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Grate and co-workers at Pacific Northwest National Laboratory recently developed

high information content triazine-based sequence-defined polymers that are robust

by not having hydrolyzable bonds and can encode structure and functionality by

having various side chains. Through molecular dynamics (MD) simulations, the

triazine polymers have been shown to form particular sequential stacks, have stable

backbone-backbone interactions through hydrogen bonding and π-π interactions, and

conserve their cis/trans conformations throughout the simulation. However, we do

not know the effects of having different side chains and backbone structures on the

entire conformation and whether the cis or trans conformation is more stable for the

triazine polymers. For this reason, we investigate the role of non-covalent interactions

for different side chains and backbone structures on the conformation and assembly of

triazine polymers in MD simulations. Since there is a high energy barrier associated to

the cis-trans isomerization, we use replica exchange molecular dynamics (REMD) to

sample various conformations of triazine hexamers. To obtain rates and intermediate

conformations, we use the recently developed concurrent adaptive sampling (CAS)

algorithm for dimer of triazine trimers. We found that the hydrogen bonding ability

of the backbone structure is critical for the triazine polymers to self-assemble into

nanorod-like structures, rather than that of the side chains, which can help researchers

design more robust materials.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Molecular dynamics (MD) simulations are becoming as indispensable as experiments,

since they can give us insight into mechanisms of how bio-molecules change their conforma-

tions with fine resolution. We can also test the effects of different experimental conditions,

discern favorable conformations, and discover major pathways and associated rates for the

bio-molecules. In short, MD simulations are truly becoming “microscopes” that can eluci-

date important biophysical phenomena such as protein folding.

However, MD simulations by themselves are limited in predictive power, since the bio-

molecules routinely get “stuck” in metastable states and do not change their conformations

for a long period of time. Moreover, most interesting biological processes have timescales

in milliseconds and longer, whereas MD simulations have to be run using femtosecond time

steps, since they are limited by the fastest motions in the system such as vibrations of water.

The long timescale is usually due to the presence of energy barriers or the process having a

long diffusion time.

As a result, many enhanced sampling methods have been developed by various researchers

over the past few decades to overcome this timescale barrier. The enhanced sampling meth-

ods can be broadly divided into two classes: (1) thermodynamic methods that bias the

system to shorten the long time-correlation of trajectories (due to energy barriers) and

efficiently sample free energy landscapes and (2) state-based methods that divide up the

conformational space and sample both thermodynamic and kinetic properties. Some of the

popular thermodynamic methods include replica exchange molecular dynamics (REMD),

umbrella sampling, metadynamics, and adaptive biasing force method1–4. On the other

hand, some of the popular state-based methods include building a Markov state model

(MSM) that reconstructs global kinetic properties from short simulations, and the weighted

ensemble (WE) method that samples full trajectories going over barriers5,6. Depending on

the system and what properties we are interested in uncovering, we can use the appropriate

enhanced sampling method for the system.

In this paper, we are interested in using MD simulations to uncover properties of triazine-

based sequence-defined polymers that were recently developed by Grate and co-workers7.

These new sequence-defined polymers encode structure and functionality by having various

side chains and are robust by not having susceptible peptide bonds that can be cut by pro-
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teases. In Ref. 7, MD simulations have shown that the triazine polymers can have multiple

backbone-backbone interactions through hydrogen bonding and π-π interactions. In partic-

ular, the all cis triazine polymers self-assemble and form a nanorod-like structure, which

has motifs resembling those of DNA, α-helices and β-sheets (not experimentally verified).

Overall, the biomimetic triazine polymers have great potential to become useful building

blocks for new macromolecules and materials with desired functions.

However, there are many questions that need to be answered regarding the triazine poly-

mers. For instance, we do not know how different side chains other than S-ethyl and different

backbone structures may modulate the self-assembly process. In addition, even though the

triazine polymers conserve their cis/trans conformations throughout the simulation, the

cis-trans isomerization has a high energy barrier of ∆G6= = 15 kcal/mol (experimentally

measured), which is close to the rotational barrier for peptides that is 16–20 kcal/mol8–10.

This is due to the bond having a partial double bond character from the delocalization of

the triazine π electrons and the nitrogen lone pair. Nonetheless, the cis-trans isomerization

is a process that can happen in seconds in the laboratory, so the all cis and/or all trans may

not be the most stable conformations and each triazine polymer will most likely transition

into its most stable conformation after seconds pass. In general, the cis-trans isomerization

is known to play an important role in protein folding, cellular signaling, and ion channel

gating11.

Unfortunately, MD simulations need to be run for an intractable period of time to even

show a single cis-trans isomerization. Hence, MD simulations show the triazine polymers

conserving their cis/trans conformations throughout the limited runs, even though this

may not be true in reality after much longer timescales have been reached. As previously

mentioned, it is essential to use enhanced sampling methods to overcome the timescale gap

between simulations and biological processes, observe the isomerizations, and discover the

most stable conformations for the triazine polymers. In investigating the role of different side

chains and backbone structure on the conformations of a single triazine hexamer in implicit

solvent in MD simulations, we use replica exchange molecular dynamics (REMD)2. This

thermodynamic enhanced sampling method is suitable in overcoming the high free energy

barrier associated with rotating the bond between the linker nitrogen and the triazine ring

and observing folded hexamer conformations, as done in Ref. 7, which followed Ref. 12.

To investigate the role of different side chains and backbone structure on the self-assembly
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of dimers of triazine trimers in explicit solvent in MD simulations, we use the recently

developed concurrent adaptive sampling (CAS) algorithm13. REMD was not used in this case

due to its high computational cost when simulating explicit solvent systems. Instead, this

state-based enhanced sampling method is used because it does not suffer from having high

computational cost when simulating explicit solvent systems, can easily handle more than

two reaction coordinates, and can consider reaction coordinates that have integer values,

i.e., have a reaction coordinate that equals the total number of hydrogen bonds and π-π

interactions for the self-assembly of triazine polymers. Hydrogen bonds are strong driving

forces of self-assembly due to their complementarity, directionality, and strength8,14. π-π

interactions are weaker but can help stabilize self-assembled molecules14.

The next sections detail the methods used and results from our studies. By using REMD

and the CAS algorithm, we found that the hydrogen bonding ability of the backbone struc-

ture is essential for the triazine polymers to self-assemble into nanorod-like structures, rather

than that of the side chains. This main result and other results in this paper can help re-

searchers design materials with desired properties without having to test various starting

structures beforehand.

II. METHODS

A. CAS Algorithm

The concurrent adaptive sampling (CAS) algorithm is a state-based enhanced sampling

method that is based on the weighted ensemble (WE) method6,15–24. The WE method

replaces a single long simulation with many simulations that are resampled at frequent

intervals and carry probabilistic weights. This way, the WE method is able to observe

rare trajectories and obtain overall better sampling statistics. The system’s kinetics are

not altered, so we can directly obtain both thermodynamic and kinetic properties from the

method. If we were only interested in sampling thermodynamic properties, however, then

other methods like umbrella sampling and replica exchange molecular dynamics (REMD)

would work as well1,2. We can also obtain a statistical model in terms of state transitions and

in this sense, the WE method bares similarity to building Markov state models (MSMs)5,25–28.

However for MSMs, macrostates, or small regions of conformational space, are constructed
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such that transitions between them are Markovian, and controlling the Markovian error may

be difficult or even practically impossible19. Additionally, we are not able to obtain long

trajectories from MSMs.

The WE method, on the other hand, does not require the Markovian assumption and

thus overcomes its associated limitations. To start, the conformational space is partitioned

into discrete sets or macrostates and reaction coordinates (e.g., dihedral angles, number of

non-covalent bonds) to keep track of during the simulation are chosen beforehand. The

reaction coordinates’ values determine which macrostate each short simulation, or “walker,”

belongs to after the simulation finishes running. Note that non-differentiable, discrete reac-

tion coordinates can be considered for the WE method, in contrast to several biasing force

enhanced sampling methods like metadynamics3. This can be useful for sampling systems

that self-assemble, where the number of non-covalent bonds can be an important reaction

coordinate.

Within each macrostate, the WE method maintains a fixed target number of walkers that

carry probabilities or “weights.” A fixed target number of walkers is maintained by merging

or splitting walkers in a statistically correct way, which is called “resampling.” Fig. 1 shows

how the walkers, which are represented as circles, are resampled in a simple simulation. The

walkers’ weights are represented by the black portion in the circle, e.g., the two walkers in

the initial stage of the simulation both have weights of 0.5, so half of the circles are filled

with black. This technique is used to maintain a constant stream of walkers, irrespective

of the energy barrier height. Note that the walkers’ weights are always equal to the mean

weight of the macrostate in Fig. 1, which is different from the original WE method, where

the walkers’ weights range from the mean weight to two times the mean weight. It has

been proven that having equal weights is optimal since it minimizes variance and statistical

errors (see Chapter 7 by Darve and Ryu in Schlick29, and Darve30). Without resampling,

then the walkers would be depleted in macrostates near an energy barrier or overcrowded in

macrostates at low energy. Consequently, walkers without resampling would not be able to

overcome energy barriers and sample rare pathways and intermediates. These same steps

are repeated until the walkers’ weights converge to steady-state probabilities. Exact fluxes

and pathways with probabilities can also be obtained with no bias if the reactant and the

product are specified.

Unlike MSMs, there is no need to adjust the simulation time and the macrostate decom-
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Methodology

• Weighted ensemble (WE) 
method (Huber and Kim. 
Biophysical Journal 1996):  
 
1. Pre-define or redefine 
macrostates. Set reaction 
coordinates, simulation length, 
and target number of short 
simulations or “walkers” per 
macrostate.  
2. Let walkers explore. 
3. Bin each walker to 
macrostate.  
4. Resample the walkers in each 
macrostate.  
5. Repeat 2-4 until 
convergence.
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FIG. 1. Diagram of how resampling is carried out in the CAS algorithm. U(x) denotes the energy

in terms of the reaction coordinate x. The simulation time is set to τ and the target number

of walkers per macrostate is set to 2. The walkers, represented as circles, carry weights that are

represented by the black portion in the circle. The walkers are first split into two walkers for each

of the visited macrostates at t = τ and are merged where there are three walkers and split where

there is one walker at t = 2τ . The WE method resampling diagram from Ref. 31 was modified to

incorporate the resampling method from the CAS algorithm.

position to control accuracy for the WE method because the Markovian assumption is not

required. The only thing to note is that we need to pick a simulation time that is long

enough to observe desired transitions but not too long so that we inadvertently miss those

transitions. After we pick the simulation time and run the WE method for some number

of steps with resampling, the distribution of walkers will relax within each macrostate and

will be closer to converging to the exact distribution. Although the WE method is guaran-

teed to converge to the exact distribution, it loses efficiency if macrostates are not correctly

defined. In addition, finding the right partition becomes significantly more difficult for high-

dimensional spaces. Nonetheless, the WE method results are not sensitive to the simulation

time, and the macrostate decomposition only controls the efficiency of the method.
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Moreover, convergence is easy to monitor for the WE method, whereas MSMs may need to

be reconstructed again if the memory effects are found to be big. To determine convergence

of the WE method, we monitor the macrostates’ probabilities and determine whether the

error is small or not. To obtain accurate fluxes, we monitor the error of the fluxes and run

the simulation until it is small enough29,30. In other words, we can run the WE method

for longer until the errors are small enough without losing the data that we have already

gathered. However, both methods have difficulty in getting initial data and early trajectories

with zero information, unless good reaction coordinates are provided to move the system

forward. Despite this, the WE method is preferable to MSMs in many cases given that

it is more robust and that MSMs have uncontrollable errors unless macrostates are chosen

carefully.

Considering these shortcomings of the vanilla WE method, the CAS algorithm was re-

cently developed13,32. The method can be used for systems in which the reaction coordinates

are largely unknown because it can easily have more than two reaction coordinates, making

the true reaction coordinates a function of those selected. In addition, the macrostates can

be adaptively constructed as the CAS algorithm simulation proceeds so that we can sample

conformations and pathways without having to define an intractable number of macrostates

in high-dimensional space. Furthermore, the macrostates can be constructed in an optimal

way by using the committor function, which makes the simulation focus sampling the slowest

process and control computational cost as a result. Other related WE methods that can have

many reaction coordinates and adaptive macrostates include the WE-based string method

and the WExplore method15,33–36. In this paper, however, we did not use these features

from the CAS algorithm since there was no need for the systems that we studied. Finally,

since the CAS algorithm is an extension of the WE method, it can be coupled with any MD

simulation program to run walkers simultaneously, achieving computational efficiency pro-

portional to available computational resources, similar to the WE method implementations

like WESTPA and Workqueue20,37.

However, note that the CAS algorithm only addresses a few shortcomings of the vanilla

WE method, i.e., macrostate partitioning and limitation to one or two reaction coordinates.

The CAS algorithm’s efficiency depends on the initialization data and the choice of reaction

coordinates. Additionally, trial and error is necessary to get optimal parameters (simulation

time τ and target number of walkers per macrostate) to use the CAS algorithm in practice.
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FIG. 2. Dihedrals of an all cis triazine hexamer with S-ethyl side chains and amino backbone.

Since the hexamer is all cis, all of the ten dihedrals are around 0◦.

B. Reaction Coordinates

To study the self-assembly of dimers of triazine trimers and conformational changes of a

single triazine hexamer, we chose the reaction coordinates to be the total number of non-

covalent interactions, i.e., hydrogen bonds and π-π interactions and the dihedrals that are

associated with bonds that can be cis or trans. We kept track of hydrogen bonds that were

2.5 Å or shorter between the backbone and the triazine rings and π-π interactions that were

4.2 Å or shorter in distance between centers of mass of two triazine rings. Note that the

dihedrals are not exactly the same as the conventional ω dihedrals, which determine the

cis/trans conformation in peptide bonds. But like the regular ω dihedrals, the molecule is

cis when the dihedrals are all equal to 0◦ and trans when they are all equal to 180◦. Fig. 2

shows the dihedrals that indicate cis/trans bonds for a single triazine hexamer.

Specifically, for the dimers of triazine trimers with sulfur backbone (which cannot hydro-

gen bond), we kept track of three reaction coordinates, i.e., the total number non-covalent

interactions (ranging from 0 to 4 or 0 to 8), the total number of trans bonds for the first

trimer (ranging from 0 to 4, where Eq. (1) is used to indicate the degree of isomerizing to

trans for each dihedral angle), and the total number of trans bonds for the second trimer

(ranging from 0 to 4, where Eq. (1) is used again for each dihedral). For the dimers of

triazine trimers with amino backbone (which can hydrogen bond), we only kept track of one

reaction coordinate, i.e., the total number of non-covalent interactions (ranging from 0 to 11,

with the maximum number varying for different trimers). Although Ref. 13 showed that the

CAS algorithm was able to sample all four cis-to-trans isomerizations for a single triazine

trimer by keeping track of all four dihedrals, we needed better reaction coordinates that

would sample cis-to-trans isomerizations and vice versa more easily and have macrostates
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converge to steady-state quickly. Hence, we focused our effort in sampling the free energy

landscape and fluxes between the initial and final states for all cis trimers and all trans

trimers separately.

# of trans bonds =


0 if 1

1+exp(−0.05(ω−90) ≤ 0.02

1 if 1
1+exp(−0.05(ω−90) ≥ 0.98

1
1+exp(−0.05(ω−90)) if 0.02 < 1

1+exp(−0.05(ω−90)) < 0.98

(1)

For the single triazine hexamer, we kept track of two reaction coordinates, i.e., the total

number of hydrogen bonds (ranging from 0 to 11, where the maximum number slightly varies

between different hexamers) and the total number of trans bonds for the hexamer (ranging

from 0 to 10, where Eq. (1) is used again for each dihedral). The number of π-π interactions

was not kept track of due to the difficulty of differentiating true π-π interactions from triazine

rings that were just close together by distance. This way, the dimer of triazine trimers case

was reduced to a one-dimensional or three-dimensional space sampling problem and the

single triazine hexamer case was reduced to a two-dimensional space sampling problem.

The total number of non-covalent interactions is a non-continuous reaction coordinate,

which would not be suitable for most biasing force enhanced sampling methods that require

differentiable reaction coordinates. Fortunately, the CAS algorithm can have discrete reac-

tion coordinates. To test whether the total number of non-covalent interactions is indeed a

good choice for a reaction coordinate, we tested other choices such as the radius of gyration

(Rg) and the distance between the centers of mass of triazine trimers. First, we plotted

how each reaction coordinate, i.e., the total number of non-covalent interactions, radius of

gyration, and distance between the centers of mass of triazine trimers, changes over time

from 200 to 500 ns of brute force MD simulation data, for all cis and all trans cases for the

original dimer of triazine trimers in Ref. 7. We picked 200 ns as a starting point since that is

when the dimer stays around its most stable state (nanorod for all cis and intertwined for all

trans). From Fig. 3, we can see that while the total number of non-covalent interactions and

distance between trimers change only slightly, the radius of gyration fluctuates dramatically

and takes on different values for the same structure throughout the simulation. Hence, we

concluded that the radius of gyration is not a suitable reaction coordinate to describe the

conformations of the dimer of triazine trimers.
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(a) Plot of reaction coordinates (cis). (b) Plot of reaction coordinates (trans).

FIG. 3. Plots of reaction coordinates for a dimer of triazine trimers (all cis and all trans) with

S-ethyl side chains and amino backbone from brute force MD simulations.

To further test whether the distance between trimers is a suitable reaction coordinate,

we plotted the distance between trimers for each total number of non-covalent interactions

from 200 to 500 ns of brute force MD simulation data. We wanted to see whether there

was a correlation between the two reaction coordinates. From Fig. 4, we can see that

the two reaction coordinates are not significantly correlated with each other, since for the

same total number of non-covalent interactions, the distance between trimers can take many

different values and vice versa. Hence, in order to precisely differentiate between different

conformations, we concluded that the total number of non-covalent interactions is a more

suitable reaction coordinate compared to the distance between trimers.

C. Triazine Polymers

In Ref. 7, in which the first MD simulations of the triazine polymers were published, the

dimer of triazine trimers, in all cis and in all trans conformations for separate simulations,

had alkane thiol (specifically S-ethyl) side chains that could not participate in hydrogen

bonding and an amino backbone that could participate in hydrogen bonding. It was shown

that from brute force MD simulations a dimer of all cis triazine trimers forms a nanorod-

like structure (which represented 100% of the total ensemble) that is stabilized by hydrogen

bonds between the two backbones and three pairs of parallel π-π interactions between the

11



8 9 10 11

0.1

0.12

0.14

0.16

0.18

0.2

5 6 7 8

0.1

0.2

0.3

0.4

0.5

(a) Plot of distance vs. non-covalent interactions (cis). (b) Plot of distance vs. non-covalent interactions (trans).

FIG. 4. Plots of distance between trimers vs. # of non-covalent interactions for a dimer of triazine

trimers (all cis and all trans) with S-ethyl side chains and amino backbone from brute force MD

simulations.

two trimers’ triazine rings. Similarly, from replica exchange molecular dynamics (REMD)

simulations a single hexamer with the same side chains and backbone folds onto itself and

forms a nanorod-like structure (which represented 19% of the total ensemble) that is also

stabilized by hydrogen bonds and π-π interactions. Although the MD simulation results

have yet to be experimentally verified, the MD simulations showed that the triazine polymers

have potential to be useful building blocks for new materials, especially if they can form the

nanorod.

To investigate the effects of having different side chains and backbone structures, we

made several variants with the generalized Amber force field (GAFF) and the programs

ACPYPE and Ante-chamber38–40. Specifically, four different variants were made for the

dimer of triazine trimers case for all cis and all trans separately, and thus eight different

systems in total:

1. alkyl amino (amino-ethyl) side chains and amino backbone

2. amino side chains and amino backbone

3. amino side chains and sulfur backbone

4. alkane thiol (S-ethyl) side chains and sulfur backbone
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Note that the relative strength of the hydrogen bonding ability of the side chains is measured

by the electronegativity of the nitrogen atom in the side chains. Hence, the amino-ethyl

side chains have weaker hydrogen bonding compared to the amino side chains. The dimer

of triazine trimers’ variants’ chemical structures and properties, along with the original

dimer with S-ethyl side chains and amino backbone, are listed in Table I. All ten systems,

including the cis and trans conformations of the original molecule, were simulated with the

CAS algorithm. Similarly, three different variants were made for the single triazine hexamer

case for all cis and all trans separately, and thus six different systems in total:

1. alkyl amino with protecting group (amino-ethyl-sulfide) side chains and amino back-

bone

2. alkyl amino (amino-ethyl) side chains and amino backbone

3. amino side chains and amino backbone

Again, the relative strength of the hydrogen bonding ability of the side chains is measured

by the electronegativity of the nitrogen atom in the side chains. Hence, when we rank the

side chains from weakest to strongest in terms of hydrogen bonding ability, we get amino-

ethyl-sulfide, amino-ethyl, and amino side chains. The single triazine hexamer’s variants’

chemical structures and properties, along with the original hexamer with S-ethyl side chains

and amino backbone, are listed in Table II. All eight systems, including the cis and trans

conformations of the original molecule, were simulated with REMD.

The goal was to find out whether the side chain and/or the backbone having hydrogen

bonding abilities was essential for the nanorod to form. The hydrogen bonding side chains

also differed from each other in terms of strength so that we could investigate whether the

difference in hydrogen bonding strength affected the thermodynamic and kinetic properties

of the triazine polymer.

D. Simulation Protocol

The triazine polymers were all simulated with GROMACS 4.6.4 at temperature T =

300 K with time step ∆t = 2 fs41. Most simulation parameters were identical to the ones

in Ref. 7, including the force field that was generated using generalized Amber force field

13



TABLE I. Dimer of triazine trimers’ chemical structures and properties. The following systems

were simulated with the CAS algorithm.

Chemical structure Side chain Backbone

Cannot hydrogen bond Can hydrogen bond

Can hydrogen bond Can hydrogen bond

Can hydrogen bond (stronger) Can hydrogen bond

Can hydrogen bond (stronger) Cannot hydrogen bond

Cannot hydrogen bond Cannot hydrogen bond

(GAFF), the explicit solvent with SPC water molecules and 0.115 M KCl for the dimer of

triazine trimers case, and the Generalized Born/Surface Area (GB/SA) implicit solvent for

the single triazine hexamer case12,39.

For the dimer of triazine trimers simulations, 500 ns of brute force MD simulations in

the NPT ensemble with a Parrinello-Rahman barostat with a 1 ps coupling time at 1 bar

and a Nose-Hoover thermostat with a 0.2 ps coupling time at 300 K were initially run

to initialize the CAS algorithm simulations, since having good initial conditions speeds

up convergence42,43. The CAS algorithm simulations were run for 2 µs for the dimer of

triazine trimers with amino backbone and for 2.3 µs for the dimer of triazine trimers with

sulfur backbone. The total simulation time is calculated by the cumulative number of

macrostates × target number of walkers × simulation time τ . The target number of walkers

per macrostate nw was set to 20, and the simulation time τ was set to 100 ps. As previously

mentioned, REMD was not used for the dimer of triazine trimers simulations due to its high

computational cost when simulating explicit solvent systems.
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TABLE II. Single triazine hexamer’s chemical structures and properties. The following systems

were simulated with REMD.

Chemical structure Side chain Backbone

Cannot hydrogen bond Can hydrogen bond

Can hydrogen bond Can hydrogen bond

Can hydrogen bond (stronger) Can hydrogen bond

Can hydrogen bond (strongest) Can hydrogen bond

For the single triazine hexamer simulations, 500 ns of REMD simulations in the NVT

ensemble with velocity-rescale temperature coupling (0.2 ps coupling time) were run44. The

GB/SA implicit solvent with the Onufriev/Bashford/Case algorithm for calculating Born

radii, solvent dielectric constant of 78.3, and infinite van der Waals and Coulomb cutoffs

were used45. The hydrophobic solvent accessible surface area is calculated using an analyti-

cal continuum electrostatics (ACE)-type approximation and the internal dielectric constant

is set to 1, which are the default settings on GROMACS46,47. The REMD simulation param-

eters were identical to the ones in Ref. 7, which followed Ref. 12 as a reference. Specifically,

16 replicas that uniformly span from 300 K to 800 K were used for each simulation, with

exchanges occurring every 1000 steps (2 ps) and a Metropolis acceptance rate of about 50%.

The replicas were first equilibrated for 200 ps at each temperature before the 500 ns produc-

tion runs, which saved conformations and potential energies every 2 ps. REMD was used

for the single triazine hexamer simulations to observe the hexamers folding onto itself, since

there is a high energy barrier associated with rotating the bond between the linker nitrogen

and the triazine ring as previously mentioned.
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III. RESULTS

A. Replica Exchange Molecular Dynamics

To obtain the free energy landscape and the most stable conformation for each hexamer

listed in Table II, we simulated each hexamer, all cis and all trans separately as starting

conformations, with replica exchange molecular dynamics (REMD) for 500 ns, as done in

Ref. 7 and Ref. 12. We also ran a REMD simulation of a single triazine trimer with S-ethyl

side chains to investigate the free energy landscape of a much simpler molecule for reference

and followed the same simulation protocol as the hexamers. We used the last 400 ns of the

500 ns simulation run and since both all cis and all trans simulations were used for each

trimer/hexamer, we ended up using 800 ns of simulation data to calculate the free energy

landscape for each trimer/hexamer. The multistate Bennett acceptance ratio (MBAR),

specifically the Python implementation by Shirts and Chodera, was used to calculate the

free energy landscapes48. To test for convergence of all REMD simulations, we followed

Ref. 49 and Ref. 50 and calculated the average number of round-trips, i.e., how many times

a replica visits both the lowest and the highest temperatures for each hexamer in a given

observation time τ . We set τ = 10 ns and measured how the average number of round-trips

changes as we increase the simulation time. Fig. 5 shows how the average number of round-

trips converges to a stable value with small error bars as the simulation time increases for

each of the four hexamers and the single trimer, indicating that the REMD simulations have

converged. The standard deviation of the number of round trips was multiplied by 2, which

approximately represents 95% confidence interval, for error bars.

With REMD, each triazine trimer/hexamer was able isomerize easily from cis to trans

and vice versa. Fig. 6 shows the free energy landscape and the most stable conformation

obtained for the trimer with S-ethyl side chains (0 hydrogen bonds and 1 trans bond). Fig. 7,

Fig. 8, Fig. 9, and Fig. 10 show the free energy landscape and the most stable conformation

obtained for the hexamer with S-ethyl side chains (7 hydrogen bonds and 5 trans bonds),

the hexamer with amino-ethyl-sulfide side chains (4 hydrogen bonds and 3 trans bonds),

the hexamer with amino-ethyl side chains (5 hydrogen bonds and 6 trans bonds), and the

hexamer with amino side chains (6 hydrogen bonds and 7 trans bonds), respectively.

As previously mentioned, the original triazine polymers in Ref. 7 had S-ethyl side chains

16



that cannot participate in hydrogen bonding and amino backbone that can participate in

hydrogen bonding. A single hexamer with the same side chains and backbone was shown

that it can fold onto itself and form a nanorod structure stabilized by hydrogen bonds and

π-π interactions from REMD simulations, which comprised 19% of the total ensemble when

k-means was used as a clustering method and root-mean-square distance (RMSD) to the

starting conformation was used as a distance metric7. The nanorod structure represented

the second of the four ordered clusters. Fig. 7 shows that the nanorod structure indeed

appears when the hexamer folds onto itself and has 8 hydrogen bonds and 2-3 trans bonds.

The other hexamers have hydrogen bonding side chains, in contrast to the original triazine

hexamer with S-ethyl side chains. The amino side chains have stronger hydrogen bonding

than amino-ethyl side chains, which have stronger hydrogen bonding than amino-ethyl-

sulfide side chains by not having a protecting group attached. All of the hexamers, including

the original hexamer, have an amino backbone that can participate in hydrogen bonding as

well. For all of the three hexamers with hydrogen bonding side chains, a nanorod structure

with the middle triazine rings interacting in a T-shaped or parallel displaced fashion appears,

in contrast to the nanorod structure with all triazine rings interacting in a sandwiched

fashion. Fig. 8, Fig. 9, and Fig. 10 show the nanorod structure obtained for the hexamer

with amino-ethyl-sulfide side chains (4 hydrogen bonds and 3 trans bonds), the hexamer

with amino-ethyl side chains (6 hydrogen bonds and 6 trans bonds), and the hexamer with

amino side chains (4 hydrogen bonds and 3 trans bonds), respectively. Interestingly, for the

hexamer with amino-ethyl-sulfide side chains, the most stable conformation is the nanorod,

unlike the other hexamers that do not have the nanorod as their most stable conformation.

Overall, REMD is effective at overcoming cis-to-trans barriers and vice versa and map-

ping out the entire free energy landscape for the triazine trimers/hexamers. Although rates

can be approximately obtained after post-processing the data and constructing a master

equation as done in Ref. 51, REMD in general fails to obtain kinetic properties since it

alters the real kinetics of the system. In addition, REMD scales poorly for explicit solvent

systems like the dimer of triazine trimers. Hence, a state-based method that does not alter

the kinetics like the concurrent adaptive sampling (CAS) algorithm needs to be used to

efficiently obtain rates and pathways between two states of interest.
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FIG. 6. Free energy landscape and most stable conformation of a single triazine trimer with S-ethyl

side chains and amino backbone from REMD simulations. Figure (a) plots the free energies in log

scale or −kBT lnP (kcal/mol), where P denotes the weight, truncated at 5 kcal/mol, and the color

bar indicates which colors correspond to which free energies in log scale (kcal/mol). Figure (b)

shows the most stable conformation (0 hydrogen bonds and 1 trans bond).

B. Concurrent Adaptive Sampling Algorithm

To obtain the free energy landscape, committor function, forward and backward fluxes,

and most stable and intermediate conformations for each all cis and all trans dimer of triazine
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FIG. 7. Same as Fig. 6 but for a single triazine hexamer with S-ethyl side chains.
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FIG. 8. Same as Fig. 6 but for a single triazine hexamer with amino-ethyl-sulfide side chains.

trimers listed in Table I, we simulated each dimer with concurrent adaptive sampling (CAS)

algorithm for 2 µs. Figs. 11 – 13, Figs. 14 – 16, and Figs. 17 – 19 show results for the dimer

with S-ethyl side chains and amino backbone, the dimer with amino-ethyl side chains and

amino backbone, and the dimer with amino side chains and amino backbone, respectively.

Table III lists the forward and backward fluxes for the dimers with amino backbone listed in

Table I. Finally, Fig. 20 and Fig. 21 show results for the dimer with amino side chains and
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FIG. 9. Same as Fig. 6 but for a single triazine hexamer with amino-ethyl side chains.

sulfur backbone and for the dimer with S-ethyl side chains and sulfur backbone, respectively.

As previously mentioned in Sec. II D, we used 500 ns of brute force MD simulation data

for each system to initialize and speed up convergence of the CAS algorithm simulations.

When simulating the dimer of triazine trimers with brute force MD simulations, both tri-

azine trimers with amino backbone maintained their cis/trans conformations throughout the

simulation, whereas the triazine trimers with sulfur backbone converted from cis to trans

and vice versa easily. This is due to the cis/trans bond having partial double bond character

for the triazine trimers with amino backbone and not having partial double bond character

for the triazine trimers with sulfur backbone. Hence, as previously mentioned in Sec. II B,

for the dimers with amino backbone, we ran the CAS algorithm simulations by keeping track

of the total number of non-covalent interactions (hydrogen bonds and π-π interactions) for

both all cis and all trans cases. For the dimer of triazine trimers with sulfur backbone, we

ran the CAS algorithm simulations by keeping track of the total number of non-covalent

interactions, the number of trans bonds for one triazine trimer, and the number of trans
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FIG. 10. Same as Fig. 6 but for a single triazine hexamer with amino side chains.

bonds for the other triazine trimer.

These various triazine trimers were tested to find out whether the nanorod structure will

still be present for the all cis triazine trimers if their backbones lose hydrogen bonding ability

and/or if their side chains have hydrogen bonding abilities in different strengths. In the

results, the initial brute force MD simulation data is shown for comparison to the final free

energy landscape obtained from the CAS algorithm simulation. The brute force points are

plotted in log scale or −kBT lnP (kcal/mol), where P denotes the overall weight obtained

during the 500 ns simulation. The CAS algorithm points are also plotted as −kBT lnP

(kcal/mol), where P denotes the average weight obtained during the 2 µs simulation. The

standard deviation of the free energy was multiplied by 2, which approximately represents

95% confidence interval, for error bars. To plot the transition matrix points, the transition

matrix, where each entry Tij equals the average of the weights going from macrostate i to

macrostate j and vice versa, was calculated at every resampling step during the 2 µs CAS

algorithm simulation. The transition matrices were calculated this way so that they fulfilled

detailed balance, as done in Ref. 13, which followed Ref. 52. The equilibrium weights, or the
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eigenvector corresponding to eigenvalue λ1 = 1, were obtained from the averaged transition

matrix. The transition matrix points are plotted as −kBT lnP (kcal/mol), where P denotes

the equilibrium weights. We found that the free energy landscapes from the transition matrix

and from the CAS algorithm closely matched with each other and that the CAS algorithm

produced free energies with low error bars, indicating that the CAS algorithm simulation

has well converged to steady-state.

For the dimers of triazine trimers with amino backbone, the forward (reactant to product)

and backward (product to reactant) fluxes over simulation time for all cis and all trans are

also shown, and their final values are listed in Table III. Specifically, for all cis simulations,

the reactant states had the total number of non-covalent interactions range from 0 to 4,

whereas the product states had the number range from 9 to 11. For all trans simulations,

the reactant states had the total number of non-covalent interactions range from 0 to 2,

whereas the product states had the number range from 6 to 8. The fluxes were calculated

by labeling walkers with colors, which indicated whether they last came from the reactant

or the product. Hence, the walkers changed color whenever they reached the other state,

which effectively kept track of their history. In order to calculate the uncertainties in the

flux, we used the bootstrapping procedure, which draws first passage times randomly with

replacement for a number of times that is proportional to the total simulation time. The

standard deviation of the flux was then multiplied by 2, which approximately represents

95% confidence interval, for error bars.

The brute force MD simulations were not suitable for calculating fluxes since the dimer

mostly stayed in its most stable all cis or all trans conformation once it reached it. Note

that the backward fluxes converge slower than forward fluxes since the backward reaction

has to go over a much higher energy barrier than that of the forward reaction. With the

CAS algorithm, we were able to obtain both forward and backward fluxes with small error

bars. For all cases, the forward flux was much higher than the backward flux, indicating

that it is unlikely for the dimer to unfold from the product or the most stable all cis or all

trans conformation. In addition, the forward and backward fluxes did not linearly increase

or decrease as the hydrogen bonding ability of the side chains increased as seen in Table III.

This indicated that having hydrogen bonding side chains does not affect the kinetics in a

straightforward, predictable manner and more studies need to be done to truly understand

how different hydrogen bonding side chains affect kinetics.
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Finally, the most stable all cis or all trans conformation, which also corresponds to the

lowest free energy point in the all cis or all trans isomer landscape, and the intermediate

conformation, which approximately has a committor function value of 0.5, are shown for

each all cis or all trans dimer of triazine trimers. The committor function represents the

probability going from reactant to product before reaching the reactant again. The commit-

tor function was calculated by dividing the transition matrix eigenvector corresponding to

the second biggest eigenvalue λ2 by the transition matrix eigenvector corresponding to the

biggest eigenvalue λ1 = 1, or ρ2/ρ1, as done in Ref. 13. The committor function was then

normalized to range from 0 to 1 to represent probability. We found that the most stable

all cis conformation is the nanorod structure and the most stable all trans conformation

is the intertwined structure for every dimer of triazine trimers with amino backbone. But

note that the nanorod structure or the intertwined structure might not be the most stable

conformation if we take into account all of the various cis/trans isomers. Additionally for all

cases, the conformation with a committor function value of approximately 0.5 corresponded

to the energy barrier point that separated the initial state from the final, most stable all

cis or all trans state. This makes sense since at that point, there is an equal probability of

going to the final, most stable all cis or all trans state or going back to the initial state. On

the other hand, when the dimers have sulfur backbone instead, then neither the nanorod

structure nor the intertwined structure is observed and the most stable conformations be-

come entirely different structures. Note that for the dimers of triazine trimers with sulfur

backbone, only half of the cubic free energy landscape space is filled since the trimers are

equivalent. Moreover, for the dimer of triazine trimers that have S-ethyl side chains and sul-

fur backbone, the triazine trimers have no hydrogen bonding ability so the only non-covalent

interaction that binds the two triazine trimers is the π-π interaction.

Overall, the CAS algorithm is effective at obtaining a converged one-dimensional free

energy landscape and fluxes between the initial state and the final, most stable all cis or

all trans state for the all cis and all trans dimers of triazine trimers with amino backbone.

It is also effective at identifying intermediate conformations by calculating the committor

function. Unfortunately, the dihedral angles were not sufficiently good reaction coordinates

for the CAS algorithm to efficiently sample cis-to-trans isomerizations and vice versa and

obtain steady-state weights for the dimers that had amino backbone. More work needs to

be done to identify better reaction coordinates that would allow us to sample cis-to-trans
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isomerizations and vice versa for triazine polymers with amino backbone using the CAS

algorithm so that we can identify the most stable cis/trans isomer.

IV. DISCUSSION

The triazine-based sequence-defined polymers have immense potential to be useful build-

ing blocks for new materials. By having bonds that are not susceptible to proteases, the

triazine polymers are innately robust. By being able to have various side chains, the triazine

polymers can form various macromolecules with desired structure and function. However,

in order for the triazine polymers to be used for production, MD simulations need to be

used to first uncover their properties and mechanism.

Ref. 7, which is the first and (so far) the only publication available regarding the triazine

polymers, details the experimental and computational studies done on the triazine poly-

mers. In preliminary experiments, Grate and Mo have investigated disubstituted triazine

hexamers that had two pyrene labels along the chain. The ratio of excimer to monomer

fluorescence intensities is expected to be related to the physical distances between pyrene

moieties. The observed trend among the disubstituted hexamers with regard to excimer to

monomer ratios, based on fluorescence, is consistent with folding and inconsistent with ex-

tended linear conformations. For instance, the highest ratio, indicating the closest pyrenes,

was observed for 1,6-labeled hexamers, where pyrenes are farthest in distance along the chain

but would be closest if the hexamer is folded. Hence, both MD simulations and preliminary

experimental work support that triazine hexamers prefer being folded. However, since there

is still more to uncover regarding the triazine polymers and computational studies can be

more easily done compared to experimental studies, we investigated the effects of side chains

and backbone structure on the conformation and assembly of triazine polymers using MD

simulations.

Unfortunately, MD simulation by itself is limiting in timescale, so enhanced sampling

methods are necessary to overcome the timescale barrier between simulations and biological

processes and efficiently obtain thermodynamic and kinetic properties. By using REMD, we

were able to obtain the entire free energy landscapes and identify the most stable conforma-

tion for a variety of triazine hexamers. By using the CAS algorithm53, we were able to obtain

converged one-dimensional free energy landscapes, fluxes between the initial state and the
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final, most stable all cis or all trans state, and most stable and intermediate conformations

for various all cis and all trans dimers of triazine trimers with amino backbone.

With regard to forming the nanorod structure seen previously, we found, using the CAS

algorithm, that if the backbone has amino groups in the linker sections, then the nanorod

structure is formed and is the most stable conformation for the dimer of all cis triazine

trimers, regardless of whether the side chains can hydrogen bond or not. For the dimer of

all trans triazine trimers, we found that the intertwined structure is the most stable confor-

mation if the backbone has amino groups in the linker section. If the backbone has sulfur

instead, then the backbone loses hydrogen bonding ability and can easily isomerize from cis

to trans and vice versa. The most stable conformations for dimers with sulfur backbones

are neither the nanorod structure nor the intertwined structure and the two conformations

are not observed at all. If neither the trimers’ side chains nor the trimers’ backbones can

hydrogen bond, then there is no opportunity for hydrogen bonding and π-π interactions

dominate the conformations observed. Finally, we found that the forward and backward

fluxes are different for different hydrogen bonding side chains but could not find a clear

trend in how the fluxes change as the hydrogen bonding ability of the side chains increases.

Similarly, we found, using REMD, that the nanorod structure appears for all cases, since

all of the hexamers had hydrogen bonding amino backbones. Taken together, we found

that having hydrogen bonding backbones, rather than hydrogen bonding side

chains, are critical for the triazine polymers to self-assemble into the nanorod

structure.

For future work, better reaction coordinates other than the dihedral angles need to be

identified to efficiently sample cis-to-trans isomerizations and vice versa using the CAS

algorithm. Then we will be able to identify which isomer is the most stable one for the

dimer of triazine trimers. If the all cis dimer is found to be the most stable isomer, then the

nanorod structure that they form will be robust and have potential to be used as building

blocks for new materials. Additional work needs to be done on longer triazine polymers and

with different experimental conditions (solvent, temperature, etc.) to get a more general

understanding of the self-assembly of triazine polymers.
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V. SUPPLEMENTARY INFORMATION

PSE files for of all of the triazine polymer conformations are available. The files can be

viewed using Pymol.
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Journal of Chemical Physics 134, 06B613 (2011).

53Available at http://github.com/shirleyahn/CAS_Code.

29



0 2 4 6 8 10

# of hydrogen bonds + # of pi-pi interactions

0

1

2

3

4
fr

e
e

 e
n

e
rg

y
 (

k
c
a

l/
m

o
l)

from brute force

from CAS

from transition matrix

0 2 4 6 8 10

# of hydrogen bonds + # of pi stacking

0

0.2

0.4

0.6

0.8

1

c
o

m
m

it
to

r 
fu

n
c
ti
o

n
 v

a
lu

e

(a) Free energy landscape (cis). (b) Committor function (cis).
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(c) Free energy landscape (trans). (d) Committor function (trans).

FIG. 11. Free energy landscapes and committor functions of dimer of triazine trimers (all cis and

all trans) with S-ethyl side chains and amino backbone from the CAS algorithm simulations.
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FIG. 12. Forward and backward fluxes of dimer of triazine trimers (all cis and all trans) with

S-ethyl side chains and amino backbone from the CAS algorithm simulations.
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(a) Nanorod structure (cis). (b) Intertwined structure (trans).

(c) Intermediate conformation (cis). (d) Intermediate conformation (trans).

FIG. 13. Most stable and intermediate conformations for a dimer of triazine trimers (all cis and

all trans) with S-ethyl side chains and amino backbone. Figure (a) shows the nanorod structure

that has 11 non-covalent interactions in total (8 hydrogen bonds and 3 π-π interactions). Figure

(b) shows the intertwined structure has 7 non-covalent interactions in total (5 hydrogen bonds

and 2 π-π interactions). Figures (c) and (d) show the intermediate conformations for all cis (6

non-covalent interactions) and all trans (2 non-covalent interactions), respectively.
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(a) Free energy landscape (cis). (b) Committor function (cis).
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(c) Free energy landscape (trans). (d) Committor function (trans).

FIG. 14. Same as Fig. 11 but for a dimer of triazine trimers (all cis and all trans) with amino-ethyl

side chains and amino backbone.
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(c) Forward flux (trans). (d) Backward flux (trans).

FIG. 15. Same as Fig. 12 but for a dimer of triazine trimers (all cis and all trans) with amino-ethyl

side chains and amino backbone.
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(a) Nanorod structure (cis). (b) Intertwined structure (trans).

(c) Intermediate conformation (cis). (d) Intermediate conformation (trans).

FIG. 16. Same as Fig. 13 but for a dimer of triazine trimers (all cis and all trans) with amino-ethyl

side chains and amino backbone. Figure (a) shows the nanorod structure that has 11 non-covalent

interactions in total (8 hydrogen bonds and 3 π-π interactions). Figure (b) shows the intertwined

structure has 7 non-covalent interactions in total (5 hydrogen bonds and 2 π-π interactions).

Figures (c) and (d) show the intermediate conformations for all cis (5 non-covalent interactions)

and all trans (3 non-covalent interactions), respectively.
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(a) Free energy landscape (cis). (b) Committor function (cis).
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(c) Free energy landscape (trans). (d) Committor function (trans).

FIG. 17. Same as Fig. 11 but for a dimer of triazine trimers (all cis and all trans) with amino side

chains and amino backbone.
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FIG. 18. Same as Fig. 12 but for a dimer of triazine trimers (all cis and all trans) with amino side

chains and amino backbone.
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(a) Nanorod structure (cis). (b) Intertwined structure (trans).

(c) Intermediate conformation (cis). (d) Intermediate conformation (trans).

FIG. 19. Same as Fig. 13 but for a dimer of triazine trimers (all cis and all trans) with amino

side chains and amino backbone. Figure (a) shows the nanorod structure that has 11 non-covalent

interactions in total (8 hydrogen bonds and 3 π-π interactions). Figure (b) shows the intertwined

structure has 7 non-covalent interactions in total (5 hydrogen bonds and 2 π-π interactions).

Figures (c) and (d) show the intermediate conformations for all cis (7 non-covalent interactions)

and all trans (1 non-covalent interaction), respectively.
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TABLE III. Fluxes for dimers of trimers with amino backbone. The forward flux indicates the

flux from the initial state to the final, most stable all cis or all trans state and vice versa for the

backward flux.

Dimer Forward flux (ns−1) Backward flux (ns−1)

All cis with S-ethyl side chains 0.164 ± 0.0561 0.00231 ± 0.00179

All trans with S-ethyl side chains 0.388 ± 0.171 0.00656 ± 0.00308

All cis with amino-ethyl side chains 0.455 ± 0.182 0.00455 ± 0.00370

All trans with amino-ethyl side chains 2.25 ± 0.365 0.0150 ± 0.00747

All cis with amino side chains 0.135 ± 0.0997 0.00159 ± 0.000783

All trans with amino side chains 1.86 ± 0.269 0.0289 ± 0.0114
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(a) Free energy landscape from brute force. (b) Free energy landscape from CAS.
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(e) Most stable conformation. (f) Intermediate conformation.

FIG. 20. Free energy landscapes, committor function, and most stable and intermediate confor-

mations for a dimer of triazine trimers with amino side chains and sulfur backbone. Figures (a),

(b), and (c) show the free energy landscapes colored in log scale or −kBT lnP (kcal/mol), where

P denotes the weight, and the color bar indicates which colors correspond to which free energies

in log scale (kcal/mol). Figure (d) shows the committor function. Figure (e) shows the most

stable conformation that has 4 non-covalent interactions, 1 trans bond for one trimer, and 2 trans

bonds for the other trimer. Figure (f) shows the intermediate conformation that has 4 non-covalent

interactions, 0 trans bond for one trimer, and 2 trans bonds for the other trimer.
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(e) Most stable conformation. (f) Intermediate conformation.

FIG. 21. Free energy landscapes, committor function, and most stable and intermediate confor-

mations for a dimer of triazine trimers with S-ethyl side chains and sulfur backbone. Figures (a),

(b), and (c) show the free energy landscapes colored in log scale or −kBT lnP (kcal/mol), where

P denotes the weight, and the color bar indicates which colors correspond to which free energies

in log scale (kcal/mol). Figure (d) shows the committor function. Figure (e) shows the most

stable conformation that has 3 non-covalent interactions, 1 trans bond for one trimer, and 2 trans

bonds for the other trimer. Figure (f) shows the intermediate conformation that has 2 non-covalent

interactions, 1 trans bond for one trimer, and 3 trans bonds for the other trimer.41




