTS 12

20 24 28 32 36 40
top-1 error

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

.

1GF models
ViTP

ViTC

RegNetY

20 24 28 32 36 40
top-1 error

4GF models
ViTP

ViTC

RegNetY

20 24 28 32 36 40
top-1 error

18GF models
ViTP

ViTC

RegNetY

0 2 4 6 8 10
top-1 error

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

.

1GF models
ViTP

ViTC

RegNetY

0 2 4 6 8 10
top-1 error

4GF models
ViTP

ViTC

RegNetY

0 2 4 6 8 10
top-1 error

18GF models
ViTP

ViTC

RegNetY

Figure 2.4: Hyperparameter stability for AdamW (lr and wd): For each model, we train
64 instances of the model for 50 epochs each with a random lr and wd (in a fixed width
interval around the optimal value for each model). Top: Scatterplots of the lr , wd, and
lr ·wd for three 4GF models. Vertical bars indicate optimal lr , wd, and lr ·wd values for
each model. Bottom: For each model, we generate an EDF of the errors by plotting the
cumulative distribution of the ∆top-1 errors (∆ to the optimal error for each model). A
steeper EDF indicates better stability to lr and wd variation. ViTC significantly improves
the stability over the baseline ViTP across the model complexity spectrum, and matches
or even outperforms the stability of the CNN model (RegNetY).

2.5.2 Optimizer Stability
We next explore how well AdamW and SGD optimize ViT models with the two

stem types. We consider the following grid of 48 ViT experiments: {P , C} stems
× {1, 4, 18} GF sizes × {50, 100, 200, 400} epochs × {AdamW, SGD} optimizers.
As a reference, we also train 24 RegNetY baselines, one for each complexity regime,
epoch length, and optimizer.
Results. Figure 2.3 shows the results. As a baseline, RegNetY models show virtually
no gap when trained using either SGD or AdamW (the difference ∼0.1-0.2% is within
noise). On the other hand, ViTP models suffer a dramatic drop when trained with
SGD across all settings (of up to 10% for larger models and longer training schedules).
With a convolutional stem, ViTC models exhibit much smaller error gaps between
SGD and AdamW across all training schedules and model complexities, including
in larger models and longer schedules, where the gap is reduced to less than 0.2%.
In other words, both RegNetY and ViTC can be easily trained via either SGD or
AdamW, but ViTP cannot.

2.5. STABILITY EXPERIMENTS 13
20 24 28 32 36 40

top-1 error
0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

.

1GF models
ViTP

ViTC

RegNetY

20 24 28 32 36 40
top-1 error

4GF models
ViTP

ViTC

RegNetY

20 24 28 32 36 40
top-1 error

18GF models
ViTP

ViTC

RegNetY

0 2 4 6 8 10
top-1 error

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

.

1GF models
ViTP

ViTC

RegNetY

0 2 4 6 8 10
top-1 error

4GF models
ViTP

ViTC

RegNetY

0 2 4 6 8 10
top-1 error

18GF models
ViTP

ViTC

RegNetY

Figure 2.5: Hyperparameter stability for SGD (lr and wd): We repeat the setup from
Figure 2.4 using SGD instead of AdamW. The stability improvement of ViTC over the
baseline ViTP is even larger than with AdamW. E.g., ∼60% of ViTC-18GF models are
within 4% ∆top-1 error of the best result, while less than 20% of ViTP -18GF models are
(in fact most ViTP -18GF runs don’t converge).

2.5.3 Learning Rate and Weight Decay Stability
Next, we characterize how sensitive different model families are to changes in

learning rate (lr) and weight decay (wd) under both AdamW and SGD optimizers.
To quantify this, we make use of error distribution functions (EDFs) [20]. An EDF
is computed by sorting a set of results from low-to-high error and plotting the
cumulative proportion of results as error increases, see [20] for details. In particular,
we generate EDFs of a model as a function of lr and wd. The intuition is that if a
model is robust to these hyperparameter choices, the EDF will be steep (all models
will perform similarly), while if the model is sensitive, the EDF will be shallow
(performance will be spread out).

We test 6 ViT models ({P , C} × {1, 4, 18} GF) and 3 RegNetY models ({1,
4, 16} GF). For each model and each optimizer, we compute an EDF by randomly
sampling 64 (lr , wd) pairs with learning rate and weight decay sampled in a fixed
width interval around their optimal values for that model and optimizer (see the
Appendix for sampling details). Rather than plotting absolute error in the EDF, we
plot ∆top-1 error between the best result (obtained with the optimal lr and wd) and
the observed result. Due to the large number of models, we train each for 50 epochs.
Results. Figure 2.4 shows scatterplots and EDFs for models trained by AdamW.
Figure 2.5 shows SGD results. In all cases we see that ViTC significantly improves
the lr and wd stability over ViTP for both optimizers. This indicates that the lr and
wd are easier to optimize for ViTC than for ViTP .

2.5.4 Experimental Details
In all experiments we train with a single half-period cosine learning rate decay

schedule with a 5-epoch linear learning rate warm-up [26]. We use a minibatch

2.6. PEAK PERFORMANCE 14

size of 2048. Crucially, weight decay is not applied to the gain factors found in
normalization layers nor to bias parameters anywhere in the model; we found that
decaying these parameters can dramatically reduce top-1 accuracy for small models
and short schedules. For inference, we use an exponential moving average (EMA)
of the model weights (e.g., [51]). The lr and wd used in this section are reported
in the Appendix. Other hyperparameters use defaults: SGD momentum is 0.9 and
AdamW’s β1 = 0.9 and β2 = 0.999.
Regularization and data augmentation. We use a simplified training recipe compared
to recent work such as DeiT [14], which we found to be equally effective across a
wide spectrum of model complexities and dataset scales. We use AutoAugment [52],
mixup [53] (α = 0.8), CutMix [54] (α = 1.0), and label smoothing [55] (ϵ = 0.1).
We prefer this setup because it is similar to common settings for CNNs (e.g., [50])
except for stronger mixup and the addition of CutMix (ViTs benefit from both,
while CNNs are not harmed). We compare this recipe to the one used for DeiT
models in the Appendix, and observe that our setup provides substantially faster
training convergence likely because we remove repeating augmentation [56,57], which
is known to slow training [56].

2.6 Peak Performance
A model’s peak performance is the most commonly used metric in network design.

It represents what is possible with the best-known-so-far settings and naturally
evolves over time. Making fair comparisons between different models is desirable but
fraught with difficulty. Simply citing results from prior work may be negatively biased
against that work as it was unable to incorporate newer, yet applicable improvements.
Here, we strive to provide a fairer comparison between state-of-the-art CNNs, ViTP ,
and ViTC . We identify a set of factors and then strike a pragmatic balance between
which subset to optimize for each model vs. which subset share a constant value
across all models.

In our comparison, all models share the same epochs (400), use of model weight
EMA, and set of regularization and augmentation methods (as specified in §2.5.4).
All CNNs are trained with SGD with lr of 2.54 and wd of 2.4e−5; we found this
single choice worked well across all models, as similarly observed in [50]. For all
ViT models we found AdamW with a lr/wd of 1.0e−3/0.24 was effective, except
for the 36GF models. For these larger models we tested a few settings and found
a lr/wd of 6.0e−4/0.28 to be more effective for both ViTP -36GF and ViTC-36GF
models. For training and inference, ViTs use 224 × 224 resolution (we do not fine-
tune at higher resolutions), while the CNNs use (often larger) optimized resolutions

2.6. PEAK PERFORMANCE 15

2.5 5.0 10 20 40
training speed (min.)

14

16

18

20

22

24

to
p-

1
er

ro
r

ResNet
RegNetY
RegNetZ
EfficientNet

2.5 5.0 10 20 40
training speed (min.)

ViTP

ViTC

ResNet
RegNetY

2.5 5.0 10 20 40
training speed (min.)

ImageNet 21k
ViTP

ViTC

ResNet
RegNetY

name

Figure 2.6: Peak performance (epoch training time vs. ImageNet-1k val top-1 error):
Results of a fair, controlled comparison of ViTP , ViTC , and CNNs. Each curve corresponds
to a model complexity sweep resulting in a training speed spectrum (minutes per ImageNet-
1k epoch). Left: State-of-the-art CNNs. Equipped with a modern training recipe, ResNets
are highly competitive in the faster regime, while RegNetY and Z perform similarly, and
better than EfficientNets. Middle: Selected CNNs compared to ViTs. With access to
only ImageNet-1k training data, RegNetY and ResNet outperform ViTP across the board.
ViTC is more competitive with CNNs. Right: Pretraining on ImageNet-21k improves the
ViT models more than the CNNs, making ViTP competitive. Here, the proposed ViTC

outperforms all other models across the full training speed spectrum.

specified in [19, 50]. Given this protocol, we compare ViTP , ViTC , and CNNs
across a spectrum of model complexities (1GF to 36GF) and dataset scales (directly
training on ImageNet-1k vs. pretraining on ImageNet-21k and then fine-tuning on
ImageNet-1k).
Results. Figure 2.6 shows a progression of results. Each plot shows ImageNet-1k val
top-1 error vs. ImageNet-1k epoch training time.1 The left plot compares several
state-of-the-art CNNs. RegNetY and RegNetZ [50] achieve similar results across the
training speed spectrum and outperform EfficientNets [19]. Surprisingly, ResNets [17]
are highly competitive at fast runtimes, showing that under a fairer comparison these
years-old models perform substantially better than often reported (cf . [19]).

The middle plot compares two representative CNNs (ResNet and RegNetY)
to ViTs, still using only ImageNet-1k training. The baseline ViTP underperforms
RegNetY across the entire model complexity spectrum. To our surprise, ViTP also
underperforms ResNets in this regime. ViTC is more competitive and outperforms
CNNs in the middle-complexity range.

The right plot compares the same models but with ImageNet-21k pretraining
(details in Appendix). In this setting ViT models demonstrates a greater capacity
to benefit from the larger-scale data: now ViTC strictly outperforms both ViTP

1We time models in PyTorch on 8 32GB Volta GPUs. We note that batch inference time is
highly correlated with training time, but we report epoch time as it is easy to interpret and does
not depend on the use case.

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 16

model flops params acts time batch epochs IN
(B) (M) (M) (min) size 100 200 400 21k

ResNet-50 4.1 25.6 11.3 3.4 2048 22.5 21.2 20.7 21.6
ResNet-101 7.8 44.5 16.4 5.5 2048 20.3 19.1 18.5 19.2
ResNet-152 11.5 60.2 22.8 7.7 2048 19.5 18.4 17.7 18.2
ResNet-200 15.0 64.7 32.3 10.7 1024 19.5 18.3 17.6 17.7
RegNetY-1GF 1.0 9.6 6.2 3.1 2048 23.2 22.2 21.5 -
RegNetY-4GF 4.1 22.4 14.5 7.6 2048 19.4 18.3 17.9 18.4
RegNetY-16GF 15.5 72.3 30.7 17.9 1024 17.1 16.4 16.3 15.6
RegNetY-32GF 31.1 128.6 46.2 35.1 512 16.2 15.9 15.9 15.0
RegNetZ-1GF 1.0 11.0 8.8 4.2 2048 20.8 20.2 19.6 -
RegNetZ-4GF 4.0 28.1 24.3 12.9 1024 17.4 16.9 16.6 -
RegNetZ-16GF 16.0 95.3 51.3 32.0 512 16.0 15.9 15.9 -
RegNetZ-32GF 32.0 175.1 79.6 55.3 256 16.3 16.2 16.1 -

model flops params acts time batch epochs IN
(B) (M) (M) (min) size 100 200 400 21k

EffNet-B2 1.0 9.1 13.8 5.9 2048 21.4 20.5 19.9 -
EffNet-B4 4.4 19.3 49.5 19.4 512 18.5 17.8 17.5 -
EffNet-B5 10.3 30.4 98.9 41.7 256 17.3 17.0 17.0 -

ViTP -1GF 1.1 4.8 5.5 2.6 2048 33.2 29.7 27.7 -
ViTP -4GF 3.9 18.5 11.1 3.8 2048 23.3 20.8 19.6 20.6
ViTP -18GF 17.5 86.6 24.0 11.5 1024 19.9 18.4 17.9 16.4
ViTP -36GF 35.9 178.4 37.3 18.8 512 19.9 18.8 18.2 15.1
ViTC-1GF 1.1 4.6 5.7 2.7 2048 28.6 26.1 24.7 -
ViTC-4GF 4.0 17.8 11.3 3.9 2048 20.9 19.2 18.6 18.8
ViTC-18GF 17.7 81.6 24.1 11.4 1024 18.4 17.5 17.0 15.1
ViTC-36GF 35.0 167.8 36.7 18.6 512 18.3 17.6 16.8 14.2

Table 2.2: Peak performance (grouped by model family): Model complexity and validation
top-1 error at 100, 200, and 400 epoch schedules on ImageNet-1k, and the top-1 error after
pretraining on ImageNet-21k (IN 21k) and fine-tuning on ImageNet-1k. This table serves
as reference for the results shown in Figure 2.6. Blue numbers: best model trainable under
20 minutes per ImageNet-1k epoch. Batch sizes and training times are reported normalized
to 8 32GB Volta GPUs (see Appendix). Additional results on the ImageNet-V2 test set
are presented in the Appendix.

and RegNetY. Interestingly, the original ViTP does not outperform a state-of-the-art
CNN even when trained on this much larger dataset. Numerical results are presented
in Table 2.2 for reference to exact values. This table also highlights that flop counts
are not significantly correlated with runtime, but that activations are (see Appendix
for more details), as also observed by [50]. E.g., EfficientNets are slow relative to
their flops while ViTs are fast.

These results verify that ViTC ’s convolutional stem improves not only optimiza-
tion stability, as seen in the previous section, but also peak performance. Moreover,
this benefit can be seen across the model complexity and dataset scale spectrum.
Perhaps surprisingly, given the recent excitement over ViT, we find that ViTP strug-
gles to compete with state-of-the-art CNNs. We only observe improvements over
CNNs when using both large-scale pretraining data and the convolutional stem.

2.7 Additional Study and Experimental Details
Stem Design Ablation Experiments

ViT’s patchify stem differs from the proposed convolutional stem in the type of
convolution used and the use of normalization and a non-linear activation function.
We investigate these factors next.

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 17

stem kernel size stride padding channels flops params acts top-1 error ∆(M) (M) (M) AdamW SGD
P [16] [16] [0] [384] 58 0.3 0.8 27.7 33.0 5.3
C [3, 3, 3, 3, 1] [2, 2, 2, 2, 1] [1, 1, 1, 1, 0] [48, 96, 192, 384, 384] 435 1.0 1.2 24.0 24.7 0.7
S1 [3, 3, 3, 2, 1] [2, 2, 2, 2, 1] [1, 1, 1, 0, 0] [42, 104, 208, 416, 384] 422 0.8 1.3 24.3 25.1 0.8
S2 [3, 3, 3, 4, 1] [2, 2, 1, 4, 1] [1, 1, 1, 0, 0] [32, 64, 128, 256, 384] 422 0.7 1.1 24.3 25.3 1.0
S3 [3, 3, 3, 8, 1] [2, 1, 1, 8, 1] [1, 1, 1, 0, 0] [17, 34, 68, 136, 384] 458 0.7 1.6 25.1 26.2 1.1
S4 [3, 3, 3, 16, 1] [1, 1, 1, 16, 1] [1, 1, 1, 0, 0] [8, 16, 32, 64, 384] 407 0.6 2.9 26.2 27.9 1.3

Table 2.3: Stem designs: We compare ViT’s standard patchify stem (P) and our convolu-
tional stem (C) to four alternatives (S1 - S4) that each include a patchify layer, i.e., a
convolution with kernel size (> 1) equal to stride (highlighted in blue). Results use 50
epoch training, 4GF model size, and optimal lr and wd values for all models. We observe
that increasing the pixel size of the patchify layer (S1 - S4) systematically degrades both
top-1 error and optimizer stability (∆) relative to C.

model top-1 err.
ViTP -4GF 23.2
ViTP (bn)-4GF 23.3
ViTC -4GF 20.9
ViTC(ln)-4GF 21.1

Table 7: TMP: A

11

Figure 2.7: Stem normalization and non-linearity: We apply BN and ReLU after the
patchify stem and train ViTP -4GF (left plot), or replace BN with layer norm (LN) in the
convolutional stem of ViTC-4GF (middle plot). EDFs are computed by sampling lr and wd
values and training for 50 epochs. The table (right) shows 100 epoch results using best lr
and wd values found at 50 epochs. The minor gap in error in the EDFs and at 100 epochs
indicates that these choices are fairly insignificant.

Stem design. The focus of this paper is studying the large, positive impact of changing
ViT’s default patchify stem to a simple, standard convolutional stem constructed
from stacked stride-two 3×3 convolutions. Exploring the stem design space, and more
broadly “hybrid ViT” models [11], to maximize peak performance is an explicit anti-
goal because we want to study the impact under minimal modifications. However, we
can gain additional insight by considering alternative stem designs that fall between
the patchify stem (P) the standard convolutional stem (C). Four alternative designs
(S1 - S4) are presented in Table 2.3. The stems are designed so that overall model
flops remain comparable. Stem S1 modifies C to include a small 2 × 2 patchify
layer, which slightly worsens results. Stems S2 - S4 systematically increase the pixel
size p of the patchify layer from p = 2 up to 16, matching the size used in stem
P . Increasing p reliably degrades both error and optimizer stability. Although we

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 18

20 25 30 35 40
top-1 error

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

.

ViTP-16GF (48 blocks)
ViTC-16GF (47 blocks)

20 25 30 35 40
top-1 error

ViTP-16GF (48 blocks)
ViTP-4GF (12 blocks)
ViTP-18GF (12 blocks)

20 25 30 35 40
top-1 error

ViTC-16GF (47 blocks)
ViTC-4GF (11 blocks)
ViTC-18GF (11 blocks)

Figure 2.8: Deeper models: We increase the depth of ViTP -4GF from 12 to 48 blocks,
termed as ViTP -16GF (48 blocks), and create a counterpart with a convolutional stem,
ViTC-16GF (47 blocks); all models are trained for 50 epochs. Left: The convolutional
stem significantly improves error and stability despite accounting for only ∼2% total flops.
Middle, Right: The deeper 16GF ViTs clearly outperform the shallower 4GF models and
achieve similar (slightly worse) error to the shallower and wider 18GF models. The deeper
ViTP also has better lr/wd stability than the shallower ViTP models.

selected the C design a priori based on existing best-practices for CNNs, we see ex
post facto that it outperforms four alternative designs that each include one patchify
layer.
Stem normalization and non-linearity. We investigate normalization and non-
linearity from two directions: (1) adding BN and ReLU to the default patchify stem
of ViT, and (2) changing the normalization in the proposed convolutional stem. In
the first case, we simply apply BN and ReLU after the patchify stem and train
ViTP -4GF (termed ViTP (bn)-4GF) for 50 and 100 epochs. For the second case, we
run four experiments with ViTC-4GF: {50, 100} epochs × {BN, layer norm (LN)}.
As before, we tune lr and wd for each experiment using the 50-epoch schedule and
reuse those values for the 100-epoch schedule. We use AdamW for all experiments.
Figure 2.7 shows the results. From the EDFs, which use a 50 epoch schedule, we see
that the addition of BN and ReLU to the patchify stem slightly worsens the best
top-1 error but does not affect lr and wd stability (left). Replacing BN with LN
in the convolutional stem marginally degrades both best top-1 error and stability
(middle). The table (right) shows 100 epoch results using optimal lr and wd values
chosen from the 50 epoch runs. At 100 epochs the error gap is small indicating that
these factors are likely insignificant.

Deeper Model Ablation Experiments
Touvron et al. [16] found that deeper ViT models are more unstable, e.g.,

increasing the number of transformer blocks from 12 to 36 may cause a ∼10 point
drop in top-1 accuracy given a fixed choice of lr and wd. They demonstrate that

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 19

0 50 100 150 200 250 300 350
parameters (M)

0

10

20

30

40

50

60

tra
in

in
g

tim
e

(m
in

.)

r = 0.71

ResNet
RegNetY
RegNetZ
EfficientNet
ViTP

ViTC

0 10 20 30 40 50 60 70
flops (B)

r = 0.75

ResNet
RegNetY
RegNetZ
EfficientNet
ViTP

ViTC

20 40 60 80 100
activations (M)

r = 0.93

ResNet
RegNetY
RegNetZ
EfficientNet
ViTP

ViTC

name

Figure 2.9: Complexity measures vs. runtime: We plot the GPU runtime of models versus
three commonly used complexity measures: parameters, flops, and activations. For all
models, including ViT, runtime is most correlated with activations, not flops, as was
previously shown for CNNs.

stochastic depth and/or their proposed LayerScale can remedy this training failure.
Here, we explore deeper models by looking at EDFs created by sampling lr and wd.
We increase the depth of a ViTP -4GF model from 12 blocks to 48 blocks, termed
ViTP -16GF (48 blocks). We then remove one block and use the convolutional stem
from ViTC-4GF, yielding a counterpart ViTC-16GF (47 blocks) model. Figure 2.8
shows the EDFs of the two models and shallower models for comparison, following
the setup in §2.5.3. Despite the convolutional stem accounting for only 1/48 (∼2%)
total flops, it shows solid improvement over its patchify counterpart. We find that
a variety of lr and wd choices allow deeper ViT models to be trained without a
large drop in top-1 performance and without additional modifications. In fact, the
deeper ViTP -16GF (48 blocks) has better lr and wd stability than ViTP -4GF and
ViTP -18GF over the sampling range (Figure 2.8, middle).

Larger Model ImageNet-21k Experiments
In Table 2.2 we reported the peak performance of ViT models on ImageNet-21k

up to 36GF. To study larger models, we construct a 72GF ViTP by using 22 blocks,
1152 hidden size, 18 heads, and 4 MLP multiplier. For ViTC-72GF, we use the
same C-stem design used for ViTC-18GF and ViTC-36GF, but without removing
one transformer block since the flops increase from the C-stem is marginal in this
complexity regime.

Our preliminary explorations into 72GF ViT models directly adopted hyper-
parameters used for 36GF ViT models. Under this setting, we observed that the
convolutional stem still improves top-1 error, however, we also found that a new
form of instability arises, which causes training error to randomly spike. Sometimes
training may recover within the same epoch, and subsequently the final accuracy is
not impacted; or, it may take several epochs to recover from the error spike, and in

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 20

this case we observe suboptimal final accuracy. The first type of error spike is more
common for ViTP -72GF, while the latter type of error spike is more common for
ViTC-72GF.

To mitigate this instability, we adopt two measures: (i) For both models, we
lower wd from 0.28 to 0.15 as we found that it significantly reduces the chance
of error spikes. (ii) For ViTC-72GF, we initialize its stem from the ImageNet-21k
pre-trained ViTC-36GF and keep it frozen throughout training. These modifications
make training ViT-72GF models on ImageNet-21k feasible. When fine-tuned on
ImageNet-1k, ViTP -72GF reaches 14.2% top-1 error and ViTC-72GF reaches 13.6%
top-1 error, showing that ViTC still outperforms its ViTP counterpart. Increasing
fine-tuning resolution from 224 to 384 boosts the performance of ViTC-72GF to
12.6% top-1 error, while significantly increasing the fine-tuning model complexity
from 72GF to 224GF.

Model Complexity and Runtime
In previous sections, we reported error vs. training time. Other commonly used

complexity measures include parameters, flops, and activations. Indeed, it is most
typical to report accuracy as a function of model flops or parameters. However, flops
may fail to reflect the bottleneck on modern memory-bandwidth limited accelerators
(e.g., GPUs, TPUs). Likewise, parameters are an even more unreliable predictor of
model runtime. Instead, activations have recently been shown to be a better proxy
of runtime on GPUs (see [49, 50]). We next explore if similar results hold for ViT
models.

For CNNs, previous studies [49, 50] defined activations as the total size of all
output tensors of the convolutional layers, while disregarding normalization and non-
linear layers (which are typically paired with convolutions and would only change
the activation count by a constant factor). In this spirit, for transformers, we define
activations as the size of output tensors of all matrix multiplications, and likewise
disregard element-wise layers and normalizations. For models that use both types
of operations, we simply measure the output size of all convolutional and vision
transformer layers.

Figure 2.9 shows the runtime as a function of these model complexity measures.
The Pearson correlation coefficient (r) confirms that activations have a much stronger
linear correlation with actual runtime (r = 0.93) than flops (r = 0.75) or parameters
(r = 0.71), confirming that the findings of [50] for CNNs also apply to ViTs. While
flops are somewhat predictive of runtime, models with a large ratio of activations to
flops, such as EfficientNet, have much higher runtime than expected based on flops.
Finally, we note that ViTP and ViTC are nearly identical on all measures.

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 21

model AdamW SGD
lr wd lr wd

RegNetY-∗ 3.8e-3 0.1 2.54 2.4e-5
ViTP -1GF 2.0e-3 0.20 1.9 1.3e-5
ViTP -4GF 2.0e-3 0.20 1.9 1.3e-5
ViTP -18GF 1.0e-3 0.24 1.1 1.2e-5
ViTC-1GF 2.5e-3 0.19 1.9 1.3e-5
ViTC-4GF 1.0e-3 0.24 1.3 2.2e-5
ViTC-18GF 1.0e-3 0.24 1.1 2.7e-5

model AdamW
lr wd

ViT-∗ (2.5e−4, 8.0e−3) (0.02, 0.8)
RegNetY-∗ (1.25e−3, 4.0e−2) (0.0075, 0.24)

model SGD
lr wd

ViT-∗ (0.1, 3.2) (4.0e−6, 1.2e−4)
RegNetY-∗ (0.25, 8.0) (3.0e−6, 8.0e−5)

Table 2.4: Learning rate and weight decay used in §2.5: Left: Per-model lr and wd values
used for the experiments in §2.5.1 and §2.5.2, optimized for ImageNet-1k at 50 epochs.
Right: Per-model lr and wd ranges used for the experiments in §2.5.3. Note that for our
final experiments in §2.6, we constrained the lr and wd values further, using a single setting
for all CNN models, and just two settings for all ViT models. We recommend using this
simplified set of values in §2.6 when comparing models for fair and easily reproducible
comparisons. All lr values are normalized w.r.t. a minibatch size of 2048.

Timing. Throughout the paper we report normalized training time, as if the model
were trained on a single 8 V100 GPU server, by multiplying the actual training
time by the number of GPUs used and dividing by 8. (Due to different memory
requirements of different models, we may be required to scale up the number of
GPUs to accommodate the target minibatch size.) We use the number of minutes
taken to process one ImageNet-1k epoch as a standard unit of measure. We prefer
training time over inference time because inference time depends heavily on the
use case (e.g., a streaming, latency-oriented setting requires a batch size of 1 vs.
a throughput-oriented setting that allows for batch size ≫ 1) and the hardware
platform (e.g., smartphone, accelerator, server CPU).

Additional Experimental Details

Stability experiments. For the experiments in §2.5.1 and §2.5.2, we allow each CNN
and ViT model to select a different lr and wd. We find that all CNNs select nearly
identical values, so we normalize them to a single choice as done in [50]. ViT models
prefer somewhat more varied choices. Table 2.4 (left) lists the selected values. For
the experiments in §2.5.3, we use lr and wd intervals shown in Table 2.4 (right).
These ranges are constructed by (i) obtaining initial good lr and wd choices for each
model family; and then (ii) multiplying them by 1/8 and 4.0 for left and right interval
endpoints (we use an asymmetric interval because models are trainable with smaller
but not larger values). Finally we note that if we were to redo the experiments, the
setting used in §2.5.1/§2.5.2 could be simplified.

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 22

model A
ug

m
en

t

M
ix

up

C
ut

M
ix

La
be

lS
m

oo
th

M
od

el
EM

A

Er
as

in
g

St
oc

h
D

ep
th

R
ep

ea
tin

g

10
0

ep
oc

hs

40
0

ep
oc

hs

30
0

ep
oc

hs
[1

4]

ViTP -4GF

Auto ✓ ✓ ✓ ✓ 23.2 20.5 -
Rand ✓ ✓ ✓ ✓ ✓ ✓ 25.4 20.7 -
Rand ✓ ✓ ✓ ✓ ✓ 24.9 20.5 -
Rand ✓ ✓ ✓ ✓ 23.6 20.4 -
Rand ✓ ✓ ✓ 23.5 20.3 -
Auto ✓ ✓ ✓ 23.0 20.3 -

ViTP -18GF

Auto ✓ ✓ ✓ ✓ 19.9 17.9 -
Rand ✓ ✓ ✓ ✓ ✓ ✓ 22.5 18.6 18.2
Rand ✓ ✓ ✓ ✓ ✓ 25.1 19.2 96.6
Rand ✓ ✓ ✓ ✓ 21.2 19.9 -
Rand ✓ ✓ ✓ 20.9 19.7 -
Auto ✓ ✓ ✓ 20.4 20.0 -
Rand ✓ ✓ ✓ ✓ ✓ - - 22.6
Rand ✓ ✓ ✓ ✓ ✓ - - 95.7
Rand ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - 18.1

Table 2.5: Ablation of data augmentation and regularization: We use the lr and wd from
Table 2.4 (left), except for ViTP -18GF models with RandAugment which benefit from
stronger wd (we increase wd to 0.5). Original DeiT ablation results are copied for reference
in gray (last column); these use a lr/wd of 1e−3/0.05 (lr normalized to minibatch size
2048), which leads to some training failures (we note our wd is 5-10× higher). Our default
training setup (first row in each set) uses AutoAugment, mixup, CutMix, label smoothing,
and model EMA. Compared to the DeiT setup (second row in each set), we do not use
erasing, stochastic depth, or repeating. Although our setup is equally effective, it is simpler
and also converges much faster (see Figure 2.10).

Peak performance on ImageNet-1k. We note that in later experiments we found
tuning lr and wd per model is not necessary to obtain competitive results. Therefore,
for our final experiments in §2.6, we constrained the lr and wd values further, using
a single setting for all CNN models, and just two settings for all ViT models, as
discussed in §2.6. We recommend using this simplified set of values when comparing
models for fair and easily reproducible comparisons. Finally, for these experiments,
when training is memory constrained (i.e., for EfficientNet-{B4,B5}, RegNetZ-
{4,16,32}GF), we reduce the minibatch size from 2048 and linearly scale the lr
according to [26].
Peak performance on ImageNet-21k. For ImageNet-21k, a dataset of 14M images
and ∼21k classes, we pretrain models for 90 (ImageNet-21k) epochs, following [11].
We do not search for the optimal settings for ImageNet-21k and instead use the
identical training recipe (up to minibatch size) used for ImageNet-1k. To reduce
training time, we distribute training over more GPUs and use a larger minibatch size
of 4096 with the lr scaled accordingly. For simplicity and reproducibility, we use a

2.7. ADDITIONAL STUDY AND EXPERIMENTAL DETAILS 23

50 100 200 400
training epochs

0

2

4

6

8

10

to
p-

1
er

ro
r

4GF models
ViTP (DeiT)
ViTP (Ours)
ViTC (Ours)

50 100 200 400
training epochs

0

2

4

6

8

10 18GF models
ViTP (DeiT)
ViTP (Ours)
ViTC (Ours)

50 100 200 400
training epochs

18

21

24

27

30

to
p-

1
er

ro
r

18GF models
ViTP (DeiT)
ViTP (Ours)
ViTC (Ours)

name

Figure 2.10: Impact of training recipes on convergence: We train ViT models using the
DeiT recipe vs. our simplified counterpart. Left and middle: ∆top-1 error of 4GF and 18GF
models at 50, 100 and 200 epoch schedules, and asymptotic performance at 400 epochs.
Right: Absolute top-1 error of 18GF models. Removing augmentations and using model
EMA accelerates convergence for both ViTP and ViTC models while slightly improving
upon our reproduction of DeiT’s top-1 error.

single label per image, unlike some prior work (e.g., [58, 59]) that uses WordNet [60]
to expand single labels to multiple labels. After pretraining, we fine-tune for 20
epochs on ImageNet-1k and use a small-scale grid search of lr while keeping wd at 0,
similar to [11,58].

Regularization and Data Augmentation
At this study’s outset, we developed a simplified training setup for ViT models.

Our goals were to design a training setup that is as simple as possible, resembles
the setup used for state-of-the-art CNNs [50], and maintains competitive accuracy
with DeiT [14]. Here, we document this exploration by considering the baseline
ViTP -4GF and ViTP -18GF models. Beyond simplification, we also observe that our
training setup yields faster convergence than the DeiT setup, as discussed below.

Table 2.5 compares our setup to that of DeiT [14]. Under their lr/wd choice, [14]
report failed training when removing erasing and stochastic depth, as well as significant
drop of accuracy when removing repeating. We find that they can be safely disabled
as long as a higher wd is used (our wd is 5-10× higher). We observe that we can
remove model EMA for ViTP -4GF, but that it is essential for the larger ViTP -18GF
model, especially at 400 epochs. Without model EMA, ViTP -18GF can still be
trained effectively, but this requires additional augmentation and regularization (as
in DeiT).

Figure 2.10 shows that our training setup accelerates convergence for both ViTP

and ViTC models, as can be seen by comparing the error deltas (∆top-1) between the
DeiT baseline and ours (left and middle plots). Our training setup also yields slightly
better top-1 error than our reproduction of DeiT (right plot). We conjecture that

2.8. CONCLUSION 24

faster convergence is due to removing repeating augmentation [56, 57], which was
shown in [56] to slow convergence. Under some conditions repeating augmentation
may improve accuracy; we did not observe such improvements in our experiments.

2.8 Conclusion
In this chapter we demonstrated that the optimization challenges of ViT models

are linked to the large-stride, large-kernel convolution in ViT’s patchify stem. The
seemingly trivial change of replacing this patchify stem with a simple convolutional
stem leads to a remarkable change in optimization behavior. With the convolutional
stem, ViT (termed ViTC) converges faster than the original ViT (termed ViTP)
(§2.5.1), trains well with either AdamW or SGD (§2.5.2), improves learning rate and
weight decay stability (§2.5.3), and improves ImageNet top-1 error by ∼1-2% (§2.6).
These results are consistent across a wide spectrum of model complexities (1GF
to 36GF) and dataset scales (ImageNet-1k to ImageNet-21k). Our results indicate
that injecting a small dose of convolutional inductive bias into the early stages of
ViTs can be hugely beneficial. Looking forward, we are interested in the theoretical
foundation of why such a minimal architectural modification can have such large
(positive) impact on optimizability. We are also interested in studying larger models.
Our preliminary explorations into 72GF models reveal that the convolutional stem
still improves top-1 error, however we also find that a new form of instability arises
that causes training error to randomly spike, especially for ViTC .

25

Chapter 3

Reducing Inductive Bias in Contrastive
Self-Supervised Learning

3.1 Introduction
Self-supervised learning, which uses raw image data and/or available pretext

tasks as its own supervision, has become increasingly popular as the inability of
supervised models to generalize beyond their training data has become apparent.
Different pretext tasks have been proposed with different transformations, such as
spatial patch prediction [61, 62], colorization [63–65], rotation [66]. Whereas pretext
tasks aim to recover the transformations between different “views” of the same data,
more recent contrastive learning methods [67–70] instead try to learn to be invariant
to these transformations, while remaining discriminative with respect to other data
points. Here, the transformations are generated using classic data augmentation
techniques which correspond to common pretext tasks, e.g., randomizing color,
texture, orientation and cropping.

Yet, the inductive bias introduced through such augmentations is a double-edged
sword, as each augmentation encourages invariance to a transformation which can be
beneficial in some cases and harmful in others: e.g., adding rotation may help with
view-independent aerial image recognition, but significantly downgrade the capacity
of a network to solve tasks such as detecting which way is up in a photograph for a
display application. Current self-supervised contrastive learning methods assume
implicit knowledge of downstream task invariances. In this chapter, we propose
to learn visual representations which capture individual factors of variation in a
contrastive learning framework without presuming prior knowledge of downstream
invariances.

Instead of mapping an image into a single embedding space which is invariant to

3.2. BACKGROUND: CONTRASTIVE LEARNING FRAMEWORK 26

all the hand-crafted augmentations, our model learns to construct separate embedding
sub-spaces, each of which is sensitive to a specific augmentation while invariant to
other augmentations. We achieve this by optimizing multiple augmentation-sensitive
contrastive objectives using a multi-head architecture with a shared backbone. Our
model aims to preserve information with regard to each augmentation in a unified
representation, as well as learn invariances to them. The general representation
trained with these augmentations can then be applied to different downstream tasks,
where each task is free to selectively utilize different factors of variation in our
representation. We consider transfer of either the shared backbone representation,
or the concatenation of all the task-specific heads; both outperform all baselines; the
former uses same embedding dimensions as typical baselines, while the latter provides
greatest overall performance in our experiments. In this paper, we experiment with
three types of augmentations: rotation, color jittering, and texture randomization, as
visualized in Figure 3.1. We evaluate our approach across a variety of diverse tasks
including large-scale classification [2], fine-grained classification [71, 72], few-shot
classification [73], and classification on corrupted data [5, 74]. Our representation
shows consistent performance gains with increasing number of augmentations. Our
method does not require hand-selection of data augmentation strategies, and achieves
better performance against state-of-the-art MoCo baseline [69,75], and demonstrates
superior transferability, generalizability and robustness across tasks and categories.
Specifically, we obtain around 10% improvement over MoCo in classification when
applied on the iNaturalist [72] dataset.

3.2 Background: Contrastive Learning Framework
Contrastive learning learns a representation by maximizing similarity and dis-

similarity over data samples which are organized into similar and dissimilar pairs,
respectively. It can be formulated as a dictionary look-up problem [69], where a
given reference image I is augmented into two views, query and key, and the query
token q should match its designated key k+ over a set of sampled negative keys {k−}
from other images. In general, the framework can be summarized as the following
components: (i) A data augmentation module T constituting n atomic augmentation
operators, such as random cropping, color jittering, and random flipping. We denote
a pre-defined atomic augmentation as random variable Xi. Each time the atomic
augmentation is executed by sampling a specific augmentation parameter from the
random variable, i.e., xi∼Xi. One sampled data augmentation module transforms
image I into a random view Ĩ, denoted as Ĩ = T [x1, x2, . . . , xn] (I). Positive pair
(q, k+) is generated by applying two randomly sampled data augmentation on the

3.2. BACKGROUND: CONTRASTIVE LEARNING FRAMEWORK 27

Color Rotation Texture

Color

Rotation

Texture

Augmentations
Downstream Tasks

Augmentations
?

Classes

(a) (b)

Coarse-grained Fine-grained (bird) Fine-grained (flower)

Figure 3.1: Self-supervised contrastive learning relies on data augmentations as depicted
in (a) to learn visual representations. However, current methods introduce inductive bias
by encouraging neural networks to be less sensitive to information w.r.t. augmentation,
which may help or may hurt. As illustrated in (b), rotation invariant embeddings can
help on certain flower categories, but may hurt animal recognition performance; conversely
color invariance generally seems to help coarse grained animal classification, but can hurt
many flower categories and bird categories. Our method, shown in the following figure,
overcomes this limitation.

same reference image. (ii) An encoder network f which extracts the feature v of
an image I by mapping it into a d-dimensional space Rd. (iii) A projection head h
which further maps extracted representations into a hyper-spherical (normalized)
embedding space. This space is subsequently used for a specific pretext task, i.e.,
contrastive loss objective for a batch of positive/negative pairs. A common choice is
InfoNCE [76]:

Lq = − log exp (q·k+/τ)
exp (q·k+/τ) +∑

k− exp (q·k−/τ) , (3.1)

where τ is a temperature hyper-parameter scaling the distribution of distances.
As a key towards learning a good feature representation [70], a strong augmen-

tation policy prevents the network from exploiting naïve cues to match the given
instances. However, inductive bias is introduced through the selection of augmenta-
tions, along with their hyper-parameters defining the strength of each augmentation,
manifested in Equation 3.1 that any views by the stochastic augmentation module
T of the same instance are mapped onto the same point in the embedding space.
The property negatively affects the learnt representations: 1) Generalizability and
transferability are harmed if they are applied to the tasks where the discarded infor-
mation is essential, e.g., color plays an important role in fine-grained classification

3.3. LOOC: LEAVE-ONE-OUT CONTRASTIVE LEARNING 28

of birds; 2) Adding an extra augmentation is complicated as the new operator may
be helpful to certain classes while harmful to others, e.g., a rotated flower could be
very similar to the original one, whereas it does not hold for a rotated car; 3) The
hyper-parameters which control the strength of augmentations need to be carefully
tuned for each augmentation to strike a delicate balance between leaving a short-cut
open and completely invalidate one source of information.

3.3 LooC: Leave-one-out Contrastive Learning
We propose Leave-one-out Contrastive Learning (LooC), a framework for multi-

augmentation contrastive learning. Our framework can selectively prevent informa-
tion loss incurred by an augmentation. Rather than projecting every view into a
single embedding space which is invariant to all augmentations, in our LooC method
the representations of input images are projected into several embedding spaces, each
of which is not invariant to a certain augmentation while remaining invariant to oth-
ers, as illustrated in Figure 3.2. In this way, each embedding sub-space is specialized
to a single augmentation, and the shared layers will contain both augmentation-
varying and invariant information. We learn a shared representation jointly with the
several embedding spaces; we transfer either the shared representation alone, or the
concatenation of all spaces, to downstream tasks.
View Generation. Given a reference image and n atomic augmentations, we
first augment the reference image with two sets of independently sampled aug-
mentation parameters into the query view Iq and the first key view Ik0 , i.e.,
I{q,k0} = T [x{q,k0}

1 , x
{q,k0}
2 , . . . , x{q,k0}

n] (I). Additionally, we generate n views from
the reference image as extra key views, denoted as Iki

, ∀i ∈ {1, . . . , n}. For the
ith additional key view, the parameter of ith atomic augmentation is copied from it
of the query view, i.e., xki

i ≡ xq
i , ∀i ∈ {1, . . . , n}; whereas the parameter of other

atomic augmentations are still independently sampled, i.e., xki
j ∼ Xj, ∀j ̸= i. For

instance, assume that we have a set of two atomic augmentations {random_rotation,
color_jitter}, Iq and Ik1 are always augmented by the same rotation angle but
different color jittering; Iq and Ik2 are always augmented by the same color jittering
but different rotation angle; Iq and Ik0 are augmented independently, as illustrated
in the left part of Figure 3.2.
Contrastive Embedding Space. The augmented views are encoded by a neural
network encoder f(·) into feature vectors vq, vk0 , · · · , vkn in a joint embedding space
V ∈ Rd. Subsequently, they are projected into n+1 normalized embedding spaces
Z0, Z1, · · · , Zn ∈ Rd′ by projection heads h : V 7→ Z, among which Z0 is invariant
to all types of augmentations, whereas Zi (∀i ∈ {1, 2, · · · , n}) is dependent on the

3.3. LOOC: LEAVE-ONE-OUT CONTRASTIVE LEARNING 29

general
embedding space 𝑉

𝑞

𝑘!

𝑘"

𝐼

all-invariant
embedding space 𝑍!

rotation-variant
embedding space 𝑍1

{𝑞, 𝑘0, 𝑘1, 𝑘2}

{𝑘−}

{𝑞, 𝑘$} {𝑘%, 𝑘&}

{𝑘−}

color-variant
embedding space 𝑍2

{𝑞, 𝑘&}
{𝑘0, 𝑘1}

{𝑘−}

ℎ

ℎ
𝑓

𝑓

𝑓

𝑓

𝒯

rotation color

(𝑞, 𝑘%) ≠ ≠
(𝑞, 𝑘1) = ≠
(𝑞, 𝑘2) ≠ =

random rotation
color jitter

𝑘%

ℎ

: positive

: negative

Figure 3.2: Framework of the Leave-one-out Contrastive Learning approach, illustrated
with two types of augmentations, i.e., random rotation and color jittering. We generate
multiple views with leave-one-out strategy, then project their representations into separate
embedding spaces with contrastive objective, where each embedding space is either invariant
to all augmentations, or invariant to all but one augmentation. The learnt representation
can be the general embedding space V (blue region), or the concatenation of embedding
sub-spaces Z (grey region). Our results show that either of our proposed representations
are able to outperform baseline contrastive embeddings and do not suffer from decreased
performance when adding augmentations to which the task is not invariant (i.e., the red
X’s in Figure 1).

ith type of augmentation but invariant to other types of augmentations. In other
words, in Z0 all features v should be mapped to a single point, whereas in Zi

(∀i ∈ {1, 2, · · · , n}) only vq and vki should be mapped to a single point while vkj

∀j ≠ i should be mapped to n−1 separate points, as only Iq and Iki
share the same

ith augmentation.
We perform contrastive learning in all normalized embedding spaces based on

Equation 3.1, as shown in the right part of Figure 3.2. For each query zq, denote
zk+ as the keys from the same instance, and zk− as the keys from other instances.
Since all views should be mapped to the single point in Z0, the positive pair for the
query zq

0 is z
k+

0
0 , and the negative pairs are embeddings of other instances in this

embedding space {z
k−

0
0 }; for embedding spaces Z1, · · · , Zn, the positive pair for the

query zq
i is z

k+
i

i , while the negative pairs are embeddings of other instances in this
embedding space {z

k−
i

i }, and {z
k+

j

i | ∀j ∈ {0, 1, · · · , n} and j ̸= i}, which are the
embeddings of the same instance with different ith augmentation. The network then
learns to be sensitive to one type of augmentation while insensitive to other types of
augmentations in one embedding space. Denote E

{+,−}
i,j = exp (zq

i · z
k

{+,−}
j

i /τ). The

3.4. EXPERIMENTS 30

model Rotation IN-100
Acc. top-1 top-5

Supervised 72.3 83.7 95.7
MoCo 61.1 81.0 95.2
MoCo + Rotation 43.3 79.4 94.1
MoCo + Rotation (same for q and k) 45.5 78.1 94.3
LooC + Rotation [ours] 65.2 80.2 95.5

Table 3.1: Classification accuracy on 4-class rotation and IN-100 under linear evaluation
protocol. Adding rotation augmentation into baseline MoCo significantly reduces its
capacity to classify rotation angles while downgrades its performance on IN-100. In
contrast, our method better leverages the information gain of the new augmentation.

overall training objective for q is:

Lq = − 1
n + 1

(
log

E+
0,0

E+
0,0 +

∑
k− E−

0,0
+

n∑
i=1

log
E+

i,i∑n
j=0 E+

i,j +
∑

k− E−
i,i

)
, (3.2)

The network must preserve information w.r.t. all augmentations in the general
embedding space V in order to optimize the combined learning objectives of all
normalized embedding spaces.
Learnt representations. The representation for downstream tasks can be from the
general embedding space V (Figure 3.2, blue region), or the concatenation of all
embedding sub-spaces (Figure 3.2, grey region). LooC method returns V; we term
the implementation using the concatenation of all embedding sub-spaces as LooC++.

3.4 Experiments
Methods. We adopt Momentum Contrastive Learning (MoCo) [69] as the backbone
of our framework for its efficacy and efficiency, and incorporate the improved version
from [75]. We use three types of augmentations as pretext tasks for static image
data, namely color jittering (including random gray scale), random rotation (90°,
180°, or 270°), and texture randomization [4,77]. We apply random-resized cropping,
horizontal flipping and Gaussian blur as augmentations without designated embedding
spaces. Note that random rotation and texture randomization are not utilized in
state-of-the-art contrastive learning based methods [69,70,75] and for good reason, as
we will empirically show that naïvely taking these augmentations negatively affects
the performance on some specific benchmarks. For LooC++, we include Conv5 block
into the projection head h, and use the concatenated features at the last layer of
Conv5, instead of the last layer of h, from each head. Note than for both LooC and

3.4. EXPERIMENTS 31

model Augmentation iNat-1k CUB-200 Flowers-102 IN-100
Color Rotation top-1 top-5 top-1 top-5 5-shot 10-shot top-1 top-5

MoCo ✓ 36.2 62.0 36.7 64.7 67.9 (± 0.5) 77.3 (± 0.1) 81.0 95.2
LooC ✓ 41.2 67.0 40.1 69.7 68.2 (± 0.6) 77.6 (± 0.1) 81.1 95.3

✓ 40.0 65.4 38.8 67.0 70.1 (± 0.4) 79.3 (± 0.1) 80.2 95.5
✓ ✓ 44.0 69.3 39.6 69.2 70.9 (± 0.3) 80.8 (± 0.2) 79.2 94.7

LooC++ ✓ ✓ 46.1 71.5 39.3 69.3 68.1 (± 0.4) 78.8 (± 0.2) 81.2 95.2

Table 3.2: Evaluation on multiple downstream tasks. Our method demonstrates superior
generalizability and transferability with increasing number of augmentations.

LooC++ the augmented additional keys are only fed into the key encoding network,
which is not back-propagated, thus it does not much increase computation or GPU
memory consumption.
Datasets and evaluation metrics. We train our model on the 100-category ImageNet
(IN-100) dataset, a subset of the ImageNet [2] dataset, for fast ablation studies of
the proposed framework. We split the subset following [68]. The subset contains
∼125k images, sufficiently large to conduct experiments of statistical significance.
After training, we adopt linear classification protocol by training a supervised linear
classifier on frozen features of feature space V for LooC, or concatenated feature
spaces Z for LooC++. This allows us to directly verify the quality of features
from a variation of models, yielding more interpretable results. We test the models
on various downstream datasets: 1) IN-100 validation set; 2) The iNaturalist 2019
(iNat-1k) dataset [72], a large-scale classification dataset containing 1,010 species.
Top-1 and top-5 accuracy on this dataset are reported; 3) The Caltech-UCSD Birds
2011 (CUB-200) dataset [71], a fine-grained classification dataset of 200 bird species.
Top-1 and top-5 classification accuracy are reported. 4) VGG Flowers (Flowers-102)
dataset [73], a consistent of 102 flower categories. We use the dataset for few-shot
classification and report 5-shot and 10-shot classification accuracy over 10 trials
within 95% confidence interval. Unlike many few-shot classification methods which
conduct evaluation on a subset of categories, we use all 102 categories in our study;
5) ObjectNet dataset [5], a test set collected to intentionally show objects from new
viewpoints on new backgrounds with different rotations of real-world images. We only
use the 13 categories which overlap with IN-100, termed as ON-13; 6) ImageNet-C
dataset [74], a benchmark for model robustness of image corruptions. We use the
100 categories as IN-100, termed as IN-C-100. Note that ON and IN-C are test sets,
so we do not train a supervised linear classifier exclusively while directly benchmark
the linear classifier trained on IN-100 instead.
Implementation details. We closely follow [75] for most training hyper-parameters.

3.4. EXPERIMENTS 32

We use a ResNet-50 [17] as our feature extractor. We use a two-layer MLP head
with a 2048-d hidden layer and ReLU for each individual embedding space. We train
the network for 500 epochs, and decrease the learning rate at 300 and 400 epochs.
We use separate queues [69] for individual embedding space and set the queue size
to 16,384. The batch size during training is set to 256.
Study on augmentation inductive biases. We start by designing an experiment
which allows us to directly measure how much an augmentation affects a downstream
task which is sensitive to the augmentation. For example, consider two tasks which
can be defined on IN-100: Task A is 4-category classification of rotation degrees
for an input image; Task B is 100-category classification of ImageNet objects. We
train a supervised linear classifier for task A with randomly rotated IN-100 images,
and another classifier for task B with unrotated images. In Table 3.1 we compare
the accuracy of the original MoCo (w/o rotation augmentation), MoCo w/ rotation
augmentation, and our model w/ rotation augmentation. A priori, with no data labels
to perform augmentation selection, we have no way to know if rotation should be
utilized or not. Adding rotation into the set of augmentations for MoCo downgrades
object classification accuracy on IN-100, and significantly reduces the capacity of the
baseline model to distinguish the rotation of an input image. We further implement
a variation enforcing the random rotating angle of query and key always being the
same. Although it marginally increases rotation accuracy, IN-100 object classification
accuracy further drops, which is inline with our hypothesis that the inductive bias
of discarding certain type of information introduced by adopting an augmentation
into contrastive learning objective is significant and cannot be trivially resolved
by tuning the distribution of input images. On the other hand, our method with
rotation augmentation not only sustains accuracy on IN-100, but also leverages the
information gain of the new augmentation. We can include all augmentations with
our LooC multi-self-supervised method and obtain improved performance across all
condition without any downstream labels or a prior knowledged invariance.
Fine-grained recognition results. A prominent application of unsupervised learning
is to learn features which are transferable and generalizable to a variety of downstream
tasks. To fairly evaluate this, we compare our method with original MoCo on a
diverse set of downstream tasks. Table 3.2 lists the results on iNat-1k, CUB-200 and
Flowers-102. Although demonstrating marginally superior performance on IN-100,
the original MoCo trails our LooC counterpart on all other datasets by a noticeable
margin. Specifically, applying LooC on random color jiterring boosts the performance
of the baseline which adopts the same augmentation. The comparison shows that our
method can better preserve color information. Rotation augmentation also boosts the
performance on iNat-1k and Flowers-102, while yields smaller improvements on CUB-

3.4. EXPERIMENTS 33

model Aug. ON-13 IN-C-100 (top-1) IN-100
Rot. Tex. top-1 top-5 Noise Blur Weather Digital All d ≥ 3 top-1 top-5

Supervised 30.9 54.8 28.4 47.1 44.9 58.5 47.2 36.5 83.7 95.7
MoCo 29.2 54.2 37.9 38.5 47.7 60.1 48.2 37.2 81.0 95.2
LooC ✓ 34.2 59.6 31.3 33.1 42.4 54.9 42.7 31.8 80.2 95.5

✓ 30.1 54.1 42.4 39.6 54.0 61.9 51.3 41.9 81.0 94.7
✓ ✓ 33.3 59.2 37.0 35.2 50.2 56.9 46.5 37.2 79.4 94.3

LooC++ ✓ ✓ 32.6 57.3 38.3 37.6 52.0 60.0 48.8 38.9 82.1 95.1

Table 3.3: Evaluation on datasets of real-world corruptions. Rotation augmentation is
beneficial for ON-13, and texture augmentation if beneficial for IN-C-100.

Model Variance Head IN-100 iNat-1k Flowers-102 IN-C-100
Col. Rot. Tex. top-1 top-5 top-1 top-5 5-shot 10-shot all-top-1

LooC++ 78.5 94.3 38.5 64.7 68.6 (± 0.6) 77.6 (± 0.1) 48.0
✓ 79.7 94.4 42.9 68.7 69.1 (± 0.7) 79.5 (± 0.2) 47.1

✓ 81.5 94.9 41.4 67.4 70.5 (± 0.6) 80.0 (± 0.2) 52.6
✓ 80.3 94.9 43.0 68.6 70.4 (± 0.5) 80.5 (± 0.2) 44.1

✓ ✓ ✓ 82.2 95.3 45.9 71.4 71.0 (± 0.7) 81.9 (± 0.3) 48.0

Table 3.4: Comparisons of concatenating features from different embedding spaces in
LooC++ jointly trained on color, rotation and texture augmentations. Downstream tasks
show nonidentical preferences for augmentation-dependent or invariant representations.

200, which supports the intuition that some categories benefit from rotation-invariant
representations while some do not. The performance is further boosted by using
LooC with both augmentations, demonstrating the effectiveness in simultaneously
learning the information w.r.t. multiple augmentations.

Interestingly, LooC++ brings back the slight performance drop on IN-100, and
yields more gains on iNat-1k, which indicates the benefits of explicit feature fusion
without hand-crafting what should or should not be contrastive in training.
Robustness learning results. Table 3.3 compares our method with MoCo and
supervised model on ON-13 and IN-C-100, two testing sets for real-world data
generalization under a variety of noise conditions. The linear classifier is trained on
standard IN-100, without access to the testing distribution. The fully supervised
network is most sensitive to perturbations, albeit it has highest accuracy on the
source dataset IN-100. We also see that rotation augmentation is beneficial for
ON-13, but significantly downgrades the robustness to data corruptions in IN-C-100.
Conversely, texture randomization increases the robustness on IN-C-100 across all
corruption types, particularly significant on “Blur” and “Weather”, and on the
severity level above or equal to 3, as the representations must be insensitive to local

3.4. EXPERIMENTS 34

query top retrievals
M

oC
o

Lo
oC

M
oC

o
Lo

oC
query top retrievals

M
oC

o
Lo

oC
M

oC
o

Lo
oC

Figure 3.3: Top nearest-neighbor retrieval results of LooC vs. corresponding invariant
MoCo baseline with color (left) and rotation (right) augmentations on IN-100 and iNat-1k.
The results show that our model can better preserve information dependent on color and
rotation despite being trained with those augmentations.

noise to learn texture-invariant features, but its improvement on ON-13 is marginal.
Combining rotation and texture augmentation yields improvements on both datasets,
and LooC++ further improves its performance on IN-C-100.
Qualitative results. In Figure 3.3 we show nearest-neighbor retrieval results using
features learnt with LooC vs. corresponding MoCo baseline. The top retrieval results
demonstrate that our model can better preserve information which is not invariant
to the transformations presented in the augmentations used in contrastive learning.
Ablation: MoCo w/ all augmentations vs. LooC. We compare our method and
MoCo trained with all augmentations. We also add multiple Conv5 heads to MoCo,
termed as MoCo++, for a fair comparison with LooC++. The results are listed
in Table 3.5. Using multiple heads boosts the performance of baseline MoCo,
nevertheless, our method achieves better or comparable results compared with its
baseline counterparts.

Note that the results in Table 2 to 5 should be interpreted in the broader context
of Table 3.1. Table 1 illustrates the catastrophic consequences of not separating the
varying and invariant factors of an augmentation (in this case, rotation). It can be
imagined that if we add “rotation classification” as one downstream task in Table 4,
MoCo++ will perform as poorly as in Table 1. The key of our work is to avoid what
has happened in Table 1 and simultaneously boosts performance.
Ablation: Augmentation-dependent embedding spaces vs. tasks. We train a
LooC++ with all types of augmentations, and subsequently train multiple linear
classifiers with concatenated features from different embedding spaces: all-invariant,

3.4. EXPERIMENTS 35

Model IN-100 iNat-1k Flowers-102 IN-C-100
top-1 top-5 top-1 top-5 5-shot 10-shot all-top-1

MoCo 77.9 93.7 39.5 65.1 72.1 (± 0.4) 81.1 (± 0.2) 47.4
LooC 78.5 94.0 41.7 67.5 72.1 (± 0.7) 81.4 (± 0.2) 45.4
MoCo++ 80.8 94.6 43.4 68.5 70.0 (± 0.8) 80.5 (± 0.3) 48.3
LooC++ 82.2 95.3 45.9 71.4 71.0 (± 0.7) 81.9 (± 0.3) 48.0

Table 3.5: Comparisons of LooC vs. MoCo trained with all augmentations.

color, rotation and texture. Any additional variance features boost the performance
on IN-100, iNat-1k and Flowers-102. Adding texture-dependent features decreases
the performance on IN-C-100: Textures are (overly) strong cues for ImageNet
classification [4], thus the linear classifier is prone to use texture-dependent features,
loosing the gains of texture invariance. Adding rotation-dependent features increases
the performance on IN-C-100: Rotated objects of most classes in IN-100 are rare,
thus the linear classifier is prone to use rotation-dependent features, so that drops
on IN-C-100 triggered by rotation-invariant augmentation are re-gained. Using all
types of features yields best performance on IN-100, iNat-1k and Flowers-102; the
performance on IN-C-100 with all augmentations remains comparable to MoCo,
which does not suffer from loss of robustness introduced by rotation invariance.

In Figure 3.4 we show the histogram of correct predictions (activations×weights
of classifier) by each augmentation-dependent head of a few instances from IN-100
and iNat-1k. The classifier prefers texture-dependent information over other kinds
on an overwhelmingly majority of samples from IN-100, even for classes where shape
is supposed to be the dominant factor, such as “pickup” and “mixing bowl” ((a), top
row). This is consistent with the findings from [4] that ImageNet-trained CNNs are
strongly biased towards texture-like representations. Interestingly, when human or
animal faces dominant an image ((a), bottom-left), LooC++ sharply prefers rotation-
dependent features, which also holds for face recognition of humans. In contrast,
on iNat-1k LooC++ prefers a more diverse set of features, such as color-dependent
feature for a dragonfly species, rotation and texture-dependent features for birds,
as well as rotation-invariant features for flowers. Averaged over the datasets, the
distribution of classifier preferences is more balanced on iNat-1k than IN-100, as
the entropy of the distribution on iNat-1k is close to 2 bits, whereas it is close to 1
bit on IN-100, as it is dominated by only two elements. It corroborates the large
improvements on iNat-1k gained from multi-dependent features.

3.5. RELATED WORK 36

Texture

Color

Rotation

All-inv.

Label: pickup

Texture

Color

Rotation

All-inv.

Label: mixing bowl

Texture

Color

Rotation

All-inv.

Label: walker hound
All.inv Rotation Color Texture

Entropy: 1.27

Texture

Color

Rotation

All-inv.

Label: plants_962

Texture

Color

Rotation

All-inv.

Label: insects_74

Texture

Color

Rotation

All-inv.

Label: birds_240 Entropy: 1.86

Dataset Average Dataset Average

(a) ImageNet (b) iNaturalist

All.inv Rotation Color Texture

Figure 3.4: Histograms of correct predictions (activations×weights of classifier) by each
augmentation-dependent head from IN-100 and iNat-1k. The classifier on IN-100 heavily
relies on texture-dependent information, whereas it is much more balanced on iNat-1k.
This is consistent with the improvement gains observed when learning with multiple
augmentations.

3.5 Related Work
Pretext Tasks. In computer vision, feature design and engineering used to be a central
topic before the wide application of deep learning. Researchers have proposed to
utilize cue combination for image retrieval and recognition tasks [78–82]. For example,
the local brightness, color, and texture features are combined together to represent an
image and a simple linear model can be trained to detect boundaries [78]. Interestingly,
the recent development of unsupervised representation learning in deep learning is
also progressed by designing different self-supervised pretext tasks [61–63,66,83–85].
For example, relative patch prediction [61] and rotation prediction [66] are designed
to discover the underlined structure of the objects; image colorization task [63] is used
to learn representations capturing color information. The inductive bias introduced
by each pretext task can often be associated with a corresponding hand-crafted
descriptor.
Multi-Task Self-Supervised Learning. Multi-task learning has been widely applied
in image recognition [28, 86, 87]. However, jointly optimizing multiple tasks are
not always beneficial. As shown in [86], training with two tasks can yield better
performance than seven tasks together, as some tasks might be conflicted with
each other. This phenomenon becomes more obvious in multi-task self-supervised
learning [88–92] as the optimization goal for each task can be very different depending
on the pretext task. To solve this problem, different weights for different tasks are
learned to optimize for the downstream tasks [91]. However, searching the weights
typically requires labels, and is time-consuming and does not generalize to different
tasks. To train general representations, researchers have proposed to utilize sparse

3.6. CONCLUSIONS 37

regularization to factorize the network representations to encode different information
from different tasks [88, 93]. In this paper, we also proposed to learn representation
which can factorize and unify information from different augmentations. Instead of
using sparse regularization, we define different contrastive learning objective in a
multi-head architecture.
Contrastive Learning. Instead of designing different pretext tasks, recent work
on contrastive learning [67–70, 76, 94] trained networks to be invariant to various
corresponding augmentations. Researchers [70] elaborated different augmentations
and pointed out which augmentations are helpful or harmful for ImageNet classifi-
cation. It is also investigated in [68] that different augmentations can be beneficial
to different downstream tasks. Instead of enumerating all the possible selections of
augmentations, we proposed a unified framework which captures different factors of
variation introduced by different augmentations.

3.6 Conclusions
Current contrastive learning approaches rely on specific augmentation-derived

transformation invariances to learn a visual representation, and may yield subopti-
mal performance on downstream tasks if the wrong transformation invariances are
presumed. We propose a new model which learns both transformation dependent
and invariant representations by constructing multiple embeddings, each of which
is not contrastive to a single type of transformation. Our framework outperforms
baseline contrastive method on coarse-grained, fine-grained, few-shot downstream
classification tasks, and demonstrates better robustness of real-world data.

38

Chapter 4

Masked Visual Pre-training for Motor
Control

4.1 Introduction
The last decade of machine learning has been powered by learning representations

with large neural networks and augmenting them with a relatively small amount of
domain knowledge where appropriate. This paradigm has led to substantial progress
across a range of domains. Examples include visual recognition [28, 95], natural
language [6,8,9,96], and audio [97]. And the trend continues. Motor control, however,
remains a notable exception. In this chapter, we show that self-supervised visual
pre-training on real-world images is effective for learning motor control tasks from
pixels. These self-supervised representations consistently outperform supervised
representations.

Consider tasks shown in Figure 4.1 (right). The required movement types vary
from simple reaching to object interactions. We also see variations in robots, scene
configurations, and objects. Control inputs are high-dimensional and difficult to
search (e.g., 23 DoF robot with a multi-finger hand). We explore learning complex
tasks such as these from high-dimensional pixel observations. To tackle this setting,
we use the neural network architecture shown in Figure 4.2b. Our network encodes
the input image using a high-capacity visual encoder [11] and combines it with
proprioceptive information to obtain an embedding. A light-weight neural network
controller takes in the embedding and predicts actions. The whole system can be
trained end-to-end with reinforcement learning (RL).

Indeed, this design is akin to architectures typically used in approaches that
learn control policies end-to-end with RL, e.g., [98]. While conceptually appealing,
the latter has two main challenges in practice. First, training is computationally

4.1. INTRODUCTION 39

Images in the Wild Motor Control Tasks

Figure 4.1: We explore learning visual representations from large scale collections of images
“in the wild”, e.g., from YouTube or Egocentric videos, and using them to learn to perform
a range of different motor control tasks from pixels. Please see the supplementary materials
for videos.

expensive and has poor sample complexity (especially with high-dimensional inputs
and actions). Second, the learned solutions typically overfit to the setting at hand
and thus do not generalize to new scenes and objects. One way to offset the high
sample complexity of end-to-end RL is to employ auxiliary objectives [76,99–101]. For
example, [101] show excellent performance in vision-based RL by using contrastive
learning with data augmentations. However, such representations are still trained
using only environment-specific experience.

The key aspect of our approach is in how we train the visual representations. We
do not train the visual encoder while learning specific motor control tasks. Instead,
we pre-train the visual encoder by self-supervision from real-world images (Figure 4.1
& 4.2). We build on the masked autoencoder (MAE) [102] work, and learn visual
representation by masked image modeling. Thanks to the Internet and ubiquitous
portable cameras, we now have access to large amounts of unlabeled data for self-
supervision. MAE does not require human labels or make strong assumptions about
data distributions, e.g., centered objects or pre-defined augmentation invariances [103],
making it an excellent framework for learning general visual representations from
in-the-wild images. Given the visual encoder, we train neural network controllers on
top. We keep the visual representations frozen and do not perform any task-specific
fine-tuning of the encoder; all motor control tasks use the same visual representations.
We call our approach MVP (for Masked Visual Pre-training for Motor Control).

We compare our self-supervised approach to baselines that follow the same
architecture (Figure 4.2b) but use different visual representations. As an upper
bound, we consider oracle hand-engineered states for solving a task (e.g., 3D poses
and direction-to-goal vectors). We also compare our method to visual encoders
trained by supervised pre-training on ImageNet [2] and CLIP [12], and state-of-the-
art in domain training techniques [101, 104]. We summarize our main results as
follows:

4.2. MASKED VISUAL PRE-TRAINING FOR MOTOR CONTROL 40

(a) masked visual pretraining (b) learning motor control

encoder decoder
encoder a… policy

proprioception

…

image
targetmasked image

Figure 4.2: Masked visual pre-training for motor control: Left: We first pre-train visual
representations using self-supervision through masked image modeling from real-world
images. Right: We then freeze the image encoder and train task-specific controllers on top
with reinforcement learning (RL). The same visual representations are used for all motor
control tasks.

- 1) We show that a single visual encoder pre-trained on real-world images can
solve various motor control tasks without fine-tuning per-task, state estimation, or
demonstrations.

- 2) Our self-supervised approach consistently outperforms supervised pre-training
(up to 80% absolute success rate), state-of-the-art in-domain training (up to 70%
absolute success rate), and even matches the oracle performance in some cases.

- 3) We find that pre-training on images in the wild, e.g., from YouTube [105] or
Egocentric [106,107] videos, works better for manipulation tasks than ImageNet [2]
images.

- 4) We show that our visual representations generalize in various ways. For
example, our visual encoder disentangles shape and color and is able to handle a
range of different object geometries and configurations.

4.2 Masked Visual Pre-training for Motor Control
4.2.1 Masked Visual Pre-training

We aim to leverage large amounts of visual data for learning a general visual
representation for motor control tasks. To this end, we need a scalable learning
framework that can work on natural images without human labels. Self-supervised
learning, and specifically the masked image modeling through the masked autoencoder
(MAE) [102] framework, naturally fits our goal. The most appealing property of MAE
is its simplicity and minimal reliance on dataset-specific augmentation engineering;
for example, it works well even with minimal data augmentations (center crop and

4.2. MASKED VISUAL PRE-TRAINING FOR MOTOR CONTROL 41

Robosuite MetaWorld Ours

Simulator MuJoCo MuJoCo IsaacGym
Fast ✓
#Arms 8 1 2
#Hands ✓
#Tasks 9 50 8
Rewards ✓ ✓ ✓

Table 4.1: Existing benchmarks: Compared to existing benchmarks, ours features a unique
combination of hand-designed tasks, dense rewards, and complex robots (e.g., multi-finger
hands). Crucially, it leverages a fast simulator and provides distributed training for scaling
learning-based motor control from pixel observations.

color). MAEs mask-out random patches of the input image and reconstruct the
missing pixels with a Vision Transformer (ViT) [11]. During training, only unmasked
patches are fed into the MAE; this strategy makes training more efficient. It is
critical to train MAE with a high masking ratio (e.g., masking 75% of all patches)
and use a heavy encoder with a light decoder.

We learn visual representations from data collected from Internet and/or portable
camera devices (e.g., phones, glasses, etc.). We use images from the egocentric Epic
Kitchens dataset [106,107], the YouTube 100 Days of Hands dataset [105], and the
crowd-sourced Something-Something dataset [108]. Combined, these sources yield a
collection of ∼700K images that we refer to as the Human-Object Interaction dataset
(HOI). Note that we do not exploit any human labels or temporal information even
if it is possible. We also apply our approach using the ImageNet dataset [2] for
controlled comparisons with supervised baselines.

4.2.2 Learning Motor Control from Pixels
Given the pre-trained visual encoder, we now turn to learning motor control from

pixels. We freeze the visual representations and use them for all downstream motor
control tasks; we do not perform any task-specific fine-tuning of the image encoder.
This design has two main benefits. First, it prevents the encoder from overfitting to
the setting at hand and thus preserves general visual representations for learning
new tasks. Second, it leads to considerable memory and run time savings since there
is no need to back-propagate through the encoder. Freezing visual encoder makes
using large vision models in the RL loop fast and feasible.

In Figure 4.2b, we show our architecture for learning motor control from pixels.
We first extract a fixed-sized vector of image features using our pre-trained visual

4.3. BENCHMARK SUITE 42

encoder. Notice that all of the image patches are passed through the encoder,
unlike in the masked pre-training stage. We additionally compile proprioceptive
robot information in the form of joint positions and velocities into a second vector.
This proprioceptive information is readily available on real robot hardware. We
concatenate these two vectors to obtain the input embedding for the neural network
controller.

We then train task-specific motor control policies on top of this embedding with
model-free reinforcement learning. Our policy is a small multi-layer perceptron
(MLP) network. In addition, we train a critic that has the same architecture as
the policy using the same representations. The policy and the critic do not share
weights. We use the proximal policy optimization (PPO) algorithm [109]. PPO
is a state-of-the-art policy gradient method that has shown excellent performance
on complex motor control tasks and successful transfer to real hardware [110,111].
We will show in Section 4.5.3 and 4.5.4 that MVP also works with off-policy RL
algorithms [112] and imitation learning.

4.3 Benchmark Suite
We construct a new benchmark suite of tasks for studying motor control from

pixels, described next.
Motivation. While there exist a number of excellent benchmarks for motor control,
e.g., DMC [113], RLBench [114], Robosuite [115], MetaWorld [116], they all fall
short on one or more of our requirements. In particular, there is no benchmark
suite for learning motor control algorithms that has high-resolution images, realistic
robots, fast physics simulation, efficient training, and appropriate reward functions
and metrics. To this end, we introduce a new benchmark suite for Pixel Motor
Control, which we call PixMC. We show the key aspects of PixMC to several existing
benchmarks in Table 4.1.
Simulator. We leverage the recent NVIDIA IsaacGym simulator [117] to build our
benchmark. The core design idea of IsaacGym is to perform simulation on a GPU in
a shared context. IsaacGym allows for very fast training times. For example, we are
able to train our oracle state-based models in ∼12 minutes and our image models in
∼5 hours (∼8 million environment steps) on a single NVIDIA 2080 Ti GPU. This
training speed is considerably faster than it would be in other simulators commonly
used for motor control such as MuJoCo [118]. Rudin et al. [119] have shown that
sim-to-real transfer is feasible based on policies trained in IsaacGym.
Robots. PixMC includes two robot arms, a parallel jaw gripper, and a multi-finger
hand combined as follows: (1) Franka: A Franka Emika robot commonly used for

4.3. BENCHMARK SUITE 43

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaReach
Oracle
MVP
Supervised

FrankaCabinet
Oracle
MVP
Supervised

FrankaPick
Oracle
MVP
Supervised

FrankaMove
Oracle
MVP
Supervised

0 1 2 3 4
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

KukaReach
Oracle
MVP
Supervised

0 2 4 6 8
Env. Steps (M)

KukaCabinet
Oracle
MVP
Supervised

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaPick
Oracle
MVP
Supervised

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaMove
Oracle
MVP
Supervised

Figure 4.3: Sample complexity: We plot the success rate as a function of environment
steps on the 8 PixMC tasks. Each task uses either the Franka arm with a parallel gripper
or the Kuka arm with a multi-finger hand. The MVP approach outperforms the supervised
baseline on all tasks and closely matches the oracle state model (considered the upper
bound of RL) on 6 tasks at convergence. The result shows that self-supervised pre-training
improves representation quality for motor control tasks.

research. It has a 7-DoF arm with a 2-DoF gripper. (2) Kuka with Allegro: A Kuka
LBR iiwa arm with 7 DoFs and a 4-finger Allegro hand with 16 DoFs (4 DoFs per
finger), for 23 DoFs in total. For brevity, we refer to it as “Kuka.”
Observations and actions. Our benchmark supports rendering high-resolution pixel
observations for each robot. For both the Franka and Kuka setups and each of
the tasks, we use wrist-mounted cameras by default. The benchmark provides
proprioceptive information for the robots, as well as hand-engineered states typically
including 3D poses or relevant objects, goals, and their relations. All of our default
settings use position control in joint angle space with a control frequency of 60Hz.
Tasks, rewards, and metrics. PixMC tasks include several movement types from
basic reaching to interacting with objects. The objects in the environment vary
in positions, scale, color, and shape. Figure 4.1 show a few example scenes. We
hand-design task-specific dense reward functions for training RL policies. We define
reward-independent success metrics that typically quantify the distance from the
agent or an object to a specified goal location over sufficient time steps.
Distributed training. The scarcity of GPU memory is a major bottleneck. For our
typical setup with 224×224 images, we can fit at most 256 environments on a single
2080 Ti GPU. We implement PPO with distributed training to support large batch
sizes. Similar to data parallel training, we create a model replica per-GPU, collect
rollouts on each GPU, and synchronize gradients across GPUs.

4.4. EXPERIMENTAL SETUP 44

4.4 Experimental Setup
Data for pre-training. We consider two kinds of pre-training data: ImageNet [2]
and a joint Human-Object Interaction (HOI) dataset. We construct the HOI data
by combining Epic-Kitchens [106, 107], Something-Something [26], and 100 Days
of Hands (100-DOH) [105]. To build HOI, we sample frames from Epic-Kitchens
and Something-Something at 1fps and 0.3fps, respectively. This yields 700k images
including 100k from 100-DOH.
Encoder. The image encoder follows standard ViT architecture [11]. We use the
ViT-Small model [14] with a 16×16 patch size, 384 hidden size, 6 attention heads,
an MLP multiplier of 4, and 12 blocks. The model runs at 4.6 gigaflops for input
images of 224×224, approximately 1.2× as many as the ResNet-50 [17] model.

We pre-train supervised and self-supervised variants of the ViT model. For the
supervised model, we use the recipe in [120] and train on the ImageNet dataset for
400 epochs. We use the MAE framework for the self-supervised counterpart [102]. We
use an auxiliary dummy classification token in the MAE for downstream finetuning
and transfer [102]. We use a crop ratio of [0.2, 1.0] for ImageNet and [0.1, 0.75] for
HOI, due to the larger width-over-height aspect ratio of HOI images. We train the
MAE models for 1600 epochs on 16 GPUs for both HOI and ImageNet datasets.
Controller. The controller is a simple MLP with each hidden layer followed by a
SeLU [121] activation. We use a four-layer MLP with hidden size [256, 128, 64] for
all tasks, following [117]. The (dummy) classification token of the ViT encoder yields
the image features and a linear layer projects the features to 128 dimensions. The
controller takes in the linearly-projected (128-d) proprioceptive state of the robot
along with the projected image features. The controller outputs delta joint angles.
Training with RL. We freeze the visual encoder throughout the entire training horizon.
We train for 500 iterations for reach, 1000 iterations for cabinet, and 2000 iterations
for pick and move. In each iteration, we collect samples from 256 environments
which have 32 steps each. We train for 10 epochs on these collected samples per
iteration. We compose 4 minibatches per epoch, i.e., 4 gradient updates, leading to
a minibatch size of 2048 per gradient update. We choose this configuration because
it maximizes the memory on a single NVIDIA 2080 Ti GPU. In all experiments
we train with a cosine learning rate decay schedule [26]. To reduce randomness in
the RL experiments [122], for each task and model we search for the best learning
rate in {0.0005, 0.001, 0.0015} with 5 seeds per learning rate (15 runs for each task
and model). We always report the performance yielded by the best learning rate
aggregated over seeds unless otherwise specified. Other hyperparams use defaults:
Adam optimizer with β1 = 0.9 and β2 = 0.999, gradient norm of 1, noise std of 1.0.

4.5. EXPERIMENTAL RESULTS 45

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick
MVP
CLIP

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaPick
MVP
CLIP

(a) CLIP comparison: MAE outperforms
CLIP pre-training that uses large-scale lan-
guage supervision.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick
MVP
MoCo

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaPick
MVP
MoCo

(b) MoCo-v3 comparison: MAE outper-
forms MoCo-v3 contrastive self-supervised
pre-training.

Figure 4.4: Pre-training framework: MVP vs. CLIP and MoCo visual pre-training
frameworks.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick
MVP
CURL, ViT
CURL, ConvNet
e2e, ViT
e2e, ConvNet

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaPick
MVP
CURL, ViT
CURL, ConvNet
e2e, ViT
e2e, ConvNet

(a) PixMC tasks: MVP outperforms end-to-
end training from scratch as well as CURL
with both a small ConvNet and a large ViT.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frames (M)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Reacher
MVP
DrQ-v2
DrQ
CURL
SAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frames (M)

0

50

100

150

200

ReachDuplo
MVP
DrQ-v2
DrQ
CURL
SAC

(b) DMC tasks: Despite a larger domain
gap, MVP shows strong performance using
the same visual representation for different
downstream tasks.

Figure 4.5: In-domain training comparisons: MVP vs. state-of-the-art methods on two
benchmarks.

4.5 Experimental Results
4.5.1 Sample Complexity

Figure 4.3 shows success rates over training on 8 challenging tasks from PixMC.
We consider the oracle state model (i.e., position, orientation, and velocity of the
object, goal and robot in world-coordinate system, which is difficult to estimate in
real-world settings) as the upper bound of RL. MVP significantly outperforms the
supervised baseline on all tasks. At convergence, MVP closely matches the oracle
state model on 6 tasks. The supervised baseline is flat at zero success rate on the
pick and move tasks with both robots; MVP rivals the oracle on the pick task and
achieves high success rate on the move task. These results show that self-supervised
pre-training markedly improves representation quality for motor control tasks.

4.5. EXPERIMENTAL RESULTS 46

4.5.2 Pre-training Framework Comparison

CLIP. We experiment with substituting a pre-trained CLIP visual encoder [12] in
place of our MAE encoders. The CLIP pre-training framework uses 400M labeled
text-image pairs and has shown excellent performance across a wide range of visual
tasks. We opt to use the ViT-Base CLIP encoder as it is closest in size to our
ViT-Small encoders. In Figure 4.4a we show the results. We observe a promising
signal that self-supervised representations can outperform strong CLIP encoders.
By inversing embedding back to images using a generative model, recent work [123]
shows that from CLIP image representation to image mapping is generally one
to many. This finding suggests that the inferior performance of CLIP in motor
control tasks may be partly due to encoding ambiguity and failing to capture object
geometries for manipulation.
MoCo-v3. We compare visual encoders trained with the Momentum Contrastive
(MoCo) self-supervised learning framework instead of MAE used in MVP. We opt to
use the latest MoCo-v3 [35] designed for ViT models. We show results in Figure 4.4b.
We observe that MAE pre-training yields superior results than MoCo on the tasks.
Furthermore, we note it may be harder to adapt contrastive self-supervised learning
frameworks like MoCo-v3 to in-the-wild non-curated images.

4.5.3 Comparison to In-domain Training Framework

PixMC tasks. In-domain training opts for learning visual encoders and control
policies end-to-end with RL. We first compare MVP to two common setups that
train the vision encoder with environment data on PixMC tasks: 1) end-to-end
training from scratch, and 2) CURL [101] which uses an auxiliary training objective.
We experiment with both a small ConvNet [104] and a large ViT, and note that
the former is the most popular choice in previous works and the latter is identical
to MVP’s visual encoder. CURL is trained with PPO and MoCo-v3 [35] data
augmentation recipe. Figure 4.5a shows that MVP significantly outperforms the
in-domain training frameworks with both small and large networks. Note that MVP
that uses a frozen backbone is much less computationally expensive compared to
end-to-end training a large network (1 vs. 8 GPUs). This result highlights the
superior sample complexity of MVP over in-domain training frameworks.
DMC tasks. We further compare to state-of-the-art in-domain training methods [100,
101,104,124] on the DeepMind Control Suite (DMC) [113]. We follow [104] and train
MVP using DDPG [112]. As proprioception is unavailable and velocity estimation is
essential for DMC tasks, we encode three frames with the visual encoder on HOI

4.5. EXPERIMENTAL RESULTS 47

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick
MVP - HOI
MVP - IN

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaPick
MVP - HOI
MVP - IN

(a) Pre-training data: We compare using
HOI and ImageNet images as the source
of pre-training data. The representations
learned from HOI data perform better on
motor control tasks.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick
MVP - ViT-S
MVP - ViT-B

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaPick
MVP - ViT-S
MVP - ViT-B

(b) Larger encoders: We use a pre-trained
ViT-Base model. We do not observe clear
gains from preliminary model scaling and
believe that scaling data and model size is
an exciting area for future work.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick
Vision + Proprio.
Vision Only
Proprio. Only

0 1 2 3 4
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaReach
MVP - 1st person
MVP - 3rd person

(c) Sensor modalities: We ablate propriocep-
tion input (left) and first-person vs. third-
person camera setup (right). First-person
camera observation combined with proprio-
ception is superior.

100 200 500 1000
Num. Demos

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaReach
MVP
Supervised

100 200 500 1000
Num. Demos

FrankaPick
MVP
Supervised

(d) Imitation learning: We collect demos
and train behavior cloning policies on top
of frozen representations. MVP improves
demo efficiency and success rates by up to
2x. See texts for details.

Figure 4.6: Ablation studies: pre-training data, encoder sizes, sensors, and action learning
framework.

data and combine the features. Figure 4.5b shows that, despite pre-training and
downstream domain gap, MVP significantly outperforms SAC, DrQ, and CURL
baselines and is comparable to the state-of-the-art DrQ-v2. This result shows
that MVP’s potential in solving a diverse range of tasks using the same backbone
representation. It also confirms that MVP works with off-policy RL algorithms.

4.5.4 Ablations

Pre-training data. We train MVP on HOI and ImageNet data, respectively. Fig-
ure 4.6a shows the results on the two pick tasks. MVP trained on HOI data
outperforms the counterpart trained on ImageNet data on motor control tasks.
Whereas ImageNet is dominated by images of animals and objects, HOI contains
many images demonstrating object manipulation from a first-person camera view.
We hypothesize that this difference is why HOI is empirically the superior choice for

4.5. EXPERIMENTAL RESULTS 48

motor control tasks. See the Appendix for full results.
Larger encoders. We pre-train a ViT-Base encoder (18 gigaflops) and conduct a
preliminary transfer study on the Franka/Kuka pick tasks. Figure 4.6b shows the
results. We observe that the larger encoder does not improve performance. A larger
encoder potentially requires more data and/or a different training recipe. Overall,
scaling data and models in the context of self-supervised representations for motor
control remains an exciting area for future work.
Sensor modalities. We ablate removing visual observation or proprioception input
(Figure 4.6c, left), and first-person vs. third-person camera setup (Figure 4.6c, right).
The result shows that proprioception is essential with vision and first-person camera
significantly improves sample efficiency.
Imitation learning. We experiment with imitation learning in replacement of RL
for learning control policies. We collect demos using a pre-trained expert policy.
We divide demos into subsets of various sizes and train behavior cloning on top of
frozen representations. Figure 4.6d shows success rates of MVP and the supervised
baseline at different numbers of demos. MVP improves demo efficiency by ∼1.7x
to 2x (horizontal comparison, ≥90% success rate in reach; ≥ 50% success rate in
pick), and success rates by a relative 2x (vertical comparison, 200 demos in reach;
500 demos in pick). This set of imitation learning results is identical to it of RL in
terms of ranking order, and thus reaffirms the effectiveness of MVP.

4.5.5 Representation Analysis

Shape and color disentanglement. In the pick task the robots are trained to pick up
a blue box of 4.5cm side length. In this experiment we add a distractor object that
differs from the training object in terms of color, shape, or scale, at test time without
additional training. Specifically, we have 1) a green box of 4.5cm side length (color
distractor); 2) a blue sphere of 4.5cm diameter (shape distractor); or 3) a blue box of
6cm side length (scale distractor). Figure 4.7 shows the results of our MVP model.
Color and shape distractors only marginally decrease the success rate, suggesting
that MVP is able to disentangle the color and shape of objects. The model, however,
is less sensitive to scale variation as the 50% success rate suggests that the distractor
or the original box is picked up by chance. We believe it is due to scale ambiguity
from single first-person camera setup.
Diverse objects. To understand how diverse are the object representations captures
by our model, we import various objects from the YCB dataset [125]—box, can, mug,
and banana—for the pick task and re-train the model for each individual object.
Figure 4.8 visualizes the experiment setup and shows the results. The Kuka robot

4.6. RELATED WORK 49

None Color Shape Size
0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick

None Color Shape Size

KukaPick

Figure 4.7: Disentangles shape and color:
The robots are trained to pick up a blue
box of 4.5cm side length. At test time, we
add a distractor in terms of color (blue vs.
green), shape (cube vs. sphere), or size
(4.5cm vs. 6cm), shown at the top. MVP
maintains high success rates for color and
shape, whereas the scale ambiguity is likely
due to single first-person camera setup.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

0

20

40

60

80

100

Su
cc

es
s (

%
)

FrankaPick
Box
Can
Mug
Banana

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Env. Steps (M)

KukaPick
Box
Can
Mug
Banana

Figure 4.8: Handles objects of various
shapes: We import three additional objects
(i.e., can, mug, and banana) from the YCB
dataset and re-train the controller to pick up
the individual object category. The Kuka
robot with the Allegro hand can pick up
all objects with at least 50% success rate.
These results highlight the generality of our
visual representations.

with the Allegro hand can pick up all of the objects with at least a 50% success rate.
This shows MVP representations can capture objects of different geometries.
Feature visualization. We visualize attention maps for different models in Figure 4.9.
We observe that, in contrast to the supervised recognition model (b), our self-
supervised model (c) has a notion of objects. Although it may not be necessary for
single object classification, as local texture may largely suffice, objectness is essential
for motor control tasks that require precise spatial structure. The representation of
objects emerges automatically as a byproduct of masked prediction.

4.6 Related Work
Self-supervised pre-training in computer vision. Self-supervised learning has been
gaining momentum in computer vision. The approaches often rely on pretext tasks
for pre-training [61–63, 66, 83, 84]. More recently, contrastive learning methods,
e.g., [67, 69, 70, 76, 126–128], have been popular. These techniques try to learn to
be invariant to a set of hand-crafted augmentations. Xiao et al. [103] have shown
that the augmentations introduce inductive bias and may harm downstream transfer.
Masked image autoencoding [48,102,129] pursues a different direction by learning

4.6. RELATED WORK 50

(a) Image (c) MVP(b) Supervised

Figure 4.9: Attention maps visualization. We observe that MVP models (c) capture
a notion of objects which is not represented by the supervised recognition models (b).
Note that our approach is self-supervised and the representations emerges automatically.
Interestingly, the results are surprisingly consistent across the different attention heads (3
shown here).

to recover masked pixels. Specifically, the Masked Autoencoders (MAE) [102] have
shown excellent performance on recognition tasks. We adopt the MAE as our visual
pre-training strategy for learning motor control.
RL with self-supervision. One way to overcome the high sample complexity of RL
is to employ auxiliary objectives, where in addition to learning the task, a model
learns to predict some property of the environment (e.g., depth) that potentially
help representations [99,130–132]. Beyond hand-designed environment properties,
researchers have explored using more general self-supervised objectives [76, 100, 101].
For example, Srinivas et al. [101] show excellent performance in vision-based RL tasks.
Representations can also be pre-trained on the data from the environment [101, 133].
Overall, we share the goal of learning good visual representations with self-supervision.
In contrast, we learn representations from large collections of natural images rather
than environment-specific experience.
Self-supervision in robotics. Self-supervised learning has also been used in various
robotic settings. Pinto and Gupta [134] and Agrawal et al. [135] learn representations
through interaction. Sermanet et al. [136] learn representations from multiview video
using contrastive learning and use them for imitation learning. Florence et al. [137]
learn dense image descriptors with self-supervision. Zhan et al. [138] learn robotic
manipulation with RAD [139] and CURL [101]. Pari et al. [140] show the effectiveness
of visual representations with non-parametric nearest neighbor controllers. All of
these approaches learn representations in a specific robotic setting of interest (e.g.,
videos in the lab), rather than general visual representations from image collections
like ours.
Supervised pre-training. Sax et al. [141] and Chen et al. [142] show that rep-
resentations learned from performing a set of mid-level vision tasks using label
supervision benefits downstream navigation and manipulation tasks, respectively.
Zhou et al. [143] show the effectiveness on visual representations in driving settings.

4.6. RELATED WORK 51

Lin et al. [144] transfer image models trained on supervised vision tasks, e.g., edge
detection and semantic segmentation, to affordance prediction models for object
manipulation. Shah and Kumar [145] use ImageNet representations for dexterous
manipulation. In contrast to all of these, our approach is self-supervised and does
not rely on labeled datasets.

52

Chapter 5

Real-World Robot Learning with
Masked Visual Pre-training

5.1 Introduction
Learning representations with large neural networks is the powerhouse of modern

deep learning. This has enabled impressive results in computer vision [1,95], natural
language processing [6, 8, 9], and audio generation [97, 146]. How can we transfer the
success stories of representation learning to robotics? We can approach this from
two ends: shared representations on the perception side or shared representations on
the action side. Our focus in this paper is on shared visual representations.

Of course, the devil is in the details. Recent developments in the field of visual
learning have made this more feasible: (1) the use of diverse, real-world data from
the Internet and egocentric videos, (2) self-supervised objectives that do not overly
rely on data augmentations or other forms of strong human-designed priors, (3)
scalable and high-capacity transformer models [7, 11], and (4) training of control
policies on top of frozen visual representations. In our recent work [147], we have
shown that this recipe for self-supervised visual pre-training is effective for motor
control in simulation.

In this paper, we show that this framework is effective for real-world robotic tasks
as well (Figure 5.1). We build on our prior work, but make significant advances in
terms of data scale and diversity (7× larger), model size (15× bigger), and real-world
experiments (extensive real robot evaluations).

In particular, we train self-supervised visual representations on real-world images
and videos from the Internet [2, 26, 105] and egocentric video datasets [106, 148].
We leverage the masked autoencoders [102] that learn visual representations by
masked prediction. The hope is that, by learning to predict the missing content in

5.1. INTRODUCTION 53

Real-World Robotic Tasks
Two robots (xArm, Allegro hand)
Eight tasks (scenes, objects)

In-the-Wild Data
Over 4.5 million images
Five diverse data sources

Masked Autoencoder

Encoder

Decoder

(b) Autoencoder(a) Masking

Figure 5.1: Real-world robot learning with masked visual pre-training. We learn visual
representations from a massive collection of Internet and egocentric data. We pre-train
representations with masked image modeling, freeze the encoder, and learn control policies
for robotic tasks on top.

real-world images, the model will learn useful properties of the visual world that
will enable it to learn to perform real-world robotic tasks. Given the pre-trained
vision encoder, we freeze the encoder and learn control policies on top. The same
visual representations are used for all downstream robotic tasks and embodiments.
We focus on efficient real-world learning through behavior cloning with a handful of
human-provided demonstrations per task (20 - 80).

We evaluate our approach in an extensive real-world study and report results
from 981 real-world experiments. We consider basic motor control tasks (reach, push,
pick), as well as tasks with variations in scenes and objects (Figure 5.1, right). We
find that our approach achieves considerably higher performance than CLIP (up to
75%), supervised pre-training (up to 81%), and training from scratch (up to 81%).
Furthermore, we observe that our representations lead to large improvements in
sample complexity, reaching the strongest baseline performance with half the number
of demonstrations.

In addition, we demonstrate the benefits of scaling visual pre-training for robotics
by training a 307M parameter vision encoder [11] on a massive collection of 4.5M
images from ImageNet [2], Epic Kitchens [107], Something Something [26], 100 Days
of Hands [105], and Ego4D [148] datasets. Importantly, we observe that it is not
sufficient to scale the model alone and that larger models require bigger datasets.
To the best of our knowledge, ours is the largest vision model deployed for robotics,
and demonstrates clearly the benefits of visual pre-training scale for robot learning.

5.2. RELATED WORK 54

5.2 Related Work
End-to-end control is concerned with learning to predict robot actions (e.g., joint
velocities, end-effector poses, etc) directly from observations [98,149,150], without
the need to perform explicit 3D pose estimation [110], grasp planning [151], and
motion planning [152]. However, these end-to-end approaches tend to be too sample
inefficient for real-world training. Some works have tried to find a balance between
these explicitly pipelined approaches and end-to-end approaches [153–155].
Supervised pre-training for robotics learns one or more pretext tasks through strong
supervision and then transfers the representations to downstream robotic tasks. Lin
et al. [144] shows that representations learned from semantic tasks such as detection
and segmentation correlate with affordance maps for object manipulation. [156] use
language-supervised CLIP model [12] for learning language-conditioned imitation
policy. In concurrent work, [157] explore pre-training visual representations using
time contrastive learning and language descriptions from human annotators. These
methods all require expert labels or cross-domain supervision.
Self-supervised learning in robotics has been explored as a means of improving
sample efficiency. Examples include: learning a dynamic model from interaction
with environments [135]; learning visual representation from interaction with envi-
ronments [158]; learning vision-based policies on self-collected trajectories [134,159];
learning visual autoencoders on trajectories [160]; learning spatiotemporal repre-
sentations through videos [136,161]; learning visual correspondence [162]; utilizing
non-parametric nearest-neighbor retrieval [140]; and conducting visual self-supervised
learning on pre-collected demonstrations [138]. These methods require in-domain
data collection, and thus may be difficult to extend beyond the training environment
and task. In contrast, our approach uses a large-scale and diverse collection of
real-world images and videos, making it more generalizable.

5.3 Framework
5.3.1 Masked Visual Pre-training

Data collection. We first compile a large-scale dataset for learning visual represen-
tations. We primarily use Ego4D [148], a massive scale, egocentric dataset from
nine countries recorded via portable devices, covering over 3,670 hours of daily-
life activities. We combine the Ego4D data with the ImageNet [2], as well as the
Hand-object Interaction (HoI) data used in [147], which comprises of the egocentric
Epic Kitchens [107] dataset, the YouTube 100 Days of Hands dataset [105], and

5.3. FRAMEWORK 55

𝜋!"#$ 𝜋%&"!𝜋%'"()* 𝜋%'+",𝜋'*-#.

Pre-trained Vision Encoder

𝜋/"0$

Figure 5.2: One encoder for all robots and tasks. We train control policies per task, on top
of the frozen encoder. The same vision encoder is used for all downstream robotic tasks
and embodiments.

the crowd-sourced Something-Something dataset [26]. Our training data totals 4.5
million images, 6.5x of the HoI data. We find that a sufficiently large and diverse
pre-training dataset to perform the mask image modeling self-supervisory task is
critical to scale up the vision backbone for real robot tasks.
Self-supervised objective. At the core of our self-supervised representation learning
approach is masked image modeling via the masked autoencoders (MAE) [102]. MAE
masks out random patches in an image and reconstructs the missing content with a
vision transformer (ViT) [11]. A high masking ratio, e.g., 75%, and asymmetrical
heavy-encoder light-decoder design, are important for learning good visual represen-
tations efficiently. Simple and free from dataset or task-specific augmentations [103],
MAE is the state-of-the-art self-supervised framework in computer vision [163–166],
and has been demonstrated to work well for motor control tasks in simulation as
well [147].
Architecture. We use the ViT models as our vision encoders. While the MAE-
trained ViT models yield improving performance in vision tasks as model sizes
grow [11,102,167], previous work [147] does not show improvement from switching a
ViT-Small model to the ViT-Base counterpart of 4x as many parameters. In this
chapter, we scale the model up to the ViT-Large and deploy it on the real robot. The
model contains 307M parameters and runs at ∼64 gigaflops at input size 224×224,
approximately 15x as many as the commonly adopted ResNet-50 [17], the largest
vision model deployed for robotics. As we will show in the experiments, scaling
model sizes while training on sufficiently large data leads to consistent performance
improvement on downstream robotic tasks.

5.4. EXPERIMENTAL SETUP 56

Figure 5.3: Real-world robotic tasks. We perform extensive real robot evaluations using
a 7 DoF robot arm with a parallel jaw gripper. Our tasks include basic motor control
skills (reaching a red block, pushing a wooden cube, and picking a yellow cube), variations
in scenes (closing a fridge), objects (picking fruits), and scenes and objects (picking a
detergent bottle from a cluttered sink).

5.3.2 Real-World Robot Learning
We learn to perform real-robot tasks through behavior cloning (BC). We collect

demonstrations containing trajectories of RGB images from a wrist-mounted camera
and the robot’s joint state at each time step. For most of the tasks, we use the
motion-tracked HTC Vive VR system to control the end-effector. For some tasks that
are difficult to demonstrate via the motion controller, e.g., closing fridge door, we use
kinesthetic teaching. Given the recorded demonstrations, we train a control policy
that takes in the input image features and proprioceptive states (joint positions) at
time step t and predicts the action at time step t + 1. We perform joint position
control; we do not use any end-effector information (e.g., the 6-DoF pose). We
build on our MVP pipeline [147] and freeze the image encoder throughout the policy
learning, which prevents large pre-trained encoders from overfitting to a specific
setting or task, and greatly reduces GPU memory footprint and training time.

5.4 Experimental Setup
In this section we provide implementation details for our approach and describe

our evaluation setup.
Data. We extract frames from Ego4D, Epic Kitchens, and Something-Something at
0.2 fps, 1fps and 0.3fps, respectively. We then combine the Ego4d with ImageNet
and the YouTube 100 Days of Hands dataset. This process yields 2.6M frames from
Ego4D, 1.2M images from ImageNet, and 700k HoI images from the rest, a total
of 4.5M images. We term the combined dataset as “Ego” for abbreviation. Note
that [147] only uses the 700k HoI images, excluding the Ego4D and ImageNet.

5.4. EXPERIMENTAL SETUP 57

Encoders. We use the standard Vision Transformer (ViT) architecture as the image
encoder. We use three models of various sizes: ViT-Small [14], ViT-Base, and
ViT-Large models, of 22M, 86M, and 307M parameters, respectively. The ViT-Small
model is approximately the same size as the ResNet-50 model, while the ViT-Large
model has ∼15x as many parameters as the ResNet-50 model.
Pre-training. We pre-train the models via the MAE framework [102]. The training
recipe closely follows [102], with dataset specific settings from [147]. We use the
auxiliary dummy classification token for transferring to downstream robotics tasks.
We train the MAE models for 400 epochs for the combined Ego dataset; 1600 epochs
for the HOI dataset; and 1600 epochs for ImageNet dataset. We use the pre-training
recipe in [120] for the study that involves ImageNet supervised models.
Controllers. The controller takes in both image features and the robot’s proprio-
ceptive state. We use joint positions as the proprioceptive state without explicitly
appending the end-effector pose to the state. We do not use velocity in the state as
our low-cost arm does not support true velocity sensing. The controller outputs delta
joint angles. The controller’s design closely follows [117], i.e., a four-layer MLP with
a SeLU [121] activation following each hidden layer. The hidden size is [256, 128,
64] for most tasks and [512, 256, 128] for the PickSink task. We linearly project
the image features and the proprioceptive states to a joint embedding space as the
controller’s input.
Robot and robotic tasks. We use the low-cost UFACTORY xArm7 robot (a 7-DoF
arm) and a 1-DoF parallel jaw gripper. We use the arm’s maximum control frequency
of 5 Hz for both collecting demonstrations and control. We use a first-person wrist-
mounted RealSense camera for all tasks. We do not use depth information from the
camera. We consider basic motor control tasks, i.e., ReachBlock, PushCube, and
PickCube, and more challenging in-context tasks, i.e., CloseFridge, PickFruit,
and PickSink. The tasks are shown in Figure 5.3 (more details in the next section).
Demonstrations. We collect 80 demonstrations per task. We use the motion-tracked
HTC Vive VR system for most tasks, except for CloseFridge we use kinematics
teaching. We use trajectory replay on the robot for trajectory pruning. We do not
use the key-frame information for the learning.
Evaluation. We systematically sweep across 16 variations of the environment, e.g.,
shifting the target object. For consistency and reliability of the study, we use the same
16 variations for all models in an individual task, and evaluate models sequentially
at each variation, in order for similar lighting conditions, robot conditions, precise
object initial locations, etc (see also Appendix B).

5.5. EXPERIMENTAL RESULTS 58

Ours CLIP Sup. Scratch
0

20

40

60

80

100

Su
cc

es
s (

%
)

ReachBlock

Ours CLIP Sup. Scratch

PushCube

Ours CLIP Sup. Scratch

PickCube

Figure 5.4: Comparison to vision encoders. We compare our approach to visual encoders
trained with CLIP, supervised learning on the ImageNet, and from scratch on the task at
hand. In all cases, we observe that our approach consistently outperforms the baselines by
a considerable margin.

20 40 60 80
Num. Demos

0

20

40

60

80

100

Su
cc

es
s (

%
)

ReachBlock
Ours
CLIP

20 40 60 80
Num. Demos

PushCube
Ours
CLIP

20 40 60 80
Num. Demos

PickCube
Ours
CLIP

Figure 5.5: Sample complexity. We show the performance of our approach as the number
of demonstrations varies from 20 to 80. CLIP performance at 80 demonstrations is shown
with a dashed lined for reference. Our approach is comparable to CLIP using only half the
number of demonstrations.

5.5 Experimental Results
We perform extensive evaluations across a range of visual backbones, real-world

robotic tasks, objects, and environments (Figure 5.3). In total, we report results
from 981 real-world experiments.

5.5. EXPERIMENTAL RESULTS 59

5.5.1 Basic Motor Control
We evaluate three basic motor control tasks in visually simple contexts: reaching

a red block, pushing a wooden cube, and picking a yellow cube (see Figure 5.3 for
task visualization). These tasks serve as stepping stones for more complex tasks, and
the visual representations that can potentially be fundamental for robotics should
learn these tasks efficiently. In all cases, we randomize the initial object and robot
positions (see Appendix B for details about the learning and task setup).
Comparison to various vision encoders. In Figure 5.4 we compare our approach to a
set of state-of-the-art vision backbones: CLIP [8] trained on 400M text-image pairs,
supervised model trained on the ImageNet, and a model trained from scratch with
in-domain demonstration data. For fair comparisons, we use the ViT-Base [11] vision
encoder for all methods. We empirically observe that the CLIP encoder performs the
best among the baselines, and the ranking order is consistent across the benchmark
tasks. Our approach consistently outperforms the baselines by a considerable margin.
Sample complexity. In Figure 5.5 we study the performance of our approach as
the number of demonstrations varies from 20 to 80. For reference, we show the
performance of the most competitive baseline, CLIP, trained with 80 demonstrations
(dashed horizontal line). In aggregate, we observe that our approach reaches CLIP
performance while using 50% fewer demonstrations. This result is a promising signal
for using our models for learning more complex robotic tasks, as discussed next.

5.5.2 Visually Diverse Scenes and Objects
We have previously shown that our approach can learn basic motor control tasks,

such as reaching, pushing, and picking, at a higher success rate and better sample
complexity than the baseline vision backbones. To focus on the motor control aspect,
we used a visually simple environment and basic objects. However, one of the main
potential benefits of our approach is that learning visual representations from diverse,
real-world images may enable to solve robotic tasks that involve the interaction with
everyday objects in more visually complex environments. In this subsection, we
evaluate our visual representations on robotic tasks with variations in scenes and
objects in more realistic setups.
Scene context. We first evaluate our approach in a more realistic scene by considering
the task of closing the door of a toy fridge that is left open (termed CloseFridge).
We randomize the location of the fridge, which side of the door to close, and initial
angle of the door. As shown in Figure 5.6, bottom-left, the initial configuration
of the fridge and the robot vary considerably, which is quite common in everyday
settings. Figure 5.6, top-left, shows that our approach outperforms all baselines.

5.5. EXPERIMENTAL RESULTS 60

Ours CLIP Sup. Scratch
0

20

40

60

80

100

Su
cc

es
s (

%
)

CloseFridge

Ours CLIP Sup. Scratch

PickFruit

Ours CLIP Sup. Scratch

PickSink

Figure 5.6: Variations in scenes and objects. We compare our approach to CLIP on
tasks with variations in scenes (closing the fridge), objects (picking fruits), and scenes
and objects (picking an object from a cluttered sink). The models are ViT-Base. Our
approach considerably outperforms CLIP and the gap is larger than in simpler settings
(see Figure 5.4). This may suggest that our representations capture more precise spatial
structure that is helpful for robotic tasks in more realistic contexts.

Different objects. Next, we evaluate on a task with a variety of objects. The
goal is to pick up eight different fruits that vary in color, shape, and size (termed
PickFruit). In each trial, a fruit is selected at random, and both the fruit and the
robot’s positions are randomized. The number of training demonstrations remain
unchanged, i.e., we provide 10 demonstrations for each fruit. In Figure 5.6, middle,
we show the evaluation results (top) and starting configuration samples (bottom).
We see that baselines struggles in this setting while our approach achieves nearly
perfect score.
Objects in context. Finally, we evaluate our approach on a task that features
interacting with objects in everyday contexts. We task the robot with picking a
detergent bottle from a cluttered sink (termed PickSink). The task is challenging
as the visual configuration of the scene, such as the toy plates, mug cups, and

5.5. EXPERIMENTAL RESULTS 61

ViT-S

ViT-S

ViT-B

ViT-B

ViT-L
ViT-LModel

Model + Data

Figure 5.7: Scaling model and data. We study the scaling properties of our approach. We
observe that scaling the model size alone from ViT-S to ViT-B while keeping the dataset
fixed (HoI image collection; see text for details) does not improve the performance and
even hurts (left). However, when we scale both the model and data (our massive Ego
image collection; see text for details) we see clear benefits from a larger model. The trend
continues when going further from the 86M ViT-B to the 307M ViT-L model (middle &
right). Moreover, the gains are larger for harder tasks (right).

silverware, can vary in unlimited ways, as shown in Figure 5.6 right We observe that
our approach considerably outperforms baseline approaches using the same ViT-B
encoder.

5.5.3 Scaling Model and Data Size
Importantly, our visual pre-training approach uses a self-supervised objective [102]

that makes few assumptions about the data distribution, and does not rely on human-
designed pretext tasks such as data augmentations. Therefore, the framework is
well-suited for pre-training from a massive collection of unlabeled and in-the-wild
visual data. Here we study scaling model and data size.

We first consider increasing the model capacity. In Figure 5.7, left, we see that
increasing the model size (∼4.5x) from ViT-S to ViT-B, while keeping the data size
fixed (HOI image collection [147]), does not increase performance and even hurts.
This is consistent with the in-simulation results reported in [147]. However, if we
also scale the data size from HOI to our massive Ego data collection, ViT-B yields
better results. These results suggests that we must scale both the model and the
data.

In Figure 5.7, middle & right, we show the performance as a function of model
size. Additionally increasing the model size from the 86M parameter ViT-B to the
307M parameter ViT-L leads to further improvements. The gain is larger for the

5.5. EXPERIMENTAL RESULTS 62

supervision params success
(M) (%)

R3M video-text 23 31.3
CLIP image-text 86 18.8

Ours image-only
22 68.8
86 93.8
307 100.0

Table 5.1: Comparison to concurrent work. All of our vision models, trained with image-
only self-supervision, considerably outperform the strongest available R3M model trained on
paired video-language labels from Ego4D. The gains are larger for larger models. Evaluated
on the PickFruit task.

visually more challenging task (PickSink). To the best of our knowledge, our work
is the largest vision model deployed to real robot tasks, which clearly demonstrates
the benefits of scaling visual pre-training for real-world robot learning.

5.5.4 Comparison to Concurrent Work
We compare our approach to a concurrent work [157], submitted to the same

conference (CoRL 2022). Similarly, it pre-trains visual representations on in-the-wild
video data from Ego4D [148]. However, it relies on paired language-video annotations
that are available as part of Ego4D. In contrast, our approach is fully self-supervised
and makes minimal assumptions about the data distribution, enabling us to leverage
massive collections of uncurated data (e.g., from the Internet). In Table 5.1, we
compare our models to the strongest available R3M ResNet-50 model. We observe
that our medium-sized ViT-B model outperforms R3M ResNet-50 by a large margin
(93.8% vs. 31.3%). We also see that our smallest ViT-S model from [147] outperforms
it as well (68.8% vs. 31.3%).

5.5.5 Ablation Studies
We conduct ablation studies on camera setups, input modality, training settings,

model architectures for ours and baselines, as well as downstream finetuning. Results
in Figure 5.8 and discussed next.
Cameras. We compare using the first-person wrist camera with the third-person
table camera (Figure 5.8, top-left). The wrist-mounted camera yields significantly
better results than the third-person camera. During the evaluation trials we observe
that the third-person camera model struggles with fine-grained localization, and the
farther the object is from the camera, the worse the predicted trajectory is. This

5.5. EXPERIMENTAL RESULTS 63

Wrist [def.]
Table cam.

0

20

40

60

80

100

Su
cc

es
s (

%
)

Camera

Both [def.]
w/o proprio.

w/o vision

Modality

None [def.]
+ Color aug.

+ Shift aug.

Augmentation

ViT-B [def.]
ResNet-18

ResNet-50

0

20

40

60

80

100

Su
cc

es
s (

%
)

Scratch Arch.

ViT-B ours
R-50 CLIP

ViT-B CLIP

Pre-train Arch.

ViT-S HoI
R-50 CLIP

Finetuning
Frozen
Finetuned

Figure 5.8: Ablation studies. We conduct ablation studies on the camera setups; input
modality; commonly used image augmentations; from-scratch training architecture; CLIP
pre-training architecture, and end-to-end finetuning on downstream tasks. See Section 5.5.5
text for more details.

suggests that the model may be confused by the scale (size) ambiguity in the setting
because we do not use depth, and the third-person observation does not change as
the robot acts.
Modality. We experiment with removing proprioception states or images from the
model’s input (Figure 5.8, top-center); both yield zero success rate, as neither is
fully-observed input for the task.
Augmentations. We experiment with adding common data augmentations for training
the task policy (Figure 5.8, top-right). We do not observe any benefits from these
augmentations likely since our vision encoder is frozen and overfits significantly less
from training on limited amount of data.
Training-from-scratch architectures. We compare various model architectures of
smaller sizes for from-scratch training (Figure 5.8, bottom-right). ResNet-18 and
ResNet-50 models, which are of 11% and 22% of the referenced ViT-B model (FLOP-

5.5. EXPERIMENTAL RESULTS 64

Reach Seen Reach Unseen Flip Cube
Figure 5.9: Multi-finger hand. We show that our framework readily generalizes to a
different robot morphology. We experiment with finger reaching, using seen and unseen
objects, and cube flipping.

wise), respectively, do not yield better result.
CLIP pre-training architectures. We compare the publicly-released CLIP ResNet-50
and ViT-B models. The CLIP ViT-B model yields better performance for the robotics
tasks. This result aligns with the ranking order of the CLIP models’ computer vision
task performance as reported in [12].
Finetuning. We finetune the ViT-S HoI model and the CLIP ResNet-50 model as
they are relatively smaller models that achieve modest performance on downstream
tasks. Finetuning these models marginally improves the performance, suggesting
that finetuning alone on limited number of demonstrations does not close the gap
with superior visual representations from pre-training.

5.5.6 Case Study: Multi-finger Hand
Our approach makes no assumptions about the downstream robotic tasks or

embodiments. In particular, our policies take pixel images as input and predict joint
position angles as actions (rather than, e.g., end-effector pose). In this subsection,
we test the generality of our approach by applying it for downstream tasks with a
multi-finger Allegro hand (see Appendix A for more details on the setup).
Visual reaching. We design a reaching task in which the hand learns to reach the
top of an object with the tip of the index finger. The object’s position is randomized
across the palm. We provide 10 demonstrations for each of the 8 different objects. At
test time, we evaluate the trained policy on the 8 seen objects as well as 45 unseen
objects (see Figure 5.9). The success rate is ∼50% across both.

5.5. EXPERIMENTAL RESULTS 65

Figure 5.10: Data collection. We show our setup for collecting demonstrations in the real
world with human operation. Left: We collect xArm demonstrations using an HTC Vive
VR controller. Right: We collect Allegro hand demonstrations using an Meta Quest 2
device. See text for more details.

Visual flipping. Next, we consider a cube flipping task in which the goal is to flip
a rubber cube that is placed in the palm. The position of the cube is randomized
across the palm. Thus, the policy must rely on visual cues to accomplish the task.
In aggregate, we observe a success rate of 50% across 30 trials. See Figure 5.9 for
example key frames and also check out the videos on the project page.
Understanding vision through action. Training policies on top of frozen visual
representations enables us to perform studies to understand what the pre-trained
visual representations utilize for downstream tasks. Here we first train a policy to
reach a yellow cube, but test with objects of different shape and color. First, we find
that when given the same shape of different color (wooden cube) or same color and
different shape (yellow ball), the policy reaches for the object. Next, when given
both the yellow cube and a distractor it reaches for the yellow cube. Finally, when
given an object of different shape and color (blue cube) the hand stays still.

5.5.7 Data Collection
We describe our setup for collecting demonstrations for the xArm and the Allegro

hand (Figure 5.10).
xArm demonstrations. To collect demonstrations for the xArm, we use an HTC
Vive VR controller (Figure 5.10, left). The setup includes two external sensors that
track the position of the VR controller and estimate its 6-DoF pose. Given the
6-DoF pose of the controller, we use it to control the end-effector (EE) pose of the
robot. Specifically, we map the EE pose to the joint angles via inverse kinematics
(IK) following [168]. We control the gripper open/close state via a button press on
the controller. Using this pipeline, the user controls the system in real-time while

5.5. EXPERIMENTAL RESULTS 66

having direct view of the robot. While the user is performing the task, we save the
camera feed and robot state information as demonstrations. On average, it takes
about 1 hr to collect 40 demonstrations using this setup.
Allegro hand demonstrations. We would like to have a similar setup for collecting
demonstrations for the Allegro hand. However, it is hard to control a multi-finger
hand using a joystick or a VR controller. We thus require a different user interface. To
this end, we develop a new approach based on the Meta Quest 2 device (Figure 5.10,
right). In particular, we use the hand tracking provided by the Quest 2 to obtain
the 3D keypoints of the human hand. We then map the human keypoints to the
Allegro hand joint angles using IK following [169]. As before, our system runs in
real-time and records demonstration data while the human is controlling the robot
to complete the desired task.

We note that our demonstration recording approach relies exclusively on consumer
grade VR software and hardware. Namely, VR controller tracking in the case of
the HTC Vive and hand tracking in the case of the Meta Quest 2. This has three
desirable properties for research use. First, it is likely more accurate and reliable
than research prototypes. Second, it is likely to improve with future software updates.
Finally, it is easy to acquire and set up by other researchers around the world.

5.5.8 Evaluation Protocol
Our goal is to conduct fair evaluation of different pre-training methods and

control for any confounding factors that might impact the performance. In the early
stages of this project, we observed that the performance of the same model varies
non-trivially based on the robot up time, i.e., after running for many hours our
low-cost robot arm starts to execute actions less precisely. Similarly, the difference
in lighting conditions may impact the performance of different methods. Therefore,
we employ a systematic evaluation protocol. At data collection and training time,
we randomize the initial object and robot positions. At test time, we fix the robot
position to the center of the randomization space, and slide the object along K
pre-defined and carefully-measured locations (we use k = 16 in most experiments).
For each location of the target object, we benchmark a set of models sequentially, so
that each model manipulates the object at the exact same location and at roughly the
same time. We then move the object to the next location and repeat the evaluation
step. Overall, this procedure ensures the models are benchmarked with the similar
robot and lighting conditions.

5.6. CONCLUSION 67

5.6 Conclusion
We explore learning visual representations from a massive collection of real-world

data and using them for downstream robotic tasks. We pre-train representations
with masked modeling, freeze the encoder, and learn control policies on top. We
perform extensive evaluations in the real world and show that, across various robotic
tasks, our approach leads to higher success rate and better sample complexity than
CLIP, supervised ImageNet pre-training, and training from scratch. We further
demonstrate the benefits of scaling the model and data size for real world robot
learning.

68

Chapter 6

Learning Humanoid Locomotion with
Transformers

6.1 Introduction
We study the problem of humanoid locomotion. This setting poses both hardware

and control challenges. Our focus in this work is on learning-based control. Still,
many challenges remain: unsafe exploration, inaccurate simulation, hybrid nonlinear
control, and high-dimensional under-actuated system.

There is a rich body of literature on control theory and optimization that has
shown excellent results [170,171]. Perhaps the most well-known are the videos of the
Boston Dynamics Atlas robot doing back flips, jumping over obstacles, dancing, and
doing all of that while making it look easy [172].

While these approaches have made great progress, learning-based methods have
become of increasing interest due to their ability to learn from diverse simulations
or real environments. For example, learning-based approaches have proven very
effective in dexterous manipulation [110,111], quadrupedal locomotion [173–175], and
bipedal locomotion [176–178]. There have been approaches that combine learning
components with model-based controllers for humanoids as well [179,180]. Moreover,
it is possible that the existing proprietary controllers (e.g., from Agility Robotics)
use at least some learning components. Yet, there has not been published work on
purely learning-based humanoid locomotion to date.

In this chapter, we propose a learning-based approach for humanoid locomotion.
We present a Transformer-based controller that predicts future actions autoregres-
sively from the history of past observations and actions (Figure 6.2). Our model is
trained with large-scale reinforcement learning (RL) on an ensemble of randomized
environments in simulation and deployed to the real world in a zero-shot fashion.

6.1. INTRODUCTION 69

Figure 6.1: Humanoid locomotion. We present a learning-based approach for humanoid
locomotion and evaluate it on a full-sized real-world Digit robot. Our policies are trained
entirely in simulation and successfully transferred to real hardware zero-shot. Our robot
can adapt to external disturbances such as carrying a backpack or a handbag; being pushed
by a stick, pulled by cables, or having a yoga ball thrown at it. Moreover, it can walk over
terrains with different friction, texture, and geometry.

We hypothesize that the history of observations and actions implicitly encodes
the information about the world that a powerful Transformer model can use to adapt
its behavior dynamically at test time. For example, the model can use the history
of desired vs. actual states to figure out how to adjust its actions to better achieve
future states. This can be seen as a form of in-context learning—changing model
behavior without updating the model parameters—often found in large Transformer
models like GPT-3 [6].

We evaluate our approach on a full-sized Digit humanoid robot. We find that
our approach outperforms standard neural network model choices like Multi-Layer
Perceptron (MLP), convolutional neural network (CNN), and Long Short-Term
Memory (LSTM) in a high-fidelity simulator. We further show successful zero-shot
transfer to hardware. Our model can handle external disturbances like carrying
payloads and walking over different terrains (Figure 6.1).

6.2. RELATED WORK 70

6.2 Related Work
Humanoid Locomotion Humanoid locomotion has been a longstanding challenge in
robotics. Roboticists designed the first full-sized real-world humanoid robot [181] in
1970s. Since then, researchers have developed a variety of humanoid robots to push
the limits of robot locomotion research [182–185]. While classic control methods can
achieve stable and robust locomotion [170,186–188], optimization-based strategies
show the advantage of simultaneously authoring dynamic behaviors and obeying
constraints [171,172,189,190]. Meanwhile, since the 1990s, researchers have developed
and applied RL-based approaches to robot locomotion [191], which have demonstrated
remarkably robust and dynamic locomotion behaviors. For example, these approaches
have enabled quadrupeds to traverse challenging terrain [173–175,192], while also
empowering bipeds with robust and diverse locomotion gaits [163,176–178,193]. In
this chapter, we employ a RL-based strategy for humanoid locomotion, i.e., on a
Digit robot. Recent works on Digit humanoid locomotion that involve RL [179,180]
are integrated with a model-based control design. In contrast, we approach humanoid
locomotion from an end-to-end learning paradigm.
Domain Randomization One way to approach the sim-to-real problem is to perform
RL with domain randomization [194–197]. The idea is to train an agent to be robust
in a range of simulated environments, with the expectation that this will enable it to
perform well in the real world, which can be seen as just another type of environment.
Adaptation Instead of learning to be robust to different variations of the environment,
we can learn to adapt. One way to achieve this is through memory-based models
like LSTMs which have been effective for dexterous manipulation [111] and bipedal
locomotion [178]. An alternative approach is to learn an estimator of the latent envi-
ronment properties to facilitate adaptation [174,175], which has enabled quadrupeds
to traverse diverse terrains in the wild. We hypothesize that our Transformer-based
controller can learn to adapt in-context from the history of observations and actions.
Transformers in Robotics Over the last several years, we have witnessed impressive
advances in natural language processing [6,8,9] and computer vision [11,198] powered
by large Transformer models. Recently, Transformers have been used in robotics as
well. Example use cases include visual pre-training [199], object-centric representa-
tions [200], depth fusion [201], and language-conditioned behavior cloning [202,203].
Likewise, we share the goal of using Transformer models for robotics. In contrast,
our Transformer-based controllers are trained with online reinforcement learning
without offline datasets, and our focus is on real-world humanoid locomotion.

6.3. METHOD 71

Humanoid Transformer

o0 a0

at

oto1 a1 …o2 a2 o3 a3

history context

a0 a1 a2 a3

Figure 6.2: Humanoid Transformer. Our neural network controller is a causal Transformer
model trained by autoregressive prediction of future actions from the history of observations
and actions. We hypothesize that the observation-action history contains useful information
about the world that a powerful Transformer model can leverage to adjust its actions
in-context.

6.3 Method
We formulate the control problem as a Markov Decision Process (MDP), which

provides a mathematical framework for modeling discrete-time decision-making
processes with partially stochastic outcomes. The MDP comprises the following
elements: a state space S, an action space A, a transition function P (st+1|st, at),
which determines the probability of transitioning from state st to st+1 after taking
action at at time step t, and a scalar reward function R(st+1|st, at), which assigns a
scalar value to each state-action-state transition, serving as feedback to the agent
on the quality of its actions. Our approach to solving the MDP problem is through
Reinforcement Learning (RL), which aims to find an optimal policy that maximizes
the expected cumulative reward over a finite or infinite horizon.

In practice, estimating true underlying state of an environment is impossible
for real-world applications. In the presence of a noisy observation space, the MDP
framework needs to be modified to reflect the uncertainty in the observations. This
can be done by introducing an observation space O and an observation function
Z(ot|st), which determines the probability of observing state st as ot. The MDP
now becomes a Partially Observable Markov Decision Process (POMDP), where the
agent must make decisions based on its noisy observations rather than the true state
of the environment. The composition of the action, observation and state spaces is
described in Section 6.4.4.

6.3. METHOD 72

We illustrate our framework in Figure 6.2 and provide a comprehensive description
of the method below.

6.3.1 Model Architecture
Our aim is to find a policy πo for real-world deployment in the POMDP problem.

Our policy takes as input a history trajectory of observation-action pairs over a
context window of length l, represented as ot, at−1, ot−1, at−2, ..., ot−l+1, at−l, and
outputs the next action at. To achieve this, we utilize Transformers [7] for sequential
trajectory modeling and action prediction.

Transformers are a type of neural network architecture that has been widely
used in sequential modeling tasks, such as natural language processing [6,8,9], audio
processing [204], and increasingly in computer vision [11, 198] as well. The key
feature of Transformers is the use of a self-attention mechanism, which allows the
model to weigh the importance of each input element in computing the output. The
self-attention mechanism is implemented through a self-attention function, which
takes as input a set of queries Q, keys K, and values V and outputs a weighted sum,
computed as follows:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (6.1)

where dk is the dimensionality of the key. The self-attention mechanism enables the
Transformer to capture long-range dependencies between input elements.

We represent each observation-action pair in the locomotion trajectory as a token.
Transformers are able to extract the structural information of these tokens through
a repeated process of assigning weights to each token (softmax on Q and K) in time,
and mapping the tokens (V) into features spaces, effectively highlighting relevant
observations and actions and thus enabling the inference of important information
such as gait and contact states. We employ Multi-Layer Perceptrons (MLPs) to
embed each observation-action pair into a feature space. To capture the positional
information of each token in the sequence, we add sinusoidal positional encodings
to the features. We leverage the temporal dependencies among the observations
and actions by restricting the self-attention mechanism to only attend to preceding
tokens, resulting in a Causal Transformer [8].

Transformers have proven to be effective in the realm of in-context learning,
where a model’s behavior can be dynamically adjusted based on the information
present in its context window. Unlike gradient-based methods that require fine-tuning
on task-specific data samples and explicit state estimation methods that rely on

6.3. METHOD 73

pre-defined state spaces, Transformers can learn in-context, providing them with the
flexibility to handle diverse inputs.

6.3.2 State-policy Supervision
In Reinforcement Learning (RL), an agent must continuously gather experience

through trial-and-error and update its policy in order to optimize the decision-making
process. However, this process can be challenging, particularly in complex and high-
dimensional environments, where obtaining a useful reward signal may require a
significant number of interactions and simulation steps. Through our investigation,
we found that directly optimizing a policy using RL in observation space is slow
and resource-intensive, due to limited sample efficiency, which impairs our iteration
cycles.

To overcome these limitations, we adopt a two-step approach. First, we assume
that the environment is fully observable and train a state policy πs(at|st) using
simulation. This training is fast and resource-efficient, and we tune the reward
functions, such as gait-parameters, until an optimal state policy is obtained in
simulation. Next, we distill the learned state policy to an observation policy through
Kullback-Leibler (KL) divergence. This approach shares some similarities with the
teacher-student paradigm utilized in [174, 175], with the most notable difference
being that we do not impose a bottleneck representation or explicitly design a state
space.

6.3.3 Joint Optimization with Reinforcement Learning
The discrepancy between the state space and the observation space can result in

suboptimal decision-making if relying solely on state-policy supervision, as policies
based on these separate spaces may have different reward manifolds with respect
to the state and observation representations. To overcome this issue, we utilize a
joint optimization approach combining RL loss with state-policy supervision. The
objective function is defined as:

L(πo) = LRL(πo) + λDKL(πo ∥ πs) (6.2)

where λ is a weighting factor representing the state-policy supervision, LRL(πo) is
the RL loss, and DKL(πo ∥ πs) is the KL divergence between the observation policy
πo and the state policy πs. The weighting factor λ is gradually annealed to zero over
the course of the training process, typically reaching zero at the mid-point of the
training horizon. It is important to note that our approach does not require any

6.4. EXPERIMENTAL SETUP 74

pre-computed trajectories or offline datasets, as both the state-policy supervision
and RL-supervision are optimized through on-policy learning.

6.4 Experimental Setup
6.4.1 Digit Humanoid Robot

Digit is a general-purpose humanoid robot developed by Agility Robotics, standing
at approximately 1.6 meters tall with a total weight of 45 kilograms. The robot’s
floating-base model is equipped with 30 degrees of freedom, including four actuated
joints in each arm and eight joints in each leg, of which six are actuated. The passive
joints, the shin and tarsus, are designed to be connected through the use of leaf
springs and a four-bar linkage mechanism, while the toe joint is actuated by means of
rods attached at the tarsus joint. Digit robot has been used as a humanoid platform
for mechanical design [205], locomotion control [180, 206, 207], state estimation [208],
planning [209–211], etc.

6.4.2 Simulation Environment
In our simulation environment, we use the Isaac Gym simulator [117,119] to model

the rigid-body and contact dynamics of the Digit robot. Given the closed kinematic
chains and non-fully actuated nature of the knee-shin-tarsus and tarsus-toe joints
of the robot, Isaac Gym is unable to effectively model these dynamics. To address
this limitation, we introduce a novel “virtual spring” model with high stiffness to
represent the rods. We apply forces calculated from the spring’s deviation from its
nominal length to the rigid bodies. Additionally, we employ an alternating simulation
sub-step method to quickly correct the length of the virtual springs to their nominal
values. We found that these efforts collectively make sim-to-real transfer feasible.
To the best of our knowledge, this represents the first successful attempt to perform
sim-to-real transfer from Isaac Gym to an under-actuated full-sized humanoid robot.

We randomize various elements in the simulation, including dynamics properties
of the robot, control parameters, and environment physics, as well as adding noise
and delay to the observations. Table 6.1 summarizes the domain randomization
items and the corresponding ranges and distributions.

For the robot’s walking environment, we randomize the terrain types, which
include smooth planes, rough planes, and smooth slopes. The robot executes a variety
of walking commands such as walking forward, sideward, turning, or a combination
thereof, which are randomly resampled at a fixed interval. We set the commands

6.4. EXPERIMENTAL SETUP 75

below a small cut-off threshold to zero. Table 6.2 lists the ranges of the commands
used in our training process.

6.4.3 Reward
Our reward is a combination of the following terms:

• Linear velocity tracking reward (rlv): This reward tracks the targets of forward
and sideway walking velocity.

rlv := exp(−||vxy − v∗
xy||22/σxy), (6.3)

where vxy and v∗
xy represent the realized and commanded base linear velocity,

respectively. We set σxy to 0.2.

• Angular velocity tracking reward (rav): This reward tracks the target of turning
velocity,

rav := exp(−(ωz − ω∗
z)2/σω), (6.4)

where ωz and ω∗
z represent the realized and commanded base angular velocity

along the z-axis, respectively. We set σω to 0.2.

• Base motion reward (rbm): This reward penalizes the vertical and roll-pitch
motions of the robot’s base.

rbm := v2
z + 0.5 ∗ ||ωxy||22, (6.5)

where vz is the base linear velocity on the z-axis and ωxy is the base’s roll-pitch
velocity.

• Base orientation reward (rbo): This reward penalizes the base’s orientation of
the robot.

rbo := ||gxy||22, (6.6)
where gxy is the x-and-y component of the projected gravity vector.

• Base height reward (rbh): This reward penalizes overly low base height.

rb :=
(hl − h)2 h < hl

0 h ≥ hl,
(6.7)

where hl and h represent the lower limit and actual base height, respectively.
In this study, hl was set to 1.0 meter.

6.4. EXPERIMENTAL SETUP 76

Parameter Unit Range Operator Distribution
Joint Position rad [0.0, 0.175] additive Gaussian
Joint Velocity rad/s [0.0, 0.15] additive Gaussian
Base Lin. Vel. m/s [0.0, 0.15] additive Gaussian
Base Ang. Vel. rad/s [0.0, 0.15] additive Gaussian
Gravity Projection - [0.0, 0.075] additive Gaussian
Observation Delay B(p)×dt [0.0, 0.2] - uniform
Action Delay B(p)×dt [0.0, 0.2] - uniform
Motor Offset rad [0.0, 0.035] additive uniform
Motor Strength % [0.85, 1.15] scaling uniform
Motor Damping Nms/rad [0.3, 4.0] scaling loguniform
Mass kg [0.5, 1.5] scaling uniform
Kp Factor % [0.9, 1.1] scaling uniform
Kd Factor % [0.9, 1.1] scaling uniform
Gravity m/s2 [0.0, 0.67] additive uniform
Friction - [0.3, 2.0] scaling uniform
Restitution - [0.0, 0.4] additive uniform

Table 6.1: Domain randomization. We show the types of randomization and their corre-
sponding ranges. Additive randomization adds a value drawn from a specified range to
the original value. Scaling randomization multiplies the original value by a value drawn
from a specified range. The range is specified as a lower and upper bound for a uniform
distribution or as a mean and std for a Gaussian distribution.

• In-the-air reward (rair): penalizes the robot for lifting both feet off the ground.

rair := 1[
∑

i∈foot
1[||F (i)||2 > 0] = 0], (6.8)

where F represents the contact forces on the robot’s foot.

• Foot contact force reward (rf): This reward penalizes overly high contact force
on the robot’s feet.

rf :=
∑

i∈foot

||F (i) − fmax||2 ||F (i)||2 > fmax

0 ||F (i)||2 ≤ fmax,
(6.9)

where fmax represents the maximum foot contact force threshold and is set as
a hyperparameter.

6.4. EXPERIMENTAL SETUP 77

Parameter Unit Range Cut-off Change Interval
Forward Speed m/s [-0.3, 1.0] 0.10 10 sec.
Sideway Speed m/s [-0.3, 0.3] 0.10 10 sec.
Turn Speed rad/s [-1.0, 1.0] 0.26 10 sec.

Table 6.2: Input commands. We independently generate commands for forward/backward
walking, sideway walking, and turning. The input is set to zero if the sampled value falls
below the specified threshold. The commands are re-sampled periodically at fixed intervals.

• Footswing trajectory tracking (rfs): This reward penalizes the deviation of the
footswing trajectory from heuristic trajectories.

rfs :=
∑

i∈foot
||foot_traji,xy − foot_traj∗i,xy||22

+ 5.0 ∗
∑

i∈foot
(foot_traji,h − foot_traj∗i,h)2,

(6.10)

where foot_trajxy and foot_trajh are x-y and z-component of heuristic foot
trajectories. The x-y component uses Raibert heuristics [170] and the z-
component uses von Mises distributions (κ = 0.04).

• Joint torques reward (rτ): This reward penalizes output torques to prevent
hardware damage and reduce energy consumption.

rτ := ||τ ||22, (6.11)

where τ is the joint torques.

• Joint acceleration reward (racc): This reward penalizes joint accelerations to
reduce shakiness.

racc := ||q̈||22, (6.12)
there q̈ is the joint acceleration.

• Action rate reward (ra): This reward penalizes excessive changes in consecutive
actions.

ra := ||at − at−1||22, (6.13)
where at represents the predicted actions at time step t.

6.4. EXPERIMENTAL SETUP 78

Input Dimensionality πo (Actor) πs and Critic
Base Linear Velocity 3 ✓ ✓
Base Angular Velocity 3 ✓ ✓
Joint Positions 26 ✓ ✓
Joint Velocities 26 ✓ ✓
Projected Gravity 3 ✓ ✓
Clock Input 2 ✓ ✓
Commands 3 ✓ ✓

Gait Heuristics 6 ✓
Height Map 121 ✓
Diff. Noisy Actions 36 ✓
Diff. Noisy Obs. 61 ✓
Robot, Env. Params. 147 ✓
Kp, Kd 40 ✓
Gravity 3 ✓

Table 6.3: Observation and state spaces. The state policy’s actor and the critics of both
policies utilize states as input.

• Joint target smoothing (rs): This reward penalizes sudden changes in predicted
joint targets.

rs := ||q′
t − q′

t−1||22 + ||q′
t − 2q′

t−1 + q′
t−2||22, (6.14)

where q′
t represents the joint target at time step t.

• Selected joint position penalty (rjp): This reward penalizes deviations from a
“neutral" joint position for selected joints.

rjp :=
∑
j∈M

αj(q(j) − q0(j))2, (6.15)

where q(j) and q0(j) represent the current and neutral joint positions of joint
j, respectively. The joints penalized include shoulder’s roll and yaw with a
weight of α = 2.0, elbow with a weight of α = 1.0, hip’s roll and yaw with a
weight of α = 0.5, and shoulder and hip’s pitch with a weight of α = 0.1.

• Termination reward (rk): penalizes self-collision or base collision that immedi-
ately terminates an episode.

rk := 1[self_collision||base_collision] (6.16)

6.4. EXPERIMENTAL SETUP 79

Parameter Value
Number of GPUs 4 A100s
Number of Environments 8192 (πs) / 4096 (πo)
Learning Epochs 5
Steps per Environment 24
Minibatch Size 49152 (πs) / 24576 (πo)
Episode Length 20 seconds
Discount Factor (γ) 0.99
Generalised Advantage Estimation (λ) 0.95
Entropy Regularization Coefficient 0.001
PPO Clipping Parameter 0.2
Optimizer AdamW
Learning Rate (Actor) 5e-4
Learning Rate (Critic) 5e-4
Learning Rate Schedule (Actor) cosine
Learning Rate Schedule (Critic) constant
Weight Decay 0.01
Training Iterations 6000
Normalize Input True
Normalize Value True

Table 6.4: Hyperparameters of PPO.

6.4.4 Reinforcement Learning Algorithm
We use the proximal policy optimization (PPO) algorithm [109] for training

RL policies. We use the actor-critic method and do not share weights. We always
feed states into the critic [212]. Table 6.4 shows the hyperparameters used in our
experiments. Table 6.3 lists the composition of the state and observation spaces. We
predict PD targets and include P and D gains of the leg motors in the action space.
We do not train the policy to control the four toe motors, and instead we set the
motors as their default positions using fixed PD gains.

6.4.5 Neural Network Model
The Transformer model used in this study has four blocks, each of which has an

embedding dimension of 192 and employs a multi-head attention mechanism with 4
heads. The MLP ratio of the transformer is set to 2.0. The hidden size of the MLP

6.5. EXPERIMENTS 80

Success Rate (%) Max Cmd. Vel. (m/s)
MLP 50 1.0
CNN 50 0.8
LSTM 60 0.3
Ours 65 1.0
Company 70 1.0

Table 6.5: Evaluation results in simulation. We compare our approach to an MLP baseline, a
CNN baseline, an LSTM baseline, and the company controller developed by Agility robotics.
We observe that our approach outperforms the neural network baselines considerably and
shows respectable performance compared to the state-of-the-art company controller.

for projecting input observations is [512, 512]. The action prediction component of
the model uses an MLP with hidden sizes of [256, 128]. Overall, the model contains
1.4M parameters. We use a context window of 16. The state model component is
composed of an MLP with hidden sizes of [512, 512, 256, 128].

6.5 Experiments
In this section, we evaluate our learning-based approach in a high-fidelity simulator

and in the real world.

6.5.1 Simulation Experiments
We begin by evaluating our approach in high fidelity AR-Sim simulator developed

by Agility robotics. This enables us to evaluate unsafe controllers and control for
factors of variations. Unlike the Isaac Gym simulator that was used for training,
AR-Sim accurately simulates the dynamics and physical properties of the Digit robot.

We compare our proposed method with three neural network-based baselines: 1)
a Multi-Layer Perceptron (MLP), 2) a Convolutional Neural Network (CNN), and 3)
a Long Short-Term Memory (LSTM). In addition, we compare it to 4) a proprietary
controller developed by Agility Robotics (Company). We select the MLP, CNN, and
LSTM neural network baselines as they are commonly used for learning-based robot
locomotion. On the other hand, we use the proprietary Company controller as a
baseline to demonstrate the state-of-the-art performance of model-based control for
the Digit robot. To ensure a fair comparison, we disabled the perception module
of the Company controller in AR-Sim during the evaluation, as both the neural

6.5. EXPERIMENTS 81

Figure 6.3: External disturbance. We include carrying constant loads and withstanding
external forces. See also Figure 6.1.

network-based baselines and our proposed method operate in a blind manner.
In Table 6.5, we show the results on two tasks. First, we consider a walking

experiment in a challenging environment containing steps of increasing height (ranging
from 4 cm to 16 cm) that were not present during the training phase. We then
command the robot to walk forward at 0.3 m/s and measure the success rate across
five trials for each of the methods. We observe that our approach outperforms the
neural-network based baselines and shows respectable performance compared to the
state-of-the-art company proprietary controller. Next, we compare different methods
in terms of the maximal command speed they are able to track. In particular, we
command different desired velocities and record the highest velocity that a method is
able to track without falling. Note that the actual achieved velocities may still differ
from the commanded velocities. We observe that the MLP, ours, and the Agility
controller are able to walk with 1.0 m/s commands while the CNN and the LSTM
require lower commands.

6.5.2 Real-World Experiments
Next, we evaluate our Transformer-based controller on real hardware. We find

that other neural network baselines were not stable enough to transfer to real
hardware.

6.5. EXPERIMENTS 82

External Disturbance

Robustness and adaptation to external disturbances are critical requirements for
real-world deployment of a humanoid robot. To evaluate these qualities, we conducted
a series of experiments in the laboratory environment to test the performance of
our proposed controller. In Figure 6.3, we present example photographs from these
experiments . These experiments can be broadly categorized into two groups: 1)
carrying loads, and 2) subjected to external forces.

In the first group of experiments, we evaluate the robot’s ability to carry loads
of varying mass, shape, and center of mass while walking forward. We conduct
five experiments, each with the robot carrying a different type of load: an empty
backpack, a loaded backpack, a cloth handbag, a loaded trash bag, and a paper
bag. Our results demonstrate that the robot is able to successfully complete its
walking route while carrying each of these loads. Notably, our Transformer-based
controller is able to adapt to the presence of a loaded trash bag attached to its
arm, despite the reliance of our policy on arm swing movements for balancing (as
described in Section 6.5.2). This suggests that our controller is able to adapt its
behavior according to the context and overcome the external disturbance presented
in the experiment.

In the second group of experiments, we test the robot’s ability to handle sudden
external forces while standing still or walking. These experiments include being
pushed with a wooden stick or being hit with a thrown yoga ball while standing,
and being pulled from the back with cables while walking forward. Our results
show that the robot’s behavior is able to stabilize in each of these scenarios. Given
that these disturbances are sudden and require fast changes in behavior, especially
in the case of a humanoid, to prevent the robot from falling, this suggests that
our transformer-based controller is able to infer the necessary adaptations from the
context.

Rough Terrain

In addition to handling external disturbances, a humanoid robot must also be
able to navigate various terrains. To assess the capabilities of our transformer-based
controller in this regard, we conducted a series of experiments on different terrains
in the laboratory (Figure 6.4). Each experiment involved commanding the robot to
walk forward at a constant velocity of 0.15 m/s.

Next, we covered the floor with four different types of items: rubbers, cloths,
cables, and bubble wraps, which altered the roughness of the terrain and could
potentially lead to challenging entanglement and slipping situations, as the robot
does not utilize exteroceptive sensing. Despite these difficulties, our controller was

6.5. EXPERIMENTS 83

Figure 6.4: Rough terrain. The controller undergoes tests on eight different types of
challenging terrain in the laboratory, with three being depicted in the figure (slippery
surfaces, cables, and rubber). The robot is instructed to walk forward at a constant velocity
of 0.15 m/s. See also Figure 6.1.

able to traverse all three terrain types.
Finally, we evaluated the controller’s performance on two different slope difficulties.

The simulated training slopes are up to 10% (percentage), and our testing slopes are
up to 8.7%. Our results demonstrate that the robot was able to successfully cross
both slopes, with higher confidence at higher velocity (0.2 m/s) on steeper slopes.

Adaptation

In this section, we further investigate the in-context adaptation ability of our
Transformer-based controller for humanoid locomotion. To do this, we evaluate the
performance of the controller on a novel terrain type that was not encountered during
training. In particular, we test the robot’s ability to climb small steps.

It is important to note that while our controller was trained on rough terrains
and slopes in simulation, it was not exposed to steps or any terrains that involve
discrete changes in height. We command it to walk forward at a velocity of 0.15
m/s and place the steps in front of it. An example episode is depicted in Figure 6.5.
We observe that our controller initially makes a mistake in ascending the step, but
quickly adapts and lifts the leg faster and higher on the second attempt. This
suggests that the controller is able to dynamically adapt its behavior relying solely
on the history of past observations and actions.

Next, we assess the adaptability of our approach by simulating a sudden motor

6.5. EXPERIMENTS 84

Figure 6.5: Adaptation, steps. We test the robot’s ability to climb steps despite the
controller not being exposed to such terrains. We observe that the controller initially
makes a mistake, but quickly adapts by lifting the leg faster and higher on the second
attempt, which suggests adaptability of the controller.

malfunction scenario while the robot is stepping in place. To achieve this, we reduce
the PD gains of the selected left knee motor by half. The positions, velocities,
and torques of both the left and right knee motors are plotted in Figure 6.6. The
dashed line indicates the moment of the simulated malfunction. As seen from the
figure, the left knee’s position and velocity patterns undergo a significant change
immediately after the malfunction, accompanied by a slight increase in its torque
output. Meanwhile, the right knee’s patterns adjust accordingly. The robot stabilizes
after a few cycles. Despite the crucial role of the knee motors in maintaining the
robot’s balance, our approach demonstrates its ability to adapt in-context and
prevent a catastrophic failure.

Emergent Arm Use

We observe emergent arm swing behaviors during walking, as shown in Figure 6.7.
Note that we do not have explicit reference trajectories to guide these motions.
Instead, this behavior emerges as a result of reinforcement learning in the training
environments. Moreover, the swinging arm is coordinated with the legs, which is
similar to the walking pattern of humans. Specifically, when the left leg is lifting up,
the right arm swings forward. As pointed in [213,214], arm swing helps maintain the
stability of human locomotion and minimize energy consumption, which supports

6.5. EXPERIMENTS 85

-0.50

0.00

0.50

po
sit

io
n

(ra
d)

-5.00

0.00

5.00

ve
lo

cit
y

(ra
d/

s)

0 1000 2000 3000 4000 5000
time (ms)

-200

0

200

to
rq

ue
 (N

m
)

left knee
right knee

Figure 6.6: Adaptation, motor malfunction. We simulate a sudden malfunction of the
left knee motor by decreasing its PD gains by 50%. The figure shows the changes in the
position, velocity, and torque of both the left and right knee motors, with the vertical
dashed line indicating the moment of the simulated malfunction. Despite the critical role
of knee motors in the robot’s balance, our approach is able to dynamically adjust and
stabilize, demonstrating its ability to adapt in-context.

our learned locomotion behavior from a biomechanics perspective.

6.5.3 Dirty Laundry
In our evaluations on real hardware, our approach shows promising results in

terms of adaptability and robustness to different terrains and external disturbances.
However, it still has some limitations that need to be addressed in future work.

One limitation is that the policy is not perfectly symmetrical, as the motors on
two sides do not produce identical trajectories. This results in a slight asymmetry
in the robot’s movement, with the controller being better at lateral movements to
the left compared to the right. Additionally, our policy has errors in tracking the
commanded velocity. We also notice that here is a minor difference in trajectories
between two consecutive time cycles. Despite these limitations, our approach has
shown potential in adapting to different terrains and handling external disturbances
in real-world scenarios.

Another limitation is that under excessive external disturbances, for example, a
very strong pull of a cable in our experiments, can cause the robot to fall. Please see
the supplementary materials for video examples of failure cases.

6.6. CONCLUSION 86

Figure 6.7: Emergent arm swing. We find that our Transformer-based controller leads to
emergent human-like arm swing behaviors in coordination with leg movements.

-1.00

-0.75

-0.50

-0.25

0.00

0.25

po
sit

io
n

(ra
d)

0 500 1000 1500 2000 2500 3000 3500 4000
time (ms)

-6.00

-4.00

-2.00

0.00

2.00

4.00

ve
lo

cit
y

(ra
d/

s)

left knee
right shoulder

Figure 6.8: Arm swing analysis. The learned humanoid locomotion in our experiments
exhibits human-like arm swing behaviors in coordination with leg movements, i.e., a
contralateral relationship between the arms and the legs.

Finally, the Isaac Gym simulator does not support accurate simulation of under-
actuated systems. In this study, we employed approximation methods to represent
the four-bar linkage structure. We believe that our framework will benefit from
improving the simulator in the future.

6.6 Conclusion
We present a sim-to-real learning-based approach for real-world humanoid loco-

motion. Our controller is a causal Transformer trained by autoregressive prediction of
future actions from the history of observations and actions. Our approach is trained
with reinforcement learning in simulation and deployed zero-shot. We evaluate our
model in high-fidelity simulation and successfully deploy it to a real robot as well.

87

Chapter 7

Summary and Future Directions

This thesis has made strides towards learning scalable representations for com-
puter vision and robotics, with the ultimate goal of developing general AI systems.
Nevertheless, there is still much work to be done.

In Chapters 2 and 3, we investigated the optimizability of vision transformers
and an inductive-bias-free self-supervised learning objective. However, vision models
have not yet been scaled to the same level as large language models (LLMs), which
have demonstrated emergent behaviors. As research progresses, there is a need to
explore how to effectively scale these models to further improve their performance.

In Chapters 4 and 5, we showcased the power of learning scalable visual rep-
resentations for motor control and robotics through masked visual pre-training.
This pre-training does not include semantics, i.e., languages, which are essential for
human-robot interaction as humans rely on language instructions to communicate
with robots. Our tasks involved only a single object, and do not require the robot to
learn feedback control, or to learn multi-step planning. Overcoming these limitations
is essential as we move toward developing, benchmarking, and widely deploying
pre-trained models for real-world robotic applications.

Moreover, integrating vision into our humanoid locomotion models (Chapter 6)
can significantly benefit the overall system. By incorporating visual inputs, the
humanoid can better perceive and understand its environment, allowing for more
accurate locomotion and decision-making. This integration is essential for deploying
robots in real-world scenarios, where they need to navigate complex and dynamic
environments.

In summary, by continuing to explore and refine the principles and techniques
presented in this work, we can move ever closer to the development of truly general
AI systems that can effectively tackle a wide array of complex, real-world challenges.

88

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in NeurIPS, 2012. 1, 5, 52

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in CVPR, 2009. 1, 4, 5, 10, 26, 31,
39, 40, 41, 44, 52, 53, 54

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification,” in ICCV, 2015. 1

[4] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and
W. Brendel, “Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness,” in ICLR, 2019. 1, 30, 35

[5] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenenbaum,
and B. Katz, “Objectnet: A large-scale bias-controlled dataset for pushing the
limits of object recognition models,” in NeurIPS, 2019. 1, 26, 31

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are
few-shot learners,” NeurIPS, 2020. 1, 38, 52, 69, 70, 72

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017. 1,
3, 5, 7, 52, 72

[8] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving lan-
guage understanding by generative pre-training,” 2018. 1, 38, 52, 59, 70,
72

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL, 2019.
1, 3, 38, 52, 70, 72

BIBLIOGRAPHY 89

[10] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language
models,” arXiv:2001.08361, 2020. 1

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image
is worth 16x16 words: Transformers for image recognition at scale,” in ICLR,
2021. 2, 3, 5, 6, 7, 8, 9, 17, 22, 23, 38, 41, 44, 52, 53, 55, 59, 70, 72

[12] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models
from natural language supervision,” in ICML, 2021. 2, 39, 46, 54, 64

[13] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, 1989. 3, 5

[14] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through attention,”
in ICML, 2021. 3, 6, 7, 9, 14, 22, 23, 44, 57

[15] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in ICLR,
2019. 3, 6, 9

[16] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou, “Going
deeper with image transformers,” arXiv:2103.17239, 2021. 3, 6, 9, 18

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016. 3, 5, 8, 15, 32, 44, 55

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in ICLR, 2015. 3, 5, 7

[19] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional
neural networks,” ICML, 2019. 3, 15

[20] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollár, “On network
design spaces for visual recognition,” in ICCV, 2019. 3, 10, 13

[21] S. d’Ascoli, H. Touvron, M. Leavitt, A. Morcos, G. Biroli, and L. Sagun,
“ConViT: Improving vision transformers with soft convolutional inductive
biases,” in ICML, 2021. 5, 6

BIBLIOGRAPHY 90

[22] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
cybernetics, vol. 36, no. 4, pp. 193–202, 1980. 5

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in CVPR,
2015. 5

[24] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual trans-
formations for deep neural networks,” in CVPR, 2017. 5

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in ICML, 2015. 5, 8

[26] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: Training
ImageNet in 1 hour,” arXiv:1706.02677, 2017. 5, 13, 22, 44, 52, 53, 55

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in NeurIPS, 2015. 5

[28] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in ICCV,
2017. 5, 36, 38

[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in CVPR, 2015. 5

[30] J.-B. Cordonnier, A. Loukas, and M. Jaggi, “On the relationship between
self-attention and convolutional layers,” ICLR, 2020. 5

[31] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in
CVPR, 2018. 5

[32] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denois-
ing,” in CVPR, 2005. 5

[33] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J. Shlens,
“Stand-alone self-attention in vision models,” NeurIPS, 2019. 5

[34] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image recognition,”
in CVPR, 2020. 6

[35] X. Chen, S. Xie, and K. He, “An empirical study of training self-supervised
vision transformers,” in ICCV, 2021. 6, 46

BIBLIOGRAPHY 91

[36] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, and
M. Douze, “LeViT: a vision transformer in ConvNet’s clothing for faster
inference,” in ICCV, 2021. 6, 9

[37] H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and C. Feichtenhofer,
“Multiscale vision transformers,” in ICCV, 2021. 6

[38] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and
S. Yan, “Tokens-to-token ViT: Training vision transformers from scratch on
ImageNet,” in ICCV, 2021. 6

[39] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, “Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions,” in ICCV, 2021. 6

[40] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” in ICCV,
2021. 6

[41] Z. Chen, L. Xie, J. Niu, X. Liu, L. Wei, and Q. Tian, “Visformer: The
vision-friendly transformer,” in ICCV, 2021. 6

[42] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang, “CvT:
Introducing convolutions to vision transformers,” in ICCV, 2021. 6

[43] K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, and W. Wu, “Incorporating convolu-
tion designs into visual transformers,” in ICCV, 2021. 6

[44] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao, “Learning
deep transformer models for machine translation,” in ACL, 2019. 7

[45] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in ICML, 2010. 8

[46] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Big Transfer (BiT): General visual representation learning,” in
ECCV, 2020. 8

[47] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data
augmentation,” in AAAI, 2020. 9

[48] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
“Generative pretraining from pixels,” in ICML, 2020. 9, 49

BIBLIOGRAPHY 92

[49] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing
network design spaces,” in CVPR, 2020. 10, 20

[50] P. Dollár, M. Singh, and R. Girshick, “Fast and accurate model scaling,” in
CVPR, 2021. 10, 14, 15, 16, 20, 21, 23

[51] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian, M. Yu,
P. Vajda, et al., “FBNetV3: Joint architecture-recipe search using neural
acquisition function,” in CVPR, 2021. 14

[52] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment:
Learning augmentation policies from data,” in CVPR, 2019. 14

[53] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond
empirical risk minimization,” in ICLR, 2018. 14

[54] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix: Regular-
ization strategy to train strong classifiers with localizable features,” in CVPR,
2019. 14

[55] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in CVPR, 2016. 14

[56] M. Berman, H. Jégou, A. Vedaldi, I. Kokkinos, and M. Douze, “MultiGrain: a
unified image embedding for classes and instances,” arXiv:1902.05509, 2019.
14, 24

[57] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and D. Soudry,
“Augment your batch: better training with larger batches,” arXiv:1901.09335,
2019. 14, 24

[58] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster training,” in
ICML, 2021. 23

[59] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor, “Imagenet-21k
pretraining for the masses,” in NeurIPS, 2021. 23

[60] G. A. Miller, “Wordnet: a lexical database for english,” Communications of
the ACM, 1995. 23

[61] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation
learning by context prediction,” in ICCV, 2015. 25, 36, 49

BIBLIOGRAPHY 93

[62] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by
solving jigsaw puzzles,” in ECCV, 2016. 25, 36, 49

[63] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in ECCV,
2016. 25, 36, 49

[64] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning representations for
automatic colorization,” in ECCV, 2016. 25

[65] R. Zhang, P. Isola, and A. A. Efros, “Split-brain autoencoders: Unsupervised
learning by cross-channel prediction,” in CVPR, 2017. 25

[66] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning
by predicting image rotations,” in ICLR, 2018. 25, 36, 49

[67] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via
non-parametric instance discrimination,” in CVPR, 2018. 25, 37, 49

[68] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,”
arXiv:1906.05849, 2019. 25, 31, 37

[69] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in CVPR, 2020. 25, 26, 30, 32,
37, 49

[70] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations,” in ICML, 2020. 25, 27, 30, 37,
49

[71] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd
birds-200-2011 dataset,” 2011. 26, 31

[72] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam,
P. Perona, and S. Belongie, “The inaturalist species classification and detection
dataset,” in CVPR, 2018. 26, 31

[73] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large
number of classes,” in ICVGIP, 2008. 26, 31

[74] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to
common corruptions and perturbations,” ICLR, 2019. 26, 31

[75] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum
contrastive learning,” arXiv:2003.04297, 2020. 26, 30, 31

BIBLIOGRAPHY 94

[76] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” arXiv:1807.03748, 2018. 27, 37, 39, 49, 50

[77] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolu-
tional neural networks,” in CVPR, 2016. 30

[78] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image
boundaries using local brightness, color, and texture cues,” TPAMI, 2004. 36

[79] A. Frome, Y. Singer, and J. Malik, “Image retrieval and classification using
local distance functions,” in NeurIPS, 2007. 36

[80] A. Frome, Y. Singer, F. Sha, and J. Malik, “Learning globally-consistent local
distance functions for shape-based image retrieval and classification,” in ICCV,
2007. 36

[81] T. Malisiewicz and A. A. Efros, “Recognition by association via learning
per-exemplar distances,” in CVPR, 2008. 36

[82] A. Rabinovich, T. Lange, J. Buhmann, and S. Belongie, “Model order selection
and cue combination for image segmentation,” in CVPR, 2006. 36

[83] X. Wang and A. Gupta, “Unsupervised learning of visual representations using
videos,” in ICCV, 2015. 36, 49

[84] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context
encoders: Feature learning by inpainting,” in CVPR, 2016. 36, 49

[85] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba, “Ambient
sound provides supervision for visual learning,” in ECCV, 2016. 36

[86] I. Kokkinos, “Ubernet: Training a universal convolutional neural network for
low-, mid-, and high-level vision using diverse datasets and limited memory,”
in CVPR, 2017. 36

[87] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, “Multinet:
Real-time joint semantic reasoning for autonomous driving,” in Intelligent
Vehicles Symposium, 2018. 36

[88] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” in
ICCV, 2017. 36, 37

[89] X. Wang, K. He, and A. Gupta, “Transitive invariance for self-supervised visual
representation learning,” in ICCV, 2017. 36

BIBLIOGRAPHY 95

[90] L. Pinto and A. Gupta, “Learning to push by grasping: Using multiple tasks
for effective learning,” in ICRA, 2017. 36

[91] A. Piergiovanni, A. Angelova, and M. S. Ryoo, “Evolving losses for unsupervised
video representation learning,” in CVPR, 2020. 36

[92] H. Alwassel, D. Mahajan, L. Torresani, B. Ghanem, and D. Tran, “Self-
supervised learning by cross-modal audio-video clustering,” in NeurIPS, 2020.
36

[93] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks for
multi-task learning,” in CVPR, 2016. 37

[94] I. Misra and L. van der Maaten, “Self-supervised learning of pretext-invariant
representations,” in CVPR, 2020. 37

[95] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in CVPR, 2014. 38, 52

[96] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” 2019. 38

[97] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio.,” SSW, 2016. 38, 52

[98] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” JMLR, 2016. 38, 54

[99] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver,
and K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary
tasks,” in ICLR, 2017. 39, 50

[100] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus, “Im-
proving sample efficiency in model-free reinforcement learning from images,”
arXiv:1910.01741, 2019. 39, 46, 50

[101] A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive unsupervised
representations for reinforcement learning,” in ICML, 2020. 39, 46, 50

[102] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders
are scalable vision learners,” in CVPR, 2022. 39, 40, 44, 49, 50, 52, 55, 57, 61

BIBLIOGRAPHY 96

[103] T. Xiao, X. Wang, A. A. Efros, and T. Darrell, “What should not be contrastive
in contrastive learning,” in ICLR, 2021. 39, 49, 55

[104] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering visual continuous
control: Improved data-augmented reinforcement learning,” in ICLR, 2022. 39,
46

[105] D. Shan, J. Geng, M. Shu, and D. F. Fouhey, “Understanding human hands in
contact at internet scale,” in CVPR, 2020. 40, 41, 44, 52, 53, 54

[106] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, et al., “Scaling egocentric vision:
The epic-kitchens dataset,” in ECCV, 2018. 40, 41, 44, 52

[107] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, “The epic-kitchens
dataset: Collection, challenges and baselines,” TPAMI, 2021. 40, 41, 44, 53, 54

[108] R. Goyal, S. Ebrahimi Kahou, V. Michalski, J. Materzynska, S. Westphal,
H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, et al., “The"
something something" video database for learning and evaluating visual com-
mon sense,” in ICCV, 2017. 41

[109] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv:1707.06347, 2017. 42, 79

[110] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor,
J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning dexterous in-hand
manipulation,” IJRR, 2020. 42, 54, 68

[111] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak,
J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solving
rubik’s cube with a robot hand,” arXiv:1910.07113, 2019. 42, 68, 70

[112] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv:1509.02971, 2015. 42, 46

[113] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,”
arXiv:1801.00690, 2018. 42, 46

BIBLIOGRAPHY 97

[114] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot
learning benchmark & learning environment,” RA-L, 2020. 42

[115] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín, “robosuite: A modular
simulation framework and benchmark for robot learning,” arXiv:2009.12293,
2020. 42

[116] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement
learning,” in CoRL, 2020. 42

[117] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym: High perfor-
mance gpu-based physics simulation for robot learning,” in NeurIPS, 2021. 42,
44, 57, 74

[118] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in IROS, 2012. 42

[119] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes
using massively parallel deep reinforcement learning,” in CoRL, 2021. 42, 74

[120] T. Xiao, P. Dollar, M. Singh, E. Mintun, T. Darrell, and R. Girshick, “Early
convolutions help transformers see better,” in NeurIPS, 2021. 44, 57

[121] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing
neural networks,” in NeurIPS, 2017. 44, 57

[122] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare,
“Deep reinforcement learning at the edge of the statistical precipice,” NeurIPS,
2021. 44

[123] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv:2204.06125, 2022.
46

[124] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
ICML, 2018. 46

[125] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar,
“The ycb object and model set: Towards common benchmarks for manipulation
research,” in ICAR, 2015. 48

BIBLIOGRAPHY 98

[126] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning
an invariant mapping,” in CVPR, 2006. 49

[127] O. Henaff, “Data-efficient image recognition with contrastive predictive coding,”
in ICML, 2020. 49

[128] A. Jabri, A. Owens, and A. Efros, “Space-time correspondence as a contrastive
random walk,” NeurIPS, 2020. 49

[129] H. Bao, L. Dong, and F. Wei, “Beit: Bert pre-training of image transformers,”
in ICLR, 2022. 49

[130] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex
environments,” in ICLR, 2017. 50

[131] E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell, “Loss is its own
reward: Self-supervision for reinforcement learning,” in ICLR, 2017. 50

[132] G. Lample and D. S. Chaplot, “Playing fps games with deep reinforcement
learning,” in AAAI, 2017. 50

[133] D. Ha and J. Schmidhuber, “World models,” arXiv:1803.10122, 2018. 50

[134] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours,” in ICRA, 2016. 50, 54

[135] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to poke
by poking: Experiential learning of intuitive physics,” NeurIPS, 2016. 50, 54

[136] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and
G. Brain, “Time-contrastive networks: Self-supervised learning from video,” in
ICRA, 2018. 50, 54

[137] P. R. Florence, L. Manuelli, and R. Tedrake, “Dense object nets: Learning
dense visual object descriptors by and for robotic manipulation,” in CoRL,
2018. 50

[138] A. Zhan, P. Zhao, L. Pinto, P. Abbeel, and M. Laskin, “A framework for
efficient robotic manipulation,” arXiv:2012.07975, 2020. 50, 54

[139] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas, “Reinforce-
ment learning with augmented data,” NeurIPS, 2020. 50

BIBLIOGRAPHY 99

[140] J. Pari, N. Muhammad, S. P. Arunachalam, L. Pinto, et al., “The surprising
effectiveness of representation learning for visual imitation,” in RSS, 2022. 50,
54

[141] A. Sax, B. Emi, A. R. Zamir, L. Guibas, S. Savarese, and J. Malik, “Mid-level
visual representations improve generalization and sample efficiency for learning
visuomotor policies,” arXiv:1812.11971, 2018. 50

[142] B. Chen, A. Sax, G. Lewis, I. Armeni, S. Savarese, A. Zamir, J. Malik, and
L. Pinto, “Robust policies via mid-level visual representations: An experimental
study in manipulation and navigation,” in CoRL, 2020. 50

[143] B. Zhou, P. Krähenbühl, and V. Koltun, “Does computer vision matter for
action?,” Science Robotics, 2019. 50

[144] L. Yen-Chen, A. Zeng, S. Song, P. Isola, and T.-Y. Lin, “Learning to see before
learning to act: Visual pre-training for manipulation,” in ICRA, 2020. 51, 54

[145] R. Shah and V. Kumar, “Rrl: Resnet as representation for reinforcement
learning,” arXiv:2107.03380, 2021. 51

[146] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever,
“Jukebox: A generative model for music,” arXiv:2005.00341, 2020. 52

[147] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik, “Masked visual pre-training
for motor control,” arXiv:2203.06173, 2022. 52, 54, 55, 56, 57, 61, 62

[148] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,
J. Hamburger, H. Jiang, M. Liu, X. Liu, et al., “Ego4d: Around the world in
3,000 hours of egocentric video,” in CVPR, 2022. 52, 53, 54, 62

[149] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end visuomotor
control from simulation to real world for a multi-stage task,” CoRL, 2017. 54

[150] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,
E. Holly, M. Kalakrishnan, V. Vanhoucke, et al., “Scalable deep reinforcement
learning for vision-based robotic manipulation,” in CoRL, 2018. 54

[151] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic grasp
planning using shape primitives,” in ICRA, 2003. 54

[152] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in ICRA, 2000. 54

BIBLIOGRAPHY 100

[153] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning
synergies between pushing and grasping with self-supervised deep reinforcement
learning,” in IROS, 2018. 54

[154] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Arm-
strong, I. Krasin, D. Duong, V. Sindhwani, et al., “Transporter networks:
Rearranging the visual world for robotic manipulation,” CoRL, 2020. 54

[155] S. James and A. J. Davison, “Q-attention: Enabling Efficient Learning for
Vision-based Robotic Manipulation,” RA-L, 2022. 54

[156] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where pathways
for robotic manipulation,” in CoRL, 2021. 54

[157] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m: A universal
visual representation for robot manipulation,” CoRL, 2022. 54, 62

[158] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta, “The curious robot:
Learning visual representations via physical interactions,” in ECCV, 2016. 54

[159] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data
collection,” IJRR, 2018. 54

[160] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep
spatial autoencoders for visuomotor learning,” in ICRA, 2016. 54

[161] P. Sermanet, K. Xu, and S. Levine, “Unsupervised perceptual rewards for
imitation learning,” in RSS, 2017. 54

[162] P. Florence, L. Manuelli, and R. Tedrake, “Self-supervised correspondence in
visuomotor policy learning,” RA-L, 2019. 54

[163] Y. Li, S. Xie, X. Chen, P. Dollar, K. He, and R. Girshick, “Benchmarking
detection transfer learning with vision transformers,” arXiv:2111.11429, 2021.
55, 70

[164] Z. Tong, Y. Song, J. Wang, and L. Wang, “Videomae: Masked autoencoders
are data-efficient learners for self-supervised video pre-training,” in NeurIPS,
2022. 55

[165] C. Feichtenhofer, H. Fan, Y. Li, and K. He, “Masked autoencoders as spa-
tiotemporal learners,” in NeurIPS, 2022. 55

BIBLIOGRAPHY 101

[166] R. Bachmann, D. Mizrahi, A. Atanov, and A. Zamir, “Multimae: Multi-modal
multi-task masked autoencoders,” in ECCV, 2022. 55

[167] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling vision transformers,”
in CVPR, 2022. 55

[168] S. James, K. Wada, T. Laidlow, and A. J. Davison, “Coarse-to-Fine Q-attention:
Efficient Learning for Visual Robotic Manipulation via Discretisation,” CVPR,
2022. 65

[169] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous imitation
made easy: A learning-based framework for efficient dexterous manipulation,”
in ICRA, 2023. 66

[170] M. H. Raibert, Legged robots that balance. MIT press, 1986. 68, 70, 77

[171] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion plan-
ning, estimation, and control design for the atlas humanoid robot,” Autonomous
robots, 2016. 68, 70

[172] S. Kuindersma, “Recent progress on atlas, the world’s most dynamic humanoid
robot,” 2020. 68, 70

[173] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and
M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science
Robotics, 2019. 68, 70

[174] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics, 2020. 68,
70, 73

[175] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation
for legged robots,” RSS, 2021. 68, 70, 73

[176] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback control
for cassie with deep reinforcement learning,” in IROS, 2018. 68, 70

[177] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all
common bipedal gaits via periodic reward composition,” in ICRA, 2021. 68, 70

[178] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal stair
traversal via sim-to-real reinforcement learning,” RSS, 2021. 68, 70

BIBLIOGRAPHY 102

[179] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Reinforcement learning-
based cascade motion policy design for robust 3d bipedal locomotion,” IEEE
Access, 2022. 68, 70

[180] L. Krishna, G. A. Castillo, U. A. Mishra, A. Hereid, and S. Kolathaya, “Linear
policies are sufficient to realize robust bipedal walking on challenging terrains,”
RA-L, 2022. 68, 70, 74

[181] I. Kato, “Development of wabot 1,” Biomechanism, 1973. 70

[182] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of honda
humanoid robot,” in ICRA, 1998. 70

[183] G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings,
C. Lee, R. Playter, and M. Raibert, “Petman: A humanoid robot for testing
chemical protective clothing,” Journal of the Robotics Society of Japan, 2012.
70

[184] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier,
J. Mirabel, A. Del Prete, P. Souères, N. Mansard, F. Lamiraux, et al., “Talos:
A new humanoid research platform targeted for industrial applications,” in
Humanoids, 2017. 70

[185] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit humanoid robot:
Design, motion planning, and control for acrobatic behaviors,” in Humanoids,
2021. 70

[186] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d linear
inverted pendulum mode: A simple modeling for a biped walking pattern
generation,” in IROS, 2001. 70

[187] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dynamics
of planar biped walkers,” IEEE transactions on automatic control, 2003. 70

[188] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based
on passive-dynamic walkers,” Science, 2005. 70

[189] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex
behaviors through online trajectory optimization,” in IROS, 2012. 70

[190] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive control,” in

BIBLIOGRAPHY 103

IEEE/RSJ international conference on intelligent robots and systems (IROS),
2018. 70

[191] H. Benbrahim and J. A. Franklin, “Biped dynamic walking using reinforcement
learning,” Robotics and Autonomous Systems, 1997. 70

[192] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot control for
generalization with multiplicity of behavior,” CoRL, 2022. 70

[193] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik, “Adapting
rapid motor adaptation for bipedal robots,” in IROS, 2022. 70

[194] R. Antonova, S. Cruciani, C. Smith, and D. Kragic, “Reinforcement learning
for pivoting task,” arXiv:1703.00472, 2017. 70

[195] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single
real image,” in RSS, 2017. 70

[196] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
randomization for transferring deep neural networks from simulation to the
real world,” in IROS, 2017. 70

[197] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in ICRA, 2018. 70

[198] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” in ECCV, 2020. 70, 72

[199] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell, “Real-
world robot learning with masked visual pre-training,” CoRL, 2022. 70

[200] W. Yuan, C. Paxton, K. Desingh, and D. Fox, “Sornet: Spatial object-centric
representations for sequential manipulation,” in CoRL, 2022. 70

[201] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning vision-
guided quadrupedal locomotion end-to-end with cross-modal transformers,”
arXiv:2107.03996, 2021. 70

[202] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task trans-
former for robotic manipulation,” arXiv:2209.05451, 2022. 70

[203] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1: Robotics transformer
for real-world control at scale,” arXiv:2212.06817, 2022. 70

BIBLIOGRAPHY 104

[204] L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-recurrence sequence-to-
sequence model for speech recognition,” in ICASSP, 2018. 72

[205] A. K. Han, A. Hajj-Ahmad, and M. R. Cutkosky, “Bimanual handling of
deformable objects with hybrid adhesion,” RA-L, 2022. 74

[206] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Robust feedback motion
policy design using reinforcement learning on a 3d digit bipedal robot,” in
IROS, 2021. 74

[207] Y. Gao, Y. Gong, V. Paredes, A. Hereid, and Y. Gu, “Time-varying alip model
and robust foot-placement control for underactuated bipedal robot walking on
a swaying rigid surface,” arXiv:2210.13371, 2022. 74

[208] Y. Gao, C. Yuan, and Y. Gu, “Invariant filtering for legged humanoid locomo-
tion on a dynamic rigid surface,” IEEE/ASME Transactions on Mechatronics,
2022. 74

[209] A. Adu-Bredu, N. Devraj, and O. C. Jenkins, “Optimal constrained task
planning as mixed integer programming,” in IROS, 2022. 74

[210] K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and I. Poulakakis, “A sequential
mpc approach to reactive planning for bipedal robots using safe corridors in
highly cluttered environments,” RA-L, 2022. 74

[211] A. Shamsah, J. Warnke, Z. Gu, and Y. Zhao, “Integrated task and motion
planning for safe legged navigation in partially observable environments,”
arXiv:2110.12097, 2021. 74

[212] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, “Asym-
metric actor critic for image-based robot learning,” in RSS, 2017. 79

[213] J. Park, “Synthesis of natural arm swing motion in human bipedal walking,”
Journal of biomechanics, 2008. 84

[214] S. H. Collins, P. G. Adamczyk, and A. D. Kuo, “Dynamic arm swinging in
human walking,” Proceedings of the Royal Society B: Biological Sciences, 2009.
84

