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MATHEMATICAL STUDY OF THE NONLINEAR SINGULAR INTEGRAL
MAGNETIC FIELD EQUATION

Mark-Jg,Friedman'

Computer Science and Applled Mathematics
-Lawrence Berkeley Laboratory
University of California
_Berkeley, California 94720

Part 1

" Abstract
We considér the nonlinear singular integral magnetic field équation
M = hM+AM = ﬁa, in thelHilbert space of vector-functions: LZ(Q), where'
M is the magnetization vector,v (hM) (x) = g(ﬁ(x),k) .is the total field, and
'(Aﬁ)(x).= - zf- grad div Jp-——z— dy ; We_profe that: i).A.is boundéd,
with HAH 1: ii) A is self-ad301nt° iii) A is positive semi-definite,
with (AM,M) > |
| Uniqueness is proved in casé h is striétly'monotone; éxiétence of
R—l:an its continuity are proved ih case h is stroﬁgly monotone, continuous
and Eounded; .In this case the Galerkin method (and, if‘tﬁe'magnétic material
is also isotropic, the Ritz mefhoa) is shown to yield a.nﬁmefical sdlution

of the eduation.>



0. INTRODUCTION‘

MagnetiC'field'calculatinns have applications.to various engineering
devices [3].. Genernlly, the.mngnetostaﬁic prnblem isAthat of determining
the mngnetization or magnetic field in a highly permeable three—dimensional
.bndy'nf cnmplex geometric configuration. There are but a few mathematical
'investigations‘of the'problem in the nonlinear caSé,knnwn to this author.
In [15) a uniqueness theorem and in [7] a uniquenesé and existénce_tnebrem
have been proven. | |

Currentiy, magnetic field problems can be formulated using either-axv
differential équaﬁion approanh'or an integral equation one. In the Russian
eleéﬁromechanic_litérature, the lat;ér approach has been pioneeréd by
I. I. Pekker [10,11] and in the Western 1iterntufe by A. H.>Halacsy [4].
Now it is nidely u$ed (see.for example,,[l-6,8;12,14]. ﬁut the authbr is
unaware of any punlicatinns containing a rigorons mathemntical analysis
 of the integral eqdatinn approach. In his opinion, such analysis might
élarify both the possibilities.of this appfoacn and the restrictions on it,

and might also suggest more effective techniques for solving the equation.

1. FORMULATION OF THE PROBLEM. PRINCIPLE RESULTS
The general problem is tn solve the nonlinear singular integral

equation [10,11]

B0 %) - 5 erad .di"fQ D gy - B0, (0 Gonx) €0 (LD

for the 'magnetization; M(x) = (M1 (x)",'sz(x) ,Ma(x)) "given an "applied field"
ﬁa(x). Here 9 is a bounded open region in R, (=Euclidean 3-space) with a

sufficiently smooth boundary S, which we imagine to be filied with a



ferromagnetic material; _;(y;x) = X-y, I = IXeyI, ﬁ(x) = é(ﬁ(#),x) is
the net field in  considered as a functibh of ﬁ; é is, as a rule, an
'expefimental function représenting thebmag#etic permeability of the
ferromégnetic material which varies Withvthe‘magnetizationQ This
relationship is usually given by a single-valuéd magnetization curve,
 cal1éd the M- H characteristic of the magnetic materiaig.bbtained By
neglécting fhé hysteresis effeéts. The integrai répresénts the demagnet—
ization fie1dvdue to spatial disfribution of magngtization.

_In this papef‘we first study'tﬁe singlar integralboperator.
Then we choose the appropriate functional'space, iZ(Q),'for'studying
the equatibn. Making use éf'the‘monofone gperator‘ﬁethodywe prove the
existence and,upiqgeness of the solutidn-of (1.1),.énd the continuity
of the inverée operator. . (The 1atter're§u1t implies the so-called
"correctness' property, i.e., that the solution depends continuously '
on the right side-;f the equation). .. We then justify the application of
the Galerkiﬁ method for solving the equatiou in the general gase.and
‘the Rifz method in:ghe,isbtropic case. Note that thé conditions (3.4)
and (3.5) imposed on g ére valid fqr'isotropic as well as nénlinear
: anisotroéic.mgdia in the limitiné case of.no’hysteresis ér very strong
 hysteresis (permanent magnets).

In later papers‘wé plaﬁ té_establish the Tucker stébility'of the
Galerkin procedure, obtain,perturbafion estimates, considér some applica4r
tions of theSe estimafes, and giveva mofe detailed énalysis of the spectrum

of the singular integral operator.



2. ANALYSIS OF THE SINGULAR INTEGRAL OPERATOR

Let us set.

9-.

We also use the following notation

’

@, - [Rwvea , 18I - [ Fwa, @0y = @9, Halg =13l
' e 6 , '

where G is a régipn in 'RS.
Lemma 2.1. Let ﬁ(x);be smooth in § =QUS and M(x) =0 in Ra\ Q.
Then the following identities hold:

M o= M +M

1 2. 2 ’ : (2."1)
where v A o
ﬁl(x) = grad div‘-l-/(x) = -lil'? grad <fM( );n( ) dsy}f—‘ii—v-l—_y—(ﬁ'dy>,

.,ﬁz(x) = -rot vr.ét ‘I’(x_) '=_: 1 rot <—fn.( )'/:M( ) dSy +

‘rot ﬁ(z) d ) :
b r -y
Q

S N U S o2 L
I g_rgd_ div ‘{_J'"Q,f _ IIMIIQ - Ilvgrad div ‘~l/lII-{::)\Q - Irot rot ‘{’IIR3 s (2.2)

.v(-M,‘._grad div “I’)Q = | g?ad div ‘?.II + léli grad d1v ‘PII 3\Q+ %Il rot rot ‘Pll 3\9

(2.3)

- Proof. The identity (2.1) foliows from the ideritit_ies :

- AY = _rot rot ¥ + grad div v o, ‘ (2.4)

MWy = Re . e, 2.5



o div ¥(x) = H M(y) - grad, —dy = M(y) + grad
] _1_<f H(y) - 0r) 4q f atv By ) -
= e y s
4 \- . r Ly S r
8 : Y
. -, . 1 - 01 ‘ 1 -
-rot ¥(x) = -‘ZE M(y) x grad_ ;-dy = I M(y) x grad

'S

We proceed now. to prove (2.2).

‘(ro‘t rot ¥, grad div q’)ﬂ‘

ne

o

(frot —z—d +f ———LrOtM()d>
9 ‘ .

<_f n(y) xMG@). 4 -+frd.t H(y) . )
. e a8y ,f——;;fjﬁf y

S

rot. rot ¥ + grad div W dx

rot rot ¥) dx

She

div(div ¥

CoL -+
(div ¥) (rot rot ¥en ) dS .

-y

=

dy

(2.6)

1
yr &

(2.7)

Since div ¥ and rot rot ¥.n are continuous when crossing S [13] we have

o T
_f(div"P) (rot rot ¥en )dS
A , .

-_ =+
where n=n .

As a result

'(rot rot ¥, -grad div "P)Q

is the outer normal and 1@

-f (div ¥) (rot’ roﬁ ‘T’-ﬁ_)ds

rot rot ¥ e grad div ¥ dx ,
RN\S

= -(rot rot ¥, grad div W)R;\Q

Further, (2.4), (2.5) and (2.8) give

is the inner normal to S.

(2.8)



"

Hﬁ“é |lrot rot @"é - 2(r0t rot:?, grad div ?)9.4 ”gréd div @“é

: "rot_rOt@"é‘+ 2(ro; rot_@i gr?d'diy.@?R;\Q f "8radvdiy'mué .

(2.9)
From (2.4) and the identity A¥ =0 for x in RN\Q it follows that
0 = Hrot rot @"2 - Z(rot.rot ¥ ’grad div ¥) +] grad div @uz .
‘ - PRNR > = RAQ R\
| | (2.10)

Adding (2.9) and (2.10) gives (2.2); (2.3) follows from (2.4), (2.7)

and (2.10) and the fact that

N

 (grad div'@,ﬁ)h : "gréd div @"é - (rot.rot ¥, grad div ?)Q

]

[ grad div EI.’H?Z + »(g?gd div v, rot rot '@)R.s\g

__2 b._z R L o=n2
_“gra@ div W“Q f % “grad div W”R;\Q + % | rot rot.W“R;\Q

' This ends the proof.

Let-iz(Q) be the Hilbert_space of real éQuareQSﬁmmable in Q
vector functions ﬁ(x)Awith_norm el and scalar product (fg); We define in
1.2(Q) the operator

(AW (x) = grad div ¥(x) - - ﬁ% grad div~[ E%§l dy . (2.11)

We take the functions M(x) satisfying the_éonditionsfofﬁLémma 2.1 for

the domain of definition D(A) of A.

Theorem 2.1. Operaﬁor A is'
1) bounded, with IlAl = 1,
._ii) self-adjoint,
iii) poéitiQe semi-definite, with'-inf(Aﬁ,ﬁ) =0 .

Ml =1



Proof. From Eq (2.2) i_t follows that IIAII l. If M € D(A)

D(A)

and rotM=0, ﬁ*ﬁls- = 0, ‘then (2. l) ‘gives AM M. Thus [l All = 1.

_ D(A)
Extension of A by continuity onto L (Q) results- in lAll = 1.  Using
(2.6) and the theorem on differentiation of integrals with weak

~ singularities [9, p.139] we obtain (compare with [5, pp.12,22-27] and

17, p.379]

]';'r 8rad lef M—(x‘_y—)—“dy e | ‘ﬁ(y) . grad

L m 1
@0 @ = -7 = Ty

v y

L - o e
- .ZT_T.f (‘M(Y)_" grady) gx‘ady T dy - 3 M(x)
0 .

Zl?f [_ M-g) +.M;(y}»"rlrf(y’x) r‘(‘x,y)] | dy_—%ﬁ(x) o,

(2.12).

]

where. the latter integral is understood in the Cauchy sense, (i.e.,

_ff(x,y)dy = 'rl_gr(r)l ff(x,y) dy;
‘ Q\B(x,r)

where B(x,r) is a bell of radius r with the center at x). Since fhe
kernel of the latter integral is even, accordlng to '[9, p.162] A is
self- adJolnt '

To prove the third statement we note that due to Eq. (2.3),
(AI‘_'I,M)/O,V ar.d due.to Eq. (2. 1), (AM M) —0 if div M = 0,,»M.'n"s =
A The properties of A established above suggest the choice of f.lz(ﬂ)b
as the natural space in whi;':ii _t"_o 'stﬁdy (11) and attempt a m:1_merica,l

solution..

Remark.

. The established properties of A have a physical interpretation



-8~

_whiéh‘is as follows: let‘US dénote by _ﬁi(x) the field.'ﬁ(x)f ﬁa(x)
~induced by M(x). fThén Eq.‘(lgl)'is Writtenvas ‘
Ho= AM . . (2.3
The application of (iii) gives ,;(ﬁi»ﬁ) = (AM,M) > 0, and therefore

C@,m <o . L (2.14)

0
z
=i
p—

N

=i

=
Am: .

5
[a W

e

/)]
e
B

6.0}

-
N
[
D

Nt

Now by (2.13) and (3), - (&, =

(E. 7)) < 112, or
1 .
\(ﬁ —M—>| < gwno. (25

'The:inequality (2;14) indicatesvtha; theAméan angle between the induced
field ﬁi‘ana the magnetizatidn‘ﬁ in Q-is~not leSS'thah w/2; (2.15)
indicates that the mean value of- the projectioﬁ of ﬁi onFo ﬁ;is not
more than the mean value of M in Q. :Thus, (2.14) and (2.15) give a
rigoioﬁs mathematical ihterpretation to'fhe well‘known maxims.among
eléctrical'engineersTthat; "ﬁHeAinducéd field is-directed opposite the
net fiéld, or magﬁetizétion,ﬁ and."the,induced field is less than the

magnetization."

3. NUMERICAL SOLUTION BY THE GALERKiN AND RITZ METHODS

"~ We ndw study the general equation (1.1) in L2 = T?. We make
the assumption that ﬁa € L?, and é(ﬁ(x);x) € 12 for all M € L? and

define in iz the operator .
) x) = g(x),x) , (MeLl®) ; - (3.1),

(1.1) is rewritten in operator form as

Rit = WA+AW = A, . (@ elH. (3.2



: : -2 =2 '
Definition. An operator R:L =+ L  is called monotone if for any

M,

M, E_fz-we héye (Rﬁl—Rﬁz, ﬁl—ﬁz) > 0. If (3) is replaced by (>), it
_ is stfictly.mOnOtohe, énd'if‘O is replaced by q”ﬁl-ﬁzuz,_where c.>0 does
‘not depénd.on M, it is strongly monotone.

For h the monotonicity condition is written as

f(é(ﬁxx),x)v- §(r‘42<x>,x))- (%, (x) -, (x))dx > 0 . (3.3)
Q . . . * . .

Since A is positive semi-definite, it is monotone. It follows,

that R is monotone if h is monotone.. Due to [16, p.194] this implies

Theonrem 3. 1:.‘ '

If h Safisfies‘(3;3) with‘(>) replécéd'by (}),.thenf(3.2) [or (1.1)]
cannot.haye more than one sélution. |

‘To prove the existeﬁce of the inversé operator R_l‘and its continuity
we subject h to strongér conditions.'vLet.é(ﬁ,x) be continuous with
respect to_ﬁ for almost a11 x€EQ, measurable in © with respect to x for
all M, and satisfy the inequélities

(é(ﬁl,x)-;g(ﬁ;,x).).'_ (fi,-H,) > ¢ (i ~i1,) B (3.4)

“for almost all x€Q, where ﬁl,ﬁz € R, are arbitrary and c >0,

e, (0| < a0 + bkz: Ml o, G=12,9, 6.5
o = | |

where a(x) € 1%(), and b>0. It is easy to see that (3.4) amounts to
the condition of the strong monotonicity forh.By[16, p.62] (3.5) implies

that h is bounded and continuous in L°. By [16, p.273] there holds
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Theorem 3.2. |

If_vé satisfieé (3.4).and’(3Q5), éhen (3.2) [or (l;l)] has the
uniQuevsqlution ﬁ; in 12 for each.ﬁé in L2, and tﬁe inverse 0peré;or R
is continuous. —

| Therconditioh (3.4) means thaﬁ the aﬁgle betweeﬁ thé iﬁcremgnts
of H and M is lesé than W/2. "It is-valid for'tﬁe magnetic matéfials
mentioned in Sectién'l; the conditién_(B.S) is‘vaiid‘fof all_knbwﬁ_
materials. | -

For the numerical solution;'(3,2) muét‘bé replaced by a sequence
of finite—dimensional equations. ‘This can be dome by a Galerkin.méthod.
Le? 51,52, ';"$n"" bezacoofdinate system in iz,i,e., $n E‘iz, $n‘aré
_lineafly indeﬁendént,vénd'QVery'ﬁ in i? één be represented as

e : w | . ;
o= 2 o 008
k=1

whete"ak are functionals. We seek the solution in the form -

. |
Moo= S a ¢ . ~(3.6)
"ol K S

The coeffic’ie'ntsock are obtained from the system of equations

n ) o :
G«gﬁ9k¢k%‘%> = (Hy,$y) » (1=1,2, ...,m) (3.7)

which is called the Galerkin system.

Theorem 3.3.
_If h:L? > 1?2 satisfies (3.4) and (3.5), then the Galerkin

approximations Mn exist for each n and'ﬁn'converges-to ﬁo in L .

Moreover,
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- - .1 - - v_ : :
HMn-MoH < — (RMn-Ha,Mo) " : (3.8)
Ve co : _ .
Proof. For M € L2 withfsufficiéntly lérge IMIl we have

IMi > 1/c HRﬁ-—ﬁa" > 0, which gives, using (3.4),

(R -, M) = (R-RO,M) + (RO -, > el - | (RO~ 0|

> IIHN (NI = IRD - H_I)

Now R satisfies thevconditions df Théoréﬁ'23.3v[16]; which gives the
concluéions'asserted above.’ |
Consider now tﬁe'particular case of the isotropig magnetic

material when h has the form | |

Mb(x)

(hi) (x) = H(M(x> x) e =l

(3.9)

where M= ]ﬁ|,’and satisfies (3{4)'and (3.5).

Definition.  An operator R (1% - i2>’is called potential if
there exists a furnction F(M) on L? such that Rﬁ‘= grad F(ﬁ).

Lemma 3 l

If h:L° > L7 satisfies (3.9), theh: R:L% » fzv_is potential

Proof. . Con31der on L the functional
» L MG ' '
F(M) fdx f HM,x) dM + k. (AM ) - (H M) ' (3.10)

L : = - -2 ‘
Let us calculate gradF(M). For arbitrary L € L , we have
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(graa F(ﬁ),i) éi.(F(ﬁ4+££)) -0
|M(x) +tL(x)| -

4
dt

[[ H(M,x)dM + g(A(M+tL) M+tL)—(H M+tL)]|
0 . .

de,H(M(x),X)‘-M—l(%;(%(—X'—)- + D) - 1,0 .

It follows that grad F(ﬁ) RM - ﬁv.

- From (3.4), (3.5), and Lemma 3.1, by [16;‘p.113],.it follows thet
the prbblem of minimizing F(M) is equivalent.to_that of sqlving (3.2).
We remark that functional'(B.lO) is'fhe energy of the eorrespoeding |
magnetic system and Eq. (3.2) is the condition that miniﬁizes it.

For the numerical miniﬁizafion of (3.10), the thz method can be -
used. In‘this case we eeek the‘appreximate solution ﬁhin the form.
(3.6),eand the problem of minimizing F(ﬁ) is replaced by the problem of
minimizing each of the functions |

v . )

d)(al,ocz, ,ocn)’ = E(ﬁh) = <k—1a q;k) - .(3.11)

of n varlables (n +' o), It is eesy to see [16, p.168] that this problem'

is equlvalent to that of solving (3 7), which is also called the R1tz

system in ‘this case.
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Abstract

For ﬁhe numerical treatmént:of the nonlinear singular integfal
,maghétic field eqqation RM = hM+ AM = ﬁa; which has beenvconsidered
by the author iﬁ Part 1, Tucker stability is establiShed in the casé
where (hﬁ)(x) = é(ﬁ(x),x) is a béunded, COntinuous, and strpngly
monotdne operétor in L%, 1In tﬁe.special caseé; g(M,x) = cM and
, étﬂ,x) = g(M,X)'ﬁ/M, which are importantbfbr éngiheering applications

~explicit perturbation estimates are obtained.

This work was performed under the auspices of the U.S. Department.
of Energy under Contract W-7405-ENG-48.



4. PRELIMINARIES

In this paper we continue the numeration of Part 1 [5]. This
series of papers deals with theoretical analysis of the nonlinear
- integral equation
MY . L E g .
g(M(x) x) grad div T———;T dy = Ha(x) R xeN (1.1)
and the Galerkin method for its solution, X = (xl,xz,xa), Q is a region
v3 . ' : - ) .
in R°, the bars refer to 3-vectors, M(x) is the magnetization, and .
ﬁ(x) (M(x) X) is the net field. (The key assumption is that g

. R . 1 =
is monotone 1ncrea31ng in’ M ) In the isotropic case, H = ﬁ:f M,

i

B = ﬁ%I M, where u = u(M,x) is the permeability, M= |ﬁ|. a is a
known "applied field" (usually produced by currents). Equation (1.1)

is considered as the opérator'equétion
R - AR = B | (3.2)
in the Hilbert space of vector—functions 1% = iz(Q), whefe'hﬁ=§.and A
is the d1fferent1a1 1ntegra1 operator in the second term on the 1eft
of (1.1). By || |l and ( , ) we denote‘norm and scalar product.

The valldlty and appllcablllty of (1 1) has been discussed in Ref.

[5]. The main'results.of [5] are given by the following two theorems.,

.Operafor A-is
i)  bounded, with || A]| =
ii)  self-adjoint ;

iii) positive semi-definite, with ’inf(Aﬁ,ﬁ) =0 .
| M =1



Theorem 3.3. -
Let é(ﬁ,x)v be continuous with respect to M for almost all x€Q,

measurable in Q with respect to x for all M and satisfy the inequalities.

oo (3.4)

_(é(ﬁl,X) = é(ﬁz.’x)) * (ﬁl ‘-ﬁz) > -C(ﬁl .—f’iz

: , : o= = 3 P
for almost all x€{}, where M,,M, €R are arbitrary, c>0;

le; M0 < a0 +by m | (i=1,2,3 , (3.5
k=1 '

where a(x) € LZ(Q) , b> 0. Then _the Galerkin approximations

n - ' o
Mn = kz=:1 OLk d)k exist fc_;r ‘each n, and Mn converges to the unique ‘_
solution ﬁo of (3.2).

' T_He Galerkin proéess (_3.7) for (3.2) can be written in the form

Rna(n)‘ =  (Gn+An)a(“) A - (4D
_where oc(n) = (OLl, : ,q )'T,_ H(n_)‘ ((ﬁa,$1), ,(ﬁa,$n))T_ s
¢ o = (3(3 o 8.8 SR i )50) A = @d.5"
n BlL M) o \B K/%n?) 3 P T Py e=1

k=1

Let ;kk, denote the errors ai‘ising' in the computation of Gn+An’

Fn = (?kgl)’be the error matrix, and d(n) be the corréSponding error in

H(n)’. (The discrepancy arising in the approximate solution of Eq. (4.1)

(n) .>‘

"can also be included in S. Ther_l instead of the exact Galerkin process

(4.1), we solve the "nonexact" one

Ra® - (6 +A +TOa™ = 1@ 4 s (g

‘and obtain the nonexact solution
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e | . |
= Z CRENC N - (4.3).

| -, ‘ | . _, ‘
Let us denote by Ln the finite-dimensional subspace of 'L spanned by
the functions él(x),... ,5n(x),' and let Pn'be the ‘orthogonal
projection of iz.onto iz for each n>1. Now the Galerkin process (4.1)

" can be written in L as
PRM = PHM +PAM = PH . C(4.4)
To write the proceés (4.4) in i; we use the approach of Ref. [2, pf260].

Let §n : L2 > R® be the linear operator defined by

§nﬁ ='((ﬁ,$l), ...,(ﬁ,$n))T for each ﬁfEi? and'let_Sn be the

i -2 . . - . — .
restriction of Sn to L . It follows that HS H HSnH, Sn1 exists
-1 E ; -2
and Sn 0= Pn. Moreover, 1f M ' 2: B. ¢ is any element in Ln’
then S ﬁ = K B(n), where K, is the Gramm matrix given by

n) -1, = v
K ((¢k’¢l))k 0=1° for each n= l. Since B( ) - K SM, the above

dlscu531on 1mp11es that the perturbed process (4.2) can be written
(P_R+AR M~ = PhM +PAM + AR M = B H, +h, , (4.5)

' . - - -2 ~
where h =S 16<n) €L ., and AR =S TK s « L 1L .
o n n n - n n n

In order to investigate the stability of a general nonlinear
' process one can apply a theorem of Tucker [8]. His definition of
stability is based on the one of Mikhlin [3]. We would also like to

refer to a paper by Omodei and Anderssen [4], where Tuckef stability



o

have been investigated for certain classés of nonlinear elliptic boundary
value probiems; and a paper by Hertling and Schiop [1], where the Tucker
stability has been éstablished:fdr some classes of Hammerstein equations;
In secfioﬁ 5 Qe establish Tﬁéker stagility for the éalefkin prdcess
(4.4) in the genéral case Wherein the operator h is bounded, continuous,
and strongly ménotonei The‘Tuckef stability prbvides the stability of

the numerical process. However, for various applications, the explicit .

_perturbation estimates can be useful. Following basically the approach of

Mikhlin [3] and Krasnoseiskii and othérs [2], we obtain in Section 6 such

perturbation'eStimates for important special cases. In the case where

é(ﬁ,x) =M, ¢ = const >0, we obtain detailed perturbation estimates and

illustrate by an example their usefulness for engineering applications.

Then we obtain some estimates in the case é(ﬁ,x) = g(M,x) ﬁ/M , certain

natural restrictions being imposed on g.

Remark 4.1. We consider coordinate functions {¢k}k=1 , Where the

kth coordinate function $k is independent of the dimension of the

subspace in which the approximate solution isvsought,_ However, if
piece-wise pol&nomial‘cbordinate functions are used, then the accuracy
of fhe Ritz-Galerkin approximations is improVed'By refining the mesh,
and this leads to a completely new set of coordinate funétions.‘ It is

easy to show that all our results are valid in the latter case as well.



5. TUCKER STABILITY

Deflnltlon 5 1 [7] An operator R is sald to lie in an 95 "(a(n),rn,b )

nelghborhood of Rn if an-Rn.%_ann, where Unels nonexpan51ve in

Kn(d(n-)’_rn) = (g™ g™ (™ I, <.} (uhere I I denotes the
_'Euclideah norm) ‘and '”Un aﬁn)”n_< “a(n)Hn independently of n.

‘Then the stability definition is as follows:

(n)} ’
=1

befinition 5.2 [7]. The numerlcal process (4.1) is stable at {a
if_for each ry there exist nelghborhoods V (0 n ),'numbers‘pn and

(a(n),r ,b’)vneighborhood

' constants s,t such that, if ﬁn is in an Q
of R with'bn<;pn énd'G(n) E“Vn, then the perturbed numerlcal process
(4#2)'i3'solvable and
6™ - o™ < sp s ells™
n A n - 'n
where s and t-aredindepeﬁdent of rr;but mey:depend‘on the sequence
{u'(n)'}m_ -

Theongm 5.1. 1If the coordinate system {¢k}k 1 is strongly
minimal in L Adn the sense. of Mikhlin [3], and the operator h satlsfles
conditions (3.4) and-(3.5), then'the Galerkln process (4.1) for Eq. (3 2)
is Tucker{stable.

Proof. Eqdetion (3.5) gives the continuity of h. Together with
IlA]l =1 by Theorem 2;1,‘thisrgives the continuity Of‘Rn.

By Theorem 3.3, ﬁn converges to ﬁé_in»ig, and hence there exists
~a comstant. ) independent of i, such that

N

A S —_——
o . i (n)p2
DR



It fbllows that ”aﬁﬂll are bounded above independently of n.

By (3.4), (3.7) and (4.1) the strong minimality of the éoordinate

system, for allAdgn); B(n) € Rn.:We Haﬁe thé foliowing chain of
inequalitiesf

| (n)‘»(n) ' RN =l g T O

I, o™ - r 8™ = [5(2 o8 ) - 3(Z sk¢k)+§1A¢k(ak—ek)

k=1 ’ k=1

1
2

n .
el T =80 I > AJclla
k=1 . -

\\/ .

(n) - B(n) ” .

(5.1)

We also used here the inequality
lgan -g@] [¥-L] > (g -g(@,¥-1L) .
Tucker has proven [7] that the continuity of R, the uniform boundedness

of {||q(n)”n} , together with (5.1), ensure that the numerical process

(4.1) is stable. =

Remark 5.1. The Tucker stability of the numerical proéess (4.4)

*

can be shown simiiarly.

6.  THE PERTURBATION ESTIMATES

Let H = g(ﬁ,x)‘E a%I:ﬂ (or B = uH), u being known as the permea-

»bility of the magnetic material. For simplicify we suppose here that
the cbordinate systems {$k}2_1‘are‘orthoﬁormal which implies K =1,
- i ki o R v o
where In is an identity matrix; and that for any M € L, 0< Ao < (P AM,M)

< AO_< 1, where ko,Ao‘may depend on coordinate systems. The latter

assumption is justified as follows. By Theorem 2.1, 0 < (AM,M) < (ﬁ,ﬁ)



for any ﬁ'é i;. It can be shown (we shall do it in Pa?t 3), that
Kef A =‘{ﬁ iu=rotv, v 6352(9), div v =.0, .§><ﬁ|é =10}5

Ker (I —.A) = {1_1 T u .=.grad $, ‘(bew;(.ﬂ)..,ﬂs.é 0} It is easy to choose
$k s0 that $k.¢ Ker A U Ker(I-A) as, for example, in the case when Ek

are the characteristic functions of parallelpipeds.

1) ‘U = const > 1

Equation (3.2), the exact Ritz process (4.4), and the perturbéd

one (4.5) are rewritten, respectivély, as

= 1. =, = _ = .- = = =25

RM = T-1 M + AM = AHa (M,H, € L) . (6.1)
PRM = ——— +PAI7['=FPITI (6.2)
n H=1"m n n-a ? o

o = _ 1 = _ ~ > _

(P R+OR OM = T yn +P AM + FnMn = P H +h. (6.3

" Here AU is the maximum by modulus error in U (the error in u is usually’
known sinée'p is usually obtained from'éxperimént). From physiéal |
considératioﬁs; u+du-1 > C;.”Fﬁ = (Ykz),gwhere YkZ dgnotes the érrors
arising in'the'computgtion of (A&k,$£); _We-shall’suppose that Fn is

._,We‘denote by M , M =P M s
v o n o

self-adjoint; F = S_'T S el = lin .

n nn’
ﬁn the’solutions Qf (6.1),‘(6.2), and (6.3), respectively. Let us also

set A= 1+(xo- I rnn)(u_+'Au- 1).

Theorem 6.1. ,Let A>0 fdr all nf>no. Then Eq. (6.3) is solvable

and



Mo Al y qem-n e i+ Diea,@-n (12 ) L
' - ‘ n'a

(6.4)

M - N L (n) (T =P )T ||
T ¢y ‘[—Lé‘_l‘J—_ F (ubtp-1 I+ (1 + A_“1>u R T
_ . U. e Byl Mg Il

(6.5)

Bl g Rl < Il -R) S D R -El - 60

Proof. The spectral theory fOr,self—adjoiht operators [6] impliés

that
. 1 _ o 41

-1
| T T
H+AU-1 o u+_Au -1

' 1 -1 .
e

A€ {AO’,'f"AO}

A (6.7)

in addition A>0 imﬁlies Tyl < Ko-+l/(u-+Au-l). Together with (6.7), this

: 1 “\-1
<PnA + ptAp-1 I) '

- the process (6.3) is solvable. Transfprming (6.2),

gives HTn" < 1, and thus by a well known theorem

(P R+ AR DM = ARM_+PH
n. n’"'n n n n-a

and subtracting tﬁe result from (6.3) gives

(PyR + A3n><Mn}'Mn) = CARM, R - 6.8
or- .
. ~ - _ . _1 _ - . .
»Mn -M = _(‘PnR + ARn) (-—ARnMn + hn) (6.9)
~and
oz =1, = = Ce-
M _-M_ = (P,nI§+ARn).vb (-_ARnMn+hn)-(I-Pn)MO . (6.19)

-n (o]
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Equation (6.9) gives

I -l B | S sy
n o ||(1> R+AR ) LAR ” +||(P R +AR ) “ Je W (6.11)
M|l n n n " n I
M T .
From (6.7) and (6.3), by the perturbation theory for symmetric matrices [8],
-1 . L )—1 p+Au-1 '
, < (== - = —— .
| @ r+ar 7| (“Au_l+xo IT_1 . (6.12)
Further,
AR = - — Ay I+F
(W+Ap-1)(u-1) '
lar_II < LT + AT (6.13)
(p+Ap-1)(u-1)
From Eq. (6.2),
Ie_ RIC NM_ N = NP A_I IPRI = —=— + A
n n " 'na ? n u-1 o]
It follows that
o> —HEr e d (6.14)
n l+AOQJ-1) n a
Now (6.4) follows from (6.11) to (6.14).
Taking into account A
(6.15)

b

> H-1
HMOH " HHaH
Further, (6.1) implies

we obtain (6.5) from (6.10), (6.12) and (6.13).
~ ~ ~ -y, =
R(Mn —Mo) = RMn - Ha o Mn -Mo = R (‘RMn - Ha) s

which gives (6.6), and the theorem is prbven.
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Remark 6.1. The above analysis_méy give some other useful perturé
bation estimates. For ékample, (6.8) implies the estimate of “Mﬁrﬁnﬂ

from below in the case that Ty is not necessarily symmetric.

Remark 6.2. The inequality (6.5) implies themcondition for

B consistency of the errors of various types:

L o : oo (n) N(T-P M.
JAQLL < +Au-DITI = . Ay e " = A _f___;ll__g__
e s+ 525) WH_I N

< 14AAA-D

Remark 6.3.. ‘It is easy to show that thé estimates (6.4) to (6.6)
_cannot be improvéd.
Remark 6.4; "The remérks,ahalogous to the ones 6.1_to 6.3 are also

valid for thé following theorems.

Formulating (6.1) - (6.3) in terms of B . gives

.sﬁ = l-§v+ uftl'Aﬁ +H N - (6.16)
u U a . ,
- _ l - U= l L - _ -
PySBy = LByt PAB, = PH,, (6.17)
Vi o= 1 F LMtlu-1 . F Sy = =
(PnS +Asn)Bn = Tm B+ Ty (PnAB,n -'l-”F,an) = PpHy+hy . ._(-6.18)

We denote by ﬁo’ B =P B Bn the solutions Qf (6.16) to (6.18),

respectively;
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Theonem 6.2. Let A>0 for all'n>n . Thén Eq. (6.18) is solvable

and
18 -3 I N | :I. - R () -
_non o< A 1[(1_)\ ) Buj 4 (u+du=-1) IT_ I+ [1+A (U’-l)]<l+ éﬂ) re '_"-'” >
- o/ n o u
IB_Il ' - : e _H_|I
n n a
(6.19)
I -B_ I _ e EE | @),
n Pl oy aoay Ly qeau-n i e -an B
I8, 1 oo | | ; e,
. a
(T -P)B_ - : - - v
o+ -————-_—E‘—o' s ‘ , ) o (6.20)
B I : ‘ S
= - < 2 s <y = - - S
Il'sB_ H_ Il , 1B, -B, I u lIsB_ - Hall. T _ v(6..2.l)
" The proof is cbmpletely analogous to that of Theorem 6.1.
Formulating=(6.1) to (6.3) in terms of'“ﬁ gives
TH = H+ (u-DAH = H, | - L (6.22)
P TH, = H o+ (Vu—l)_PnAHn = PH . - (6.23)
(p T+AT )H = H_ + (o +Au - ;) (P AH, +_Fan) = PH, +h, . (6.24)

v’We denofe by ﬁ-; H =P H . H the solutions of (6.22) to (6.24), °
- N o n no n

respectively.
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 Theonem 6.3. Let A>0 for all n<n . Then Eq. (6.24) is solvable

and
WE -0 A |Aw] | | (@)
n n ) _ -1 Ao v _ §
. — Trcaa-D t A (W+du-1) IT I+ [1v+‘A0(u D] —— ] ,
NH_| - _ P H.
n . _n a .
(6.25)
,1lﬁ -i I A |Au] _ - S m, 1 M1-p)E I
n_.o red A 1[(u+Au-1)vlll“nll'+u e iy —mo
HHOH : o o URnHaH HHOH
(6.26)
1, if A-lni <o
where c = o '
: A,
-— , if A_-ITC Il > 0 .
o} n .
0 ] .
A 1. L ' >~ - ' v
E-HTan-HaII §. HHn-HQH, < ”THn'fHa" . (6.27)

The proof is anélogous to that of Theorem 6.1. The diétinction is that
'"(PnT-+ATn)_1PnAH caﬁ be estimated in tﬁé Qays: either by using the
:same methqd as in the proéf 6f'Theorem 6.1:
. T T L T A,
o MR THAT TR AN < (BT +AT) T B AL < -,

or by using

.Il[(P‘nA)"l r uetu-DITTY = (Ai+ oo+ A - 1) ,
: . , 0 ' .

as
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e T +ATn)'1 P Al »“[(PnA)-—l + (u+du-1)(1= (PHA)_1 Fn)-l] ” '

Ao

I _
1+ — (A-1)
Ao )

To illustrate the engineering applications of the above theorems

we consider the following

Example 6.1. It is often required to estimate both the magnetiza-
_tion and inducfion,vi.e.,_the pair,(ﬁ,ﬁ) inside magnetic material. Since
it might be too expensive to solve both Eqs. (6.3) and (6.18), as a rule

one proceeds in either of two ways: (i) one solves (6.3) and obtains the

= U+AU
n’ n u-+Au 1

==1X1d

pair (ﬁ ﬁn) , or (ii) one solves (6.18) and obtains the

pair (ﬁnif Eﬁ;é%ﬁil ﬁn’§ﬁ> .- The question ié: which way is preferable,

i.e., which of the latter two pairs is‘closer to the pair'(Mn,En)?.

If we solve (6.3), then from the identity

Wi
|
o~]

R - U+Au ]J+A],l l - = . _ u+Au » p_l_ _ +Au -1 = ~ =
n n U+Au—l( U +Au B+ %J u+Ap -1 Ufﬁl H;:%;—BﬁMnMn

i

iy [ 3 +Pu—1(_£ﬁl) (ﬁ'-ﬁ)]

u+Au-1 | u(u+iw) n n
Dy e G w1y @ s
- - - ( - .— _— ‘
(W+Au-1) Bt (u+Au-1u u ) (2, - M)
we obtain the error estimate for Bn
158 Il I T |

I|B ” o (u+A4u -1y ”ﬁ“ T M-
n _ n' S
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If we solve (6.18), then from the identity

I T T 0TI DT AR TR -
CMpoM = GEESGED Mt oD (1) Ga B
we obtain the error eétimate'for-ﬁn
”ﬁ -M .l S ' H% -3 ' ,
n_w (W+Au-Du n_n |Au| (6.29)
it ' (0 + Au) (u-1) = (W + Au) (u-1)
Yy I Byl o
From (6.28) and (6;4),
B -B_I , I S _
noon o« 1 | Au ] + H (u+Au-=1) IT_|
X -2 LU T L1 ?
n U+ Au : u-1 '
o ' ’ (n) ' :
. A [ A -1
. (6.30)
From (6«29) and (6.19),
nnzan-'ﬁnu. | 1 _' vi'Aul‘ | 1+u—.A_T
—— < <1 - u+'Au>'(1—>‘0) no1 t T (m+Du~-1) T,
M 1+ — ' v
n H
B o _ o B (n) | A
e pu Yy 18'™y | Au| -1
+ 1+ A w-D] (1+7) - = TG P
T MY e Eg .

(6.31)
. Now, comparing (6.30) with (6.19) and (6.31) with (6.4), we can answer
the[primary~quéstion in various situations. If, for example, Y +Au is
. close to 1, then the perturbation error (6530) can become much bigger

than the one (6.19); on the other hand, the estimates (6.31) and
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(6.4) can be close. In this 51tuat10n the pair. (kjl B ) seems to be

~ X

closer to the palr (Mn B ) than the one Mn B, ) ); d.e., prOcedure (ii),

solving (6.18), is. preferable.

2) W= u,x)

Let'u(H,x) be a function such that 'c)aH (uH) ex1sts and is piece-
- wise continuous with respect to H for all x€Q and meas'urable in @ with
respect to X for every fixed HE [0,®). Let us set 'ud = 9B/9H. We

‘now require

1< <oy < W <+ fh] o< sl . (6.32)

The error estlmates for the perturbed Ritz process can be obtained on

the basis of the following

Lemma 6. 1 [2, p.293] Let C be an operator in a Banach space F

which is Frechet- d1fferent1able for llx—x*ll < 6* where x, 1s a fixed

point of F, 6,>0. Asshme that the linear operator C'(x*') is continuously

*

invertible in F, and for some 66 and q (0< 50 <§,, 0<gqg < 1),

SRR R . f o .
sup [ [C'(x )17 (') -c'(x)]] < q , | (6.33)
| le—x*”.<<5o ‘ ' ' '
a = eI ex ]l < 8,(1-q) . _ o (6.34)
Then the equation Cx=0 has the unique solution X, in the bail

Ix-x,0 < s o» and X, satisfies the estimate

a ‘ ; o o )
< L - . < s : '
T+q | leo x*llb T-q o v (6.35)
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To show how Lemma 6.1 works, we obtain (without detailed proof) .
some pertur'ba"tiOnvestimates, useful for thé example 6.1, and indicate
how to obtaln others.

Calculatlng (2, R+AR ) (M ) gives

ST 4 . L
(P R+AR ) (ML 3¢ (PLR+4R ) _(M+tL)'_V| £=0

(¥, 1)

M

Mn + a(M )L + Ai}'

'.:$~ t“l

[(a N ) oc(M D) —

- - -2, . ’ o : E
+ FnL (L € Ln) . o , (6.36)
o | o D
wvhere a, () = [u )+ M) -1, o) = [u(Mn)-+ Au(M ) -1]7 .
. The operator (6...3,6) is self-adjoint. Let [3] @ = Q+U9—, where

ad,(Mn) —o(M ) > 0 for x§ﬂ+ .and OLd(Mn)—oc'(Mn) <0 for x€ Q Takin‘g

into account (ﬁn-i)z < M;L2 gives.

f (oa (M ) a(M )) —_— + a(Mn)L dx = fP-noc(Mn)L dx
> (“max + |Au| - 1)°l ||in2v o,
O L) o :
(a (M ) -aM )) ——M———— +oc(Mn)L dx > f Pnotd(Mn)Lz dx
. n ) . 'Q_ .
>;.(-"‘ﬁax . lepl -,

which leads to the estimate

ICER+8R)" G T M < (upg + 180] =1) [L+ Qg T D Gy + 8- D]
. - | ‘ ' (6.37)



~-18-

" The proof of the following estimates

< N RN T
AR < (e Bu] - 1) (u 1)” lau]+ T 0, | (6.38)

min

— . _1 ’ ’ - . .
mpn > [+ A @, - DT G - IR HET (6.39)

is analogous to that of (6.13);'and' (6.14). The application of Lemma 6.1

with F=i§,‘ C‘,=.PnR+ARn, x*=f{n, xo=171n, a<aﬁ, c'1=qr7I gives

the estimate

TN - o | |
e s e __Mq , (6.40)
lIMn I : M
where‘ the estimate uﬁ for
o L e I
| 1+ (A, - Irg ) (e +au] - 1)
lAu| : 1'-FA (v . =-1) (n).
y v + III‘nH + 0 "min . Il 8 i, II
(umin +Au-1) (umin - ,l) umin -1 I PnHa"

(6.41)

is obtained from (6.37)-(6.39). The following estimates, (6.42) and
(6.43), are obtained in the same way as those of (6.40) and (6.41), by

applying Lemma 6.1 with F=f.§, C = P,S +Asn’ x*=_Bn’ onl—sn’

OL<OL]—3, q=q§.
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Pl @-ag e

% . Unax _
'_"Bn“~_ l-—(k¢ = "Thll)(umax;klAul-l). umin(umih-kléul.?l)

pmax..+: Au -1 , 1 +AO (Pmih -1 It G(H)"

+ T N + - : — s (6.42)
 umax H o _ min - HPnHaH':
1B, -3_I ez - o

n— n_ < 1;B_ L -' | o (6.43)

B 9 S 4

_Further, the estimate”fbr qﬁ can be obtained from (6.36) and (6.37);
the estimate for ag can be.obtained in the‘samé way. .To obtain the

estimates similar to (6.28) ahd'(6.29) we must_usé Lemma 6.1.
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Part 3

Abstract
| We-extend.the results of Part 1 on the SPeetrum of the éingular
‘integral eperator, - o
| (Aﬁ)(x)‘ = - 7}1? grad div‘{2 M—(rL) dy
v S

As an appllcatlon we obtaln an estlmate of the lower bound of the

spectrum of the magnetic fleld operator RM hM + AM from L (9) into

the subspace J of generalized'solen01dal vector—functlons from L°.

. Here M is the'magnetization vector, 'hﬁ '—?ﬁ-g7~—1— is‘the total

field, Aﬁ is the indhced field, and 2 is a domain in Ra'

Thls work was performed under the auspices of the U.S: Department
‘of" Energy under Contract W-7405-ENG-48.



7. INTRODUCTION

.in this péper we keeo the>notation and the enumerationbof Part 1 [5]
»and~Part 2 [6]. :

In Part 1 [5] we'began the investigation of the spectfum in L? of

the singular integral opefator

(Aﬁ) (x) = grad div P(x) - Z]';_r grad di\}/ j—iﬂ— dy , xX€Q.
' Y ’ (2.11)
" We showed there that,'i) A is bounded, With.HA” =1; ii) A is self-adjoint;
and iii) A is positive semi-definite, with (AM,M) > 0. The present paper
extends the results of‘Part 1 [5]. The'priﬁciple resultbis given by
Theorem 8.1, and follows from the classical potential theory, elementary
properties of'oseudodifferential operatofs on a comoact manifold
without edge;'and the decomposition (8.19) of 2 ioto ; direct oum [1].
Theorem 8.1 can have_ﬁariOuo applications to the investigation of
the mégnetic field equatioh
R - Wi+ AR = H, C(6.1)
‘and numerical methods for its solution.' As an example we obtain an
estimate of thé lower bouna of the spectruﬁ of R:i2->J,' where J is a

subspace of generalized solenoidal vector-functions from L%. This

choice is natural,’since in applications we always have H, €J. TFor

A
simplicity, we consider the isotropic case. We denote by H'HS Q and
’ s
“-HS S'the norms in H® = HS(Q), HS(S) (see [3] for the definition of
) )
these spaces. We shall also use the notation ll%% Q = |-, % =12
, s .
8. ~ THE SPECTRUM OF A AND R
" Let us introduce some subspaces of L2 [1].
o _ o _ o .
J = {M:M=rot F, FeR , divF=0, FXnIS = 0} (8.1)
° R ' L _ .
¢ = {M:M=grady, ped', Y| =0} _ (8.2)

S

I
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v = {M:M = grad Y, YEH', AYy=01} ) (8.3)
‘Here i o= ﬁy(ﬂ)v_is thé space-of véctor—fumctions 'f==(F1,F2,Fé),m
FieHl-, i=1,2,3.

Theonem §. 1.

" Let the boundary S of Q be twicé‘cdntinuously differentiable. Then

1. Ker A = J
2. Ker(A-1) = ¢
3. Within the interval‘(O,l) the sﬁedtrum>of A is not more

than countable: X =1 is the unique limit point; each
value A # % is regular'or'has a finite multiplicity;
U is an 1nvar1ant subspace of A and the eigenfunctions

of A.in U form a complete orthogonal system in U.

We divide the proof into Lemmas 8.1-—8;4:

‘Lemma 8.1. - For any eigenvalue A of A, the smooth eigenfuncfions
of A form a set whiéh is.dense‘iﬁ the set of éll éiéenfunctidns of A in fz,
<correSponding to A.

Ezggg_—j Let A,M satisfy

| AM-XM = 0 (8.

Setting ﬁ(i)é() fbr’any_ XEERs—Q, (8.4) is rewritfén_as a convoiution '
i? Ryt | | L - . o ' |
- Zq 8rad d1V<M * m) (x) —XM(X) = .0} , x€Q (8.5)

Now let p(x) € C (R;) be such a function that p(x) has a compact

support in Rs’ .f_p(x)dx = 1. Setting ;%(x) = e_ap(x/e) for € >0,
o ' "R, - ' : _

3
we have from the properties of convolution

- AP il\_{~= p 7‘<i grad d1V M*—l— = 1 grad dlv((p *M)*-L)—,
¢ 4T ly| b |y
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i.e., the smooth function M = pe*_M satisfies (8.4). To end the proof

. -€ . 2
we note that M converges to M in L as e~>0.

Lemma 8.2. Ker A = 3
Proof — Consider A on the linear set D(A) = .(_II‘(Q) N C(Q) of
vector-functions with the components from ¢l N c(@). From the proof

of Lemma 2.1 [5] we have the identities

fi(x) = -rot roth(x) + grad div ¥(x) x€Q  (8.6)
) | Ew» i), div M(y)
div -—I‘L dy = - —r-—'— ds + . "“‘_I'_'_‘X'— dy N XEN . (8.7)

'S

Using the ide'ntity_(8.6‘)b., Eq. (8.4) for )\=d is written as
= 1 M - '
M(x) - 7 ot rotf —(-rz)— dy =. 0 B | XE€EQ

Q

This implies

div M) = 0 ,  x€Q . (8.8)
Using the Green's formula, it follows '

(M°n’1)o,s = 0 o (8.9)
From v(8.7) and (8.8) it follows that for A=0, (8.4) can be written as

grad v(x) =v-41—ﬂgrad[0—_(ry-)— s, = 0 , x€Q , (8.10)
| s | |

where we used the notation 0 = Men. Taking into account the jump
conditions on S. for the derivatives of the single layer potential when

x approaches § from the interior

(&)

c(zx) cos.(r—l,xi) + %fﬁ(y) -a—i—(—i-) cisy , i=1,2,3

S S i



we obtain from (8.10)

o g 1 9 (1 - : ' .
=~ el i — = = . S . .
5 + Tq >+ sz"(y) anx(r) as,, : 0, x€S . (8.11)
: A | 7
Froﬁ (8.9) we sée that (0,1)("S = (0. We therefore consider Eq. (8.11) in
. : : ’ : :

the space C(S) = {oec(s),(0,1), g = 0}. It is the homogeneous equation

'for the interior Neumann problem. The conjugate equation is the equation

for the exterior Dirichlet prqblém, It is known to have only the trivial

solﬁtion in.é(S) (see, for exampie,[7]). By the standard Fredholm theory
(8.11) aléo has only a triviallsolution in E(S). Itvfollows tﬁat

KerA N D(A) C {M € D(A) :divi =0, Malg=0} .

The inverse inclusion follows immediately. from the identity'(8.7). By
Lemma_é.l the closure of KerA ﬂ-D(A) iﬁ izfis Ker A, and by [l, Theorem

S v , S, . :
3.2] this closure coincides with J, and thus the lemma is proved.

Lemma 8.3. Ker(A:—l) = &;
Proof -— Consider again A on D(A) = EI(Q)fW E(ﬁ). For A=1,

(8.4) is written as
M(x) +Zlﬁ._grad div“f-%(:zl dy = 0,  x€Q . (8.12)

This implies rotM = 0. Let us set

o(x) = - % divf —lﬁrl)—'dy ; | xE€R, .  (8.13)

Then M = grad¢ in Q. It is easy to verify that ¢ satisfies the

boundary value problem

1]

Ad div M , . xeQ , (8.14)

ot = ¢ ; o x€S (8.15)



Ay = O , ' . x € R0  (8.16)

a¢ = 0 s : X G.S _. (8.17)

an ) . .

lim ¢(x) = 0 , . o for |x|-> = - (8.18) i

where (+) and'(—) denote, respectively, the inner and outer limits on S.
Here (8.14);(8.15),(8.16) and (8.18) follow immediately from (8.7) and

the properties of the space potential and the single layer one. From

. o + o v + - _— -
(8.12) Pﬁ'-n - Eg%— = 0, together with %%;—— Eg%— = M+-n this gives (8.17).

' The problem of (8.16)-(8.18) has only the trivial solution, and thé;efofe

by (8.15), ¢+=0. It follows

Ker(A-1I) N p(A) C{M e D(A) : M - grad ¢ , ¢+ =0} .

On the other hand, M = grad ¢, ¢+==0 implies rotM = 0, Mtxn =0
for x€Q. Together with the identities (8.6),
- 1 ap)xMy) o rot M(y) ,
= = - - 2.7
rot | 4ﬂ./f‘ — dSy — dy , (2.7)
i 0 ‘
this giVes the inverse inclusion. . From Lemma 8.1, the closure of
‘Ker(A-I) N D(A) is Ker(A-1); and from the results in Ref. [1] the
former is é. Thus the lemma is proved.
Let us denote by Xénthe minimum eigenvalue of T in C(S) and by

Ao the maximum one.

‘Lemma 8.4. In the interval (0,1) the spectrum of A in iz is not
more than countable:
1) 'Ao is the lower bound, Ao is the upper bound, 0 < Xo < Ao < 1;

A =% is the unique limit point; each value XA.# % is regular or

has a finite multiplicity.
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~2) U is an invariant subspace of A, and the eigénfunctions of A
in U form a complete orthogonal system in U.

Proof — By [1]

72 = Jeued . (8.19)

and therefore from Lemmas 8.2 and 8.3 it follows that the spectrum of A
on (0,1) is a subset of U. We now reduce the problem of the investigation
of the spectrum of A on U to that of the investigation of the spectrum

-1
2

. _1 )
of T on HOZ(S) = {o€Hd %{(o0,1)

-1 1, =
H2(8) X H2(S)
' For MeU let us define a potential u by seﬁting gradu = M,

IS udS = 0. The norm in HI(Q) can be 'de.fir_xéd as

| ﬂu"f’ Q = .f-(grad w2 dx + (J‘udS)2 (8.20)
. ’ 2 . S ‘ _

For u defined above, we therefore have:

ll? g = f (eraa w¥ax = [ @0ax - @2 s.21)

Now let A be a point of the_sp'ectrum of A in U. Then d a sequence

(ﬁn)CU such that b_"In=grad u s Aun=0, f‘sudS=0,. "ﬁn" = L‘

[, <3|+ 0 ss n=e. Lc'follows thar

- ﬁn(y) - ;
"le‘/-‘r. _dy—‘)\un “1,-9 > 0 -

as n > ». By [3] for a harmonic function u; the mapping u > 8u+/3n

is continuous from Q) to-H__%(S)'. From the pfoof— of Lemma 8.2 for,
+ -+ ] . ' ‘ :

o = Mn-n = aun/Bn it follows that "Ton— (%—A)Gn” 45 +0 as n > ®©.

o : v o 1
The operator T can be considered as a pseudodifferential operator in H»é(S)..



Its principle'stbol.[2;_p.l§7],[4, p-211] is To(x,Ex) = i cos(ax,ix) = 0,
where (x,E#) is an element of the cotangent bundle T*(S). By [2,vp.l98,

Lemma 21.5] T_lis.compact in ﬁs(S) for all real s, in our case s = .
The first statement of the Lemma now follows from the standard pfoperties ~
of avcdmpact_operatof and the fgct that the gﬁectfum‘of A on (0,1) a

is a.subset of that of T. The second statement follows from{(8.7)

and (8.8) and the fact that A is self-adjoint in iz [5].

2

- Let us denote by Pl’P ,P, the orthogonal projectors of iz_onto

° o )
J, U, G, respectively. By [1]

J'z Jou = {M:M=rotF, Fe€ ﬁ;} .

Theorem §.2.

Let R:L%® > J be such an operator that

R M(x) - | |
= < < u < < o
(RM)(X) u(M,x)-—l_+ (AM)(X) * LS Mg S WS Hnax
Then there holds
- ' P, -1 '
L= = 1 min 1 = 2
(RM,M) = ( : + - A >Hb1”
o umax 1 umax_1 'umin - Ao(umin-_l) °
(8.22)"
Proof — Let us define A = const > 0 by 5
1. o - = '
-u—-——_—l + A = inf (RM,M) . s . : . (8.23) «
max -1 | S

RM € J



By Theorem 8.1 we have the fdllo_wihg chain of equalities and inequalities

1

TP o=\ = o =2
To1 + A UIRHIT + [Bp|7) < <;j M> + (A P,M,P,M) + ||P,M]
max v ‘ .
. LI = (M el +pH )+ (A(P +P N, (B, +P)¥)
’ u-1’"2"73 273 2T s
< (-—-———1 '- + 1> |, +p M| | (8.24)
n. -1 273 - | | .
, min _ _

Nowv (8'22) ‘follows fro_rh (8.23),(8.24), and the following inequalities
A, 1_nf(l|P2M I -+ It ") <2,
M| =1 o
RM €J

—1 : r . e =2 — 2
‘ umax_ 1 vAs (umin -1 +: l) ".:.Lnf (” PZM " o ”PBM ” ) .
| | ] =1 '
RME€J
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