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The Location Selection Problem for the Household Activity Pattern Problem  

 

Jee Eun Kang and Will Recker 

Department of Civil and Environmental Engineering 

Institute of Transportation Studies 

University of California, Irvine 

Irvine, CA 92697 USA 

 

Abstract 

 In this paper, an integrated destination choice model based on routing and scheduling 

considerations of daily activities is proposed. Extending the Household Activity Pattern Problem (HAPP), 

the Location Selection Problem (LSP-HAPP) demonstrates how location choice is made as a 

simultaneous decision from interactions both with activities having predetermined locations and those 

with many candidate locations.  A dynamic programming algorithm, developed for PDPTW, is adapted to 

handle a potentially sizable number of candidate locations.  It is shown to be efficient for HAPP and LSP-

HAPP applications.  The algorithm is extended to keep arrival times as functions for mathematical 

programming formulations of activity-based travel models that often have time variables in the objective. 

 

Keywords 

Destination Choice, Location Selection, Household Activity Pattern Problem, column generation, exact 

dynamic programming for PDPTW 

 

1. Introduction 

 Individual- or household-level destination choice is not an output of optimizing a single objective 

but rather is a complex decision-making process involving a multitude of issues related to such aspects as 

type of activity, personal preference, accessibility, time-of-day, trip chaining, mode choice and etc.  For 

this reason, destination choice modeling has been studied within the context of associations with those 

influencing factors.  Although there are other approaches to model destination choice (Gärling and 

Axhausen, 2003; Louviere and Timmermans, 1990), most of the work in this area has modeled 

destination choice using discrete choice analysis based on random utility theory.   

 Many trip-based single destination choice studies have focused on the influences of type of 

activity.  A few of the papers in this category are Bhat et al. (1998) – work and shopping, Fotheringham 

(1988), Recker and Kostyniuk (1978) – grocery shopping, and Pozsgay and Bhat (2001) – recreational 
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trip destination.  In more fundamental approaches relative to how travel decisions are made, discrete 

choice models of destination choice have been integrated into tour-based approaches, involving such 

considerations as proximity to other activity locations, travel time and duration, etc.  Such considerations 

are particularly important in analyzing destination choice associated with non-primary activities that 

people tend to include in tours with other activities.  Kitamura (1984) included a zone attraction 

component within trip chaining behavior that included considerations of locations of home and other 

activities within trip chains, but his approach was limited in that trip chaining sequence, time-of-day, and 

selection of activities in a tour are static.  Bowman and Ben-Akiva (2000) proposed integrated activity-

based demand modeling including destination choice as well as types of pattern, travel mode, time-of-

day, etc.   

Here, we propose an integrated approach similar to Bowman and Ben-Akiva (2000), based on a 

scheduling and routing framework for daily activities that includes a capability of modeling the selection 

of activity locations, time-of-day, pattern types, and choice of personal travel modes (e.g., automobile, 

bicycle, walk).1  In the formulation, destination choices for certain activities (i.e., those without fixed 

locations) are viewed not as a primary choice that travelers make, but rather as an auxiliary choice made 

within their daily schedule and routing.  The scheduling and routing model we propose is based on the 

Household Activity Pattern Problem (HAPP) (Recker, 1995).  HAPP is an interpretation of personal- or 

household-level daily activity scheduling based on an extension of the pickup and delivery problem with 

time windows (PDPTW).  Distinct from the majority of activity-based travel demand modeling that has 

been based on either econometric or simulation approaches, HAPP is a network-based mathematical 

programming approach that can offer explanations to a variety of transportation behaviors not directly 

amenable to either econometric or simulation approaches (Gan and Recker, 2012, Chow and Recker, 

2011; Recker et al., 2008; Gan and Recker, 2008; Recker, 2001; Recker, et al, 2001; Recker and Parimi, 

1999; Recker, 1995).  

There are a number of potential practical advantages that the properties mathematical 

programming models, compared to discrete choice analysis, offer in application to activity-based travel 

demand.  Principal among these is that such temporal constraints as the open hours of a particular 

shopping destination, or such spatial-temporal constraints as the space-time prism associated with an 

activity at particular location is insufficient to permit performance of a subsequent activity, that may be 

placed on travel/activity decisions can be incorporated explicitly, rather than be implied in the predefined 

specification of the set of discrete alternatives. For example, in the nested logit model example from 

Bowman and Ben-Akiva (2000), each decision nest needs pre-defined alternative choice sets, leading to 

                                                           
1 Choice of such service-provider modes as public transit that have specific routes and schedules are not included in 

the proposed model, since the complications introduced by their discrete temporal  availability and multiple routes 

greatly complicate the formulation.   
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54 possible outcomes (discrete alternatives). Although infeasible decisions need to be addressed via 

constraints (which implicitly may nonetheless be enumerated as part of the solution algorithm), it is not 

required to pre-define all sets of actions—such as types of activity patterns, time-of-day, destination 

choice, composition of activities in each tour, and etc.—that are possible. Another (obvious) advantage of 

mathematical programming models is their ability to handle decisions involving both continuous (time) as 

well as discrete (location) variables. Additionally, because discrete choice model estimation allows for 

only a relatively small number of alternatives, with the alternative destination set universal for all 

individuals (although specific individuals typically may not include all alternatives in their respective 

choice sets), specification must be defined either to meet pre-specified requirements, or be randomly 

sampled. This aspect makes discrete choice analysis in application to destination choice particularly 

limiting in its ability to represent individual choices.  For more discussion and literature review on choice-

set generation sub-problem of destination choice modeling based on discrete choice analysis, refer to 

Thill (1992). 

Of course, there are also significant disadvantages associated with the current state of 

mathematical programming approaches to activity-based travel/activity modeling, many of which are 

enumerated by Recker (2001) who showed that conventional discrete transportation choice models (e.g., 

destination, route, mode) can be represented as a special case of the HAPP family of mathematical 

programming models. In essence, both approaches are based on utility maximization principles applied at 

the individual (or disaggregate level), the principal differences being that the discrete choice case involves 

an unconstrained optimization of discrete choices based on specification of utility in terms of continuous 

and/or discrete variables with a specified error structure, while the mathematical programming case 

involves a constrained optimization of both continuous and discrete variables based on specification of 

utility in terms of continuous and/or discrete variables with no assumed error structure.  The specification 

of the error structure in discrete choice models is conducive to estimation by standard maximum 

likelihood techniques, while the lack of such has presented a challenge to moving mathematical 

programming approaches toward being descriptive (and, ultimately, predictive) from being merely 

proscriptive; recent advances based on inverse optimization techniques (Chow and Recker, 2011) have 

made progress toward estimation. And, as a constrained generalization of the discrete choice case, the 

mathematical programming modeling approach actually generally greatly increases the dimension of the 

choice set alternatives over that of discrete modeling approaches, but shifts the burden of the increased 

dimensionality to the solution algorithm rather than to the specification of the model choice alternatives; 

this can present a serious obstacle since mathematical programming models such as HAPP are known to 

be np-hard. Despite these disadvantages, the advantages that mathematical programming models offer in 
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guaranteeing the internal consistency of the linkages dictated by time-space constraint considerations are 

deemed an avenue of research of potential benefit in modeling complex travel choices.  

In this paper, we extend the basic HAPP formulation to the case involving a choice of selecting a 

location from many candidate locations for performance of a desired activity.  As described above, a 

structural advantage that HAPP provides is a flexible form for incorporating new behavioral aspects while 

maintaining the consistency of inviolable rules governing construction of activity patterns that are ensured 

by the mathematical formulation of the basic HAPP model—extensions can be easily built from the basic 

formulation.  Although the basic formulation for the Location Selection Problem (LSP) is easily obtained 

from the HAPP formulation by expanding the constraints that specify that only one location of each 

activity type is to be visited, the size and the complexity of the problem become an issue due to the 

various possible locations within the range of one’s spatial and temporal accessibility—computational 

limitations have been an obstacle that makes it difficult for even the basic HAPP model to reflect realistic 

travel behaviors in the model.  Fortunately, the PDPTW on which the model is based has been studied 

extensively, and numerous algorithms to handle large-scale problems have been offered.  Here, we adopt 

methodology incorporating dynamic programming algorithms with path eliminations developed by 

Desrosiers et al. (1986) and Dumas et al. (1991), with suitable modifications to meet the requirements of 

the Location Selection Problem. The Location Selection Problem for the Household Activity Pattern 

Problem presented here can handle a larger number of alternative locations, without the additional step of 

generation of specific alternative destination sets.   

 

2. Location Selection Problem for the Household Activity Pattern Problem 

 In the most general formulation of the Location Selection Problem for the Household Activity 

Pattern Problem (LSP-HAPP), we presume that there are activities with specified locations, as well as 

activities with no specific location—there exist a number of candidate sites for each such activity type 

(total of 𝑚 activities), that are scheduled to be completed by the household.  Specifically, we assume that 

among the activities scheduled for completion by the household are those for which the locations are 

predetermined (e.g., work, school) and some for which the location can be selected from a number of 

candidate locations (e.g., grocery shopping).  In the HAPP analogy to the PDPTW, activities are viewed 

as being "picked up" by a particular household member (who, in this basic case, is uniquely associated 

with a particular vehicle) at the location where performed and, once completed (requiring a service time 

is ) are "logged in" or "delivered" on the return trip home.  Multiple "pickups" are synonymous with 

multiple sojourns on any given tour.  The scheduling and routing protocol relative to some household 

objective produces the "time-space diagram" commonly referred to in travel/activity analysis. 
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Decision variables, directly analogous to those of the PDPTW, are defined as (see appendix for 

notation used): 

 

𝑋𝑢𝑤
𝜐 , 𝑢, 𝑤 ∈ 𝑵, 𝜐 ∈ 𝑽, 𝑢 ≠ 𝑤 binary decision variable equal to unity if vehicle  travels from 

activity u to activity w, and zero otherwise. 

𝑇𝑢, 𝑢 ∈ 𝑷   the time at which participation in activity u begins. 

𝑇0
𝑣 , 𝑇2𝑛+1

𝑣 , 𝑣 ∈ 𝑽  the times at which vehicle  first departs from home and last 

returns to home, respectively. 

𝑌𝑢, 𝑢 ∈ 𝑷   the total accumulation of either sojourns or time (depending on 

the selection of  D  and  ud )  on a particular tour immediately 

following completion of activity u. 

 

 With these definitions, the LSP-HAPP (the Location Selection Problem for the Household 

Activity Pattern Problem) for a household’s completion of a set  𝑴𝑷 = {1,2,… , 𝑖, … , 𝑛𝑃}  of 𝑛𝑃 out-of-

home activities with pre-selected (one-to-one) locations 𝑷𝑷
+ = {1,2,… , 𝑖, … , 𝑛𝑃}  and a set 𝑨 =

{𝑨1, … , 𝑨𝑎, … , 𝑨𝑚}  of out-of-home activities of specific types (e.g., grocery shopping) 𝑨𝒂, each of which 

with 𝑛𝑨𝒂
 possible corresponding locations   𝑷𝑨𝒂

+ = {1,2,… 𝑖, … , 𝑛𝑨𝒂
} , using mode of travel  , can be 

represented by the following formulation.2   

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐷𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦  (1) 

subject to: 

∑ ∑ 𝑋𝑢𝑤
𝜐

𝑤∈𝑁𝑣∈𝑉 = 1,    𝑢 ∈ 𝑷𝑷
+    (2) 

∑ ∑ ∑ 𝑋𝑢𝑤
𝜐

𝑤∈𝐍𝑢∈𝑷𝐴𝑎
+𝑣∈𝑽 = 1,      𝑨𝒂 ∈ 𝑨   (3) 

∑ 𝑋𝑢𝑤
𝜐

𝑤∈𝐍 − ∑ 𝑋𝑤𝑢
𝜐

𝑤∈𝐍 = 0   𝑢 ∈ 𝑷,  𝜐 ∈ 𝐕  (4) 

∑ 𝑋0𝑤
𝜐

𝑤∈𝐏+ ≤ 1   ,    𝜐 ∈ 𝐕   (5) 

∑ 𝑋𝑢,2𝑛+1
𝜐

𝑢∈𝐏− −∑ 𝑋0𝑤
𝜐

𝑤∈𝐏+ = 0   ,    𝜐 ∈ 𝐕  (6) 

∑ 𝑋𝑤𝑢
𝜐

𝑤∈𝐍 −∑ 𝑋𝑤,𝑛+𝑢
𝜐

𝑤∈𝐍
= 0   𝑢 ∈ 𝑷+,  𝜐 ∈ 𝐕  (7) 

𝑇𝑢 + 𝑠𝑢 + 𝑡𝑢,𝑛+𝑢 ≤ 𝑇𝑛+𝑢   𝑢 ∈ 𝑷𝑷
+   (8-1) 

                                                           
2 LSP-HAPP is different from selective pickup and delivery problem in that there is no utility associated with 

visiting a location, and that only one of the same types of location can (and must) be visited.  
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𝑋𝑢𝑤
𝜐 = 1 ⇒ 𝑇𝑢 + 𝑠𝑢 + 𝑡𝑢,𝑛+𝑢 ≤ 𝑇𝑛+𝑢   𝑢 ∈ 𝑷𝑨

+ ,  𝑤 ∈ 𝐍,  𝜐 ∈ 𝐕 (8-2) 

∑ ∑ 𝑋𝑢𝑤
𝜐

𝑤∈𝐍𝑣∈𝑽 = 0 ⇒ 𝑇𝑢 = 𝑇𝑢+𝑛 = 0   𝑢 ∈ 𝑷𝑨
+(8-3)𝑋𝑢𝑤

𝜐 = 1 ⇒ 𝑇𝑢 + 𝑠𝑢 + 𝑡𝑢𝑤 ≤ 𝑇𝑤   ,    𝑢,𝑤 ∈ 𝐏,  𝜐 ∈ 𝐕 (9) 

𝑋0𝑤
𝜐 = 1 ⇒ 𝑇0

𝜐 + 𝑡0𝑤 ≤ 𝑇𝑤   ,    𝑤 ∈ 𝑷+,  𝜐 ∈ 𝐕 (10) 

𝑋𝑢,2𝑛+1
𝜐 = 1 ⇒ 𝑇𝑢 + 𝑠𝑢 + 𝑡𝑢,2𝑛+1 ≤ 𝑇2𝑛+1

𝜐   ,   𝑢 ∈ 𝑷−,  𝜐 ∈ 𝐕    (11)  

𝑎𝑢 ≤ 𝑇𝑢 ≤ 𝑏𝑢   ,    𝑢 ∈ 𝑷𝑷
+    (12-1) 

𝑋𝑢𝑤
𝜐 = 1 ⇒ 𝑎𝑢 ≤ 𝑇𝑢 ≤ 𝑏𝑢   ,    𝑢 ∈ 𝑷𝑨

+, 𝑢 ∈ 𝐍,  𝜐 ∈ 𝐕  (12-2) 

𝑋0𝑤
𝜐 = 1 ⇒ 𝑎0 ≤ 𝑇0

𝜐 ≤ 𝑏0   ,   𝑤 ∈ 𝑷+,  𝜐 ∈ 𝐕  (13-1) 

∑ 𝑋0𝑤
𝜐

𝑤∈𝐏+ = 0 ⇒ 𝑇0
𝜐 = 0   ,    𝜐 ∈ 𝐕   (13-2) 

𝑋u,2𝑛+1
𝜐 = 1 ⇒ 𝑎2𝑛+1 ≤ 𝑇2𝑛+1

𝜐 ≤ 𝑏2𝑛+1 ,   𝑢 ∈ 𝑷−, 𝜐 ∈ 𝐕  (14-1) 

∑ 𝑋u,2𝑛+1
𝜐

𝑢∈𝐏− ⇒ 𝑇2𝑛+1
𝜐 = 0   ,    𝜐 ∈ 𝐕   (14-2)𝑋𝑢𝑤

𝜐 = 1 ⇒ 𝑌𝑢 + 𝑑𝑤 = 𝑌𝑤 , 𝑢 ∈ 𝑷,   𝑤 ∈ 𝑷+ 𝜐 ∈ 𝐕  (15) 

𝑋𝑢𝑤
𝜐 = 1 ⇒ 𝑌𝑤 − 𝑑𝑤 = 𝑌𝑤 , 𝑢 ∈ 𝑷,   𝑤 ∈ 𝑷− 𝜐 ∈ 𝐕  (16) 

𝑋0𝑤
𝜐 = 1 ⇒ 𝑌0 + 𝑑𝑤 = 𝑌𝑤 , 𝑤 ∈ 𝑷+,  𝜐 ∈ 𝐕  (17) 

𝑌0 = 0  ,    0 ≤ 𝑌𝑢 ≤ 𝐷, 𝑢 ∈ 𝑷+   (18) 

∑ ∑ ∑ 𝑐𝑢𝑤
𝜐 𝑋𝑢𝑤

𝜐
𝑤∈𝐍𝑢∈𝐍𝑣∈𝑽 ≤ 𝐵𝑐  (19) 

∑ ∑ 𝑡𝑢𝑤
𝜐 𝑋𝑢𝑤

𝜐
𝑤∈𝐍𝑢∈𝐍 ≤ 𝐵𝑡

𝑣  (20) 

𝑋𝑢𝑤
𝜐 = {

0
1
, 𝑢, 𝑤 ∈ 𝐍, 𝑣 ∈ 𝐕  (21) 

𝑇𝑢 ≥ 0, 𝑢 ∈ 𝑷   (22) 

𝑇0
𝑣 , 𝑇2𝑛+1

𝑣 ≥ 0, 𝑣 ∈ 𝐕  (23) 

 

 The constraints that specify that each activity location needs to be visited (performed) are split 

into two sets of constraints.  Equations (2) impose the condition that there is one and only one path 

leading from each activity with pre-selected location.  Equations (3) impose the condition that there is one 

and only one path leading from one and only one type Aa out-of-home activity location. This can be 

viewed as a Generalized Vehicle Routing Problem suggested by (Ghiani and Improta, 2000). The rest of 

the formulation follows the classical PDPTW, and the base case HAPP, except for a few conditional 

constraints to relax constraints on unselected candidate nodes.  Equations (4) ensure that that there is a 

connected path among the activities (and their return trips to home) and that no activity is revisited.  

Equations (5) allow for the possibility that some of the vehicles in the household’s stable of vehicles may 

not be used. Equations (6) enforce a restriction similar to that in Equations (2), but with reference to the 

paths leading from the origin and to the final termination (i.e., the depot).  Equations (7) stipulate that the 

return-home trip be on the same path as it’s associated out-of-home activity. The original equation (8), 
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Tu + su + tu,n+u ≤ Tn+u,    u ∈ 𝑷+, is a restriction that the activity start times for elements of  
P precede 

those of corresponding elements in 
P  (the end point, home location, of the connected graph defining the 

path from the location of performance of an activity to the ultimate trip to the home location). However, 

for LSP-HAPP, this constraint needs to be satisfied only if the solution includes visiting that specific node 

among many candidates as in (8-2). Similarly, when the objective function involves time variables, the 

time variables for the unvisited activity nodes need to be constrained in order not to affect the objective 

function as in (8-3). Equation (9) is the restriction that the commencement time of the activity associated 

with any trip end w, i.e., wT , requiring travel from another trip end u can occur no sooner than the 

termination time of the corresponding activity at u plus the travel time from the site of activity u to the 

site of activity w.  Equations (10) and (11) state that restrictions similar to those imposed by Equation (9) 

hold for travel from the origin node, 0, to any activity, as well as for travel from any activity to its “return 

home” activity.  Equations (12) state that each activity and the selected node needs to start within its 

given time windows. This equation is modified from the original constraint, 𝑎𝑢 ≤ 𝑇𝑢 ≤ 𝑏𝑢,  𝑢 ∈ 𝐏, to be 

satisfied only when the node is visited for the selective locations. Equations (13), and (14) add restrictions 

regarding the time windows available for activity completion. For the case in which the vehicle does not 

operate for the given day, its time windows need to be set to zero, so as not to affect the objective 

function. Equations (15) through (18) impose conditions on the maximum number of sojourns allowed in 

any single tour. Equations (19) and (20) enforce budget constraints. Equations (21) (22) (23) add non-

negativity and integer constraints. 

 

3. Solution Methodology 

 As noted, HAPP is an NP-hard problem; for a total number of all activities— with pre-selected 

locations plus the number of candidate locations for activities with alternative candidate locations—of n, 

the number of flow decision variables is (2𝑛 + 2)2. As such, its application faces significant challenges 

imposed by computational limitations.  All HAPP cases examined previously in the literature have had 

only a few activities.  Application of LSP-HAPP to cases involving multiple vehicles with numbers of 

activities having a large number of candidate locations within one’s spatial and temporal accessibility 

seriously stretches this computational limitation.  

  Numerous algorithms have been developed to solve large-size PDPTW (see, e.g., Cordeau and 

Laporte, 2003), and problems with locations up to 2,500+ have been successfully solved.  In this paper, 

we follow the solution method proposed by Dumas et al. (1991), which was used to solve large scale 

PDPTW, and modify it to meet the specifications of LSP-HAPP problem.  In their approach, an exact 

dynamic forward programming routine in a sub-problem is used to generate possible and feasible paths, 
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and then combinations of these paths are decided in the master problem to assign each path to each 

vehicle.   

 It has been shown that the arc-path notation’s sub-problem to generate admissible paths in the 

multi-commodity problem is the shortest path problem (Ford and Fulkerson, 1958).  Since LSP-HAPP 

equations (1)-(7) form a multi-commodity problem, we can rewrite in arc-path formulation as the 

following:  

  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑟
𝑟∈Ψ

𝑌𝑟      (𝑎) 

∑𝑎𝑖𝑟

𝑟∈Ψ

𝑌𝑟 = 1, 𝑖 ∈ 𝑷𝑷
+       (b1) 

∑ ∑𝑎𝑖𝑟

𝑟∈Ψ

𝑌𝑟 = 1

𝑖∈𝑷𝑨𝒂
+

   𝑨𝑎 ∈ 𝑨    (b2) 

∑𝑌𝑟
𝑟∈Ψ

≤ V             (c) 

 

where 

Ψ:  the set of admissible paths 

𝑌𝑟 = {
1    if path 𝑟 is used
 0    otherwise           

,  𝑟 ∈ Ψ  

𝑎𝑖𝑟 = {
1    if path 𝑟 includes activity node 𝑖 
0    otherwise                                           

,    𝑖 = 1,… , 𝑛,   𝑟 ∈ Ψ 

𝑐𝑟:  the cost of route 𝑟,  𝑟 ∈ Ψ 

 

 Here, 𝑟 is an admissible path for a given vehicle/household member, 𝑣, that satisfies all of the 

properties of the problem as specified in the remaining Equations (8) - (22).  Equations (b1) and (b2) are 

substituted for the original constraint of PDPTW arc-path formulation for the Location Selection 

Problem: 

 

∑𝑎𝑖𝑟

𝑟∈Ψ

𝑌𝑟 = 1, 𝑖 ∈ 𝑷+      (b) 

 

Equations (b1) constrain that all activities with pre-selected location need to be visited once.  And 

Equations (b2) constrain that one and only one of the candidate locations for each activity type with 

multiple candidate locations needs to be visited once and only once. 
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 Variable 𝑎𝑖𝑟  shows whether each activity node 𝑖  is on path 𝑟 . Then the column vector 

[𝑎𝑖𝑟 , 𝑎𝑖𝑟, … , 𝑎𝑖𝑟]
𝑇 shows all the activity nodes that the path 𝑟 covers.  Therefore, by finding an admissible 

path 𝑟, we are performing the column generation, which is widely used for large-scale combinatorial 

optimization problems.  For arc-path formulation of PDPTW, the sub-problem (the dual problem) to find 

admissible path 𝑟  is the shortest path problem with time windows. For LSP-HAPP, the sub-problem 

becomes LSP-adaptation of the shortest path problem with time windows 

   This sub-problem of finding 𝑟  of LSP-adaptation from the shortest path problem with time 

windows can be solved by the following dynamic programming algorithm (Algorithm 1, shown below), 

which is adapted from Dumas et al. (1991) and Desrosiers et al. (1986), and follows notations used in 

Desrosiers et al. (1986), i.e., 

 

state (S, i): a feasible route to node i, the terminal node, that visits all the nodes in S ⊆ 𝐏, and 𝑖 ∈ S. S 

is a non-ordered set of cardinality 𝑘, where 𝑘 is the iteration number.  

(S𝛼 , i):  a given route 𝛼 to state (S, i) 

𝑡(S𝜶, i):  the arrival time at node i, following route 𝛼  

𝑐(S𝜶, i): the current cost at node i, following route 𝛼  

𝑑(S𝜶, i): the cumulative number of sojourns in a tour at node i, following route 𝛼 
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  (S , 0) +  0, ≤   (S { } ,  ) } 

 (S , i) +   +   , ≤   (S { } ,  )} 

Initialization ( = 1) 

A set of states of routes visiting one activity node from home location are generated. 

   {({ },  ),  ∈  +} 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as: 

    (S ,  ) = {  a    , 0 +  0,  ≤  (S ,  ) ≤   ,  

    (S ,  ) =  0,  

    (S ,  ) =    

   

Recursion (2 ≤  ) 

New states are constructed by adding one node,  , to the total visited at the 

preceding iteration: 

{(  { },  ),  ∈   {2 + 1}} where ( ,  ) is the state from previous iteration 

 Then the states are tested for elimination criteria, and if the state (  { },  ) 

is not eliminated, its label set will be created. Its corresponding arrival time, 

cumulative cost, and cumulative number of sojourns in a tour are updated as: 

    (S { } ,  ) =  (S ,  )   {  a    ,  +   +   ,  ≤  (S { } ,  ) ≤   , 

    (S { } ,  ) =  (S ,  ) +   ,   

    (S { } ,  ) =  (S ,  ) +    

 Stop when there is no label generated at this iteration.  

 

Selection of Arrival Times 

For all completed paths,  , solve the following optimization problem, and update 

the final cost.  

  Minimize  ( 0, 1, … , 2 , 2 +1) such that  (S , 2 + 1)  

 

Algorithm 1: LSP-HAPP Path Generation Algorithm for Objective Function Involving Time Variables 

  

Here we have extended the algorithm so that only one of the candidate locations is visited for 

activity types without pre-selected locations as constrained in LSP-HAPP Equation (3), and introduce 

new elimination criteria to support such patterns—a method that works well for large-scale problems.  

Although similar to the shortest path problem addressed by the algorithm presented by Dumas et al. 

(1991) and Desrosiers et al. (1986), the problem considered by LSP-HAPP (as well as by other HAPP-

based formulations) differs in an important aspect that requires attention before the algorithm can be 

applied. It is often the case that the actual time selected for performance of an activity (within an 

acceptable time window) influences the net utility (utility of the activity less the travel disutility) one 

experiences.  In the algorithm proposed by Desrosiers et al. (1986) and Dumas et al. (1991), the earliest 
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possible arrival time is selected for 𝑇𝑢.  To the contrary, arriving at an activity at its earliest possible 

arrival time may result in out-of-home wait time delays (waiting for the next activity window to become 

available) in completing other scheduled activities that may lead to reduced utility.  This aspect is more 

critical for LSP-HAPP than for PDPTW since activity start (return home) time windows are not 

homogeneous compared to pick up (delivery) time windows of PDPTW.  Indeed, such factors as time 

being outside of home, or delay time in starting an activity have been found to play a role in personal 

activity patterns (Chow and Recker; 2012, Recker et al; 2008).   

 To address these issues, first the objective function is separated into two parts—one as a function 

of flow decisions (e.g. ∑ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗𝑗∈𝑵𝑖∈𝑵𝑣∈𝑽  or ∑ ∑ ∑ 𝑡𝑖𝑗𝑋𝑖𝑗𝑗∈𝑵𝑖∈𝑵𝑣∈𝑽 ), and the other as a function of 

arrival times (e.g., ∑ (𝑇2𝑛+1
𝑣 − 𝑇0

𝑣)𝑣∈𝑽 ); e.g.,   

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗𝑗∈𝑵𝑖∈𝑵𝑣∈𝑽 + ∑ 𝑓(𝑇0
𝑣 , 𝑇1, … , 𝑇2𝑛 , 𝑇2𝑛+1

𝑣 )𝑣∈𝑽   

 

The first part of the objective which is affected by path sequence is updated according to the original 

algorithm.  The other part, which is dependent on activity start (arrival) times cannot be updated at each 

iteration because the optimal arrival time may not be determined during the process of creating paths, and 

also because variables may not have been defined yet; this part is left to be assessed by a final procedure.  

Instead, we define a new set to represent arrival times as a function, 

 

𝑇(S𝜶, 𝑗): set of arrival times windows of all activities in S {0}, following path 𝜶  

 

and during Recursion (2 ≤ 𝑘), a label is created with possible time windows of arrival time determined as 

 a  𝑎𝑗, 𝑇𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑗 ≤ 𝑡(S {𝑗}𝜶,  ) ≤ 𝑏𝑗.  Conditions respecting the path sequence are as  𝑡(S𝜶, i) +

𝑠𝑖 + 𝑡𝑖,𝑗 ≤  𝑡(S {𝑗}𝜶,  )} .  The feasibility of arrival time windows needs to be delivered as well as 

previous time windows of arrival times.  Then, 𝑐(S𝜶, i),  the objective measure affected by path sequence 

at node 𝑖  following route  𝜶 , is updated in the same manner as in the a original algorithm, i.e., 

𝑐(S {𝑗}𝜶,  ) = 𝑐(S𝜶, 𝑖) + 𝑐𝑖,𝑗.  For the elimination criteria involving possible time window violations, 𝑇𝑖 

is assumed to be the earliest possible time. 

 Once all feasible paths are created, arrival times are decided by minimizing the objective function 

while respecting time windows created along the paths generated.  This is a problem of finding the 

optimal value with arrival time decisions given a path sequence, in the form of a linear programming 

problem of 𝑛 variables, and solved very easily.  By leaving time variables as a function, the algorithm 

loses some of the simplicity since several linear programs need to be solved during the final step of the 
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procedure, but it allows specification of objectives in terms of time variables.  (If objectives are in terms 

of load variables, the same approach can be used).  Then, the path with the smallest objective function is 

selected, and the same limit of problem size is guaranteed as those of the original algorithms.  

 State elimination criteria are employed to efficiently reduce the size of path combinations needed 

to explore. At the beginning of each recursion iteration 𝑘, all combinations of {(𝑆 {𝑗}, 𝑗), 𝑗 ∈ 𝑷} are 

tested relative to whether to be stored or eliminated. Some elimination criteria are based solely on the 

feasibility of (𝑆 {𝑗}, 𝑗), and some elimination criteria also consider the terminal node 𝑖 of the previous 

path (𝑆, 𝑖) from previous iteration 𝑘 − 1: 

 

Elimination criteria 

#1: node 𝑗 must not have been previously visited: 

  𝑗 ∈ 𝑆̅ 

#2: if node 𝑗 is one of the candidate locations for activity type 𝑨𝒂, then any candidate location of activity 

𝑨𝒂 must not have been previously visited. This elimination is tested for all selective activity types, 

𝑨𝑎 ∈ 𝑨:   

  For all 𝑨𝑎 ∈ 𝑨, if 𝑗 ∈ 𝑷𝑨𝒂

+ , then  𝑙 ∈ 𝑆̅, for all 𝑙 ∈ 𝑷𝑨𝒂

+  and 𝑙 ≠ 𝑗 

#3: if node 𝑗 is one of the return home locations for activity type 𝑨𝒂, then any return home location for 

activity type 𝑨𝒂, must not have been previously visited. This elimination is tested for all selective 

activity types, 𝑨𝑎 ∈ 𝑨:  

  For all 𝑨𝑎 ∈ 𝑨, if 𝑗 ∈ 𝑷𝑨𝒂

− , then  𝑙 ∈ 𝑆̅, for all 𝑙 ∈ 𝑷𝑨𝒂

−  and 𝑙 ≠ 𝑗  

#4: if node 𝑗 is a return home node, then the activity node, 𝑗 − 𝑛 must have been previously visited 

(precedence constraint): 

  if 𝑗 ∈ 𝑷−, then 𝑗 − 𝑛 ∈ 𝑆 

#5: if node 𝑗 is an activity node, total number of sojourns (cumulative time away from home) must not 

exceed the maximum number of sojourns (time away from home) allowed in a tour: 

  if 𝑗 ∈ 𝑷+, then 𝑑(S𝜶, 𝑖) + 𝑑𝑗 ≤ 𝐷 

#6: time constraints must be respected: 

 𝑇𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑗 ≤ 𝑏𝑗 

#7: for 𝑖 ∈ 𝑷+, 𝑗 ∈ 𝑷+, one of paths, 𝑖 → 𝑗 → 𝑛 +  𝑖 → 𝑛 + 𝑗 or 𝑖 → 𝑗 → 𝑛 + 𝑗 → 𝑛 + 𝑖, must be feasible 

with time 𝑇𝑖 = 𝑎𝑖, which is the earliest time at which node 𝑖 can be visited. 

#8: for 𝑖 ∈ 𝑷−, 𝑗 ∈ 𝑷−, one of paths, 𝑖 − 𝑛 → 𝑗 − 𝑛 →  𝑖 → 𝑗 or 𝑗 − 𝑛 → 𝑖 − 𝑛 →  𝑖 → 𝑗, must be feasible 

with time 𝑇𝑖 = 𝑎𝑖, and 𝑇𝑗 = 𝑎𝑗, which is the earliest time at which node 𝑖, 𝑗 can be visited. 
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#9: for 𝑖 ∈ 𝑷+, 𝑗 ∈ 𝑷−, path 𝑗 − 𝑛 → 𝑖 → 𝑗 → 𝑛 + 𝑖 must be feasible with time 𝑇𝑗−𝑛 = 𝑎𝑗−𝑛, which is the 

earliest time at which node 𝑗 − 𝑛 can be visited.  

#10: for 𝑖 ∈ 𝑷−, 𝑗 ∈ 𝑷+, path 𝑖 − 𝑛 → 𝑖 → 𝑗 → 𝑛 + 𝑗 must be feasible with time 𝑇𝑖−𝑛 = 𝑎𝑖−𝑛, which is 

the earliest time at which node 𝑖 − 𝑛 can be visited 

#11: if node 𝑖 is the final home node, then cannot expand a path from this path: 

 𝑖 ≠ 2𝑛 + 1 

#12: if node 𝑗 is the final home node, then the final visited node 𝑖 must be one of the return home nodes: 

 if 𝑗 = 2𝑛 + 1, then 𝑖 ∈ 𝑷− 

#13: if node 𝑗 is the final home node, then for all the activity location nodes that are visited, 𝑙, all of the 

corresponding return home nodes must have been visited: 

 if 𝑗 = 2𝑛 + 1, then 𝑛 + 𝑙 ∈ 𝑺 for all 𝑙 ∈ 𝑷+ and 𝑙 ∈ 𝑺 

 

 Criteria #2 and #3 are introduced to meet the specifications of LSP- HAPP. The rest of the label 

generating criteria are from Dumas et al. (1991) and Derosiers et al. (1986). Criteria #7 - #10 tighten 

criteria #6 with possible time window violations to reduce the number of label generations.  The 

efficiency of dynamic programming is dependent on how efficient these elimination criteria are.   

 

Additionally, since the physical location of all return nodes is home for the LSP-HAPP application, it is 

not meaningful to identify the order of visiting those nodes during Recursion. This drastically reduces the 

number of labels to be created.  

 

# 14: if all pre-selected locations (all 𝑙 ∈ 𝑷𝑷
+ ) and one of the selective locations (any 𝑙 ∈ 𝑷𝑨𝒂

+̅̅ ̅̅ ̅, 𝑨𝒂 ∈ 𝑨) 

have been visited previously, and the arrival node 𝑗 is home (if 𝑙 ∈ 𝑆 and 𝑗 ∈ 𝑷−), create the new 

label and terminate Recursion from this label, add the rest of return home trips of all the visited 

nodes if missing, and pass the label to Final Iteration. 

   𝑙 ∈ 𝑆 for all 𝑙 ∈ 𝑷𝑷
+, and 𝑙 ∈ 𝑆 for any 𝑙 ∈ 𝑷𝑨𝒂

+  for all 𝑨𝑎 ∈ 𝑨, and 𝑗 ∈ 𝑷− 

  

 Patterns generated by the algorithm are now introduced to the master problem, (a) – (c), and 

solved.  It is noted that the information on path cost, arrival time, and load are not carried onto the master 

problem.  Those data need to be stored separately.  
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4. Examples 

4.1 Case 1 : Grocery Shopping Location Selection Involving a Single Vehicle  

 As an example of the application of this basic LSP-HAPP formulation, we consider the case of a 

household with one vehicle that is available for travel to any activity beginning at 6:00 and ending at 

20:00, but must return to home from any activity no later than 21:00.  The household has one work 

activity with a fixed location, i.e.,   {1}, ; 1{1}P Pn M PP ,   with duration of 1 9s 
 
hours and start 

time availability windows between 8:00 and 9:00 and no additional constraint on returning home from the 

work activity. Assume further that the household also has a grocery shopping trip to be scheduled; i.e., 

𝑨 = {𝑨𝟏}, 𝑚 = 1, and that there are two potential locations for this activity 𝑷𝑨𝟏
= {2, 3}; 𝑛𝐴1

= 2; the 

operation hours for both stores is assumed to be from 6:00 to 22:00 and the duration of the shopping 

activity at either location is 1 hour3.  In this example: 

 

𝑴 = 𝑴𝒑  𝑨 = {1, 2, 3}; 𝑛 = 𝑛𝑃 + 𝑛𝐴 = 3 

𝑷𝑷
+ = {1} 

𝑷𝑨
+ = {2, 3} 

𝑷𝑷
− = {4} 

𝑷𝑨
− = {5, 6} 

𝑷+ = 𝑷𝑷
+  𝑷𝑨

+ = {1, 2, 3} 

𝑷− = 𝑷𝑷
−  𝑷𝑨

− = {4, 5, 6} 

𝑷𝑷 = 𝑷𝑷
+  𝑷𝑷

− = {1, 4} 

𝑷𝑨 = 𝑷𝑨
+  𝑷𝑨

− = {2, 3, 5, 6} 

 

with time availability windows, and corresponding return-home windows: 

 

1 1

2 2

3 3

, 8, 9

[ , ] , 6,21    ,

6,21,

i i

a b

a b a b

a b

   
   

 
   
     

4 4

5 5

6 6

, 6,  21

[ , ] , 6,  22    ,

6,  22,

n i n i

a b

a b a b

a b

 

   
   

 
   
     

 
 

 

0 0

2 1 2 1 13 13

[ , ] [6, 20]

[ , ] , [6, 21]   .n n

a b

a b a b 



 

 

                                                           
3 Although assumed identical in this particular example, durations and/or time widows at the various locations need 

not be. 
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 In this example, the household’s objective function is assumed to be that of minimizing the total 

monetary cost—that is, total travel time multiplied by fuel cost (first term)—plus the value of the extent 

of the travel day (second term).   

 

𝐹 ⋅ ∑ ∑ 𝑡𝑢𝑤
𝑣 𝑋𝑢𝑤

𝑣

𝑤∈𝑵𝑢∈𝑵

+ 𝑉 ⋅ [𝑇2𝑛+1 − 𝑇0] 

 

where  𝑉, 𝐹 respectively are the monetary value of the temporal extent of the travel day, fuel cost per hour 

(derived from assumed average speed and miles per gallon). For purposes of illustration, in our example, 

we arbitrarily set 𝑉 = $15/ℎ𝑟, 𝐹 = $6.25/ℎ𝑟. 

 During recursion iterations, cost is simply updated as, 𝑐(S {𝑗}𝜶,  ) = 𝑐(S𝜶, i) + 𝐹 ⋅ 𝑡𝑖,𝑗 , where 

(S𝜶, i) is the state from previous iteration.  

 

We additionally assume the following travel time matrix associated with the three locations: 

 

Travel Time Matrix uwt  

 

𝑣 

𝑢 

0 1 2 3 

0 0 0.22 0.05 0.25 

1 0.22 0 0.22 0.01 

2 0.05 0.22 0 0.2 

3 0.25 0.01 0.2 0 

 

 For this case involving a single vehicle, some simplifications of the general solution procedure 

outlined in the previous section can be made—it is not necessary to assign admissible paths to each 

vehicle since there is only one vehicle.  Rather, efficiently finding the best admissible path that tours all of 

the nodes that need to be traversed in one path is the key.  In this case, the algorithm suggested for the 

sub-problem of the shortest path problem with time windows can be used; however, a few adjustments 

can be made in order to render the solution method more efficient.  These adjustments exclude paths that 

do not visit all activity nodes that are required to be completed since there is only one path for single 

vehicle households.  First, the recursion step occurs for iterations 2 ≤ 𝑘 ≤ 2(𝑛𝑝 +𝑚), and the new node 
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to be added is only from 𝑷—thereby excluding labels to add the final depot nodes during this step—

adding the final node at the final iteration, 𝑘 = 2 𝑛𝑝 +𝑚 + 1.  These changes ensure that all required 

nodes are visited in this tour before the final return home.  The algorithm for this case is as follows: 

 

 

  (S , 0) +  0, ≤   (S { } ,  ) } 

 (S , i) +   +   , ≤   (S { } ,  )} 

Initialization ( = 1) 

A set of states of routes visiting one activity node from home location are generated. 

   {({ },  ),  ∈  +} 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as: 

    (S ,  ) = {  a    , 0 +  0,  ≤  (S ,  ) ≤   ,  

    (S ,  ) =  0,  

    (S ,  ) =    

   

Recursion (2 ≤  ≤ 2   +  ) 

New states are constructed by adding one node,  , to the total visited at the 

preceding iteration: 

   {(  { },  ),  ∈  } where ( ,  ) is the state from previous iteration 

Then the states are tested for elimination criteria, and if the state (  { },  ) is not 

eliminated, its label set will be created. Its corresponding arrival time, cumulative 

cost, and cumulative number of sojourns in a tour are updated as: 

    (S { } ,  ) =  (S ,  )  {  a    ,  +   +   ,  ≤  (S { } ,  ) ≤   , 

    (S { } ,  ) =  (S ,  ) +   ,   

    (S { } ,  ) =  (S ,  ) +    

 

Final Iteration ( = 2(  + ) + 1) 

There is only one state to be generated. All activity nodes and corresponding return 

home nodes have been visited, and the terminal node is the final depot node: 

   {({1,2,… ,2 , 2 + 1}, 2 + 1)} 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as previous. 

 

Selection of Arrival Times 

For all completed paths,  , from Final Iteration ( = 2(  + ) + 1), solve the 

following optimization problem, and update the final cost.  

Minimize  ( 0, 1, … , 2 , 2 +1) such that  (S , 2 + 1) 
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Algorithm 2: Single Vehicle LSP-HAPP Path Generation Algorithm for Objective Function Involving 

Time Variables 

 

 For this, criteria #11- #13 are not necessarily useful since the final return home node is not added 

to the labels until all of the other nodes are added. In order to increase the efficiency of the algorithm, the 

following criteria can be included in the elimination test:  

 

#15: given the arrival time at node 𝑗, 𝑇𝑗, it must be possible to visit each subsequent unvisited preselected 

node 𝑙 ∈ 𝑆  {𝑗}̅̅ ̅̅ ̅̅ ̅̅ ̅ while respecting the time constraint: 

  𝑇𝑗 + 𝑠𝑗 + 𝑡𝑗,𝑙 ≤ 𝑏𝑙, for all 𝑙 ∈ 𝑷𝑷, and 𝑙 ∈ 𝑆  {𝑗}̅̅ ̅̅ ̅̅ ̅̅ ̅ 

  

The full results of label generation for this example of LSP-HAPP is presented in Table A-1 in Appendix 

B.  A summary for label of index 46 is presented in Table 1. 

  

Table 1. Label Generation Procedure of Grocery Shopping Location Selection:  Single Vehicle 

 

Iteration Index 
Visited 

nodes, S 

Terminal 

node,   

Current 

cost, 

𝑐(S𝜶,  ) 

Time window 

constraints, 𝑇(S𝜶,  )4 

Previous 

Path index 

𝒌 = 𝟏 

 
1 {1} 1 1.38 

6 ≤ 𝑇0 ≤ 22 

8 ≤ 𝑇1 ≤ 9 

𝑇0 + 0.22 ≤ 𝑇1 

0 

𝒌 = 𝟐 8 {1 4} 4 2.75 
17.22 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.22 ≤ 𝑇4 
1 

𝒌 = 𝟑 14 {1 3 4} 3 4.31 
17.47 ≤ 𝑇3 ≤ 2 

𝑇4 + 0.25 ≤ 𝑇3 
8 

𝒌 = 𝟒 34 {1 3 4 6} 6 5.88 
18.72 ≤ 𝑇6 ≤ 21 

𝑇3 + 1 + 0.25 ≤ 𝑇6 
14 

𝒌 = 𝟓 46 {1 3 4 6 7} 7 5.88 
18.72 ≤ 𝑇7 ≤ 22 

𝑇6 ≤ 𝑇7 
34 

 

  For all 12 completed labels, time variables are determined according to delivering the optimal 

value of the objective function, 𝑐(S𝜶,  ) + 𝑉 ∙ (𝑇7 − 𝑇0).  For example, for label of index 46, which 

traveled as: 7 (Label index 46) ← 6 (Label index 34) ←3 (Label index 14) ← 4 (Label index 8) ← 1 (Label 

index 1) ← 0, the following problem is solved to determine arrival times.  

                                                           
4 This column only shows arrival time windows that are newly added during the iteration.  Constraints from previous 

paths carry on, but due to space limit, they are not shown in this table.  The full set of constraints can be constructed 

by tracking down previous indexes. 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑉 ∙ (𝑇7 − 𝑇0) 

subject to: 

6 ≤ 𝑇0 ≤ 22 

8 ≤ 𝑇1 ≤ 9 

𝑇0 + 0.22 ≤ 𝑇1 

17.22 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.22 ≤ 𝑇4 

17.47 ≤ 𝑇3 ≤ 2 

𝑇4 + 0.25 ≤ 𝑇3 

18.72 ≤ 𝑇6 ≤ 21 

𝑇3 + 1 + 0.25 ≤ 𝑇6 

18.72 ≤ 𝑇7 ≤ 22 

𝑇6 ≤ 𝑇7 

  

Once the time variables for all 12 final labels are chosen to achieve the optimum, the cost is 

updated to represent the full objective function value.  Then, the label with the lowest value is the optimal 

solution. In the current example, it is label 35. The optimal path is: home (𝑇0 = 6.74) → grocery store 2 

(𝑇3 = 6.99) → work (𝑇1 = 8.00) → home (𝑇4 = 𝑇6 = 𝑇7 = 17.22), with total cost of $160.2.  The 

activity and routing of the optimal path is visualized in Figure 1.   
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Figure 1. Optimal Activity Pattern of Grocery Shopping Location Selection Involving a Single 

Vehicle 

 

4.2 Case2: Grocery Shopping Location Selection for a household with two vehicles 

 Similar to the previous example of grocery shopping location selection, assume a household with 

two vehicles and two household members, each with its vehicle exclusively available.  The travel 

disutility is simply expanded to multiple vehicles as:  

 

𝐹 ⋅ ∑ ∑ ∑ 𝑡𝑢𝑤
𝑣 𝑋𝑢𝑤

𝑣

𝑤∈𝑵𝑢∈𝑵𝑣∈𝑽

+ 𝑉 ⋅ ∑[𝑇2𝑛+1
𝑣 − 𝑇0

𝑣]

𝑣∈𝑽

 

 

The household needs to complete two activities with pre-selected locations,   {1,2}; 2P Pn N , which 

are work (node 1), with duration of 1 9.0s  ,
 
 and a drop-off activity (node 2), with duration of 2 0.1s  . 

As in the previous example, the household also has a grocery shopping trip to be scheduled; i.e., 𝑨 =

{𝑨𝟏}, 𝑚 = 1 , and that there are two potential locations for this activity 𝑷𝑨𝟏
= {3, 4}; 𝑛𝐴1

= 2 ; the 

operation hours for both stores is assumed to be from 6:00 to 22:00 and the duration of the shopping 

activity at either location is 1hour. In this example: 

 

HomeWork Grocery 
store 1

Grocery 
store 2

6.99 6.74

Home

Work
(9hr)

Grocery 
shopping

(1hr)

17.22

8.00
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𝑴 = 𝑴𝒑  𝑴𝑨 = {1, 2, 3, 4}; 𝑛 = 𝑛𝑃 + 𝑛𝐴 = 4 

𝑺 = 𝑺𝒑  𝑺𝑨 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} = {9, 0.1, 1, 1} 

𝑷𝑷
+ = {1, 2} 

𝑷𝑨
+ = {3, 4} 

𝑷𝑷
− = {5, 6} 

𝑷𝑨
+ = {7, 8} 

𝑷+ = 𝑷𝑷
+  𝑷𝑨

+ = {1, 2, 3, 4} 

𝑷− = 𝑷𝑷
−  𝑷𝑨

− = {5, 6, 7, 8} 

𝑷𝑷 = 𝑷𝑷
+  𝑷𝑷

− = {1, 2, 5, 6} 

𝑷𝑨 = 𝑷𝑨
+  𝑷𝑨

− = {3, 4, 7, 8} 

 

with time availability windows, and corresponding return-home windows: 

 

1 1

2 2

3 3

4 4

, 8, 9

, 12,12.5
[ , ]    ,

, 6,21

6,21,

i i

a b

a b
a b

a b

a b

   
   
    
   
   

  

5 5

6 6

7 7

8 8

, 6,  21

, 6,  21
[ , ]    ,

, 6,  22

6,  22,

n i n i

a b

a b
a b

a b

a b

 

   
   
    
   
   

  

  

 

0 0

2 1 2 1 17 17

[ , ] [6, 20]

[ , ] , [6, 21]   .n n

a b

a b a b 



 

 

 

The travel time matrix is given as:  

 

𝑣 

𝑢 

0 1 2 3 4 

0 0 0.22 0.12 0.05 0.25 

1 0.22 0 0.13 0.22 0.01 

2 0.12 0.13 0 0.11 0.1 

3 0.05 0.22 0.11 0 0.2 

4 0.25 0.01 0.1 0.2 0 
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 The dynamic programming procedure with respect to time variables, Algorithm 1, generated 4 

(𝑘 = 1), 12 (𝑘 = 2), 20 (𝑘 = 3), 16 (𝑘 = 4), 16 (𝑘 = 5), label sets of feasible paths, and there are total 

of 20 completed paths (terminal node at final home depot). Each of these completed paths is a candidate 

route column. However, if there exists a label with same visited set that dominates in travel disutility 

(objective function), loads and arrival times, that label can be dropped.  Of these, 14 paths (paths 

numbered 5, 6, 8, 9, 10, 12, 13, 15 – 19) are not used for the master problem of finding the optimal 

combination because there exists a different path(s) that traverses the same set of nodes (albeit with a 

different order) and end at the same node with either lower or same travel disutility, and with either 

earlier or same arrival time at the final node. The remaining paths (shown in Table 3) form the basis of 

the master problem.   

 

Table 3. Admissible Paths of Grocery Shopping Location Selection for the master problem  

 

Path 

No., 

𝑟 

Visited 

nodes, S 
Path Sequence and Arrival Times 

Travel 

Disutility, 

𝑐𝑟 

0 {3 7 9} 
home (𝑇0 = 6) → grocery store 1 (𝑇3 = 6.05) → home (𝑇7 = 𝑇9 =

7.1) 
17.13 

1 {1 5 9} home (𝑇0 = 7.78) → work (𝑇1 = 8) → home (𝑇5 = 𝑇9 = 17.22) 144.35 

2 {2 6 9} 
home (𝑇0 = 11.88) → drop off (𝑇2 = 12) → home (𝑇6 = 𝑇9 =

12.22) 
6.60 

3 {4 8 9} 
home (𝑇0 = 6) → grocery store 2 (𝑇4 = 6.25) → home (𝑇8 = 𝑇9 =

7.5) 
25.63 

4 {2 3 6 7 9} 
home (𝑇0 = 11.88) → drop off (𝑇2 = 12) → grocery store 1 (𝑇3 =

12.21) → home (𝑇6 = 𝑇7 = 𝑇9 = 13.26) 
22.45 

7 {2 4 6 8 9} 
home (𝑇0 = 10.65) → grocery store 2 (𝑇4 = 10.9) → drop off (𝑇2 =

12) → home (𝑇6 = 𝑇7 = 𝑇9 = 12.22) 
26.49 

11 {1 4 5 8 9} 
home (𝑇0 = 6.74) → grocery store 2 (𝑇4 = 6.99) → work (𝑇1 = 8) 

→ home (𝑇5 = 𝑇8 = 𝑇9 = 17.22) 
160.20 

14 {1 3 5 7 9} 
home (𝑇0 = 6.73) → grocery store 1 (𝑇3 = 6.78) → work (𝑇1 = 8) 

→ home (𝑇5 = 𝑇7 = 𝑇9 = 17.22) 
160.41 
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Then, the matrix presentation of master problem (a) - (c) is 

 

  𝑟  [𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐7 𝑐11 𝑐14] 

𝑎1𝑟

𝑎2𝑟
𝑎3𝑟
𝑎4𝑟

[

1
1

1
1

1 1
1 1

0
1

1
1

1

]   [

𝑌0
𝑌2
⋮

𝑌14

] = [

1
1

}+ = 1
] 

 

 The master program, which is an integer programming problem, concludes (𝑌1 = 𝑌4 = 1) that 

paths 1 and 4 bring the minimum cost of $166.8 for this household. The grocery store 1 located at node 3 

is selected over the grocery store at node 4. By tracking the previous indices, we find that person 1 travels 

path 1: home (𝑇0 = 7.78) → work (𝑇1 = 8) → home (𝑇5 = 𝑇9 = 17.22), and person 2 travel as path 7: 

home (𝑇0 = 11.88) → drop off (𝑇2 = 12) → grocery store 1 (𝑇3 = 12.21) → home (𝑇6 = 𝑇7 = 𝑇9 =

13.26).  These results are depicted in Figure 2. 

 

 

Figure 2. Optimal Activity Pattern of Grocery Shopping Location Selection for a household with 

two vehicles 
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4.3 Case3: Grocery Shopping Location Selection for a household with two vehicles with restricted 

activity participation 

 The above example places no restrictions on which members of the household perform the 

scheduled activities. For more realistic assignment of household activities, we can add restrictions: 

 

∑ ∑𝑋𝑢,𝑤
𝑣

𝑢∈𝑷𝑤∈𝛀𝒗

= 0, 𝑣 ∈ 𝑽 

 

where  𝛀𝟏
𝑽 is the subset of activities that cannot be performed by vehicle/person  . Assume, for example, 

that person 1 is the person who needs to perform both the work as well as the grocery activities.5 

𝛀𝟎
𝑽 = { } 

𝛀𝟏
𝑽 = {1, 3, 4} 

Here, we can eliminate terminated paths which include only one of work and grocery shopping 

activities.  In the example, 𝑌0 = 𝑌2 = 0 and these paths do not enter the master problem as a candidate 

path column, or are constrained to be zero.  The optimal assignment combination is decided among paths 

𝑟 =2, 3, 4, 7, 11, 14, and found to be  𝑌2 = 𝑌11 = 1:  person/vehicle 1 travels path 11, home (𝑇0 = 6.74) 

→ grocery store 2  (𝑇4 = 6.99) → work (𝑇1 = 8) → home (𝑇5 = 𝑇8 = 𝑇9 = 17.22), and person/vehicle 

2 travels path 2, home (𝑇0 = 11.88) → drop off (𝑇2 = 12) → home (𝑇6 = 𝑇9 = 12.22), with the total 

cost of $166.8 (Figure 3). 

 

                                                           
5 Note that the notation starts from index 0.  
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Figure 3. Optimal Activity Pattern of Grocery Shopping Location Selection for a household with 

two vehicles with Activity Assignment Restrictions 

 

The process of path removal that violates personal restrictions can be imbedded at the end of 

recursion from Algorithm 1, as shown in Algorithm 3. 
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  (S , 0) +  0, ≤   (S { } ,  ) } 

 (S , i) +   +   , ≤   (S { } ,  )} 

Initialization ( = 1) 

A set of states of routes visiting one activity node from home location are generated. 

   {({ },  ),  ∈  +} 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as: 

    (S ,  ) = {  a    , 0 +  0,  ≤  (S ,  ) ≤   ,  

    (S ,  ) =  0,  

    (S ,  ) =    

   

Recursion (2 ≤  ) 

New states are constructed by adding one node,  , to the total visited at the 

preceding iteration: 

{(  { },  ),  ∈   {2 + 1}} where ( ,  ) is the state from previous iteration 

 Then the states are tested for elimination criteria, and if the state (  { },  ) 

is not eliminated, its label set will be created. Its corresponding arrival time, 

cumulative cost, and cumulative number of sojourns in a tour are updated as: 

    (S { } ,  ) =  (S ,  )   {  a    ,  +   +   ,  ≤  (S { } ,  ) ≤   , 

    (S { } ,  ) =  (S ,  ) +   ,   

    (S { } ,  ) =  (S ,  ) +    

 Stop when there is no label generated at this iteration.  

 

Removal of Paths based on Restrictive Activity Participation 

 For all generated paths, if any activity node   ∈  + in its visited node set,  ∈ S, is an 

activity that can only be performed by one specific vehicle/household member  ,  ∈  , 

then any of the other visited nodes cannot be the activity that is restricted for  : 

   if  ∈    
 

   , ∈ ,  for any  ∈ S then,  ∈   
 , for all  ∈  , for  ∈   

 And all activities (all pre-selected activities and one of the selective locations) that need 

to be performed by  , needs to be in the visited set.  

  if  ∈    
 

   , ∈ ,  for any  ∈ S then,  ∈ S for all  ∈    
 

   , ∈ , ,  ≠  ,  ∈

  
+, or one of  ∈    

+  for   ∈    
 

   , ∈ , ,  ≠  ,  ∈   
+ for all  ∈   

 

Selection of Arrival Times 

For all completed paths,  , solve the following optimization problem, and update 

the final cost.  

  Minimize  ( 0, 1, … , 2 , 2 +1) such that  (S , 2 + 1)  

Algorithm 3: LSP-HAPP Path Generation Algorithm with Restrictive Activity Participation for Objective 

Function Involving Time Variables 
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 The first part of the condition can be imposed as an additional elimination rule, #16, during the 

recursion process to increase the efficiency, but the second condition needs to be performed for completed 

paths.  

  

#16: For all generated paths, if any activity node  𝑗 ∈ 𝑷+  in its visited node set, 𝑗 ∈ S, for is an 

activity that can only be performed by one specific vehicle/household member 𝑣, 𝑣 ∈ 𝑽, then any 

of the other visited nodes cannot be the activity that is restricted for 𝑣: 

if 𝑗 ∈  𝛀𝒓
𝑽

𝑣 𝑟,𝑟∈𝑽,  then, 𝑙 ∈ 𝛀𝒗
𝑽, for all 𝑙 ∈ 𝐒, for 𝑣 ∈ 𝑽 

 

For HAPP Case 4 and HAPP Case 5, the same changes as in Equations (2)-(3) can be made; however, the 

solution process overcoming the computational difficulties is not developed in this paper. Because these 

cases require generation of person-based and vehicle-based patterns and matching of these two, it is 

highly related to mode choice problem which has not yet been integrated in HAPP.   

 

5. Case study with Orange County Travel Survey Data  

 LSP-HAPP is applied to 13 households of single vehicle and single member households residing 

in Orange County, California, that have conducted one incidental shopping activity (includes shopping 

activities for grocery, medicine or house ware, but excludes such major shopping activities as furniture or 

automobile shopping) during the survey day. The data are drawn from the California Travel Survey 

(2001). For this example, individual household’s travel disutility is specified by the linear combination of 

the total extent of the day, the travel times, and the delay of return home caused by trip chaining for each 

of out-of-home activities by the individual weights of such measurements, βE,βT,βD
: 

 inZ =βE ∑(T2n+1
v − T0

v)

v∈V

+ βD ∑ (Tw+n − Tw)

w∈P+

+ βT ∑ ∑ ∑ tuw
w∈Nu∈Nv∈V

 

The weights of these households are empirically estimated using the inverse optimization calibration 

process in Chow and Recker (2012). Time windows of activities are separately generated using the 

methodology from Kang and Recker (2012), which adopted the method from Recker and Parimi (1999) 

with relaxation of return home activity’s time windows. 

 Candidate shopping locations are derived from the reported shopping locations in the study area, 

which numbered a total of 19. For practical implementation of the model, there would need to be a zoning 

procedure for aggregating candidate locations within a geographical area, but with the limited number of 

survey data used in this example, exact locations are spatially sparse enough to be individually located for 
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the purpose of testing LSP-HAPP.  These locations along with household home locations and their other 

activity locations are shown in Figure 4. 

 

 

Figure 4. Case Study Area 

 

 Of the test sample of  13 households, application of the LSP-HAPP model resulted in the 

destination choice of 8 households being the exact same location as the reported shopping location. For 

the remaining five households, the distance/travel time differences between the outcome of the model and 

the reported locations are 2.4 miles (0.15 hours), 1.5 miles (0.12 hours), 2.5 miles (0.13 hours), 4.2 miles 

(0.22 hours), and 1.65 miles (0.09 hours). The average absolute difference between the model output and 

real data of start times of these shopping activities is 1.67 hours, with a maximum deviation of 4.16 hours, 

and a minimum of 0. It is noted that the activity start times determined by the model are highly dependent 

on how accurately the estimates of time windows are generated. In this application, the method we have 

adopted from Kang and Recker (2012) based on Recker and Parimi (1999) provides fairly accurate arrival 

time selection but in a number of cases leads to infeasible cases for the reported pattern due to 

discrepancies in reported travel times and the actual shortest-path based travel time matrix, especially 

when it includes a tour that traverses many activities. While refining and improving this time window 

generation is an important issue for the practicality of the HAPP models in general, it is not the scope of 

this paper.    

 The performance of the suggested algorithm is also found to be competitive. Solving LSP-HAPP 

directly by calling the CPLEX library took on average of 2,910 seconds, maximum case at 12,730 
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seconds, and minimum case at 180 seconds. Alternatively, Algorithm 1 took on average of 614 seconds 

(maximum at 3625 seconds, minimum at 25 seconds) which includes the generation of 577 (maximum of 

2778, minimum of 28) labels, and average 148 runs (maximum of 718 runs, minimum of 2 runs) of “easy 

linear programming” of selecting the activity start (arrival) times via CPLEX library. 

 

6. Application of LSP-HAPP to Travel Pattern Generation in Activity-based Regional Forecasting 

Models  

 For activity-based transportation planning, synthetic pattern generation and assignment of those 

patterns over space are fundamental steps for travel forecasting.  HAPP has been shown to be a useful 

tool for synthesizing daily activity patterns on a household basis.  With the capability of choosing 

locations, LSP-HAPP can work as a pattern synthesizer as well as a tool for linking spatial information 

with such patterns, given activities and their durations for a household.   In these two aspects, such 

application is similar to the approach proposed by McNally (1997), although the specifications of models 

are different.  McNally (1997) selected a representative pattern that includes a set of activities and 

durations, given household characteristics, and matched the pattern with spatial information, whereas the 

LSP-HAPP model creates a pattern simultaneously linking to spatial information, given a modeler’s 

desired goal and a set of activities to be performed along with their durations, possibly generated from 

household characteristics.  

  As an illustration, assume that the modeler’s goal is to select activity locations and generate 

travel patterns for a one-vehicle household that, either from direct survey data or from regional models, is 

assigned two activities—work (𝑨𝟏) and grocery shopping (𝑨𝟐)—and a travel of 𝑡̅ minutes for the day.  

Then the objective function within the planning model context is to minimize the error between desired 

and generated travel times, i.e.,  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝑡̅ − ∑ ∑ ∑ 𝑡𝑢𝑤
𝑣

𝑤∈𝑵𝑢∈𝑵𝑣∈𝑽

𝑋𝑢𝑤
𝑣 | 

 

During recursion (1 ≤ 𝑘 ≤ 2(𝑛𝑝 +𝑚)), we can store cost as the cumulative travel times updated as: 

 

 𝑐(S {𝑗}𝜶,  ) = {
𝑡𝑖,𝑗 𝑖 = 0

𝑐(S𝛼 , i) + 𝑡𝑖,𝑗 𝑖 ≠ 0
 



30 

 

and in the final iteration (𝑘 = 2 𝑛𝑝 +𝑚 + 1), we can select the optimal path as path 𝜶 with the smallest 

difference between the desired and observed total travel time, |𝑡 − 𝑐(S {2𝑛 + 1}𝜶, 2𝑛 + 1)|6. 

  

 Because the goal is matching locations with the modeling objective while generating the travel 

patterns, there is no activity location that has been pre-defined; i.e.,   {}; 0P PN n  .  Suppose activity 

durations of work and grocery shopping are 𝑠𝑨𝟏
= 9, 𝑠𝑨𝟐

= 1, and time availability windows for each 

activity type are: 

[
𝑎𝑨𝟏

, 𝑏𝑨𝟏

𝑎𝑨𝟐
, 𝑏𝑨𝟐

] = [
8, 9
6, 22

] 

with corresponding return-home windows: 

[
𝑎𝑨𝟏+𝑛, 𝑏𝑨𝟏+𝑛

𝑎𝑨𝟐+𝑛, 𝑏𝑨𝟐+𝑛
] = [

6, 21
6, 22

] 

and with initial departure and end-of-travel day windows: 

0 0

2 1 2 1

[ , ] [6, 20]

[ , ] [6, 21]   .n n

a b

a b 




 

 Assume also that there are two central business district locations for work (𝑨𝟏), and also two 

possible locations for grocery shopping (𝑨𝟐) in the area.  𝑷𝑨𝟏
= {1, 2}; 𝑛𝑨𝟏

= 2, 𝑷𝑨𝟐
= {3, 4}; 𝑛𝑨𝟐

= 2, 

𝑛𝑨 = 4 and 𝑛 = 𝑛𝑷 + 𝑛𝑨 = 4. 

 

In this example: 

𝑵 = 𝑵𝒑  𝑵𝑨 = 𝑵𝒑  𝑵𝑨𝟏
 𝑵𝑨𝟐

= {1, 2, 3, 4}; 𝑛 = 𝑛𝑃 + 𝑛𝐴 = 4 

𝑺 = 𝑺𝒑  𝑺𝑨 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} = {9, 9,1, 1} 

𝑷𝑷
+ = {}, 𝑷𝑷

− = {} 

𝑷𝑨𝟏

+ = {1, 2}, 𝑷𝑨𝟏

− = {5, 6} 

𝑷𝑨𝟏
= 𝑷𝑨𝟏

+  𝑷𝑨𝟏

− = {1, 2, 5, 6} 

𝑷𝑨𝟐

+ = {3, 4}, 𝑷𝑨𝟐

− = {7, 8} 

𝑷𝑨𝟐
= 𝑷𝑨𝟐

+  𝑷𝑨𝟐

− = {3, 4, 7, 8} 

𝑷𝑨
+ = {1, 2, 3, 4} 

𝑷𝑨
− = {5, 6, 7, 8} 

𝑷+ = 𝑷𝑷
+  𝑷𝑨

+ = {1, 2, 3, 4} 

                                                           
6 Because the objective function is not related to arrival time variables, Algorithm 2 without the final step 

of selecting arrival times, is used to solve this problem.  Arrival times are selected as possible earliest 

time during the initialization and recursion as in Desrosiers et al. (1986)  
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𝑷− = 𝑷𝑷
−  𝑷𝑨

− = {5, 6, 7, 8} 

𝑷𝑷 = 𝑷𝑷
+  𝑷𝑷

− = {} 

𝑷𝑨 = 𝑷𝑨
+  𝑷𝑨

− = {1, 2, 3, 5, 6 7, 8} 

 

with time availability windows, and corresponding return-home windows: 

[

𝑎1, 𝑏1
𝑎2, 𝑏2
𝑎3, 𝑏3
𝑎4, 𝑏4

] = [

8, 9
8, 9
6, 22
6, 22

],       [

𝑎5, 𝑏5
𝑎6, 𝑏6
𝑎7, 𝑏7
𝑎8, 𝑏8

] = [

6, 21
6, 21
6, 22
6, 22

] 

We additionally assume that the total travel time desired to be matched is 𝑡 = 0.5, and the following 

travel time matrix associated with the four locations is as: 

Travel Time Matrix uwt  

 

𝑣 

𝑢 

0 1 2 3 4 

0 0 0.22 0.17 0.05 0.17 

1 0.22 0 0.18 0.22 0.13 

2 0.17 0.18 0 0.12 0.17 

3 0.05 0.22 0.12 0 0.10 

4 0.17 0.13 0.17 0.10 0 

 

 For this scenario, the algorithm generated as the optimal solution path home → grocery shopping 

at location 3 (6.05) → work at location 1 (8) → home (17.22) as depicted in the Figure 4, and the total 

travel time for this pattern is 0.49 hours, yielding an error between desired and generated travel times of 

0.01 (Figure 5). 
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Figure 5. Synthetic Travel Pattern Generation Result 

 

7. Comment on the General Column Generation Procedure for LSP-HAPP   

 Not only is finding the admissible path set, 𝚿 , a combinatorial problem, but finding path 

combinations for each vehicle/household member is also an exponential combinatorial problem. 

Compared to the general pick-up and delivery problem with time windows, the total number of household 

members and the total number of vehicles are rather limited for the case of HAPP.  Yet, it is still helpful 

to examine how the iterative procedure of column generation can be applied to LSP-HAPP.    There exist 

other algorithms and methodologies, but the structural property that each routing path forms a column, 

has resulted in column generation as a technique widely used in vehicle routing problems (Desrosiers et 

al., 1984) as well as PDPTW. 

 In the previous example, all possible paths are introduced to the master problem; however if there 

are a large number of paths created, computational issues can become critical even for the master 

problem.  Dumas et al. (1991) developed and tested iterative column generation procedures for multiple 

vehicle PDPTW.  The same master and the sub-problem framework can be applied to LSP-HAPP with 

small adjustments.  

 The sub-problem finds one path column with the most negative reduced cost to add to the master 

problem, and then the master problem is solved to find the best combinations of paths.   The sub-problem 

that finds this one column path with the smallest marginal cost can be written as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑∑𝑐�̅�𝑗
𝑗∈𝐍

𝑋𝑖𝑗

𝑖∈𝐍

= ∑∑(𝑐𝑖,𝑗 − 𝜎𝑖) ∙ 𝑋𝑖,𝑗

𝑗∈𝑵𝑖∈𝑵

       (𝑑) 

HomeWork
Location 1

Grocery 
store 1

Grocery 
store 2
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(9hr)

Grocery 
shopping

(1hr)

17.22

Work
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subject to: (4) - (22) 

where,  

𝑐�̅�𝑗: the marginal cost of trip from node 𝑖 to node 𝑗 

𝜋𝑖: the dual variables associated with (b-1), 𝑖 ∈ 𝑷𝑷
+ 

𝜋𝑨𝒂
: the dual variables associated with (b-2), 𝑎 ∈ 𝑨   

 

 Then, we can associate dual variables, 𝜎𝑖, with each pre-selected activity node, 𝜎𝑖 = 𝜋𝑖, 𝑖 ∈ 𝑷+.  

Similarly, dual variable of candidate locations of activity type 𝑨𝒂, can be associated as, 𝜎𝒊 = 𝜋𝑨𝒂
, 𝑎 ∈

𝑷𝑨𝒂

+ .  Lastly, dual variable values associated with departure home node, final home node, and return home 

nodes are all zeroes. 𝜎1 = 0, 𝜎2𝑛+1 = 0 , and 𝜎𝑖 = 0, 𝑖 ∈ 𝑷− .  To find dual values from the master 

problem, the master problem is relaxed to be non-integer. Set partitioning problems, which the arc-path 

formulation of maximum multi-commodity problem forms, often achieve optimum at binary values even 

when relaxed.   

 For PDPTW (and therefore also for HAPP), there exists an efficient dynamic programming 

procedure that generates shortest paths with time windows, which means that this sub-problem does not 

have to be solved as a network formulation of a linear programming problem.  Also, for LSP-HAPP, the 

dynamic programming algorithms developed in this paper can be the solution method for the sub-

problem.  At each iteration, the path cost of new reduced cost is simply updated to all paths generated 

from the dynamic programming algorithm.  Then, the master program is rerun with a new path column 

with the most negative reduced cost until there is no path that can deliver better objective function value. 

The iterative procedure is shown as the following diagram (Figure 6).  
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Figure 6. Iterative Procedure of Column Generation of LSP-HAPP 

 

8. Conclusions and Discussion 

 In this paper, the Location Selection Problem extending the Household Activity Pattern Problem 

(LSP-HAPP) is presented.  This is accomplished by relaxing the constraints that specify the condition that 

all nodes need to be visited.  In the LSP-HAPP formulation, only one of possible locations for each 

activity with no pre-selected location is traversed.  This formulation demonstrates how location choice for 

certain activities is made within the tours and scheduling of pre-selected activities and other activities 

with many candidate locations.   

 A dynamic programming algorithm, developed for PDPTW, is adapted for LSP-HAPP in order to 

deal with choice from among a sizable number of candidate locations within the HAPP modeling 

structure.  The algorithm generates labels of all possible paths and selects the best path in the final step.  

The efficiency of the algorithm is determined by path elimination criteria that rule out illogical paths, and 

is shown to be efficient both in the literature on PDPs as well as in this application.  Additionally, by the 

properties of label generation that updates time and sojourn variables and the objective function values, 

we are able to accommodate some level of nonlinearities in time, sojourn and cost.  Lastly, an 

improvement is made to the algorithm in that arrival times are kept as functions, not parameters.  This is 

because HAPP cases often have travel disutility measures involving time variables but the previous 

algorithms assume that travel disutility (costs) and arrival times are independent. From the case study, we 

Location Selection Shortest Path 
with Time Windows 
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Path assignment to available 
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Has a solution

At Optimum
Select the path 
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reduced cost

No solution

New
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Initialization
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can conclude that the formulation provides reasonable results in location selection as well as activity start 

times, and the solution method is superior in terms of computation time.  

 In developing the model, it is assumed that destination choice associated with non-primary 

activities is an auxiliary choice made within the scheduling of other, primary activities, and other 

activities that can be completed by visiting one of many candidate sites.  It is arguable that LSP-HAPP 

ignores socio-economic influences, personal preference or habitual travel behaviors, but if such are 

measurable and quantifiable in the objective function, they can be easily reflected in the model.  

Estimation results from choice models (Bhat et al., 1998; Fotheringham, 1988; Pozsgay and Bhat, 2001; 

Recker and Kostyniuk, 1978) might be helpful in determining those influences.  Once candidate factors 

are selected and measured, we can estimate the HAPP (Chow and Recker, 2011; Recker et al., 2008), 

determine their effects, and use them for LSP-HAPP models.  However, in order to fit real data for 

destination choices within the structure of LSP-HAPP, new estimation schemes need to be developed and 

evaluated. 

  Finally, an application of LSP-HAPP that generates synthetic patterns and links with spatial 

information in a single model for activity-based forecasting models is presented.  In transportation 

forecasting, microscopic travel patterns need to be aggregated and at an aggregated level, destination 

choice can be viewed as a category in spatial interaction models (Roy and Thill, 2004).  For this example 

to be integrated into regional transportation forecasting models, further investigation on how to aggregate 

it to meet certain data, such as traffic counts or OD tables, is needed.  

 

Acknowledgement 

 This research was supported, in part, by grants from the University of California Transportation 

Center and the ITS Multi-Campus Research Program and Initiative on Sustainable Transportation. Their 

support is gratefully acknowledged. 

 

References 

 

Bhat, C. R., Govindarajan, A., Pulugurta, V. (1998), Disaggregate Attraction-End Modeling: Formulation 

and Empirical Analysis, Transportation Research Record: Journal of the Transportation 

Research Board, 1654, pp. 60-68 

 



36 

 

Bowman, J. L., and Ben-Akiva., M. E. (2000), Activity-based Disaggregate Travel Demand Model 

System with Activity Schedules, Transportation Research, Part A: Policy and Practice, 35, pp. 

1-28 

 

CalTrans (2001), 2000-2001 California Statewide Household Travel Survey 

 

Chow, J. Y. J. and Liu, H. (2012), Generalized Profitable Tour Problems for an Online Activity Routing 

System, Transportation Research Record: Journal of the Transportation Research Board, under 

review 

 

Chow, J. Y. J. and Recker, W. W (2011), Inverse Optimization with Endogenous Arrival Time 

Constraints to Calibrate the Household Activity Pattern Problem, Transportation Research, Part 

B: Methodological, in press, doi: 10.1016/j.trb.2011.11.005 

 

Cordeau, J. F. and Laporte, G. (2003), The Dial-a-Ride Problem: Variants, modeling issues and 

algorithms, 4OR: A Quarterly Journal of Operations Research, 1-2, pp. 89-101 

 

Desrosiers, D., Dumas, Y., Soumis, F. (1986), A dynamic programming solution of the large-scale single-

vehicle dial-a-ride problem with time windows, American Journal of Mathematical and 

Management Sciences, 6, pp. 301-325 

 

Desrosiers, D., Soumis, F., Desrochers, M. (1984), Routing with time windows by column generation, 

Networks, 14, pp. 545-565 

 

Dumas, Y., Desrosiers, J., Soumis, F. (1991), The pickup and delivery problem with time windows, 

European Journal of Operational Research, 54, pp. 7-22 

 

Ford, L. R. and Fulkerson, D. R. (1958), A suggested computation for maximal multi-commodity network 

flows, Management Science, 5, pp. 97-101 

 

Fotheringham, A. S. (1988), Consumer Store Choice and Choice Set Definition, Marketing Science, 7-3, 

pp. 299-310 

 



37 

 

Gan, L. P. and Recker, W. W. (2008), A mathematical programming formulation of the Household 

Activity Rescheduling Problem. Transportation Research, Part B: Methodological, 42, pp.571-

606 

 

Gan, L. P. and W. Recker (2012) Stochastic pre-planned household activity pattern problem with 

uncertain activity participation (SHAPP), Transportation Science, In press. 

 

Gärling, T., and Axhausen, K. W. (2003), Introduction: Habitual Travel Choice, Transportation, 30, pp. 

1-11 

 

Ghiani, G., Improta, G., 2000. An efficient transformation of the generalized vehicle routing problem. 

European Journal of Operational Research 122(1), 11-17. 

 

Kang, J. E. and Recker, W. W. (2012),  Strategic Hydrogen Fuel Cell Charging Station Location Analysis 

with Scheduling and Routing Considerations of Individual Vehicles, ITS Working Paper Series, 

UCI-ITS-WP-12-2, University of California, Irvine. 

 

Kitamura, R. (1984), Incorporating Trip Chaining into Analysis of Destination Choice, Transportation 

Research, Part B: Methodological, 18-1, pp.67-81 

 

Louviere, J. J., and Timmermans, H. J. P. (1990), Using Hierarchical Information Integration to model 

Consumer Responses to Possible Planning Actions: Recreation Destination Choice illustration, 

Environment and Planning A, 22, pp. 291-308 

 

McNally, M. G. (1997), An Activity-Based Micro-Simulation Model for Travel Demand Forecasting. 

Activity-Based Approaches to Travel Analysis, Ettema., D. F. and Timmermans, H. J. P., pp. 37-

54. 

 

Pozsgay, M. A. and Bhat, C.  R. (2001), Destination Choice Modeling for Home-Based Recreational 

Trips: Analysis and Implications for Land Use, Transportation, and Air Quality Planning, 

Transportation Research Record: Journal of the Transportation Research Board, 1777, pp. 47-54 

 

Recker, W.W. (1995), The Household Activity Pattern Problem: General formulation and solution,   

Transportation Research, 29B, 1, pp. 61-77 



38 

 

 

Recker, W.W. (2001), A bridge between travel demand modeling and activity-based travel analysis, 

Transportation Research , Part B: Methodological, 35, 481-506 

 

Recker, W.W., C. Chen and M.G. McNally (2001), Measuring the impact of efficient household travel 

decisions on potential travel time savings and accessibility gains. Transportation Research, Part 

A: Policy and Practice, 35, 339-369 

 

Recker, W. W., Duan, J. and Wang, H. (2008), Development of an estimation procedure for an activity-

based travel demand model, Computer-Aided Civil and Infrastructure Engineering, 23, pp. 483-

501 

 

Recker, W. W. and Kostyniuk, L. (1978), Factors Influencing Destination Choice for the Urban Grocery 

Shopping Trips, Transportation, 7, pp. 19-33 

 

Recker, W. W. and Parimi, A. (1999), Development of a microscopic activity-based framework for 

analyzing the potential impact of TCMs on vehicle emissions, Transportation Research, Part D: 

Transport and Environment, 4, pp. 357-378 

 

Roy, J. R. and Thill, J. (2004), Spatial Interaction Modelling, Regional Science, 83, pp. 339-361 

 

Solomon, M. and Desrosiers, J. (1988), Time window constrained routing and scheduling problems.  

Transportation Science, 22, pp. 1-13 

 

Thill, J. (1992), Choice Set Formation for Destination Choice Modelling, Progress in Human Geography, 

16, pp. 631-382 

 



39 

 

Appendix A: Notation 

 

The following notations (extended from those in Recker, 1995) are used in the formulation:  

 

𝑨 = {𝑨1, … , 𝑨𝑎 , … , 𝑨𝑚} : the set of 𝑚  different activity types with unspecified locations that the 

household needs to complete in a given day. The household needs to choose one, 

and only one, location from among many candidate locations for each activity in 

this set.  

aAn : the number of alternative locations for conducting activity type aA  

𝑴𝑷 = {1,2,… , 𝑖, … , 𝑛𝑃}: the set of those out-of-home activities, each with a single “predetermined” 

location, to be completed by travelers in the household. 

𝑴 = 𝑴𝒑  𝑨: the combined set of all out-of-home activities scheduled for completion by the household 

𝑷𝑷
+ = {1,2, … , 𝑛𝑃}: the set designating the respective locations at which activities with predetermined 

locations are performed. 

𝑷𝑨𝟏

+ = {𝑛𝑃 + 1, 𝑛𝑃 + 2,… , 𝑛𝑃 + 𝑛𝑨𝟏
}: the set designating “potential” locations at which activity 𝑨𝟏 

may be performed—one, and only one, may be selected. 

𝑷𝑨𝒂

+ = {𝑛𝑃 +∑ 𝑛𝑨𝒂

𝑎−1
𝑎=1 + 1, 𝑛𝑃 + ∑ 𝑛𝑨𝒂

𝑎−1
𝑎=1 + 2,… , 𝑛𝑃 +∑ 𝑛𝑨𝒂

𝑎
𝑎=1 },   𝑨𝑎 ∈ 𝑨, 𝑨𝑎 ≠ 𝑨1 : the set 

designating “potential” locations at which activity 𝑨𝒂 may be performed—one, 

and only one, may be selected for each activity 𝑨𝑎 ∈ 𝑨, 𝑨𝑎 ≠ 𝑨1. 

𝑷𝑨
+ =  𝑷𝑨𝒂

+
𝑨𝒂∈𝑨 = {𝑛𝑃 + 1, 𝑛𝑃 + 2,… , 𝑛𝑃 + 𝑛𝑨𝟏

, 𝑛𝑃 + 𝑛𝑨𝟏
+ 1,… , 𝑛𝑃 + ∑ 𝑛𝑨𝒂

𝑚
𝑎=1 = 𝑛} : the set 

designating “potential” locations at which all activities with unspecified 

locations, 𝑨𝒂 ∈ 𝐴, may be performed. 

𝑷+ = 𝑷𝑷
+  𝑷𝑨

+ = 𝑷𝑷
+  𝑷𝑨𝟏

+  … 𝑷𝑨𝒎

+ = {1,2,… , 𝑖, … , 𝑛}: the set designating locations at which the 

combined sets of activities with predetermined and multiple candidate locations 

may be performed. 

𝑷𝑷
− = {𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛𝑷}: the set designating the ultimate destinations of the "return to home" trips 

for activities with predetermined locations.  (It is noted that the physical location 

of each element of 𝑷𝑷
− is "home".) 

𝑷𝑨𝟏

− = {𝑛 + 𝑛𝑷 + 1, 𝑛 + 𝑛𝑷 + 2,… , 𝑛 + 𝑛𝑷 + 𝑛𝑨𝟏
}: the set designating the ultimate destinations of 

the "return to home" trips for the 𝑨𝟏  activity—each element is paired to the 

location selected for activity 𝑨1.  (It is noted that the physical location of each 

element of 𝑷𝑨𝟏

−  is "home".) 
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𝑷𝑨𝒂

− = {𝑛 + 𝑛𝑷 + ∑ 𝑛𝑨𝒂

𝑎−1
𝑎=1 + 1, 𝑛 + 𝑛𝑷 + ∑ 𝑛𝑨𝒂

𝑎−1
𝑎=1 + 2,… , 𝑛 + 𝑛𝑷 + ∑ 𝑛𝑨𝒂

𝑎
𝑎=1 }  𝑨𝑎 ∈ 𝑨, 𝑨𝑎 ≠ 𝑨1 : set 

designating ultimate destination of the "return to home" trip for each activity 

𝑨𝒂—each element is paired to the location selected for each activity 𝑨𝑎 ∈ 𝑨,

𝑨𝑎 ≠ 𝑨1. (Note that the physical location of each element of 𝑷𝑨𝒂

−  is "home".) 

𝑷𝑨
− =  𝑷𝑨𝒂

−
𝑨𝒂∈𝑨 = {𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑖, … , 𝑛 + 𝑛𝑷 + ∑ 𝑛𝑨𝒂

𝑚
𝑎=1 = 𝑛𝑷 + 𝑛𝑨 = 2𝑛}: set designating all 

possible ultimate destinations of the "return to home" trips for “potential” 

locations at which all activities with unspecified locations, 𝑨𝒂 ∈ 𝐴.  (It is noted 

that the physical location of each element of 𝑷𝑨
− is "home".) 

𝑷− = 𝑷𝑷
−  𝑷𝑨

− = 𝑷𝑷
−  𝑷𝑨𝟏

−  … 𝑷𝑨𝒎

− = {𝑛 + 1, 𝑛 + 2, , … ,2(𝑛𝑷 + 𝑛𝑨) = 2𝑛} : set designating all 

possible ultimate destinations of the "return to home" trips for the combined set 

of activities. (Note that the physical location of each element of 𝑷− is "home".) 

𝑷 = 𝑷+  𝑷−: set of nodes comprising both predetermined locations and candidate locations of 

activities, and their corresponding “return home nodes”. 

𝑵 = {0,𝑷, 2𝑛 + 1}: set of all nodes, including those associated with the initial and final return to 

home. 

𝑽 = {1,2,… , 𝑣, … , |𝑽|}: set of vehicles used by travelers in the household to complete their scheduled 

activities. 

 ,i ia b  :  time window of available start times for activity  i.  (Note: ib  must precede the 

closing of the availability of activity i by an amount equal to or greater than the 

duration of the activity.) 

 ,n i n ia b  :  time windows for the "return home" arrival from activity  i. 

 0 0,a b :  departure window for the beginning of the travel day. 

 2 2,n i n ia b  :  arrival window by which time all members of the household must complete their 

travel. 

is :  duration of activity  i. 

uwt :  travel time from the location of activity  u  to the location of activity  w. 

uwc :  travel cost from location of activity u  to the location of activity  w  by vehicle . 

CB :  household travel cost budget. 

tB
:  travel time budget for the household member using vehicle  . 
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Appendix B 

 

Table A-1. Label Generation Procedure of Grocery Shopping Location Selection:  Single Vehicle 

 

Iteration Index 
Visited 

nodes, S 

Terminal 

node,   

Current 

cost, 

𝑐(S𝜶,  ) 

Time window 

constraints, 𝑇(S𝜶,  )7 

Previous 

Path index 

𝒌 = 𝟏 

(3 labels) 

1 {1} 1 1.38 
6 ≤ 𝑇0 ≤ 22 

8 ≤ 𝑇1 ≤ 9 

𝑇0 + 0.22 ≤ 𝑇1 

0 

2 {2} 2 0.31 

6 ≤ 𝑇0 ≤ 22 

6.05 ≤ 𝑇2 ≤ 21 

𝑇0 + 0.05 ≤ 𝑇2 

0 

3 {3} 3 1.56 

6 ≤ 𝑇0 ≤ 22 

6.25 ≤ 𝑇3 ≤ 21 

𝑇0 + 0.25 ≤ 𝑇3 

0 

𝒌 = 𝟐 

(7 labels) 

4 {1 2} 1 1.69 
8 ≤ 𝑇1 ≤ 9 

𝑇2 + 1 + 0.22 ≤ 𝑇1 
2 

5 {1 3} 1 1.63 
8 ≤ 𝑇1 ≤ 9 

𝑇3 + 1 + 0.01 ≤ 𝑇1 
3 

6 {1 2} 2 2.75 
17.22 ≤ 𝑇3 ≤ 21 

𝑇1 + 9 + 0.2 ≤ 𝑇3 
1 

7 {1 3} 3 1.44 
17.01 ≤ 𝑇3 ≤ 21 

𝑇1 + 9 + 0.01 ≤ 𝑇1 
1 

8 {1 4} 4 2.75 
17.22 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.22 ≤ 𝑇4 
1 

9 {2 5} 5 0.63 
7.1 ≤ 𝑇5 ≤ 22 

𝑇1 + 1 + 0.05 ≤ 𝑇2 
2 

10 {3 6} 6 3.13 
7.5 ≤ 𝑇6 ≤ 22 

𝑇3 + 1 + 0.25 ≤ 𝑇6 
3 

𝒌 = 𝟑 

(12 labels) 

11 {1 2 5} 1 2.00 
8 ≤ 𝑇1 ≤ 9 

𝑇5 + 0.22 ≤ 𝑇1 
9 

12 {1 3 6} 1 4.50 
17.22 ≤ 𝑇1 ≤ 9 

𝑇6 + 0.22 ≤ 𝑇1 
10 

13 {1 2 4} 2 3.06 
17.27 ≤ 𝑇2 ≤ 21 

𝑇4 + 0.05 ≤ 𝑇2 
8 

14 {1 3 4} 3 4.31 
17.47 ≤ 𝑇3 ≤ 2 

𝑇4 + 0.25 ≤ 𝑇3 
8 

15 {1 3 4} 4 3.00 
17.22 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.22 ≤ 𝑇4 
5 

16 {1 3 4} 4 3.00 
18.26 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.25 ≤ 𝑇4 
7 

17 {1 2 4} 4 3.06 
17.22 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.22 ≤ 𝑇4 
4 

                                                           
7 This column only shows arrival time windows that are newly added during the iteration.  Constraints from previous 

paths carry on, but due to space limit, they are not shown in this table.  The full set of constraints can be constructed 

by tracking down previous indexes. 
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18 {1 2 4} 4 3.06 
18.27 ≤ 𝑇4 ≤ 22 

𝑇1 + 9 + 0.05 ≤ 𝑇4 
6 

19 {1 2 5} 5 3.06 
17.22 ≤ 𝑇5 ≤ 22 

𝑇1 + 9 + 0.22 ≤ 𝑇5 
4 

20 {1 2 5 } 5 3.06 
18.27 ≤ 𝑇5 ≤ 22 

𝑇2 + 1 + 0.25 ≤ 𝑇5 
6 

21 {1 3 6} 6 3.00 
17.22 ≤ 𝑇6 ≤ 22 

𝑇1 + 9 + 0.22 ≤ 𝑇6 
5 

22 {1 3 6} 6 3.00 
18.26 ≤ 𝑇6 ≤ 22 

𝑇3 + 1 + 0.25 ≤ 𝑇6 
7 

𝒌 = 𝟒 

(12 labels) 

23 {1 2 4 5} 4 3.38 
17.22 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.22 ≤ 𝑇4 
11 

24 {1 3 4 6} 4 3.00 
17.22 ≤ 𝑇4 ≤ 21 

𝑇6 ≤ 𝑇4 
21 

25 {1 3 4 6} 4 3.00 
18.26 ≤ 𝑇4 ≤ 21 

𝑇6 ≤ 𝑇4 
22 

26 {1 3 4 6} 4 5.88 
17.22 ≤ 𝑇4 ≤ 21 

𝑇1 + 9 + 0.22 ≤ 𝑇4 
12 

27 {1 2 4 5} 4 3.06 
17.22 ≤ 𝑇4 ≤ 21 

𝑇5 ≤ 𝑇4 
19 

28 {1 2 4 5} 4 3.06 
18.27 ≤ 𝑇4 ≤ 21 

𝑇5 ≤ 𝑇4 
20 

29 {1 2 4 5} 5 3.06 
18.27 ≤ 𝑇5 ≤ 22 

𝑇4 ≤ 𝑇5 
18 

30 {1 2 4 5} 5 3.06 
17.22 ≤ 𝑇5 ≤ 22 

𝑇4 ≤ 𝑇5 
17 

31 {1 2 4 5} 5 3.38 
18.32 ≤ 𝑇5 ≤ 22 

𝑇2 + 1 + 0.05 ≤ 𝑇5 
13 

32 {1 3 4 6} 6 3.00 
17.22 ≤ 𝑇6 ≤ 22 

𝑇4 ≤ 𝑇6 
15 

33 {1 3 4 6} 6 3.00 
18.26 ≤ 𝑇6 ≤ 22 

𝑇4 ≤ 𝑇6 
16 

34 {1 3 4 6} 6 5.88 
18.72 ≤ 𝑇6 ≤ 21 

𝑇3 + 1 + 0.25 ≤ 𝑇6 
14 

𝒌 = 𝟓 

(12 labels) 

35 {1 2 4 5 7} 7 3.00 
17.22 ≤ 𝑇7 ≤ 22 

𝑇4 ≤ 𝑇7 
24 

36 {1 3 4 6 7} 7 3.00 
17.22 ≤ 𝑇7 ≤ 22 

𝑇6 ≤ 𝑇7 
32 

37 {1 3 4 6 7} 7 3.00 
18.26 ≤ 𝑇7 ≤ 22 

𝑇4 ≤ 𝑇7 
25 

38 {1 2 4 5 7} 7 3.06 
17.22 ≤ 𝑇7 ≤ 22 

𝑇5 ≤ 𝑇7 
30 

39 {1 3 4 6 7} 7 3.00 
18.26 ≤ 𝑇7 ≤ 22 

𝑇6 ≤ 𝑇7 
33 

40 {1 2 4 5 7} 7 3.06 
18.27 ≤ 𝑇7 ≤ 22 

𝑇4 ≤ 𝑇7 
28 

41 {1 2 4 5 7} 7 3.06 
18.27 ≤ 𝑇7 ≤ 22 

𝑇5 ≤ 𝑇7 
29 

42 {1 2 4 5 7} 7 5.88 17.22 ≤ 𝑇7 ≤ 22 26 
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𝑇4 ≤ 𝑇7 

43 {1 2 4 5 7} 7 3.38 
18.32 ≤ 𝑇7 ≤ 22 

𝑇5 ≤ 𝑇7 
31 

44 {1 3 4 6 7} 7 3.38 
17.22 ≤ 𝑇7 ≤ 22 

𝑇4 ≤ 𝑇7 
23 

45 {1 3 4 6 7} 7 3.06 
17.22 ≤ 𝑇7 ≤ 22 

𝑇4 ≤ 𝑇7 
27 

46 {1 3 4 6 7} 7 5.88 
18.72 ≤ 𝑇7 ≤ 22 

𝑇6 ≤ 𝑇7 
34 

 

 




