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Calcium signaling in skeletal muscle development, maintenance 
and regeneration

Michelle K. Tu, Jacqueline B. Levin, Andrew M. Hamilton, and Laura N. Borodinsky
Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern 
California, University of California Davis, Sacramento CA 95817.

Abstract

Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle 

plasticity, inherent in these processes, is also essential for daily life activities. Great advances and 

efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, 

called muscle satellite cells, and the specific signaling mechanisms that activate them for 

recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may 

contribute to devising therapies for muscular injury or disease. Here we review the studies that 

have contributed to our understanding of how calcium signaling regulates skeletal muscle 

development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-

dependent effectors that participate in these processes.
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1. Introduction

Throughout tissue morphogenesis and homeostasis, stem cells are recruited to generate the 

necessary tissue mass, to enable plastic changes in tissue size when challenged by changing 

stimuli, and to replenish damaged or degenerated tissue. Ca2+ is a ubiquitous intracellular 

signal that regulates a myriad of cellular processes. Skeletal muscle formation and plasticity 

presents an excellent model system for the study of the role of Ca2+ signaling due to the fact 

that Ca2+ dynamics are essential for muscle function. While the tight coupling of muscle 

excitation and contraction by Ca2+ dynamics has been well established, comparatively little 

is known about the role of Ca2+ dynamics in muscle formation, growth and regeneration. 

Because all these physiological contexts recruit stem cells, the investigation of muscle stem 

cell Ca2+ physiology becomes crucial for the elucidation of Ca2+ signaling-dependent 

regulation of skeletal muscle dynamics.

Myogenesis occurs during embryonic development through the proliferation and 

differentiation of dedicated progenitors in the somites. These cells initially express the 

transcription factors Pax3 and Pax7, but lose this expression during progressive 

specialization through the expression of a family of myogenic regulatory factors (MRFs), 

which include Myf5, MyoD, myogenin and MRF4 [1, 2]. Skeletal muscle formation 

continues with the differentiation of these specialized progenitors to form muscle fibers. A 

subset of the myogenic progenitors does not proceed through this specialization, retains 

Pax3/Pax7 expression and remains quiescent in the maturing and adult skeletal muscle. 

These muscle-specific stem cells are called muscle satellite cells [2, 3].

The participation of muscle satellite cells in skeletal muscle homeostasis has been a matter 

of debate, although robust evidence supports the role of satellite cells in muscle regeneration 

[4]. Inhibition of the muscle growth inhibitors myostatin and activin A by knocking out their 

receptor Acvr2 from myofibers in mice deficient in muscle satellite cells induces muscle 

hypertrophy, without satellite cell proliferation or an increase in nuclei number in myofibers 

[5]. This suggests that satellite cells may not play an essential role in muscle hypertrophy. In 

contrast, depletion of Pax7-expressing cells from the adult injured muscle blocks muscle 

regeneration [6–9], indicating the indispensable function of muscle satellite cells for muscle 

regeneration. The different roles of skeletal muscle stem cells in muscle development, 

growth and regeneration may originate from distinct physiological profiles of muscle stem 

cells in the different contexts. Identifying conserved and distinct mechanisms among 

myogenesis, muscle homeostasis and regeneration may be relevant to devising effective 

therapies for the injured and dystrophic skeletal muscle.

Here we review the role of Ca2+-mediated activity in myogenesis, skeletal muscle plasticity 

and regeneration.

2. Calcium signaling in skeletal muscle development

Skeletal muscle development progresses through several stages by which muscle progenitor 

cells become mature muscle fibers. Although different species proceed through distinct 

cellular events, they all share a common program consisting of the proliferation of 
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mesodermal stem cells, then the progressive specialization into skeletal muscle progenitors, 

followed by the differentiation of muscle cells and further specification into different muscle 

cell types (Figure 1). This sequence of events finishes with the spatial arrangement of cells 

to form the functional musculature [2, 10–12]. Finally muscle cells undergo two rounds of 

fusion, first into multinucleated nascent myotubes and second into myofibers [13–16].

The role of Ca2+ signaling has been considered in each of these developmental steps and 

clear evidence of the necessity for different aspects of Ca2+ signaling has emerged in a broad 

spectrum of species, including the invertebrates Caenorhabditis elegans and Drosophila 
melanogaster, the lower vertebrates Xenopus laevis and zebrafish and in mammals such as 

mice and humans. The identified molecular mechanisms underlying Ca2+ participation in 

muscle development are responsible for either shaping Ca2+ dynamics or for transducing 

Ca2+ signals into a cellular response. Ca2+ stores are pivotal for eliciting a precise 

spatiotemporal pattern of Ca2+ signal in developing muscle cells. Expression of inositol-

triphosphate receptors (IP3R) and ryanodine receptors (RyR) is developmentally regulated 

in mouse [17] and frog embryos [18], suggesting critical roles at different stages of muscle 

morphogenesis. Indeed, inhibiting Ca2+ transients in Xenopus laevis embryos disrupts 

skeletal muscle development by interfering with myofibril organization and sarcomere 

assembly [19]. In addition, inhibiting the Ca2+/Calmodulin (CaM)-dependent myosin light 

chain kinase by interfering pharmacologically with its kinase activity or by incubating with a 

peptide pseudosubstrate impairs myosin thick filament assembly [20], implying a potential 

mechanism for RyR-Ca2+-driven muscle development. RyR1 homozygous mutant mice in 

which RyR-mediated Ca2+ release is abolished die perinatally and also exhibit a severely 

disrupted musculature with small myotubes and disarranged myofibrils [21]. Altogether, 

these findings demonstrate a universal requirement for RyR-mediated Ca2+ dynamics in 

skeletal myogenesis. In addition, human myoblast differentiation in vitro is regulated by 

intracellular Ca2+ increases induced by changes in membrane potential [22–24]. Xenopus 
embryonic myocytes exhibit two types of Ca2+ transients, both RyRdependent, but of 

different durations [25]. The long-duration transients that last on average 80 seconds are 

present during a restricted developmental window prior to formation of myofibrils, while 

short 2-second-long transients persist during sarcomere assembly. Interestingly, artificial 

extension of long transient production inhibits sarcomere assembly [25], suggesting that the 

spatiotemporal code contained in the Ca2+ dynamics of differentiating muscle cells is critical 

for muscle development.

Directly linked to the pattern of Ca2+ dynamics in developing muscle cells is the store-

operated calcium entry (SOCE) orchestrated by the sensor of internal Ca2+ stores, stromal 

interaction molecule 1 (STIM1), and the SOCE channels Orai1 and Transient Receptor 

Potential Canonical (TRPC) channels. STIM1 expression is developmentally regulated, 

peaking postnatally in the developing muscle in mice [26]. Mice lacking functional STIM1 

die perinatally from a skeletal myopathy [27], indicating that STIM1-dependent Ca2+ 

signaling is necessary for myogenesis. Moreover, sarcolipin, an inhibitor of the sarcomere 

reticulum Ca2+ pump that opposes STIM1 action, is highly expressed in the embryonic 

muscle and is markedly increased in the muscle of loss-of-function mutant STIM1 mice 

suggesting that sarcolipin and STIM1 govern SOCE during myogenesis [26]. Expression of 

TRPC1 is also developmentally regulated increasing at the beginning of differentiation, and 
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is necessary for myoblast migration and fusion into myotubes [28]. Moreover, in myoblasts 

TRPC1 constitutes an essential stretch-activated channel modulated by sphingosine 1-

phosphate, a bioactive lipid involved in satellite cell biology and myogenesis [29]. These 

studies serve to highlight the importance of controlling Ca2+ dynamics to proper muscle 

development.

A number of signaling elements immediately downstream of Ca2+ signal are demonstrably 

vital to normal muscle development. The candidate effectors that account for the importance 

of Ca2+ signaling in myogenesis comprise the CaM-dependent kinases and phosphatases, 

mitogen-activated protein kinases (MAPKs) and Ca2+-sensitive transcription factors 

including the nuclear factor of activated T cells (NFATc). Ca2+- calmodulin-dependent 

protein kinase (CaMK) signaling prevents formation of histone deacetylase-myocyte 

enhancer factor 2 (HDAC-MEF2) complexes [30, 31], thereby releasing MEF2 myogenic 

transcriptional activity [30, 32, 33], which otherwise is repressed by HDAC4 and 5 nuclear 

export [34].

The role of the CaM-dependent phosphatase, calcineurin, in mouse myogenesis starts with 

its function in early skeletal muscle cell differentiation [35, 36] by regulating expression of 

transcription factors MEF2, MyoD and myogenin [35–37]. In Drosophila, the role of 

calcineurin in muscle development is also apparent; mutants for the regulatory subunit of 

calcineurin exhibit severe defects in flight muscle organization [38]. Additionally, 

calcineurin is involved in further muscle cell specialization, promoting differentiation of 

slow fibers in vitro and in vivo by recruiting the transcription factor NFATc [39–43]. 

Calcineurin dephosphorylates NFATc, promoting its translocation to the nucleus for the 

upregulation of target genes [37, 44, 45]. Knockout mice for different NFATc isoforms 

revealed that these variants contribute to distinct aspects of muscle development and 

function. NFATc3 knockout mice present with reduced muscle mass and number of fibers 

but appropriate organization of the existing fibers, demonstrating a role for NFATc3 in early 

stages of primary myogenesis [46]. In contrast, mice lacking NFATc2 present a normal 

number of formed fibers but are deficient in myoblast fusion resulting in significantly fewer 

nuclei per fiber [47, 48], demonstrating a dual role for NFATc in both formation and 

organization of musculature.

In addition to the classic CaM-dependent pathways, other signaling cascades may contribute 

to the transduction of Ca2+ dynamics-driven skeletal muscle development. Signaling through 

several elements of the MAPK pathway regulates different steps of myogenesis [49–51]. 

Erk2 promotes muscle progenitor proliferation by upregulating cyclin D1 expression [49]. 

Subsequently, MAPK p38 activity is induced during differentiation of L8 myoblasts. 

Inhibiting p38 impairs myogenesis shown by reduced expression of MyoD in Xenopus 
embryos and of MEF2 factors in L8 cells [50, 51]. Because MAPKs interact with Ca2+ 

signaling [52] in the developing spinal cord [53] and, importantly, in the skeletal muscle 

[54], they may jointly coordinate regulation of skeletal muscle development (Figure 2).
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3. Calcium signaling in skeletal muscle growth and maintenance

Once the skeletal muscle is formed during development, its size, performance and overall 

physiology remain plastic and the tissue responds to the changing surroundings (Figure 1). 

Skeletal muscle growth is based on further formation of large multinucleated muscle cells. 

After birth the tissue is subjected to an intense period of growth and differentiation 

coordinated by multiple signaling pathways. Some aspects of the cellular and molecular 

mechanisms responsible for the regulation of skeletal muscle growth are known and widely 

accepted but others remain unknown or controversial. Many of the myogenic factors that 

operate during embryonic development are also recruited for the growth of mature or 

maturing skeletal muscle, but myogenesis and plasticity are distinguished by different 

intrinsic and extrinsic environments and distinct competencies of cells. Here we will discuss 

signaling factors that are important in skeletal muscle growth and maintenance and the role 

of Ca2+ in their regulation.

The Insulin-like Growth Factor 1 (IGF-1) recruits the phosphoinositide 3-kinase-mammalian 

target of rapamycin (PI3-K/Akt/mTOR) signaling axis to implement muscle hypertrophy 

[55–57]. Whether the IGF-1-triggered pathway also recruits Ca2+ signaling to promote 

skeletal muscle growth, and in particular the calcineurin/NFAT signaling axis, has been a 

matter of debate. Some studies show that overexpressing calcineurin is sufficient to induce 

hypertrophy of soleus muscle fibers [58] and transgenic mice expressing either a null 

mutation for calcineurinAβ or muscle-specific overexpression of the calcineurin inhibitor 

MCIP1 exhibit reduced fiber size [59, 60], demonstrating a role for calcineurin in 

hypertrophy. In contrast, mice with either global or muscle-specific calcineurin depletion 

subjected to muscle hypertrophic growth by mechanical overload or IGF-1 stimulation do 

not show defects in muscle growth [61]. Nevertheless, these mice did show impairment in 

overload-mediated fiber-type switching [61]. These studies suggest that calcineurin is 

important for muscle growth and remodeling, however different animal models may lead to 

different levels of perturbation of calcineurin action and diverse compensatory mechanisms 

associated with the experimental approach. Importantly, insulin and IGF-1 induce Ca2+ 

dynamics through both Ca2+ influx and release from IP3R and RyR-operated stores [62–64]. 

Moreover, another hormone-like signaling molecule, prostaglandin F2α, increases 

intracellular Ca2+ concentration, activating NFATc2 and inducing muscle cell growth and 

nuclear accretion [65]. These studies suggest that molecularly diverse stimuli may converge 

at recruiting Ca2+ signaling to implement muscle growth (Figure 2).

Another experimental paradigm for studying muscle plasticity is the imposition of cyclic 

stretch in cultured muscle satellite cells. This activates Ca2+ influx through the 

mechanosensitive cation channel and the long-lasting-type voltage-gated Ca2+ channel [29, 

66, 67]. Inhibiting these channels prevents muscle satellite cell activation and proliferation 

triggered by the mechanical stimulus [67], suggesting that Ca2+ dynamics are necessary for 

the mechanosensing response of muscle satellite cells. Stretch also activates the ras-MEK-

extracellular signal-regulated kinase (ERK) signaling pathway through the recruitment of 

phospholipase A2, which may interact with the stretch mechanoreceptors [68]. The 

integration of signaling pathways is given by the stimulus-driven, Ca2+-dependent 

phosphorylation of ERK and CREB, which results in the upregulation of early genes c-fos, 
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c-jun, and egr-1 [69]. In turn, a timely targeted gene expression is required for long-term 

changes in muscle strength during physical training. Exercise also induces switching from 

fast-twitch to slow-twitch fibers, which is mediated by PKD [70]. This kinase 

phosphorylates class IIa HDACs, releasing their inhibition of MEF2, leading to 

transcriptional activation of myosin heavy chain genes that enables muscle fiber type 

transformation [71]. Moreover, disrupting expression of myostatin in mice results in a switch 

in muscle fiber type from slow to fast, in addition to muscle growth by recruiting the non-

canonical, Ca2+-dependent Wnt pathway [72]. This may be triggered by a change in Ca2+ 

dynamics as a consequence of the reduction in sarcoplasmic Ca2+ release [73].

The precise dynamics of intracellular Ca2+ levels in muscle cells are crucial for specifying 

the stimuli-driven changes in muscle growth and performance through the coordination of 

Ca2+ influx and release from stores. Orai1 promotes growth and limits fatigue in adult 

skeletal muscle, while dominant negative Orai1 mice show increased susceptibility to fatigue 

[74]. Additionally, the burst of muscle growth and differentiation that occurs after birth in 

mice is dependent on the Ca2+ signaling regulated by STIM1 [75]. Excitation-contraction 

coupling is normal in mice lacking STIM1 from the skeletal muscle. However, muscle fibers 

of neonatal mSTIM1−/− mice fail to elicit Ca2+ transients evoked by tonic neurostimulation, 

resulting in inhibition of calcineurin, MAPKs, ERK1/2, and AKT signaling pathways. This 

suggests that the interaction between STIM1 and SOCE is necessary for neonatal muscle 

growth and differentiation [75]. An additional pathway that may participate in Ca2+-induced 

muscle plasticity is CaMKK which, when constitutively activated, promotes muscle growth 

by recruiting mTORC1 signaling and promotion of protein synthesis [76].

Another relevant aspect of muscle homeostasis is the limitation to growth and performance 

experienced during aging. Aging is accompanied by active muscle wasting through 

mechanisms that are not fully understood, but correlate with age-dependent changes in Ca2+ 

dynamics. Evidence for a relationship between Ca2+ signaling and aging muscle comes from 

studies on Ca2+ sparks, which consist on focalized Ca2+ release from the sarcoplasmic 

reticulum. In the young muscle Ca2+ sparks are not apparent at rest but are activated upon 

membrane deformation due to mechanical stimulation or osmotic stress [77, 78]. In contrast, 

in the aged skeletal muscle, the Ca2+ spark response is altered and there seems to be a 

segregated intracellular Ca2+ reserve that cannot be recruited by voltage-induced Ca2+ 

release, uncoupling Ca2+ dynamics from the excitation-contraction process [79]. This 

alteration in Ca2+ dynamics precedes muscle wasting and correlates with downregulation of 

mitsugumin-29 expression, a synaptophysin-related membrane protein important for muscle 

structure and function and Ca2+ homeostasis [79]. SOCE is also affected in the muscle of 

aged mice, presumably due to downregulation of mitsugumin-29 expression [80]. This 

protein interacts with TRPC3 [81, 82] and RyR1 and regulates apoptosis [83], providing a 

potential link between Ca2+ signaling and control of muscle homeostasis.

Muscle wasting is not exclusive to aging, but is shared by many physiological and 

pathological conditions. In metastatic cancer concurring with bone destruction, secreted 

transforming growth factor-β (TGF-β) induces excessive oxidation of RyR1, resulting in 

leaky channels that interfere with Ca2+ signaling and muscle contraction. Preventing RyR 

leakage improves muscle function, suggesting that muscle weakness induced by 
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pathological TGF-β signaling is due to decreased Ca2+-induced muscle force production 

[84]. Ca2+ sparks induced by membrane deformation and exercise in the young healthy 

muscle, which are decoupled in the aged muscle as mentioned above, are also deregulated 

and sustained irreversibly in the dystrophic muscle [78]. In a mouse model of muscular 

dystrophy, increased sarcolemma localization of a TRP channel, the growth factor-regulated 

channel, which results in Ca2+ overload in response to stretch, leads to muscle cell 

degeneration [85].

Skeletal muscle homeostasis relies on spatiotemporally regulated Ca2+ signaling in the 

different cell types involved in muscle plasticity. Aging and disease disables muscle 

homeostasis due to loss of the regulatory mechanisms dependent on appropriate Ca2+ 

dynamics.

4. Calcium signaling in muscle regeneration

Tissue regeneration involves a tightly orchestrated sequence of cellular events consisting of 

cell proliferation, migration, and differentiation, culminating in integration of cells into 

functional regenerating tissues. These cellular events are similar to the processes that occur 

during development (Figure 1) raising the question of whether the Ca2+ signaling-mediated 

mechanisms of muscle development are apparent in muscle regeneration.

In our recent study we found that spontaneous Ca2+ transients manifest in the early stages of 

muscle regeneration and that perturbing Ca2+ release from internal stores impairs the 

regenerative process. We discovered that muscle cells from the regenerating Xenopus laevis 
tail exhibit spontaneous Ca2+ transients during the first hours post injury [86].

Incubation of regenerating tadpoles with ryanodine, which abolishes Ca2+ transients in 

regenerating muscle cells, leads to a reduction in the number of muscle progenitor cells and 

activated muscle satellite cells in the regenerating tissue [86]. Muscle satellite cells are the 

major cell type that contributes to muscle repair and regeneration. When muscle is injured, 

activated muscle satellite cells proliferate and differentiate into skeletal muscle cells, giving 

rise to new tissue [87, 88]. Our findings suggest that perturbing Ca2+ release from RyR-

operated stores interferes with the early phases of muscle regeneration, and that this Ca2+ 

activity is necessary for activation and proliferation of muscle satellite cells (Figure 2). In 

addition to RyR, release of Ca2+ from intracellular stores can be mediated by IP3R. 

Recently, investigators have determined that Ca2+ release mediated by IP3R type 1 is 

essential during the early steps of human myoblast differentiation [89], however our study 

found that Ca2+ transients in injured muscle were not IP3R-mediated and that IP3R function 

was not necessary for muscle regeneration [86], suggesting that muscle regeneration is 

mechanistically distinct from muscle development.

Unlike the dispensability of IP3R activation for muscle replenishment in injured tadpoles, 

regeneration of other tissues depends on IP3R-mediated signaling. For example, inhibition 

of IP3R expression in hepatocytes leads to a reduction in hepatocyte proliferation and 

delayed liver regeneration [90], showing its necessity for the early phases of repair. Another 

tissue in which Ca2+ activity is vital for development and regeneration is the skin. 
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Proliferating keratinocytes of the epidermis facilitate adult skin homeostasis and participate 

in the wound healing process following injury [91–93]. Ca2+ is a key regulator in both 

keratinocyte differentiation and proliferation. At low intracellular Ca2+ levels, keratinocytes 

retain proliferative activity. At higher Ca2+ concentrations, proliferative activity is 

suppressed and keratinocytes express differentiation markers [94]. Ca2+ is also necessary in 

driving migration of basal keratinocytes. Loss of Orai1 results in inhibited directional 

migration of keratinocytes [95]. Moreover, expression of RyRs in human keratinocytes has 

been linked to keratinocyte differentiation and epidermal barrier homeostasis [96]. 

Application of a RyR agonist or antagonist delays or enhances skin barrier recovery 

respectively [96]. Further studies will help determine whether the importance of Ca2+ 

activity in regeneration is universal and will identify the particular Ca2+ dynamics that 

facilitate regeneration in different tissues. Other sources of Ca2+ response in activated 

muscle satellite cells during regeneration are the TRPCs. In cultured mouse muscle fibers 

hosting satellite cells the addition of fibroblast growth factor-2 induces an increase in 

intracellular Ca2+ levels in activated muscle satellite cells through TRPCs [97]. Full 

elucidation of the molecular mechanisms regulating Ca2+ dynamics in the activation of 

muscle satellite cells upon injury requires further investigation.

The downstream candidates recruited by Ca2+ activity during muscle regeneration are 

numerous (Figure 2), given the crosstalk nature of Ca2+ signaling. A central effector of Ca2+ 

dynamics, calcineurin, is expressed in activated and proliferating muscle satellite cells four 

days after injury in rodent leg muscles, while it is absent in quiescent counterparts [98]. 

Moreover, inhibiting calcineurin by injecting injured mice with cyclosporine impairs 

regeneration and leads to muscle fiber atrophy [98], suggesting a role for calcineurin in 

skeletal muscle repair. In addition, enhancing calcineurin activity by expressing a 

constitutively active form in a model of muscle injury in mice enhances structural and 

functional muscle regeneration, presumably through upregulation of the expression of 

myogenic genes like MEF-2 and myogenin [99]. In turn, calcineurin activity is tightly 

regulated by several modulatory proteins [100, 101] including myosporin, a scaffolding 

protein localized to the Z-disc/costamere region of striated muscle that inhibits calcineurin 

activity, prevents the slow fiber type switch normally associated with calcineurin action, and 

impairs regeneration of the injured muscle [102].

Another class of Ca2+-dependent phosphatases, calpains, also contributes to the control of 

muscle satellite cell activation [103]. Muscle satellite cells express m-calpain in a cell cycle-

dependent manner, with m-calpain primarily localized to the cytoplasm in non-proliferating 

satellite cells. Upon injury, however, m-calpain localizes in the satellite cell nucleus. When 

m-calpain is inhibited, satellite cells show defects in cell cycle control. These defects lead to 

prevention of Myo-D accumulation in the nucleus and enhancement of Myf5 expression, 

subsequently impairing satellite cell function and the early stages of muscle regeneration 

[103].

Ca2+ signaling participation in skeletal muscle regeneration has become increasingly clear. 

However, further investigation is necessary to identify the Ca2+ dynamics specific to each 

type of cell participating in the repair and regeneration of the skeletal muscle. We also 

anticipate that elucidating the intra and intercellular signaling within the regenerating muscle 
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and with adjacent and supporting tissues will prove important. The progressive loss of the 

muscle regenerative capacity with age indicates that some signaling mechanisms present in 

development are no longer available in the aging muscle. Indeed, the satellite cells of aged, 

injured muscle exhibit insufficient upregulation of the Notch ligand Delta, which is 

necessary for proliferative expansion of myogenic progenitors and muscle regeneration 

[104]. Interestingly, the crosstalk between Notch and Wnt signaling pathways is necessary 

for a temporal balance between myogenic progenitor proliferation and differentiation in 

adult myogenesis [105], while activation of the canonical Wnt signaling pathway in aged 

progenitors favors differentiation towards the fibrogenic instead of myogenic lineage, 

leading to tissue fibrosis and poor muscle regeneration [106]. A pivotal role for Ca2+ 

signaling is expected considering that it modulates both the Notch [107] and Wnt [108, 109] 

signaling pathways.

5. Concluding remarks

In this review we have discussed evidence that Ca2+ is an important component of the 

signaling promoting muscle formation, muscle homeostasis, and regeneration. In particular, 

Ca2+ changes may direct muscle satellite cells to maintain their quiescent state, proliferate, 

or differentiate into functional muscle. A full understanding of muscle satellite cell 

physiology is crucial to devising appropriate therapies to promote muscle regeneration and 

prevent muscle wasting in aging and disease. The spatiotemporal changes in Ca2+ dynamics 

and their signaling partners in muscle satellite cells of both young and aged tissue in 

response to external demands await further investigation.
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Highlights

• Calcium regulates myoblast proliferation and differentiation during development

• Injury-induced calcium signaling recruits satellite cells for muscle regeneration

• Calcineurin, CaMKII, MAPK, CREB and NFATc transduce the calcium signal 

in muscle
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Figure 1. 
Cellular mechanisms of skeletal muscle development, homeostasis and regeneration. During 

embryonic development mesodermal muscle stem cells expressing Pax3/Pax7 transcription 

factors proliferate and specialize into myogenic progenitors through the expression of the 

myogenic regulatory factors including Myf5, MyoD and myogenin. Progressive 

differentiation is followed by sarcomere assembly, spatial arrangement of muscle cells, and 

their fusion into multinucleated muscle fibers. Muscle growth requires protein synthesis and 

enlargement of individual fibers, and is triggered during postnatal development and upon 

exercise or muscle overload. Trophic stimuli can also elicit a switch in muscle fiber type. In 

contrast, muscle wasting is characteristic of muscle dystrophy and aging. Skeletal muscle 

regeneration requires activation of muscle satellite cells that recapitulate the myogenic 

program, repairing and replenishing the injured tissue.
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Figure 2. 
Ca2+ signaling in skeletal muscle plasticity. Ca2+ activity in muscle cells at different 

maturational states leads to recruitment of Ca2+-dependent kinases and phosphatases 

triggering diverse cellular responses required for myogenesis, muscle homeostasis and 

regeneration.

Tu et al. Page 18

Cell Calcium. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	1. Introduction
	2. Calcium signaling in skeletal muscle development
	3. Calcium signaling in skeletal muscle growth and maintenance
	4. Calcium signaling in muscle regeneration
	5. Concluding remarks
	References
	Figure 1
	Figure 2



