
UC Davis
UC Davis Previously Published Works

Title
Quantifying the Selective, Stochastic, and Complementary Drivers of Institutional 
Evolution in Online Communities.

Permalink
https://escholarship.org/uc/item/5861f87q

Journal
Entropy (Basel, Switzerland), 24(9)

ISSN
1099-4300

Authors
Zhong, Qiankun
Frey, Seth
Hilbert, Martin

Publication Date
2022-08-01

DOI
10.3390/e24091185
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5861f87q
https://escholarship.org
http://www.cdlib.org/


Citation: Zhong, Q.; Frey, S.; Hilbert,

M. Quantifying the Selective,

Stochastic, and Complementary

Drivers of Institutional Evolution in

Online Communities. Entropy 2022,

24, 1185. https://doi.org/10.3390/

e24091185

Academic Editor: Kevin H. Knuth

Received: 28 April 2022

Accepted: 17 August 2022

Published: 25 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Quantifying the Selective, Stochastic, and Complementary
Drivers of Institutional Evolution in Online Communities
Qiankun Zhong * , Seth Frey and Martin Hilbert

Department of Communication, University of California, Davis, CA 95616, USA
* Correspondence: qkzhong@ucdavis.edu

Abstract: Institutions and cultures usually evolve in response to environmental incentives. However,
sometimes institutional change occurs due to stochastic drivers beyond current fitness, including
drift, path dependency, blind imitation, and complementary cooperation in fluctuating environments.
Disentangling the selective and stochastic components of social system change enables us to iden-
tify the key features of long-term organizational development. Evolutionary approaches provide
organizational science with abundant theories to demonstrate organizational evolution by tracking
beneficial or harmful features. In this study, focusing on 20,000 Minecraft communities, we measure
these drivers empirically using two of the most widely applied evolutionary models: the Price equa-
tion and the bet-hedging model. As a result, we find strong selection pressure on administrative and
information rules, suggesting that their positive correlation with community fitness is the main reason
for their frequency change. We also find that stochastic drivers decrease the average frequency of
administrative rules. The result makes sense when viewed in the context of evolutionary bet-hedging.
We show through the bet-hedging result that institutional diversity contributes to the growth and
stability of rules related to information, communication, and economic behaviors.

Keywords: price equation; bet-hedging; cultural evolution; online community

1. Introduction

What are the main factors that drive institutional change? This is a central question
across organizational theories. Indeed, the major forces behind institutional change can
often be taxonomized: internal stability, external pressure, information transmission, in-
stitutional isomorphism, path dependency, and so on. Some of these factors are directly
related to the payoff of implementation, whereas others are driven by stochastic forces.
While stylized facts and intuition abound in this area, we have little empirical evidence
due to a lack of both adequate data and general frameworks for comparing these sources
of change and showing how they work together.

The migration of organizations to digital platforms has allowed researchers to obtain
more adequate data, thanks to the digital footprint that online organizations inevitably
leave behind. Traditionally, it was very difficult to obtain statistically significant sam-
ples from comparable organizations. Lab experiments with a large N of communities
are expensive and often impractical. Natural experiments cannot ensure similar enough
samples to accurately infer the effects of the variable in question. Digital trace data from
online communities make it possible to monitor the intergenerational frequency changes
in rules [1] because they provide fine-grained information about when rules were imple-
mented, changed, and removed by and for thousands of similar online communities

The evolutionary framework adopted by researchers in various social science disci-
plines, including communication [2–4], economics [5–8], and sociology [9,10], provides
theoretical and methodological support for the quantification of the resulting dynamics.
In the past few decades, social science researchers have used concepts from biological
evolution as an analogy to characterize the four main stages of institutional development:
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variation, selection, retention, and struggle [11]. This framework categorizes various insti-
tutional changes by the mechanism that drives them and provides explanations from both
organizational and environmental perspectives. At the same time, the evolutionary frame-
work provides tools to represent this analogy with mathematical relationships and explain
the macro-dynamics based on a few first principles [12]. With empirical data, evolutionary
models make it possible to quantify the strength of different drivers of institutional change
and predict future developments.

One of the most comprehensive and successful models to describe the biological evolu-
tionary process is the Price equation [13]. This equation partitions total evolutionary changes
into two components: deterministic changes driven by natural selection and stochastic changes
driven by all other forces, including adaptation, mismatch, drift, and biased transmission. The
Price equation thus provides mathematical tools to separate selective and stochastic forces
and reconcile different sources of change in a community [14,15].

In this study, we take the advantage of online community data to monitor rule
changes among 20,000 Minecraft communities over two years. Online platforms including
Wikipedia, Reddit, and Minecraft provide a great opportunity to study intergenerational
changes of the modular institutional traits among thousands of small-scale communities.

Using the Price equation, we are able to quantify how much of the observed com-
munity fitness is driven by natural selection and how much by stochastic forces that are
not directly related to the success of the communities in question. We can also further
explore the institutional structures of online communities in order to determine whether
evolutionary forces are different for different types of rules. For example, do rules facilitate
centralized, top-down communication driven by selective forces? Are stochastic forces
more prevalent in rules regulating user behavior compared to rules regulating adminis-
trative behavior? Furthermore, is this result robust to changes in the environment? The
bet-hedging method makes it possible to use information from an environment to match the
frequency of rules, which produces a benchmark for a theoretically optimal rule distribution
strategy. This method thus allows us to ask two questions. First, is the frequency change
in one type of rule caused by this rule type only, or is it also influenced by other types
of rules? Second, is the optimal distribution of rules consistent with the Price equation
result? If the two models produce consistent results, we can conclude that the selection and
stochasticity calculated through the Price equation are robust to changes and uncertainty in
the environment; otherwise, we expect that environmental changes play a bigger role in
the evolutionary dynamics of institutional changes.

As a result, we found that there are strong selective forces in the Minecraft environment
that drives the frequency change of some rules, while at the same time, drift also exists
among administrative rules, reducing their frequency. Additionally, the bet-hedging result
suggests that communities need to subsidize other types of rules to achieve resilience
against environmental fluctuation.

1.1. Institutional Change

The development of institutions has been a key research aspect of organizational
studies [16–18]. To understand why and how institutions change, social science disciplines,
including communication [3], sociology [10], and economics [7], have adopted an evolu-
tionary framework to understand the dynamics of institutional development. Institutions
as a set of rules to constrain behavior can be transmitted via communication processes and
social learning [8,17]. An evolutionary approach to institutions allows us to examine both
the processes involved in the origin, maintenance, and spread of specific rules as well as
the complex ways in which different rules can interact to produce emergent properties at
the populational level.

1.1.1. The Arguments for Adaptive Selection

Evolutionary frameworks in organizational studies focus on the natural selection of
rules. The selection of rules is a process by which rule frequency increases or decreases
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as a result of the direct payoff resulting from the implementation of a particular rule. All
selective processes are characterized by variation, heritability, and competition [11,19]. In an
institutional context, rule variations arise across groups. With the variation and differential
payoffs of rules, there should also be some form of competition between institutions
regarding how the rules are beneficial for achieving organizational goals such as economic
growth [20], political stability [21,22], successful localized management of common-pool
resources [23], and long-term resilience [17,24,25]. Selective forces affecting institutions can
occur under three conditions. First, groups with high payoff institutions outcompete other
groups, replacing such groups or imposing their institutions on them [26]. For example,
the rise of information and communication technologies (ICTs) has enabled a shift from
group- to network-based societies because the latter derived greater benefits from ICTs [27].
Second, group members have high degrees of leverage to migrate to communities with
better institutions at a low cost [28]. Banzhaf and Walsh provided empirical evidence that
supports the notion that households “vote with their feet” for better institutions [29]. Third,
certain institutions are more likely to be transmitted from one group to another. Zhong and
Frey found that centralized rules are more likely to be transmitted than decentralized rules
between online communities with overlapping members [30].

1.1.2. Arguments for Stochasticity

Although social science research that adopts an evolutionary framework mostly fo-
cuses on natural selection, many institutional changes are not driven by selective forces.
Non-fitness-related changes are categorized as drift or stochastic forces [7]. Two major
mechanisms in organizational research characterize this type of change in institutional
settings: path dependency and institutional isomorphism. Path dependency refers to the
process by which institutional development depends on a unique series of past events.
The path cannot be retracted, nor can it be easily deflected. Path dependency can be
explained through diverse mechanisms, including self-reinforcement [31,32], positive exter-
nalities [33], and lock-in [34]. Although institutional changes driven by path dependency
can be beneficial for organizational success, for the time being, increased frequency is
not related to organizational success. Institutional isomorphism [35] refers to the process
whereby organizations borrow the routines, rules, and behavior from other organizations,
regardless of possible mismatches between the adopted institution and the organizational
context. Institutional isomorphism is explained through an organization’s internal bounded
reality and the uncertainty or pressure of the external environment [36–38].

1.1.3. Integrating and Disentangling Selective and Stochastic Forces

Even if natural selection is overemphasized when explaining organizational changes,
the evolutionary framework has major benefits for studying institutional and organizational
development. Among other things, it provides a formal theoretical framework based on
first principles about how inherited traits will change over time under certain conditions. It
is precisely these tools that let us articulate the relationship of natural selection to the many
other evolutionary processes at work in social system changes. In social sciences, evolution-
ary explanations are often conflated with selective processes. Stochastic processes, although
well studied in organizational studies, are usually not considered from the perspective of
institutional organizations. The separation of the two main forces leads to some problems
in identifying the true mechanisms of institutional changes. For example, institutional
development driven by path dependency may also have direct benefits that are selected
for due to competition with other institutions. Indeed, the rise of platforms, including
Apple’s iOS and Google’s Android, enjoyed both builder and developer benefits at the
beginning. However, lock-in benefits discourage the construction of gateways and thus
force developers to commit to just one platform or to build and maintain multiple versions
of the same product [39]. On the other hand, rules that can help achieve institutional goals
may also be blindly borrowed by other groups without considering the context. Lowrey
found that although there is blind isomorphism in the partnerships between newspapers
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and TV stations, the level of partnering is predicted by concrete benefits and the availabil-
ity of resources [40]. These examples show that selective and stochastic forces are often
conflated in institutional development. Focusing on one side of the story cannot provide
a full picture of how different mechanisms work together in institutional changes. If we
integrate different institutional change mechanisms, we will be able to answer an important
question: how can we distinguish between the selective and stochastic forces in institutional
development? In other words, how do we know whether the rule frequencies increase
or decrease based on their contributions to the organizational goals or for other reasons,
including path dependency and institutional isomorphism?

It has been difficult to answer this question empirically. First of all, institutions and
other social-environmental processes, especially culture, are all endogenous. It is not
straightforward to establish causal links between institutions and other factors [41–43].
Second, evolutionary processes can be analytically separated into discrete phases, but
they are often linked in continuous feedback loops, making it difficult to map theoretical
evolutionary stages to empirical data [11]. Variation provides sources for selection, but
the selected traits after transmission and retention will, in turn, reduce variation among
populations. As a result, evolutionary processes cannot help us evaluate any given moment
in the process but rather form a dynamic system driven by different evolutionary forces.
Third, selective and stochastic forces can vary over time. Institutions that were initially
beneficial can end up reducing the rate of growth (e.g., due to lock-in effects). A clear
identification strategy and longitudinal data are required to calculate their time-variant and
average strength. Finally, it is difficult to quantify institutions and institutional changes due
to their complex natures. There is no clear way to determine whether two institutions are
comparable or whether we should take into account the interactions between rules within
one institution.

In this paper, we address these difficulties using the Price equation and longitudinal
data from online communities to disentangle different mechanisms in institutional evolu-
tion. We use a longitudinal online community dataset to make quantitative comparisons of
thousands of organizations and apply the Price equation as a statistical strategy to make
clear assessments of selective and stochastic forces.

1.2. The Price Equation

The Price equation [13] is one of the best-known biological evolutionary models. It is
a theorem that represents any system of differential transmission [44]. In its original form
in population biology, it provides a way to understand the effects that gene transmission
and natural selection have on the frequency of alleles within each new generation of a
population. Due to its abstract mathematical articulation, the Price equation is applied
broadly in anthropology and economics [14]. Within the evolutionary framework we have
described, it is reasonable to also apply the Price equation to organizational studies. This
equation partitions total evolutionary change into two components: the abstract expression
of natural selection (selective forces) and all other evolutionary processes (stochastic forces).
The two pieces of the Price equation together can represent multiple evolutionary forces
such as natural selection, shift, and biased cultural transmission. One general form of the
Price Equation is

∆z = COV[
wi
w

, zi]+E[δi]

where wi refers to the direct fitness-related change in community i, associated with a
cultural trait. In situations where we can draw direct causal links between a cultural trait
and a change in fitness, wi can be interpreted as the payoff of the cultural trait; zi refers to
the frequency of the trait in community i, and δi refers to the random change of the trait
frequency in community i. This equation establishes that the fitness-correlated selective
forces (COV

[wi
w , zi

]
) and the fitness-uncorrelated stochastic forces (E[δi]) contribute to the

frequency of change of a cultural trait, here designated as ∆z.
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With the theoretical mapping from biological to institutional evolution, we can use
the Price equation to estimate the selective and stochastic forces influencing institutional
changes at a rule level.

1.3. Online Communities

Longitudinal data from online communities make it possible to quantify institutional
changes and extract the measures in order to apply the Price equation empirically.

Online platforms including Wikipedia, the discussion platform Reddit, and the game
Minecraft offer a meta-population of online communities. Such large-scale groups make it
possible to compare the institutions of thousands of communities within the same macro
environment and cultural context [45,46]. The communities within the same platform
often face the same collective action problems and pursue the same organizational goals,
allowing for meaningful comparisons of institutions.

In recent years, through methods including API and web scraping, we have been able
to acquire longitudinal data on online communities and study the long-term institutional
development of many thousands of groups at the same time [45,47–51]. In this research,
we monitored over 20,000 Minecraft servers, which allow various user activities, including
building with blocks, gathering resources, and interacting with each other. The servers thus
function as communities with which users can engage. The Minecraft environment hosts
millions of communities that compete for scarce physical and virtual resources and struggle
for the same organizational goal—to recruit and retain members. The same collective
problems and goals they face put them under selection pressure, whereas various choices
administrators and community members have granted them space for stochastic drift. We
collected data on the rules each community had implemented over two years. Modular
rule sets, called “plugins” in the Minecraft world, provide a standardized means by which
to quantify institutions and set a unit of analysis at the rule level. The plugin types can then
be used to measure institutional traits. By calculating the frequency change and variance of
one type of plugin, we were able to apply the Price equation in an institutional setting.

Using the Price equation and online community data, we try to determine:

RQ1: What are the selective and stochastic forces that drive frequency changes in different kinds of
rules in online communities?

1.4. Time Variance and Institutional Diversity

Environmental fluctuations exogenous to culture and institutions have a large influ-
ence on cultural and institutional evolution. The frequency and intensity of environmental
changes affect which type of cultural and institutional trait is selected and stabilized in the
long run. For example, Roger’s model explains how conformity evolves only in situations
where environmental changes are not frequent [52]. Giuliano and Nunn used a set of
historical data to determine that populations that experience more cross-generational tem-
perature instability attribute less importance to traditional values [53]. Richerson and Boyd
attributed the emergence of cumulative culture to climate change in the late Pleistocene [12].

In the case of Minecraft, the software environment and version changes may cause
changes in the payoff of implementing one type of rules and influence the evolutionary tra-
jectory. The environment in Minecraft can therefore influence both selective and stochastic
forces. For example, when the overall online community environment becomes more un-
predictable or unstable, it is possible that institutions with decentralized rules that promote
peer interactions will be more likely to be selected for comparisons with centralized rules
that reinforce top-down hierarchies [54]. At the same time, an uncertain environment may
increase blind imitation [35], leading to stochastic institutional changes. Thus:

RQ2: Is the evolution trajectory of rules influenced by environmental changes in online communities?

So far, we have considered how single institutional traits (rules) evolve in various
environments. However, oftentimes, organizational development relies on complementary
rules which function together. Ostrom proposed the Institutional Analysis and Develop-
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ment framework to analyze various social institutions and provided empirical evidence
of the benefits of institutional diversity to robust, self-organized institutions [23]. Page
provided evidence that supports the benefits of diversity in complex systems, especially in
response to external shocks and internal adaptations [25]. In Minecraft, there are four types
of meaningful rules related to governance. However, when we zoom in and only focus on
a single type of rule, the Price equation forces us to include the influence of other types of
rules based on stochastic forces and environmental factors. Whether other types of rules
can interact with one particular type to operate together on institutional evolution through
rule diversity requires further analysis. Motivated by Ostrom’s and Page’s theory, we ask:

RQ3: Is the evolution of a single type of rule influenced by rule diversity among online communities?

2. Materials and Methods
2.1. Data

We collected longitudinal plugin implementation data from 370,000 Minecraft servers
through bihourly API queries between November 2014 and November 2016. After filtering
out servers that were disconnected for the duration of data collection (~220,000), those that
did not survive for at least a month (~70,000), and those that did not report full governance
information (~75,000), we ended up with a sample of 14,859 servers (we address the
limitation resulting from this data deletion process in the Limitations section).

In Minecraft, plugins are modular programs that administrators can install on their
servers to automatically implement rules and other institutional constructs (See Appendix A
for a detailed description of plugins). In the digital world, code is the law [55]. By mixing
and matching plugins, Minecraft server administrators establish formal institutions to
maintain community survival and achieve community success. The Minecraft community
has developed almost 20,000 plugins listed under 16 categories, among which Frey and
Sumner concluded that four rule types were directly related to governance: top-down
administration, information broadcasting, communication, and economy [56]. Administra-
tion rules enhance administrator control over community and user behavior. Informational
rules facilitate information sharing from administrators to users. Communication rules
improve communication among players. Finally, economic rules protect private property
and enable trade. To quantify institutional changes and analyze the evolution process in
Minecraft, we used this classification to categorize the plugins. To fit the Price Equation,
we summarize community-level data at the unit of one month. As the median “lifespan”
of a server is 9 weeks, this aggregation provides an appropriate timescale to capture the
dynamics of intra- and inter-generational cultural transmission.

We took a community as an organism and the share of rules (plugins) as the institu-
tional trait or cultural variant it displays. In the large group of communities in Minecraft,
we saw that different communities exhibited different institutional traits (cultural variants)
which constituted the overall distribution of institutional traits in this setting.

In Minecraft, we do not know if after a community dies, the governing knowledge
is retained by its members to pass on to the next generation. In this sense, we could not
strictly follow a genetic inheritance model. However, when a new community starts, to
maintain community survival and deal with collective action problems, the community
administrators need to learn, either socially from other communities or independently from
the environment, in order to establish their institutional traits and governing style. The
process of learning can be seen as cultural transmission that changes the overall distribution
of rule shares.

Different forces contribute to distribution changes. Selective forces act on Minecraft
communities in two ways. First, communities that employ a governance style that is
beneficial for community survival will last longer. For example, if administrative rules
are the most beneficial for community survival, communities that employ a large share of
administrative rules will last longer. In contrast, communities that employ a governance
style with a small share of administrative rules will die out faster. This differential survival
rate of different governing styles will lead to a shift in the overall distribution of admin-
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istrative rules. Second, communities that employ a governance style that is beneficial for
community success are more likely to be copied by other communities. The spread of
successful governance styles can also change the overall distribution of rule shares.

Stochastic forces also act on Minecraft communities in two major ways. First, commu-
nities blindly learn from other communities. When the learning is not led by success bias
but rather by proximity or uncertainty, this type of copying will lead to drift in the overall
distribution. Second, when players cultivate cultural preferences for specific governance
styles, they are likely to spread these rule shares to other communities they migrate to [30].

Additionally, mutation provides additional variation for selection. In Minecraft, the
introduction of new plugins or individual learning to establish new governance styles can
be seen as a form of mutation.

Administrators do not know whether their implementation of one type of rule instead
of another is due to selective or stochastic forces. Likewise, we cannot accurately identify
selective or stochastic forces from the interactions among communities. What is available
in this dataset is the collective pattern of rule distribution. The advantage of using the Price
equation is that, in this case, it statistically isolates selective forces from stochastic forces
without specifying a large number of possible mechanisms behind each basic process.

2.2. Price Equation

The Price Equation provides a powerful generalization of the forces contributing
to evolutionary changes in institutional structures—analogous in our framework to the
biological traits of online communities—which correspond to individual organisms. Here,
we demonstrate one possible decomposition of the Price Equation that focuses mainly
on distinguishing among the strength of the correlation between the relative growth of a
population (‘fitness’), the presence of a certain community trait (‘selection’ based on that
trait), and the strength of other stochastic fluctuations.

Consider the Minecraft environment, which consists of multiple servers, each of which
is indexed by i (N = 13,859 servers). Within each community, we identified four categories
of rules: administrative, informational, communication, and economics (see Figure 1a).
Taking administrative rules as an example, the relative frequency of administrative rules in
community i is zi = ri/Ri, where ri is the number of administrative rules, and Ri is the total
number of rules in community i. Some communities might have many rules but a small
population (see Figure 1b), so we considered it useful to create a measure of rule fraction
weighted by membership population size. In most cultural evolution work, in order to
estimate the fraction of a cultural trait within a population, researchers either calculate the
number of individuals that carry a specific cultural trait weighted by the overall population
size [57] or the number the artifacts of a kind of cultural feature weighted by the production
size [58]. It is tricky to apply this kind of calculation to organizational and institutional
evolution because conceptually, the individuals in the organization do not directly carry
the cultural trait and the total number of rules does not reflect the “production size” of
the community. Therefore, to establish the connection between the rule frequency to
organizational size and to make sense of differential cultural transmission, we used the
frequency of administrative rules weighted by population size to estimate the fraction of
institutional traits among all communities. For simplicity, we refer to this measure as the
“reach of rules” (i.e., the extent of their contact with the population).

We calculated the mean reach of administrative rules across all communities as follows:
m = ∑i pizi, where pi = ni/n is the relative membership size ni of community i over the
total active population, n, among all communities, and zi is the relative frequency of
administrative rules over all rules in community i (see Figure 1c).
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Figure 1. Model setup (a) Rule share pie chart of a community i at time t: each community has a
fraction of administrative rules (zi); (b) Membership size (pi ) by total rule number (ni) scatter plot
at time t; (c) the histogram of the administrative rule fraction (zi) changes from time t to time t + 1,
which also changes the average population reach m.

The fitness of the reach of administrative rules (tracked with the letter m) is therefore
dependent on the differential growth of certain kinds of rules (tracked with zi) and the
population size of the respective community that uses those rules (tracked with pi). The
Price equation decomposes the change in the reach of rules (change in m) (1) into how much
the presence of such rules covaries with the growth of the population (a strong positive
covariance would detect that more of this kind of rule goes together with an increase in the
population size) and (2) into all remaining stochastic fluctuations observed according to
the number of this kind of rule. This allows us to quantify how strongly the presence of a
certain kind of rule covaries with changes in population size.

In this sense, we considered two factors regarding the frequency of change in admin-
istrative rules. The first is dependent on the differential membership population growth
(fitness) associated with the different share of administrative rules within each community.
This is based on the covariance term of the Price equation. In the context of Minecraft,
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we aimed to covary the differential membership growth rate in a community with a spe-
cific share of administrative rules. For example, if administrative rules are related to a
higher population growth rate within a community, we may see that communities that
implement exclusively administrative rules have a higher-than-average population reach
growth. Several mechanisms may be behind this relationship. We cannot know the exact
reasons of why this happens; perhaps communities with a large share of administrative
rules are more likely to cultivate a good environment to attract more visitors, or perhaps
an increased population requires a higher (or lower) proportion of administrative rules to
manage public goods.

We now introduce a new variable, w, to track the rate of change of population shares,
where p′i is the proportion of administrative rules in the next time interval.

p′i = pi
wi
w

(1)

The mean rate of change will then be w = ∑i=1 piwi. When the size of a population
increases, the relative reach of the applied rules increases. In Minecraft communities,
community goals are to survive and to recruit and retain more members. Accordingly, wi

w
tracks the relative fitness change of communities. This source of change in the reach of the
administrative rules can thus be seen as fitness-related change which may be tracked by
expanding Equation (1) with the static number of rules:

p′izi = pi
wi
w

zi (2)

When the increase rate of the population is greater than the mean growth rate (i.e.,
wi
w > 1), the population reach of administrative rules in community i mi increases with-
out any change in the frequency of administrative rule changes within community zi.
This fitness-correlated process is conceptually equivalent to selection acting at the scale
of organizations.

It is worth noting that this is not a perfect replicator at the individual level in the
Minecraft context because communities may have started (birth) or gone offline (die)
during the time period in which we collected data. However, at the group level, when new
communities come online and copy successful groups, the fraction of active populations
that are constrained by the same rule strategy increases. When communities go offline, they
lose their share of the population that is governed by the applied rule strategy. Additionally,
they fail to provide a source for other communities to copy and thus, reduce the population
share, which is subject to these types of rules. Thus, even without a perfect individual-level
replicator, the cumulative institutional changes at the group level remain the same.

The second source of change in the weighted frequency of administrative rules is
stochastic fluctuation, which may arise from drift [7] or transmission errors [59]. In this
case, the following equation may be used:

piz′i = pi(zi + δi) (3)

where δi is some small random change in the frequency of administrative rule changes and
z′i indicates the same frequency within community i in the next time interval.

Equations (2) and (3) can then be combined to simultaneously account for both selec-
tive and stochastic forces operating over time:

p′iz
′
i = pi

wi
w
(zi + δi) (4)
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Change occurs both in the population size of each community and in the frequency of
change of administrative rules. Using the above rules, it is straightforward to derive the
Price equation (Price, 1970).

∆m = m′ −m
= ∑i=1 pi

wi
w (zi + δi)−∑i=1 pizi.

= ∑i pi
wi
w zi −∑i pizi + ∑i pi

wi
w δi

= ∑i pi
wi
w zi −∑i pi

wi
w ∑i pizi + ∑i pi

wi
w δi

Price recognized that the first and second terms are equal to E
[wi

w , zi]−E[wi
w ]E[zi

]
,

which is the covariance between wi
w and zi. The third term can be rewritten as E

[wi
w , δi

]
.

However, since fluctuation δi has no correlation with wi
w , the third term can also be written

as E[δi]. The equation can thus be simplified to

∆m = COV
[wi

w
, zi

]
+ E[δi] (5)

The Price equation derived (i.e., did not postulate) a covariance between relative
population growth wi

w , and the relative frequency of a certain kind of rules, zi. If this
covariance is positive, it tells us that the presence of a certain kind of rule goes together
with population growth. Since there is no intrinsic directionality in a covariance, this can be
interpreted in two ways: the presence of a certain kind of rule helps the population to grow;
or the growth of the population increases the reach of such rules. Both help to increase the
reach of the rules within the total population among all communities (as measured by ∆m).

The totality of the equation implies that selective forces (the first term) and stochastic
forces (the second term) contribute to the frequency of change of institutional traits, ∆z [13].
For empirical application, this can be reformulated as

∆m = βVAR[zi] + E[δi] (6)

where the coefficient β is the relative population growth wi
w based on the frequency of

administrative rules zi, and the var [zi] is the total variance of administrative rules zi among
all communities. In this equation, the slope reflects the strength of selective forces, and the
intercept represents the strength of stochastic forces [58].

The logic behind the equation can be understood on two levels. At the individual
community level, when a community first goes online, it needs to install rules from a
pool of plugins. The community administrator can learn a governance style from other
successful servers (success-biased learning) or apply a popular governance style (frequency-
biased learning). The administrator can also try out new governance styles or new plugins
developed in the Minecraft community (mutations) and can learn from other resources
(individual learning). The result is that some of these implementations will be beneficial
for the community to survive longer, for the governance style to be retained for longer, or
for the community to be more successful so that other administrators will be more likely
to learn from them. It could also be the case that the type of rules the community installs
are detrimental to that community’s success, and thus, will lead to a shorter lifespan or a
reduced likelihood of imitation by other communities. At the population level, the average
share of rules that are beneficial for a community’s survival and success will increase due
to the communities that are sustained in the population or social learning mechanisms.

In an organizational context, the process described here may seem overly simple and
abstract, especially considering other variables that may cause membership population
increases or community death. Nonetheless, the Price equation describes the system
of institutional evolution in a minimal manner and offers a way to identify and quantify
selection- or fitness-correlated rule changes [60]. A fitness-correlated process is conceptually
equivalent to selection acting at the scale of organizations. It is also worth noting that
although we constructed those processes in our model, we did not establish causal links
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between the frequency of rule changes and active population share change. Instead,
empirical estimations helped us to establish a connection between the two.

As a result, the final linear equation demonstrates a relationship between rule fre-
quency, variation, and selection: different types of rules have variations regarding their
correlation with population growth. When the relationship of variation to total frequency
changes (beta) is negative, it indicates that the administrative rule has a negative correlation
with community membership growth. When communities have many variations between
each other regarding the proportion of administrative rules, higher variation provides
sources for selection and thus leads to higher frequencies of change, whereas when there is
less variation, competition will be tight, and rates of change will be slower. A positive slope
indicates a positive correlation between rule change frequency and population growth.
This suggests that over time, communities with higher fractions of administrative rules will
see an increased reach of administrative rules. Similarly, a negative slope indicates selection
against administrative rules, suggesting that a higher proportion of administrative rules
will decrease population reach over time.

2.3. Bet-Hedging and Information Theory

We pursued an inductive approach with the Price equation to estimate the strength of
selection from frequency change. This enabled us to estimate the fitness-related frequency
change of a particular rule through coefficient β. However, this approach also forced the
growth rate to be fixed over time. Therefore, an average relative growth rate was assumed
for each group of rules. This modeling strategy was found to be reasonable in a stable
environment, but when the environment changed (see Figure 2), it did not always reveal
the true dynamics of the frequency of change for two reasons: First, the selection forces on
one type of rule depend not only on how well this rule performs on average (algorithmic
mean of fitness-related growth) but also on whether implementing this rule instead of other
rules led to community failure at a time of vulnerability (geometric mean of growth) [61].
The Price equation uses the arithmetic mean and thus cannot provide explanations for
changing environments. Second, the selective forces on communities depend not only on
the quantity of rules that covary positively with population growth but also on the rule
combination strategy. It could be that some rules are beneficial in some periods, while
others are useful in other periods. The average over all periods might suggest that it would
be useful to favor one rule over another; however, eliminating the other rule entirely might
crash the population in certain periods. In the Price equation, to evaluate the choice of one
type of rule, we subsumed the influence of other rules within our stochastic forces residual,
E[δi]. This allowed us to focus on the dynamics of a single type of rule; however, it did not
adequately explain how different types of rules can work together to assist communities in
changing environments in a synergistic manner over time.

One method that can incorporate the two factors not addressed in the Price equation is
bet-hedging. Evolving biological and socio-economic populations can sometimes increase
their growth rate by cooperatively redistributing resources among members. In unchanging
environments, this simply comes down to reallocating resources to fitter types [62]. This
would suggest that rules that are not useful for some time will get eliminated by natural
selection. However, they might become useful again, and their premature elimination
would then reduce fitness. Whenever there is a repeating cycle or seasonality in the
fluctuations of an environment, it is useful to restrict the forces of blind natural selection
during certain periods in order to be prepared for subsequent periods [59]. For example, it
would not be useful to allow natural selection to eliminate all food storage during summer,
even if ‘blind’ natural selection cannot see its utility during such periods. Neglecting
predictable seasonality and merely working with cross-seasonal averages might suggest
that the contribution of the “food storage rule” is, on average, negligible relative to the
“go out and forage” rule and might suggest its elimination; however, this would cause
the population to starve during winter. Any kind of anti-cyclical governmental policy
or temporal economic subsidy exploits the same logic, i.e., of maximizing overall fitness
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in predictably fluctuating environments by combining different kinds of institutional
mechanisms [59].
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Figure 2. Environmental changes over time cause changes in the number of communities but do
not seem to change the overall relative proportions of rule types in the population, except for
administrative rules. The Price equation assumes a constant correlation between population growth
and the implementation of one type of rule. However, the correlation may vary over time in a fast-
changing environment. The changing bandwidth of administrative rules in this figure demonstrates
that various rules are influenced differently by environmental changes.

The utility of such portfolio theory-based bet-hedging over time depends on the
predictability of the environmental patterns. If the future cannot be predicted, there is
nothing to prepare for. However, if a predictable seasonality is known, one can adjust for it.
The degree of predictability depends on the amount of information in the pattern, which
leads us to information theory.

In technical terms, if information about a future pattern is completely unrelated to
the state of the environment, then the quantity of information common to the cue and
the environment is zero. The cue does not help to increase the ‘fit’ between the evolving
population and the environment. At best, a perfectly informative cue would precisely reveal
the state of the environment: the remaining uncertainty about the environment would be
zero and the population could be adjusted to grow optimally. This can be formalized using
information that is common to the environment and the evolving population: the more you
know (about the environment), the more you can grow (the population) [63].

This problem is formalized by portfolio theory and is the basic idea behind bet-hedging.
It uses information about the environment to maximize long-term increase rates [64].
Built upon Kelly’s idea and subsequent expansions [65–68], Hilbert derived a measure
to establish a cooperative resource redistribution strategy to maximize socioeconomic
growth [63]. By establishing fitness matrices of rules for different environmental states,
we can determine the most efficient rule distribution strategy for the sustainability and
incrementation of this type of rule. Below, we apply the bet-hedging method to Minecraft.

First, we need to understand how the environment changes over time. The most
efficient way to benefit from the changing dynamics in the environment is represented
using information theory. Information, by definition, is related directly to the reduction of
uncertainty. The ‘mutual information’ between a cue about an environmental pattern and a
random environmental state measures how much the cue reduces uncertainty about the
state and can be directly translated into growth potential [67]. It turns out that the pursuit
of optimal growth consists of searching for mutual information (or unequivocal signals)
between the environment and an evolving pattern [62].
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In the case of Minecraft, if we already know the unfolding dynamics of environmen-
tal changes, we then have no uncertainty about the environment, i.e., we have perfect
information with which to predict the state of the environment at any given time. In an
ideal world, we can quantify how well one type of rule works in different environmental
states and make confident decisions about implementing or removing this type of rule
accordingly. However, in Minecraft, we have a high level of uncertainty about changes in
the environment. What is the most efficient way to use information from previous events
to assess the mechanisms of the current environment? Shannon answered this question by
calculating the opposite side of information, i.e., uncertainty [69]. According to Shannon,
the likelihood of encountering one specific environmental state from all possible states is
equivalent to the reduced uncertainty caused by the knowledge of this specific state. We
used a probability distribution describing whether the environment is friendly for one type
of rule to represent the dynamic patterns of the environment. To minimize the number of
assumptions required to measure the environment and establish one environmental mea-
surement to consistently compare the changes of all four measures, we defined good and
bad states based on whether the growth of the centralized rules (top-down administration,
information broadcasting) outcompeted the growth of decentralized rules (communication,
economics). This is aligned with hypotheses proposed by Perrow, i.e., that the paradox
between centralization and decentralization grows with organizational complexity [70,71].
This cut-off allowed us to fit our data in a binary (computational) framework.

To optimize rule increments in a changing environment, we needed to redistribute
the rule shares to match environmental-state probabilities. In extreme cases, rules that
do not work well with the environment have a growth rate of 0. The optimal strategy is
then to maintain the share of rule types in line with the corresponding environmental-
state probabilities. Between extreme cases, we found that some rules in an unfavorable
environment still yielded a positive growth rate. This required us to adjust the rule shares
based on both the growth rate of different types of rules and the likelihood of different
environmental states. Table 1 lists the growth rates of different types of rules in a good or
bad state, where W refers to the growth rate in a good state and w refers to the growth rate
in a bad state.

Table 1. Rule growth rate according to environmental state and rule categories.

State Growth of Rule i Growth of Other Rules

Good state for centralized rules G1 g1
Bad state for centralized rules g2 G2

Solving for the optimal distribution of administrative rules sometimes results in
undefined combinations of rule shares, including cases where the optimal share of rule i is
negative (d < 0) or above 1 (d > 1). When d < 0, it suggests that the optimal strategy is to
implement other rules only. Accordingly, for d > 1, the optimal strategy is to implement
rule i only. These two extreme cases describe the so-called “pure strategy”. If the optimal
strategy for rule i is a pure strategy of full investment in rule i, it indicates that (1) the
frequency of change to rule i can be attributed to earlier investment in that rule, as opposed
to other rules. In other words, the frequency of change of rule i is driven solely by selection;
and (2) environmental changes do not alter the growth rate of rule i [63].

An optimal solution with a rule share between 0 and 1 is called the “region of bet-
hedging” [67], which suggests a mixed proportion of different rules. The optimal timing to
take advantage of cooperation among rule types to outperform blind competitive selection
depends on the shape of the fitness landscape [59]; the more complementary the fitness
of types in different environmental states, the proportionally larger the potential benefit
of strategic cooperation over competitive selection. If the optimal strategy for rule i is in
the region of bet-hedging, which implies a rationale for implementing p rule i and 1 − p
other rules, it indicates that (1) the frequency change under rule i can be attributed to the
earlier implementation of i as well as other rules; and (2) the environmental changes alter
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the growth rate of rule I, which is why we have to use a mixed rule combination (resources)
to deal with the environmental changes (risk over time; [72]).

3. Results
3.1. The Price Equation Result

To match the rule data with membership data, we marked 23 timestamps to estimate
rule changes over time. At each time point for each community, we measured the fraction of
each rule type (zi) and membership size (pi). We then calculated the average rule proportion
weighted by membership size (m) and variations of rule proportions among communities.
We partitioned the Price equation into slope-intercept forms (Equation (6). In this equation,
the slope reflected the strength of selective forces, and the intercept represented the strength
of stochastic forces [58]. As shown in Figure 3, each data point referred to a timestamp
associated with variations in rule fractions VAR [zi] and the average population reach, m.
We estimated that communities with administrative rules face positive selective forces
(βadmin = 0.117, p < 0.001) and negative stochastic forces (E [δ]admin = −3.602, p < 0.01). This
indicated that, on the one hand, administrative rules have a strong positive correlation
with community success in terms of recruiting and maintaining members, resulting in a
higher probability that this type of rule structure will be learned by other communities. In
other words, this direct, fitness-related benefit contributes to the growth of administrative
rules. On the other hand, when driven by stochastic factors, including a lack of information,
cultural preference/resistance, path dependency, or individual learning, administrators
tend to reduce the proportion of administrative rules, regardless of their positive correlation
with community fitness.
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Figure 3. Communities subject to administrative rules face positive selective forces and negative
stochastic forces. Administrative rules have a positive correlation with community fitness, which
leads to a higher likelihood of this type of rule structure being learned by other communities. This
direct fitness-related benefit is associated with the growth of administrative rules. On the other hand,
other “stochastic” forces, including a lack of information, cultural preferences, cultural resistance,
and random experiments, reduce the implementation of administrative rules.

We also found positive selection of information rules (βadmin = 0.147, p < 0.05, see
Figure 4a), indicating that information rules are beneficial for community survival.
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Figure 4. Communities with informational rules experience positive selective forces, while there
are no effects of communication and economic rules on community prevalence. We found positive
selection over informational rules but not negative stochastic forces (a). At the same time, neither
selection (the slope) nor stochasticity (intercept) in communication (b) and economic rules (c) diverged
significantly from 0 over time.
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We did not find statistically significant selection (slope) or stochasticity (intercept)
divergence from 0 in communication (see Figure 4b) and economic rules (see Figure 4c),
indicating that the frequency change of communication and economic rules were not
significantly different from 0.

3.2. Bet-Hedging Result

We used bet-hedging to validate the Price equation result and see how the combination
of different rules contributed to the frequency of rule changes.

The direct result of bet-hedging showed that the optimal situation for administrative
rules to increase in number was to implement administrative rules only (dadmin = 1; See
Figure 5). In other words, larger numbers of administrative rules can be attributed solely to
the earlier implementation of administrative rules. The Price equation suggests that the
theoretically optimal strategy is equivalent to the end result of pure natural selection. As
such, it is consistent with the Price equation result, i.e., that a positive selective force is the
only reason for the increase in the number of administrative rules.
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Figure 5. Most rules showed a maximum in their selective effect in combination with the other rule
types. The bars in the figure illustrate the optimal distribution of rule implementation to maximize the
growth rate of one type of rule, demonstrating the influence of implementing other types of rules on
this type. For information rules to be expressed at a maximum rate in the population, the calculation
suggests that they should be implemented with a 30% mix of other rule types. (This is distinct from
the question of whether that maximum is positive, i.e., whether information rules are positively
selected for, as shown in Figure 3). Implementing a mix of rules can help communities survive periods
when the direct benefits of information rules are low. As a result, institutional diversity contributes to
the long-term growth of communication, information, and economic rules. The optimal distribution
of administrative rules, i.e., 100%, suggests an absolute strategy for the growth of this dominant rule
type. This may be an artifact of the strong positive selection that communities with administrative
rules face, particularly relative to other rule types. It is also consistent with the conclusion that the
correlation between administrative rules and community fitness does not vary as much over time as
it does with other rule types.

At the same time, for information, communication, and economic rules, the optimal
share is within the region of bet-hedging (0 < d < 1; see Figure 5), indicating that envi-
ronmental changes alter the growth rates of the three types of rules, resulting in optimal
strategies of mixed rule combinations (resources) in response to the environmental changes
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(risks over time). For these rules, it is useful to keep natural selection in check, as it would
overexpose the community to rules which are less favorable in certain kinds of recurring
environmental states. There is a “complementary variety” concerning the suitability of
these rules in different environmental periods [62].

Combining the Price equation results, the optimal rule combination for informational
rule growth (dinformation = 0.703) showed that although informational rules generally have
a positive correlation with community survival and success, this correlation varies over
time. In a period when the growth rate of informational rules is low, the share of other
rules helps the community in difficult times. As for communication and economic rules,
although they do not provide individual selective advantages, they can be subsidized to
help communities during environmental changes (dcommunication = 0.146; deconomics = 0.420).

Overall, we found that the environment for administrative rules is a winner-take-all,
selection-driven-type situation. In contrast, for the other three types of rules, institutional
diversity drives rule increment instead of competition and selection. In the long term, it is
beneficial overall to maintain a certain mix of rules, even against the elimination pressure
exerted by natural selection.

4. Discussion

In this study, we used the Price Equation and the bet-hedging method to quantify
and isolate the drives of rule frequency changes in online communities. According to the
relationships that the Price equation articulates, we found positive selection forces over
administrative and informational rules. At the same time, stochastic forces, including
random trials and cultural preferences, were found to lead to a decrease in the reach
of administrative rules. We did not find significant rule reach changes in informational
and economic rules. The bet-hedging result of optimal rule share supported this result
and provided an additional explanation for the stochasticity quantified through the Price
equation. We found that increases in the number of administrative rules were only driven
by positive selection, whereas increases in information, communication, and economic
rules were driven by institutional diversity as well.

These results allowed us to consider the environmental states of rules. Administrative
rules are in an environmental state when competition and selection dominate institutional
evolution, whereas, for other rules, diversity and cooperation are the keys to success.

4.1. Contributions and Implications

This study used evolutionary frameworks and models to explain institutional develop-
ment. By using an evolutionary framework, we did not disregard “agency” in institutional
changes, but emphasized that, in the long run, the agency itself becomes endogenous
through iterated learning and the selection and reproduction of practices and beliefs. On
this basis, we integrated theories from organizational studies and formal models from
evolutionary biology to explain the macro dynamics based on first principles under a given
set of conditions. The empirical application of the Price equation in this paper helped
us quantify selection and stochasticity and thus answers one of the fundamental ques-
tions faced in organizational studies: Are rules implemented for their direct benefit or for
other reasons?

Our approach combined the advantages of comparative studies and mathematical
models to show the dynamics and reveal collective patterns of institutional evolution [24].
Through a comparative analysis of thousands of communities in the same Minecraft
environment, we could control for the spillover effects of other social processes and focus
on the frequency changes of rules. Using non-linear mathematical models, we assessed
institutional development not as a moment of equilibrium but as an evolving system
where changes emerge based on some first principles and stochastic processes. The use of
bet-hedging models complemented the Price equation results, demonstrating a practical
application of information theory to answer evolutionary questions.
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Additionally, our bet-hedging results showed the influence of environmental fluctua-
tions on evolutionary processes and identified a path by which to determine the current
environmental states of particular institutional traits. Our estimations of environmen-
tal states and their influences could provide valuable information for risk-avoiding and
decision-making, especially when other variables are fixed or controlled. This approach
loosens the fixed environment assumptions in evolutionary models and helps make more
accurate predictions in uncertain and risky environments.

The bet-hedging results also contribute to the literature on institutional diversity in
three ways. First, our results empirically support the hypothesis that institutional diversity
is beneficial to organizational development due to the application of certain rules. Second,
we were able to calculate the boundary conditions of environmental states and specific
rules in which institutional diversity bring about maximum benefits. Third, we extended
the theory of diversity by demonstrating that diversity does not only benefit the overall
collective fitness [25] but also contributes to the growth of a single rule (trait).

Although we focused on an online community, our results, to some extent, could
be generalized to real-world communities and provide implications for policymakers
and practitioners. The empirical evidence in this paper suggests that in a fast-changing
environment, institutional diversity can be helpful for organizations to build resilience.

Overall, in this research, we joined the conversation regarding population ecology
research being carried out by online communities [2,4,49,73,74] to further understand orga-
nizational development. Ecological and evolutionary thinking provides two approaches
to understanding the frequency of change in organizations. In recent years, researchers
in different disciplines have tried to bridge the two grand theoretical frameworks and
produce more integrated models [75,76]. Our work applies evolutionary thinking to recent
empirical developments and advances the development of integrated models and model
selection in organizational studies.

4.2. Limitations

The Price equation is a powerful tool for explaining the macro patterns of a system;
however, it does not provide direct causal inferences. This is because the equation is
ultimately a tautology [14] that describes frequency change. Thus, although we were able
to estimate the strength of selection, we could not determine what drives the frequency of
change beyond selection. Anything not directly related to community fitness is considered
to be stochastic in nature, which we could not explain through the applied model. At the
same time, the Price equation, when applied to cultural and organizational evolution, is
poorly suited for organizational activities. In this research, we did not have a perfect repli-
cator of rule change mechanisms. Replicators are not necessary for cumulative, adaptive
cultural evolution [77] and provide less accurate estimations and interpretations of models
compared to biological evolution estimations. Additionally, we used GLM to estimate
selection and stochasticity in order to guarantee the robustness of the estimator. However,
we could not be sure that the applied method was the most efficient. It is still debatable
which estimation method is the most effective to estimate the slope of selection.

Our application of the bet-hedging method assumed a fixed fitness matrix due to the
limitation of the technique [64]. Limited by computation power, we could only assume a
two-state environment and calculate the shares for binary rule categories. This limitation
simplified reality and forced an arbitrary choice concerning the environmental state. In this
paper, we used the relative growth of centralized rules (administrative and informational) as
an indicator with which to evaluate environmental states. While this allowed us to answer
the research question, such a categorization is still relatively arbitrary and less theoretical.
In future work, we may introduce more context-based measures of the environmental state
based on organizational theories.

Finally, we studied fitness in terms of the reach of rules. We tracked this among
Minecraft communities in order to assess the influence of their reach, which was a justi-
fiable definition of ‘rule fitness’ (i.e., selfish rules propagate). However, it did not tell us
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anything about other utilities of the rules (e.g., the level of satisfaction of users, economic
or entertainment benefits of rules, etc.). This additional step could be achieved by relating
the reach of rules to other performance measures of communities, as can be done with
structural equation modeling [78].

4.3. Future Work

Our methods represent a first attempt to apply evolutionary thinking to institutional
development. They also point out where to look in datasets when analyzing institu-
tional development. The general contribution is that we show that it is possible to apply
long-standing formal theories of evolutionary change to determine concrete aspects of insti-
tutional evolution. The digital footprint produced by online communities and organizations
will allow researchers to advance such an approach to a more formal stage of empirical
testing and quantification. Existing evolutionary frameworks from evolutionary biology,
such as the Price equation and bet-hedging, allow researchers to calculate long-standing
measures and interpret them within solid conceptual frameworks.

The Price equation indicated where to look when analyzing influences other than
selection. For future research, we may want to use this information to look into the factors
influencing stochastic forces. At the same time, the bet-hedging method points out where to
look to identify the efficiency of institutional diversity in a changing environment. Future
research may narrow the scale of institutional analyses to particular periods and rule shares
in order to identify institutional effects. Future research can also look into the reasons for
altering particular rules.

To summarize, this research describes the application of evolutionary thinking in insti-
tutional analysis and embraces the potential, provided by digital trace data, of macro-scale
longitudinal analyses of online communities. By applying evolutionary models empirically,
we are now able to quantitatively answer fundamental questions about institutional evolu-
tion and to open the door for future study of institutions from an evolutionary perspective.
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Appendix A. Plugins in Minecraft

In the Minecraft ecosystem, administrators rely on custom software-based governance
institutions to manage limited resources, solve collective action problems, and eventually
maintain a corps of quality community members. These “plugins” are modular programs
that administrators can install on their servers to automatically implement rules and other
political-economic constructs. Plugins can allow for certain behaviors or activities, or im-
prove the experience of them. For example, “parties” is a plugin that allows administrators
to hold parties in their community. Others prohibit abusable behaviors or make it easier to
administer punishments for rule violations (e.g., the “AntiCheat” plugin prohibits cheating
behavior in the game, while “Combatlog” punishes players who unfairly evade the conse-
quences of starting a losing battle). By “mixing and matching” plugins and fine-tuning their

https://github.com/qkzhong/mc_Price_equation/blob/main/mc_dataset.csv
https://github.com/qkzhong/mc_Price_equation/blob/main/mc_dataset.csv
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settings, server administrators craft highly customized formal institutions and implement a
social structure that can solve problems and achieve governing goals. In Minecraft’s setting,
players can switch between servers at a low cost, which leads to fierce competition between
servers. To recruit and retain members, administrators have to implement plugins that
benefit players’ experience.

So far, the Minecraft community has developed almost 20,000 plugins. To assist adminis-
trators in selecting and using the plugins effectively, the software requires plugin developers
to assign each plugin to at least one pre-specified category. As of 2016, when our data col-
lection ended, the Minecraft developer community listed 16 types of plugins administrators
could use to implement rules. The plugin categories are Admin Tools, Anti-griefing Tools,
Chat Related, Developer Tools, Economy, Fixes, Fun, General, Informational, Mechanics,
Role Playing, Teleportation, Website Administration, World Editing and Management, World
Generators, and Miscellaneous. See https://www.curseforge.com/minecraft/bukkit-plugins/
world-editing-and-management, (accessed on 28 April 2022). Among those, Frey and Summer
identified four types that directly related to administration and: top-down administration,
communication, economy, and information [56].

Plugins in the top-down administration category allow administrators to execute
additional control over server states and player behavior. Top-down administrative control
mechanisms may strengthen founders’ role identities and commitments to the community,
ultimately leading to additional governance efforts [76].

Plugins in the communication category facilitate interpersonal communication by
providing additional or higher bandwidth channels for peer-to-peer communication. For
example, “simple voice chat” enables real-time voice chat between users.

Economy plugins protect private property rights and facilitate resource exchange. The
economic institutions in large games are unique because they usually have built-in virtual
currency systems. However, these same types of resources and incentive systems exist in
almost all online communities in the form of knowledge and social capital. For example,
“Signshop” makes it easy for players to have their own shops without much commands.

Informational plugins provide more channels for broadcasting messages and regu-
lations to the community. In contrast to the peer-to-peer communication facilitated by
communicative plugins, informational plugins promote top-down communication. For ex-
ample, “signboards” Attach unlimited text to signs (administrative information for players
to read) when they’re clicked.
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