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Abstract

In recent years there has been increasing interest in applying network science tools to EEG data. 

At the 2018 American Epilepsy Society conference in New Orleans, LA, the yearly session of the 

Engineering and Neurostimulation Special Interest Group focused on emerging, translational 

technologies to analyze seizure networks. Each speaker demonstrated practical examples of how 

network tools can be utilized in clinical care and provide additional data to help care for patients 

with intractable epilepsy. The groups presented advances using tools from functional connectivity, 

control theory, and graph theory to analyze human EEG data. These tools have great potential to 

augment clinical interpretation of EEG signals.
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1.1 Introduction

For the past two decades, there has been steadily increasing interest in applying engineering 

tools to epilepsy care (Stacey and Litt, 2008). These tools encompass both analysis and 

treatment, and span a broad range of techniques. The earliest tools were quantitative EEG 

analysis, e.g. automated spike and seizure detectors, and electrical stimulation. Both aspects 

have achieved commercial and clinical success recently, but there is still much room for 

improvement. The American Epilepsy Society organized two Special Interest Groups that 

encompassed these two specialties: Engineering in Epilepsy and Neurostimulation. These 

two were combined several years ago into the current Engineering/Neurostimulation Group, 

which has dedicated sessions at every annual meeting of the American Epilepsy Society. 

This work details the proceedings for the meeting in December 2018 in New Orleans, which 

focused on tools for network analysis of EEG.

EEG signals are ideal for a host of signal processing tools. Yet clinical implementation of 

such tools has been very slow. In a review article in 1975, pioneering EEG engineer Harold 

Shipton noted that visual interpretation of EEG “has remained the method of choice…while 

the tools of information engineering, mathematical and statistical analysis, and computer 

science are little used and less respected…New instrumental methods can be expected to 

displace the eyeball as an analytic tool [via] the long-awaited and often-announced marriage 

between EEGer and computer scientist” (Shipton, 1975). Those words, written over 40 years 

ago, are still pertinent today. There have been some significant advancements: commercial 

software now allows direct visualization of quantitative EEG within the clinical viewer, and 

several clinically-approved devices are now implanted to control intractable epilepsy with 

electrical stimulation. Yet all of these products use methods that are only slight 

modifications of the tools available to Shipton in 1975. One aspect of “mathematical and 

statistical analysis” that was not available in 1975 is network analysis, which has grown 

tremendously in recent years and is especially applicable to epilepsy research. In the 2018 

session of the Engineering/Neurostimulation meeting, four research groups presented the 

current state-of-the-art for network analysis in epilepsy, each with a specific goal of 

presenting results designed for clinical use. The first session presented a primer on network 

analysis and introduced a freely-downloadable pipeline that can be integrated with various 

different types of network tools. This was followed by three groups using distinct network 

analysis methods to interpret human EEG data.

2.1 An Introduction to Network Analysis & EEG Interpretation

Network analysis is in the midst of extreme growth, both in the development of new tools 

and in the adoption in various fields. Neuroscience is a natural fit for such analyses, as there 

are vast quantities of data acquired across large spatial and temporal scales. While a full 

review of these techniques is beyond the scope of this article, the reader is invited to several 

comprehensive reviews on the subject (Bassett and Sporns, 2017; Bassett et al., 2018; Stefan 

and Lopes da Silva, 2013; van Diessen et al., 2013). One of the basic tenets of connectivity 

analysis is the concept of nodes and edges. In neuroscience, a node typically represents a 

region of homogeneous activity. In the case of EEG data, a node is often the location of the 

recording electrode, or a region of brain activity estimated from the EEG data (e.g. source 
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estimation (Gramfort et al., 2014)). An edge is a theoretical connection between different 

nodes, which can take a wide variety of physiological meanings. When an edge quantifies 

the functional connectivity between two nodes, the edge indicates similar activities occur at 

the two nodes. There are many different methods to define and measure such similarities of 

activity. Given the wide range of tools found in the literature, in this first section we briefly 

introduce an example of functional connectivity analysis as applied to study human seizures. 

We propose a functional network analysis pipeline (Figure 1), and describe the decisions 

associated with implementing this pipeline in practice. We provide an example data set and 

code so that the interested reader may explore an instance of this functional network analysis 

pipeline.

For concreteness, we focus on functional connectivity between multivariate brain voltage 

signals (e.g., recordings from the scalp EEG). The goal of functional network analysis is to 

understand which signals are coupled and when this coupling occurs. While the analysis of 

coupling between brain voltage signals in patients with epilepsy has a long history (Brazier, 

1972; Gotman, 1983), the application of network analysis is relatively new. Here we propose 

a five-step procedure to apply functional network analysis in practice; we briefly describe 

below the decisions and challenges associated with each step.

1. Data collection: Recordings typically trade off spatial sampling for brain 

coverage. For example, while microelectrode array recordings provide excellent 

spatial resolution (< 1mm), the brain coverage is poor (e.g., isolated to one small 

patch of cortex). Alternatively, scalp EEG provides excellent brain coverage, 

with poor spatial sampling (on the order of 10 cm2 of cortex). The choice of data 

collection method determines the number of nodes in the network (e.g., high 

density EEG provides more nodes than low density EEG), and the rhythms 

observable (e.g., high temporal sampling supports analysis of coupling between 

faster brain rhythms).

2. Re-referencing: EEG is typically recorded by referencing all the recording 

channels to a defined reference electrode, which differs in different laboratories. 

These single channels are then re-referenced for better viewing. Many schemes 

exist to reference brain voltage signals, and no reference choice is optimal in all 

recording scenarios. Common re-referencing schemes include bipolar, common 

average, Laplacian, and more computationally advanced techniques (Yao, 2001). 

Each choice impacts the functional network features inferred. For example, a 

bipolar montage reduces the number of nodes in the network, while a common 

average reference introduces a shared signal between all sensors. The reference 

choice should be carefully considered when interpreting functional network 

analysis results.

3. Filtering: EEG data are filtered to isolate specific frequency bands for analysis, 

and remove artifacts from the data (e.g., sweat artifact, 60 Hz line noise). 

Filtering requires the selection of many parameters (e.g., the filter type, order, 

attenuation), which again may impact the networks inferred. For example, 

narrowband filtering may introduce artifactual coupling between sensors, or 

obfuscate coupling in alternative frequency bands. For example, two unrelated 
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time series—each filtered to 4–6 Hz—may appear coupled during short intervals 

of time (e.g. within 1 sec intervals). Conversely, focusing on a narrow band 

ignores coupling outside this band.

4. Network inference: Many measures exist to assess coupling between time series 

(Greenblatt et al., 2012; Pereda et al., 2005), each with advantages and 

disadvantages. This step essentially defines and measures the edges within the 

network analysis framework. Measures of linear coupling (e.g., cross-

correlation) are simple, fast to compute, and possess well understood statistical 

properties. Measures of nonlinear coupling (e.g., information) more accurately 

identify subtle interactions, but are more complex – both to understand and 

assess. Model based measures of coupling (e.g., Granger causality) address 

important confounds in existing measures, but are computationally intractable for 

networks with many nodes (although new procedures help overcome this 

limitation (Spencer et al., 2018)). The resulting networks may include edges 

weighted by the strength of the coupling measure, or binary networks with edge 

threshold defined by the strength of the coupling measure or its level of 

significance.

5. Network analysis: Many measures exist to analyze the spatiotemporal properties 

of a network inferred in Step 4. These include static measures (e.g., path length, 

clustering coefficient, modularity) (Rubinov and Sporns, 2010) and newly 

emerging dynamic measures (e.g., measures of how community organization 

evolves in time) (Bassett and Sporns, 2017).

We note that the five steps in the proposed functional network analysis pipeline are 

interconnected. For example, choosing a common average reference (Step 2) impacts the 

network results (Step 5); choosing a network inference method (e.g., coherence in a specific 

frequency band in Step 4) impacts the filtering choice (Step 3).

The interested reader is encouraged to access the repository https://github.com/Mark-

Kramer/AES-SIG-2018 for an example application of the proposed functional network 

analysis pipeline. In this example, we make a specific choice for each step. However, we 

note that not every choice is a good one, and emphasize that the example serves only as a 

guide, not a solution.

Epilepsy is considered a network disease, with network features that span from the 

microscopic scale of single neurons to the macroscopic scale of the entire central nervous 

system. While intuitively appealing, how to apply this network concept in clinical practice 

remains unclear. A consistent functional network analysis pipeline would enhance the rigor 

and reproducibility of network results, and perhaps improve clinical application of network 

features to patients with epilepsy.
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3.1 Using Network Models of Invasive EEG to Solve the Missing Electrode 

Problem

Clinical decisions in refractory epilepsy depend upon correct identification of the 

epileptogenic zone (EZ), which is defined as the minimal area of brain tissue responsible for 

generating the recurrent seizure activity (Luders et al., 2006). However, the EZ is a 

theoretical designation as there is no gold standard to identify it. As proof that standard 

clinical procedures do not always correctly identify the EZ, seizure freedom rates after 

surgical resection vary between 30 and 70% (Bulacio et al., 2012; Gonzalez-Martinez et al., 

2007).

Surgical treatment can fail to control or eliminate drug-resistant seizures for a number of 

reasons. One clear limitation is that the clinical decision is based upon interpretation of the 

EEG. Intractable seizures often require implanted electrodes to improve localization of the 

EZ. These include subdural electrodes (i.e. grids or ECoG) and depth electrodes, which are 

becoming increasingly popular using stereo-EEG (SEEG). However, both types have a clear 

undersampling problem, and clinical interpretation of the data is often limited. 

Physiologically, there are additional confounding factors that can lead to surgical failure. For 

instance, some patients have an epileptogenic lesion or multiple lesions that involve both 

hemispheres and surgical resection cannot remove all of the lesion. In other cases, the brain 

areas to be resected involve motor, speech, or visual cortex and cannot be completely 

removed without creating significant functional deficits. Thus, even with the best available 

technology, our understanding of how to define and treat the EZ is still limited.

Modern state-of-the-art involves a surgical implantation of subdural or depth electrodes 

followed by a visual inspection of hundreds of corresponding EEG signals before and during 

seizure events that occur over several days to weeks. Clearly, surgical outcome relies heavily 

on precise placement of electrodes such that they cover the hypothetical EZ. Ideally, one 

would like a highly dense coverage of brain regions to obtain clear boundaries of the EZ. 

Unfortunately, this is not possible due to surgical limitations associated with massive 

implantation of hundreds of electrodes. This gives rise to the “missing electrode problem,” 
where clinicians desire to know what neural activity looks like near and between implanted 

electrodes.

The goal of this project is to develop a computational tool that provides a denser brain 

coverage by estimating neural activity at “desired” missing electrode locations from 

measured signals in focal medically-refractory epilepsy (MRE) patients undergoing invasive 

monitoring. To achieve this goal we will perform the following processing steps: (i) process 

diffusion tensor imaging (DTI) data to identify structural (anatomical) connectivity patterns 

between all brain regions; (ii) process fMRI and MEG recordings to obtain functional 

dependencies between all brain regions; (iii) derive a dynamical network model of brain 

activity, by integrating structural connectivity and functional dependencies of the whole 

brain with functional information available from ECoG or SEEG data; and finally (iv) use an 

observer (from control theory) in conjunction with the dynamical network model of the 

brain to estimate ECoG or SEEG activity of clinically determined missing electrodes.
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3.2 Estimating Patient-Specific Network Models

To accomplish those four processing steps, in this paper we develop and test a computational 

tool that constructs dynamical network EEG models from noninvasive structural (DTI) and 

functional imaging (fMRI, MEG) data, and functional invasive EEG (ECoG and SEEG) 

data. Specifically, we will compute linear time invariant (LTI) network models in 500 msec 

windows, where x(t) is called the state vector and represents the activity on all the 

electrodes, and A is the state transition matrix that defines how the electrodes interact and 

how the activity evolves over time. Further definition of the state and the network model is 

shown in Fig. 2 A,B. Note that x(t) represents both implanted and missing electrodes, and is 

partitioned into the measured, xm(t), and unmeasured (“missing’”) states, xu(t). Although 

EEG recordings are not generated from an LTI network in practice, we have shown in our 

previous work that in very small windows (e.g. 500 msec), an LTI model can be estimated to 

accurately reconstruct the data (Li et al., 2017). Thus, the entire EEG window can be 

represented as a linear time varying network where the A matrix changes in each 500 msec 

window (Li et al., 2017). If we had access to all signals, we could simply estimate the 

sequence of A matrices. However, since we only have access to the measured signals, we can 

estimate the smaller block matrix in each A, denoted as Amm in Fig. 2B, from the observed 

signals, and the rest of the A matrix (Amu, Aum, Auu), i.e. the unmeasured signals, must be 

estimated from noninvasive imaging data (DTI, fMRI, and MEG).

Specifically, we will construct connectivity matrices from DTI data by computing structural 

connectivity between regions corresponding to the EEG (ECoG or SEEG) electrodes and 
specified missing electrodes. We will also construct functional connectivity matrices (e.g. 

correlation matrices) from both fMRI and MEG recordings for the implanted electrode 

regions and missing electrode regions. Matrices constructed from these noninvasive 

modalities will be used to initialize (Amu, Aum, Auu) for each 500 msec window, which are 

not identifiable from the measured EEG signals. Finally, these models will be used to 

estimate missing electrode signals using “observers” from control theory. See Fig. 2C.

3.3 Reduced-Order Observer

We will implement an observer from control theory to reconstruct the missing signals (xu(t)) 
from the measured signals (xm(t)). An observer (Luenberger, 1964) is an algorithm that 

provides an estimate of the entire internal state vector of a system (e.g. the epileptic brain 

network) using the system’s model parameters (A) and measurements of the system’s output 

(measured EEG signals). Observers are familiar to control theorists, and in this case provide 

an intriguing tool to solve the missing electrode problem for clinicians (Gunnarsdottir et al., 

2017).

To understand how observers work, let’s consider an ecosystem with lions and gazelles (Fig. 

2). Lions eat gazelles and gazelles eat grass. We can describe how the population of gazelles 

at some time t, x1(t), affects the population of lions, x2(t), with a predator-prey model. The 

nonlinear dynamical 2-node network model is provided in Fig. 2, which incorporates the 

birth and death rates of each species as well as their interactions. Now, suppose we could 

only observe the number of lions over time and we had access to the model. i.e., {a, b, c, d}, 
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then we could estimate the number of gazelles over time. Intuitively, this makes sense. For 

example, you observe that the population of lions is declining, then that means that they are 

starving and thus the number of gazelles is declining at that time. The algorithm that 

provides the estimate is an observer.

For our application, only a part of the state, xu(t), is unknown, and thus we implemented an 

iterative approach using a reduced-order observer (Gunnarsdottir et al., 2017) to estimate 

only the signals at the missing contacts. Note that we only know xm(t) in our application, but 

the observer requires that we also know the model parameters of the brain network (A) in 

order to estimate the missing signals. Thus, we need to construct A and the estimate for xu(t) 

(denoted xu t ) simultaneously for each 500 msec window in the EEG series, which we 

describe next.

3.4 Algorithm – estimating the network model and missing signals

This tool comprises an iterative algorithm that simultaneously generates (i) an estimate of 

the network model, A, for each 500 msec window, as well as (ii) estimates of the signals 

from the “missing” electrodes, xu t . Note that the estimated model, A, for each 500 msec 

window characterizes dynamics for each EEG contact, including the “missing” electrode 

contacts.

The tool first selects an initial model, denoted as A0, and then applies the observer to 

estimate the missing signals. Then, the algorithm uses the new missing signal estimates 

along with the measured signals to re-estimate the model (Dempster et al., 1977). Next, the 

new model is used to obtain new estimates of the missing signals recursively until it meets a 

user-specified stopping criterion. We have shown that this algorithm reliably estimates the 

missing signals (Gunnarsdottir et al., 2019).

3.5 Estimation of initial network model

The tool constructs excellent estimates of missing electrode signals when the model A is 

known (Gunnarsdottir et al., 2019). However, in reality we do not know the model A. We 

will take the following 4 step approach to initialize A for each 500 msec window.

1. We will compute different structural connectivity matrices, from DTI data that 

captures strength of physical connections between all relevant brain regions 

(implanted and missing regions) using MRICloud (Mori et al., 2016). 

Specifically, white matter fiber tractography will be performed and inter-regional 

connectivity will be computed by determining the relative proportion of extracted 

fibers initiated or terminated within the boundaries of each relevant anatomical 

parcel. Various fractional anisotropy (FA) or diffusivity metrics will be tested to 

construct different structural connectivity matrices (Soares et al., 2013).

2. We will compute functional connectivity matrices from fMRI and/or MEG data 

that capture correlations between all relevant brain regions (implanted and 

missing regions) using MATLAB. Pairwise linear correlations (e.g. Pearson), 
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coherence in a given frequency bands (Bowyer, 2016; Lachaux et al., 1999), and 

phase synchrony between pairs of signals (Lachaux et al., 1999) will be tested.

3. We will use least squares estimation to construct Amm from xm(t) as done in (Li 

et al., 2017).

4. Finally, we will combine structural and functional information to estimate the 

initial model A0. Specifically, the structural matrices obtained in (1) and the 

functional matrices obtained in (2) will be used to constrain our initial model 

estimates. The block in A0 that corresponds to the measured signals will be 

replaced with the Amm matrix from step (3).

3.6 Preliminary Data

In our previous work, we tested whether we could employ simple linear time-varying 

models to characterize invasive SEEG and ECoG data (Gunnarsdottir et al., 2019; 

Gunnarsdottir et al., 2017; Li et al., 2017), and then we used a reduced-order observer to 

simulate SEEG signals of unmeasured, “missing” electrodes. Fig. 4 shows an example 

where we implemented the approach described above using ECoG recordings from one focal 

MRE patient. Specifically, we removed 4 signals from a depth electrode (near the 

hypothetical EZ) from the data set and treated them as unmeasured, “missing” signals. Then 

the algorithm was used to estimate the missing signals. Our preliminary results suggest that 

control theoretic techniques can be employed to successfully estimate activity at “missing” 

electrode locations. Interestingly, in the example shown in Fig. 4, the missing electrodes had 

epileptic spiking activity not observed in the remaining electrodes. Yet, the algorithm was 

able to recover spikes from measured activity that had no spikes. This is very relevant as 

such spiking activity is often generated within the EZ.

3.7 Conclusions and Future Work

We have described early results from a computational tool that will provide a denser brain 

coverage in focal MRE patients undergoing invasive monitoring by estimating neural 

activity at “desired” missing electrode locations from signals of implanted electrodes. The 

tool comprises an iterative algorithm that simultaneously estimates (i) brain network models 

and (ii) the “missing” invasive EEG signals. Similar to many iterative algorithms (Karlis and 

Xekalaki, 2003), the performance of the tool is highly dependent on the initial network 

parameter estimates. We have shown that the algorithm constructs very good estimates of 

missing signals when the network model is known, and reliably recovers important signal 

characteristics for EZ localization, such as epileptic spiking activity. However, in practice 

the network model parameters will not be available to initialize the algorithm. Thus, our next 

steps include constructing initial model estimates that optimize performance by integrating 

whole brain structural and functional dependencies from non-invasive data with functional 

information available from ECoG or SEEG data, as described above. Finally, future work 

includes applying the tool to estimate clinically specified “missing” signals in a large set of 

patients and evaluate its performance on data from patients with both successful and failed 

surgical outcomes.
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4.1 Network Science Approaches to Neural Function in Epilepsy

An increasing volume of data is available to support mapping the complex brain networks 

that underlie neurological diseases such as epilepsy. A critical challenge in the development 

of interventional tools for epilepsy is that of distilling biological mechanisms from network 

phenotypes of disease processes. Large volumes of data show that islands of synchronized 

neural activity dispersed across the epileptic brain can change regularly over the course of 

seizure progression, and those changes may mark times of heightened seizure risk (Litt et 

al., 2001; Warren et al., 2010). Because important features of epilepsy emerge on a network 

level, the tools that we use to inform interventions would benefit from network level 

analysis.

Network science is an emerging discipline that draws from graph theory and dynamical 

systems theory to characterize the local, global, and dynamic features of complex networked 

systems (Butts, 2009). Under this framework, functional neural networks are often defined 

as a series of brain regions (nodes) with statistical dependencies between region pairs 

(edges; Fig 5A). In an analogous mapping, structural neural networks are defined as a series 

of brain regions (nodes) with diffusion weighted imaging (DWI) estimates of white matter 

connections between region pairs (edges; Fig 5D). From such representations, we can 

examine the organizational principles of a network’s connections at global or local scales. 

Global measures can quantify the strength, or sum of the connectivity of one region to every 

other region. In contrast, local measures can quantify the pattern of edges across all other 

regions. The paradigm of network neuroscience is already driving exciting work across 

many domains of inquiry including epilepsy (Jiruska et al., 2013; Khambhati et al., 2017). 

However, there is a fundamental gap in understanding how treatments for epilepsy, such as 

direct electrical stimulation, reliably alter network-level features and control seizures.

In a recent study, Khambhati et al. (Khambhati et al., 2019) sought to address this gap by 

characterizing how functional networks predictably change with stimulation. The authors 

used data from a cohort of 94 patients undergoing intracranial EEG monitoring for 

medically refractory epilepsy who also participated in an extensive stimulation regimen. 

They construct graph models in which intracranial sensors are represented by nodes and 

estimates of multitaper coherence between intracranial sensors are represented as edges for 

baseline, pre-stimulation, and post-stimulation epochs for each individual (Fig. 5A). They 

then evaluated how local and global measures changed between pre- and post-stimulation, 

and how these changes were mediated by baseline functional connectivity.

First, the authors hypothesized that stimulation can regularly elicit global changes in node 

strength, as well as local changes in the pattern of edges across the network. They found that 

in low frequencies (5–15 Hz), the magnitude of node strength regularly increases between 

pre- and post-stimulation epochs (Fig. 5B). Additionally, the magnitude of increase is 

correlated with baseline coherence with the stimulation site, indicating that baseline 

functional relationships constrain the network’s response to stimulation (Fig. 5B). In 

contrast, local changes in the network’s pattern of edges occurred strictly in high frequencies 

(95–105 Hz) (Fig. 5C). This effect shows a frequency dependent response, where a high 

stimulation frequency leads to larger changes in edge similarity (Fig. 5C).
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Using 14 individuals in the stimulation cohort with diffusion weighted imaging of white 

matter architecture, the authors next asked how the pattern of structural connections from the 

stimulation site changed the network reconfiguration resulting from stimulation (Fig. 5D). 

Theoretical work in network control theory suggested ways in which the pattern of white 

matter connections could facilitate different strategies for changing activity of the network. 

One strategy, typically effective for areas with structurally weak connections, is to control 

small dynamic modes of a system, and thus effectively drive heterogeneous changes after 

stimulation (Feldt Muldoon et al., 2013; Pasqualetti et al., 2014). How well a region could 

enact this strategy is quantified by a metric called modal controllability. The authors 

hypothesized that stimulation to regions with high modal controllability would therefore 

result in spatially constrained effects, and lower overall functional reconfiguration. They 

found that in higher frequencies (15–25 Hz, 30–40 Hz, and 95–105 Hz), the modal 

controllability of the stimulated region was correlated with the average change in functional 

reconfiguration, such that stimulating stronger modal controllers led to smaller changes (Fig. 

5E).

In summary, using intracranial recordings from patients with drug-resistant epilepsy, the 

authors test hypothesized rules that predict altered patterns of functional connectivity. They 

demonstrate that these functional interactions change in reliable ways based on stimulation 

frequency and location. These findings can now inform future research on optimizing and 

personalizing stimulation to modulate local and global properties of the epileptic network to 

make seizure control safer and more effective.

5.1 EEG-based functional connectivity networks as a marker of infantile 

spasms

Measurement of EEG-based functional connectivity networks (FCNs) can provide an 

objective characterization of underlying pathological brain activity associated with epilepsy. 

For example, abnormal FCNs derived from interictal EEG data are associated with temporal 

lobe epilepsy (Quraan et al., 2013), benign epilepsy with centrotemporal spikes (Adebimpe 

et al., 2016; Clemens et al., 2016), and generalized pharmacoresistant epilepsies (Horstmann 

et al., 2010). Recent evidence suggests that this is also true for infantile spasms, a pediatric 

epileptic encephalopathy characterized by clusters of seizures termed epileptic spasms 

(Hrachovy and Frost, 2003). Both EEG (Burroughs et al., 2014; Japaridze et al., 2013) and 

fMRI (Siniatchkin et al., 2007) studies have highlighted the role of cortical neuronal 

networks in infantile spasms, suggesting that EEG-based FCNs are a logical candidate from 

which to derive an objective marker of the disease.

FCNs can quantify clinically relevant characteristics of brain function that cannot be visually 

assessed, which is particularly valuable for infantile spasms. The EEG patterns classically 

associated with spasms, such as hypsarrhythmia, have a variable presentation (Hrachovy et 

al., 1984), leading to low interrater reliability for visual identification (Hussain et al., 2015). 

Moreover, these visual EEG features have limited predictive value for treatment response 

(Demarest et al., 2017). These issues contribute to misdiagnoses and delays in achieving 

seizure remission, which negatively impact patient outcomes (Primec et al., 2006; Riikonen, 
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2010). Therefore, FCNs, as a supplement to traditional visual EEG analysis, may play an 

important role in enhancing the effective treatment of spasms, improving seizure control, 

and maximizing long-term developmental outcomes.

To test this, we retrospectively analyzed scalp EEG data from 21 subjects with infantile 

spasms (both pre- and post-treatment recordings) and 21 normal, approximately age-

matched controls (Shrey et al., 2018). FCNs were calculated using a connectivity measure 

based on cross-correlation (Chu et al., 2012; Kramer et al., 2009).

5.2 Patients exhibiting epileptic spasms have stronger functional 

connections.

We first compared FCNs for patients exhibiting spasms (n=31, including pre-treatment IS 

subjects and post-treatment non-responders) and patients without spasms (n=32, including 

controls and post-treatment responders). Patients with epileptic spasms had stronger 

functional connections compared to those without spasms (Figure 6A). A Wilcoxon rank 

sum test indicated that of the 171 pairs of electrodes, 56 pairs were significantly different 

between the spasms and non-spasms groups (p < 0.05 pre-specified threshold FDR, 

Benjamini-Hochberg procedure for multiple comparisons correction; pFDR = 0.016; q-value 

= 0.016). Fifty-five pairs had higher median connectivity strength for patients with spasms, 

and one pair (Cz-O2) showed the opposite relationship.

5.3 EEG-based FCNs exhibit high test-retest reliability over short periods 

of time.

We tested the reliability of the FCN calculation by measuring the 2D correlation between 

independent FCNs generated using sequential, non-overlapping segments of EEG (Figure 

6B). FCN measurements for all subjects were stable when calculated using segments of 

EEG at least ~150 seconds long. However, as a group, the spasms FCNs exhibited higher 

reliability than those of control subjects.

5.4 While connectivity strength varies with disease state, the patient-

specific FCN structure can be stable over long periods of time.

In individual subjects, successful treatment of spasms was associated with a reduction in 

FCN strength to control levels over several weeks (Shrey et al., 2018). However, the patient-

specific structure of the networks (indicated by the spatial pattern of the strongest 

connections) often persisted, particularly when treatment was unsuccessful. To demonstrate 

this, we analyzed a longitudinal EEG recording from a spasms patient who later developed 

Lennox-Gastaut Syndrome. The strength of the FCN increased at the onset of Lennox-

Gastaut, but the structure of the network remained stable over 17 months, during which the 

patient experienced continued seizures despite multiple changes in medication (Figure 6C).

These results demonstrate the potential value of EEG-based FCNs as a marker of infantile 

spasms and epileptic encephalopathies. Computational metrics, such as FCN strength, are 
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objective, reliable, and can complement traditional visual analysis. Once validated through 

larger, prospective studies, EEG-based FCNs may help clinicians diagnose spasms, identify 

high-risk children, and objectively measure treatment response, leading to earlier resolution 

of spasms and more favorable outcomes for this vulnerable population.

6.1 Overall Conclusion

Historically, EEG analysis has largely been restricted to subjective visual interpretation. 

Modern EEG technology is ideal for a new era of data analysis. The examples described in 

this work demonstrate the current state-of-the-art in applying network analyses to EEG data. 

These works show the wide range of technologies now available for epilepsy research, as 

well as their tremendous potential for augmenting standard clinical care and providing 

predictive guidance to clinicians.
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Highlights:

• Network analysis and functional connectivity provide unique insights into 

seizure networks

• Observers from control theory can be used to estimate missing intracranial 

EEG signals to provide denser brain coverage

• Graph theory predicts that stimulation has predictable and variable effects on 

different network structures

• Functional connectivity can be used to assess the response to antiepileptic 

therapy in infantile spasms
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Figure 1: A candidate functional network analysis pipeline, with five steps.
While the arrows indicate a linear progression between steps, the interactions between steps 

are more complicated.
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Figure 2: Network model set-up
A) Definition of model states. B) Network model for each 500 msec window of EEG. C) 

Flowchart of the computational tool. Structural (e.g. DTI) and functional (e.g. SEEG) 

information are inputs to the algorithm, which produces an augmented denser coverage.
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Figure 3: Predator-prey model
(Top) Population of lions and gazelles over time. (Bottom) Dynamical 2-node network 

model describing populations over time, assigning a differential equation for each 

population.
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Figure 4: Estimating signals of missing electrodes
A) ECoG implantation for patient. B) 10 second snapshot of actual (red) versus estimated 

(blue) signals of 4 missing contacts from one depth electrode. Two contacts were clinically 

labeled as early onset zone because of spikes highlighted in zoom-in panel shown. Note that 

no spikes were visible in all other signals, demonstrating that with knowledge of network 

model, the observer is able to very accurately reconstruct missing contact signals, including 

important spike events.

Stacey et al. Page 19

Epilepsy Res. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Graph theory to estimate different responses to electrical stimulation
(A) Methods and experimental design. 94 individuals with implanted intracranial EEG 

electrodes (blue spheres) voluntarily participated in a stimulation regimen. Each subject had 

baseline (blue) recording with no stimulation, followed by several stimulation trials, with 

pre- (red) and post-stimulation (yellow) epochs. For each of these epochs, functional 

networks were constructed by calculating multi-taper coherence between all electrodes in 

one of four frequency bands (5–15 Hz, 15–25 Hz, 30–40Hz, or 95–105 Hz). Only two are 

shown for simplicity. (B, top) In low frequencies (5–15 Hz), the node strengths, or sum of 

connection weights, increase between pre- and post-stimulation epochs. (B, bottom) Nodes 

with high baseline coherence to the stimulated region have larger increases in strength. (C) 

In high frequencies (95–105 Hz), the pattern of edge similarity changes with stimulation. 

This change is larger for stimulation with higher frequency (bottom). (D) An example of a 

structural brain network obtained with DWI, where edges are proportional to the density of 

white matter connections between regions. (E) When stimulating structural nodes that are 

weakly connected (top), functional connectivity patterns of the high frequency band undergo 

less reorganization than when stimulating structural nodes that are strongly connected 

(bottom).
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Figure 6: Epileptic spasms are associated with strong, stable functional networks.
(A) Average functional connectivity matrices (top row) and network maps (bottom row) for 

patients with and without spasms. The color represents the connectivity strength, defined as 

the proportion of 1-second epochs for which the connectivity between two channels was 

statistically significant. Network maps show all connections with strength > 0.1. (B) Test-

retest reliability of the FCN for the spasms group (green) and the non-spasms group (gray) 

measured via 2D correlation of the connectivity matrices for EEG segments of varying 

length. The solid lines represent the mean, and shaded areas denote the 95% confidence 

interval across all subjects in the group. FCNs are reliable when measured using segments of 

EEG at least 150 seconds long, and the spasms group exhibited higher reliability than 

controls. (C) A representative example of FCNs from longitudinal EEGs of a patient who 

had spasms and was diagnosed with Lennox-Gastaut at 45 months old. The strength of the 

FCN increases with onset of Lennox-Gastaut and varies over time; however, note that the 

locations of the strongest connections in the network remain stable over the 17 month 

period. This patient experienced continued seizures, despite multiple medication changes.
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