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Abstract

Attenuation correction (AC) is important for an accurate interpretation and quantitative analysis of 

SPECT myocardial perfusion imaging. Dedicated cardiac SPECT systems have invaluable efficacy 

in the evaluation and risk stratification of patients with known or suspected cardiovascular disease. 

However, most dedicated cardiac SPECT systems are standalone, not combined with a 

transmission imaging capability such as computed tomography (CT) for generating attenuation 

maps for AC. To address this problem, we propose to apply a conditional generative adversarial 

network (cGAN) for generating attenuation-corrected SPECT images (SPECTGAN) directly from 

non-corrected SPECT images (SPECTNC) in image domain as a one-step process without 

requiring additional intermediate step. The proposed network was trained and tested for 100 

cardiac SPECT/CT data from a GE Discovery NM 570c SPECT/CT, collected retrospectively at 

Yale New Haven Hospital.The generated images were evaluated quantitatively through the 

normalized root mean square error (NRMSE), peak signal to noise ratio (PSNR), and structural 

similarity index (SSIM) and statistically through joint histogram and error maps. In comparison to 

the reference CT-based correction (SPECTCTAC), NRMSEs were 0.2258±0.0777 and 

0.1410±0.0768 (37.5% reduction of errors); PSNRs 31.7712±2.9965 and 36.3823±3.7424 (14.5% 
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improvement in signal to noise ratio); SSIMs 0.9877±0.0075 and 0.9949±0.0043 (0.7% 

improvement in structural similarity) for SPECTNC and SPECTGAN, respectively. This work 

demonstrates that the conditional adversarial training can achieve accurate CT-less attenuation 

correction for SPECT MPI, that is quantitatively comparable to CTAC. Standalone dedicated 

cardiac SPECT scanners can benefit from the proposed GAN to reduce attenuation artifacts 

efficiently.

Keywords

SPECT; myocardial perfusion imaging (MPI); attenuation correction; deep learning; generative 
adversarial network

1. INTRODUCTION

Single-photon emission computed tomography (SPECT) is a well-validated noninvasive 

imaging technique which enables studying the function of underlying organs or tissues after 

the injection of radioactive tracers. SPECT gamma camera by capturing the emitted gamma-

ray photons of the injected radioactive tracer can clearly reflect the distribution of the tracer 

throughout patient’s whole-body. SPECT imaging has a wide spectrum of clinical 

applications. One of the most common SPECT clinical applications is myocardial perfusion 

imaging (MPI) for clinical diagnosis and risk stratification of cardiovascular disease.1

Photon attenuation from photoelectric absorption and Compton scattering are the major 

factors in reducing quantitative accuracy and quality of SPECT images. Diaphragm is the 

primary reason for attenuation artifacts in MPIs which results in perfusion defects in inferior 

wall. Breast attenuation in women can also produces artifacts along the anterior wall of left 

ventricle (LV). Several studies have demonstrated that attenuation correction can improve 

both the sensitivity and specificity for detection of coronary artery disease (CAD) and 

generate a relative uniform tracer distribution for patients with a low likelihood of CAD.2–4 

Moreover, attenuation corrected images can help physicians to have a more accurate 

diagnosis which in result can reduce the unnecessary invasive angiography procedures.
5,6Therefore, correcting the tissue-dependent attenuation is essential for accurate quantitative 

analysis. Without accurate attenuation correction, severe artifacts may occur, which may 

prevent accurate clinical interpretation.

Integrated SPEC/CT systems were first introduced by Lang and Hasagawa et al.7 The 

system by performing additional anatomical imaging on patients can fuse physiologic and 

anatomic images in a registered format which facilitates visualization of anatomic 

localization of tracer distribution in the body. Furthermore, integrated SPECT/CT systems 

facilitated attenuation correction using a CT for generating attenuation maps (μ-map), that is 

more efficient and practical than using radionuclide transmission sources only for 

attenuation correction. However, these integrated systems are still more expensive than 

standalone SPECT systems, that currently occupy the majority of cardiac SPECT market 

share,8 and increase the patient’s radiation dose due to performing an extra CT scan only for 

AC in SPECT. Besides, respiratory and cardiac motion may cause incorrect attenuation 

correction artifacts due to a mismatch between SPECT and CT data. Therefore, it is 
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important to be able to correct attenuation in standalone SPECT scanners with no extra 

transmission source or CT available and saving unnecessary extra CT radiation dose in 

integrated systems.

To address the problem of μ-maps estimation from only SPECT emission data, different 

algorithms were proposed which can be categorized into two categories: (1) segmentation-

based algorithm, and (2) model-based algorithm. In segmentation-based algorithm, 

estimating μ-map without transmission imaging like a CT can be achieved by utilizing 

photopeak and scatter data information. In this approach, μ-maps are estimated by assigning 

predefined attenuation coefficient to different manually segmented regions in SPECT 

images.9–11 The main assumption here is that tissues have uniform attenuation coefficient 

which is not a correct assumption and cannot be extended to all the patients. Moreover, 

manual segmentation of different regions makes the segmentation-based approaches 

operator-dependent, time consuming, and not suitable for clinical workflow. The Model 

based algorithms also estimate the attenuation coefficients directly from SPECT emission 

data.12–14 Model-based approaches do not incorporate the scattered photon in their models, 

and this causes an inaccurate estimation. In addition, these methods suffer from 

computational time and can only be applied to slices of the images and not the whole 3D 

structure.

In recent years, deep learning has demonstrated tremendous success in different computer 

vision tasks. Duo to deep learning success and its proven potential in computer vision, there 

has been an increased interest recently in investigating how deep learning algorithms can be 

applied to medical images and provide insightful information to physicians in their diagnosis 

and treatment procedure. Attenuation correction is also among one of the problems which 

have been studied using deep learning for both SPECT and PET data.15–18 Convolutional 

Neural Networks (CNNs) can be used to generate synthetic CT images from magnetic 

resonance imaging (MRI) in order to correct attenuation for PET in PET/MRI.18,19 

However, these methods still require anatomical images and our focus in this study is to 

develop an end-to-end approach for AC with no transmission source available.

In this study, we developed a 3D conditional generative adversarial network (cGAN) to 

correct the attenuation in SPECT MPI images directly from non-corrected SPECT images. 

We demonstrated the feasibility of attenuation correction using a cGAN to correct 

attenuation in image domain using only non-corrected SPECT images without using CT data 

or generating pseudo-CT data as an intermediate step. The proposed approach is an end-to-

end process that can model non-linear mapping directly from non-corrected to attenuation-

corrected images, whereas conventional methods rely on CT values that needs to be 

generated first and then be used for attenuation correction.

2. MATERIALS AND METHODS

2.1 Data Acquisition

In an IRB-approved study, 100 patients were scanned on GE Discovery NM/CT 570c 

SPECT/CT scanner (GE D570c) at Yale New Haven Hospital for stress-only myocardial 

perfusion SPECT studies using 99mTc-tetrofosmin. The datasets consist of 42 female 
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subjects and 58 male subjects. Other characteristics of subjects are not available duo to data 

anonymization. CT data was acquired for each subject with the parameters of 120 kVp, 50 

mA, and rotation time of 0.4 second. Corresponding attenuation corrected images for each 

non-corrected image were generated by rigid alignment of CT and SPECTNC using 

Attenuation Correction Quality Control package (GE ACQC). Both SPECTNC and 

SPECTCTAC were reconstructed using one-step-late algorithm with Green prior. 

SPECTCTAC images were reconstructed with 60 iterations and post-filtered by a Butterworth 

filter with a cutoff of 0.37 cm-1 and an order of 7; and SPECTNC images were reconstructed 

with 30 iterations and post-filtered by a Butterworth filter with a cutoff of 0.4 cm-1 and an 

order of 10. All reconstruction parameters are clinically used at Yale New Haven Hospital.

The SPECTCTAC was used as a ground truth to compare the proposed deep learning method 

to the standard CT-based correction approach. The original size of reconstructed images was 

70 × 70 × 50 with an isotropical voxel size of 4 mm. As a preprocessing step, the size of 

reconstructed images was changed to 64 × 64 × 32 to enable upsampling and downsampling 

by removing edges from the images. Voxel values were normalized to a scale of 0 to 1 by the 

maximum value of volumetric images.

2.2 Network Architecture and Training

Generative adversarial network (GAN) is a generative model which was first introduced by 

Ian Goodfellow in 2014.20The framework includes two neural network models, a generator 

(G) and a discriminator (D) which compete with each other in a zero-sum game manner. 

Adversarial way of training led to more stable models compared to non-adversarial training 

and was formulated as a new way of deep convolutional learning method in 2015.21 GANs 

can generate synthetic plausible images with data distribution of a given dataset from the 

latent space. The objective function of the original GAN can be expressed as follows.

argminGmaxD LGAN G, D = Ex ∼ Pdata log D x
+ Ez ∼ Pnoise z log 1 − D G z (1)

Where Pdata is the real data distribution, z is a random input drawn from a specific 

probability distribution (such as Gaussian) z ~ Pnoise(z).

Conditional generative adversarial networks can be used for an image-to-image translation 

task by conditioning a model on source images and learning a map between the source and 

target images which in our case are non-corrected and attenuation corrected images, 

respectively.22

Given the non-attenuation corrected SPECT image x ~ PNC(x), and the corresponding CT-

based attenuation corrected image y ~ PCTAC(y), the objective function of a conditional 

GAN can be formulated as below.
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argminGmaxD LcGAN G, D + λL G = Ex ∼ PNC x , y ∼ PCTAC y logD x, y +
Ex ∼ PNC x log 1 − D x, G x +
λEx ∼ PNC x , y ∼ PCTAC y y − G x (2)

The last term is an additional estimation of error loss which we added to the main objective 

function in order to make sure that the generated images are similar to the real attenuation 

corrected images. In this case the generator uses both the discriminator’s feedback and the 

generator’s loss information to deceive the discriminator while trying to generate real 

looking images. λ is a hyper parameter for tuning the weight between the original objective 

function and the added error loss.

The conditional GAN network architecture in this work was inspired by the Pix2Pix 

network.22 We used the Pix2Pix GAN framework as a baseline and modified the architecture 

explained above for our application. The discriminator in this model is a deep convolutional 

neural network which performs the conditional-image classification task. The generator task 

is to generate real-looking images of the target domain given the source images as its input 

and via adversarial training. The schematic conditional GAN architecture is shown in Fig. 1.

Below we explain the generator and discriminator architecture used in the proposed cGAN 

in more details.

2.2.1 Generator—The modified generator’s architecture has an encoder-decoder 

structure with symmetrical skip connections between different stages adopted from the 

original U-Net model.23 In the U-Net, the input progressively downsample through the 

encoder’s layers and the process is reversed through the layers of the decoder. A U-Net can 

extract important features at different resolutions through its encode-decoder structure. The 

U-Net model was first introduced for segmentation task and later was modified for image 

synthetic task. The original U-Net has a 2D architecture, while in this work 3D architecture 

was used. The 3D generator model takes 3D volume (64 × 64 × 32) as its input and uses 3D 

operations throughout the architecture.

Residual blocks were embedded between the last layer of the encoder and first layer of the 

decoder to keep the important characteristics of the original input images. Each residual 

block is a neural network which consists of two convolution layers along with a 

normalization and rectified linear unit (ReLU) activation function. Combining U-Net 

architecture with residual blocks can facilitate smoother flow of information between the 

input and output of the network. Skip connections can help regain some of the lost gradient 

information by combining hierarchical features. Moreover, it can also provide a better 

model’s convergence and performance in image translation applications.22

The proposed generator’s architecture consists of 4 contracting (encoder) paths and 4 

expansive paths (decoder) with symmetrical skip connections. We used convolution operator 

(Conv) with kernel size of 3, instance normalization (IN), and leaky ReLU (LReLU) as an 
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activation function in each step of the encoder. Same was applied in the decoder except that 

we used ReLU instead of LReLU in the decoder part (Fig. 2).

2.2.2. Discriminator—The discriminator in this model is a deep convolutional neural 

network which performs a conditional-image classification task. The discriminator takes 

either a real AC SPECT image or a synthesized one (generated by the generator) as input 

and determine whether the input to its network is real or fake.

The discriminator in our model consists of 6 convolutional layers with kernel size 3 and with 

strides 2. The first convolution layer produces 16 feature maps, and then this number is 

doubled at each following convolution step. All convolutional layers are followed by 

normalization and Leaky ReLU activation function with slope of 0.2. A filter size of 1 is 

applied to the last convolutional layer to determine whether the input was real or fake (Fig. 

3).

2.2.3. Training with CGAN—Following the same standard adversarial training 

approach in the original GAN,20 the generator and discriminator were trained in an 

alternative manner. The discriminator was trained first and then the generator using the 

Adam optimization with an initial learning rate of 0.0002. The initial learning rate changed 

to 0 after the first 100 epochs. 200 epochs were used for the entire training and setting the 

estimation error weight (λ) to 0.005 results in better evaluation performance. 5-fold cross-

validation method was used for training and testing the proposed approach.

2.2.4 Training with WGAN—Although GAN has been successful in many generative 

tasks, training a GAN model is challenging because stable training requires finding and 

maintaining an equilibrium between the capabilities of the generator and discriminator. The 

Wasserstein GAN24 was proposed to enable more stable and less sensitive training to the 

architecture of a model. Mathematically, Wasserstein (Earth Mover (EM)) distance which 

measure the similarity between two probability distributions is continuous and differentiable 

almost everywhere and this feature makes it to be a much more sensible cost function than 

other commonly used cost functions such as cross-entropy used in training a network.

The problem with using cross-entropy loss function is that the discriminator learns very 

quickly to distinguish between fake and real images and after a while provides no reliable 

gradient information that can help a generator to improve the quality of generated images 

(vanishing gradient problem). One of the reasons that a discriminator in a GAN learns to 

separate real and fake samples perfectly is that both real and generated datasets rest in low 

dimensional manifolds due to restrictions on image characteristics that the model is trained 

on. When a low dimensional manifold (image hyperplanes) is embedded in high 

dimensional space (image dimension), the image hyper-planes hardly overlap and allows the 

discriminator to easily separate the real and fake images. WGAN replaces the discriminator 

model with a critic model which instead of binary classification, scores the realness of a 

given data. The critic function does not have the saturation problem and converges to a linear 

function that provides clean gradients everywhere. Therefore, a new Wasserstein-based 

training model has the capacity to improve the stability of the optimization process.
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2.3 Evaluation metrics

To evaluate the reliability of the proposed method on correcting the attenuation, we 

calculated normalized mean square error (NRMSE), peak signal to noise ratio (PSNR), and 

structural similarity index (SSIM) for non-corrected SPECT (SPECTNC) and cGAN-

corrected SPECT (SPECTGAN), compared to the reference CT-based attenuation corrected 

images (SPECTCTAC). Lower NRMSE and higher SSIM and PSNR indicate better 

similarity. The evaluation measurements are defined as below.

NRMSE = Σi ∈ V I i − Iref i 2

Σi ∈ V Iref i 2 (3)

PSNR = 10 log10
N . maxi ∈ V I i , Iref i

Σi ∈ V I i − Iref i 2 (4)

SSIM = 2μμref + c1 2 + σref + c2
μ2 + μref

2 + c1 σ2 + σref
2 + c2

(5)

where V is image volume. I is either SPECTNC or SPECTDL, and Iref is SPECTCTAC. μ and 

σ denote the mean and variance of the image I. c1 and c2 are variables for stabilizing the 

division with a weak denominator.

For statistical analysis, joint histograms were used to show the statistical distribution of 

voxel-by-voxel correlation with the reference for SPECTNC and SPECTDL, respectively.

3. RESULTS

The results of the quantitative measures using 5-fold cross-validation can be found in Tab. 1. 

The numerical results in Tab. 1 demonstrate that the proposed DL approach improves the 

similarity of SPECTDL to the reference SPECTCTAC by 37.5% for NRMSE and 14.5% for 

PSNR, compared to that of SPECTNC to the reference. The joint histograms in Fig. 4 

demonstrate how the proposed approach can improve the similarity of SPECTNC to the 

reference SPECTCTAC, which is consistent with the results in Tab. 1, by reducing the 

bandwidth of the scattered correlation of SPECTNC with the reference.

For qualitative analysis, SPECTCGAN and SPECTNC images were visually compared to the 

reference SPECTCTAC images using CGAN training. Fig. 5 shows a sample image with the 

minimum NRMSE value (0.06116) in the transverse, coronal, and sagittal view. This case 

has the highest value for both PSNR (42.7727) and SSIM (0.99921). Places where the 

attenuation was improved using the cGAN based approach have been marked by arrows.

The conditional GAN performance depends heavily on the tuning of the parameters to slow 

down the rate at which discriminator learns relative to the generator’s model. Using 

Wasserstein loss can make the training process more stable and less sensitive to the choice of 

hyperparameter configurations. For the results in Tab. 1, we need to tune the parameters in a 
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way to have a balanced model which as a result provides a better performance. As can be 

seen in Tab. 1 conditional GAN using Wasserstein loss has better quantitative results 

compared to the unbalanced cGAN. The results of the Wasserstein cGAN is also slightly 

better than the cGAN itself and there is no need to balance learning capability between the 

generator and the discriminator. Parameters such as loss weight, learning rate, and 

momentum parameters in the chosen optimizer can affect the relative rate of learning and 

need to be tuned. Therefore, the model trained with Wasserstein loss is more stable and has a 

slightly better quantitative results compared to the other models trained with other loss 

functions. However, what we found is that with enough hyperparameter optimization to find 

a balance between the generator and the discriminator, cGAN and WGAN provide 

comparable results.

4. CONCLUSION AND FUTURE DIRECTIONS

SPECT MPI is susceptible to attenuation artifacts; and thus an efficient AC technique is 

desired for improving diagnostic accuracy. Specifically, the technique will benefit patients 

scanned in stand-alone dedicated cardiac SPECT systems. In this work, we proposed a direct 

DL-based AC technique using a cGAN in SPECT MPI. The preliminary results demonstrate 

the feasibility of producing accurate attenuation corrected images directly from non-

corrected data in an end-to-end manner using adversarial training. We further extended the 

proposed model to Wasserstein cGAN and compared the results of WGAN with cGAN from 

the stability point of view. The proposed approach has the potential to promote the clinical 

feasibility of offering a practical means of attenuation correction for dedicated myocardial 

SPECT systems which requires a practical way of attenuation correction without generating 

attenuation maps as an intermediate step. Future work will include testing our algorithms 

using a larger number of clinical datasets for robust training with diverse cases annotated by 

expert human readers as well as extending the proposed cGAN model to a cycleGAN model.
25
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Figure 1. 
Schematic conditional GAN architecture
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Figure 2. 
Top: generator’s architecture. Bottom: residual block’s architecture.
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Figure 3. 
Discriminator’s architecture

Torkaman et al. Page 12

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Joint histogram: (a) SPECTNC versus SPECTCTAC slope (dashed line) = 0.9054, (b) 

SPECTGAN versus SPECTCTAC, slope = 0.9825. To visualize small counts in the joint 

histograms, the counts were log-scaled (i.e., log(counts)).
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Figure 5. 
case 14 with the minimum NEMSE (0.06116). Column 1: CT-based AC. Column 2: Deep 

Learning AC. Column 3: Non-corrected data. Column 4: Error map between DL results and 

CT-based AC. Column 5: Error map between non-corrected data and CT-based AC.
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Table 1.

Voxel-wise analysis. The NRMSE, PSNR, SSIM of SPECTNC and SPECTCGAN, compared to the reference 

SPETCTAC (mean ± SD).

NRMSE PSNR SSIM

SPECTNC 0.2258 ± 0.0777 31.7712 ± 2.9965 0.9877 ± 0.0075

SPECTCGAN 0.1410 ± 0.0768 36.3823 ± 3.7424 0.9949 ± 0.0043

SPECTUnbalCGAN 0.1468 ± 0.0873 36.1304 ± 3.8735. 0.9947 ± 0.0050

SPECTWGAN 0.1355 ± 0.0571 36.4537 ± 3.4182 0.9949 ± 0.0042
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