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Reinforced masonry (RM) structures are commonly found in North America including in 

areas of high seismicity. However, the ability of such buildings to meet the performance 

expectations of design codes for high-intensity earthquakes has not been thoroughly validated at 

the system level. Furthermore, the seismic behavior of partially grouted masonry (PGM) wall 

systems is not well understood. In this study, a detailed finite element (FE) analysis framework 
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has been developed to simulate the seismic response of RM structures through collapse. The 

framework combines smeared-crack shell elements and cohesive-crack interface elements to 

capture the fracture of masonry, and beam elements to simulate the nonlinear behavior of 

reinforcing bars. The strain penetration and dowel action that may develop in the reinforcing bars 

are also accounted for. To enhance robustness and accuracy, an element removal scheme has been 

introduced. This scheme is triggered in the event of reinforcement rupture or severe masonry 

crushing. The material models and interface elements have been implemented in a commercial 

program. The modeling scheme has been validated with experimental data from quasi-static and 

shake-table tests, and has been used to provide insight into the seismic resistance mechanisms of 

reinforced masonry structures and the influence of design details on their seismic performance. 

Two full-scale shake-table tests were conducted to acquire a better understanding of the 

seismic performance of PGM wall systems. The first structure had design details that represent the 

current practice, while the second had improved design details including stronger vertical grouted 

elements and bed-joint reinforcement. It has been shown that the PGM structure constructed 

according to current practice could develop an adequate base-shear capacity but failed in a brittle 

manner, while the improved design details studied could enhance the ductility and shear capacity 

of the structure. The FE modeling scheme has been extended for analyzing PGM and has been 

validated with data from the two shake-table tests and quasi-static tests. The models are used to 

understand the distribution of lateral forces among the wall components of the two test structures, 

and to evaluate the shear-strength equation given in the design code. The code equation has been 

found to be adequate for these structures. A parametric study has been conducted to demonstrate 

the beneficial influence of continuous bond beams below window openings, double vertical 

grouted cells, and joint reinforcement on the seismic performance of a PGM structure.
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1 INTRODUCTION 

 

1.1 Background and Statement of Problem 

Reinforced masonry (RM) has many desirable properties as a construction material, such 

as durability, energy efficiency, and fire resistance. It is being used in a number of countries, such 

as the United States, Canada, South America, Europe, China, Japan, New Zealand, Australia, and 

others, including regions of high seismicity. Each country follows different construction 

techniques and uses different types of masonry units. In North America, RM is used for low-rise 

residential, commercial, industrial, and school buildings. In these structures, RM shear walls are 

the primary members resisting lateral earthquake or wind loads and also gravity loads. These walls 

can have various configurations and their geometry is usually dictated by the architectural design. 

They can be squat and long walls, perforated walls, cantilever walls, or walls coupled with 

horizontal diaphragms or beams, and can have a cross section that is rectangular, T-shaped, L-

shaped, I-shaped, or U-shaped. Figure 1.1 shows examples of some of the typical RM building 

configurations found in the U.S.  

In modern practice, RM walls are generally constructed of hollow concrete masonry units. 

Steel reinforcing bars are placed within the units in continuous vertical cells and horizontal 

courses, and then grout is poured into the cavities, as shown in Figure 1.2. In North America, 

concrete masonry units that are most commonly used in structural walls have a nominal length, 

height, and width of 16 in., 8 in., and 8 in., respectively. For grouting, a concrete mix with the 

maximum aggregate size of 3/8 in. is used. Although RM walls have many commonalities with 

reinforced concrete shear walls, their seismic behavior can be more complex due to the 

heterogeneity of the constituent materials, the lack of confinement reinforcement, and the 
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condition that the spacing of the reinforcing bars is restricted by the spacing of the hollow cores in 

the units. Several experimental studies have been conducted on the response of RM shear walls 

under in-plane loads (e.g. Sveinsson et al. 1985, Shing et al. 1991, Voon 2007, Ahmadi 2012). The 

studies show that RM shear walls can exhibit either a flexure-dominated or a shear-dominated 

behavior depending on the shear-span ratio of the wall, amount of vertical and horizontal 

reinforcement, and the axial load applied. Slender walls are expected to be flexure-dominated 

while walls with a low shear-span ratio may exhibit a brittle shear-dominated behavior. 

A flexure-dominated wall can exhibit severe toe crushing, followed by buckling of the 

exposed vertical reinforcing bars, as shown in Figure 1.3a. Toe crushing may jeopardize the 

effectiveness of the vertical bars if they are lap-spliced to the dowel bars at the wall base. 

Furthermore, tensile bond failure due to splitting cracks may occur at the wall ends reducing the 

effectiveness of the vertical reinforcement in resisting moment. After a buckled bar has been 

subjected to a few cycles of straightening and bending as the wall is displaced back and forward, 

bar fracture may soon follow as a result of low-cycle fatigue. This will lead to severe strength 

degradation of the wall. For a given displacement level, the extent of toe crushing depends on the 

axial compressive load, the amount of vertical reinforcement, and the shear-span ratio. To improve 

the ductility of flexure-dominated walls, detailing schemes have been proposed that incorporate 

confined boundary elements at the wall ends (Cyrier 2012, Banting and El-Dakhakhni 2012). 

However, those have not gained popularity in the masonry construction practice because of the 

architectural challenges that may arise and the increase in the construction cost. 

The strength and behavior of a wall dominated by diagonal shear cracks depend on the 

shear-span ratio, the strength of the masonry, the aggregate-interlock action along the cracks, the 

amount of the shear reinforcement, and the applied axial compressive load. Proper anchorage is 
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important for the horizontal reinforcement to be effective. The vertical reinforcement may also 

contribute to the shear resistance through dowel action. However, this contribution is normally 

small as compared to that provided by the horizontal reinforcement, unless the top of the wall is 

so restrained in the vertical direction that diagonal tension can develop in the vertical reinforcement 

crossing the diagonal cracks as the cracks open. Under this condition, the wide opening of the 

diagonal cracks may also cause the rupture of the horizontal reinforcing bars.  Shear-dominated 

walls subjected to high compression can also exhibit brittle shear failure due to the crushing of the 

compressive struts, as shown Figure 1.3b.  

A wall may also develop base sliding. In that case, the resistance is provided by shear 

friction as well as the dowel action of the vertical reinforcement, and it depends on the magnitude 

of the axial compressive load on the wall and the amount of the vertical reinforcement. 

Design provisions for RM in the U.S. are provided in TMS 402. Based on the reinforcement 

details as well as the maximum permitted vertical reinforcement, the code classifies RM shear 

walls into three categories: ordinary, intermediate, and special walls. Special RM walls are 

required to meet the most restrictive detailing requirements and are allowed to be used in the 

seismic design categories (SDC) D, E, or F of ASCE/SEI 7. For the seismic design of special RM 

shear wall systems, ASCE/SEI 7 specifies a response modification factor (R) of 5, expecting these 

walls to have a ductile behavior dominated by flexure. However, this is not always guaranteed by 

the codes or the design practice (NIST 2014). This is especially true for short-period masonry 

buildings, which may have walls with low shear-span ratios. Moreover, a wall system could behave 

very differently from what was assumed in the design process because the design might not have 

fully accounted for the system effects.  For example, the designer may underestimate the coupling 

forces exerted by horizontal diaphragms on structural walls, and thereby overestimate the shear-
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span ratio of the walls. This could result in walls whose behavior will be dominated by shear rather 

than flexure, as shown in a study by Stavridis et al. (2016), whose results are shown in Figure 1.4. 

Furthermore, the coupling forces of the horizontal diaphragms and the axial restraints exerted by 

walls orthogonal to the direction of the seismic action can change the axial forces in the walls and 

thereby their resistance mechanism as the wall system undergoes lateral displacements under 

seismic forces (Mavros et al. 2016). 

The previously mentioned studies focused on fully grouted RM shear walls. Reinforced 

masonry walls can also be partially grouted. In that case, only the reinforced vertical cells and 

reinforced horizontal courses (bond beams) are grouted. Partially grouted masonry (PGM) is 

generally preferred in areas of low to moderate seismicity where the spacing of the grouted cells 

can be large, namely, more than 4 ft. Such walls are normally designed as ordinary walls and 

constitute the vast majority of masonry construction in the U.S. outside the West Coast. 

Experimental studies have shown that the behavior of PGM walls under lateral loads is very 

different from that of fully grouted walls (Schultz 1996; Voon and Ingham 2006, 2008; Maleki 

2008; Minaie et al. 2010; Nolph and ElGawady 2011; Johnson and Schultz 2014; Bolhassani et al. 

2016a, 2016b). PGM walls develop a more complex response primarily dominated by shear and 

governed by the interaction of the grouted and ungrouted parts. Studies have shown that PGM 

walls with large spacing of grouted cells can behave similarly to RC infill frames. Failure of PGM 

walls involves the opening of stair-stepped cracks along the mortar joints, cracking along the 

interface between grouted and ungrouted parts, sliding along the horizontal mortar joints, splitting 

or crushing of the ungrouted concrete units, shearing of the vertical grouted cells, crushing of the 

wall toes due to diagonal compression, and subsequent bar buckling. Figure 1.5 shows examples 

of damage patterns observed in PGM wall specimens that were tested.  
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Based on the design code, the shear strength of PGM walls is calculated from an equation 

that was originally developed with test data from fully grouted walls. Since the 2013 version of 

the code (MSJC 2013), a reduction factor of 0.75 has been added to the code-based shear strength 

of PGM walls in order to compensate for the higher strength values predicted by the original 

equation as compared to the wall strengths observed in PGM wall tests. Nonetheless, experimental 

studies have shown that the current code equation may still overestimate the shear strength of PGM 

walls that have large spacing of vertical grouted cells (ElGawady 2015; Bolhassani 2015). All 

previous studies on partially grouted masonry focused on the response of walls under quasi-static 

loading. The dynamic behavior of a PGM wall system under severe seismic forces is not well 

understood. Because of the lack of experimental and field data, the ability of a PGM building 

system to withstand a seismic event it is designed for has not been definitively confirmed. 

In past earthquakes, most of the RM buildings sustained minor structural damage. For 

example, during the 1994 Northridge Earthquake, no serious damage was reported in RM 

buildings, and during the 2011 Christchurch Earthquake, only a small number of RM buildings 

got severely damaged. In the latter event, shear and flexural failures were observed in fully and 

partially grouted walls, as shown in Figure 1.6. The damage obtained was primarily attributed to 

the poor grouting of the walls, the improper placement of reinforcement, and the irregularities in 

the building geometry (Dizhur et al. 2011; EERI 2011; Centeno et al. 2014).  

A numerical study was conducted under ATC 76 (NIST 2012) to determine the collapse 

probability of various archetype buildings under the maximum considered earthquake (MCE) 

following the FEMA P-695 methodology (FEMA 2009). Among the structural systems examined 

were buildings with special and ordinary RM shear walls. Despite the limited failures that RM 

buildings had during real earthquake events, the study suggested that low-rise RM structures may 
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not satisfy the safety threshold of 10% probability of collapse during the MCE. Nonetheless, the 

models used for that study were overly simplified and too conservative. The development of 

numerical models that can be reliably used to assess the collapse potential of RM buildings is 

essential. 

Ideally, an analytical model used to simulate the inelastic behavior and assess the collapse 

potential of a reinforced masonry building must be capable of capturing the aforementioned failure 

mechanisms and the system effects that will influence the strength and ultimate behavior of the 

wall system. In particular, the model should have sufficient sophistication to accurately describe 

the physical mechanisms that govern the inelastic behavior, accounting for the influence of the 

wall geometry, reinforcement details, and boundary conditions on the failure mechanisms, which 

will determine the strength and displacement capacity of a wall. 

1.2 Research Objectives and Scope 

The research presented in this dissertation consists of two parts. The first part was funded 

by the Federal Emergency Management Agency (FEMA) under the project ATC-116. It was aimed 

to develop a refined, reliable and robust modeling approach for the nonlinear analysis of fully 

grouted RM wall systems under severe earthquake loads to the point of collapse. To this end, a 

finite element (FE) modeling scheme has been developed and validated with results from quasi-

static wall tests and two full-scale shake-table tests of wall systems. The modeling scheme can 

simulate masonry cracking and crushing, bar buckling and bar fracture, dowel action, bond 

deterioration, and bar pullout, and accounts for geometric nonlinearity. The scheme combines 

smeared-crack shell elements with cohesive-crack interface elements and uses beam elements to 

model the reinforcing bars in a discrete manner. Strain penetration and dowel action are accounted 

for by using a bond-slip/dowel-action interface element to attach the beam elements representing 
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reinforcing bars to the adjacent masonry shell elements. The modeling scheme is complemented 

with an element removal strategy to enhance accuracy and robustness. The scheme is validated 

with data from quasi-static wall tests and dynamic shake-table tests. The analyses are performed 

in the finite element program LS-DYNA. To meet the special modeling needs for capturing the 

various failure mechanisms, new materials laws, bond-slip/dowel-action interface elements, and 

an element removal scheme have been implemented as user-defined features in LS-DYNA. The 

modeling scheme can be used to gain insight into the seismic behavior of building systems and 

generate data for the calibration of simplified models. 

The second part of the dissertation focuses on research conducted in a project funded by 

the National Science Foundation (NSF). The project was a joint effort between researchers from 

the University of California San Diego, Drexel University, and the University of Minnesota at 

Twin Cities.  The overall objectives of the project were to investigate the behavior of ordinary 

partially grouted masonry walls and wall systems under lateral loads, provide data from quasi-

static tests and dynamic tests of PGM walls and wall systems, propose new design details that can 

enhance the ductility of these structures, and develop numerical tools that can predict the cyclic 

behavior of PGM structures in a realistic manner. Drexel University studied the response of planar 

walls designed with conventional reinforcing details and with an improved reinforcing scheme 

(Bolhassani et al. 2016a, 2016b, 2016c). The University of Minnesota tested masonry wall 

assemblages that had a window opening and wall flanges and investigated retrofit strategies 

(Johnson and Schultz 2014, 2015, 2018; Schultz and Johnson 2019).  

The research conducted at the University of California San Diego and presented in this 

dissertation focused on the system-level behavior of PGM wall structures under earthquake 

loading and on the numerical modeling of the nonlinear cyclic response of PGM structures. To 
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this end, two full-scale, one-story structures were designed and tested on a shake table. The first 

structure was designed and detailed according to the current code provisions and practice. It had 

widely spaced vertical grouted cells and horizontal bond beams. The second structure represented 

an improved reinforcing scheme with vertical grouted elements that extended in two side-by-side 

cells (double grouted cells), horizontal bond beams, and bed-joint reinforcement. The structures 

were subjected to a series of dynamic tests using historical ground motion records that were scaled 

to various intensity levels. The intensity of the strongest motions applied exceeded two times the 

MCE. The results and findings from the tests are presented in the dissertation.  

The experimental data have been used for the calibration and validation of finite elements 

models. The modeling scheme adopted is an extension of the scheme proposed for fully grouted 

walls, using a combination of smeared-crack shell elements and cohesive-crack interface elements. 

The mortar joints in the ungrouted part of the walls are modeled with cohesive-crack interface 

elements that can capture the fracture and sliding behavior of the joints, as well as the dilatation 

and compaction effects under cyclic loading. A new interface element has been developed to 

account for the cavity between the face shells of concrete units in an efficient manner. After the 

calibration and validation of the modeling scheme with results from quasi-static tests on wall 

segments, the scheme is used to simulate the dynamic response of the two shake-table test 

structures and to investigate the influence of bond beams, double grouted cells, and joint 

reinforcement on the behavior of the structures. The models have been also used to understand the 

distribution of the lateral load resistance of the wall components and to evaluate the shear-strength 

equation given in the design code. 
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1.3 Outline of Dissertation 

Chapter 2 provides a summary of the available modeling methods for reinforced masonry 

and concrete structures. It presents the proposed finite element modeling scheme for fully grouted 

walls, and describes the constitutive models and elements used in the analyses. A simple and robust 

orthotropic concrete model is developed to simulate the compressive and tensile behavior of the 

smeared-crack shell elements. Furthermore, an existing bond-slip/dowel-action interface element 

is enhanced to account for large rotations. An element removal scheme is introduced to model the 

loss of material resistance due to the severe crushing of masonry and reinforcement rupture. 

Chapter 3 presents the results from the verification analyses conducted on fully grouted 

walls and wall systems. The analyses include shear-dominated and flexure-dominated wall 

segments that were tested under quasi-static cyclic lateral displacements, and a two-story and a 

one-story full-scale shake-table test structure. The second structure was tested to a roof drift ratio 

that exceeded 13% and the data was used to validate the ability of the finite element modeling 

scheme to simulate the dynamic response up to a large drift level. Lastly, a study is conducted to 

simulate the dynamic response of a two-story commercial building archetype under biaxial 

earthquake excitations to the point of collapse. The building was designed based on the current 

code and has reinforced masonry shear walls and a steel gravity system. 

Chapter 4 presents the modeling scheme developed for the analysis of partially grouted 

masonry walls and systems under lateral loading. The scheme is validated with results from quasi-

static wall tests. Among the tests, walls with double grouted cells and joint reinforcement are 

examined.  

Chapter 5 describes the experimental program on the testing of the first full-scale one-story 

PGM structure on a shake table. The structure has reinforcing details that represented the current 
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code provisions and design practice. The chapter presents the design approach, reinforcing details, 

construction, ground motions and scaling, structural response, and the analysis of the test data. A 

detailed finite element model of the test structure is developed and validated with the test results. 

The model has been used to understand the distribution of the lateral force resistance among the 

wall components, and to evaluate the shear-strength equation given in the design code. 

Furthermore, a parametric study has been conducted to demonstrate the importance of bond beams. 

Chapter 6 presents the shake-table testing of the PGM second structure that was designed 

with the goal to improve the ductility of the building. Compared to the first structure, the second 

structure had double grouted vertical cells and joint reinforcement. The chapter presents the 

observations and findings from the shake-table tests and compares the response of the two 

structures. A detailed finite element model is developed for the second structure. After the model 

is validated with the results from the shake-table tests, it is used to examine the influence of double 

grouted vertical cells and joint reinforcement on the seismic behavior of the building. The 

numerical results are also used to evaluate the shear-strength equation of the design code.  

Chapter 7 presents the conclusions and the needs for future research. 

Part of this chapter is a reprint of the material that will appear in Chapter 4 of the technical 

report titled “Developing Solutions to the Short-Period Building Performance Paradox: Study for 

Reinforced Masonry Buildings” that will be submitted to the Federal Emergency Management 

Agency by the Applied Technology Council for the project number ATC-116. The authors of 

Chapter 4 in the report are: the author of this dissertation, Jianyu Cheng, and P. Benson Shing. The 

report chapter was prepared under the supervision of Dr. Charles A. Kircher, who was the technical 

director of the ATC-116 project. The author of this dissertation was the primary investigator and 

author of all the materials covered in this chapter of the dissertation. 
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Figure 1.1 Common building configurations with reinforced masonry shear walls in North 

America (courtesy of Dr. G. Kingsley). 

 

 

 
Figure 1.2 Construction of RM walls. 
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Figure 1.3 Flexure-dominated and shear-dominated failures in quasi-static tests of RM wall 

specimens. 

 

 
Figure 1.4 Behavior of the three-story structure tested by Stavridis et al. (2016) on a shake table. 



13 
 

 
Figure 1.5 Damage in partially grouted wall tests: (a) perforated wall specimen B4 tested by 

Voon (2007); (b) diagonal compression failure in wall specimen PCL1 tested by Minaie (2009). 

 

 
Figure 1.6 Damage observed in RM buildings after the 2011 Christchurch Earthquake. 
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2 FINITE ELEMENT MODELING OF GROUTED REINFORCED MASONRY 

 

This chapter presents a detailed finite element (FE) analysis scheme that has been 

developed for the simulation of the inelastic response of reinforced masonry (RM) structures under 

earthquake loading. The proposed modeling scheme has been developed so that it can capture both 

flexure-dominated and shear-dominated failure modes and is intended to be used for the analysis 

of RM building systems through collapse. The scheme combines smeared-crack shell elements 

with discrete crack interface elements to capture crushing and tensile fracture of masonry, and uses 

beam elements to represent the steel reinforcement. The following sections provide a literature 

review of modeling methods developed in previous research, and presents the material models and 

elements used with the proposed FE modeling scheme.  

2.1 Overview of Available Modeling Methods 

The modeling of the inelastic response of RM wall systems subjected to static and dynamic 

loading is a challenging endeavor. Wall components in a RM wall system can exhibit one of 

several, or a combination of, different failure mechanisms, depending on the axial load exerted on 

the walls, the reinforcement details, the aspect ratio, and the boundary conditions. Slender 

cantilever walls are expected to have relatively ductile flexure-dominated behavior, while wall 

components with a low shear-span ratio tend to exhibit more brittle, shear-dominated behavior 

characterized by diagonal cracking or crushing. Walls with very low shear-span ratios can develop 

base sliding in lieu of diagonal cracking. Different modeling approaches with various degrees of 

sophistication can be used to analyze the response of RM structures under seismic loads.  Because 

of the similarities between reinforced masonry and concrete, methods originally developed for the 

simulation of RC structures can be also applied for the analysis of RM structures. The available 
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modeling approaches may be divided into the following main categories: 1) frame models; 2) 

macro-models; 3) nonlinear truss models; and 4) FE models. A survey of the available methods is 

provided below. 

The simplest approach to represent a masonry wall structure is through frame models. In 

these models, the vertical and horizontal wall components are represented by beam-column line 

elements, and the panel zones at the intersection of these components are usually modeled as rigid 

zones (Paulay and Priestley 1992). Figure 2.1 shows two simple examples. This method is 

particularly appealing for design because of its computational efficiency and its wide availability 

in commercial software of structural analysis. However, it is primarily intended to model flexure-

dominated response. Depending on the required degree of accuracy, the inelastic behavior of beam 

elements can be assumed to be lumped at the element end nodes, or distributed along the element 

length using a fiber-section discretization.  

With the lumped plasticity approach, rotational springs are used to represent the plastic- 

hinge response at the element ends. Their behavior is defined in terms of a moment-versus-rotation 

relation whose monotonic loading or back-bone curve can be calibrated with a moment-curvature 

sectional analysis. The assumption of an effective plastic hinge length and a constant axial load is 

needed. Some models may also account for the axial load-moment interaction. Load degradation 

due to masonry crushing, reinforcement buckling, or rupture needs to be accounted for a priori 

when determining the post-peak behavior of the backbone curve. The cyclic response can be 

described by selecting an appropriate hysteretic law that can represent phenomena such as cyclic 

strength and stiffness degradation, and pinching due to crack opening and closing or bar slip (e.g., 

Kunnath et al. 1990; Sivaselvan and Reinhorn 2000; Ibarra et al. 2005). Nonetheless, the 

parameters controlling the cyclic behavior of these models need be calibrated based on 
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experimental data or with analysis results from more refined models. In some models, rotational 

springs have been also used to indirectly account for shear-dominated response by assuming an 

equivalent moment-vs-rotation response (e.g., Takayanagi and Schnobrich 1979). In some other 

models, the nonlinear shear behavior of a member is represented by additional hysteretic shear 

springs placed in-series with the beam elements (e.g., Ambrisi and Filippou 1999; Elwood and 

Moehle 2008; LeBorgne and Ghannoum 2014; Burton and Deierlein 2013). These models are 

entirely empirical without predictive capabilities. 

Beam-column elements with a fiber-section discretization and distributed plasticity can 

accurately capture the inelastic flexural behavior of RM walls, including axial load-moment 

interaction, as long as appropriate models are used for the uniaxial stress-strain behavior of 

masonry and steel reinforcement. Some of these models account for reinforcement buckling and 

rupture in an empirical manner (Girgin et al., 2018). In addition, several approaches have been 

proposed to account for the strain penetration effect, which can be modeled either in the state 

determination of the steel fibers assuming that part of the strain in a steel fiber is attributed to bar-

slip (Monti and Spacone, 2000), or by introducing a zero-length fiber section at the element end 

using an appropriate stress-vs-slip material law to model the beam-end rotation due to strain 

penetration (Zhao and Srirathan 2007) or simply a rotational  spring at the beam end (e.g., Ambrisi 

and Filippou 1999; LeBorgne and Ghannoum 2014; Girgin et al. 2018). The most commonly used 

beam formulations include displacement-based elements and force-based elements (Zeris and 

Mahin 1988; Spacone et al. 1996; Neuenhofer and Filippou 1997); the latter are advantageous in 

that they satisfy the internal equilibrium within the element. Such models can be extended to 

simulate the inelastic shear behavior of reinforced masonry and concrete members.  
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Several approaches have been proposed to incorporate the nonlinear shear behavior in 

beam-column elements with fiber discretization. Some of them assume a shear strain distribution 

along the cross section and account for the interaction between the normal and shear stresses at the 

fiber level by introducing a biaxial constitutive law for each fiber (e.g., Vecchio and Emara 1992; 

Petrangeli et al. 1999; Rose 2001; Jiang and Kurama 2010). Although they are more rigorous than 

the lumped plasticity models, they come at an increased computational cost and may still not be 

sufficiently reliable or robust to be used for the cyclic analysis of wall systems. A more simple 

approach is to model the shear response of a reinforced masonry or concrete section via a 

phenomenological shear force-vs-shear deformation hysteretic law (e.g., Marini and Spacone 

2006). However, this approach is more empirical and cannot account for the flexure-shear 

interaction.  

To simulate the response of reinforced concrete and masonry walls, several researchers 

have proposed multi-vertical-line-element models (MVLEM) or other macroelements. The first 

approach was introduced by Kabeyasawa et al. (1983), and since then it has been gradually 

improved by other researchers (e.g., Vulcano and Bertero, 1987; Colotti, 1993; Orakcal et al. 2004; 

Massone et al. 2006). A recent MVLEM has been proposed by Kolozvari et al. (2014a) and is 

schematically illustrated in Figure 2.2a. To capture shear-flexure interaction, the element includes 

a number of vertical panels whose response is governed by a biaxial concrete constitutive law. The 

model assumes that the relative rotation between the top and bottom faces of the element is 

concentrated at a distance of ch , as shown in Figure 2.2a. Although, the model is able predict well 

the response of flexure-dominated RC wall tests, it has not been shown as to whether it can 

accurately predict brittle shear failure (Kolozvari et al. 2014b).  



18 
 

Macro-elements have been developed as a computationally efficient approach intended for 

the seismic assessment and design of RC and masonry components controlled by shear. They 

usually consist of a two-dimensional panel component, which controls the shear response of the 

macro-element, and a set of springs placed at the perimeter of the panel that determine the flexural 

or sliding response. Calio et al. (2012) proposed a macro-element to simulate the in-plane behavior 

of unreinforced masonry structures. As shown in Figure 2.2b, it consists of four rigid hinge-

connected beams forming the perimeter of a rectangular panel. Two diagonal springs govern the 

shear behavior of the panel, while vertical and horizontal springs placed at the perimeter of the 

panel control the flexural and sliding response as well as the interaction with the adjacent macro-

elements. However, the definition of the uniaxial law assigned to the diagonal springs is vague. 

Penna et al. (2013) has proposed a macro-element intended to represent the in-plane response of 

masonry piers and spandrel beams within unreinforced masonry buildings. The panel shear 

strength was derived based on a frictional component and a cohesive component, while the cyclic 

response was modeled with a phenomenological hysteretic law. The macro-element was used to 

simulate quasi-static cyclic tests of unreinforced masonry walls and was able to predict the 

experimental response well. Another type of macro-element is the stringer and panel model, which 

is mainly for the design of shear-critical RC members. The model uses nonlinear stringers that 

resist the shear flow and nonlinear panels to represent RC panels (Blaauwendraad and 

Hoogenboom, 1996). 

Beam elements with a fiber-section discretization or MVLEM’s are able to accurately 

predict the response of flexure-dominated shear walls, given that appropriate material models are 

used to describe the behavior of concrete (or masonry) and steel reinforcement. Although several 

efforts have been made to allow these elements to capture shear-dominated response and shear-
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flexure interaction in a rigorous manner, it is still not proven if they can be used to reliably predict 

brittle shear failures under cyclic load histories. Furthermore, frame models cannot accurately 

represent the geometry and stiffness of perforated walls which are common in reinforced masonry 

construction. On the other hand, macro-elements are based on empirical assumptions and are 

mainly intended for the simulation of shear-dominated panels rather than flexure-dominated shear 

walls. To overcome the limitations of the previous modeling methods, alternative approaches can 

be considered, such as nonlinear truss models or finite element models. 

A nonlinear truss model idealizes a RC/RM wall component into an assemblage of 

diagonal, vertical, and horizontal truss elements, as shown in Figure 2.3. The diagonal elements 

are to simulate the inclined compression strut mechanism formed when a member is subjected to 

shear, while the vertical and horizontal elements are used to represent the steel reinforced and 

concrete resistance in these directions.  

Truss models have been widely used to determine the capacity and evaluate the nonlinear 

behavior of RC structures and members. In design, they are commonly referred to as strut-and-tie 

models. The concept was first conceived in the early 1900s, where a strut-and-tie representation 

was used to model the shear transfer mechanism in RC concrete beams. Schlaich et al. (1987) 

developed design recommendations based on the strut-and-tie method. The current design codes, 

including Eurocode 2 (2004) and ACI 318-19 have also adopted strut-and-tie models to be used 

for the calculation of the capacity of RC members for situations in which the classic beam theory 

does not apply, such as deep beams, corbels, or cases with geometric or load discontinuities. Yun 

(2000) proposed the use of the strut-and-tie method as a nonlinear analysis tool to predict the 

monotonic response of RC members up to failure using simple material laws to represent the stress-

strain response of concrete and reinforcing steel. Mazars et al. (2002) introduced a nonlinear truss 
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model, which had a fine mesh of diagonal, vertical, and horizontal truss elements, and was used to 

simulate the cyclic response of RC shear walls. Tomohiro (2004) proposed a lattice model which 

consisted of a mesh of vertical, horizontal, and diagonal truss elements at 45- and 135-degree 

angles. The mesh was enhanced with additional truss elements, referred to as arch elements that 

were used to model the dominant compressive struts expected to form along a structural member. 

He used 2D lattice models to analyze members under plane stress conditions and 3D lattices to 

account for the torsional behavior of beams and columns and to model frame structures subjected 

to bidirectional excitation. Park and Eom (2007) followed a similar approach to the one proposed 

by Mazars et al. (2002) but they used more refined material models. They also expressed the effect 

of transverse tension on the compressive resistance of the diagonal truss elements based on the 

modified compression field theory (MCFT) by Vecchio and Collins (1986). To et al. (2009) 

employed nonlinear truss models to analyze 2D multi-story RC frames subjected to static cyclic 

and dynamic loads. Panagiotou et al. (2012) developed a modeling framework using nonlinear 

truss models to capture the hysteretic response and failure modes of shear-dominated RC walls. 

Following the same assumption as in the modified compression field theory, a reduction factor 

was used to account for the effect of the transverse tensile strains on the compressive strength of 

the diagonal elements based on the element size selected. The compressive and tensile fracture 

energies of concrete were also regularized based on the element size. Their truss model was 

extended for three-dimensional analyses by Lu and Panagiotou (2013) by replacing the vertical 

truss elements with beam elements to model the out-of-plane flexural response of RC walls. The 

modified truss model, referred to as beam-truss model, was used to simulate cyclic quasi-static 

tests on RC flanged walls subjected to uniaxial and biaxial loading histories, and a shake-table test 

of a RC wall system subjected to bidirectional excitation. In all cases, the numerical results were 
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in good agreement with the experimental results. Moharrami et al. (2015a) improved the truss 

model of Panagiotou et al. (2012) by accounting for the contribution of the aggregate interlock to 

the shear resistance of inclined concrete cracks to simulate the response of shear-dominated RC 

columns, the cyclic response of RM shear walls tested quasi-statically, and the response of a two-

story shear-wall structure that tested by Mavros et al. (2016) on a shake-table (Moharrami et al. 

2015b). In any case, the numerical results were in good agreement with the experimental results. 

Nonlinear truss models constitute a computationally efficient tool that can capture the 

response of both flexure and shear critical members, including brittle types of shear failure, as long 

as an appropriate angle of inclination is selected for the diagonal truss elements. However, the 

existing truss models cannot accurately represent more localized mechanisms and failures, such as 

the effect of strain penetration, pull-out of reinforcement, lap-slice failure, bar rupture, or dowel 

action. Furthermore, they cannot accurately account for the base sliding that may develop in lightly 

reinforced masonry walls that have low axial load. If a detailed analysis of the seismic response 

and damage of a RC/RM structure is required, nonlinear finite element models still remain the 

most powerful tool.  

Nonlinear finite elements, in the form of continuum or shell elements, are being widely 

used for the analysis of RC/RM structures. To describe the effect of cracking, two main approaches 

are used: smeared-crack models (Rashid 1968) or discrete-crack models (Hillerborg et al. 1976). 

In the first approach, the effect of cracking is accounted for within the constitutive material laws 

used with continuum or shell elements, while in the second approach, discrete interface elements 

are used to explicitly model the displacement discontinuity across a crack. Although the discrete-

crack approach can be more computationally demanding, due to the use of additional elements to 

model cracks, it can provide a more realistic representation of the crack pattern developed in a 
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member. However, the cracks allowed to develop depend on the locations of the discrete crack 

interface elements. A finer network of interface elements will produce more realistic crack 

patterns. In simulating brittle shear failure due to strongly localized diagonal cracks, explicit 

modeling of the dominant cracks may be necessary to circumvent the stress locking phenomenon 

that smeared-crack elements can present. Stress locking is essentially caused by the weak 

representation of the displacement discontinuity in a smeared-crack formulation that leads to the 

interlocking of the diagonal compressive stresses among the neighboring elements after the 

elements develop cracks (Rots and Blaauwendraad 1989; Lotfi and Shing 1991). Although other 

formulations that allow a strong representation of displacement discontinuities have been 

proposed, such as the extended or generalized finite element method (Fries and Belytschko 2010), 

formulations with cracks embedded in continuum elements (e.g., Manzoli and Shing 2006), and 

meshfree methods (e.g., Chen et al. 1996), they require a substantial effort to implement and their 

ability to model RC/RM structures under cyclic loading conditions in an efficient and robust 

manner has not been proven. Thus, the discrete-crack approach is still the most viable means for 

the simulation of shear failure associated with diagonal tensile cracking. 

Several studies have demonstrated the smeared-crack approach can accurately simulate the 

flexural failure of RC shear walls and columns using plane stress, shells, or solid elements (e.g., 

Feenstra and de Borst 1995; Vecchio 1999; Kwan and Billington 2001; Faria et al. 2004; Noguchi 

and Uchida 2004; Murcia-Delso and Shing 2014; Moharrami and Koutromanos 2017). The steel 

reinforcement is represented as a layer smeared across concrete or masonry elements or by discrete 

truss or beam elements to model each reinforcing bar. When reinforcement is modeled in a discrete 

manner, the effect of bond-slip can be accounted for by using zero-length spring or interface 
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elements to connect the nodes of the reinforcement elements to the nodes of the concrete elements 

(Scordelis and Ngo 1967).  

The discrete-crack approach has been primarily used for modeling components that are 

prone to shear failure. Stavridis and Shing (2010) combined cohesive-crack interface elements 

with smeared-crack plane-stress elements to model the response of non-ductile masonry-infilled 

RC frames under monotonic lateral loading. Truss elements were used to represent the steel 

reinforcement, and a discretization scheme was proposed for connecting the truss elements to the 

concrete elements as shown in Figure 2.4. Koutromanos et al. (2011) adopted the same 

discretization scheme, however, they used an improved cohesive-crack constitutive law 

(Koutromanos and Shing 2012) allowing them to simulate the cyclic and dynamic response of 

masonry-infill RC frames. The cohesive-crack model was also used to simulate a shear-dominated 

RC column that was tested quasi-statically (Koutromanos and Shing 2012). The predicted cyclic 

response and crack pattern were in a good agreement with the experimental results. Kottari (2016) 

extended the cohesive-crack model of Koutromanos and Shing (2012) to three-dimensions and 

used it together with solid elements to simulate shear failure in bridge abutment shear keys.  

The finite element modeling of RM walls has received less attention. In most cases, plane 

stress or shell elements have been used to discretize RM walls. For RM walls, the steel 

reinforcement is typically placed as a single layer at the mid-thickness of the walls, and no 

confinement reinforcement is used. Seible et al. (1990) and Seible and Kingsley (1991) used plane-

stress elements to model individual RM shear walls as well as RM wall systems under monotonic 

and cyclic loading. An orthotropic material law was adopted to represent the biaxial response of 

grouted masonry, and similar to that in the modified compression field theory (Vecchio and Collins 

1986), the effect of transverse tension on the compressive resistance of masonry was considered. 
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They obtained satisfactory results and they also noted the mesh-size dependency of the numerical 

results when simulating the post-peak response of flexure-dominated walls. Lotfi and Shing (1991) 

evaluated the capability of smeared-crack plane-stress elements in predicting the lateral strength 

of flexure-dominated and shear-dominated RM shear walls. The compressive response of masonry 

was modeled with a J2-plasticity constitutive law and the steel reinforcement was represented as 

a smeared overlay with a bilinear material law. They obtained a good agreement with the 

experimental results for flexure-dominated walls; however, their model overestimated the lateral 

strength and ductility of shear-dominated wall specimens. The higher resistance obtained in the 

latter case was attributed to the stress locking phenomenon.  

Mavros (2015) developed a FE modeling scheme to simulate the three-dimensional 

response of fully grouted reinforced masonry structures. In the proposed scheme, smeared-crack 

shell elements were combined with cohesive-crack interface elements to model the nonlinear 

behavior of masonry, and truss elements were used to model the reinforcing bars. Cohesive-crack 

interface elements were placed along the horizontal and vertical directions, as well as diagonally 

at 45-degree angles with a similar configuration as the one shown in Figure 2.4. However, 

additional interface elements were introduced to attach the reinforcement truss elements to the 

adjacent masonry shell elements to account for the bond-slip and dowel-action effects. The 

modeling scheme was extensively validated with shear and flexure-dominated wall tests as well 

as with the results from a two-story shake-table test structure. For the analyses, the finite element 

program FEAP (Zienkiewicz and Taylor, 2000) was used. In all cases, a very good agreement was 

obtained between the numerical and experimental results. However, a different discretization 

scheme had to be used depending on whether a wall specimen was dominated by flexure or shear. 
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Figure 2.5 shows the discretization schemes that Mavros (2015) proposed for the analysis 

of shear and flexure-dominated RM walls. To capture the response of flexure-dominated walls, 

shell elements of a smaller size were used in the region of the wall toes, and no cohesive-crack 

interface elements were included in these regions, as compared to the discretization proposed for 

shear-dominated walls. These modifications were needed because a network of interconnecting 

cohesive-crack interface elements could unduly increase the compressive resistance of a crushed 

region, and thus the flexural resistance of a wall, by carrying the compressive forces through their 

nodes even after the adjacent shell elements were crushed. On the other hand, discretizing shear-

dominated walls with the scheme used for flexure-dominated walls could lead to an artificial 

increase of the shear resistance of the walls because the elimination of the cohesive-crack interface 

elements from the wall toes would increase the shear resistance of the compression toe. 

Furthermore, the aforementioned modeling scheme did not account for the buckling and rupture 

of the vertical reinforcement, which is largely responsible for post-peak load degradation of a 

flexure-dominated masonry wall.  

2.2 Objective of Current Study 

 Most of the previous studies on the FE analysis of RM walls were not able to capture all 

the critical failure mechanisms and therefore the post-peak behavior of a wall in an accurate 

manner. A general modeling scheme that was suitable for both flexure-dominated and shear-

dominated walls had been provided so far. It is difficult to predict a priori the dominant failure 

mode of a wall component in a building system before the analysis. Furthermore, most of the 

previous numerical studies on RM structures have been limited to the small-displacement regime. 

Yet, for the purpose of design code development, there is a pressing need to develop analysis tools 
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that can be used to evaluate the seismic performance of an RM building system undergoing large 

displacements to assess their collapse probability. 

The objective of this study is to develop a FE modeling scheme that can simulate the 

response of both flexure- and shear-dominated RM walls and can be used for the analysis of RM 

building systems through collapse under severe earthquake loads. The scheme aims to capture both 

the cyclic response and induced damage in a realistic manner, accounting for masonry cracking 

and crushing, reinforcement buckling and rupture, dowel action, as well as bond deterioration and 

bar pull out.  

2.3 Proposed Modeling Methodology for Grouted Reinforced Masonry 

The FE modeling methodology proposed in this study is based on the scheme proposed by 

Mavros (2015) but aims to improve it in the following ways: 1) account for both flexure- and 

shear-dominated failures using the same discretization, 2) account for reinforcement buckling by 

using beam elements instead of truss elements and also account for reinforcement rupture, and 3) 

account for P-Delta effects. Four types of elements are used to model a RM wall: smeared-crack 

shell elements and cohesive-crack zero-thickness interface elements for the masonry, beam 

elements for the horizontal and vertical reinforcing bars, and additional interface elements for 

modeling bond-slip and dowel-action behaviors of reinforcing bars. The proposed discretization 

scheme for a typical wall is shown in Figure 2.6. The grouted masonry is modeled with triangular 

smeared-crack shell elements to simulate the compressive behavior of masonry as well as diffuse 

cracking.  Each triangular element has two perpendicular sides that are 4 in. long. Cohesive-crack 

interface elements are used to represent dominant cracks in a discrete fashion. They are placed at 

a 45-degree angle to capture diagonal shear cracks in a realistic manner, avoiding stress locking 

that could be introduced by smeared-crack elements (Rots and Blaauwendraad 1989; Lotfi and 
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Shing 1991), and in the horizontal direction to allow for an accurate simulation of sliding along a 

cracked joint. They are also placed in the vertical direction to simulate possible vertical splitting 

cracks. The beam elements representing the reinforcing bars are connected to the shell elements 

through interface elements that allow the simulation of bond-slip and dowel-action without 

requiring a very refined mesh for masonry. For the beam elements, a steel material law that 

accounts for low-cycle fatigue and bar fracture is adopted. All the elements account for geometric 

nonlinearity. 

Elements representing crushed masonry and fractured bars, as well as the interface 

elements connecting them to adjacent elements, are removed immediately after the respective 

failure occurs. This enhances the efficiency and robustness of the numerical computation, and also 

the accuracy of the numerical results. Removing the bond-slip/dowel-action elements after 

masonry crushing or bar rupture eliminates spurious restraints that could be introduced by these 

elements. The same is true for removing the cohesive-crack interface elements when the adjacent 

masonry crushes. The FE program LS-DYNA (LSTC, 2019) has been used as the platform, in 

which the required material models and the cohesive-crack and bond-slip/dowel-action interface 

elements have been implemented as user-defined features. The elements and material models used 

in this study, and the element removal scheme are further described in the following sections. The 

validation of the proposed modeling method with experimental results is presented in Chapter 3. 

2.4 Smeared-crack Shell Elements 

2.4.1 Element formulations 

Grouted masonry is discretized with triangular shell elements. The triangular shell 

elements used have a computationally efficient formulation proposed by Kennedy et al. (1986), 

which is available in LS-DYNA. The formulation is based on the Reissner-Mindlin shell theory 
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accounting for through thickness shear strains and uses linear shape functions to approximate the 

mid-surface displacements and the rotations due to bending. To simulate the nonlinear out-of-

plane flexural behavior of the walls, each shell element is assigned five through-thickness 

integration layers. Each layer has a single Gauss point and essentially represents a constant-strain 

plane-stress triangle. Large rigid-body rotations are handled by a co-rotational coordinate system 

that is updated based on the location of the three nodes of the element. The deformation component 

of the nodal rotation is obtained by subtracting the rigid-body rotation from the total nodal rotation.  

2.4.2 Orthotropic model for masonry 

The through-thickness shear stress-shear strain relation is assumed to be linearly elastic. 

The in-plane stress components at each integration point of the shell elements are calculated with 

a smeared-crack model that has been implemented in this study. The model is computationally 

efficient as compared to more refined models. It is used to simulate the compressive behavior as 

well as the tensile cracking of masonry or concrete. It adopts a simple and robust orthotropic 

material law with the nonlinear stress-strain relation in each of the two orthotropic directions 

described by a uniaxial law. The stress update in this model does not require iterations. The 

behavior of the material is characterized by two states, the uncracked state and the cracked state. 

As shown in Figure 2.7, before cracking, the axes of orthotropy are aligned and rotate with the 

directions of the principal strains. In this state, the stress update ensures that the axes of the 

principal strains coincide with the axes of the principal stresses. Cracking initiates when the 

maximum principal stress reaches the specified tensile strength, tf , of the material. Beyond that 

point, the axes of orthotropy remain fixed, with directions parallel and perpendicular to the 

direction of the first crack. After this point, shear strain can develop with respect to the orthotropic 

directions, and the shear stress is related to the shear strain with an elastic-perfectly plastic law 
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with the yield strength assumed to be 50% of the tensile strength tf  to ensure numerical robustness. 

Another crack can develop in the direction perpendicular to the first crack when the tensile stress 

parallel to the first crack exceeds the tensile strength. In the orthotropic model, the Poisson’s effect 

is neglected. 

The uniaxial stress-strain law for tension and compression in each of the orthotropic 

directions is shown in Figure 2.8. In the tension regime, after crack initiation, it assumes an 

exponential function to model strain softening, and has stiffness degradation upon unloading and 

reloading. The reduced stiffness allows a complete crack closure during unloading. In the first 

compressive loading cycle, the material response is linearly elastic until reaching the stress of ; 

after that, it is described by a parabolic function for pre-peak strain hardening and a linear function 

for post-peak strain softening. The monotonic response of the material in tension and compression 

is described by Eq. 2.1. 
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 2.1 

The coefficients a , b , and c  are calculated so that the slope of the parabolic function is 

zero at the strain 0ε  under which the compressive strength mf  develops. The parameter tm  defines 

the shape of the strain softening region in tension. Larger values of the parameter result in more 

rapid softening. The residual strength in compression, resf , is assumed to be zero. Unloading in 

compression follows the initial stiffness until reaching zero stress. After reaching zero stress, the 
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stress remains zero during further strain increment in the same direction until the total strain 

becomes zero, after which tensile stress starts to develop. The residual plastic strain is denoted by 

plε  and is calculated during compressive loading as the strain at the intersection of the unloading 

branch with the zero-stress axis. Reloading in compression follows the same path, and compressive 

stress develops when the compressive strain becomes larger than plε  in magnitude. The material 

is considered to be completely crushed when the compressive strain along any of the two axes 

reaches uε . In the following discussion, the axes of orthotropy will be called axes α  and β , and 

the axes of the principal strains will be denoted by 1 and 2. Principal axis 1 is defined as the axis 

of the maximum principal strain. 

Crushing that initiates in one direction of orthotropy will compromise the strength that can 

develop in the other direction. Accounting for this phenomenon is important in modeling the cyclic 

response of masonry walls. To this end, it is assumed that the residual plastic strain plε  as a result 

of inelastic compression is the same for both orthotropic directions, and it has a value equal to the 

largest residual plastic strain, in absolute magnitude, that has been attained in any of the two 

directions, as calculated with Eq. 2.2.  

 ( ) ( ){ }min, min, min, min,min /  , /pl m mE Eα α β βε ε σ ε ε σ ε= − −  2.2 

in which min,αε  and min,βε  are the peak compressive strains developed in the orthotropic directions, 

α  and β , respectively. The behavior of the model under biaxial compression is shown by the 

numerical examples in Figure 2.9. Three loading scenarios are considered: 1) the material is 

subjected to simultaneous biaxial loading with equal magnitudes and strain rates in the two 

directions; 2) non-proportional loading with compression first applied along α -axis and then 
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unloading that is followed by compression applied along β -axis; and 3) proportional loading with 

compression applied simultaneously along α  and β  axes but with the strain in the direction of β

-axis equal to half of that in the other direction. In the first scenario, the behaviors along the two 

axes are identical, and are the same as the behavior under uniaxial loading. The second scenario 

shows that prior damage in one loading direction will also reduce the compressive strength in the 

other. The third scenario shows that under proportional loading with unequal magnitudes, the 

direction with the larger deformation governs the damage and load degradation in both directions. 

Even though this model more or less captures the biaxial loading effects observed in 

experiments, as discussed in Chen (2007), results from the first loading scenario do not exactly 

match experimental observations in that the compressive strength of concrete can increase by as 

much as 25% when subjected biaxial compression (Chen 2007). However, for reinforced masonry 

walls, this situation is rare. To properly account for the biaxial behavior of concrete or masonry, 

more refined but also more computationally demanding constitutive models can be used, e.g., the 

plane-stress J2-plasticity model adopted by Lotfi and Shing (1991), Koutromanos et al. (2011), 

and others, the three-dimensional concrete model proposed by Moharrami and Koutromanos 

(2016), the micro-plane model by Caner and Bažant (2013), and the damage-plasticity model by 

Lee and Fenves (1998).   

To account for the reduction of tensile strength when the material has been damaged in 

compression, a reduction factor is applied to the tensile strength based on the peak compressive 

strain ever reached. However, it is assumed that the material can sustain its full uniaxial tensile 

strength if the peak compressive strain ever reached has not exceeded 0ε , which corresponds to 

the strain at the peak compressive stress. When the compressive strain exceeds 0ε , the tensile 
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strength tf  in Eq. 2.1 is reduced in proportion to the loss of the compressive resistance with respect 

to the peak strength with the formula shown in Eq. 2.3  

 
( )0 min, min,

,
0

min  , ε
1t t ini

u

f f α βε ε

ε ε

 −
 = ⋅ −
 − 
 

 2.3 

in which ⋅  represent Macaulay brackets and ,t inif  is specified material property that denotes the 

uniaxial tensile strength. The same reduction is applied to the shear strength computed when the 

material is in the cracked state.  

The material model is implemented in a shell element for strain-driven analysis, for which 

the strains change in an incremental manner. Let x  and y  axes define the in-plane local 

coordinates of the shell element. Consider that the values of the stresses { }m m m m
x y xyσ σ τ

Τ
=σ and 

the internal variables of the material model at step m have been updated for the given strain history. 

Now, the stresses { }1 1 1 1m m m m
x y xyσ σ τ

Τ+ + + +=σ and the values of the internal variables at step m+1 

need to be calculated given the strains { }1 1 1 1m m m m
x y xyε ε γ

Τ+ + + +=ε . For this purpose, the stress-

update algorithms shown in Box 2.1 and Box 2.2 are used for the uncracked and cracked states of 

the orthotropic material model, respectively. As shown, the stress update is carried out in the 

orthotropic directions, α  and β . The internal variables consist of max,αε , min,αε , max,βε  and min,βε , 

representing the maximum tensile strains and maximum compressive strains reached along the α  

and β  directions. The angle of the orthotropic axes with respect to the x - y  axes is denoted by θ  

and is measured in the counterclockwise direction.  Before cracking, θ  represents the direction of 

the maximum principal strains. After cracking, it represents the direction normal to the crack. The 
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stress and strain values in the two coordinate systems are related by the standard transformation 

relations as shown for the case of stress transformation by Eq. 1.4.   

 ( )
1 1

1 1 1

1 1

m m
x
m m m
y
m m
xy

α

β

αβ

σ σ
σ θ σ
τ τ

+ +

+ + +

+ +

   
   = −   
   
   

R  2.4 

where 

( )

2 2

2 2

2 2

cos sin 2cos sin
sin cos 2sin cos

cos sin cos sin cos sin

θ θ θ θ
θ θ θ θ θ

θ θ θ θ θ θ

 
 = − 
 − − 

R  

The orthotropic model is overlaid with smeared steel reinforcement. The steel layer has 

reinforcement in two orthogonal directions, 1s  and 2s , respectively. Let 1sθ be the angle of 1s  

with respect to x  axis, measured in the counterclockwise direction. The stresses contributed by 

the reinforcement can be added to the stresses from the orthotropic smeared-crack model as shown 

in Eq. 2.5.  

 ( )

1
1 1

1 1
1 2 2

0

m
s

m m
tot s s

ρ σ
θ ρ σ

+

+ +

⋅ 
 = + − ⋅ 
 
 

σ σ R  2.5 

in which 1sσ  and 2sσ  are the stresses in the reinforcing steel along the 1s  and 2s  axes, respectively, 

and 1ρ  and 2ρ  are the corresponding reinforcement ratios. 
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Box 2.1 Stress update algorithm when the orthotropic model is uncracked. 

 

 

Given: internal variables min,αε  and min,βε , and the strains { }1 1 1 1m m m m
x y xyε ε γ

Τ+ + + +=ε  

If the material is uncracked: 

1) Since the axes of orthotropy are parallel to the axes of the principal strains, the strain 
vector  { }1 1m m

α βε ε
Τ+ +  and the angle 1mθ +  are calculated as follows: 

( )
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   

   + −
= − +      

   

=
−

 

2) Calculate ( )min,ασ ε  and ( )min,βσ ε  with Eq. 2.1, and then plε  and tf  with Eqs. 2.2 
and 2.3. 

3) IF 1m
plαε ε+ ≥  THEN  

IF 1 0m
αε
+ ≤  THEN 1 0m

ασ
+ =  END 

IF 1 0m
αε
+ >  THEN 1 1

,
m m

TRIAL mEα ασ ε+ += ⋅ , and set 1
max,

m
α αε ε +=  if 1

max,
m

α αε ε +< END 

IF 1
,

m
TRIAL tfασ
+ >  THEN set 1m

crθ θ += , and 
( )1

1
/

exp
m

t t mm
t

t

m f E
f

f
α

α

ε
σ

+
+

 − −
 = ⋅
  

ELSE      

1 1
,

m m
TRIALα ασ σ+ +=  END 

ELSE  

IF 1
min,

m
α αε ε+ ≥  THEN ( )1 1m m

m plEα ασ ε ε+ += ⋅ −   

ELSE calculate 1m
ασ
+  with Eq. 2.1 and set 1

min,
m

α αε ε +=  END 

END 

4) Update the stress 1m
βσ
+  for the second axis of orthotropy using the procedure in Step 

3 with the subscript α replaced by β.    
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Box 2.2 Stress update algorithm when the orthotropic model is cracked. 

Given: internal variables min,αε  and min,βε , max,αε  and max,βε , and the strains 

{ }1 1 1 1m m m m
x y xyε ε γ

Τ+ + + +=ε  

If the material is cracked: 

1) Set 1m
crθ θ+ =  and calculate the strains in the orthotropic system as follows:
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T . 

2) Calculate ( )min,ασ ε  and ( )min,βσ ε  with Eq. 2.1, and plε  and tf  with Eqs. 2.2 and 
2.3. 

3) IF 1m
plαε ε+ ≥  THEN  

IF 1 0m
αε
+ ≤  THEN 1 0m

ασ
+ =   

ELSE IF 1
max,

m
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ELSE IF 1
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α αε ε+ >  THEN 
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 and set 

1
max,

m
α αε ε +=  END 

IF 1
,

m
TRIAL tfασ
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ELSE 1 1
,

m m
TRIALα ασ σ+ +=  

END. 

ELSE 

IF 1
min,

m
α αε ε+ ≥  THEN ( )1 1m m

m plEα ασ ε ε+ += ⋅ −  ELSE calculate 1m
ασ
+  from Eq. 2.1

and set 1
min,

m
α αε ε +=  END 

END 

4) Update the stress 1m
βσ
+  for the second axis of orthotropy using the procedure in Step 

3 with the subscript α replaced by β.    

5) Calculate the shear stress in the cracked coordinate system as follows: 
{ }{ }1 min max , 0.5 ,0.5m m

t tG f fαβ αβτ τ γ+ = + ⋅∆ − . 
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2.4.3 Calibration of material parameters and verification analysis 

The model involves a small number of material parameters that can be calibrated based on 

material tests and recommendations from the literature. However, the parameters controlling the 

strain softening in compression and tension are dependent on the size of the shell element to 

preserve the objectivity of the numerical results in the post-peak region (Bažant and Planas, 1998). 

For a given compressive or tensile strain-softening relation, the post-peak behavior of the 

numerical solution in compression or tension will be sensitive to the element size due to the 

localization of the plastic strain in one row of elements perpendicular to the direction of loading, 

which determines the total fracture energy release. To avoid this numerical artifact, the fracture 

energy release must be regularized so that the total energy release will not be affected by the 

element size.  

To calibrate the behavior of masonry in compression, a set of six grouted masonry prism 

tests have been selected to determine the material parameters. The prisms were tested by Mavros 

(2015) and had dimensions of 24 x 16 x 8 in. Each prism was made out of three 16 x 8 x 8 in. 

concrete masonry units.  

The prisms are discretized with triangular elements that have a vertical and horizontal side 

of 4 in., which is found to be convenient to model masonry components made of 16 x 8 x 8 in. 

units. Vertical displacement is imposed at the top nodes while the bottom nodes are simply 

supported. Figure 2.10 shows that there can be great variability in the post-peak response obtained 

from different masonry prisms of the same set. To match the results in an average sense, a value 

of 0.040 has been selected for the crushing strain uε . To regularize the behavior of the model in 

compression, the crushing strain uε  has to be changed if the element size is changed so that the 

total fracture energy remains the same. Furthermore, based on the experimental data, the modulus 
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of elasticity of masonry mE  is considered to be equal to 600 mf , the stress of  at the end of the 

linear branch is taken equal to 2 3 mE , and the strain at peak compressive stress 0ε  is considered 

to be equal to 0.003, where mf  is the compressive strength of masonry prisms. The modulus of 

elasticity selected is lower than the value of 900 mf  specified by the masonry design code (TMS 

402-16) because it better reflects the prism test results.  

For the tensile regime, the tensile strength tf  can be assumed to be equal to 10% of mf  if 

no specific experimental data are available. The parameter tm  is mesh-size dependent and is 

determined based on the procedure described by Burchnall (2014) and the condition that the mode-

I fracture energy ( ,f IG ) of masonry be equal to the product of the area under the post-peak uniaxial 

stress-strain curve and the element length ( eL ). Based on this, the parameter tm  is calculated by 

Eq. 2.6.  

 
2

,

e t
t

f I

L fm
G
⋅

=  2.6 

For this purpose, the length eL  of a triangular element can be assumed to be equal to the square 

root of its area. The mode-I fracture energy is a material parameter that needs to be specified. In 

this study, it is assumed to be 0.0004 kips/in based on the recommendation of Koutromanos and 

Shing (2012). 

 To verify the performance of the orthotropic model and the validity of the calibration 

method, a reinforced masonry wall specimen tested by Sherman (2011) is simulated using only 

smeared-crack shell elements. The layout of the wall specimen and the finite element model are 

shown in Figure 2.11. The wall was fully grouted with dimensions of 72 x 40 x 8 in. and had 
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reinforcement consisting of 5 #6 vertical bars and 9 #4 horizontal bars. The wall was tested as a 

cantilever under a constant vertical load of 48 kips and a cyclic lateral displacement history applied 

quasi-statically at the top. In the test, the wall developed a flexure-dominated failure with toe 

crushing and buckling of the exterior vertical bars, as shown in Figure 2.12. The wall is discretized 

with triangular shell elements that have two perpendicular sides with a length of 4 in. The vertical 

and horizontal reinforcement is smeared and is modeled with a bilinear law with kinematic 

hardening and a strain-hardening ratio of 1%.  Elastic shell elements are used to model the concrete 

footing and loading beam. The compressive strength of masonry is 2.77 ksi and the tensile yield 

strengths of the vertical and horizontal reinforcement are 65.4 ksi and 66.2 ksi, respectively. The 

material parameters of the orthotropic model are specified as described above.  

As shown in Figure 2.12a, the model can predict well the peak strength of the wall. The 

model can also predict well the extent of crushing along the length of the wall, as it is indicated by 

the compressive strains shown in Figure 2.12c. As expected, the model cannot capture the extent 

of crushing along the wall height due to the strain localization phenomenon. The difference in the 

shapes of the loading-unloading curves between the analysis and the experiment can be attributed 

to the linear hardening law used for the reinforcement in the analysis and the fact that bond-slip 

was not accounted for. The reduced resistance observed in the last cycle of testing was due to the 

buckling of the vertical bars; the model used here ignores this phenomenon. The model greatly 

overestimates the initial stiffness of the wall. This can be partly due to the perfect bond assumed 

between the reinforcement and the grout, and also to the fact that the lower tensile strength in the 

wall-footing interface is not modeled.  

The performance of the smeared-crack shell elements will be worse for a shear-dominated 

wall due to the aforementioned stress locking phenomenon. A refined finite element modeling 
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scheme using a combination of smeared-crack shell elements, cohesive-crack interface elements, 

bond-slip/dowel action interface elements, discrete beam elements for the reinforcing bars, and an 

element removal scheme aims to address the deficiencies of the smeared-crack modeling approach.                

2.5 Cohesive-Crack Interface Element 

The smeared-crack approach is simple, computationally efficient, and can capture well the 

effect of diffused fine cracks in reinforced masonry structures. However, as already discussed, 

there are numerous problems inherent to smeared-crack models, such as the mesh-size dependency 

caused by the localization of plastic strains in the post-peak regime, and the stress locking 

phenomenon that prevents realistic modeling of the brittle shear behavior induced by diagonal 

tensile cracks. Furthermore, smeared-crack elements are unable to capture shear sliding that can 

develop along a crack. To resolve these deficiencies, the smeared-crack shell elements are 

combined with cohesive-crack interface elements. The cohesive-crack interface elements can 

model in a realistic manner diagonal and horizontal cracks and can alleviate the mesh-size 

sensitivity of the smeared-crack elements under tensile softening.  

Several constitutive models with different degrees of sophistication have been proposed to 

simulate the fracture and friction behavior of discrete cracks in concrete or masonry structures. 

Among others, the models of Lotfi and Shing (1994), Cervenka (1994), Carol et al. (1997), 

Mehrabi and Shing (1997), Oliveira and Lourenço (2004), Puntel et al. (2006), and Koutromanos 

and Shing (2012) are based on an elasto-plastic formulation under the plane-stress condition that 

is intended for two-dimensional analyses of concrete and masonry structures. This study adopts a 

model proposed by Kottari (2016), which is an extension of the model of Koutromanos and Shing 

(2012) to three dimensions. The cohesive-crack model can simulate mixed-mode (mode-I, II, and 

III) fracture, crack opening and closing, and relative shear sliding in an interface. The model also 
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accounts for the reversible normal dilatation and irreversible compaction that occurs in an interface 

when it is subjected to cyclic shear deformation based on the formulation of Koutromanos and 

Shing (2012). The model is used together with a zero-thickness interface element that is available 

in LS-DYNA.   

2.5.1 Interface element formulation 

The interface element adopted is available in LS-DYNA. It has four nodes and a 

configuration shown in Figure 2.13. The first two nodes, namely nodes 1 and 2, define its bottom 

surface and the other two its top surface. In element’s undeformed state, the nodes of the top and 

bottom surface are coincident. The element is formulated to be compatible with the shell elements 

used in this study in that it has six degrees of freedom per node. Furthermore, as in the shell 

elements, linear shape functions are used to interpolate the displacements and rotations along the 

top and bottom surfaces of the interface. The deformation of the interface is calculated from the 

relative displacement between the two surfaces and has three components. These consist of the 

relative normal displacement nd  and the two relative shear displacements td  and sd  along the 

longitudinal and transverse axes of the element, respectively, as shown in Figure 2.13. The 

corresponding stress components consist of the normal stress nσ  and the two shear stresses tτ  and 

sτ . The nodal forces and moments are obtained by the integration of the normal and shear stresses 

along the element surface using Gauss quadrature with four integration points.  

The interface element has a co-rotational local coordinate system and can thus be used in 

analyses involving large rigid-body rotations. Its local coordinate system is updated at every step 

of the solution based on the position of the two shell elements that the interface is connected to. 

As shown in Figure 2.13, local axis 1q  defines the direction of out-of-plane shear, local axis 2q
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defined the direction of in-plane shear, and local axis 3q  defines the direction of normal opening. 

The calculation of the element local coordinate system starts by establishing the direction of local 

axis 2q  as the average of the directions of the top and bottom sides of the element. Local axis 1q  

is defined so that its direction is in the average direction of the out-of-plane vectors normal to the 

upper and lower shell elements, respectively, and is made orthogonal to axis 2q  through an 

orthogonalization operation. Local axis 3q  is calculated so that it is orthogonal to axes 1q  and 2q . 

The disadvantage of this approach is that the interface element needs to be connected to shell 

elements at both sides and track the Cartesian coordinates of eight nodes during the analysis. 

Furthermore, connecting more than one shell elements to a single side of an interface element may 

result in a coordinate system that is not desirable. Further details about the definition of the element 

local system and the formulation of the element can be found in LS-DYNA Theory Manual (2018). 

2.5.2 Cohesive-crack interface law  

The cohesive-crack material law that is used with the interface elements adopts an elasto-

plastic formulation. The material law was originally developed by Koutromanos and Shing (2012) 

for two-dimensional finite-element models and was extended by Kottari (2016) for three-

dimensional models. The constitutive model was implemented in the finite element analysis 

program LS-DYNA for the purpose of this study. In this section, the cohesive-crack interface law 

is briefly summarized to define the material parameters that govern the response of the cohesive-

crack interface elements. 

To account for the different deformation modes of an interface, namely, the crack normal 

opening, shear sliding, joint compaction, and normal dilatation, the relative displacement vector 
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of the interface element is decomposed into three components as it was originally proposed by 

Mehrabi and Shing (1997) 

 { }T e p g
n t sd d d= = + +d d d d  2.7 

where { }Te e e e
n t sd d d=d  is the elastic part, { }Tp p p p

n t sd d d=d  is the plastic part, and 

{ }0 0
Tg g

nd=d  is the geometric part. The latter has only a normal component that represents 

the reversible joint dilatation introduced by the wedging action of the joint asperities when the 

joint is subjected to shear sliding. 

The inelastic behavior of the interface is governed by the yield criterion of Eq. 2.8. Any 

inelastic displacement increment should result in a stress state that satisfies the yield condition

0F = . If 0F <  means that the displacement increment was all elastic.  

 ( ) ( )22 2 2 2 0s tF s r sτ τ µ σ σ= + − ⋅ − − ⋅ ⋅ − =  2.8 

The yield criterion describes the yield surface shown in Figure 2.14. The surface has the 

shape of a hyperboloid in the three-dimensional stress space but reduces to a two-dimensional 

hyperbola if the out-of-plane shear stress is equal to zero. The shape of the three-dimensional 

surface can be obtained by the revolution of the hyperbola about the normal stress axis. The 

hyperbola is defined in terms of the three material parameters, s , µ , and r , as shown in Eq. 2.8. 

Parameter s  is the tensile strength of the interface, µ  is the slope of the asymptotes of the 

hyperbola, and r  is the radius of curvature at the apex of the hyperbola. The values of the three 

parameters can decrease based on the accumulation of damage in the interface, causing the yield 

surface to shrink and shift from its initial state to the residual state, as shown in Figure 2.14. The 
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following set of equations is used to describe the change of s , µ , and r   with respect to the plastic 

work: 

 1 2

, ,

1o
f I f II

s s
G G
κ κ 

= − −  
 

 2.9 

 ( ) 3
r re ακ

οµ µ µ µ−= − +  2.10 

 ( ) 3
o r rr r r e rβκ−= − ⋅ +  2.11 

where os , oµ , or , rµ , and rr  are the specified initial and residual values of the material parameters, 

defining the initial and residual yield surfaces; ,f IG  and ,f IIG  are the specified mode-I and mode-

II fracture energies; and 1κ  and 2κ , represent the cumulative plastic work associated to mode-I 

and mode-II fractures, respectively, while 3κ  represents the cumulative frictional work that is 

related to the smoothening of the sliding surface. Variables α  and β  are specified material 

properties that govern the rate of change of µ  and r  with respect to the plastic work. To simplify 

the terminology, parameter µ  will be hereafter referred to as the friction coefficient because the 

yield criterion reduces to the Mohr-Coulomb criterion for low values of r . 

Based on Kottari (2016), the reversible geometric dilatation is calculated incrementally as 

a function of the plastic shear displacement based on the following expression that is in rate form: 

 g p
n dil resd dζ=   2.12 

where dilζ  is the coefficient of dilatation and p
resd  is the magnitude of the resultant plastic shear 

displacement given by:  
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 ( ) ( )2 2p p p
res t sd d d= +  2.13 

The coefficient of dilatation is assumed to decrease as the magnitude of the plastic shear 

displacement increases based on the following equation: 

 ( ), , ,
0

exp
p

res
dil dil o dil r dil r

d
d

ζ ζ ζ ζ
 

= − ⋅ − + 
 

 2.14 

where ,dil oζ , ,dil rζ , and 0d  are specified material parameters that define the geometric profile of 

the asperities, with , ,dil r dil oζ ζ≤ . As described in Koutromanos and Shing (2012), parameters ,dil oζ  

and ,dil rζ  represent the values of the initial and residual slopes of the asperities under an increasing 

magnitude of shear displacement, while 0d  determines the rate of decrease of the slope. Upon 

removal of the plastic shear displacement, the coefficient of dilatation returns to its initial value 

,dil oζ  indicating its reversible nature. In Eqs. 2.12 to 2.14  it is stipulated that the geometric profile 

of the asperities is axisymmetric about the axis normal to the surface of the interface, meaning that 

the amount of  geometric dilatation depends only on the magnitude of the resultant plastic shear 

displacement and not on its direction.  

The plastic component of the relative displacement vector shown in Eq. 2.7 includes the 

plastic shear displacements due to sliding, the plastic normal displacement due to tensile fracture, 

and the irreversible joint compaction. The plastic displacement vector is calculated incrementally 

based on a non-associated flow rule: 

 p λ=d m  2.15 
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where λ  is a plastic multiplier, and m  is a vector that defines the direction of plastic flow.  The 

direction of vector m  is determined as follows. If the normal stress is compressive, vector m  is 

determined from a plastic potential function Q  as  

 Q∂
=
∂

m
σ

 2.16 

 where { }T
n t sσ τ τ=σ  is the vector of stresses and  

 2 2 21 1 1
2 2 2t sQ ητ ητ σ= + +  2.17 

The variable η  is a specified material parameter that controls the amount of normal compaction 

for a given plastic shear displacement. Smaller values of η  result in more severe compaction. If 

the normal stress is tensile, vector m  takes a different form allowing for the behavior of the 

interface in tension and compression to be modeled independently. In that case, the components 

of vector m  are determined from the equations: 
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where, elσ , el
tτ  and el

sτ  are the components of an elastic predictor stress vector, and nnD  and ttD  

are the elastic stiffness constants in the normal and shear directions, respectively.  

Given the relative displacements of the interface, the plastic displacements, the geometric 

dilatation, and the normal and shear stresses of the interface are calculated as follows: 

 1 2nn n n nn n nD d d D d dσ = − − + −  2.19 

 ( )p
t tt t tD d dτ = −  2.20 

 ( )p
s tt s sD d dτ = −  2.21 

in which ⋅  represent Macaulay brackets. As illustrated in Figure 2.15, parameters 1nd  and 2nd  

define the range of values of the normal relative displacement for which the normal stress is equal 

to zero during unloading and reloading in the normal direction. This range depends on the amount 

of joint compaction, geometric dilatation, and plastic normal displacement under tension. 

Compressive stress develops only when nd  becomes smaller than 1nd , signifying that the crack 

has been fully closed. The two parameters evolve according to the following expressions: 

 1
p g

n n nd d d= − +    2.22 

 2
p

n nd d=   2.23 

The numerical implementation of the cohesive-crack material model is presented in Kottari 

(2016) and Koutromanos and Shing (2012). Validation of the material model against experimental 

data for concrete and masonry can be found in Koutromanos and Shing (2012).   
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2.5.3 Behavior of the cohesive-crack interface model and selection of material parameters 

In this study, the cohesive-crack material model has been used to simulate the fracture and 

sliding behavior of cracks in grouted and ungrouted masonry as well as mortar joints. The behavior 

of the model for each case is governed by a number of parameters that need to be specified. The 

values of some parameters can be determined based on recommendations in the literature when 

experimental data are not available, while others can be calibrated directly with material test data 

or indirectly with experimental data from wall tests. Table 2.1 shows the values for the material 

parameters used in analyses presented in the following chapters for cracks in grouted concrete 

masonry and mortar joints in ungrouted concrete masonry. To show how the two sets of material 

parameter values affect the response of the cohesive-crack model, a simple analysis is performed 

in LS-DYNA using a single interface element subjected to shear as shown in Figure 2.16. 

The parameter values used for cracks in grouted masonry are determined as follows. The 

elastic stiffness constants of the interface are assigned very high values to avoid unrealistic 

deformation before cracking and crack penetration upon crack closing. The tensile strength os  is 

assumed to be equal to the tensile strength ,t inif  of grouted masonry. In the analyses presented in 

the following chapters, the tensile strength is assumed to be in the range of 8%-12% of the masonry 

compressive strength mf . In the specific example, the tensile strength is taken equal to 0.3 ksi. The 

mode-I fracture energy ,f IG  is specified to be 0.0004 kips/in based on the recommendation of 

Koutromanos and Shing (2012) for concrete. The mode-II fracture energy is assumed to be 10 

times the value of mode-I fracture energy. The values of the initial and residual friction coefficient 

are assumed to be 1.40 and 1.00, while parameters ,dil oζ , ,dil rζ , and od , which control the 

geometric dilatation, are assigned values 0.40, 0.001, and 0.40 respectively. The values shown in 
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Table 2.1 for the rest of the parameters, namely, or , rr , α , β , and η , are similar to the ones 

proposed by Koutromanos and Shing (2012) for modeling cracks in concrete. 

As shown in Table 2.2, the material parameters used for a mortar joint in ungrouted 

masonry reflect a lower tensile strength and a lower shear resistance as compared to those for a 

crack in grouted masonry. The normal stiffness of the interface is calculated based on the elastic 

modulus of the mortar and the thickness of the joint assuming uniaxial compression. For this 

purpose, the mortar joint is assumed to be 3/8 in. The elastic modulus of the mortar is selected so 

that when the interface is combined with the adjacent shell elements representing masonry units, 

the axial stiffness of the masonry assembly is well represented. The shear stiffness of the mortar 

joint is determined from the shear modulus and joint thickness. The shear modulus is calculated 

from the elastic modulus by assuming an isotropic material with Poisson’s ratio equal to 0.2. The 

tensile strength assigned to the interface corresponds to the tensile bond strength between the 

mortar and the concrete masonry unit. The tensile strength of 0.10 ksi selected here has been used 

in analyses presented in the following chapters. The initial and residual friction coefficients are 

assumed to be 0.95 and 0.85, respectively. These values are consistent with the coefficient of 

friction obtained from direct shear tests conducted by Mehrabi (1994) on mortar joints in hollow 

concrete units. The mode-I and mode-II fracture energies are assumed to be half of the ones used 

for cracks in grouted masonry. Lower values are also used for or  and for the parameters defining 

the geometric dilatation. The remaining parameters are assumed to be the same as for cracks in 

grouted masonry. 

The model shown in Figure 2.16 is subjected to cyclic out-of-plane shear displacement 

under a constant compressive stress of 100 psi. The responses of the interface obtained for the two 

sets of material parameters are shown in Figure 2.17. It can be observed that the crack for grouted 
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masonry has a much higher cohesive resistance than the mortar joint and also develops a normal 

displacement that is governed by the reversible geometric dilatation. For the case of the mortar 

joint, the geometric dilatation is much lower, and the normal displacement is eventually controlled 

by the irreversible joint compaction. 

2.6 Beam Elements for Steel Reinforcing Bars 

Reinforcing steel bars are modeled with beam elements that have the formulation proposed 

by Hughes and Liu (LSTC 2019). This formulation accounts for geometric nonlinearity and is 

available in LS-DYNA. Although beam elements are computationally more demanding than truss 

elements, they can capture the effects of bar buckling and dowel action in a realistic manner. The 

beam elements used in this study have a single integration section along the length and a total of 

four fibers for the integration of stresses over the section.  

The stress-strain response of each fiber is described by the uniaxial steel constitutive model 

of Kim and Koutromanos (2016). The model is essentially an improved formulation of the material 

law previously proposed by Dodd and Restrepo-Posada (1995) in that it eliminates the need for 

iterations in the stress update procedure and also allows for the calculation of the material tangent 

stiffness through a closed-form expression. This was achieved by introducing non-uniform rational 

b-splines (NURBS) to define in an explicit manner the hysteretic cyclic response of the material 

and circumvent the iterative procedure that the original model of Dodd and Restrepo-Posada 

(1995) required. The material model of Kim and Koutromanos (2016) also accounts for rupture 

under monotonic and cyclic loading using a criterion related to the accumulation of work under 

inelastic strains. 

The material model can accurately describe the salient features of the monotonic and cyclic 

response of a steel reinforcing bar. It accounts for the yield plateau and subsequent strain hardening 
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under monotonic loading and the Bauschinger effect and kinematic hardening under cyclic 

loading. The cyclic response of the model is based on the monotonic stress-strain curve. The 

formulation of the material is in terms of the natural strains and natural (true) stresses since the 

monotonic response of a steel bar in tension and compression becomes practically symmetric 

(when no buckling occurs) when expressed in terms of these stress and strain measures as 

explained in Dodd and Restrepo (1995). 

A total of seven material parameters are used for the description of the monotonic stress-

strain curve as shown in Figure 2.18a. These consist of the initial elastic modulus sE , the yield 

stress yf , the strain shε  at the onset of strain hardening, the ultimate strength suf  and the 

corresponding strain suε , and the stress 1shf  and strain 1shε   of a point that lies in the strain-

hardening region. The strain-hardening region is defined as a curve that passes through points ( shε

, yf ), ( 1shε , 1shf ), and ( suε , suf ) and has zero slope at the point of ultimate strength in the 

engineering stress-strain system. Based on the original material model of Dodd and Restrepo-

Posada (1995), load reversals in the inelastic regime are generally described by a linear unloading 

region, which has an unloading modulus that is lower than sE , and a curved region, as shown in 

Figure 2.18b. In the formulation of Kim and Koutromanos (2016), the curved region is described 

with quadratic NURBS that have three control points, as it is qualitatively depicted in Figure 2.18c. 

Rebar rupture is accounted for in an empirical manner through a criterion that is based on 

a scalar variable, D . The criterion adopted is a uniaxial version of the one proposed by Huang and 

Mahin (2010) for the simulation of rupture due to low-cycle fatigue in structural steel members. 

Based on that, rupture occurs when the scalar variable D  exceeds a critical threshold crD . The 
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evolution of D  is associated with the accumulation of inelastic work under tensile stress and is 

defined by the following equation in rate form 

 

2

,  if  0

0,  otherwise

t

p
y

f fD f
ε

 
 >  =  







  2.24 

where f  is the stress, t  is a material constant, and pε  is the rate of plastic strain. When rupture is 

registered in all the fibers of a cross section, the corresponding beam element is considered 

ruptured.  

The materials parameters that define the stress-strain response and the rupture criterion of 

the steel model can be determined from a given monotonic tensile stress-strain curve of a 

reinforcing bar. Parameter t  is taken equal to 1.0, as suggested by Moharrami and Koutromanos 

(2017). Parameter crD  is set equal to ,cr monD , where ,cr monD  is the value of crD  required to capture 

the occurrence of rupture in a monotonic tensile test. Figure 2.19 shows an example of a stress-

strain envelop that has been calibrated to match an experimentally obtained monotonic loading 

response up to the point the rebar specimen ruptured. Kim and Koutromanos (2016) have shown 

that using ,cr cr monD D=  can also predict well the occurrence of rupture under cyclic loading 

conditions for bars subjected to pure axial load. Figure 2.20 shows the response of the material 

model under a cyclic loading scenario and the evolution of D  until rupture occurs. However, when 

the material model is used together with beam elements to simulate the response of reinforcing 

bars subjected to combined axial and bending deformation, Moharrami and Koutromanos (2017) 

found that crD  should be increased to ,2.4 cr monD  to obtain reasonable agreement with experimental 

results. This threshold is adopted in this study.  
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2.7 Bond-Slip and Dowel Action Interface Element 

The beam elements representing the steel reinforcement are attached to the masonry shell 

elements through interface elements that simulate the bond-slip and dowel-action behaviors of the 

reinforcing bars. The interface element used in this study has been implemented as a user-defined 

element in LS-DYNA using the formulation proposed by Mavros (2015) and Kottari et al. (2018), 

which allows for the connection of beam elements to shell elements that have a larger size. To 

model the bond slip and dowel action of bars, the bars often require a finer mesh than what is 

needed to model the nonlinear behavior of masonry or concrete. The adopted interface element 

formulation provides this flexibility. In this study, beam elements with lengths two to four times 

the bar diameter are used depending on the location of the reinforcing bar. To model bond-slip, 

the phenomenological bond-slip law developed by Murcia-Delso and Shing (2014) is adopted with 

certain modifications. To model the dowel-action effect, a simple uniaxial material law is proposed 

to simulate the lateral interaction of the bar with the adjacent concrete or masonry. To account for 

large rigid-body rotations, the interface element has been implemented with a local coordinate 

system that is updated based on the deformed configuration of the element. The original element 

by Mavros (2015) was limited to small rotations. 

2.7.1 Element formulation 

The interface element has 4 nodes. Nodes 1 and 2 are attached to the beam element 

representing the reinforcing bar, while nodes 3 and 4 are attached to the adjacent shell element 

representing the masonry or concrete, as shown in Figure 2.21. In the undeformed configuration, 

the steel and masonry sides are parallel to each other, while they can rotate with respect to each 

other during the analysis based on the positions of the four nodes. The element coordinate system 

is updated based on the deformed configuration of the element. Local axis x  is defined so that it 
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is always along the direction of nodes 4 and 3, while local axes y  and z  are defined so that they 

are orthogonal to x  and to each other. In the undeformed configuration, local axis z  is specified 

as input so that it is normal to the plane of the wall.  

The deformation of the interface element consists of four components that are calculated 

from Eq. 2.25: 1) the relative shear displacement (slip), u , between the bar and the masonry along 

the direction x , 2) the relative displacements v  and w  normal to the slip, along axes y  and z

respectively, which represent the deformation of the masonry or concrete adjacent to the bar and 

any gap created by the dowel action, and 3) the relative axial rotation xθ , along axis x , between 

the bar and the masonry or concrete. The element degrees of freedom associated with each 

deformation component are uncoupled from the rest. 

  2.25 

The displacements and axial rotation of the steel and masonry or concrete sides are 

calculated with linear shape functions, 1N  and 2N , in parametric coordinates, based on the nodal 

displacements and axial rotations of nodes 1 and 2, and 4 and 3, respectively. To account for the 

fact that the steel side may have a smaller length than the masonry or concrete side, Mavros (2015) 

introduced separate parametric coordinates for the two sides, namely, mη  and η  for the masonry 

and steel side respectively. The two coordinates are related through the following equation: 

 mη α β η= + ⋅  2.26 

in which  
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The lengths 12L , 23L , 14L , and 34L  in Eqs. 2.27 and 2.28 are in the physical coordinate system and 

are calculated once, at the beginning of an analysis, as schematically shown in Figure 2.22. 

The element nodal force vectors, xF , yF , and zF , along directions x , y , and z , 

respectively, and the nodal moment vector xM  about the x -axis are calculated as: 
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 2.29 

with bd  the bar diameter, and ( )ηb  the vector that relates each of the four deformation 

components to the corresponding nodal displacements or axial rotations of the interface element 

and is given by 

 [ ]1 2 2 1( ) ( ) ( ) ( ) ( )N N N Nη η η α βη α βη= − + − +b  2.30 

The integrals in Eq. 2.29 are evaluated with Gauss quadrature using two integration points. Stress 

component τ corresponds to the bond stress developed along the direction of the slip, while yσ  

and zσ , correspond to the stresses developed perpendicular to the slip due to dowel action along 
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directions y  and z . Stress t  represents the shear stress developed in the circumference of the bar 

due to relative axial rotation of the bar with respect to the masonry. The stress is calculated through 

an elastic-perfectly plastic law with a low yield strength so that the generated moments xM  will 

not exceed the cracking moment of the masonry shell elements. This done only for the purpose of 

restraining the free rotation of the bar. The interface element has no stiffness associated with the 

rotational degrees of freedom about axes y  and z . The restraints at these degrees of freedom are 

provided by the stiffness of the shell and beam elements the bond-slip/dowel-action interface is 

attached to. 

2.7.2 Proposed co-rotational local coordinate system 

To account for large rigid-body rotation, the element local system is updated at every step 

of the analysis. The directions of the local axes are calculated based on the nodal displacements 

and rotations of nodes 3 and 4. In this way, the local system of the interface element will depend 

only on the deformed configuration of the masonry or concrete shell element rather than of the 

reinforcement beam element, which may experience larger deformations. To obtain the element 

local system, a set of three orthonormal vectors is defined at each of the two nodes. The set of the 

three vectors will be hereafter referred to as the nodal triads. Figure 2.23 illustrates the nodal triads 

of nodes 3 and 4. The nodal triads at nodes 3 and 4 consist of the unit vectors 31r , 32r , 33r  and 41r

, 42r , 43r  respectively, while the unit vectors of the element local system along the directions of 

the x , y , and z  axes are named xv , yv , and zv  respectively. All the aforementioned vectors are 

column vectors. In the initial (undeformed) configuration, the nodal triads coincide with the 

element local system with 31r  and 41r  being coincident to xv , and 32r  and 42r  being coincident to 
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yv . During the analysis, the nodal triads are updated based on the nodal rotations at each respective 

node. Each nodal triad is updated through its respective rotation matrix.  

At a step n of the analysis, the rotation matrices n n n n =  3 31 32 33R r r r  and 

n n n n =  4 41 42 43R r r r  associated with the respective nodal triads represent the rotation operation of 

the unit vectors 1e , 2e , 3e  of the global coordinate system to the unit vectors of the respective 

triad. Several approaches can be used to update the nodal rotation matrices from step n to n+1. 

One approach is to use the second-order accurate formula proposed by Hughes and Winget (1980). 

Based on this, the rotation matrix 1n+
IR  of node I  at step n+1 is calculated through the equation:  

 ( ) ( )
1

1 1 1
2 2

n n
−

+    = − ∆ + ∆   
   

I I I IR I S θ I S θ R  2.31 

where [ ]IX IY IZθ θ θ Τ∆ = ∆ ∆ ∆Iθ  the rotation increments in the global coordinate system at node 

I  from step n to n+1, and ( )∆ IS θ  is a skew-symmetric tensor given by 
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Another approach is to express the rotation matrix as a function of four parameters called 

quartenions. In general, these are collectively represented as one quantity with a scalar part q  and 

a vector part q . For a rotation vector [ ]TX Y Zθ θ θ=θ  the quartenions are defined as 

 cos ,      sin sin sin
2 2 2 2

T
X Y Zq θ θ θθ θ θ θ
θ θ θ

 = =   
q  2.33 
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in which, ( )1/2
θ Τ= θ θ  the magnitude of the rotation vector. 

Given the quartenions at node I  at step n+1, the rotation matrix at step n+1 can be obtained by: 

 ( )1 2
, 1 , 1 , 1 , 1 , 1

12 2 2
2

n T
I n I n I n I n I nq q+

+ + + + +
 = − + + 
 

IR I q q S q  2.34 

in which, the tensor ( ), 1I n+S q  is defined from Eq. 2.32. The quartenions at step n+1 are calculated 

based on the quartenions at step n using the equations: 
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in which, ,2Iq  and ,2Iq  are the quartenions related to the incremental rotation from step n to step 

n+1 and are obtained by substituting the incremental rotation ∆ Iθ  in Eq. 2.33.  

In this study, the quartenion approach is used to update the rotation matrices of nodes 3 

and 4 at the beginning of every step of the analysis. This approach requires that the four quaternions 

of each node are stored as history variables of the element. Having calculated the nodal rotation 

matrices 1n+
3R  and 1n+

4R  of nodes 3 and 4 respectively, an average rotation matrix 

1 1 1 1 Tn n n n+ + + + =  av av1 av2 av3R r r r  can be obtained. To calculate 1n+
avR  through 1n+

3R  and 1n+
4R , the 

procedure described in Crisfield (1990) is adopted. Once the average rotation matrix is calculated, 

it is corrected so that 1n+
av1r  becomes coincident to 1n+

xv , which is defined along the direction of 

nodes 4 and 3. Based on Crisfield (1990), the other two element local vectors are calculated in an 

approximate manner through: 
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2.7.3 Bond-slip and dowel-action material laws 

The stress-strain response for slip along the x -axis of the interface element is based on the 

cyclic bond-slip law proposed by Murcia-Delso and Shing (2014). The model was originally 

developed for reinforcing bars embedded in well-confined concrete and was intended to be used 

for three-dimensional analyses with solid elements representing concrete. The monotonic and 

cyclic behaviors of the model are shown in Figure 2.24. The model simulates bond-strength 

deterioration caused by bar slip, cyclic bar-slip reversals, tensile yielding of the bar, and concrete 

splitting caused by the wedging action effect of the ribs of the reinforcing bar. To simulate the 

wedging action effect, the model introduces a radial compressive stress normal to the direction of 

the bar. In the absence of confining reinforcement, the radial compressive stress could cause the 

tensile splitting of concrete in a 3D model as well as the normal opening of the bond interface. The 

latter will result in a decrease of the bond resistance. However, with the use of shell elements to 

model masonry or concrete, the confinement effect and splitting cracks cannot be accounted for. 

Therefore, the effects of the wedging action of the ribs are not considered in this study.  

In the bond-slip model, the total bond resistance is decomposed into two components, the 

bearing resistance attributed to the bearing forces exerted by the ribs of the bar, and the friction 

resistance. Murcia-Delso and Shing (2014) proposed the following equation for the calculation of 

the total bond resistance for initial loading and for loading beyond the maximum slip ever attained 

by previous cycles: 
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 ( ), , , ,n b s b c b f s f c fτ ρ ρ ρ τ ρ ρ τ= ⋅ ⋅ + ⋅ ⋅  2.37 

in which bτ  and fτ  are the bearing and friction resistances given as a function of slip u  for an 

elastic bar subjected to monotonic pull-out; nρ  is a reduction factor that depends on the interface 

opening normal to the slip; ,b sρ  and ,f sρ  are factors that account for the reduction of the bearing 

and friction resistance due to the yielding of the reinforcing bar; and ,b cρ  and ,f cρ  are factors that 

account for the bond deterioration under cyclic loading. In this study, bτ  and fτ  are assumed to 

have the same behavior for positive and negative values of slip. The bearing and friction resistances 

are defined in terms of the peak bond strength ( maxτ ), the slip at which the peak strength is attained 

( peaks ), the clear spacing between the bar ribs ( Rs ), the slip at the onset of softening ( 2s ), and the 

residual bond strength ( resτ ), based on the following set of equations:  
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The behavior of the model under monotonic and cyclic loading is specified from the five 

parameters defining the monotonic response. The slip value 2s  and the residual bond strength resτ  

are set equal to 2 1.1 peaks s=  and max0.25resτ τ=  per recommendation of Murcia-Delso and Shing 

(2014) for well-confined concrete. If experimental data are not available, Murcia-Delso and Shing 

(2015) have recommended that the values of maxτ , peaks , and Rs  be estimated from the compressive 

strength of concrete in ksi ( cf ′ ) and the bar diameter ( bd ) with the equations: 
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 2.40 

The coefficient nρ  shown in Eq. 2.37 is a function of the interface opening normal to the 

direction of the slip and was originally introduced to account for the reduction of the bond 

resistance due to the opening of splitting cracks. However, in this study, splitting cracks are not 

modeled. This coefficient nρ  is used instead to account for the reduction of the bond resistance 

due to deformation caused by the dowel action normal to the slip. Following the work of Murcia-

Delso and Shing (2014), coefficient nρ  is calculated by: 
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 2.41 

in which, ( )2 2
max maxd v w= +   is the maximum resultant dowel deformation ever attained during 

the analysis. Parameter Rh  represents the rib height of the reinforcing bar and here is 

approximately assumed to be equal to 0.075 Rh .  The factors ,b cρ  and ,f cρ  shown in Eq. 2.37 are 
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reduction factors that account for the bond deterioration due to cyclic loading. Both factors depend 

on the user-specified parameter Rs  and on the values of the maximum slips, maxs+  and maxs− , attained 

in the positive and negative directions. Factor ,b cρ  is calculated by: 

 ( )0.8
max2.7 /

, 1.2 1Rs s
b c eρ −= ≤  2.42 

in which, maxs  is given by: 

 ( ) ( )max max max max max0.75max ,  0.25s s s s s+ − + −= + +  2.43 

Factor ,f cρ  is calculated by the expression: 

 ( )( )0.750.45 /max max
, 1 min ,  1 1 cum Rs s

f c
R

s s e
s

ρ
+ −

− +
= − − 

 
 2.44 

where cums  is considered to be zero before the slip exceeds the slip at the peak resistance, peaks , 

for the first time. In the above expressions, maxs−  is equal to the absolute value of the peak negative 

slip. The reduction factors ,b cρ  and ,f cρ  are applied to the bond stress once the load is reversed.  

Details about the expressions of the reduction factors ,b sρ  and ,f sρ , as well as other parameters 

controlling the cyclic response of the bond-slip model, can be found in Murcia-Delso and Shing 

(2014). 

The model adopted here assumes that the bar is embedded in well-confined concrete and 

ignores the effect of splitting cracks as discussed above. However, for reinforced masonry walls, 

good confinement is hard to achieve. Hence, splitting failure could occur and weaken the bond. 

To distinguish between confined and unconfined conditions in reinforced masonry, the criterion 

proposed for reinforced concrete by Eligehausen and Bigaj-van Vliet in CEB/FIP MC90 (1999) is 
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adopted. Based on that, in the absence of transverse reinforcement, confined conditions prevail if 

the minimum clear cover around the bar is larger than 5 bd , otherwise, unconfined conditions are 

assumed. The clear cover is defined as the clear distance from the reinforcing bar to the exterior 

face of the wall. Based on this criterion, for a reinforced masonry wall with an actual thickness of 

7.625 in., confined conditions are assumed for bar sizes of #3, #4, and #5, while unconfined 

conditions are assumed for bars of larger size. For confined conditions, the values of the modeling 

parameters recommended by Murcia-Delso and Shing (2014), as discussed above, are used. For 

unconfined conditions, the values are modified to account for premature bond failure due to 

splitting cracks. Eligehausen and Bigaj-van Vliet in CEB/FIP MC90 (1999) provide a range of 

values for the parameters maxτ , resτ , and Rs  depending on the bond quality in unconfined concrete. 

The values proposed were based on the experimental data from bond-slip tests. For good bond 

quality, they assumed that ( )0.5
max 0.762 cfτ ′= , ( )0.50.114res cfτ ′= , and 0.04Rs = in., while for poor 

bond quality, they assumed that ( )0.5
max 0.381 cfτ ′= , ( )0.50.057res cfτ ′= , and 0.10Rs = in. For the 

slip values of peaks  and 2s , they assumed that 2 0.024peaks s= = in. in either case. This study adopts 

the value of maxτ  for good bond quality and the values of resτ  and Rs  for poor bond quality. The 

use of the lower value of Rs , which is given for good bond quality, is avoided because it would 

lead to a very brittle bond-slip response that could make the analysis convergence harder. Table 

2.2 summarizes the values adopted in this study for the bond-slip model under confined and 

unconfined conditions. In either case, the bond strength is calculated using the masonry prism 

strength ( mf ′ ) in lieu of cf ′ . Figure 2.25 compares the monotonic bond stress-vs-slip response for 

the case of a #6 bar embedded in grouted concrete masonry with a prism strength of 3 ksi under 

confined and unconfined conditions.  
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The masonry behavior in dowel action along each of the element local axes y and z is 

represented by a simple uniaxial material law in terms of the masonry bearing stress yσ  (or zσ ) 

versus the interface deformation v  (or w ), as shown in Figure 2.26. The behavior along each of 

the two axes is considered to be independent of the other. Under monotonic loading, the material 

is initially elastic-perfectly plastic with an initial stiffness dK  and a yield stress dσ ; beyond the 

deformation 1d , it shows a post-peak softening behavior described by a linear function until a 

specified residual strength is reach at deformation ud , as shown in Figure 2.26. Unloading occurs 

with a stiffness higher than the initial stiffness, and after the stress reaches zero, it remains zero 

for further deformation increment in the same direction. The deformation at which the material is 

fully unloaded represents a gap. The gap depends on the maximum deformation ever reached and 

can be different in the positive and negative directions. Reloading follows the initial stiffness once 

the gap is closed.   

In lack of experimental data on the dowel action response of bars embedded in reinforced 

masonry, the initial stiffness dK  and yield strength dσ  are determined with the dowel force-vs-

displacement law of Dulacska (1972), which was derived from experimental results on dowel bars 

embedded in well-confined reinforced concrete. The calibration is performed with a simple model 

consisting of a dowel bar embedded in masonry and subjected to increasing shear displacement 

along a frictionless joint, as shown in Figure 2.27. The values of the deformation parameters 1d  

and ud  are determined in an ad hoc manner by matching results of reinforced masonry wall 

analyses to quasi-static wall test data, as presented in the following chapter. The residual dowel 

stress is taken equal to 0.01 dσ . 
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The model proposed by Dulacska (1972) to describe the dowel force ( F ) as a function of 

the applied shear displacement (∆ ) is given by: 

 3

3 1 tan
10 2b g d

F F
d f F

π 
∆ =  

 
 2.45 

in which, gf  is the compressive strength of the grout, dF  is the dowel strength, and F  is in kips. 

The dowel strength is calculated with Eq. 2.46 as a function of the compressive strength of the 

grout ( gf ), the diameter of the bar ( bd ), the yield strength of the bar ( yf ), and the angle (δ ) that 

the bar forms with the outward normal vector to the crack plane. In this study, angle δ  is assumed 

to be 45 degrees for the elements connecting the bars to the masonry in the vicinity of a diagonal 

crack in the wall.  
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F d f

f
δ δ

 
= + −  

 
 2.46 

Based on Eq. 2.46, bars crossing a diagonal crack in a wall will have a lower dowel strength than 

a bar that is perpendicular to a crack (i.e. for 0δ = ). For example, if a grout strength of 3.5 ksi 

and a reinforcement yield strength of 60 ksi is used in Eq. 2.46, the reduction in dowel strength for 

a 45-degree angle is about 40%.  

The equations proposed by Dulacska (1972) assume that the dowel force ( F ) and 

displacement (∆ ) are parallel to the crack plane. For an inclined crack plane, the dowel force 

component that is perpendicular to the direction of the bar can be obtained as cosF δ , which is 

equal to 0.707F  for a 45-degree angle crack. However, considering that in the analyses of RM 

walls, some of the cracks crossing the reinforcing bars will be perpendicular to the bars, this 

condition is ignored and the dowel force F  calculated with Eq. 2.45 for an angle δ  equal to 45 
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degrees is assumed to2.47 occur in the direction perpendicular to the bar. This is to avoid excessive 

reduction of the resistance contributed by dowel action. The same assumption is made for the 

dowel displacement ∆ .  

Figure 2.27 compares the dowel force-displacement curve obtained with Eqs. 2.45 and 2.46 

and the response obtained using the simple model. The reinforcing bar is assumed to be #4 with a 

yield strength of 60 ksi and embedded in masonry with a grout strength of 3.5 ksi. The angle δ  in 

Eq. 2.46 is set to 45 degrees based on the previous discussion. The relative displacements 

thresholds 1d  and ud  are specified to be equal to 0.03 in. and 0.06 in., respectively. The same 

values are used in the analyses presented in following chapters.  

The reduction of the bond and dowel resistances due to the compressive crushing of the 

surrounding masonry is modeled by introducing a strength reduction factor k . The factor is equal 

to 1.0 before the onset of crushing of masonry (i.e., when the peak compressive strain has not 

exceeded 0ε , the strain at the peak stress) and is reduced to zero when the peak masonry 

compressive strain ever developed ( mε ) exceeds uε , as given by Eq. 2.48, in which ⋅  represent 

Macaulay brackets. The peak compressive strain of masonry ( mε ) is approximately represented by 

the axial strain at the masonry side of the interface element. The reduced bond and dowel 

resistances are given by Eq. 2.49.  
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2.8 Proposed Element Removal Scheme 

The FE modeling scheme is complemented with a new non-local element removal 

procedure. Element removal is employed to help avoid numerical problems that can be caused by 

severe element distortion and unrestrained degrees of freedom, to model bar buckling and rupture 

in a natural manner, and to simulate loss of contact under certain conditions in cohesive interface 

elements. In this strategy, element removal is triggered by masonry crushing, bar rupture, or an 

excessive relative displacement in a cohesive-crack interface element. However, removal is not 

local to the triggering element. When all the integration points in a shell element satisfy the 

condition for compressive failure (i.e. compressive strain exceeds the strain uε ), the shell element, 

all the adjacent cohesive-crack interface elements, and all the bond-slip/dowel-action interface 

elements connected to the shell element are removed. This aims to eliminate undesired spurious 

resistance introduced by the remaining cohesive-crack and bond-slip/dowel-action interface 

elements after the adjacent shell element has been completely crushed. When all the fibers of a 

beam element cross section have registered rupture, the beam element is removed, and the adjacent 

bond-slip/dowel-action interface element is removed. A cohesive-crack interface element is 

removed to simulate the loss of contact when at least one of the element’s integration points 

registers out-of-plane sliding that is larger than the thickness of the wall. The element removal 

scheme is completed by removing any masonry shell element that remains attached to other shell 

or cohesive crack interface elements through only one of its sides.  

The FE element analysis program, LS-DYNA, allows for element removal, but only in a 

local manner. To implement the non-local element removal scheme within the existing framework 

of the program, the following steps have been followed. First, all the elements that are adjacent to 

a given element are identified and their identification numbers (element ID’s) are stored as internal 
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constants in the given element. This process is performed only at the beginning of the analysis and 

is repeated for every shell, beam, and interface element. A global vector, which can be accessed 

by all elements during the analysis, is formed with each entry containing information about 

whether or not an element has been removed. For the shell elements and beam elements once 

compressive failure or rupture is detected at an integration point, the stresses at the failed 

integration point are set to zero for all subsequent steps of the analysis. When all the integration 

points of the element have failed or ruptured, the element is removed. The entry in the global 

vector corresponding to the removed element is then updated to signal the removal to the adjacent 

elements. In implicit analysis, the element removal is performed at the end of a converged step.   

The element removal scheme is demonstrated with the examples shown in Figure 2.28 and 

Figure 2.29. In the first example, a #4 bar is embedded in a masonry prism and the prism is 

subjected to compression. It can be seen that bar buckling occurs once the masonry shell elements 

are crushed and get removed together with the adjacent bond-slip/dowel-action interface elements. 

In the second example, a #4 bar is embedded in two masonry prisms. The nodes of the bottom 

prism are fixed and those of the top prism are subjected to an upward vertical displacement. The 

reinforcing bar is assumed to have the stress-strain response shown in Figure 2.19. It can be seen 

that when the reinforcing bar beam element gets ruptured and removed, the adjacent bond-slip 

interface element is also removed. In both examples, the masonry prism strength is assumed to be 

2.5 ksi. 

Part of this chapter is a reprint of the material that will appear in Chapter 4 of the technical 

report titled “Developing Solutions to the Short-Period Building Performance Paradox: Study for 

Reinforced Masonry Buildings” that will be submitted to the Federal Emergency Management 

Agency by the Applied Technology Council for the project number ATC-116. The authors of 
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Chapter 4 in the report are: the author of this dissertation, Jianyu Cheng, and P. Benson Shing. The 

report chapter was prepared under the supervision of Dr. Charles A. Kircher, who was the technical 

director of the ATC-116 project. The author of this dissertation was the primary investigator and 

author of all the materials covered in this chapter of the dissertation. 
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Table 2.1 Material parameters for the cohesive-crack model used in the analyses of a single 
interface element. 

Material 
parameter 

Crack in 
grouted  
masonry 

Mortar 
joint 

Material 
parameter 

Crack in 
grouted  
masonry 

Mortar 
joint 

Dnn (ksi/in) 5000 300 Gf,I  (kips/in) 0.0004 0.0002 
Dtt (ksi/in) 5000 125 α (in/kip) 2000 2000 

so (ksi) 0.30 0.10 β (in/kip) 2200 2200 
μο 1.40 0.95 ζdil,o 0.40 0.10 
μr 1.00 0.85 ζdil,r  0.001 0.001 

ro (ksi) 0.05 0.02 do 0.40 0.04 
rr (ksi) 0.01 0.01 η 300 300 

 

Table 2.2 Material parameters for bond-slip material law under confined and unconfined 
conditions. 

Material 
parameter 

Confined 
conditions 

Unconfined 
conditions 

speak 0.07db 0.024 in. 

s2 1.1speak 0.024 in. 

sR 0.5db 0.10 in. 

τmax 2.4(f'm/5.0)0.75 0.762(f'm)0.5 

τres 0.25τmax 0.057(f'm)0.5 
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Figure 2.1 Frame models for masonry wall systems (from NIST 2014). 

 
Figure 2.2 Modeling strategies for the seismic analysis of concrete and masonry structures: (a) 

multi-vertical-line-element for RC/RM shear walls (from Kolozvari et al. 2014); (b) macro-
element for unreinforced masonry panel (from Calio et al. 2012). 

 
Figure 2.3 Nonlinear truss model representation of a RC column (from Moharrami et al. 2015). 
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Figure 2.4 Finite-element discretization scheme proposed by Stavridis and Shing (2010) for the 
analysis of RC members (from Stavridis and Shing 2010). 

 

 
Figure 2.5 Discretization scheme proposed by Mavros (2015) for: (a) shear-dominated wall tests; 

(b) flexure-dominated wall tests (courtesy of Mavros 2015). 
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Figure 2.6 Proposed discretization scheme for RM walls. 

 

 
Figure 2.7 States of the orthotropic model for concrete or masonry. 
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Figure 2.8 Uniaxial stress-strain relation of the orthotropic model for masonry and concrete: (a) 

material initially loaded in compression; (b) material initially loaded in tension. 
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Figure 2.9 Behavior of the orthotropic model under biaxial compression for three loading 

scenarios. The sign convention for the plots has been reversed so that compression is positive. 
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Figure 2.10 Simulation of grouted masonry prism tests. 

 

 
Figure 2.11 Reinforced masonry wall tested by Sherman (2011); (a) wall layout; (b) finite-

element model using only smeared-crack shell elements. 
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Figure 2.12 Analysis of wall specimen 1A tested by Sherman (2011) using only smeared-crack 
shell elements; (a) comparison of hysteresis loops; (b) damage in the test (Sherman 2011); (c) 

crushing predicted by the model at the peak positive drift of the last cycle. 

 

 

 
Figure 2.13 Interface element configuration. (a) Local coordinate system, deformation and stress 

components; (b) Connectivity with top and bottom shell elements. 
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Figure 2.14 Initial and residual yield surface of the cohesive-crack material model. 

 
Figure 2.15 Uniaxial behavior of the interface model in tension and compression (from 

Koutromanos and Shing 2012). 

 
Figure 2.16 Model used for the analysis of a single interface element in LS-DYNA. 
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Figure 2.17 Response of the interface element in terms of shear stress -vs- applied horizontal 

relative displacement and vertical relative displacement -vs- applied horizontal relative 
displacement. (a) Case of a discrete crack in grouted concrete masonry; (b) case of a mortar joint 

in ungrouted concrete masonry. 

 

 

 
Figure 2.18 Behavior of the reinforcing steel model: (a) monotonic tensile curve; (b) reversal 
behavior shown in terms of natural strain and true stress; (c) NURBS to describe the reversal 

curve (figure from Kim and Koutromanos, 2016). 
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Figure 2.19 Calibration of the monotonic tensile stress-strain curve. 

 

 
Figure 2.20 Cyclic response of the steel material until failure. 
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Figure 2.21 Bond-slip/dowel-action interface elements used to connect the reinforcing bars to 

masonry. 

 

 

 
Figure 2.22 Bond-slip/dowel-action interface element lengths (from Mavros 2015). 

 



81 
 

 
Figure 2.23 Nodal triads and element local coordinate system of the bond-slip/dowel-action 

interface element. 

 

 
Figure 2.24 Bond stress-versus-slip law: (a) monotonic response; (b) cyclic response (from 

Murcia-Delso and Shing 2014). 
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Figure 2.25 Comparison of monotonic bond-slip response for confined and unconfined 

conditions. 

 

 
Figure 2.26 Material law used in the bond-slip/dowel-action interface element to model dowel 

action in reinforced masonry. 
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Figure 2.27 Calibration of the initial stiffness and yield stress of the dowel-action material law 

using a simple model. 

  

 
Figure 2.28 Element removal due to masonry crushing. 
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Figure 2.29 Element removal due to rupture of a reinforcing bar embedded in masonry. 
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3 VALIDATION OF MODELING SCHEME FOR GROUTED REINFORCED 

MASONRY 

 

The proposed finite element (FE) modeling scheme is validated with experimental results 

from quasi-static and dynamic tests. To demonstrate the capability of the modeling scheme to 

capture the different possible failure mechanisms of RM shear walls, quasi-static tests on wall 

segments exhibiting shear-dominated and flexure-dominated behaviors are studied. The same 

discretization scheme is used for the analysis of all the wall segments regardless of the failure 

mode obtained in the tests. Emphasis is also placed on the selection of the material parameters. 

The material strengths are based on the data provided in the respective test reports, while the 

parameters defining the cyclic behavior and damage evolution of the constitutive models are 

calibrated in a consistent manner among the various wall tests simulated. To verify the capability 

of the modeling scheme in predicting the response of RM wall systems subjected to earthquake 

loading, the response of two RM structures tested on a shake table is simulated. Both structures 

were tested under unidirectional base excitation using a sequence of ground motions. The first 

structure had two-stories and wall components that were shear-dominated. The structure reached 

a peak first-story drift ratio of 1.9% under the strongest earthquake motion of the testing sequence. 

The second structure is studied to demonstrate the capability of the modeling scheme in capturing 

the structural response at larger lateral drifts. It had a single story and was tested up to a lateral 

drift ratio that exceeded 13%.    

3.1 Discretization Proposed for RM Wall Segments 

  Reinforced masonry walls are normally constructed of hollow concrete masonry units and 

have reinforcing bars placed at the centers of the hollow cores. Thus, the vertical reinforcement 
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spacing is always a multiple of the distance between the centers of two adjacent cores. For typical 

concrete units used in North America, the center-to-center core spacing is 8 in. The first vertical 

bar from a wall edge is placed at a distance of 4 in. from the edge. The horizontal reinforcing bars 

are placed more or less at the mid-height of the bond beams; and the height of a bond beam is 8 

in. The finite element discretization scheme adopted here takes into account the geometric 

properties of masonry construction. Figure 3.1a shows the representative discretization scheme 

used for a RM wall segment. In the mesh shown, the shell elements have been shrunk to better 

illustrate the locations of the zero-thickness interface elements that are inserted between the shell 

elements. The beam elements used to model the reinforcing bars are also shown. They are attached 

to the shell elements through bond-slip/dowel-action interface elements. The nodes of the mesh 

are placed at the mid-thickness of the wall. The triangular shell elements selected for the 

discretization of RM walls have vertical and horizontal sides that are 4 in. long. This allows the 

cohesive-crack interface elements to be placed at 45-degree angles as well as in the horizontal and 

vertical directions. Furthermore, 4 in. is the largest element size that still permits the beam elements 

representing the reinforcing bars to be placed at positions reflecting the actual locations. Selecting 

a smaller shell element size, such as 2 in., would lead to a severe and unrealistic localization of 

compressive strain at the base of flexure-dominated walls. It would also result in an unrealistically 

short buckling length for the vertical reinforcement. 

Reinforcing bars are modeled with 2-inch long beam elements. This element size has been 

shown to be sufficiently small in capturing the bond-slip response (Mavros 2015). However, it is 

not small enough to accurately simulate the curvature along a bar that is subjected to dowel action. 

To properly model the bending of reinforcement due to the dowel action, beam elements with a 

length smaller than one bar diameter would have been needed. However, this is not needed in the 
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present study because the dowel action is treated in an empirical manner by having the initial 

stiffness and strength of the interface model representing the dowel response directly calibrated 

with Dulacska’s equation (1972), as described in the previous chapter.  

The connection of the vertical and horizontal reinforcement to the masonry shell elements 

is illustrated in Figure 3.1b. The region shown corresponds to the base course of a wall, right above 

the foundation. The foundation is modeled with elastic shell elements. Cohesive-crack interface 

elements are placed along the wall-foundation interface to model possible sliding of the wall at the 

base and also account for the lower tensile bond strength that the base interface may have compared 

to tensile strength of masonry. As shown in Figure 3.1b, the vertical bar elements are attached to 

the shell elements that are directly in contact with the wall-foundation interface. These shell 

elements are expected to experience higher compressive strains in a flexure-dominated wall 

segment and will be removed when the compressive failure of the elements occurs. Thus, buckling 

of the adjacent vertical bar elements can naturally occur. As it has been described in the previous 

chapter, the resistance of the bond-slip/dowel-action interface elements is gradually reduced based 

on the compressive strain in the masonry. Reinforcement splices are modeled explicitly by 

simulating each of the lap-spliced bars with a separate set of beam and bond-slip/dowel-action 

interface elements. 

In RM wall construction, when horizontal reinforcing bars are required to provide the 

necessary shear strength, they should terminate with a 180-degree hook around the vertical bar at 

each end. In the model, the horizontal bars are assumed to terminate 4 in. away from the wall end 

and are connected to the vertical bar, as shown in Figure 3.2a. The hooks are modeled by using a 

bond-slip element that has a very high bond strength to connect the beam element at the end to the 

shell element. When modeling a flanged RM wall, the horizontal bars of the web are extended 
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beyond the flanged-web interface and are again anchored with a very strong bond-slip interface 

element to the shell element. An example of the discretization of a flange-web intersection of a T-

wall is shown in Figure 3.2b. In practice, a 90-degree or 180-degree hook is used to anchor the 

horizontal bars of the web in the flange.  

The toes of a wall are discretized in a slightly different manner than the rest of the wall. As 

shown in Figure 3.2a, instead of having triangular elements, the first two rows in the mesh at each 

wall corner have two quadrilateral smeared-crack elements separated by a horizontal cohesive 

crack interface. This is to better simulate the shear-compression resistance of masonry in the 

compression toes. In the analysis of some shear-dominated walls, it has been found that the use of 

triangular shell elements connected with a diagonal interface at a wall toe results in premature 

failure and load drop as soon as the first major diagonal crack forms. For consistency, the modified 

scheme is applied to both shear-dominated and flexure-dominated wall segments, although it is 

not needed for the latter. For wall segments with fixed-fixed end conditions, this modification is 

also applied at the sides of the top course. The quadrilateral elements used have four Gauss 

integration points in each layer across the element thickness. The element is removed when 

compressive failure has been registered in all the sampling points. Compressive failure is defined 

for the smeared-crack model as the state when the peak compressive strain has exceeded the strain 

uε  at which the compressive resistance has dropped to zero.  

3.2 Analyses of Quasi-Static Wall Tests 

Quasi-static tests on shear-dominated and flexure-dominated RM wall segments are used 

for the validation of the proposed finite element modeling scheme. The tests were conducted by 

Ahmadi (2012), Kapoi (2012), Sherman (2011), Voon (2007), He and Priestley (1992), and Shing 

et al. (1991) and covered a wide range of configurations in terms of reinforcement details, 
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boundary and loading conditions, and wall aspect ratios. Table 3.1 summarizes the configuration 

of the test specimens. Table 3.2 shows the average material strengths as obtained from the 

respective test reports. Each specimen is identified with the name used in the corresponding 

experimental study. The reinforcement details and test setup of each study are shown in Figure 3.3 

to Figure 3.8. The calibration of material parameters and analysis results are presented in the 

following sections. The limitations of the FE models are also discussed. 

The nonlinear analyses are conducted by applying static displacements at the top of the 

walls. For the numerical analysis, an iteration scheme that consists of Broyden-Fletcher-Goldfarb-

Shanno (BFGS) iterations and modified Newton-Raphson iterations is used. The modified 

Newton-Raphson iterations are performed using the initial stiffness of the material laws.   

3.2.1 Calibration of material parameters 

The material models for the smeared-crack shell elements, cohesive-crack interface 

elements, reinforcement beam elements, and bond-slip/dowel-action interface elements have a 

number of material parameters to calibrate. The values of many of these parameters are not 

available from experimental studies conducted on masonry walls, which usually provided only the 

compressive strength of the masonry and grout, and the yield and tensile strengths of the steel 

reinforcement. These include material parameters that define the compressive, tensile, and shear 

fracture of the masonry cohesive-crack interfaces, and the stiffness, strength, and softening of the 

masonry material in the dowel-action model. The values of these parameters have to be calibrated 

based on recommendations provided in the literature or in an ad hoc manner to match wall test 

data. It should be noted that one of the objectives of this validation study is to determine an 

approach procedure and method to calibrate these material parameters that can best characterize 

the behavior of reinforced masonry walls and can be used to model masonry building systems. 
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Some of the basic material parameters assume more or less the same values for all the modeled 

wall tests, while others are related to the material strengths. The values of the material parameters 

used in the analyses of the wall segments are summarized in Table 3.3 and Table 3.4. 

The masonry prism strength ( mf ′ ) and grout strength ( gf ′ ) have been obtained directly from 

the values reported in Table 3.2. Stress-strain data from masonry prisms tested in compression are 

not available in any of the aforementioned studies. Apart from the masonry prism strength, the 

material law of the smeared-crack shell elements has a number of parameters to specify, as shown 

in Figure 2.8. In the analyses, the modulus of elasticity ( mE ) is assumed to be equal to 600 mf ′ , the 

stress at the end of the linear branch in compression ( of ) is assumed to be equal to 2 3 mf ′ , and the 

strain at peak compressive strength ( 0ε ) is taken equal to 0.003, as described in the previous 

chapter. The values assumed for the tensile strength of masonry ( tf ) are in the range of 8-11% of 

mf ′ , as shown in Table 3.3. The masonry strain at compressive failure ( uε ) is assumed to be in the 

range of 0.03-0.04 for the element size selected. These values are based on the analyses of masonry 

prisms that were tested in compression, as shown in the previous chapter. 

 The cohesive-crack material law is used with the interface elements representing discrete 

cracks in masonry as well as with the elements simulating the wall-foundation interface. For 

masonry cracks, the tensile bond strength ( os ) is equal to the tensile strength of masonry. The 

mode-I fracture energy ( ,f IG ) is specified to be 0.0002 kips/in and mode-II fracture energy ( ,f IIG

) is assumed to 10 times the value of the mode-I fracture energy, as recommended by Koutromanos 

and Shing (2012). The initial coefficient of friction ( oµ ) is assumed to be equal to 1.2, which is 

lower than the value of 1.4 recommended by ACI 318-14 for concrete placed monolithically. 



91 
 

However, this difference is justifiable because of the smaller aggregate size typically used in a 

masonry grout mix. For the residual coefficient of friction ( rµ ), a value of 1.0 is adopted, which 

is recommended by TMS 402 for masonry placed against a roughened concrete surface. 

Parameters ,dil oζ , ,dil rζ , and od  that control the geometric dilatation, are assigned values of 0.40, 

0.001, and 0.40, respectively. The values of the parameters for the wall-foundation interface 

depend on whether the foundation surface has been intentionally roughened or not before the 

construction of the wall. For a roughened surface, the friction coefficient is assumed to be equal 

to 1.0, otherwise, it is set equal to 0.7, as prescribed by TMS 402. For a surface that has not been 

intentionally roughened, lower values are also assumed for the parameters controlling the 

geometric dilation, as shown in Table 3.3. The values used for the rest of the parameters of the 

cohesive-crack material law are shown in Table 2.1 and are based on recommendations of 

Koutromanos and Shing (2012). 

The values of the material parameters of the reinforcement beam elements were obtained 

from Table 3.2 whenever possible. For the wall tests that do not provide the monotonic stress-

strain response of the steel reinforcing bars, values of the parameters that define the hardening 

behavior of reinforcing steel have to be assumed, as shown in Table 3.4. For these walls, the value 

of parameter crD  (i.e. the parameter that controls the tensile failure of steel) is assumed to be 0.55, 

which is a relatively conservative value. For wall specimens 1A, Spec. 5, and F2, for which the 

monotonic stress-strain reinforcement data are available, the value of crD  is determined based on 

the procedure described in the previous chapter. Nonetheless, no reinforcement rupture was 

reported in any of the wall tests considered. 
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The parameters controlling the monotonic response of the bond-slip law in the bond-

slip/dowel-action interface elements are determined based on the confinement condition assumed 

for a reinforcing bar. A reinforcing bar is assumed to be confined when the clear masonry cover 

around the bar exceeds 5 bar diameters ( bd ). Otherwise, the bar is assumed to be unconfined.  In 

the confined case, it is assumed that the bond resistance can develop without the opening of 

splitting cracks, while in the unconfined case, it is assumed that splitting cracks will compromise 

the bond resistance. As explained in the previous chapter, the bond-slip law used for the confined 

case adopts the properties proposed by Murcia-Delso and Shing (2015), while the bond-slip law 

used for the unconfined case assumes a lower bond-strength and has a more rapid bond degradation 

for increasing slip based on recommendations of Eligehausen and Bigaj-van Vliet (1999). The 

parameters used for either case are presented in detail in Section 2.7.3. The bond strength is 

calculated based on the masonry prism strength. Confined bond conditions are always assumed 

within a wall foundation or a RC loading beam. The bond strength of the respective bond-

slip/dowel-action interface elements is calculated based on concrete strength.   

The dowel model used in this study adopts a uniaxial material law in terms of the masonry 

bearing stress developed under dowel action and the dowel deformation, as described in Section 

2.7.3. The material law is elastic-perfectly plastic in the pre-softening region and has a linear 

softening branch that starts at a deformation 1d  and reaches a residual resistance equal to 1% of 

the yield strength at a deformation ud . The initial stiffness and yield strength of the masonry 

material law are calibrated based on the equation proposed by Dulacska (1972) for the dowel 

strength of a bar embedded in concrete, as described in the previous chapter. The dowel strength 

is calculated using the grout strength. The values adopted for 1d  and ud  are 0.03 in. and 0.06 in., 

respectively, and have been indirectly deduced from the load-displacement response of wall tests. 
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In the wall foundation, the dowel law of the bond-slip/dowel-action interface elements is assigned 

no softening. The dowel response is calibrated so that it matches the force-displacement curve 

proposed by Dulacska (1972). 

3.2.2 Simulation of shear-dominated tests 

Wall specimens A2, Spec. 5, and UT-PBS-02 were tested by Voon (2007), Shing et al. 

(1991), and Ahmadi (2012), respectively, and were all shear-dominated. Wall specimen UT-PBS-

02 was tested under fixed-fixed end conditions, while the other two were tested as cantilevers. 

Wall A2 had no axial load applied, while walls Spec. 5 and UT-PBS-02 were subjected to 100 psi 

and 188 psi of constant axial compressive stress, respectively, as shown in Table 3.1. Furthermore, 

wall A2 did not contain any horizontal reinforcement. In the tests, all three walls developed 

diagonal shear cracks, and in the case of UT-PBS-02, severe crushing occurred along the diagonal 

strut in both loading directions. The FE discretization developed for the three walls is shown in 

Figure 3.9.  

Figure 3.10 compares the damage obtained at the end of the tests and the analyses. For 

clarity, the deformation in the numerical models has been amplified by 3 times. In all cases, the 

model is able to produce a realistic damage pattern, which is mainly governed by diagonal cracks 

and compressive failure of masonry. Compressive failure of masonry triggered element removal 

in the analysis of Spec. 5 and UT-PBS-02. However, the damage in the analysis of Spec. 5 indicates 

toe crushing, which was not observed in the test. For wall UT-PBS-02, the model is able to capture 

the crushing of the diagonal compressive struts, but not to the extent observed in the test. In the 

model, crushing localized only at the compression toes while in the test, crushing occurred along 

the diagonal struts and was more severe in the middle portion of the wall. This is in part due to the 



94 
 

spurious localization of compressive strains in elements undergoing softening in the analysis, and 

in part to the localization of damage along the diagonal discrete crack interface elements. 

Figure 3.11 compares the force-displacement response curves obtained in the tests and the 

analyses of the three shear-dominated walls. It can be observed that the models can capture 

reasonably well the lateral strength of the walls and the load degradation observed in the tests. The 

calculated peak lateral strengths for walls A2, Spec. 2, and UT-PBS-02 differ from the test results 

by 3%, 2%, and 5%, respectively. In the analysis of wall UT-PBS-02, load degradation appears to 

occur more rapidly than that in the test. This can be explained by the localization of the 

compressive failure across a smaller area in the model (e.g. only at the wall toes) than in the test. 

Nonetheless, the model is able to capture the residual capacity of the wall.  

The model accounts for the various mechanisms of shear resistance after diagonal tensile 

cracking occurs in a wall segment. These include the shear resistance of masonry in the 

compressive toe, the friction resistance along the surface of a crack, the resistance provided by the 

horizontal reinforcement, and the dowel action of the vertical reinforcement. The lateral resistance 

developed before diagonal cracking is governed by the tensile strength of masonry, which is also 

accounted for. Thus, the modeling scheme can be used as a reliable tool to determine the lateral 

load response of shear-critical wall segments. 

3.2.3 Simulation of flexure-dominated tests 

The second group of wall segments analyzed consists of specimens C2, 1A and 1B, UT-

W-13, and F2, which were tested by Kapoi (2012), Sherman (2011), Ahmadi (2012), and He and 

Priestley (1992), respectively. All walls were flexure dominated. Walls C2, 1B, and UT-W-13 had 

vertical bars that were lap-spliced at the base, while walls 1A and F2 had no lap splices within the 

plastic hinge zone, as shown in Table 3.1. Although ASCE/SEI 7-16 does not permit the use of lap 
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splices within plastic hinge zones of special reinforced masonry shear walls, TMS 402 (2016) does 

not prohibit them. Walls 1A and 1B were tested by Sherman (2011) to examine the influence of 

lap splices on the flexural behavior of a wall. The two walls had identical configurations with the 

only variable being the lap-splices of the vertical bars in wall 1B. Wall F2 was a flanged wall with 

a T-shaped cross section. It is selected for the validation analyses because flanged walls are very 

common in reinforced masonry construction. All the aforementioned wall specimens were tested 

as cantilevers. The various damage modes observed among the tests, include horizontal flexural 

cracking, masonry crushing at the compression toes, buckling of vertical reinforcing bars, and lap-

splice failure. Reinforcement rupture was not observed in any of the wall tests examined. In the 

analyses, the strain at which the compressive strength of masonry drops to zero is assumed to be 

0.040uε =  for all walls except for wall UT-W-13 for which a value of 0.030uε =  is adopted. The 

discretization of the walls is shown in Figure 3.12. Figure 3.13 to Figure 3.17 compare the 

experimental and numerical results in terms of damage patterns and force-displacement response 

curves. It can be observed that for all cases, crushing occurs only at the first row of elements (4 in. 

high) above the footing because of the strain localization phenomenon.  

Wall 1A is the only rectangular wall examined that did not have lap splices at the base. In 

the test, it showed toe crushing that extended up to the second course from the base and buckling 

of the vertical bars adjacent to the toes. The analysis predicts well the experimental cyclic response 

apart from the last two cycles, in which the model presents higher hysteretic energy dissipation 

than the wall specimen, as shown in Figure 3.14. This is mainly due to the fact that the model is 

not able to correctly capture the extent of crushing along the height of the wall, and therefore, 

cannot accurately represent the buckling behavior of the exposed vertical bars with the correct 

unsupported length. In the analysis, the unsupported length is equal to the height of the smeared-
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crack shell elements, which is equal to 4 in., while in the test, the unsupported length is close to 

16 in. Furthermore, the longer unsupported length of the vertical bars at the crushed toes in the test 

may have also reduced the tensile strains in the bar and subsequently the plastic strain energy 

dissipated. 

Wall C2 had #4 vertical bars with 16 in. lap splices at the base, while wall 1B had #6 

vertical bars with 33 in. lap splices at the base. Both walls were subjected to the same axial 

compression, as shown in Table 3.1. Reinforcement buckling did not occur in any of the two tests. 

In both tests, vertical splitting cracks were observed at the toes of the walls. These cracks can be 

attributed to the high compressive stress in masonry in the toe regions and to the slip of the vertical 

reinforcing bars near the two edges when they were subjected to high tension. In the analyses, a 

similar degree of crushing was observed at the base of the two walls, and it was a bit more severe 

than that observed in the tests, as shown in Figure 3.13 and Figure 3.15. The pinching observed in 

the last cycle of the force-displacement response for both tests is partly due to slip of the vertical 

dowel bars. This is more obvious in the response of wall 1B, in which the hysteretic energy 

dissipation diminished drastically in the last two cycles, as compared to the response of wall 1A. 

The models capture this effect to some extent. The more severe crushing obtained in the analysis 

is likely due to the lower slip of the vertical dowel bars and therefore the higher tensile stress 

developed.  

Wall UT-W-13 had #6 vertical bars with 33 in. lap splices at the base and the top. As shown 

in Figure 3.16, the damage in the test consisted of spalling and crushing at the wall toes. Crushing 

was more severe at the north toe of the wall and was accompanied by the buckling of the exposed 

vertical reinforcing bar. Reinforcement buckling was not observed in the south toe. As shown in 

Figure 3.16, rapid load degradation was observed in both directions after the applied displacement 
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at the top exceeded 2.5 in., which corresponds to a drift ratio of 1.7%. The load degradation and 

low hysteretic energy dissipation obtained in subsequent cycles can be partly attributed to lap-

splice failure and excessive slip of the vertical reinforcing bars. The FE model is able to capture 

well the cyclic response and load resistance up a displacement of 2 in. In subsequent cycles up to 

5 in. of displacement, the model is more ductile and develops a higher hysteretic energy dissipation 

than the actual specimen. This is due to the lower amount of bar slip obtained in the analysis. It is 

also partly due to the inability of the model in capturing the bar buckling observed in the test. 

Eventually, lap-splice failure occurs in the analysis during the cycle with a displacement amplitude 

of 6 in. and the resistance of the model drops. The small amount of resistance that can be seen in 

the last cycle of the analysis is attributed to the frictional component of the bond resistance 

developed along the vertical dowel bars. This lateral load resistance is similar to that developed in 

the test. The severe crushing obtained in the analysis is again due to the inability of the model to 

capture the lap-splice failure as early as that observed the test. In the analysis, toe crushing initiated 

at a displacement of 3 in., while in the test, crushing started when the applied displacement reached 

2 in. 

Wall F2 was a T-shaped flanged wall with #4 vertical bars and no lap splices at the base. 

The damage obtained in the tests consisted of severe crushing in the web. This led to the rapid load 

degradation observed in the positive direction of the force-displacement curves shown in Figure 

3.17. The crushing damage extended up to the third course from the base as can be observed from 

the picture provided in the test report (He and Priestley, 1992), which is included in Figure 3.17. 

No reinforcement rupture occurred in the test. The analysis captures well the experimental 

response in both directions up to the point that the extreme vertical bar in the web of the model 
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ruptures in tension. Figure 3.17 shows the rupture of the bar during the last large excursion to the 

negative direction after the crushing of the web. 

3.2.4 Improved modeling scheme for flexure-dominated walls 

The previous analyses show that the FE modeling scheme can capture well the cyclic 

response of flexure-dominated walls until softening begins. The limitation of the models lies on 

the fact that they are not able to simulate the actual extend of crushing damage along the height of 

flexure-dominated walls. Although the fracture energy of the smeared-crack model has been 

regularized to account for the strain localization effect with respect to the element size, the 

softening behavior of the walls is still not captured accurately. This is because the models cannot 

reproduce well the actual unsupported length of the reinforcing bars after the surrounding masonry 

has been lost due to crushing and cannot simulate the loss of the bond in the vertical bars due to 

the compressive damage that extends beyond the height of the elements at the base (which is 4 in. 

for the current models). Compressive damage could be the complete crushing of masonry or the 

formation of splitting cracks due to compression that can reduce the bond strength between the 

vertical reinforcing bars and the surrounding grout. To alleviate strain localization, constitutive 

models that are based on the concepts of nonlocal damage representation (e.g. Bazant and Lin 

1988; Grassl and Jirasek 2006) or gradient-depended plasticity (e.g. de Borst and Muhlhaus 1992; 

Peerlings et al. 1998) can be pursued.  

In this study, a simple non-local approach is proposed to account for the extent of crushing 

along the height of a wall. The approach is empirical and is based on an a priori assumption of the 

height of the crushed region. Based on the damage observed in wall tests (Kapoi 2012; Sherman 

2011; Ahmadi 2012; and He and Priestley 1992), crushing is assumed to extend along a height (

cH ) that is equal to 20% of the height ( LH ) of a cantilever wall or 20% of the effective height, 
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which is measured from a fixed end to the point of inflection. In the original analysis scheme 

proposed here, the resistance of the bond-slip/dowel-action interface elements is gradually reduced 

as the adjacent masonry softens. This is achieved by multiplying the bond and dowel resistance of 

the interface elements by a reduction factor k , which is calculated based on the axial strain attained 

at the masonry side of the interface elements. When a smeared-crack shell element crushes and 

gets removed, the bond-slip/dowel-action interface elements connected to the crushed shell 

element are also removed. To address the strain localization issue, this scheme is modified as 

follows considering a cantilever flexure-dominated wall in which strain localization occurs at the 

base. Upon the crushing and removal of a smeared-crack element at the base, the bond-slip/dowel-

action interface elements within the entire height of the assumed crushed region (within cH ) are 

removed. Before removal, the value of the reduction factor k  for these bond-slip/dowel-action 

interface elements is based on the masonry compressive strain closest to the wall base. 

The analyses of the flexure-dominated wall tests are repeated with the proposed scheme. 

The height ( cH ) of the crushed region is specified to be 16 in. for walls C2, 1A, and 1B, and 28 

in. for walls UT-W-13 and F2. Figures Figure 3.18 to Figure 3.22 show the damage obtained at 

the end of the analysis of each wall, and compare the force-displacement curves obtained with this 

modified approach to the experimental response and the response obtained with the original 

scheme. In the analysis of wall C2, the modified scheme results in less crushing at the base, which 

better resembles the damage obtained in the test (see Figure 3.13). However, the difference in the 

force-displacement response is very small compared to the original result. In the analysis of walls 

1A and 1B, the modified scheme results in slightly more extended crushing along the base.  The 

analyses also show rebar buckling, which was however not reported in the tests. For wall UT-W-

13, the modified scheme provides improved the response of the model. For wall F2, the modified 
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scheme does not show reinforcement rupture, and the numerical response in the negative direction 

matches better the experimental response, as shown in Figure 3.22. 

3.3 Time-history Analysis of a Two-Story Shake-Table Test Structure 

To validate the ability of the proposed FE modeling scheme to simulate the dynamic 

response of RM wall systems, a two-story structure that was tested on a shake-table is examined. 

The structure was tested by Mavros et al. (2016) under a sequence of unidirectional ground 

motions, which were applied at a progressively increasing intensity. The structure was symmetric 

about the plane aligned with the direction of the input motion, and had the same layout and 

reinforcement details in both stories. In each story, the wall parallel to the direction of shaking (in-

plane wall) had a window and a door opening. The three piers in the first story are named W1, W2, 

and, W3, as shown in Figure 3.23.  Piers W1 and W3 had a T-shaped cross section, while pier W2, 

the middle one, had a rectangular cross section. The structure had four rectangular walls 

perpendicular to the direction of the shake-table motion, as shown in Figure 3.23. They are called 

the out-of-plane walls. The reinforcement details of the structure are shown in Figure 3.24. The 

reinforcement consisted of #4 vertical and horizontal bars. They were placed with a spacing of 16 

in. on-center in the in-plane walls and the vertical bars in the wall flanges had a spacing of 8 in. 

Each of the out-of-plane walls had 3 #4 vertical bars and #4 horizontal bars spaced at 16 in. on 

center. The floor and roof system consisted of 8-inch hollow core planks with a 3-inch cast in-

place RC topping. Dowel bars were used to tie floor and roof slab to the walls. During construction, 

the precast planks were initially supported only by the out-of-plane walls. Details about the design 

of structure can be found in Mavros et al. (2016).   

The structure was tested with a sequence of 9 earthquake motions, all from the El Centro 

record of the 1979 Imperial Valley Earthquake, which was scaled to different intensity levels. The 
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last motion of the sequence was the strongest one with an intensity equal to the level of the 

Maximum Considered Earthquake (MCE), corresponding to the Seismic Design Category (SDC) 

D, the structure was designed for. During the tests, wall piers W2 and W3 behaved in a shear-

dominated manner developing diagonal shear cracks, while the slender pier W1 had a combined 

flexure- and shear-dominated behavior. The damage obtained at the three wall piers by the end of 

the testing sequence is shown in Figure 3.25. The out-of-plane walls developed only horizontal 

flexural cracks. The walls in second story developed some fine cracks before the damage localized 

in the first-story walls. No reinforcement rupture or buckling was observed in any of the walls.  

The FE model developed for the test structure is shown in Figure 3.26. The in-plane walls 

and wall flanges of the first story are discretized with the proposed discretization scheme. The four 

out-of-plane walls are discretized with rectangular 8 x 8 in. smeared-crack shell elements using 

cohesive-crack interface elements only in the horizontal direction. The vertical reinforcement of 

the out-of-plane walls is modeled with discrete beam elements and bond-slip/dowel-action 

interface elements are included, while the horizontal reinforcement is smeared over the shell 

elements. The walls in the second story had little damage and are all modeled with smeared-crack 

shell elements and smeared reinforcement. Cohesive-crack interface elements are not included in 

the second story to reduce the computational cost. The floor and roof slab are modeled with elastic 

shell elements and are attached to the out-of-plane and in-plane masonry walls through stiff elastic 

horizontal interface elements. The walls of the second story are attached to the walls of the first 

story through stiff elastic interface elements too. Bond-slip/dowel-action interface elements are 

used for the starter bars extended from the first story into the second story.  

To mimic the construction sequence that can affect the distribution of the vertical load 

among the walls, the stiffness of each group of the elastic horizontal interface elements described 
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above is engaged sequentially during the application of the gravity load in the analysis. The 

gravity-load analysis is performed in four stages. In the first stage, the weight of the first-story 

walls is applied. In the second stage, the stiffness of the slab interface elements above the webs of 

the out-of-plane first-story walls is activated and then the weight of the first-floor slab is applied. 

In the third stage, the stiffness of the slab interface elements along the webs of the in-plane first-

story walls is activated as well as the stiffness of the interface elements placed between the bottom 

and top story walls and the weight of the second-story walls is applied. In the last stage, the 

stiffness of the bond-slip/dowel-action interface elements of the starter bars extended into the 

second story is activated; the stiffness of the slab interface elements above the webs of the out-of-

plane second-story walls is also activated. The weight of the second-floor slab is applied and then 

the stiffness of the slab interface elements above the webs of the in-plane second-story walls is 

activated. The gravity load is exerted by the mass multiplied by the acceleration of gravity. Once 

applied, the gravity load remains constant throughout the analysis. After completion of the gravity-

load analysis, the time-history analysis is performed. Instead of applying base acceleration, an 

inertial force is applied which is equal to the mass times the negative base acceleration. The 

analysis program distributes the inertial force at each node based on the nodal mass.  

The time-history analysis is performed with the implicit time-integration scheme proposed 

by Bathe (2007). The scheme has a desirable numerical damping characteristic to suppress 

spurious high-frequency modes that could be induced by the cracking of masonry. Additionally, 

Rayleigh damping is prescribed with a damping ratio of 0.5% for the first and second modes that 

are predominant along the direction of the shake-table motion. The stiffness proportional part of 

the Rayleigh damping is based on the initial stiffness of the shell and beam elements. However, 

for the cohesive-crack and bond-slip/dowel-action interface elements, no stiffness proportional 
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damping is applied because of their high initial stiffness. The initial first-mode period and second-

mode period of the model are calculated to be 0.087 s and 0.031 s respectively. The first-mode 

period of the actual test structure was 0.077 s (Mavros et al. 2016). In the time-history analysis, 

the last five motions of the testing sequence are applied sequentially in a single run. In the test, 

motions applied prior to these five did not cause any discernible damage, and are thus omitted 

from the simulation. The five motions are labeled as El Centro 43%, 86%, 108%, 145%, and 160%. 

The material parameters used in the analysis are shown in Table 3.5. In the analysis, the original 

element removal scheme is used since most of the damage obtained in the test occurred in the 

shear-dominated piers. The modified (non-local) element removal scheme will not affect the 

response of shear-dominated wall segments. 

The analysis results obtained from the sequence of the five motions are compared to the 

experimental results in Figure 3.27 to Figure 3.29. In general, the model predicts well the 

experimental response and the final damage patterns of the three wall piers. However, the model 

slightly overestimates the peak first-story drift developed during El Centro 145% and 160% 

motions, the last two of the sequence. 

3.4 Time-history Analysis of a Structure Tested to Large Drifts on a Shake Table  

The ability of the modeling scheme to capture the behavior of a RM structure at large lateral 

drifts is evaluated with the results obtained from the shake-table tests conducted on a single-story 

RM wall system. The structure was designed by Cheng et al. (2019), including the author of this 

dissertation, and was tested under unidirectional excitation to a roof drift that exceeded 13%. The 

configuration of the test structure is shown in Figure 3.23. The building had two planes of 

symmetry about the east-west and the north-south directions. The masonry wall system consisted 

of two T-walls that had their webs aligned with the direction of the shake-table motion (east-west) 
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and six out-of-plane rectangular walls. The roof slab consisted of 8-inch-thick hollow core planks 

and a 3-inch-thick RC topping. To attain the target roof mass, four RC blocks were placed on the 

roof slab. Each block was 16.5 ft. x 10 ft. x 10 in., as shown in Figure 3.24, and was attached to 

the roof slab with post-tensioning rods. The structure was designed so that the webs of the T-walls 

would develop a shear-dominated failure mode. The vertical and horizontal reinforcement placed 

in the web of the T-walls consisted of #4 vertical bars spaced at 8 in. on center and #3 horizontal 

bars spaced at 16 in. on center. The wall flanges and the out-of-plane walls were reinforced with 

#4 vertical bars spaced at 16 in. on center and #3 horizontal bars spaced at 16 in. as well. The 

structure was tested with a sequence of 7 ground motions using records obtained from the 1994 

Northridge Earthquake. Motions 1 to 6 were scaled versions of the record from the Mulholland 

station during the 1940 Northridge Earthquake and were applied at 45%, 90%, 120%, 90%, 133%, 

and 160% of the original intensity, respectively. In Motion 7, the Rinaldi record was applied with 

the acceleration history scaled by 130%. 

The initial period of the structure was estimate to be 0.090 s by the white-noise excitation 

applied before Motion 1. By the end of Motion 5, the fundamental period of the structure increased 

by 37%.  Nonetheless, visible damage first occurred during Motion 6 (160% Mulholland). Figure 

3.25 shows the damage developed during Motion 6 and Motion 7. During Motion 6, diagonal shear 

cracks and horizontal flexural cracks developed in the webs of W1 and W2, and masonry spalling 

occurred in the toe of the web of W1. Furthermore, vertical cracks appeared along the web-flange 

interface. During Motion 7, the final motion, the structure reached a peak drift ratio of 13.3% and 

sustained severe but without collapsing. As shown in Figure 3.25, wide diagonal cracks opened 

along the wall webs and extended along the web-flange interface. Severe crushing occurred in the 

wall webs but also in the wall flanges and even at the top of the out-of-plane walls. All the 
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horizontal bars placed in the wall webs ruptured with the exception of the bar placed in the topmost 

course below the roof slab. In some of the bars, rupture occurred at two locations along their length. 

Rupture also occurred in the extreme vertical bar at the web of W2 at the height of the wall-

foundation interface. The locations of rupture are marked in Figure 3.25 as well. 

Figure 3.33 shows the FE model developed for the test structure. The T-walls are 

discretized with the proposed modeling scheme placing cohesive-crack interface elements in the 

horizontal and vertical direction as well as at 45-degree and 135-degree angles. In the out-of-plane 

rectangular walls, the cohesive-crack interfaces are placed only in the horizontal direction since 

no diagonal or vertical cracks are expected to form in these walls. The vertical bars, including the 

dowel bars placed between the roof slab and the walls, are modeled with beam elements which are 

connected to the adjacent masonry shell elements with bond-slip/dowel-action elements based on 

the proposed methodology. The horizontal reinforcement of the out-of-plane walls is modeled as 

smeared reinforcement. The roof slab is modeled with elastic shell elements whose nodes are 

placed along the mid-thickness of the slab. Elastic shell elements are also used to model the RC 

blocks. Rigid beam elements are used to model the vertical offset between the height of the center 

of mass of the roof slab and the center of mass of the RC blocks. This approach assumes that full 

composite action can develop between the blocks and roof slab. The modulus of elasticity assigned 

to the shell elements of the roof and blocks is 2,500 ksi. Table 3.6 shows the calibration of the 

material properties used in the analyses of the structure for the smeared-crack shell elements, 

cohesive-crack interface elements, reinforcing bar beam elements, and bond-slip/dowel-action 

interface elements. The masonry tensile strength is assumed to be about 8% of the masonry prism 

strength. For the coefficient of friction of cracked masonry, the value of 1.20 is used which has 

been also adopted in all the analyses presented in the previous sections. A coefficient of friction 
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equal to 1.0 is used for the wall-foundation interface since the interface was intentionally 

roughened in the test. The values used for the parameters of the reinforcing steel model have been 

calibrated based on the monotonic tensile stress-strain curves obtained from samples of the bars 

used in the construction of structure. The samples were tested to fracture. The fundamental period 

of the model is determined though eigenvalue analysis and it is equal to 0.082 s. This is slightly 

lower than the initial fundamental period (0.090 s) measured for the test structure.  

The model is subjected to the measured histories of Motions 5, 6, and 7 in a single run. 

Since no discernible damage occurred prior to Motion 6 in the test, motions 1 to 4 are omitted from 

the analysis. Figure 3.34 compares the numerical to experimental results in terms of the 

displacement time history of the roof and the base shear versus roof displacement hysteresis 

curves. In Motions 5 and 6, the model appeared to be stiffer than the test structure. The lower 

stiffness developed in the test can be attributed to the deterioration in the bond between the vertical 

bars and the grout caused during Motions 1 to 5 under consecutive displacement cycles of low 

amplitude. The model is not able to simulate this effect. Figure 3.35 shows the cracks formed in 

the analysis of Motion 6. In Motion 7, the model is able to capture the rapid load degradation that 

occurred during the first displacement excursion in the positive direction. The load drop is 

primarily caused by the rupture of the horizontal bars. Nonetheless, in the following cycles, the 

model overestimated the resistance of the structure likely because it cannot capture the extent of 

crushing observed in the test, as shown in Figure 3.35. Furthermore, the reinforcing bars ruptured 

in more locations in the test than in the analysis. Nonetheless, given the complexity of the damage 

mode obtained in the test, the results of the analyses are deemed satisfactory. 
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3.5 Case Study of a Commercial Building Archetype Subjected to Severe Earthquake 

Loading 

There is a pressing need from the design codes to assess the seismic performance of modern 

RM buildings under severe earthquakes. Buildings designed based on the current seismic design 

criteria (ASCE/SEI 7) are presumed to have a probability of collapse lower than 10% when 

subjected to the maximum considered earthquake (MCE). However, there has been no rational 

analysis to support this assertion. The finite element (FE) modeling scheme developed for the 

analysis of RM structures has been validated with results from shear- and flexure-dominated quasi-

static wall tests as well as with results from the shake-table tests of two full-scale RM wall systems. 

One of the two wall systems examined had been tested up to the verge of collapse experiencing 

severe shear failure including rupture of horizontal reinforcement. In all cases, the models were 

able to capture reasonably well the cyclic load-displacement response and damage pattern 

observed in the tests. Therefore, the proposed modeling scheme can be used as a predictive tool 

for assessing the collapse potential of real-world RM wall structures under strong base excitation 

and provide insight into their seismic behavior. This section demonstrates the use of the proposed 

FE modeling scheme for the analysis of a two-story commercial building archetype subjected to 

severe earthquake loading. 

3.5.1 Building design 

Figure 3.36 shows the configuration of the building archetype considered for this case 

study. The building has two stories and is symmetric along the longitudinal (x-direction) and 

transverse (z-direction) directions. The footprint of the building has dimensions of 96 ft. x 48 ft., 

and the story height is 12 ft. The lateral load resisting system consists of six RM shear walls located 

at the perimeter of the building. The four corner walls have an L-shaped cross section, while the 
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two middle walls are rectangular. The gravity load is partly resisted by the RM shear walls and 

partly by a steel frame.  Figure 3.37 and Figure 3.38 show the framing plans and the design details 

of the walls and steel members. The building was designed by KL&A Inc. (FEMA 2019) according 

to current codes and practice. The building was designed for a high seismic intensity site with a 

design spectrum corresponding to seismic design category (SDC) Dmax, as defined in FEMA P-

695. The walls were designed as special RM shear walls following the provisions of TMS 402 

(2016). In the design, the walls were assumed to behave as cantilevers neglecting any coupling 

introduced by the horizontal diaphragms. Using a response modification factor (R) of 5, as 

permitted by ASCE/SEI 7 for special RM walls, the seismic base shear coefficient (Cs) was 

determined to be equal to 0.20. The steel frame was designed to resist only gravity loads. As shown 

in Figure 3.37, the floor system consists of a composite concrete slab, while the roof system 

consists of a metal deck. In both levels, apart from the main beams spanning between the steel 

columns and walls, beam joists have been placed along the longitudinal direction of the building. 

The beam joists are supported on the lateral main beams and on the corner walls. 

The RM walls were designed with 8-inch-thick concrete masonry walls. The compressive 

strength of masonry was specified to be 2,000 psi. The horizontal and vertical reinforcement of 

the walls consists of Grade 60 #5 bars, as shown in Figure 3.38. The vertical loads assumed in the 

design are as follows: the dead and live loads for the floor are 80 psf and 50 psf, respectively, while 

those for the roof are 20 psf and 30 psf, respectively. The weight of the cladding placed along the 

perimeter of the building between the masonry walls is assumed to be 20 lbs per square foot. 

3.5.2 Development of the finite element model 

Figure 3.39 shows the FE model developed for the building archetype. Damage was 

expected to primarily localize in the bottom story. Therefore, only the bottom-story walls are 
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modeled with the detailed scheme described in Section 2.3. The upper-story walls are modeled in 

a less refined fashion, for the sake of computational efficiency, with smeared-crack shell elements 

and smeared reinforcement described by a bilinear material law. This is deemed sufficient to 

capture the mild damage expected to develop in the upper story. The triangular shell elements used 

in the walls have 6-inch long perpendicular sides and four layers through the thickness. The steel 

columns and beams in the gravity system are modeled with fiber-section beam-column elements 

that have the Hughes-Liu formulation (LSTC 2019) and are assigned a bilinear material law. Each 

column is discretized with eight elements per story. The columns are assumed to be hinge-

connected to the base plate. According to the design details, the beams are connected to the 

orthogonal supporting beams and columns through clip angles, which do not provide much 

moment or axial force restraints at the ends of the connected beams, and thereby will not allow the 

development of a strong composite action between the beams and the floor slab at these locations. 

To account for this, the beams under the floor slab of the archetype are connected to the supporting 

beams and the columns with stiff zero-length springs that do not transmit moments or axial forces 

but provide strong translational restraints in the vertical and lateral directions. Beams are 

connected to the walls in the same way. The beams for the roof decks have regular hinge 

connections except for the beam joists which are connected to the supporting beams without the 

axial restraint. 

The floor and roof diaphragms are modeled with nonlinear shell and beam elements. The 

modeling approach pursued intends to provide a good approximation of the stiffness of the 

diaphragms, and to capture the strengths and failure behaviors. According to the design, the floor 

diaphragm has a concrete slab cast on a corrugated steel pan with 2.0-in.-high ribs running along 

the transverse direction (z-direction) of the building (see Figure 3.36 for the coordinate system). 
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The distance of the top surface of the concrete slab to the top of the ribs is 3.0 in., and the slab 

contains temperature and shrinkage steel running perpendicular to the ribs with an amount meeting 

the minimum requirement of ACI 318. To simplify modeling, the ribs are not explicitly 

represented. The slab is assumed to have a uniform thickness of 4 in. including the concrete topping 

and a 0.0474-in.-thick bottom layer representing the steel pan. The steel layer is set to act only 

along the direction of the ribs. The concrete layer of the shell elements is modeled with the material 

law described in Section 2.4.2. The temperature and shrinkage steel is accounted for as smeared 

reinforcement. The centroids of the steel beams and shell elements are offset vertically to model 

the bending stiffness and capacity of the composite section correctly. 

The roof diaphragm is a light corrugated steel deck with 1.5-in.-high ribs spanning along 

the transverse direction (z-direction) of the building. The deck panels are stitched together with 

fasteners and supported on the steel joists and the main beams. Experimental studies by Tremblay 

et al. (2004) have shown that the in-plane shear stiffness and strength of metal decks greatly depend 

on the stiffness and strength of the panel-to-panel side-lap connections and deck-to-frame 

connections. For this building, the deck-to-frame connections consist of puddle welds placed at a 

36/7 pattern (Luttrell 1995), while the side-lap connections consist of #10 screws spaced at 12 in. 

on center along the side laps. For the corrugated panels, beam elements with a fiber-section 

discretization are used to simulate the bending stiffness of the ribs, and shell elements are used to 

provide the in-plane resistance. Each beam has an I-shaped cross section that represents the 

bending stiffness of the ribs over a 36-in.-wide panel. To ensure that no additional in-plane shear 

resistance can be introduced by the bending of the beams, the moments at the ends of each beam 

element about the axis perpendicular to the deck are released. The nonlinear in-plane shear 

response of the shell elements is calibrated to represent both the behavior of the panel and that of 
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the connectors. Figure 3.40d shows the arrangement of the beam and shell elements in the 

discretization of the deck. The deck shell elements are assigned a two-dimensional elasto-plastic 

constitutive law adopted from the material library of LS-DYNA. The constitutive law has an 

effective stress - versus - effective plastic strain hardening/softening relation. Hardening is linear 

in the pre-peak regime and is followed by linear softening in the post-peak regime until a constant 

residual strength is reached. The initial stiffness and strength of the shell elements under simple 

shear were determined from the guidelines of the Steel Deck Institute (SDI) Design Manual 

(Luttrell 1995). The deck has been assumed to remain elastic up to 40% of the peak strength.  

The effective strain at peak strength and the residual strength of the constitutive law were 

calibrated with the test data of Essa et al. (2003) on a roof deck diaphragm with fasteners similar 

to those used for the building archetype. Figure 3.40 shows the deck specimen tested by Essa et 

al. (2003) and the experimental cyclic and monotonic response under shear. The test specimen was 

simulated by using shell elements with dimensions 36 in. x 30 in, which is similar to the size of 

those used in the roof diaphragm of the FE model of the archetype. Based on the experimental 

results, the parameters of the constitutive law have been determined so that the peak shear strength 

occurs at a shear angle of 0.008 rad and that the residual strength is 20% of the peak strength and 

is reached at a shear angle of 0.20 rad. Figure 3.40c also shows the response of the model under 

monotonic and cyclic shear for the same deck configuration as in Essa et al. but with the properties 

of the deck panels and fasteners used in the archetype building. The diaphragm of the archetype is 

stronger than the test specimen because it has a thicker steel panel, namely 0.0474 in. versus 0.0295 

in., and has panel-to-frame welds located in every flute (36/7 pattern) rather than in every other 

flute. This is accounted for in the model. The side-lap connections consist of screws spaced at 12 
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in. in both the archetype and the test of Essa et al. Furthermore, the width of the deck panels and 

the rib-height are the same in both the archetype and the test of Essa et al. 

In the FE model of the building, the shell elements representing the roof and floor 

diaphragms are directly connected to the shell elements of the walls. Owing to the large variation 

in the type and detailing of the connectors in practice, the flexibility and failure of the diaphragm-

to-wall connections are not considered in the model. Further details about the modeling of the 

diaphragms in this building archetype can be found in FEMA (2019). 

3.5.3 Time-history analyses 

Time-history analyses have been performed using three sets of ground motion records 

selected from the far-field records of the FEMA P-695 data base. Each record has two components 

of horizontal acceleration. Figure 3.41 shows the ground acceleration time histories and 

acceleration response spectra for these records, as well as the MCE spectrum for SDC Dmax. 

Records 1 and 2 were obtained from the 1994 Northridge Earthquake, while Record 3 was obtained 

from the 1987 Superstition Hills Earthquake. The three records have distinct characteristics in 

terms of the spectral shapes and durations of strong motion. Analyses have been conducted with 

the records scaled to the MCE and 2xMCE. Table 3.7 shows the scaling factors applied to each 

record for the two intensity levels. The records were scaled by matching the spectral acceleration 

of the record at the code-based period to that of the MCE or 2xMCE. Among the two components, 

the scaling was based to the one with the highest spectral acceleration at the code-based period. 

Based on FEMA P-695, the code-based period of the archetype building is 0.25 s.  

The gravity and seismic mass used in the analyses are based on the following load 

combination: 1.05D + 0.25L (with D and L being the dead and live loads, respectively), according 

to the FEMA P-695 procedure. This results in a total building weight of 872 kips (excluding the 
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foundation). In the model, the mass is distributed among the nodes according to the density of the 

elements. As in the analyses of the shake-table structures, the time-history analyses of the 

archetype are performed using the time-integration scheme proposed by Bathe (2007). 

Furthermore, Rayleigh damping is prescribed with a damping ratio of 0.1% in the first and fifth 

significant modes. Its stiffness proportional part is based on the initial stiffness of the shell and 

beam elements. No stiffness proportional damping is applied to the cohesive-crack and bond-

slip/dowel-action interface elements.  

Table 3.8 shows the values of the material properties assigned to the masonry smeared-

crack shell elements, reinforcement beam elements, and cohesive-crack and bond-slip/dowel-

action interface elements. Expected values have been assumed for the masonry prism strength, 

masonry grouted strength, and for the reinforcement yield and tensile strengths. For the rest of the 

parameters, consistency is maintained with the values used in the validation analyses presented in 

the previous sections.  

The RM walls of the archetype were designed as cantilever walls following the code 

provisions for special RM shear walls. Therefore, they were expected to behave in a flexure-

dominated manner developing crushing at the base due to flexure. To account for the extent of 

crushing above the base, the approach presented in Section 3.2.4 is used. As described in Section 

3.2.4, the approach is based on an a priori assumption of the height cH  of the crushed region and 

aims to represent the unsupported length of the bars due to crushing. As described in Section 3.2.4, 

the bond and dowel resistance of the bond-slip/dowel-action interface elements that lie within the 

assumed crushed region are reduced as a function of the compressive strain registered at the wall 

top or bottom. The bond-slip/dowel-action interface element within the height cH  will get 



114 
 

removed when the shell element at the base gets removed due to crushing. The height cH  of the 

crushed region is specified to be equal to 20% of the distance between the inflection point of the 

wall and the wall end. For the archetype building, a trial analysis with the MCE-level motions was 

conducted to identify the location of the inflection point of the first-story walls. It was found that 

the inflection point of the corner walls is located at a distance of 80%-90% of the story height 

above the base, while the inflection point of the middle walls is located at the mid-height of the 

first story. Therefore, at the base of the corner and middle walls, cH  is assumed to be equal to 24 

in. and 14 in., respectively. At the top of the first-story walls, cH  should be equal to 4 in. and 14 

in. for the corners and middle walls, respectively. However, to simplify the present analyses, the 

approach of Section 3.2.4 has been employed only for the bottom of the walls, while cH  at the top 

of the walls is assumed to be equal to the height of the shell elements, namely 6 in.  

Figure 3.42  through Figure 3.45 show the response of the building model under Records 

1 and 2. The results are presented in terms of the time-history response of the first-story drift ratio 

and the hysteresis loops of the base shear versus the first-story drift ratio developed in the x and z 

directions. The base shear shown is normalized by the building weight of 872 kips. The base shear 

does not include the inertia of the footings. Record 3 was the least demanding out of the three. 

When scaled at the MCE and 2xMCE levels, the structure reaches a peak first-story drift of 1.6% 

and 6.3%, respectively. In the analyses with the three records, the structure develops a peak base 

shear that is about 3 times the design base shear (on average), which corresponds to a seismic base 

shear coefficient of 0.20. The higher capacity is partly due to the influence of the floor diaphragm 

which restrains the top of the bottom-story walls from rotating, and thereby, reduces the effective 

shear span ratio of the walls. Figure 3.46 shows the damage obtained during Record 1 when scaled 

to the MCE and 2xMCE levels, and the damage obtained during Record 2 when scaled to 2xMCE. 



115 
 

Failure concentrated in the bottom story walls with severe crushing occurring at the base of the 

walls. The crushing was due to flexure in the middle walls, and due to combined flexure and shear 

in the corner walls. Diagonal shear cracks occurs in both sides of the flanged walls, however, their 

opening is controlled by the horizontal reinforcement. Several of the vertical bars buckle and 

rupture near the base. Rupture of horizontal bars occurs only during the motion with Record 1 

scaled at the MCE level. In this motion, two horizontal bars along the z-direction of the corner wall 

rupture as shown in Figure 3.46a. The results also show that Record 1 was the most demanding 

and caused the building to collapse when applied with the intensity of 2xMCE. Nonetheless, the 

first-story drift ratio exceeds 10% when approaching collapse. During the analyses, the damage in 

the second story primarily occurs in the form of flexural cracks right above the floor slab, causing 

the smeared reinforcement to yield.  

Part of this chapter contains the material that will appear in Chapter 4 of the technical report 

titled “Developing Solutions to the Short-Period Building Performance Paradox: Study for 

Reinforced Masonry Buildings” that will be submitted to the Federal Emergency Management 

Agency by the Applied Technology Council for the project number ATC-116. The authors of 

Chapter 4 in the report are the author of this dissertation, Jianyu Cheng, and P. Benson Shing. The 

report chapter was prepared under the supervision of Dr. Charles A. Kircher, who was the technical 

director of the ATC-116 project. The author of this dissertation was the primary investigator and 

author of all the materials covered in this chapter of the dissertation. 
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Table 3.1 Design details of quasi-static wall tests. 

Wall 
ID 

Tested 
by 

Lw  
(in) 

Hw  
(in) 

HL 
(in) 

tw  
(in) 

Reinforcement 
Lap 

splices 

Applied 
axial 
load 

(kips) 

End  
condi-
tions 

Failure 
mode 

Vert. Hor. 

A2 Voon  
(2007) 70.9 70.9 70.9 5.512 D20 @ 

15.7 in. 1 x R6 No splices 0.0 Canti-
lever Shear 

Spec. 
5 

Shing  
et al.  

(1991) 
72.0 72.0 72.0 5.625 #7 @ 

16 in. 
#3 @  
16 in. No splices 40.5 Canti-

lever Shear 

UT-
PBS-

02 

Ahmadi  
(2012) 72.0 72.0 72.0 7.625 #6 @  

16 in. 
#4 @  
16 in. 

24 in. 
(mid-

height) 
103.0 Fixed- 

ends Shear 

C2 Kapoi  
(2012) 40.0 72.0 80.0 7.625 #4 @  

8 in. 
#4 @  
8 in. 

16 in.  
(base) 48.0 Canti-

lever Flexure 

1A Sherman  
(2011) 40.0 72.0 79.3 7.625 #6 @  

8 in. 
#4 @  
8 in. No splices 48.0 Canti-

lever Flexure 

1B Sherman  
(2011) 40.0 72.0 79.3 7.625 #6 @  

8 in. 
#4 @  
8 in. 

33 in.  
(base) 48.0 Canti-

lever Flexure 

UT-
W-13 

Ahmadi 
 (2012) 48.0 136.0 144.0 7.625 #6 @  

8 in. 
#4 @  
16 in. 

33 in. 
(base/top) 45.75 Canti-

lever Flexure 

F2 
He and  

Priestley  
(1992) 

45.625 
(web) 
104.0 

(flange) 

136.0 144.0 5.625 #4 @  
16 in. 

#4 @  
8 in. 

(web) 
#4 @ 
 8 in. 

(flange) 

20 in. 
(mid-

height) 
81.0 Canti-

lever Flexure 

Lw, Hw, and tw represent the length, height, and thickness of a masonry wall. 
HL is the height at which the lateral load was applied. 
In wall F2, the length of the web includes the thickness of the flange. 
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Table 3.2 Material properties of wall specimens. 

Material 
property 

Wall ID 

A2 Spec. 5 UT-PBS-02 C2 1A 1B UT-W-13 F2 

Masonry prism  
compressive  
strength, f'm 

(ksi) 

2.55 2.64 3.11 3.04 2.77 3.04 4.45 2.60 

Grout prism 
 compressive  
strength, f'g 

(ksi) 

n.a. 3.02 5.97 5.53 6.49 5.53 4.67 5.64 

Reinf. size 
[vert. / hor.] 

D20 / 
R6 #7 / #3 #6 / #4 #4 / #4 #6 / #4 #6 / #4 #6 / #4 #4 / #4 

Reinf. yield 
 strength, fy 

(ksi) 
[vert. / hor.] 

46.1 / 
47.1 72 / 57 63.2 / 62.4 65.3 65.4 / 

66.2 
64.7 / 
65.3 61.1 / 65.0 75.9 

Reinf. tensile 
 strength, fu 

(ksi) 
[vert. / hor.] 

66.2 / 
n.a. 105 / 82 102.7 / 

100.5 n.a. n.a. n.a. 101.9 / 
102.3 117.2 

Reinf. strain at 
ultimate  

strength, εu 
[vert. / hor.]  

0.20 / 
n.a. 

0.15 / 
0.15 n.a. n.a. n.a. n.a. n.a. 0.10 

Reinf. strain at 
beginning of 

strain 
hardening, εsh  

0.02 / 
n.a. 

0.013 / 
0.02 n.a. n.a. n.a. n.a. n.a. 0.006 

Reinf. strain 
and stress at a 
point (εsh1, σsh1) 

within the 
hardening 

region [vert. / 
hor.] 

 

(0.03, 
49.2) / 

n.a. 

(0.04, 
89.0) / 
(0.05, 
72.0) 

n.a. n.a. n.a. n.a. n.a. (0.03, 
93.4) 
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Table 3.3 Material parameters of smeared-crack shell elements and cohesive-crack interfaces 
used in the analyses of wall segments. 

Material 
parameters 

Wall ID 

A2 Spec. 5 UT-
PBS-02 C2 1A 1B UT-W-

13 F2 

         
 Smeared-crack shell elements 

fm (ksi) 2.55 2.64 3.11 3.04 2.77 3.04 4.45 2.60 
fo (ksi) 1.70 1.76 2.07 2.03 1.85 2.03 2.97 1.73 

Em (ksi) 1530 1584 1866 1824 1662 1824 2670 1560 
ft (ksi) 0.20 0.33 0.35 0.30 0.27 0.30 0.44 0.30 

ε0 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 
εu 0.040 0.040 0.040 0.040 0.040 0.040 0.030 0.040 
         
 Cohesive-crack interface elements 

Dnn / Dtt 

(ksi/in) 5000 5000 5000 5000 5000 5000 5000 5000 

so (ksi) 0.20 0.30 0.35 0.30 0.27 0.30 0.44 0.30 

μο / μr 1.2 / 
1.0 1.2 / 1.0 1.2 / 1.0 1.2 / 1.0 1.2 / 1.0 1.2 / 1.0 1.2 / 1.0 1.2 / 1.0 

ro / rr (ksi) 0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

Gf,I (kips/in) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
Gf,II (kips/in) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

ζdil,o / ζdil,r 0.40 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

do (in) 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 
         

 Cohesive-crack interface elements at base 
Dnn / Dtt 

(ksi/in) 5000 5000 5000 5000 5000 5000 5000 5000 

so (ksi) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

μο / μr 1.0 / 
1.0 1.0 / 1.0 0.7 / 0.7 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0 0.7 / 0.7 0.7 / 0.7 

ro / rr (ksi) 0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

0.05 / 
0.01 

Gf,I (kips/in) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
Gf,II (kips/in) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

ζdil,o / ζdil,r 0.40 / 
0.001 

0.40 / 
0.001 

0.10 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

0.40 / 
0.001 

0.10 / 
0.001 

0.10 / 
0.001 

do (in) 0.40 0.40 0.05 0.40 0.40 0.40 0.05 0.05 
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Table 3.4 Material parameters of reinforcement beam and bond-slip/dowel-action interface 
elements used in the analyses of wall segments. 

 

 

Material 
parameters 

Wall ID 

A2 Spec. 5 UT-
PBS-02 C2 1A 1B UT-W-

13 F2 

         
 Reinforcement beam elements 

Size  
[vert. / hor.] D20 / R6 #7 / #3 #6 / #4 #4 / #4 #6 / #4 #6 / #4 #6 / #4 #4 / #4 

fy (ksi) 46.1 / 
47.1 

72.0 / 
57.0 

63.2 / 
62.4 66.0 65.4 / 

66.2 
64.7 / 
65.3 

61.1 / 
65.0 75.9 

fu (ksi) 66.2 105 / 82 102.7 / 
100.5 105.0 105 105.0 101.9 / 

102.3 117.2 

Es (ksi) 29000 29000 29000 29000 29000 29000 29000 29000 

εsh  0.02 0.013 / 
0.02 0.01 0.01 0.01 0.01 0.01 0.006 

(εsh1 , fsh1) (0.03, 
49.2) 

(0.04, 
89) / 
(0.05, 

72) 

(0.03, 
84)  

(0.03, 
84) 

(0.03, 
84) 

(0.03, 
84) 

(0.03, 
84) 

(0.03, 
93.4) 

εsu 0.20 0.15 0.12 0.12 0.12 0.12 0.12 0.10 

Dcr 0.76 0.63 / 
0.60 0.55 0.55 0.55 0.55 0.55 0.55 

         
 Bond-slip/Dowel-action interface elements 

Masonry  
strength used 

for bond 
strength  

(ksi) 

2.55 2.64 3.11 3.04 2.77 3.04 4.45 2.60 

Confinement 
conditions 

[vert. / hor.] 

Unconf. /  
Confined 

Unconf. /  
Confined 

Unconf. /  
Confined Conf. Unconf. /  

Confined 
Unconf. /  
Confined 

Unconf. /  
Confined Confined 

Grout  
strength used 

for dowel 
strength (ksi) 

2.55 3.02 5.97 5.53 6.49 5.53 4.67 5.64 

Dowel model 
d1 / du (in) 

0.03 / 
0.06 

0.03 / 
0.06 

0.03 / 
0.06 

0.03 / 
0.06 

0.03 / 
0.06 

0.03 / 
0.06 

0.03 / 
0.06 0.03 / 0.06 
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Table 3.5 Material parameters used in the analysis of the two-story shake-table test. 

Smeared-crack shell elements  Reinforcement beam elements 
fm (ksi) 2.50  Size  #4 
fo  (ksi) 1.67  fy (ksi) 63.2 

Em  (ksi) 1500  fu (ksi) 102.7 
ft (ksi) 0.35  Es (ksi) 29000 

εo 0.003  εsh 0.01 
εu 0.040  (εsh1 , fsh1) (0.02, 80.0) 
  

 εsu 0.15 
Cohesive-crack interface elements  Dcr 0.7 

Dnn / Dtt (ksi/in) 5000  
  

so (ksi) 0.35  Bond-slip/Dowel-action interface elements 
μο / μr 1.2 / 1.0  Masonry strength  

used for bond  
strength (ksi) 

2.5 ro / rr (ksi) 0.05 / 0.01  
Gf,I  (kips/in) 0.0002  
Gf,II (kips/in) 0.002  Confinement  

conditions Confined 
ζdil,o / ζdil,r 0.40 / 0.001  

do (in) 0.40  Grout strength  
used for dowel 
strength (ksi) 

3.5 
  

 
Cohesive-crack interface elements at 

base  
Dnn / Dtt (ksi/in) 5000  Dowel model 

d1 / du (in) 0.03 / 0.06 
so (ksi) 0.20  
μο / μr 0.7 / 0.7    

ro / rr (ksi) 0.05 / 0.01    
Gf,I (kips/in) 0.0001    
Gf,II (kips/in) 0.001    

ζdil,o / ζdil,r 0.10 / 0.001    
do (in) 0.05    
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Table 3.6 Material parameters used in the analysis of the one-story shake-table test. 

Smeared-crack shell elements  Reinforcement beam elements [vert./hor.] 
fm (ksi) 3.0  Size  #4 / #3 
fo  (ksi) 2.0  fy (ksi) 68.0 / 75.0 

Em  (ksi) 1800  fu (ksi) 99.0 / 106.0 
ft (ksi) 0.25  Es (ksi) 29000 

εo 0.003  εsh 0.010 / 0.006 

εu 0.040 
 

(εsh1 , fsh1) (0.03, 85.0) / (0.025 
93.0) 

  
 εsu 0.12 / 0.11 

Cohesive-crack interface elements  Dcr 0.79 / 0.60 
Dnn / Dtt (ksi/in) 5000  

  

so (ksi) 0.25  Bond-slip/Dowel-action interface elements 
μο / μr 1.2 / 1.0  Masonry strength  

used for bond  
strength (ksi) 

3.0 ro / rr (ksi) 0.05 / 0.01  
Gf,I  (kips/in) 0.0002  
Gf,II (kips/in) 0.002  Confinement  

conditions Confined 
ζdil,o / ζdil,r 0.40 / 0.001  

do (in) 0.40  Grout strength  
used for dowel 
strength (ksi) 

4.5 
  

 
Cohesive-crack interface elements at 

base  
Dnn / Dtt (ksi/in) 5000  Dowel model 

d1 / du (in) 0.03 / 0.06 
so (ksi) 0.10  
μο / μr 1.0 / 1.0    

ro / rr (ksi) 0.05 / 0.01    
Gf,I (kips/in) 0.0001    
Gf,II (kips/in) 0.001    

ζdil,o / ζdil,r 0.40 / 0.001    
do (in) 0.40    
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Table 3.7 Scaling of the three records used for the time-history analyses of the commercial 
building archetype. 

Intensity 
Acceleration scaling factors 

Record 1 Record 2 Record 3 

MCE 1.25 1.33 1.80 

2xMCE 2.50 2.66 3.60 

 

Table 3.8 Material parameters used in the analysis of the commercial archetype. 

Smeared-crack shell elements  Reinforcement beam elements  
fm (ksi) 2.50  Size  #5 
fo  (ksi) 1.67  fy (ksi) 68.0 

Em  (ksi) 1500  fu (ksi) 102.0 
ft (ksi) 0.25  Es (ksi) 29000 

εo 0.003  εsh 0.010 / 0.03 
εu 0.047  (εsh1 , fsh1) (0.03, 85.0)  
  

 εsu 0.11 
Cohesive-crack interface elements  Dcr 0.55 

Dnn / Dtt (ksi/in) 5000  
  

so (ksi) 0.25  Bond-slip/Dowel-action interface elements 
μο / μr 1.2 / 1.0  Masonry strength  

used for bond  
strength (ksi) 

2.50 ro / rr (ksi) 0.05 / 0.01  
Gf,I  (kips/in) 0.0002  
Gf,II (kips/in) 0.002  Confinement  

conditions Confined 
ζdil,o / ζdil,r 0.40 / 0.001  

do (in) 0.40  Grout strength  
used for dowel 
strength (ksi) 

3.50 
  

 
Cohesive-crack interface elements at 

base  
Dnn / Dtt (ksi/in) 5000  Dowel model 

d1 / du (in) 0.03 / 0.06 
so (ksi) 0.10  
μο / μr 1.0 / 1.0    

ro / rr (ksi) 0.05 / 0.01    
Gf,I (kips/in) 0.0001    
Gf,II (kips/in) 0.001    

ζdil,o / ζdil,r 0.40 / 0.001    
do (in) 0.40    
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Figure 3.1 Proposed discretization for RM wall segments. (a) Mesh of a wall; (b) schematic of 

element connectivity within a wall. 

 

 
Figure 3.2 Proposed discretization scheme at the edge of a RM wall. (a) Schematic for a planar 

wall; (b) mesh for a flanged wall. 
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Figure 3.3 Test setup and reinforcement details of wall specimen A2 (Voon 2007). 

 
Figure 3.4 Test setup and reinforcement details of wall specimen Spec. 5 (Shing et al. 1991). 

 
Figure 3.5 Test setup and reinforcement details of wall specimen UT-PBS-02 (Ahmadi 2012). 



125 
 

 
Figure 3.6 Test setup and typical reinforcement layout for wall specimens C2, 1A, and 1B 

(Kapoi 2012). 

 

 
Figure 3.7 Test setup and reinforcement details of wall specimen UT-W-13 (Ahmadi 2012). 
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Figure 3.8 Test setup and reinforcement details of wall specimen F2 (He and Priestley 1992). 
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Figure 3.9 FE discretization of shear-dominated wall specimens. 
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Figure 3.10 Comparison of damage obtained in the tests and analyses of shear-dominated walls. 
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Figure 3.11 Comparison of experimental and numerical results for the shear-dominated wall 

specimens.  
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Figure 3.12 FE discretization of flexure-dominated wall segments. 



131 
 

 
Figure 3.13 Comparison of numerical and experimental results for wall C2. 
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Figure 3.14 Comparison of numerical and experimental results for wall 1A. 
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Figure 3.15 Comparison of numerical and experimental results for wall 1B. 
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Figure 3.16 Comparison of numerical and experimental results for wall UT-W-13. 
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Figure 3.17 Comparison of numerical and experimental results for wall F2. 
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Figure 3.18 Analysis of wall C2 using the modified element removal scheme. 

 

 

 
Figure 3.19 Analysis of wall 1A using the modified element removal scheme. 
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Figure 3.20 Analysis of wall 1B using the modified element removal scheme. 

 

 

 
Figure 3.21 Analysis of wall UT-W-13 using the modified element removal scheme. 
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Figure 3.22 Analysis of wall F2 using the modified element removal scheme.  
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Figure 3.23 Two-story test structure. (a) Test setup; (b) plan view (from Mavros et al. 2016). 

 

 

Figure 3.24 Reinforcement details. (a) In-plane walls; (b) out-of-plane walls (from Mavros et al. 
2016). 
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Figure 3.25 Damage patterns in the three wall piers at the end of the testing sequence (from 

Mavros et al. 2016). 

 

 

 
Figure 3.26 Finite element discretization of the two-story test structure. 
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Figure 3.27 Time-history analysis results of the two-story structure under El Centro 43%, 86%, 

and 108%. 
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Figure 3.28 Time-history analysis results of the two-story structure under El Centro 145%. 

 

 

 
Figure 3.29 Time-history analysis results of the two-story structure and damage in the first story 

under El Centro 160% (deformation is magnified by 2 times). 
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Figure 3.30 Test setup and reinforcing details of the one-story shake-table test structure (from 

Cheng et al. 2019). Dimensions in meters. 

 

 
Figure 3.31 Cracks in the webs of the T-walls after Mulholland 160% (Motion 6). 
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Figure 3.32 Damage in the one-story shake-table test structure after Rinaldi 130%.  
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Figure 3.33 Finite element model of the one-story shake-table test structure. 
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Figure 3.34 Comparison of numerical to experimental results for the one-story shake-table test 

structure. 
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Figure 3.35 Damage obtained in the analysis of the one-story shake-table test structure. 

Locations of reinforcement rupture are marked with yellow circles. 
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Figure 3.36 Configuration of the two-story commercial building archetype (courtesy of Dr. G. 

Kingsley). 

 

 
Figure 3.37 Foundation plan, floor framing plan, and roof framing plan of the commercial 

building archetype (courtesy of Dr. G. Kingsley).   
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Figure 3.38 Reinforcing details of the RM shear walls of the commercial building archetype 

(courtesy of Dr. G. Kingsley). 

 

 
Figure 3.39 Finite element model of the commercial building archetype. 

 

 



150 
 

 
Figure 3.40 Modeling of the roof diaphragm of the commercial building archetype. 

 
Figure 3.41 Earthquake records used for the time-history analyses of the commercial building 

archetype.  
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Figure 3.42 Response of the commercial building archetype during Record 1 scaled at MCE. 

 

 
Figure 3.43 Response of the commercial building archetype during Record 2 scaled at MCE. 
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Figure 3.44 Response of the commercial building archetype during Record 1 scaled at 2xMCE. 

 

 
Figure 3.45 Response of the commercial building archetype during Record 1 scaled at 2xMCE. 
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Figure 3.46 Damage at the end of the analyses of the commercial building archetype. 
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4 EXTENSION OF MODELING APPROACH TO PARTIALLY GROUTED 

MASONRY 

 

4.1 State of Research on Partially Grouted Masonry 

Most of the reinforced masonry (RM) structures in areas of high seismicity in California 

are fully grouted. Nonetheless, partially grouted masonry (PGM) constitutes the vast majority of 

RM construction outside the West Coast and is widely used for industrial, residential, and school 

buildings. In a partially grouted wall, only the reinforced vertical cells and reinforced horizontal 

courses (bond beams) are grouted. Partially grouted masonry walls may also have reinforcement 

in the form of steel wire (joint reinforcement) embedded in bed joints to serve as shear 

reinforcement or to satisfy the prescriptive requirement of the design code (TMS 402, 2016). 

Although the code does not prohibit the use of PGM in areas of high seismicity, PGM is mainly 

and predominantly used in areas of low to moderate seismicity, where the code permits the use of 

ordinary reinforced masonry walls, which have a larger permitted spacing of the vertical and 

horizontal reinforcement. Ordinary walls are permitted to have reinforcing bars spaced at 4 to 10 

ft, and are permitted to be used for Seismic Design Categories (SDC) A, B, and C, as defined in 

ASCE/SEI 7-16. Such walls are not required to abide by the shear capacity-design provisions of 

TMS 402, and are thus more prone to shear-dominated behavior. 

While a number of studies have been carried out to investigate the seismic performance of 

fully grouted RM structures, far less attention has been devoted to PGM. Understanding and 

predicting the seismic behavior of PGM is challenging due to its inherent heterogeneity and the 

interaction between the grouted and ungrouted parts. To evaluate the safety of such construction 

for a moderate seismic zone in the U.S., Gülkan et al. (1990) and Clough et al. (1990) conducted 
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shake-table tests on light-roof, single-story, PGM houses. They concluded that such construction 

could meet the safety standard of the then current code (1976 UBC). Recent experimental studies 

have shown that the behavior and failure modes of PGM walls strongly depend on the spacing of 

the grouted cells. When the spacing is large (over 4 ft), PGM walls tend to exhibit a behavior 

similar to RC infilled frames (Minaie et al. 2010). The PGM walls tested by Minaie et al. (2010), 

which had vertical grouted cells spaced at 4 ft on center, revealed that the shear-strength equation 

in the then design code (MSJC 2008) could overestimate their shear strength by a factor of 2. To 

address this issue, a strength-reduction factor of 0.75 was introduced in the shear-strength equation 

in the 2013 edition of TMS 402. Nolph and ElGawady (2011) tested quasi-statically shear-

dominated PGM walls to investigate the influence of the spacing of the vertical grouted cells and 

of the amount of horizontal reinforcement on the shear capacity of the walls. They studied walls 

that had only one bond beam, which was located at the mid-height, and vertical grouted cells with 

spacings of 2 ft, 2.7 ft, and 4 ft on center, respectively. The results showed that the revised code 

equation (TMS 2013) could still overestimate the shear strength as the spacing of the vertical 

grouted cells increases and as the amount of horizontal reinforcement increases. However, the 

walls in these tests were only loaded to the point at which the load capacity was reached; the post-

peak response was not examined. Bolhassani et al. (2016a, 2016b) carried out an experimental 

study to investigate the in-plane behavior of PGM walls that had aspect ratios of 0.6 and 1.0, and 

vertical grouted cells spaced at 6 ft on center. They tested walls with single, separately grouted, 

reinforced cells, as commonly done in practice, and walls with double, side-by-side, grouted cells 

and joint reinforcement in addition to bond beams as an improved design alternative. Their results 

showed that the shear capacity predicted by the revised equation in the code (TMS 2013) was up 

to 1.8 times higher than the experimental value. However, the revised equation accurately 
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predicted the capacity of a PGM wall assemblage tested by Johnson and Schultz (2014) that had a 

window opening, wall flanges, and the same spacing of vertical grouted cells as the walls of 

Bolhassani et al. (2016a, 2016b). The influence of different configurations of openings in PGM 

walls was investigated by Voon and Ingham (2008), but those walls were not subjected to an axial 

load and had a much smaller spacing of grouted cells than those studied by Bolhassani et al. 

(2016a, 2016b) and Johnson and Schultz (2014). The walls developed a shear-dominated response 

showing gradual load degradation with severe stair-stepped cracks along mortar joints in the 

ungrouted panels and less severe cracks in the bond beams. Nonetheless, according to the New 

Zealand building code, NZS 4229, the walls were expected to be dominated by flexure. Maleki 

(2008) tested PGM walls that had various aspect ratios and spacings of grouted cells. He reported 

that the shear-strength predictions of both the Canadian Masonry Standard and U.S. code (MSJC 

2008) are acceptable.  

From the past experimental studies, it is evident that the behavior of PGM walls is not well 

understood. One cannot conclude with certainty as to whether existing seismic design provisions 

for PGM structures are adequate and sufficiently safe. Accurate numerical modeling tools can help 

to enhance this understanding and to assess the safety of buildings with PGM shear walls under 

earthquake loads. 

Limited work has been done on the numerical modeling of PGM walls subjected to lateral 

loads. Two approaches have been mainly used to model the inelastic behavior of these walls with 

finite elements. In the first approach, the walls are discretized purely with continuum elements, 

while in the second approach continuum elements are combined with discrete crack interface 

elements to model major cracks in a discrete fashion. Minaie et al. (2014) modeled PGM walls 

that were tested under quasi-static cyclic loading. Three-dimensional continuum elements were 
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used to represent the grouted and ungrouted part in a homogenized manner. The damage-plasticity 

constitutive law for concrete in the finite element program ABAQUS was used. Even though the 

proposed continuum model was able to reproduce the experimental cyclic load-vs.-displacement 

response of the walls, it was not able to represent cracks in a realistic fashion, especially the 

fracture behavior of the mortar joints. As a result, the failure mechanism of the walls could not be 

captured.  

Shing and Cao (NIST 1997) used a finite element modeling scheme that combined 

smeared-crack plane-stress elements with cohesive-crack interface elements to model the fracture 

behavior of masonry units and mortar joints in PGM walls. The models were used to simulate 

PGM walls that were tested quasi-statically under cyclic loading. However, the analyses were 

conducted under monotonic loading only. In the analyses, although the wall models developed a 

realistic load resisting mechanism with the grouted parts acting as a frame and the ungrouted parts 

acting as infills, the models resulted in lateral strengths that were higher than those obtained in the 

tests. As explained in the report, the discrepancy between the numerical and experimental load-

displacement curves was attributed partly to the different load histories and the partly to the 

discrepancy in the bond strength between the wall panels and the concrete loading beams.  

Maleki (2008) used a similar modeling scheme with smeared-crack plane-stress elements 

to model the grouted parts of PGM walls and a combination of smeared-crack elements and 

cohesive-crack interface elements to model the ungrouted masonry units and the mortar joints in 

a discrete manner. The cohesive-crack interface model of Lotfi and Shing (1994) was adopted for 

modeling the behavior of the mortar joints. Although the proposed modeling scheme could 

represent the cracking of mortar joints in a realistic manner, it was restricted only to monotonic 

loading conditions.  
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Bolhassani et al. (2016a, 2016b) improved the modeling approach of Minaie et al. (2014) 

in ABAQUS by introducing cohesive-crack interface elements to simulate the behavior of the 

mortar joints in PGM walls in a discrete manner. They used interface elements whose response 

was described with the Coulomb friction law and a traction-separation law to model the cohesive 

and tensile resistance of the joints. Even though, the models were able to predict the peak lateral 

resistance of planar walls tested quasi-statically, they were only used for monotonic analyses. The 

response of the models under cyclic loading was not investigated. Furthermore, the interface 

elements used for the mortar joints did not account for the reversible joint dilatation caused by the 

wedging effect of the interface asperities and also for the irreversible joint compaction due to the 

loss of the damaged mortar material. Accounting for these phenomena is particularly important in 

simulating the cyclic response of shear-dominated PGM walls since the dilatation or compaction 

of the mortar joints will affect the stresses transmitted from the surrounding grouted masonry. 

Contrary to limited attention devoted to partially grouted masonry, several studies have 

been conducted on the numerical modeling of unreinforced masonry, especially clay masonry. 

Numerous studies have used cohesive-crack interface elements to model the fracture behavior of 

mortar joints in unreinforced masonry panels that were subjected to static or earthquake loading 

conditions (e.g., Lotfi and Shing 1994; Lourenco 1996; Mehrabi and Shing 1997; Giambanco et 

al. 2001; Oliveira and Lourenco 2004; Chaimoon and Attard 2007; Stavridis and Shing 2010; 

Koutromanos and Shing 2012; Aref and Dolatshahi 2013). Other studies have developed methods 

to represent the composite behavior of the masonry units and mortar joints as an equivalent 

homogenized continuum (e.g., Gambarotta and Lagomarsino 1997; Lourenco et al. 1998; Zucchini 

and Lourenco 2002; Milani et al. 2007; Addessi and Sacco 2012). While this approach is more 

computationally efficient, its ability to capture the failure behavior of large masonry systems 
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remains to be validated. More refined modeling methods have been proposed to simulate the three-

dimensional interaction between the mortar and masonry units that can influence the compression 

behavior of a masonry assembly. Such models are known as micro-mechanical models and aim to 

simulate in detail the three-dimensional mechanical behavior of each constituent material of the 

masonry (e.g. Zucchini and Lourenco 2002; Addessi and Sacco 2016). Because of the high 

computational cost of these methods, micromechanical models are mostly used to simulate the 

fracture behavior of small masonry assemblies or to calibrate less refined models. 

Although considerable research has been done in modeling the seismic response of 

unreinforced masonry, most of the previous numerical studies on partially grouted masonry focus 

only on simulating the monotonic response of planar PGM wall segments. The objective of this 

study is to develop a finite element modeling scheme that is able to capture the cyclic load-

displacement response of PGM walls and can simulate the failure mechanism of such walls in a 

realistic manner. The scheme should be sufficiently efficient and robust to be used for the 

assessment of the seismic behavior of three-dimensional PGM building systems that are subjected 

to earthquake excitation. 

4.2 Finite Element Modeling Scheme for Partially Grouted Masonry 

4.2.1 Discretization scheme 

The finite element modeling scheme proposed for fully grouted RM walls is extended for 

the analysis of PGM walls. Figure 4.1 shows the finite element model of a PGM wall using a 

combination of smeared-crack shell elements and cohesive-crack interface elements. The wall 

shown is made of hollow 8 x 8 x 16 in. concrete masonry units placed in a running bond pattern 

and has vertical reinforced grouted cells and horizontal bond beams. The discretization scheme 

used for the grouted cells and the ungrouted panels is shown in Figure 4.2. As for fully grouted 
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walls, the grouted part of PGM walls is modeled with triangular smeared-crack shell elements to 

simulate the compressive behavior of grouted masonry as well as diffuse cracking. For walls made 

with concrete masonry units (CMU) that have a nominal length of 16 in. and a nominal height 8 

in., each triangular element has two perpendicular 4-in. long sides. For the grouted part, cohesive-

crack interface elements are used to simulate dominant cracks in a discrete fashion. They are placed 

at 45- and 135-degree angles to model shear cracks through the grouted part in a realistic manner, 

circumventing the stress locking that could introduced by the smeared-crack shell elements, and 

also in the horizontal and vertical directions to model possible sliding along horizontal and vertical 

cracks. The reinforcing bars are modeled with beams elements that are attached to the adjacent 

triangular shell elements through bond-slip/dowel-action interface elements, as shown in Figure 

4.2a, in the same fashion as for fully grouted walls. Hooks at the ends of horizontal bars are 

assumed to provide strong anchorage and are simulated with bond-slip/dowel-action interface 

elements that have a high bond strength. The material models for the smeared-crack shell elements, 

cohesive-crack interface elements, bond-slip/dowel-action interface elements, and reinforcing 

steel beam elements are described in Chapter 2.  

Each masonry unit in an ungrouted masonry panel is represented by two 8-by-8-in. 

quadrilateral smeared-crack shell elements. A vertical cohesive-crack interface is placed in-

between the two shell elements to simulate possible splitting cracks through the unit. Only the 

thickness of the face shells of the CMU is considered for the ungrouted masonry. The thickness of 

each face shell is assumed to be 1.40 in., which represents the average face-shell thickness of 

typical concrete blocks. Cohesive-crack interface elements are also used to represent the horizontal 

and vertical mortar joints. Each of these interface elements has a void in the middle and two outer 

contact areas each with a width equal to the width of mortar on a face shell. In typical masonry 



161 
 

construction, the mortar joints have a nominal thickness of 3/8 in. In the model, the interface 

elements used for the mortar joints are assigned a zero thickness and the thickness of the mortar 

joints is included in the dimensions (8 x 8 in.) of the shells elements representing the masonry 

units. The actual length, height, and width of a typical 8 x 8 x 16 CMU are 15.625 in., 7.625 in., 

and 7.625 in., respectively.  

To simulate the out-of-plane bending response of a PGM wall, each shell element is 

assigned three material layers through the thickness. For the triangular elements representing 

grouted masonry, the three layers have equal thickness with uniform material properties. A single 

Gauss point is assigned to each layer. For the quadrilateral shell elements representing ungrouted 

masonry units, the two exterior layers represent the face shells of the units, while the interior layer 

represents the void and has a material with zero resistance, as shown in Figure 4.2b. Each layer of 

the quadrilateral elements has four integration points; however, to avoid transverse shear locking, 

the element has only one integration point in each layer to calculate the transverse shear. Similar 

to the shell elements, the cohesive-crack interface elements that represent discrete cracks and 

mortar joints in the ungrouted masonry account for the void of the hollow units, as shown in Figure 

4.2b. The interface element that is already available in LS-DYNA assumes uniform material 

properties along the width and does not allow for the simulation of the void. Therefore, in this 

study, a new interface element is implemented in LS-DYNA to be used for the analyses of PGM 

walls. The formulation of the proposed interface element is described in the following section. 

Details on the formulation of the quadrilateral and triangular shell elements can be found in LSTC 

(2018).  

The ungrouted masonry is connected to the grouted masonry through cohesive-crack 

interface elements, as shown in Figure 4.3. Along these interfaces, the element size is 4 in. for the 
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grouted masonry, while it is 8 in. for the ungrouted masonry. The interface element implemented 

for this study can have unequal lengths on the two sides to accommodate this situation. The 

horizontal interface elements between the grouted and ungrouted parts represent the bed joints and 

are thus assigned the properties of the mortar joints. The properties for the vertical interface 

elements between the grouted and ungrouted parts depend on the construction details of the wall. 

In the construction of PGM walls, it is sometimes common to remove the end web of hollow units 

containing reinforcing bars to allow the placement of the units without the need to be threaded 

through the vertical bars. In this situation, the grout in the cavity is in contact with the adjacent 

ungrouted unit, and the vertical interface elements between the grouted and ungrouted units are 

assumed to have the properties of the face shells of the units, which are perceived to be the plane 

of weakness. Otherwise, the vertical interface elements between the grouted and ungrouted units 

are assigned the properties of the face shells in every other course and the properties of mortar 

joints in the remaining courses for a wall built with the running bond pattern.  

4.2.2 Modeling of joint reinforcement in partially grouted masonry walls 

The case of PGM walls that contain joint reinforcement is also investigated. Figure 4.4a 

shows the placement of joint reinforcement within a mortar bed joint during the construction of a 

PGM wall. The joint reinforcement shown consists of two longitudinal wires, called side wires, 

which are embedded in the mortar joints. The side wires are tied together with perpendicular wires, 

called cross wires, which are welded to the side wires. This type of joint reinforcement is called 

ladder-type joint reinforcement. The configuration of joint reinforcement that has the side wires 

welded in a zigzag pattern is called truss-type configuration. Typical wire diameters used in 

practice are 0.148 in. (9 gauge wire) or 3/16 in. The latter corresponds to half of the thickness of a 

typical bed joint. These wires are typically smooth wires. For modeling the joint reinforcement of 
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a wall in this study, the two side wires are lumped along the mid-thickness of the wall and are 

represented with a single row of beam elements. The beam elements have a cross-sectional area 

that is equivalent to the total area of the two side wires. The length of the beam elements used is 4 

in. As shown in Figure 4.4b, the beam elements of the joint reinforcement are connected to the 

masonry shell elements through bond-slip/dowel-action interface elements. The bond-slip/dowel-

action interface elements are attached to the nodes of masonry shell elements on the lower side of 

the bed joint. The bond and dowel resistances of an element are calculated for a single wire and 

multiplied by a factor of 2 to account for two wires.  At the wall ends, the side wires are assumed 

to terminate with hooks that provide a strong anchorage. To describe the stress-strain response of 

a wire, an elastic-perfectly-plastic law is adopted. Tensile tests conducted on joint reinforcement 

wires have shown very little strain hardening after yielding.   

In lack of experimental data, the bond-slip response of joint reinforcement is described 

based on the recommendation of Eligehausen and Bigaj-van Vliet in CEB/FIP MC90 (1999) for 

smooth cold-drawn wires embedded in concrete. In the absence of ribs on the wires, the bond 

strength is assumed to be provided solely by friction. With the formula proposed by Eligehausen 

and Bigaj-van Vliet, the maximum bond strength is calculated as max 0.038 morfτ =  ( morf  in ksi), 

and it is developed at a slip equal to 0.0004peaks =  in. To calculate the bond strength of joint 

reinforcement, the compressive strength of mortar ( morf ) is used. Figure 4.5a shows the resulting 

monotonic bond-slip response for a 3/16-in. diameter wire embedded in mortar with a compressive 

strength of 3 ksi. Under monotonically increasing slip, the bond strength remains constant once 

reached. To define the bond-slip response, Eq. 2.39 is used, which was originally proposed by 

Murcia-Delso and Shing (2014) to describe the frictional bond resistance as a function of slip of a 

deformed reinforcing bar embedded in concrete. Figure 4.5b shows the bond-slip response under 
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cyclic loading. The reduction in the friction resistance due to cyclic loading is accounted for 

through the reduction factor ,f cρ  given in Eq. 2.44, as proposed by Murcia-Delso and Shing 

(2014). The reduction factor is applied to the bond stress only after a load reversal. Therefore, it 

does not affect the monotonic response curve of the bond-slip law.  Parameter Rs  in Eq. 2.44 is 

assumed to be equal to 0.04 in. Figure 4.5b also shows the influence of parameter Rs  in the bond 

resistance under cyclic loading. 

The dowel-action law used for the joint reinforcement is similar to that used for reinforcing 

bars, as described in Section 2.7.3, and is calibrated based on the dowel model of Dulacska (1972). 

For the calibration, the shearing plane is assumed to be perpendicular to the joint reinforcement. 

Since the dowel resistance of the joint reinforcement is expected to be small, the softening in the 

material law that describes the masonry bearing stress under dowel action is ignored.  

4.2.3 Element removal scheme for partially grouted masonry 

Element removal is triggered by masonry crushing, reinforcement rupture, or excessive 

relative displacement in a cohesive-crack interface element. For grouted masonry, the element 

removal criteria described in Chapter 2 apply. When all the integration points in a shell element 

representing grouted masonry satisfy the condition for compressive failure (i.e. the peak 

compressive strain has exceeded the strain threshold uε ), the shell element, all the adjacent 

cohesive-crack interface elements, and all the connected bond-slip/dowel-action interface 

elements are removed. When all the integration points of a beam element representing the 

reinforcement have registered fracture, the beam element and the adjacent bond-slip/dowel-action 

interface elements are removed. A cohesive-crack interface element is removed when one of the 

integration points registers out-of-plane sliding that is larger than the thickness of the wall for the 
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grouted masonry. Finally, a shell element representing grouted masonry is removed when it is 

attached only on one side to another element.  

Similar criteria are used for the removal of elements in ungrouted masonry. A shell element 

representing ungrouted masonry is removed when all the integration points that lie in one of the 

face shells satisfy the condition for compressive failure. The cohesive-crack and bond-slip/dowel-

action interface elements that are adjacent to the shell element are also removed. A cohesive-crack 

interface is removed when one of the integration points registers out-of-plane sliding that is larger 

than the thickness of the face shell. In addition, an interface element representing a mortar bed 

joint is removed when its lower nodes drop by an average of 2 in. with respect to the top. As for 

grouted masonry, a shell element representing ungrouted masonry is removed when it is attached 

only on one side to another element. Furthermore, for ungrouted masonry, a shell element will be 

removed even if it remains connected to adjacent elements through two of its sides but the interface 

representing the bed joint below has been already removed. 

4.3 A Cohesive-crack Interface Element for the Analysis of Ungrouted Concrete Masonry  

A cohesive-crack interface element has been formulated and implemented in LS-DYNA 

for modeling the response of ungrouted and grouted concrete masonry. To capture the in-plane 

and out-of-plane behavior of ungrouted masonry, the element formulation accounts for the cavity 

between the face shells of a concrete unit. Furthermore, the interface element is formulated to 

allow the connection of sides of shell elements of different lengths. To have displacement 

compatibility with the connected shell elements, the interface element employs linear shape 

functions for the interpolation of the nodal displacements and rotations. 
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4.3.1 Element formulation 

The interface element has a zero thickness and four nodes. As shown in Figure 4.6, nodes 

1 and 2 define the bottom surface and nodes 3 and 4 define the top surface of the interface element.  

The deformation components of the interface consist of the differential sliding and differential 

opening between the top and bottom surfaces. The deformations and the corresponding stress 

components are calculated in terms of the element local coordinate system. The local system of 

the interface is defined by the three orthogonal unit vectors 1v , 2v , and 3v , as shown in Figure 

4.6.  During the analysis, the local system is updated based on the displacements and rotations of 

the four nodes to account for the geometric nonlinearity associated with rigid-body rotations.  

In the undeformed (initial) configuration of the interface element, the top and bottom 

surfaces are coincident. To define the initial local system of the element, unit vector 1v  is specified 

to be normal to the plane of the wall that is modeled, vector 2v  is defined along the direction 

pointing from node 1 to node 2 (or from node 4 to node 3), and vector 3v  is calculated by the cross 

product 1 2×v v . In subsequent steps of the analysis, the local system of the element is calculated 

based on the nodal triads of the four nodes (shown in Figure 4.6a) with a procedure similar to the 

one described in Section 2.7.2 for updating the local system of the bond-slip/dowel-action interface 

element. Each nodal triad consists of three orthogonal unit vectors that is associated to a node and 

rotates with the node during the analysis. In the formulation presented, the unit vectors of a nodal 

triad are denoted by 1Ir , 2Ir , and 3Ir , where I  is the node number (1, 2, 3, or 4) it is associated to. 

In the initial configuration of the element, the triads of the four nodes are defined to be coincident 

with the element local system, with 1Ir  coincident with 1v , 2Ir  coincident with 2v , and 3Ir  

coincident with 3v , as shown in Figure 4.6a. The formulation of the element will be presented for 
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a general situation in which the two sides of the interface have different lengths. For the 

convenience of the following discussion, the side defined by nodes 1 and 2 (bottom side) has the 

smaller length. The element has an isoparametric formulation. Similar to the bond-slip/dowel-

action interface presented in Section 2.7.1, separate natural coordinates are introduced for the 

bottom side and the top side, as proposed by Mavros (2015).   

The formulation of the interface element employs concepts for the formulation of a 

continuum-based beam element described in Belytschko et al. (2013). A similar formulation is 

used for the interface element that is available in LS-DYNA (LSTC 2018). At every node I , a 

nodal fiber is introduced, as shown in Figure 4.6b, which is a line of length t along the direction 

of the width of the associated surface. The length t is a constant for all 4 nodal fibers, representing 

the width of the interface. Each nodal fiber rotates with the node, with its direction defined by the 

unit vector 1Ir . The locations of nodes 1, 2, 3, and 4 in the global coordinate system are defined 

by the position vectors 1x , 2x , 3x , and 4x , respectively. The natural coordinate along the length 

of the nodal fiber is denoted by ξ , and the natural coordinates along the bottom and the top surfaces 

of the interface are denoted byη  and mη , respectively. Coordinate η  corresponds to the short side 

of the element. Coordinate mη  is mapped to η  through the expression mη α β η= + ⋅ , in which 

( )14 23 34L L Lα = −  and  12 34L Lβ = . The lengths 12L , 23L , 14L , and 34L , as defined in Figure 

4.6a, are in terms of the physical coordinate system and are calculated once at the beginning of an 

analysis. The position of a point in the bottom or the top surface of the interface is defined by the 

respective position vector bx  or tx , which is calculated by linear interpolation functions as: 
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 4.1 

The deformation components of the interface consist of the differential displacement sd

between the top and the bottom surfaces along the direction of vector 1v , and the differential 

displacements td  and nd  along the directions of vectors 2v  and 3v , respectively. These 

components are collected in the deformation vector { }T
s t nd d d=d , which can be expressed 

as 1 2 3s t nd d d= + +d v v v . The deformation vector at a point ( ),ξ η  is calculated by the expression: 

 ( ) ( ) ( )( ), , ,T
t bξ η ξ η ξ η= −d Q x x  4.2 

in which, [ ]1 2 3=Q v v v , with 1v , 2v , 3v  being column vectors. Applying the principle of 

virtual work, we have: 

  T T

A

dAδ δ=∫ d σ U F  4.3 

where δd is the vector of virtual deformations, δU  is the vector of virtual nodal displacements 

and  rotations, and F  is the vector of nodal forces and moments. The displacement and force 

vectors are in terms of the global coordinate system and are given by: 

1 1 2 2 3 3 4 4

TT T T T T T T T =  U u θ u θ u θ u θ , and 1 1 2 2 3 3 4 4

TT T T T T T T T =  F f m f m f m f m , 

where Iu , Iθ , If , and Im  are 3x1 vectors of the displacements, rotations, forces, and moments at 
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node I . Vector { }T
s t nσ σ σ=σ is the stress vector that is work conju4.4gate to the deformation 

vector d . The vector of virtual deformations is given by: 

 ( )T
t bδ δ δ= −d Q x x  4.5 

The variation of the local coordinate system is neglected. In other words, it is assumed that 0δ =Q

.  The virtual position vectors are calculated by the expressions: 
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 4.6 

In the expressions above, we have used the conditions that  I Iδ δ=x u  and 

( )1 1 1I I I I I Iδ δ δ× = − × = −θ r r θ S r θ  at each node I, where ( )1IS r  is the skew-symmetric matrix 

given by:  

 ( )
1 1

1 1 1

1 1

0 (3) (2)
(3) 0 (1)
(2) (1) 0

I I

I I I

I I

− 
 = − 
 − 

r r
S r r r

r r
 4.7 
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By substituting Eq. 4.6 into Eq. 4.5, we can relate the vector of virtual deformations to the virtual 

nodal displacement vector with the expression δ δ=d B U . Matrix B  is 3x24 and is given by: 

 

( ) ( )

( ) ( )

11 21

31 41

1 1 1 1  ...
2 2 2 2 2 2

1 1 11      
2 2 2 2 2 2

T T T T

T T T Tm m m

t t

t t

η η η ηξ ξ

η η ηη ξ ξ

− − + += − −

+ − −+ − − 

B Q Q S r Q Q S r

Q Q S r Q Q S r

  4.8 

By substituting the above expression in Eq. 4.3, the element nodal force vector can be expressed 

as: 

  T

A

dA= ∫F B σ  4.9 

The integral in Eq. 4.9 is evaluated with a four-point quadrature rule. A more refined 

quadrature rule can be used if higher resolution is desired in the distribution of contact stresses 

across the interface. The locations of the integration points and the integration domain depend on 

whether or not the interface has a cavity at the center as shown in Figure 4.7. For an interface 

without a cavity, Gauss quadrature is used and the element force vector is obtained by: 

 ( ) ( )
1 1 4

12

11 1

 , ,
2

T T
i i i i

i

L tj d dξ η ξ η ξ η
=− −

⋅
= ⋅ = ⋅∑∫ ∫F B σ B σ  4.10 

where 12 2j L t= ⋅  the Jacobian determinant of the isoparametric formulation. For an interface 

element with a cavity, as shown in Figure 4.7b, the element force vector is obtained by Eq. 4.11.  
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 4.11. 

To calculate the integrals in Eq. 4.11, the change of variable is performed with ( )1 1
f

ts
t

ξ= + −  

and ( )1 1
f

tp
t

ξ= − + , where ft  is the thickness of the face shell in the physical coordinate system. 

Note that the integration in Eqs. 4.10 and 4.11 is performed over the surface with the smaller initial 

length (i.e., the bottom surface). 

4.3.2 Definition of element local coordinate system 

The local coordinate system of the interface element is defined with a procedure similar to 

the one described in Section 2.7.2 for the bond-slip/dowel-action interface element. The local 

coordinate system is initially specified in the undeformed configuration of the element, and it is 

updated during the analysis based on the nodal triads, which are collected in the rotation matrix

[ ]1 2 3I I I I=R r r r  for each node I . At every displacement increment in the analysis, the element 

local system update is performed in two stages, as shown in Figure 4.8. In the first stage, assuming 

that matrices IR  have been already obtained, two new local systems are defined. One system 

corresponds to the bottom surface of the element and the other to the top surface. The system for 
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the bottom surface is described by matrix Z  that collects unit vectors 1z , 2z , and 3z , while the 

system for the top surface is described by matrix T  that collects unit vectors 1t , 2t , and 3t . Matrix 

Z  is calculated as the average of the rotation matrices 1R  and 2R , while matrix T  is the average 

of 3R  and 4R . To compute the average rotation matrices, the procedure described in Crisfield 

(1990) is followed. Matrices Z  and T  are corrected so that the unit vectors 2z  and 2t  are aligned 

with the directions of the bottom side (defined by nodes 1 and 2) and the top side (defined by nodes 

3 and 4), respectively. The correction is performed using Eq. 2.36. In the second stage, matrix Q  

that collects the unit vectors of the element local system is calculated as the average of the rotation 

matrices Z  and T .  

4.3.3 Drilling moments 

To restrain the drilling degrees of freedom of the interface element (nodal rotations about 

the axes defined by unit vectors 1Ir ), a penalty rotational stiffness is introduced at each node so 

that 

 , ,drill I drill drill IM k θ= ⋅  4.12 

in which drillk  is taken as a very small portion (e.g., 1/1000) of the interface material stiffness. 

Rotations ,drill Iθ  are calculated with Eq. 4.13  to obtain only the deformational part of the total 

rotations about each node. Assuming that the drilling rotations are small, we can replace the sine 

of an angle by the angle itself. After the drilling moments are computed, they are transformed to 

the global coordinate system and are added in the element force vector. 
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4.4 Validation of Modeling Scheme with Quasi-static Tests 

The modeling scheme proposed for the analysis of PGM walls is validated with results 

from quasi-static wall tests. Four wall specimens are considered. The reinforcing details of the 

walls and the test setups are presented in Figure 4.9 to Figure 4.12. Walls SR67 and DR67 were 

tested by Bolhassani et al. (2016a). They were 224-in. long and 152-in. tall planar walls with an 

aspect ratio of 0.67. Walls SRU and DRU were tested by Johnson and Schultz (2014) and Schultz 

and Johnson (2019). They had a U-shaped cross section and a window opening within the web, as 

shown in Figure 4.11. The length and height of the specimens were 256 in. and 168 in., 

respectively. The wall flanges extended 40 in. from the web. The four wall specimens were 

subjected to a cyclic lateral displacement history at the top under the cantilever condition. All the 

wall specimens were tested under a constant vertical compressive load that was applied at the top 

of the walls.  

The four walls are classified as ordinary walls according to TMS 402, since they had 

vertical and horizontal grouted cells spaced at a distance larger than 48 in. Walls SR67 and SRU 

represent the current masonry construction practice in that they had single separately grouted cells, 

while walls DR67 and DRU are considered as having improved design details with double side-

by-side vertical grouted cells. In addition, wall DRU had joint reinforcement placed along the bed 

joints as shown in Figure 4.11. The joint reinforcement had a ladder-type configuration with 

longitudinal wires that had a diameter of 3/16 in. and cross wires that had a diameter of 0.148 in. 
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Table 4.1 shows the vertical loads that were applied to the walls and the material strengths as 

obtained from the respective test reports. The vertical load shown for walls SR67 and DR67 

includes the weight of the RC beam placed on the masonry wall and the weight of the two 

additional grouted masonry courses right below the beam (see Figure 4.10). 

Figure 4.13 shows the FE model developed for each wall specimen. Table 4.2 to Table 4.5 

summarize the values of the material parameters used in the analyses of the walls. The parameters 

have been defined in Chapter 2. The values used for the tensile strength ( tf ) of grouted masonry 

are in the range of 9% - 12% of mf ′ . As in the analyses of fully grouted walls (see Chapter 3), the 

modulus of elasticity ( mE ) of grouted masonry is taken to be 600 mf ′  and the compressive stress (

of ) at the end of the linear branch of the stress-strain curve is assumed to be 2/3 of mf ′ . The 

compressive strength for the shell elements representing the ungrouted masonry is taken to be the 

ungrouted masonry prism strength ( ,m ungrf ′ ). The tensile strength of the CMU is assumed to be 0.40 

ksi based on data from the splitting tests conducted by Bolhassani et al. (2016a) on concrete 

masonry units. The initial stiffness of the CMU is set equal to 2000 ksi. The compressive strengths 

of the grouted and ungrouted masonry are determined from the respective prism tests. The interface 

elements simulating fracture of grouted masonry and ungrouted units are assigned a high initial 

stiffness to ensure displacement continuity before cracking and to minimize penetration when the 

interface is under compression. For the interfaces representing mortar joints, the elastic normal 

stiffness ( nnD ) is selected so that the stiffness of the ungrouted masonry prism is equal to about 

,600 m ungrf ′ . The tangential stiffness assigned is calculated from the normal stiffness with the 

assumption of a poisson’s ratio of 0.2. The values of the parameters controlling the tensile strength 

of mortar joints, and the cohesion, friction and dilatation are selected based on the 
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recommendations of Koutromanos and Shing (2012), Drysdale and Hamid (2008), and Mehrabi 

(1994). The same properties are used for both the horizontal and vertical mortar joints. The mortar 

joints that contain joint reinforcement are assigned a reduced net width, which is equal to the full 

net width of the joints (2.5 in.) minus two diameters of the longitudinal wires of the joint 

reinforcement. For wall DRU, the reduced width is 2.13 in. A detailed description about the 

construction of the vertical grouted cells is not provided in the test reports for the four walls. 

Therefore, it is assumed that the grout in the vertical cells is not in contact with the adjacent 

ungrouted CMU. Therefore, the vertical interface elements that connect the grouted cells to the 

ungrouted masonry are assigned the properties of mortar joints and the properties of cracks in 

ungrouted blocks consistent with a running bond pattern. 

Figure 4.14 to Figure 4.17 compare the numerical results to the experimental results in 

terms of the cyclic load-displacement response curves and damage patterns. The models predict 

reasonably well the experimental cyclic load-displacement response of the walls. In the models of 

SR67 and DR67, compressive failure occurs in the form of shear sliding along diagonal interfaces 

in the compression toes. 

Parts of Chapter 4 are a reprint of the material that appears in the manuscript “Koutras A, 

Shing PB. Seismic Behavior of a Partially Grouted Reinforced Masonry Structure: Shake-Table 

Testing and Numerical Analyses” which has been submitted for publication to the Journal of 

Earthquake Engineering and Structural Dynamics in 2019. The author of this dissertation was the 

primary investigator and author of this manuscript. 
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Table 4.1 Material properties and applied vertical loads on the PGM wall specimens. 

Wall  
properties 

Wall ID 

SR67  DR67 SRU DRU 

Estimated total 
roof weight  
and applied  

vertical load (kips) 

18.0 18.0 29.0 29.0 

Grouted masonry 
 prism strength (ksi) 4.0 4.0 2.9 3.7 

Ungrouted masonry 
 prism strength (ksi) 3.0 3.0 2.1 3.0 

Grout strength (ksi) 4.2 4.2 4.2 4.3 

CMU strength (ksi) 2.9 2.9 n.a. n.a. 

Mortar strength (ksi) 1.9 1.9 1.8 1.9 

Reinf. size #6 #4 #4 #3 

Reinf. yield and  
ultimate 

strengths (ksi) 
Grade 60 Grade 60 70 / 98 68 / 104 

Joint reinf. yield 
 and ultimate 
strengths (ksi)  

None None None 73 / 79 
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Table 4.2 Material parameters of the smeared-crack shell elements used in the analyses of PGM 
walls (see Figure 2.8 for the parameter definitions). 

Shells 
elements Wall ID fm (ksi) fo (ksi) Em (ksi) ft (ksi) εο εu 

Net  
width 
(in) 

Grouted 
masonry 

SR67 
4.0 2.7 2400 0.48 

0.003 0.040 7.625 
DR67 
SRU 2.9 1.9 1740 0.32 
DRU 3.7 2.5 2220 0.32 

Ungrouted 
masonry 

SR67 
3.0 2.0 

2000 0.40 0.003 0.015 2.8 
DR67 
SRU 2.1 1.4 
DRU 3.0 2.0 

 

Table 4.3 Material parameters of the cohesive-crack interface elements used in the analyses of 
PGM walls (see Section 2.5.2 for the parameter definitions). 

Interface 
elements 

Wall 
ID 

Dnn / Dtt  
(ksi/in) 

so  
(ksi) μο / μr ro / rr  

(ksi) 
GfI  

(kips/in) 
GfII  

(kips/in) 
ζdil,o / 
ζdil,r 

do  
(in) 

Net  
width 
(in) 

Grouted 
masonry 

SR67 

5000 
0.48 1.4 / 1.0 

0.05 / 
0.01 0.0004 0.004 0.4 / 

0.001 0.4 7.625 
DR67 
SRU 

0.32 1.3 / 1.0 
DRU 

Ungrouted 
units  

SR67 

5000 0.40 1.2 / 1.0 0.05 / 
0.01 0.0004 0.004 0.2 / 

0.001 0.2 2.8 
DR67 
SRU 
DRU 

Mortar 
joints 

SR67 

300 / 
125 

0.10 0.95 / 
0.70 0.02 / 

0.01 0.0002 0.002 0.10 / 
0.001 0.035 2.5*  

DR67 
SRU 

0.07 0.95 / 
0.80 DRU 

Base 
interface 

SR67 

5000 0.10 1.00 / 
1.00 

0.05 / 
0.01 0.0002 0.002 0.4 / 

0.001 0.4 7.625 
DR67 
SRU 
DRU 

* In the model of DRU, the mortar joints that contain joint reinforcement are assumed to have a net width of 2.13 in. 
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Table 4.4 Material parameters of the beam elements representing steel reinforcement in the 
analyses of PGM walls (see Section 2.6 for the parameter definitions). 

Wall ID Size  fy (ksi) fu (ksi) Es (ksi) εsh (εsh1, 
fsh1) εu Dcr 

SR67 #6 67 100 29000 0.01 (0.03, 
84) 0.12 0.55 

DR67 #4 67 100 29000 0.01 (0.03, 
84) 0.12 0.55 

SRU #6 70 98 29000 0.01 (0.03, 
84) 0.12 0.55 

DRU #4 68 104 29000 0.01 (0.03, 
84) 0.12 0.55 

 

Table 4.5 Material parameters of the bond-slip/dowel-action elements used in the analyses of 
PGM walls (see Section 2.7.3 for the parameter definitions). 

Wall ID 

Masonry 
compressive 

strength used for 
bond strength 

(ksi) 

Confinement 
condition 

Grout 
compressive 

strength 
 used for dowel 
 strength (ksi) 

Displacement 
parameters 

for dowel law 
d1 / du (in) 

SR67 4.0 Unconfined 4.2 0.03 / 0.06 
DR67 4.0 Confined 4.2 0.03 / 0.06 
SRU 2.9 Unconfined 4.2 0.03 / 0.06 
DRU 3.7 Confined 4.3 0.03 / 0.06 
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Figure 4.1 Design details and numerical model of a partially grouted reinforced masonry wall. 

 
Figure 4.2 Finite element modeling scheme for partially grouted masonry.  
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Figure 4.3 Discretization scheme for the interface between the grouted and ungrouted parts. 

 

 
Figure 4.4 Placement of joint reinforcement in construction and in the numerical model. 
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Figure 4.5 Monotonic and cyclic response of the bond-slip law used for the joint reinforcement.  

 

 
Figure 4.6 Configuration of cohesive-crack interface element. (a) Element local coordinate 

system and nodal triads in the undeformed state; (b) fiber at node I of the interface. 
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Figure 4.7 Cross section of interface element. (a) Interface for a grouted section; (b) interface for 

an ungrouted section with face shells. 

 

 
Figure 4.8 Definition of element local coordinate system. (a) Stage 1; (b) stage 2. 
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Figure 4.9 Reinforcement details of SR67 and DR67 (adapted from Bolhassani et al. 2016). 

 

 
 

Figure 4.10 Test setup for walls SR67 and DR67 (adapted from Bolhassani 2015). 
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Figure 4.11 Reinforcement details of walls SRU and DRU (adapted from Schultz and Johnson 

2019). 
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Figure 4.12 Test setup for walls SRU and DRU (adapted from Schultz and Johnson 2019). 

 

 
Figure 4.13 FE meshes for the PGM wall specimens. 
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Figure 4.14 Comparison of numerical and experimental results for wall SR67 (deformation 

magnified by 12 times). 
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Figure 4.15 Comparison of numerical and experimental results for wall DR67 (deformation 

magnified by 5 times). 
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Figure 4.16 Comparison of numerical and experimental results for wall SRU (deformation 

magnified by 5 times). 
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Figure 4.17 Comparison of numerical and experimental results for wall DRU (deformation 

magnified by 10 times).  
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5 SHAKE-TABLE TESTS OF A PARTIALLY GROUTED REINFORCED MASONRY 

BUILDING WITH TYPICAL REINFORCEMENT DETAILS 

 

5.1 Introduction 

Most of the previous experimental studies of partially grouted masonry (PGM) were 

limited to quasi-static cyclic tests of wall segments. Some experimental results showed that the 

previous and current shear-strength equations in TMS 402 could be unconservative for PGM walls 

when the spacing of the reinforced vertical cells is large, way over 4 ft (Minaie et al. 2010; Nolph 

and Elgawady 2012; Bolhassani et al. 2016a, 2016b). In some other studies, these equations 

appeared to be adequate even for walls with widely spaced reinforced vertical cells (Maleki 2008; 

Johnson and Schultz 2014). The behavior of PGM wall systems designed according to current 

standards in the U.S. under realistic earthquake load conditions has not been well studied. Shake-

table tests conducted on fully grouted masonry wall systems revealed that a wall system could 

behave very differently than what was assumed in the design. For example, coupling forces exerted 

by horizontal diaphragms on shear walls could alter the behavior of a wall from the intended ductile 

flexural mode to a more brittle shear mode (Stavridis et al. 2016). In addition to the coupling 

forces, axial restraints exerted by walls orthogonal to the direction of the seismic action could 

change the axial forces in the walls parallel to the seismic force and thereby their resistance 

mechanism (Mavros et al. 2016).  

This chapter presents the results and findings from the shake-table tests of a full-scale, one-

story, PGM structure designed with the current code provisions and reinforced according to current 

practice. The experimental results are complemented with a numerical study. A nonlinear finite 

element model is developed using the modeling scheme presented in the previous chapter. The 
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model is validated with the test results, and is used to understand the load resistance mechanisms 

of the structure, the distribution of the shear resistance among the wall components, and the 

influence of bond beams on the seismic performance. The numerical results are also used to 

evaluate the shear-strength equation of the current code.  

Based on TMS 402 (2016), the shear strength ( nV ) of a PGM wall is calculated by the 

equation 

 ( )n nm ns gV V V γ= +  5.1 

in which nmV  is the shear resistance provided by masonry and calculated by 

 4.0 1.75 0.25u
nm nv m u

u v

MV A f P
V d

 
′= − + 

 
 5.2 

and nsV  the shear resistance provided by the shear reinforcement and calculated by 

 0.5 v
ns y v

AV f d
s

 =  
 

 5.3 

The shear strength nV  should not be taken greater than ,maxnV  which is given by 

 
( ) ( )

( ) ( )
,max

6  for 0.25

4  for 1.00

nv m g u u v

n

nv m g u u v

A f M V d
V

A f M V d

γ

γ

 ′ ≤= 
′ ≥

 5.4 

In the above equations, 0.75gγ =  for PGM wall (while 1.00gγ =  for fully grouted walls), nvA  is 

the net shear area of the wall, vA  is the cross-sectional area of shear reinforcement, s is the spacing 

of the shear reinforcement, vd  is the wall length in the direction of shear, u u vM V d  is the shear-
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span ratio, and uP  is the axial load on the wall taken to be positive for compression and negative 

for tension. 

5.2 Prototype Building and Specimen Design 

5.2.1 Prototype building configuration 

Figure 5.1 shows the prototype structure considered in the experimental study. It has one 

story and a building plan representative of industrial or commercial buildings in North America. 

The structural system consists of gravity frames in the outer area and reinforced masonry walls in 

the central part. The masonry walls are arranged in four modules, each designed to carry seismic 

forces as well as gravity loads. The roof consists of 6-inch thick precast hollow-core planks with 

a 2-inch cast-in-place concrete topping. Each masonry wall module carries a tributary gravity load 

of 76 kips from the roof, and has a tributary seismic weight (W ) of 401 kips, which includes the 

weight of 1/4 of the entire roof and the self-weight of the masonry walls above the level of the 

window sills. The walls are partially grouted and were designed as ordinary load-bearing shear 

walls for SDC C according to ASCE/SEI 7 (2010) and TMS 402 (2013). The design spectral 

intensity is 0.5DSS g=  and the seismic response modification coefficient is 2R = . Hence, the 

resulting design base shear for each wall module was 100 kipsbV = . 

5.2.2 Design of test structure 

As shown in Figure 5.1, the test structure represented one of the four masonry wall 

modules. It was symmetric about the center lines in the east-west and north-south directions, and 

had a door opening and a window opening in each of the south and north walls. The structure was 

tested on a shake table with the table motion applied in the east-west direction only. As shown in 

Figure 5.1 and Figure 5.2a, the wall components separated by openings are labeled as W1, W2, 
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and W3 on the south side, and W4, W5, and W6 on the north side. Each of the corner walls, W1, 

W3, W4, and W6, had an L-shaped cross section, and each of the middle walls, W2 and W5, had 

a T-shaped cross section. Lintels spanned along the north-south direction between W1 and W4, 

W2 and W5, and W3 and W6. The masonry walls had a height of 152 in. and a nominal thickness 

of 8 in. Figure 2 shows the exterior and interior of the test structure. As shown in Figure 5.2a, the 

whole panel consisting of W2 and W3 (or W5 and W6) including the window up to the elevation 

of the top of the window opening is referred to as the Main Wall, and the masonry panel above the 

openings is identified as the Top Panel. 

For ordinary walls, shear-capacity design is not required by TMS 402. For the given wall 

configuration, one or more of the wall components were expected to be dominated by shear. A 

shear-dominated wall with light horizontal reinforcement may lose its lateral load resistance 

quickly after reaching the peak shear strength. Hence, it was prudent to assume in the design that 

the base-shear capacity of the structure would be reached when the shear demand on any of the 

shear-dominated wall components reached its shear strength. The design was assisted with an 

elastic analysis based on this premise. The resulting reinforcement details for the test structure are 

illustrated in Figure 3. The vertical and horizontal reinforcement consisted of Grade 60 #4 bars. 

The reinforcement met the prescriptive requirements of the code in that the area of the vertical 

reinforcement adjacent to the openings and wall intersections was at least 0.2 in.2, and the vertical 

and horizontal bar spacing did not exceed 120 in. The building had four bond beams along the 

height. One was in the first course above the footing, the second and third were right below and 

above the window opening, and the fourth was in the upper-most course right below the roof. The 

bond beam in the top course was required to secure the dowel bars used to tie the roof diaphragm 

to the masonry walls. The bond beam at the bottom course was introduced to provide a better 
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performance (e.g., to reduce base crushing) if the walls were to develop base sliding. While the 

code requires that bond beams be placed right below and above a window or door opening, they 

need not be extended continuously along the entire wall length unless they are required to resist 

shear. For this structure, the two intermediate bond beams were not required to resist shear but 

they were deemed beneficial for resisting the strut action that could be developed by the ungrouted 

masonry panels. 

The roof system consisted of 8-in-thick precast hollow-core planks with a 4-inch cast-in-

place RC topping. It was much thicker than that of the prototype to attain the targeted roof weight 

of 76 kips without the need to include the tributary roof area outside the wall module. The actual 

seismic weight of the test structure was 120 kips. It included the weight of the roof and that of the 

masonry walls above the level of the window sills.  

5.2.3 Supporting analysis 

The reinforcement details were verified using an elastic analysis. Because of the symmetry 

of the structure, only the wall on one (the south) side was considered. A linearly elastic plane-

frame model, as shown in Figure 5.2c, was employed to calculate the seismic force demand wall 

components W1, W2, and W3. Elastic Timoshenko beam elements were used to represent the wall 

components, while the Top Panel and the portion of W3 below the window sill were assumed to 

be rigid. For W1 and W2, the reinforcement in the two lower bond beams would contribute to the 

shear strength, while no bond beam would be present in W3 based on the wall height assumed. 

The net cross-sectional areas of the walls were considered. For calculating the flexural strengths 

of the walls, the entire flange width was considered effective, which complied with the code 

specification for the flange in tension (TMS 402). The equivalent lateral load was distributed in 

the way shown in Figure 5.2c, with V1 proportional to the weight of one-half of the roof slab and 
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applied at the level of the roof, V2 proportional to the weight of the Top Panel and half of the 

transverse lintels and applied at the mid-height of the Top Panel, and V3 proportional to the weight 

of the walls between the Top Panel and the window sill and applied at the top of the door opening. 

This was based on the assumption that the roof and the Top Panel displaced as a rigid body. Forces 

V2 and V3 only account for 8.3% and 2.7% of the total base-shear demand. 

The lateral seismic forces were applied in the positive and negative directions. The 

compressive strength of masonry was specified to be 1.83 ksi based on the net area of the walls. 

Table 5.1 shows the seismic load demands on W1, W2, and W3 when the lateral load applied to 

the entire structure is equal to the design base shear of 100 kips, the capacities of the wall 

components calculated according to the code-specified methods, and the capacity-to-demand 

ratios. It can be seen that all wall components were shear-dominated apart from W1, which was 

flexure dominated when subjected to positive loading. Furthermore, W3 had a capacity-to-demand 

ratio slightly greater than 1.0, while the other two wall components had much higher ratios. Hence, 

W3 controlled the design.  

5.3 Construction, Material Properties, and Instrumentation 

The walls of the test structure were constructed on RC footings that were post-tensioned 

onto the shake-table platen. Figure 5.4 shows pictures of the construction. The top surface of the 

footings was not intentionally roughened. The walls were constructed by masons and the whole 

construction took 12 days to complete. Standard 8 x 8 x 16 in. concrete masonry units (CMU) were 

used for the ungrouted part of the walls, double open-end units (H-blocks) were used for the bond 

beams, and open-end and half open-end units were used at the locations having vertical grouted 

cells. For both the head and bed joints, mortar was applied only at the face shell of the blocks. The 

units were laid in a running bond pattern with interlocking at the intersections of the orthogonal 
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walls at the four corners of the structure (see Figure 5.4b). However, the orthogonal walls in the 

middle of the structure were simply connected through the reinforcing bars in the bond beams 

without interlocking units (see Figure 5.4c and Figure 5.4d). The horizontal bars in the bond beams 

extended from the web into the flange with 90-degree bents, while standard 180-degree hooks 

were used at the wall ends. During construction, every bond beam course was grouted together 

with the vertical reinforced cells below. A net was placed under each bond-beam course (see Figure 

5.4a) to prevent the grout from flowing into the cavity below. The vertical bars were lap-spliced 

above the footings over a length of 24 in, which was more than the minimum length specified in 

the code, while the horizontal bars were lap-spliced at the locations shown in Figure 5.3. The 

precast roof planks spanned along the north-south direction and were simply supported on the 

south and north walls (see Figure 5.4f). After the placement of the planks, the vertical dowel bars 

from the walls were bent 90 degrees. After the placement of reinforcement in the north-south and 

east-west directions on the planks, the concrete topping was poured. 

Coarse grout with 3/8-in. aggregate and Type S mortar were used for the construction of 

the masonry walls. Material samples were taken during the construction and were tested during 

the period of the shake-table testing at an age exceeding 28 days. Compression tests were 

conducted on 2 x 4 in. mortar cylinders, 3.75 x 3.75 x 7.625 in. grout prisms prepared per ASTM 

C1019, grout cylinders, two-unit tall grouted and ungrouted masonry prisms per ASTM C1314, 

single CMU blocks, and concrete cylinders sampled from the footing concrete and the roof 

topping. All masonry prisms were prepared with half CMU blocks as shown in Figure 5.4e. The 

average compressive strength obtained for each sample type is summarized in Table 5.2. 

Furthermore, tension tests were conducted on samples of the reinforcing bars used in the masonry 
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walls. The average yield strength obtained was 70 ksi, and the average tensile strength was 100 ksi 

and was attained at a strain of 0.113. 

The shake-table test structure was instrumented with an array of 393 sensors, consisting of 

177 strain gages, 177 displacement transducers, and 39 accelerometers. The strain gages were 

attached on the vertical and horizontal reinforcing bars at locations where yielding could occur. 

The location of strain gages on the south wall are shown in Figure 5.5a. Linear potentiometers 

were used to measure sliding along bed joints and uplift of the walls at select locations. They were 

also mounted vertically along the two sides of W1 and W4 to determine the curvature along the 

height of these walls. Sliding at the base of the structure was also monitored with linear 

potentiometers installed along the base of the walls. The horizontal displacement of the roof with 

respect to the footings of the walls was measured at the top of the north and south walls with two 

string potentiometers (one per side). The potentiometers were installed at the top bond-beam 

course and the strings were attached to steel reference frames, which were 3.75 m (148 in) tall and 

mounted on the concrete footings. The acceleration at the base and the roof was measured with 

accelerometers placed on top of the footings and the roof slab, respectively. The instrumentation 

scheme for the south wall is shown in Figure 5.5b. The complete instrumentation plan can be found 

in Koutras and Shing (2015). In addition to the conventional sensors, the deformations of the walls 

on the north and west sides of the structure were monitored with a digital image correlation (DIC) 

system using high-speed cameras. However, the system was only employed for a limited number 

of tests before any major structural damage occurred. Further details on the DIC system are 

presented in Rajaram et al. (2017). Figure 5.6 shows pictures of sensors mounted on the walls, and 

the north and west sides of the structure that were painted in a black and white pattern for the DIC 

measurements. 
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5.4 Ground Motions and Scaling 

The test structure was subjected to a sequence of 17 earthquake motions, referred to as 

Motions 1 to 17, which were historical records that were scaled to different intensity levels. The 

north-south component of the El Centro record from the 1940 Imperial Valley Earthquake 

(EC1940) was used in most of the tests. In addition, the El Centro Array #5 record component 140 

from the 1979 Imperial Valley Earthquake (EC1979) was used for Motions 2 and 3, and also two 

records obtained from earthquakes outside the West Coast, which were the transverse component 

of the North Anna Nuclear Power Plant (NPP) record from the 2011 Mineral, Virginia Earthquake 

and the component 10 of the Nahanni Station #1 from the 1985 Nahanni Earthquake, were used 

for Motions 1, 7, and 10. These ground motion records have acceleration spectra with a shape 

similar to the shape of the design spectrum of ASCE/SEI 7 (2010). Before Motion 1 and after each 

earthquake motion, the structure was subjected to white-noise excitation with a root-mean-square 

amplitude of 0.05g to identify any change in the natural period. The initial fundamental period (

initialT ) of the structure was identified to be 0.043 s. The transfer function of the structure was 

identified as the ratio of the Fourier amplitude of the average acceleration response history 

measured at the roof to the Fourier amplitude of the average acceleration measured at the footing 

with overlapping time windows. 

The estimated actual seismic weight of the test structure was 120 kipsspecW = , while the 

seismic weight considered in the design of the wall module based on the prototype configuration 

was 401 kipsW = . The difference is due to the tributary weight carried by the gravity columns, 

which was not included in the test structure. For the test structure to satisfy the dynamic similitude 

with the prototype, the applied base acceleration in the tests was scaled up by a factor of 
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3.33a specF W W= =  and the time was compressed by a factor of ( )0.51 0.55t aF F= = . This time 

scaling was applied to the ground motion records prior to the construction of the specimen for the 

tuning of the shake table. The actual seismic weight of the test structure as constructed was 

calculated to be 125.8 kips, which was slightly higher than the initial estimation. Figure 5.7 shows 

the original ground motion records used in the tests after the similitude scaling was applied. The 

records are scaled to the Design Earthquake (DE) and their spectra are compared to design 

spectrum of ASCE/SEI (2010), which is also scaled according to the similitude law. The scaling 

to the DE is performed by matching the spectral acceleration of the record at the initial period of 

structure to the spectral acceleration of the design spectrum. A damping ratio of 5% is assumed 

for the response spectra. The fundamental period of the structure had been accurately predicted 

prior to test by a preliminary finite element model.  The motions that used the EC1979, Mineral 

and Nahanni records did not induce any discernible damage to the structure and therefore are 

omitted from the following discussion. Figure 5.8 shows the time history of Motion 17 and 

compares the response spectra of Motions 8 and 17, which were obtained by the accelerometers 

placed on the footings of the test structure, to the spectra for the Maximum Considered Earthquake 

(MCE) and the DE, which were also scaled according to the similitude law. The MCE is 1.5 times 

the DE. The shake table was tuned with ground motions scaled to the DE with the procedure 

described in Luco et al. (2010). However, as the intensity of the motions increased, the table did 

not track the input motion closely, and the response spectra of the table motions showed a 

significant amplification in the frequency range of 10-20 Hz, where the resonance frequency of 

the oil column of the shake table resided. To quantify the intensity of the table motions in a 

meaningful manner, the ratio of the spectral acceleration of the table motion to the MCE spectral 

acceleration is used as an effective intensity measure ( effI ). The ratio is calculated as the average 
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value over the range of the structural period measured before and after the structure was subjected 

to the ground motion (Stavridis et al. 2012).   

5.5 Structural Response and Analysis of Test Data 

Testing was conducted in two phases. In Phase 1, the structure was tested in its original 

configuration. After a number of tests and before the walls reached their flexural or shear 

capacities, the response started to be dominated by the sliding of the Main Walls at the base. To 

restrain sliding in the subsequent tests, RC blocks (stoppers) were cast against the bottom course 

of the Main Walls on both sides, as shown in Figure 5.9. The subsequent tests are referred to as 

Phase 2. Some minor damage induced in Phase 1 near the toes of the Main Walls was repaired 

with grout patch. Rubber pads were placed between the concrete stoppers and the wall toes to 

allow for a uniform distribution of the contact forces. Before the first Phase-2 test, the fundamental 

period of the structure was measured to be 0.056 s, which was slightly longer than the fundamental 

period of 0.043 s measured at the beginning of Phase 1 indicating that the masonry walls had not 

sustained major damage. Table 5.3 shows the sequence of the major tests conducted in Phase 1 

and all the tests in Phase 2, for which the EC1940 record was used, and summarizes peak response 

quantities along with the effective intensity of the motions and the value of the structural period 

measured after each test. It should be noted that the peak response quantities shown for each 

motion shown are not necessarily concurrent. For the calculation of the net roof drift ratio shown 

in the table and subsequent figures, the average sliding measured at the base of the Main Walls 

was subtracted from the roof displacement. The net roof drift was divided by the clear height of 

the roof, which was 152 in., to obtain the drift ratio. The base shear shown in the table is calculated 

from the measured roof acceleration considering the mass of the structure above the window sills, 

which is consistent with how the design base shear was determined. The change of the structural 
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period during Phase 1 and Phase 2 is shown in Figure 5.8c. The decrease of the structural period 

at the beginning of Phase 2 was mainly due to the repairs at the toes of the Main Walls. 

5.5.1 Response in Phase 1 

In Phase 1, the structure was subjected to twelve motions, which had the effective intensity 

effI  ranging from 0.36 to 1.91. The structure developed sliding at the base when the effective 

intensity of the applied motion reached the MCE level (i.e., when effI  was around 1.0). In the first 

eleven motions, no discernible damage was observed in the masonry walls, yet the sliding 

measured at the base of the Main Walls was consistently larger than that for W1 and W4. During 

Motion 12, which was the most demanding motion in Phase 1 with effI =1.91, the sliding at the 

base of the Main Walls increased drastically reaching 0.25 in, which was almost equal to the peak 

roof displacement, as shown in Table 5.3. The sliding at the base of W1 and W4 was much smaller 

and diagonal cracks formed in their webs. No significant damage was observed in the Main Walls 

apart from some fine cracks forming along mortar joints and the spalling of the grouted cells at the 

wall toes caused by the base sliding. Almost identical sliding displacements were obtained at the 

three transducer locations along the base of each Main Wall. Sliding was not observed in the wall 

flanges. Instead, fine stair-stepped cracks developed along mortar joints near the base of the 

flanges. The cracks propagated diagonally along the flange width and extended from the flange-

web intersection at the base to the fourth or fifth course. Figure 5.10 shows the damage in the web 

of W4 after Motion 12, and compares the sliding response histories measured at the base of W4 

and the north Main Wall to the total horizontal displacement response history measured at the roof 

during Motion 12. For the Main Wall, the average sliding measured by three transducers is shown. 

Figure 5.11shows the cracks formed on the south wall and wall flanges during Phase 1. 
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Figure 5.12 shows the shear force at the base plotted against the base sliding registered at 

the Main Walls during Motions 5 and 9. Both motions did not cause any visible cracking in any of 

the masonry walls, and Motion 5 was the motion during which base sliding initiated. The shear 

force in the figure is the total lateral force transmitted to the base of the structure and is calculated 

as the sum of the inertial force developed by the roof slab and the total inertial force by the walls. 

The figure shows a large shear force developed in the positive direction during an early cycle in 

Motion 5. The shear-friction resistance can be largely attributed to the clamping force exerted by 

the vertical reinforcement. However, as the grout surrounding the dowels at the wall base got 

damaged, the bond between the dowels and the grout deteriorated leading to a reduction of the 

clamping force and thereby a drop in the shear-friction resistance at the same displacement level 

in the subsequent cycles. The small increase in the shear resistance as sliding increased in one 

direction could be attributed to the restoring forces developed by W1 and W4 and the wall flanges, 

as well as the dowel action. 

According to TMS 402 (2016), the shear-friction strength ( nfV ) for walls with a low aspect 

ratio is given by ( )nf sp y uV A f Pµ= + , where µ  is the coefficient of friction, uP  is the axial load, 

and sp yA f   is the total area of vertical reinforcement crossing the sliding plane, excluding that in 

the wall flanges, times the yield strength, accounting for the clamping force of the vertical 

reinforcement crossing the sliding plane. Applying this formula here, only the 14 #4 vertical bars 

in the in-plane walls need to be considered. With the assumption that the coefficient of friction µ  

is 0.7, as recommended in TMS 402 (2016) for masonry walls laid on concrete surface that was 

not intentionally roughened, the formula results in a sliding resistance of 234 kips, which is very 

close to the maximum sliding resistance developed during Motion 5, as shown in Figure 5.12. 
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However, it should be noted that the wall flanges and dowel action could also contribute a little 

shear resistance once sliding had started. Furthermore, it should be noted that not all the vertical 

reinforcement crossing the sliding plane yielded during Motion 5. The strains in the vertical 

reinforcement measured 1 in. above the footing surface were in the range of 30% - 100% of the 

yield strain. 

5.5.2 Response in Phase 2 

In Phase 2, the structure was subjected to five motions with effective intensities above the 

MCE, as shown in Table 5.3. With the stoppers installed, the maximum sliding reached at the base 

of the Main Walls was 0.08 in. and was due to the deformation of the rubber pads that had been 

placed between the stoppers and the wall toes. At the maximum base shear, which was reached 

during Motion 16, the peak base sliding in the Main Walls constituted 24% of the total peak roof 

displacement. However, at the maximum roof drift, which was reached in Motion 17, the last run, 

the peak base sliding of the Main Walls was only 1% of the total roof displacement. The structure 

withstood Motions 14 and 15, which had effective intensities more than two times the MCE, 

without showing signs of major damage. Fine cracks developed mainly along mortar joints of the 

Main Walls in a stair-stepped pattern and diffused minor cracking developed in ungrouted and 

grouted masonry units. Similar level of damage was observed in Motion 16 with the peak net roof 

drift ratio reaching only 0.18%. Figure 5.13a and Figure 5.11 show the state of the structure after 

Motion 16 and the corresponding crack patterns. During Motion 17, the existing cracks propagated 

through the vertical grouted cells causing a rapid load degradation. A maximum net roof drift ratio 

of 2.25% was reached, which was accompanied by severe cracking of the vertical grouted cells, 

and cracking and crushing of ungrouted units, as shown in Figure 5.13b and Figure 5.13c. It 

appears that among the wall components, W3/W6 were the first ones to develop the most severe 
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damage and the other walls followed. By the end of Motion 17, severe damage had occurred in the 

grouted cells, and most of the ungrouted units within the height of the window openings in the 

Main Walls and below the mid-height of W1/W4 were damaged and dislocated from the walls, 

leaving large openings. The wall flanges experienced heavy damage too; yet, they were able to 

carry the weight of the roof after the end of the test averting total collapse of the building. 

Figure 5.14 shows the time histories of the net roof drift ratio and the hysteresis curves 

obtained during Motions 16 and 17. The maximum base shear developed in the positive direction 

was 285 kips, which occurred in Motion 16 at 0.13% net roof drift. In the negative direction, the 

maximum base shear reached was 254 kips. During Motion 17, severe load degradation occurred 

within the first few cycles before the structure reached a net roof drift of 0.4%. The damage 

resulted in a significant reduction of the lateral stiffness, which led to large displacement 

oscillations even under very low base acceleration towards the end of the input motion (see Figure 

5.8a), as shown by the response history after the first 20 s in Figure 5.14. At the time of the 

maximum net roof drift of 2.25%, the structure had lost about 50% of the maximum base-shear 

resistance in the positive direction. The drift ratio experienced by the Main Walls was 4% because 

most of the wall deformation concentrated below the top panel. This drift level is much higher than 

that reached in any of the previous experimental studies on PGM walls; yet the test structure was 

still able to retain a significant residual lateral strength, which was almost equal to 50% of the peak 

base shear, in its first major excursion in the positive direction. The resistance dropped 

significantly upon displacement reversal and in subsequent cycles due to the loss of masonry from 

the walls. 
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5.5.3 Yielding of reinforcement 

The sequence of yielding in the reinforcing bars as recorded by the strain gages is illustrated 

in Figure 5.15. Only the information for the south wall and the connected flanges is shown since 

a similar yielding sequence was observed in the walls on the north side. The motion during which 

each strain gage registered yielding for the first time is indicated. The gages that did not record 

yielding as well as the faulty ones are also indicated. For brevity, the sequence of yielding during 

the different motions in Phase 1, as well as during Motions 13 through 16, is not identified. During 

the Phase-1 tests, the vertical bars yielded along the base of the wall due to tension induced by 

base sliding. In Phase 2, most of the additional yielding occurred during Motion 17. However, the 

yielding of the reinforcement in the 2nd bond beam (from the base) of W2 and W3 was first 

observed in Motion 16, during which the maximum base shear was reached.  

Figure 5.16 shows the strains plotted against the net roof drift obtained during Motions 16 

and 17 in the 2nd bond beam of W2 and W3 at the locations H1 and H2 marked in Figure 5.15. 

During Motion 16, the strains barely exceeded the yield strain. Furthermore, the plots show that 

the reinforcement in the 2nd bond beam of W3 was engaged primarily during drift in the positive 

direction (towards east). This could be because for positive drifts, diagonal shear cracks intercepted 

the bond beam, whereas for negative drifts, the shear cracks were localized within the panel next 

to the window. For the same reason, the bond beam of W2 was engaged when the drift was towards 

the negative direction. During Motion 17, the strain in the reinforcement of the bond beam of W3 

increased drastically until the net roof drift reached 0.5% in the positive direction. Beyond that 

drift, the deformation of W3 localized in the masonry panel next to the window, which is consistent 

with the damage shown in Figure 5.13. Figure 5.16 also shows the strains developed in the two 

vertical bars in W6 at locations V1 and V2 indicated for W3 in Figure 5.15. The bars developed 
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significant strains after the net roof drift reached 1%, which was in the post-peak regime of the 

base shear-vs.-net roof drift curves. 

5.6 Numerical Analyses of the Behavior of the Test Structure 

The maximum base shear developed in the tests was 2.8 times the design base shear. The 

fact that the actual material strengths for the test structure were higher than the nominal strengths, 

and the strength reduction factors introduced in the design can only explain part of this 

overstrength. The main contributing factor is the conservative design assumption that the capacity 

of the structure was limited by the capacity of walls W3/W6, while W1/W4 and W2/W5 had 

reserve capacities, as shown in Table 5.1. To acquire a better understanding of the lateral load 

resisting mechanism of the structural system, a detailed finite element (FE) model has been 

developed for the test structure. The model is used to examine the lateral resistance developed in 

each wall component, which is hard to deduce from the test data. Nonlinear time-history and 

nonlinear static (pushover) analyses are conducted. The modeling assumptions and numerical 

resutls are presented in the following sections.  

5.6.1 Modeling approach and material properties 

Figure 5.17 shows the FE model developed in LS-DYNA for the analysis of the test 

structure using the modeling scheme presented in the previous chapter. Because of the symmetry 

of the structure and the loading, only the south half of the structure is modeled, with the nodes at 

the plane of symmetry free to translate and rotate only within the plane of symmetry. The grouted 

and ungrouted parts are modeled with the discretization scheme presented in the previous chapter. 

The grouted cells are modeled with triangular smeared-crack shell elements that have a 4-in. long 

vertical and horizontal side and cohesive-crack interface elements are placed in the 45-degree 

angles as well as in the horizontal and vertical directions. Each ungrouted CMU is represented 
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with two 8 x 8 in. smeared-crack cell elements that are connected through a vertical cohesive-crack 

interface element to model possible splitting cracks through the unit. The mortar joints are modeled 

in a discrete fashion with horizontal and vertical shell elements. The cohesive-crack interface 

elements have the interface formulation presented in the previous chapter. The proposed 

formulation accounts for the void in the hollow CMU when modeling discrete cracks through the 

CMU or mortar joints. The reinforcing bars are modeled with 2-in. long beam elements that are 

connected to the adjacent smeared-crack shell elements through bond-slip/dowel-action interface 

elements. The same discretization scheme is used for both the in-plane and out-of-plane walls. The 

vertical interface elements between the grouted and ungrouted masonry assume the properties of 

ungrouted masonry units, which are perceived to constitute the plane of weakness. This is assumed 

because the vertical grouted cells of the test structure had been constructed with open-end blocks 

that allowed for the grout to be in contact with the web of the adjacent ungrouted CMU, as shown 

in Figure 5.4b. However, the vertical interface elements between the in-plane wall and the 

ungrouted panels of the middle flange assume the properties of the mortar joints since in the actual 

structure there was no unit interlocking between the middle flange and the in-plane wall. The 

element removal scheme that has been described in the previous chapter and has been used in the 

analysis of the quasi-static wall tests is also used in the analyses of the shake-table test structure.  

The footings and the roof slab are modeled with elastic shell elements. The walls are 

connected to the footings through cohesive-crack interface elements, while stiff elastic interface 

elements are used to connect the walls to the roof slab. The lap-splices at the bottom of the walls 

are modeled explicitly. However, the 180-degree hooks and the 90-degree bends of the horizontal 

bars around the vertical bars are considered in an approximate manner by directly attaching the 

node of the horizontal bar to the node of the vertical bar. The weights of the roof slab and of the 
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masonry walls are distributed over the respective areas. Since the roof planks were initially 

supported only by the in-plane walls during construction (see Figure 5.4f), the interface elements 

that are placed between the slab and the out-of-plane walls are activated in the analysis after the 

vertical loads have been applied. 

The material models of the smeared-crack shell elements, cohesive-crack interface 

elements, bond-slip/dowel-action interface elements, and reinforcing steel beam elements have a 

number of parameters that need to be specified. The values of the materials parameters used for 

the analyses of the test structure are summarized in Table 5.4 to Table 5.7. These values are in 

general determined in a way consistent with that for the analyses of the quasi-static wall tests. 

Some generic parameters assume the same values while the values of other parameters are 

determined based on the strengths of the material samples using the same relations as those used 

for the quasi-static wall tests. In the analyses of the test structure, due to the significant difference 

between the compressive strengths of grouted masonry prisms and grout prisms, the tensile 

strength of grouted masonry in the model is taken to be 12% of the average of the compressive 

strength of the grout (6.1 ksi) and that of the grouted masonry prisms (2.6 ksi). The tensile strength 

of the CMU is assumed to be 12% of the compressive strength of the CMU (3.2 ksi). For the same 

reason, in determining the bond strength of the bond-slip model, the average of the compressive 

strengths of the grout and the masonry prisms is used. For calculating the dowel strength, the 

compressive strength of the grout is used. 

5.6.2 Nonlinear time-history analysis 

The time-history analysis is performed with the implicit time-integration scheme proposed 

by Bathe (2007). The scheme has a desirable numerical damping characteristic to suppress 

spurious high-frequency modes that could be induced by the sudden stress release caused by the 
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cracking of masonry. Additionally, Rayleigh damping is prescribed with a damping ratio of 0.1% 

for the first and second modes. The initial fundamental period and second-mode period of the 

model are calculated to be 0.044 s and 0.033 s, respectively. The stiffness proportional part of the 

damping is based on the initial stiffness of the shell and beam elements. However, for the cohesive-

crack and bond-slip/dowel-action interface elements, no stiffness proportional damping is applied 

because of their high initial stiffness. It should be mentioned that the mass of the model is 6% 

higher than that of the test structure because of the meshing scheme. 

Ground motion histories measured at the base of the structure during the shake-table tests 

are used for the time-history analysis. Since the structure did not sustain any major damage during 

Phase 1, only the Phase-2 tests are considered. Instead of explicitly modeling the concrete stoppers, 

the surface of the footings is assumed to be sufficiently rough to prevent base sliding. To this end, 

a coefficient of friction of 1.0 is used in the cohesive-crack interface elements placed along the 

base. The structure is subjected to Motions 13 and 17 in a single run. Motion 14 through 16 are 

not considered because the damage observed in the analysis with Motion 13 is slightly more severe 

than that obtained with Motion 15 in the test. Figure 5.18 compares the net roof drift time histories 

and the hysteresis curves obtained from the analysis and the tests. For Figure 5.18a, only the 

response for the first 10 s is shown for clarity. The lateral resistance is calculated by summing the 

shear forces developed in the horizontal interface elements at the top of the second bond beam 

course (the level of the window sill) and the shear forces developed by the dowel action of the 

vertical reinforcement at the same elevation. This is consistent with the method used to calculate 

the seismic force from the experimental data by considering only the seismic mass above that line. 

The damage obtained during the analysis is shown in Figure 5.19. 
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Under Motion 13, the model develops a maximum lateral drift that is about 2.4 times the 

net drift attained by the actual test structure under the same motion. This is because the base sliding 

developed in the test comprised almost 50% of the total horizontal displacement measured at the 

roof, while in the analysis, base sliding is prevented. As Figure 5.18a shows, the peak lateral drift 

obtained in the analysis with Motion 13 is in-between the values obtained for Motions 15 and 16 

in the tests. The model, however, predicts well the base-shear capacity of the test structure. For 

Motion 17, the model captures the response in the first 10 s of the motion, and is also able to 

reproduce the rapid loss of lateral resistance observed in the test. However, for the rest of the 

motion, it overestimates the stiffness and thereby the response frequency of the structure. This 

could be attributed to the less severe damage induced in the vertical grouted cells and wall flanges 

of the model as compared to the actual test structure (see Figure 5.13 and Figure 5.19). 

Nonetheless, the analysis captures the extent of damage in the ungrouted panels of the in-plane 

walls reasonably well. As in the test, the crushing and removal of the shell elements occurred 

primarily after reaching the maximum positive roof drift.  

5.6.3 Distribution of forces among wall components  

To gain insight into the distribution of the seismic force among the wall components and 

also the lateral load capacity of each wall component, a pushover analysis is performed with the 

FE model. The displacement is applied at the level of the roof, in the positive and negative 

directions (as defined in Figure 5.2). Figure 5.20 compares the shear and axial forces developed in 

each wall component at the level of the window sill. The total lateral resistance of the structure 

and the total vertical load are also shown. The axial force in each wall is calculated by summing 

the normal forces in the horizontal interface elements in the web and the flange of the wall and the 

forces of the vertical bars. It can be observed that the pushover analysis shows a more gradual load 
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degradation and a higher peak resistance than the time-history analysis (as compared in Figure 

5.18). However, for the positive direction, the difference in the strength is small (with 293 kips 

versus 272 kips). 

The numerical results show that W1/W4 and W3/W6 develop a higher strength in the 

respective loading direction that induces axial compression, while the resistance of W2/W5, the 

middle wall components, shows a very small difference in the two loading directions, as the axial 

load is always compressive but varies in magnitude. Figure 5.21 shows the deformed meshes 

obtained for each loading direction. It can be seen that the diagonal cracks in W2 spread along the 

height of the window for positive loading, but those associated with negative loading spread over 

the height of the door opening. Wall component W3 behaves in the opposite way. The analysis 

shows that the horizontal reinforcement in the 2nd bond beam of W3 is engaged only when the 

building is subjected to positive loading. This behavior is consistent with what was observed in 

the tests. Yielding in the reinforcement of the bond beam occurs before the structure develops its 

maximum load capacity. The reinforcement eventually ruptures at a roof drift ratio of 2.5%. 

To evaluate the code provisions, the shear and flexural strengths of each wall component 

are calculated with the methods recommended in TMS 402 using the axial force developed in the 

pushover analysis at the peak lateral resistance of each wall component. The wall components are 

assumed to have fixed-fixed end conditions. Based on the observations from the pushover analysis 

and the tests, different heights are assumed for each of W2 and W3 depending on the direction of 

loading. For positive loading, W2 is assigned the height of the window and W3 the height of the 

door. For negative loading, W2 is assigned the height of the door and W3 the height of the window. 

The height of W1 is assumed to be the same as the door opening. The masonry prism strengths 

and the yield strength of the steel reinforcement obtained from the material tests are used. The 
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shear capacity is calculated based on the ungrouted masonry prism strength, while the flexural 

capacity is based on both the ungrouted and grouted masonry prism strengths depending on the 

wall cross-sectional area under compression. 

Table 5.8 shows the code-based shear strength ( nV ) and flexural strength ( flexV ) as 

compared to the wall strengths obtained from the pushover analysis. Based on the code-based 

capacities, W2 and W3 are shear dominated for both loading directions, while W1 is shear 

dominated for negative loading and flexure dominated for positive loading. The shear-strength 

equation of TMS 402 overestimates the capacity of W3 by 14% when the building is subjected to 

negative loading and W3 is under tension. For the rest of the shear-dominated cases, the code 

equation gives a lower value. The difference between the code value and the numerical result is 

higher for W1 under negative loading and for W3 under positive loading. This could be due to the 

beneficial influence of the wall flange, which enhances the shear-compression resistance at the 

wall toe but is ignored by the code. Furthermore, assuming that W3 has the height of the door 

opening when the building is subjected to positive loading is also a conservative hypothesis. For 

W1 loaded in the positive direction, the code-based flexural capacity is slightly higher than the 

analysis result. This can be explained by the mixed flexural-shear mode developed by W1 in the 

pushover analysis and also by the fact that the top of W1 is not perfectly fixed in reality but is 

assumed to be fixed in the calculation. 

The results obtained from the pushover analysis reveal that the distribution of the shear 

resistance among W1, W2, and W3 is different from that assumed in the design, which was based 

on an elastic analysis (see Table 5.1). The design assumed that the capacity of the system was 

reached once the shear capacity of one wall component was reached. Based on this premise, the 

design was governed by the shear capacity of W3 for both loading directions. For the negative 
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loading direction, the pushover analysis shows that W3 indeed reaches its load capacity before W1 

and W2 because it is subjected to tension; however, the capacity of W3 is relatively small and the 

wall is able to maintain a portion of its resistance as the displacement increases. The capacity of 

the structure is reached when both W1 and W2 almost reach their capacities as shown in Figure 

5.20. At that point, the two wall components together provide 87% of the lateral load resistance of 

the structure. For loading in the positive direction, the analysis shows that the maximum load 

resistance of the structure develops when W2 reaches its peak strength. In this case, W2 together 

with W3 provide 90% of the maximum total load resistance. Wall component W1 that is in tension 

reaches its maximum load after W2 and W3 have lost their peak strengths. For either loading 

direction, the wall component in tension provides only a small portion of the lateral resistance. 

However, the wall component in tension contributes to a higher axial compression in the other two 

wall components, and therefore, indirectly enhances the shear resistance of the structure. 

5.6.4 Influence of bond beams 

As previously discussed, the wall components would still meet the design load demand and 

the prescriptive requirements of TMS 402 even if the first and second bond beams (from the base) 

were not present, as long as there was a bond beam right under each of the window openings. To 

evaluate the influence of the continuous bond beams on the performance of the structure, two code-

compliant design alternatives are considered. The first alternative has the bond beam under the 

window openings extend only 24 in. beyond the left and right sides of the openings rather than 

through the entire length of the Main Walls. Furthermore, the second bond beam in W1/W4 is 

removed. The second bond beam is also removed from all the wall flanges except for the middle 

flange, which requires a bond beam to connect to the Main Wall because the wall joint has no 

interlocking masonry units. This design is referred to as the Intermediate Design. The second 
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alternative is the same as the first but has all the bond beams at the base course (except for that in 

the middle flange) removed as well. This is referred to as the Minimum Reinforcement Design. 

To compare the two alternative designs with the original design of the test structure, time-

history analyses are performed with FE models representing the three designs using the original 

1940 El Centro record scaled by a factor of 1.6. This motion corresponds to a spectral intensity of 

1.22 times the MCE at the fundamental period of the model. The ground motion is scaled to comply 

with the dynamic similitude with the prototype building. Similar to the previous analyses, the 

interface between the wall and the footing is assumed to be rough. Figure 5.22 compares the 

response histories and load-displacement hysteresis curves. The damage induced for each case is 

shown in Figure 5.23. One can see that the second bond beam can significantly improve the 

performance of the structure. It provides a horizontal tie to effectively confine the ungrouted 

masonry. The influence of the bond beam at the base is not as significant but it is still beneficial 

in that it slightly reduces the drift level. However, the Intermediate Design, which includes the 

base bond beam, has more crushing in the ungrouted masonry, resulting in a more extensive 

element removal than the Minimum Reinforcement Design. Base sliding is not observed in any 

case. 

5.7 Summary and Conclusions 

This chapter presents an experimental and numerical study on the seismic performance of 

a partially grouted reinforced masonry structure. The structure was designed according to the 

current code provisions in the U.S. for areas of moderate seismicity and design details conforming 

to current practice. It had a single story and widely spaced vertical grouted cells and bond beams. 

The design of the masonry walls was based on an elastic frame model and the assumption that the 

capacity of the wall system would be reached when one of the shear-critical wall components first 
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reached its shear capacity. The structure was tested on a shake table with a sequence of ground 

motions of progressively increasing intensity. Under an MCE-level motion, the structure 

developed a response dominated by base sliding. The sliding resistance calculated with the shear-

friction equation in TMS 402 (2016) using a coefficient of friction of 0.7 closely matches the shear-

friction resistance deduced from the test data. In the second phase of testing, base sliding was 

restrained with RC stoppers, and the test structure developed its ultimate load capacity showing 

fine cracks along the mortar joints and some limited yielding of the reinforcement in the bond 

beams. The base-shear capacity reached by the structure was 2.8 times the design base shear. In 

Phase 2, the structure was able to withstand four motions with an effective intensity above the 

MCE level before failing in a brittle manner. Two of the motions had an effective intensity two 

times the MCE. The structure exhibited sudden load degradation at a roof drift of about 0.4%. 

However, it was able to maintain almost 50% of its lateral load capacity at a roof drift of 2.25%, 

which corresponds to a local drift ratio of 4% for the Main Walls. 

The behavior of the structure has been further studied with nonlinear FE analyses. The FE 

model gives a reasonable prediction of the response histories and the strength of the structure, as 

well as the load degradation observed in the tests. A pushover analysis has been conducted to 

investigate the contribution of the wall components to the lateral load capacity of the structural 

system. The analysis shows that the elastic frame model used in the design did not give the correct 

load distribution among the wall components. Furthermore, it shows that the shear-dominated wall 

components are able to retain a substantial portion of their load capacities at displacements beyond 

the point of their peak lateral resistance. This allows different wall components of the structure to 

develop significant lateral resistance at the same time, and the resistance continues to increase as 

the axial compressive loads in the walls increase, resulting in a base-shear capacity much higher 
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than the design base shear (2.8 times). The numerical results have also been used to assess the 

shear-strength equation of TMS 402 (2013, 2016). It has been found that the shear strength of the 

wall components calculated with the code equation is slightly lower than those given by the FE 

model, except for wall components W3/W6 when they are subjected to tension. The results also 

indicate a possibility that the wall flange might improve the shear resistance when it is in 

compression. Furthermore, the FE analyses show that the continuous bond beams right below the 

window openings appear to significantly improve the performance of the structure. The benefit of 

a bond beam in the first course above the footing is negligible. 

Even though conservative, the assumptions used to design the structure appear to be 

adequate considering the brittle behavior exhibited in the tests after the roof drift exceeded 0.4%. 

The overstrength factor of 2.8 is close to the value of 2.5 suggested in ASCE/SEI 7 for ordinary 

load-bearing reinforced masonry shear walls. In spite of the fact that the shear-strength equation 

in TMS 402 has been found to be adequate when compared to the FE analysis results for this 

structure, further studies are needed to understand why it overestimates the shear capacities of 

PGM wall components tested in some other studies. In particular, the influence of the spacing of 

grouted cells, and of the wall aspect ratio and boundary conditions should be investigated. The 

behavior of PGM structures under bidirectional earthquake excitation should also be studied. 

Developing design details that can improve the ductility of partially grouted wall systems is also 

worthwhile for future investigation. The next chapter presents the design, testing, and numerical 

analyses of a second shake-table test structure that has design details introduced to improve the 

ductility of the structure.  

Parts of Chapter 5 are a reprint of the material that appears in the manuscript “Koutras A, 

Shing PB. Seismic Behavior of a Partially Grouted Reinforced Masonry Structure: Shake-Table 
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Testing and Numerical Analyses” which has been submitted for publication to the Journal of 

Earthquake Engineering and Structural Dynamics in 2019. The author of this dissertation was the 

primary investigator and author of this manuscript. 

 

 

Table 5.1 Load demands versus capacities of the wall components in the two lateral directions 
(positive is east) of the masonry building. 

Wall 

Axial 
load, Pu 
(kips) 

Lateral load 
demand, Vu  

(kips) 

Flexural 
capacity, Vflex 

(kips) 

Shear 
capacity, Vn  

(kips) 

Capacity-to- 
demand ratio, 

min(Vflex, Vn)/Vu 

Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 

W1 30.8 7.3 9.0 9.0 47.0 35.3 36.7 37.3 4.08 3.91 

W2 25.0 18.2 18.7 18.8 109.1 99.3 65.9 65.5 3.53 3.49 

W3 4.3 34.6 22.4 22.3 74.3 107.5 25.9 30.8 1.15 1.38 
Note: Strength factors of 0.9 and 0.8 were used in the calculation of the flexural and shear capacities, 
respectively. Axial loads with positive sign represent compression. 

 

Table 5.2 Average compressive strengths obtained from material samples. 

Sample  Strength 
(ksi) Sample  Strength 

(ksi) Sample  Strength 
(ksi) Sample  Strength 

(ksi) 

Mortar 
cylinder 4.0 Grout 

prism 6.1 Ungrouted 
prism 2.0 Concrete 

footing 6.3 

Grout 
cylinder 4.2 Grouted 

prism 2.6 CMU block 3.2 Concrete 
roof 4.7 
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Table 5.3 Summary of structural response during the tests. 

Motion  
No. 

Test ID 
(EC1940  
record) 

Testing  
phase 

Specimen 
period 

after test  
(s) 

Eff. 
Intensity 

Ieff 
(x MCE) 

PGA 
(g) 

Peak 
roof  

accel.  
(g) 

Peak 
 roof 
disp.  
(in) 

Peak base 
sliding 

(in) 

Peak 
net  
roof 
drift 
ratio 
(%) 

Peak  
base 
shear  
(kips) W1 Main 

Walls 

1 Mineral 
127% 

Phase 1 

0.043 0.53 -1.09 1.25 -0.01 0.00 0.00 -0.01 157.3 

2 EC1979 
51% 0.045 0.36 0.66 0.89 -0.01 0.00 0.00 -0.01 -111.9 

3 EC1979 
77% 0.045 0.49 0.93 1.19 -0.01 0.00 0.00 -0.01 -149.3 

4 125%-A 0.046 0.81 -1.36 -1.37 -0.03 0.00 0.00 -0.02 172.4 

5  188%-A 0.049 1.05 -1.91 -1.96 0.06 0.01 -0.03 0.02 246.1 

6 84%-A 0.049 1.15 0.94 -1.73 0.08 0.01 0.03 0.03 218.1 

7 Nahanni 
22% n.a. n.a. 0.64 -1.37 0.06 0.01 0.02 0.03 172.9 

8 84%-B 0.050 0.69 0.95 -1.30 0.06 0.01 0.03 0.04 158.8 

9 125%-B 0.051 1.23 1.33 -1.79 0.11 0.03 0.06 0.04 225.2 

10 Nahanni 
33% 0.052 1.89 -1.06 1.79 0.09 0.02 -0.06 0.03 -224.8 

11 125%-C 0.052 1.46 1.29 -1.79 0.16 0.05 0.09 0.05 225.7 

12 164%-A 0.066 1.91 -1.73 -1.94 -0.28 -
0.06 -0.25 0.06 244.3 

13 125%-D 

Phase 2  

0.062 1.52 -1.49 -1.98 0.17 0.08 0.07 0.06 248.5 

14 164%-B 0.066 2.04 -1.88 -2.16 0.22 0.10 0.07 0.10 272.0 

15 188%-B 0.097 2.07 -2.09 -2.22 0.26 0.13 -0.08 0.13 278.7 

16 202% 0.118 1.43 -2.16 -2.27 -0.35 0.16 -0.08 -0.18 285.2 

17 214% n.a. 1.17 -2.24 -2.21 3.44 0.28 -0.07 2.25 277.8 

Note: Test ID indicates the scaling of the original record in addition to the similitude scaling. Apart from Motions 1, 2, 3, 7, 
and 10, the EC1940 record was used for all motions. The letter A, B, C, or D next to the percentage indicates the 1st, 2nd, 3rd, 
or 4th time the same motion was applied. Motions 4 and 5 had the positive and negative directions flipped as compared to 
the other records. 
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Table 5.4 Material parameters for smeared-crack shell elements (see Figure 2.8 for the parameter 
definitions). 

Shells 
elements fm (ksi) fo (ksi) Em (ksi) ft (ksi) ε0 εu 

Net  
width 
(in) 

Grouted 
masonry 2.64 1.76 1584 0.50 0.003 0.040 7.625 

Ungrouted 
units 2.03 1.35 1920 0.38 0.003 0.015 2.8 

 

Table 5.5 Material parameters for cohesive-crack interface elements (see Section 2.5.2 for the 
parameter definitions). 

Interface 
elements 

Dnn / Dtt  
(ksi/in) 

so  
(ksi) μο / μr ro / rr  

(ksi) 
Gf,I  

(kips/in) 
Gf,II  

(kips/in) 
ζdil,o / 
ζdil,r 

do  
(in) 

Net  
width 
(in) 

Grouted 
masonry 5000 0.50 1.4 / 

1.0 
0.05 / 
0.01 0.0004 0.004 0.4 / 

0.001 0.4 7.625 

Ungrouted 
units  5000 0.38 1.4 / 

1.0 
0.05 / 
0.01 0.0004 0.004 0.2 / 

0.001 0.2 2.8 

Mortar 
joints 

300 / 
125 0.10 0.95 / 

0.85 
0.02 / 
0.01 0.0002 0.002 0.10 / 

0.001 0.035 2.5 

Base 
interface 5000 0.20 1.00 / 

1.00 
0.05 / 
0.01 0.0002 0.002 0.4 / 

0.001 0.4 7.625 

 

Table 5.6 Material parameters for beam elements representing reinforcing steel (see Section 2.6 
for the parameter definitions). 

Size  fy (ksi) fu (ksi) Es (ksi) εsh (εsh1, fsh1) εu Dcr 

#4 69.7 100 29000 0.01 (0.03, 84) 0.12 0.55 
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Table 5.7 Material parameters for bond-slip/dowel-action interface elements (see Section 2.7.3 
for parameter definitions). 

Masonry 
compressive 

strength used 
for bond 

strength (ksi) 

Confinement 
condition 

Grout 
compressive 

strength 
 used for 

dowel 
 strength (ksi) 

Displacement 
parameters 

for dowel law, 
d1 / du (in) 

4.3 Confined 6.1 0.03 / 0.06 

 

Table 5.8 Comparison of lateral load capacities of the wall components based on TMS 402-16 
with capacities from the finite element model. 

Wall  

Vmax  
analysis 
(kips) 

PVmax  
analysis 
(kips) 

Shear  
span ratio 

Effective  
hor. reinf. 

Vflex  
TMS 402 

(kips) 

min(Vn,Vn,max)  
TMS 402 

(kips) 

min(Vn,Vn,max

, Vflex)/Vmax  

Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 

W1 67.8 26.0 76.9 -10.4 0.55 0.55 2 #4 2 #4 102.8 28.1 50.9 38.2 0.75 1.08 

W2 79.2 80.9 26.1 26.9 0.29 0.13 2 #4 None 136.9 304.0 76.3 70.8 0.96 0.88 

W3 29.0 66.8 -9.2 66.2 0.25 0.55 None 2 #4 64.1 93.9 33.1 50.9 1.14 0.76 
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Figure 5.1 Prototype building and reinforced masonry test structure. 
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Figure 5.2 Shake-table test specimen and frame model used for the design. (a) South view of 

specimen; (b) south-east view of interior of specimen; (c) plane frame model. 
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Figure 5.3 Reinforcement details of test specimen. 
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Figure 5.4 Construction of the structure on the shake table. (a) Construction of the second bond 

beam course; (b) construction of a corner wall; (c) grouting of the second bond beam in a T-wall; 
(d) south main wall under construction; (e) grouted and ungrouted masonry prisms; (f) placement 

of the precast hollow-core roof planks. 
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Figure 5.5 Instrumentation plan for the south wall. (a) Strain gages; (b) displacement transducers 

and accelerometers. 
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Figure 5.6 Instrumentation of test structure. (a) Displacement transducers mounted on the north 

wall; (b) displacement transducers mounted on W1; (c) north and west elevation monitored using 
the DIC system. 
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Figure 5.7 Earthquake records scaled to the DE including similitude scaling. 
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Figure 5.8 Sample ground motions and structural period change. (a) Acceleration time history of 
Motion 17; (b) acceleration response spectra of Motions 8 and 17; (c) structural period change 

during the test sequence. 
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Figure 5.9 Concrete stoppers installed after Phase-1 tests. (a) Stopper near a toe of a Main Wall; 

(b) locations of stoppers.  

 
Figure 5.10 Response to Motion 12. (a) roof displacement response history and sliding at the 

base of north wall; (b) damage in W4. 
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Figure 5.11 Cracks formed in the south wall and wall flanges in Phase 1 and Phase 2 up to 

Motion 16. 

 
Figure 5.12 Shear force at base - versus - average base sliding curves for Motions 5 and 9.  
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Figure 5.13 Damage states of the test structure. (a) South-east interior view before Motion 17; 

(b) south-east exterior view at the maximum roof drift during Motion 17; (c) south-east exterior 
view at the first negative cycle right after the occurrence of the maximum roof drift; (d) south 
exterior view after Motion 17; (e) south-east exterior view after Motion 17; and (f) north-west 

interior view after Motion 17. 
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Figure 5.14 Structural response during Motions 16 and 17. (a) Net roof drift ratio response 

history; (b) base shear - versus - net roof drift hysteresis curves. 
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Figure 5.15 Yielding of reinforcement at locations of strain gages on the south wall and wall 

flanges. 
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Figure 5.16 Strains from select strain gages plotted against the net roof drift ratio. (a), (b) Strains 
recorded by gages H1 and H2 in W2 and W3 during Motions 16 and 17, respectively; (c) strains 
recorded during Motion 17 in the vertical bars of W6 at the same locations as V1 and V2 in W3.  

 
Figure 5.17 Front and back views of the FE model of the test structure. 
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Figure 5.18 Comparison of the results from the time-history analysis with the experimental 

results. 
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Figure 5.19 Damage shown in the time-history analysis: (a), (b) at the peak positive and negative 

roof drift during Motion 13 (deformation magnified by 30 times); (c) at the peak positive roof 
drift during Motion 17 (deformation magnified by 3 times); (d) at the peak negative roof drift 

during Motion 17; (e), (f) at the end of Motion 17. 
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Figure 5.20 Shear and axial force developed in each wall component in the pushover analysis. 
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Figure 5.21 Damage in the pushover analysis: (a), (b) at the peak resistance in the negative and 

positive directions (magnified by 20 times); (c), (d) at a roof drift of 4% in the negative and 
positive directions. 

 
Figure 5.22 Comparison of responses of different designs subjected to the 1940 El Centro scaled 

by a factor of 1.6. 
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Figure 5.23 Damage induced by the 1940 El Centro record scaled by 1.6 for the: (a) original 
design (magnified by 10 times); (b) intermediate design; (c) minimum reinforcement design. 
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6 SHAKE-TABLE TESTS OF A PARTIALLY GROUTED REINFORCED MASONRY 

BUILDING WITH IMPROVED DESIGN DETAILS 

 

The previous chapter presented the behavior of a partially grouted masonry (PGM) 

structure that was tested on a shake table under a sequence of 17 ground motions. The structure 

was designed according to the current code provisions for Seismic Design Category (SDC) C and 

had design details conforming to current practice. It had widely spaced vertical grouted cells as 

well as reinforced bond beams located at four courses along the height. During testing, when the 

effective intensity of the applied motions exceeded the level of the Maximum Considered 

Earthquake (MCE), the structure developed a response dominated by base sliding and showed only 

minor damage in the walls. In subsequent tests, base sliding was restrained by constructing 

concrete stoppers against the wall toes. During these tests, referred to as Phase 2, the structure 

developed an adequate base-shear capacity that was 2.8 times the design base shear. The structure 

was able to withstand four motions with effective intensity above the MCE level including two 

motions with intensity 2 times the MCE. However, the structure failed in a brittle manner in the 

last motion of the sequence. The structure experienced a rapid load degradation at a roof drift of 

0.4% which was primarily attributed to the sudden shear failure of the vertical grouted cells and 

the crushing of ungrouted masonry units. 

This chapter presents the results from the shake-table tests conducted on a second structure 

that had design details aimed to improve the ductility of the building. In particular, this study was 

to investigate the effectiveness of using side-by-side double grouted cells and joint reinforcement 

to improve the seismic performance of a building system. The performance of walls with double 

grouted vertical cell has been assessed in a small number of quasi-static tests (Bolhassani et al. 
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2016a and 2016b; Schultz and Johnson 2019). It has been shown in these studies that walls with 

double vertical grouted cells developed higher ductility than walls with single grouted cells. 

However, double grouted cells have not been used in practice. Joint reinforcement is commonly 

used in partially grouted masonry walls to satisfy the prescriptive requirement of the code (TMS 

402-16) or to control the size and spacing of cracks due to shrinkage. The code also permits the 

use of joint reinforcement as primary shear reinforcement to resist lateral earthquake or wind loads. 

Experimental studies on PGM walls have shown that joint reinforcement can contribute to the 

shear capacity and increase the ductility of a wall (Schultz and Hutchison 2001; Baenzinger and 

Porter 2010; Bolhassani et al. 2016b). However, the aforementioned studies focused on single wall 

segments, and the performance of wall systems with double grouted cells and joint reinforcement 

have not been examined.  

The first and second test structures will be hereafter referred to as Specimen 1 and 

Specimen 2. A finite element (FE) model has been developed for Specimen 2 and validated with 

the test results. The model is used to gain insight into the seismic load resisting mechanisms of the 

structure. 

6.1 Design of Specimen 2 

Figure 6.1 shows the configuration and the numbering of the wall components of Specimen 

2. The reinforcement details of the test structure are shown in Figure 6.2. The masonry walls of 

the structure had the same dimensions as in Specimen 1. However, two changes were introduced 

in the reinforcement details with the goal to enhance the seismic performance of the building. First, 

the cross-sectional area of the vertical grouted elements was increased to delay or prevent the shear 

failure of the vertical grouted elements and to enhance the frame action provided by the grouted 

cells. In Specimen 1, each vertical grouted element had a single grouted cell that contained a #4 
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(0.20 in2) bar. In Specimen 2, each vertical grouted element consisted of two side-by-side vertical 

grouted cells. At the wall intersections, three vertical cells were grouted in an L or T configuration, 

as shown in Figure 6.2. Each vertical grouted cell contained a #3 (0.11 in2) reinforcing bar so that 

Specimen 2 had a similar amount of total vertical reinforcement as Specimen 1. 

The second change for Specimen 2 was the placement of joint reinforcement in every 

course. This was done to control the opening of stair-stepped cracks in the ungrouted panels, which 

were observed during the Phase-2 tests of Specimen 1. Specimen 2 retained the bond beams used 

in Specimen 1. Each bond beam had a #4 bar. The joint reinforcement had longitudinal wires and 

cross wires in a ladder-type configuration. The longitudinal wires had a 3/16-in. diameter, while 

the cross wires had a 0.148-in. diameter. Joint reinforcement was placed in both the in-plane and 

out-of-plane walls, as shown in Figure 6.2.   

Specimen 2 had a heavier roof slab than Specimen 1. The roof slab of Specimen 2 consisted 

of 8-in. thick precast hollow core planks as in Specimen 1, but had a 12-in. thick cast-in-place RC 

topping, while Specimen 1 had a 4-in. thick topping. The roof weight of Specimen 2 was 147 kips, 

while that of Specimen 1 was 79 kips. The increase in the roof weight was to reduce the peak 

ground acceleration required to reach the capacity of the structure and thereby the force demand 

on the horizontal actuators of the shake table. It was observed that the actuator force developed in 

the tests of Specimen 1 approached the load capacity of the actuators. The larger roof weight also 

increased the sliding resistance at the base. 

6.2 Construction, Material Properties, and Instrumentation  

Specimen 2 was constructed in the same way as Specimen 1 by the same masons. The 

structure was built on the same RC footings built for Specimen 1. The dowel bars were pre-

installed during the footing construction and were offset for a short distance from the dowels for 
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Specimen 1. To ensure that no base sliding would occur in the tests of Specimen 2, the footing 

surface was intentionally roughened. To further increase the sliding resistance, additional #3 

vertical dowels with 180-degree hooks were placed in epoxy-filled drilled holes in the footing 

along the length of the Main Walls, as shown in Figure 6.3a. The dowels extended within the 

height of the base bond beam and hooked around the horizontal bar. The vertical reinforcing bars 

of the walls were lap-spliced above the footings and below the roof slab a lap length of 24 in. The 

horizontal bars were lap-spliced in the wall webs at the same locations as in Specimen 1 and were 

extended into the flanges with 90-degree bents, while 180-degree hooks were used in the wall 

ends. The joint reinforcement was placed so that the longitudinal wires were embedded within the 

mortar placed on top of the face shells of the concrete masonry units (CMU), as shown in Figure 

6.3b. The joint reinforcement was provided in 10-foot long prefabricated segments that were lap-

spliced over a length of at least 10 in. At the wall intersections, joint reinforcement segments were 

arranged in the form of an L or T, as shown in Figure 6.3c. At the wall ends, the longitudinal wires 

were bent to form 90-degree hooks. The ungrouted parts of the masonry walls were constructed 

with standard masonry units (8 x 8 x 16 in.), while H-blocks were used for the bond beam courses, 

and U-blocks or open-end blocks were used for the construction of the double grouted cells, as 

shown in Figure 6.3d and Figure 6.3e. As in Specimen 1, the roof planks spanned across the north-

south direction and were simply supported on the north and south walls. 

Grout, mortar, and masonry prism samples were taken during the construction and were 

tested in compression at an age exceeding 28 days. The average material strengths are summarized 

in Table 6.1. Samples of the reinforcing bars and the longitudinal wires of the joint reinforcement 

were tested in tension up to the point of rupture. The average yield ( yf ) and ultimate tensile stress 
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( uf ), as well as the strain at the ultimate stress ( uε ) are shown in Table 6.2. Rupture of the samples 

of joint reinforcement occurred at an average strain of 0.06. 

The instrumentation scheme for Specimen 2 is similar to that for Specimen 1. The locations 

of strain gages in the south wall are shown in Figure 6.4. Strain gages were placed on vertical bars 

at locations close to the wall-footing interface, above the second bond beam (level of the window 

sill), and at the elevation of the top of the openings right below the third bond beam from the base. 

The wall flanges had strain gages placed only on the vertical bars close to the wall-foundation 

interface. Strains gages were also placed on the horizontal bars of the first, second, and third bond 

beams within the in-plane walls as shown in Figure 6.4. The strains in the joint reinforcement were 

not monitored. Further details can be found in Koutras and Shing (2015b). 

6.3 Ground Motions and Scaling 

The test structure was subjected to a sequence of 17 motions, referred to as Motions 1 to 

17. Two earthquake records were used in the tests, the north-south component of the El Centro 

record from the 1940 Imperial Valley Earthquake (EC1940), and the El Centro Array #5 record 

component 140 from the 1979 Imperial Valley Earthquake (EC1979). Record EC1940 is more 

severe than EC1979 in terms of the duration of strong shaking and it was primarily used in the 

tests of Specimen 1. However, because of the brittle behavior observed in the tests of Specimen 1, 

record EC1979 was used for the high intensity tests of Specimen 2. Record EC1940 was used for 

Motions 1, 3, 4, 6, and 9. The specimen was subjected to white-noise excitation before Motion 1 

and after each motion of the sequence to identify any change in the natural period of the structure. 

The fundamental period of the structure before the application of Motion 1 was found to be 0.062 

s.  
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The yf  masonry wall system of Specimen 2 was designed for the prototype building 

configuration assumed for Specimen 1. The actual seismic weight of the test structure was 

calculated to be 197 kipsspecW = , which is by 3.5% higher than the weight initially assumed based 

on the prototype and used for scaling the ground motions. To satisfy the dynamic similitude with 

the prototype, the applied base acceleration in the tests was amplified by a factor of 

2.11a specF W W= =  and the time was compressed by a factor of ( )0.51 0.69t aF F= = . Figure 6.5 

shows the acceleration time histories and response spectra of records EC1940 and EC1979 after 

the similitude scaling has been applied. In the figure, the records are scaled to the level of the 

Design Earthquake (DE) of the code (ASCE 7-10) for SDC C. The scaling factor indicated in the 

figure is in addition to that for the similitude scaling. In the figure, the polarity of record EC1979 

is inverted as it was applied in the shake table tests. Figure 6.6a compares the acceleration response 

spectra of Motions 8 and 16, which were obtained from the accelerometers placed on the footings, 

to the code-based spectra for the DE and MCE. Both motions were from the EC1979. As the 

intensity of the applied motion increased, the shape of the response spectrum of the table motion 

deviated from the target motion (shown in Figure 6.5) in the vicinity of 10 Hz, which was close to 

the oil column resonance frequency of the table oil column. The same issue had been observed 

during the testing of Specimen 1. 

6.4 Structural Response and Analysis of Test Data 

6.4.1 Test observations and global response  

Table 6.3 shows the sequence of the 17 ground motions used in the testing of Specimen 2. 

The table includes the structural period measured after each motion, the effective intensity ( effI ) 

of each ground motion with respect to the level of the MCE, and summarizes the peak ground and 
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roof accelerations as well as the peak roof drift ratio and peak base shear measured during each 

ground motion. The effective intensity ( effI ) of a motion is calculated as described in Chapter 4. 

The change of the structural period of Specimen 2 during the test sequence is also illustrated in 

Figure 6.6b. It can be observed that the structural period measured with the white-noise excitations 

showed a gradual increase during the sequence. During the entire test sequence, the sliding 

measured along the base of the Main Walls was practically zero, while the sliding measured at the 

base of W1 and W4 did not exceed 0.02 in. and 0.05 in., respectively. The roof drift ratio shown 

in Table 6.3  is calculated as the displacement measured at the roof divided by the clear height of 

the masonry walls, which was 152 in. The base shear is calculated from the average acceleration 

measured by the accelerometers placed on the roof slab and the mass of the structure above the 

level of the window sills. The positive direction for the acceleration, drift, and base shear is 

assumed to be towards East.  

As shown in Table 6.3, Motions 1 through 7 had an effective intensity lower than the DE. 

They were low-level tests that were performed to improve the tuning of the shake table.. During 

these tests, the specimen did not sustain any discernible damage; however, the structural period 

increased from 0.062 s to 0.088 s. This increase could be due to the opening of flexural cracks at 

the base of the walls, bond deterioration between the bars and the grout, or minor cracking in the 

mortar joints of ungrouted masonry that was not visible. Motion 8 had the intensity of the DE and 

did not cause any visible damage. Visible but minor cracking along mortar joints was first detected 

after Motion 9, for which the EC1940 record was used. It had an effective intensity of 0.89 x MCE. 

Among the next four motions, Motions 10 to 13, Motion 10 was the strongest and had an effective 

intensity at the level of the MCE. During these motions, cracks propagated further in the mortar 

joints. A few fine cracks in some ungrouted units were also observed. In addition, horizontal 
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flexural cracks were found along the flange of W3 and W6 at the level of the window sill. These 

cracks extended to the grouted cells in the wall webs. No new cracks occurred until Motion 15, 

which had an effective intensity of 1.34 x MCE. During Motion 15, the structural period increased 

by 35% with respect to the period measured before the motion. The motion induced additional 

vertical cracks in the hollow masonry units and horizontal cracks in the vertical grouted cells of 

W2/W5 and W3/W6 at the bottom and top of the window openings. Cracks developed in the south 

wall at the end of Motion 15 are shown in Figure 6.7. During Motion 15, the structure developed 

its ultimate base shear capacity of 337 kips. Motion 16 had an effective intensity of 1.5 x MCE 

and caused further cracking in the ungrouted masonry units. The mortar joints along the height of 

the wall components experienced significant damage due to the excessive sliding that occurred 

along the joints during the motion. In several locations along the bed joints, the mortar material 

had completely disintegrated exposing the longitudinal wires of the joint reinforcement. In Motion 

17, the final motion, the excitation used for Motion 15 was reapplied. During that test, cracking 

mainly occurred in the ungrouted units. In addition, a diagonal crack started to form at the mid-

height of the double grouted vertical cell of W5 adjacent to the door opening and also in the vertical 

grouted cell of W6 adjacent to the window opening (see Figure 6.8). As shown in Figure 6.6b, the 

structural period measured after Motion 17 was 6.4 times the initial period.  

Figure 6.8 shows pictures of the damage of Specimen 2 at the end of the test sequence. 

Figure 6.7 compares the cracks formed at the end of Motion 15 in the south wall and the flanges 

of W1 and W3 to the final crack pattern. It can be seen that in the ungrouted panels of the wall 

components, the cracks were uniformly distributed along the mortar joints of the in-plane walls. 

In addition, with the exception of the diagonal cracks that started to form in the grouted cells of 

W5 and W6, no other diagonal cracks were observed in the grouted vertical cells. However, all the 
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vertical grouted cells had horizontal flexural cracks at distinct locations at the top and bottom of 

the openings. No crushing or block detachment occurred in the tests, and no rupture of the joint 

reinforcement or reinforcement bars was observed. 

Figure 6.9 shows the roof drift response history during Motion 17, the final motion, and 

compares the hysteresis curves obtained in Motions 14 through 17. In these tests, the EC1979 

record was used. The maximum base shear of 337 kips developed in the negative direction 

(pointing west) during Motion 15 at a roof drift of 0.27%. In the positive direction, the peak base 

shear was 312 kips, which occurred in Motion 15 as well. It can be also observed that the drift 

developed towards the negative direction was more severe. This is consistent with the strong 

direction of the base excitation. It also appears that during Motion 17, the structure was not excited 

enough to attain its ultimate lateral load resistance in the positive direction. Compared to Specimen 

1, the maximum base shear capacity of Specimen 2 was higher by 18%. Figure 6.9c compares the 

hysteresis loops for Specimen 2 from Motions 14 through 17 to those for Specimen 1 from Motions 

16 and 17, the last two. The peak base shear capacity of Specimen 1 developed in Motion 16. In 

calculating the roof drift ratio of Specimen 1, the small base sliding (no more than 0.08 in.) of the 

Main Walls was subtracted from the roof displacement. It should be noted that the response of 

Specimen 1 was obtained with the EC1940 record. The record has a longer duration than EC1979 

and is equally strong in both the positive and negative directions. Unlike the behavior of Specimen 

1, Specimen 2 showed a gradual load and stiffness degradation. The hysteresis curves for 

Specimen 2 demonstrated significant pinching especially during the last two motions. This could 

be attributed to the opening and closing of the horizontal flexural cracks that appeared in the double 

grouted vertical cells. The pinched shape also indicates that despite the significant sliding 

developed along the mortar joints during the last two motions, there was no significant energy 
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dissipation through friction. This could be because of the severe damage in the mortar joints 

resulting in the loss of mortar and therefore a low amount of vertical compressive force transmitted 

to the joints.  

6.4.2 Yielding of reinforcement 

Figure 6.10 shows the sequence of yielding in the reinforcing bars as registered by the 

strain gages attached on the bars. The figure indicates the motion during which each strain gage 

registered yielding for the first time. For brevity, the sequence of yielding during Motions 11 

through 13 is not distinguished. As shown in the figure, yielding was first registered during Motion 

10 that had an effective intensity at the MCE level. Yielding initiated in the vertical bars of W1, 

W3, W4, and W6, including bars in the respective flanges. During the following motions, yielding 

was gradually registered in the vertical bars of the other wall components. It can be observed that 

by the end of Motion 15, during which Specimen 2 developed its peak load capacity, most of the 

strain gages on the vertical bars had showed yielding. Strain gages attached on the horizontal bar 

of the second (from the base) bond beam in the Main Walls registered yielding as well; however, 

the strains measured were much lower than those measured in some of the vertical bars. 

Furthermore, it can be seen that the yielding of the horizontal bars was registered only after several 

of the vertical bars had already yielded.  

Figure 6.10 shows seven locations in the North Wall, identified as Section 1 through 

Section 7, where the strains in the reinforcing bars are further examined. Sections 1 and 2 are at 

the base of W4, Sections 3 and 4 are at the two ends of W5 at the level of the window sill, Sections 

5 and 6 are at the two ends of W6 at the level of the window sill, and Section 7 is at the base and 

west end of W6. The two vertical bars in the side-by-side vertical grouted cells at each section are 

referred to as the West and the East bars based on their positions. The strains developed in the 
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vertical bars depended on the deformation of the wall component, the deformation of the grouted 

columns, and the level of the axial load transmitted to the wall component due to the overturning 

moment developed in the building system.  

Figure 6.11 shows the strains measured at the select sections plotted against the roof drift 

ratio for Motions 15 and 17. During Motion 15, the maximum base shear was developed, while 

during Motion 17, the peak roof drift ratio was reached. It can be seen that the strains in the two 

vertical bars at Sections 1, 2, and 5 varied in an out-of-phase manner, with the West bars 

developing higher tensile strains when the displacement was towards the positive direction (east) 

and lower strains when the displacement was towards the negative direction (west). The East bars 

behaved in the opposite manner. The strain variation at Sections 1 and 2 indicates localized 

bending of the vertical grouted elements in W4 as well as the flexural deformation of W4 as a 

whole. The former can be attributed to the weakening of the ungrouted panels in W4 caused by 

the extensive sliding along the mortar joints. The V-shaped strain-vs.-roof drift curves were caused 

by the combination of these two mechanisms. At Sections 3, 4, and 6, the strains in the East and 

West bars varied in phase, with higher tension in both bars when the structure was displaced in 

one direction. However, the trends at Sections 3 and 4 are opposite to one another. Except for the 

West bar at Section 5, the trends of the bar strains at Sections 5 and 6 are in phase with one another, 

with higher tensile strains in all bars when the structural displacement was towards the negative 

direction (west). The trends observed for Sections 3, 4, 5, and 6 were most likely caused by the 

axial forces induced by the global overturning moment developed in the building as the roof was 

displaced laterally. The fact that the strain in the West bar was much smaller than that in the East 

bar at Section 5 could be due to the superposition of localized bending of the grouted element at 

that section. 
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6.5 Numerical Studies 

It is evident that during the shake-table tests, Specimen 2 showed a more favorable 

performance compared to Specimen 1. Specimen 2 reached a peak load capacity that was 18% 

higher than Specimen 1 and also developed a more ductile load-displacement response. The 

increased cross-sectional area of the double grouted vertical cells delayed the occurrence of shear 

cracks in the grouted masonry and allowed the grouted vertical cells to behave in a flexure-

dominated manner. This was indicated by the opening and closing of dominant horizontal cracks 

and by the yielding of the vertical bars from an early stage of testing. However, significant cracking 

and sliding were observed along the mortar joints of the ungrouted panels in Specimen 2.  The 

cracks were uniformly distributed along the panels. Unlike Specimen 1, Specimen 2 had no 

crushing of masonry units during the tests. Nonetheless, it should be noted that the two structures 

were tested under different sequences of ground motions and had different roof weights. Specimen 

2 had a roof weight which was almost 2 times that of Specimen 1. Furthermore, Specimen 1 

developed base sliding over a large number of motions, while it was prevented in Specimen 2 by 

using intentionally roughened footing surface and additional dowels at the wall base. All these 

differences could affect the seismic behavior of a structure. Moreover, the role of the double 

grouted cells and of the joint reinforcement in improving the strength and ductility of the structure 

cannot be determined from the test data alone. To determine the factors that contributed to the 

better performance of Specimen 2, a nonlinear finite element (FE) model is developed to conduct 

numerical parametric studies.  

6.5.1 Modeling of Specimen 2 and validation analysis 

Figure 6.12 shows the FE model developed for Specimen 2. Due to the symmetry of the 

structure and the loading condition, only the south half of the structure is modeled. The 
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discretization scheme used for the modeling of Specimen 1, as described in Chapter 5, is used here. 

However, the modeling of the joint reinforcement for Specimen 2 requires additional 

considerations, as described in Chapter 4. The two longitudinal wires embedded in each bed joint 

are modeled with a single line of beam elements that have an elastic-perfectly plastic material law. 

The beam elements are attached to the masonry shell elements using bond-slip/dowel-action 

interface elements. The bond-slip response has a peak resistance of max 0.038 morfτ = , where morf  

is the mortar compressive strength, which remains constant once reached under monotonic loading 

conditions. The bond-slip model accounts for the deterioration of the bond resistance under cyclic 

loading, as described in Chapter 4. In the FE model, the interface elements representing the mortar 

joints in ungrouted masonry that contain joint reinforcement have a net mortar width equal to the 

total width of the two face shells minus 2 times the diameter of a longitudinal wire. Within the 

region of the double grouted vertical cells, the joint reinforcement in the model is assumed to have 

a strong anchorage (i.e., a high bond strength) to simulate either the 90-degree hook that was used 

at the wall end or the side rod that was embedded (in most of the courses) in the grout. To reduce 

the number of elements in the model, the joint reinforcement placed in the out-of-plane walls of 

the test structure is ignored.  

Rupture of the joint reinforcement is modeled in the same manner as for the reinforcing 

bars (see Chapter 2). Rupture is triggered when a work-based damage parameter D  exceeds a 

specified value crD . For the beam elements representing the joint reinforcement, the critical value 

crD  is set equal to 0.06. This results in a rupture strain of about 0.06 when subjected to 

monotonically increasing tension.   
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Table 6.4 to Table 6.8 summarize the values assumed for the material parameters for the 

smeared-crack shell elements, cohesive-crack interface elements, beam elements representing the 

steel reinforcement, and bond-slip/dowel-action interface elements. The values adopted are 

determined in the same way as those for the Specimen 1 model (see Chapter 5) and are based on 

the strengths of the material samples shown in Table 6.1 and Table 6.2. The cohesive-crack 

interface elements for the wall-footing interface have a sufficiently high coefficient of friction to 

prevent base sliding. The additional dowel bars placed along the base of the Main Walls in the 

actual structure are not modeled.  

For the time-history analyses, the implicit time-integration scheme proposed by Bathe 

(2007) is used. Rayleigh damping with a damping ratio of 0.1% is prescribed for the first and 

second modes. The stiffness proportional part of the damping model is based on the initial stiffness 

of the shell and beam elements, and is ignored for the interface elements. The initial fundamental 

period and the second-mode period, calculated with eigenvalue analysis, are equal to 0.050 s and 

0.029 s. The fundamental period of the model is lower than the initial period of 0.064 s measured 

from the specimen. 

The time-history analysis is performed by subjecting the model to the last five motions of 

the test sequence, Motions 13 to 17. The five motions are applied in sequence and in a single run 

using the base acceleration measured on the concrete footings during the tests. Although applying 

the complete sequence of 17 motions will be desirable, it will greatly increase the duration of the 

analysis. Figure 6.13 and Figure 6.14 compare the roof drift ratio histories and hysteresis curves 

obtained from the analysis and the tests. The lateral resistance of the model is obtained by summing 

the shear forces developed along the interface elements at the level of the window sill and the shear 

forces developed by dowel action of the vertical reinforcement at the same elevation. This is 
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consistent with the method used to calculate the seismic base shear from the experimental results 

by considering only the mass of the structure above that line. Figure 6.15 shows the deformation 

of the model at the peak positive and negative resistance, at the peak positive and negative roof 

drift, and at the end of the analysis.  

As shown in Figure 6.13 and Figure 6.14, the response of the model is initially stiffer than 

the experimental response. This is due to the cracking and yielding that occurred in the test 

structure during motions prior to Motion 13. However, the stiffness of the model gradually 

approaches the stiffness of the test structure. Eventually, during Motions 15 to17, the model is able 

to capture both the roof drift history and the hysteretic response. In the analysis, the peak load 

capacity occurs in Motion 13 and has similar values in both directions, i.e., 326 kips for the 

negative direction and 325 kips for the positive direction. Furthermore, the damage obtained in the 

analysis is similar to that observed in the tests. As in the tests, significant sliding occurs along the 

mortar joints, and the vertical double grouted cells behave in a flexure-dominated manner. Figure 

6.16 shows the strains developed in the vertical reinforcing bars of the model during Motion 17 at 

the seven sections identified in Figure 6.10. The shapes of the strain - vs. - roof drift curves 

obtained resemble those from tests (see Figure 6.11) but do not provide a close match for each 

section. In the analysis, crushing was limited to only a few ungrouted units and occurred at the 

peak roof drift during Motion 17, as can be seen in Figure 6.15. Yielding of the beam elements 

representing the joint reinforcement was registered in the last two motions of the time-history 

analysis. However, no rupture of joint reinforcement occurred. This is consistent with the test 

observations.  

Figure 6.13 and Figure 6.14 show the monotonic load-displacement response curves 

obtained from pushover analyses. The pushover analyses are performed by controlling the 
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horizontal displacement at the roof. It can be observed that the pushover analyses produce a higher 

strength than the one obtained in the time-history analysis. In the pushover analyses, the model 

reached a peak lateral load of 465 kips and 462 kips in the positive and negative directions, 

respectively. In the time-history analysis, the peak load was 326 kips. The difference is significant 

and can be attributed to the more severe deterioration of the mortar joints in the ungrouted panels 

under cyclic loading. 

6.5.2 Influence of double grouted cells and joint reinforcement 

A numerical study is conducted to assess the influence of the double grouted cells and joint 

reinforcement on the seismic behavior of the building. To this end, three design alternatives are 

considered in addition to the design of Specimen 2. The first design alternative has double grouted 

vertical cells and bond beams as in Specimen 2, but without joint reinforcement. The second design 

alternative has single grouted cells with #4 bars as in Specimen 1 but has the same roof weight as 

Specimen 2. The third design alternative is the same as the second but with the addition of 3/16-

in. joint reinforcement in every course. The three alternative designs will be hereafter referred to 

as the DG (double grouted cells) design, SG (single grouted cells) design, and SG/JR (single 

grouted cells with joint reinforcement) design, respectively. The design of Specimen 2 will be 

called the DG/JR design, which stands for double grouted cells and joint reinforcement. The 

respective FE models assume the material properties and mass used in the analysis of Specimen 2 

(see Table 6.4 to Table 6.8). The net width of the mortar joints that contain joint reinforcement is 

reduced by two times the diameter of a longitudinal wire. Pushover and time-history analyses are 

performed to compare the response of the three design alternatives to the response of model of 

Specimen 2. 
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Figure 6.17 compares the pushover load-displacement curves for the four designs. Table 

6.9 summarizes the peak load capacities that the models develop when displaced towards the 

positive and negative directions. Figure 6.18 to Figure 6.21 show the damage developed in the 

analyses at the peak load capacity and at a roof drift ratio of 1.5%. The locations at which the joint 

reinforcement ruptured are indicated in the figures. The drift at which the peak load capacity is 

reached is also shown. It can be observed that the introduction of double grouted cells, joint 

reinforcement, or both has a beneficial influence on the lateral resistance of the structure. However, 

the improved behavior of the DG/JR design compared to the SG design is primarily attributed to 

the double grouted cells. Joint reinforcement seems to be more beneficial and to be activated more 

extensively when it is used with single grouted cells as indicated in Table 6.9. This is also shown 

by the fact that in SG/JR design, the rupture of joint reinforcement occurs at a lower drift than it 

does in DG/JR design. In SG/JR, rupture is first registered at a drift of 0.42% and 0.63% in the 

positive and negative directions, respectively, while in DG/JR, rupture first occurs at drifts of 

0.70% and 1.38% in each of the two directions, respectively. The results for SG/JR and DG/JR 

also show that the addition of joint reinforcement leads to less localized shear cracks at the peak 

load capacity of the structure (see Figure 6.18 to Figure 6.21). Figure 6.19 and Figure 6.21 indicate 

that the joint reinforcement helps to restrain the opening of shear cracks in the grouted vertical 

cells of DG/JR. Finally, it should be noted that the models containing joint reinforcement reach 

their peak strengths at a larger drift than the models that do not contain joint reinforcement.  

A time-history analysis is performed to compare the response of the four designs under the 

same earthquake excitation. The four models were subjected to the original 1940 El Centro record 

with the acceleration scaled by a factor of 2.3. The motion corresponds to 1.8 times the MCE at 

the fundamental period of model of Specimen 2. The ground motion history and spectrum scaled 
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to comply to the dynamic similitude with the prototype building can be found in Figure 6.5a. Figure 

6.22 compares the response histories and load-displacement hysteresis curves for the models. The 

analyses of the SG/JR and DG/JR stop before the end of the motion due to convergence issues. 

This is likely related to the vibration of the beam elements representing the joint reinforcement 

after the crushing and removal of the adjacent masonry elements.  

The time-history results show that all models apart from the SG design develop a lower 

base shear capacity than in the pushover analyses. The DG, SG/JR, and DG/JR have the base shear 

capacities reduced by 8%, 12%, and 17%, respectively. The four models also show a lower 

ductility in the time-history analyses. The SG/JR performs better than the SG, developing a higher 

resistance, especially in the post-peak regime. As shown in Figure 6.22b, the SG/JR developed 

lower roof displacements than the SG after the initial cycles. In the first few cycles, the 

displacements of the SG/JR are larger. This could be attributed to the smaller width assumed for 

the horizontal mortar joints because of the presence of the joint reinforcement, which results in 

earlier joint cracking. The performance of the DG and DG/JR is better than their single grouted 

counterparts. Both models behave in a similar manner with the latter developing slightly higher 

resistance in the post-peak regime due to the joint reinforcement.  

Figure 6.23 and Figure 6.24 show the damage that the four models develops at the peak 

base shear and peak drift in the positive direction. Figure 6.25 shows the damage of SG and SG/JR 

at the end of the analysis. At the peak load capacity, the cracks along the mortar joints appear to 

be more localized in the SG and DG and more distributed in the SG/JR and DG/JR, which contain 

joint reinforcement. The more localized cracks in the SG and DG could explain the more severe 

crushing and subsequent removal of the shell elements for the ungrouted masonry, as shown in 
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Figure 6.24. Rupture of joint reinforcement occurs only in the SG/JR but is limited to the wire 

located at the base course next to the wall toes. 

Finally, it should be mentioned that the base shear capacity developed by DG/JR under the 

2.3 x 1940 El Centro ground motion is 18% higher than that under the sequence of Motions 13 

through 17. This demonstrates the load history effect. 

6.5.3 Behavior of wall components and assessment of the code shear-strength equation 

The monotonic and time-history analyses presented previously demonstrate that the use of 

double grouted cells or joint reinforcement improves the seismic performance of the PGM 

structure as compared to the performance obtained using single grouted vertical cells and bond 

beams only (SG design). In the previous chapter, the strength of the wall components of Specimen 

1 are calculated with the methods in TMS 402 (2016). It has been found that for the walls of 

Specimen 1 that had single grouted cells, the shear strength calculated with the code equation is 

slightly lower than those given by the finite element model, except for wall components W3/W6 

when they are subjected to tension. In this section, the results of the monotonic analyses are used 

to assess the accuracy of the shear-strength equation in TMS 402 (2016) for wall components 

containing double grouted vertical cells, joint reinforcement, or both. The SG has the 

reinforcement as Specimen 1 but has a higher roof weight and material strengths different from 

those for Specimen 1.  

 Figure 6.26 shows the shear and axial forces developed in each wall component at the 

level of the window sill as computed from the pushover analyses of the four design alternatives. 

The axial force in each wall is calculated by summing the normal forces in the horizontal interface 

elements of the in-plane and out-of-plane walls and the forces in the vertical bars. In the figure, 

axial force with the positive sign represents compression. The shear force in each wall is calculated 
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from the shear forces in the horizontal interface elements and in the vertical bars. It can be seen 

that the axial forces in the walls vary with the direction of loading. Under positive loading, the 

axial force in W1/W4 is tensile, while that in W3/W6 is compressive. The opposite is observed 

when the structure is subjected to negative loading. Furthermore, it can be seen that when W1/W4 

and W3/W6 are under compression, the shear force and axial force in each wall vary with a similar 

trend, showing the interdependence between the shear resistance and the axial load exerted on a 

wall component. The axial load in W2/W5, the middle walls, remains compressive throughout the 

analysis, varying slightly with the displacement.  

Comparing the responses of the walls in the four design alternatives, it is clear that the 

double grouted cells and the joint reinforcement improve the shear resistance in all wall 

components. In Figure 6.26c, W3/W6 in the DG/JR appears to be weaker than that in the DG when 

loaded in the negative direction because of the higher tensile force developed in the DG/JR. Figure 

6.26c shows that W3/W6 in the SG/JR is stronger than that in the SG by 22.5 kips when the 

structure is loaded in the positive direction. Apart from the higher amount of horizontal 

reinforcement, the higher strength of W3/W6 in the SG/JR is attributed to the higher compression, 

which in turn is due to a higher lateral resistance of the SG/JR. The interdependence of the axial 

and shear forces is due to the overturning moment introduced by the lateral loading on the 

structure. 

The shear and flexural strengths of each wall component are calculated based on the code 

prescribed methods (TMS 402-16) using the axial force ( maxVP ) developed in the pushover analysis 

at the peak load resistance ( maxV ) of each wall component. To determine the shear-span ratio (

/u u vM V d ) in the shear strength equation, all wall components are assumed to have fixed-fixed 
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end conditions. Wall component W1/W4 is assigned the height of door opening. For walls W2/W5 

and W3/W6, different heights are assumed depending on the direction of loading. For positive 

loading, W2/W5 is assigned the height of the window, while W3/W6 is assigned the height of the 

door. For negative loading, W2/W5 is assigned the height of the door, while W3/W6 is assigned 

the height of the window. As explained in the previous chapter, this is consistent with the height 

over which the dominant diagonal cracks span when the walls reach their load capacities in the 

finite element analyses. Based on TMS 402 (2016), the shear strength of a PGM wall is calculated 

with Eqs. 5.1 and 5.4. In the calculation, the cross-sectional areas of the vertical grouted cells are 

considered as part of the net shear area, and the joint reinforcement is treated as shear 

reinforcement. The masonry prism strengths and the yield strengths of the steel reinforcement and 

joint reinforcement obtained from the material tests are used. The shear capacity is calculated 

based on the ungrouted masonry prism strength, while the flexural capacity is based on both the 

ungrouted and grouted masonry prism strengths depending on the wall cross-sectional area under 

compression. 

Table 6.10 to Table 6.13 show the code-based shear strength ( nV ) as calculated from Eq. 

5.1, the upper limit of the shear strength ( ,maxnV ) as calculated from Eq. 5.4, and the flexural 

strength ( flexV ). The code-based lateral load capacity of a wall component is equal to the minimum 

of nV , ,maxnV , and flexV . The code-based capacity is compared to the wall strength ( maxV ) obtained 

from the respective pushover analysis by taking the ratio of former to the latter. Strength ratios 

below 1.0 indicate that the code-based strength is conservative with respect to strength obtain from 

the analysis. The tables also include the shear strength provided by the joint reinforcement ( JRV ). 

For all four designs, the calculated strengths show that wall components W2/W5 and W3/W6 are 
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shear-dominated, while W1/W4 is shear-dominated for negative loading and flexure-dominated 

for positive loading. In most cases, the code-based strength is lower than that calculated in the 

pushover analysis. When wall W1/W4 is subjected to negative loading and W3/W6 is subjected to 

positive loading, the strength ratio is in the range of 0.6 - 0.8. In these cases, the code-based 

strength is governed by the upper limit ,maxnV . The higher strength from the pushover analysis 

could be attributed to the beneficial influence of the wall flange, which enhances the shear-

compression resistance at the wall toe. The same observation is made in the previous chapter for 

W1/W4 and W3/W6 of Specimen 1. For W2/W5, the code-based strength is closer to the pushover 

analysis result with the strength ratio in the range of 0.7 - 1.1. It can also be observed that for 

W2/W5, the code-based strength is more conservative for the cases with double grouted cells (DG 

and DG/JR) than for the cases with single grouted cells (SG and SG/JR). The code equation slightly 

overestimates the shear strength of wall W3/W6 in the DG/JR and SG/JR when the wall is 

subjected to negative loading and is under tension. However, for the DG, even when W3/W6 is 

under tension, the code prediction is conservative.  

In most of the cases examined, the code-based shear strength of the wall components has 

been found to be lower (or equal) than the strength obtained from the pushover analyses. Exception 

to this is W1/W4 in the SG/JR and DG/JR when it is subjected to tension and W2/W5 in the SG/JR 

when it is subjected to positive loading. For these walls, the code-based strength is only slightly 

higher than the strength obtained from the pushover analysis. However, it should be noted that 

under an earthquake excitation, the shear strengths of the wall components are likely to be lower 

than the strengths from the pushover analysis. This is because the shear strengths of PGM walls 

can be significantly affected by the loading history. The amount of reduction in strength under an 

earthquake scenario will depend on the number and amplitude of displacement cycles the structure 
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is subjected to before the walls reach their peak strengths. Therefore, the values of the strength 

ratios shown in Table 6.10 through Table 6.13 are expected to be higher when the structure is 

subjected to an earthquake excitation.  

6.6 Summary and Conclusions 

This chapter presents an experimental and numerical study on the seismic performance of 

a one-story partially grouted reinforced masonry building that had improved design details. It was 

the second building specimen tested on a shake table for the study of PGM wall systems. The first 

building (Specimen 1) represented the current masonry design and construction practice in the 

U.S. for areas of low to moderate seismicity. Both buildings had the same geometry but different 

design details. Specimen 1 had horizontal bond beams and single grouted vertical cells, all of 

which contained a #4 bar. During testing, the building developed a sufficient base shear capacity; 

however, it failed in a very brittle manner as soon as the drift became larger than 0.4%. The 

objective of the second shake-table test structure was to evaluate the improved design details aimed 

to enhance the ductility of the structure. Specimen 2 was reinforced with double grouted vertical 

cells instead of the traditional single grouted vertical cells. Each vertical cell contained a #3 bar.  

Furthermore, in addition to the horizontal bond beams, as used in Specimen 1, joint reinforcement 

was placed in every bed joint. Although joint reinforcement is allowed by the code and used in 

practice, its effectiveness in improving seismic performance has not been investigated thoroughly. 

The shake-table testing of Specimen 2 was performed with a sequence of ground motions 

of progressively increasing intensity. The structure was tested up to a roof drift ratio of 1.1% and 

behaved in a relatively ductile manner without sudden drops in the lateral resistance. It developed 

a base shear capacity that was 18% higher than the capacity reached by Specimen 1. During the 

testing, significant sliding was observed along the mortar joints of the ungrouted panels and fine 
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cracking in the ungrouted units. The double grouted cells behaved in a flexure-dominated manner. 

Horizontal cracks related to flexure were formed at distinct locations along the height of the 

grouted cells and high tensile strains were registered by the strain gages attached on the vertical 

bars. At some locations, the recorded strains exceeded the value of 0.02. During the last motion of 

testing, in which the peak roof drift was reached, diagonal cracks started to form in some of the 

vertical grouted cells. Overall, the structure developed a superior performance compared to 

Specimen 1 and behaved like an RC frame with a weak infill.  

The behavior of the test structure has been further studied with nonlinear FE analyses. The 

FE model developed for Specimen 2 was subjected to a sequence of motions obtained from the 

shake-table tests. The results show that the model can predict reasonably well the response 

histories, load capacity, and damage pattern observed in the testing sequence. The model was used 

to investigate the influence of the loading history on the response of the structure. Nonlinear 

pushover analyses as well as an additional time-history analysis using a single ground motion of 

high intensity were conducted. The results show that the lateral load resistance of the structure is 

influenced by the number and amplitude of the displacement cycles that the structure experiences. 

In the pushover analyses, the model develops a capacity that is 40% higher than that developed in 

the time-history analysis using a sequence of ground motions. Under a single high-intensity motion 

record, the model reaches a strength that is 18% higher than that under a sequence of ground 

motions.  

Further analyses have been performed to demonstrate the influence of double grouted 

vertical cells and joint reinforcement on the seismic behavior of the structure. The results show 

that the superior performance observed in the shake-table test of Specimen 2 (compared to 

Specimen 1) is mainly attributed to the double grouted cells. The joint reinforcement may have 
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some beneficial influence by restraining the opening of cracks during the post-peak regime of the 

response. In particular, the pushover analyses indicate that joint reinforcement also contributes the 

shear strength. The effect of joint reinforcement has been also investigated for a structure that has 

single grouted vertical cells. It has been found that joint reinforcement is more beneficial when 

used with single grouted vertical cells than with double grouted cells for this structure. The 

numerical results are further used to assess the accuracy of the shear-strength equation of TMS 

402 (2016). For most of the cases considered, with or without joint reinforcement and with single 

or double vertical grouted cells, the shear strengths of the wall components calculated with the 

code equation are lower than the strengths given in the pushover. However, it should be noted that 

the code equation is evaluated with results from pushover analyses. Under an earthquake excitation 

the load capacity of the wall components can be lower due to the cyclic deterioration of the wall 

resistance. 
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Table 6.1 Average compressive strengths obtained from material samples of Specimen 2. 

Sample  Strength 
(ksi) Sample  Strength 

(ksi) Sample  Strength 
(ksi) Sample  Strength 

(ksi) 

Mortar 
cylinder 3.7 Grout 

prism 4.8 Ungrouted 
prism 1.5 Concrete 

footing 6.3 

Grout 
cylinder 4.7 Grouted 

prism 2.4 CMU block 3.2 Concrete 
roof 3.7 

 

Table 6.2 Average properties of the reinforcement of Specimen 2. 

Reinforcement fy (ksi) fu (ksi) εu 

Vertical bars #3 65.5 104.2 0.11 

Horizontal bars #4 66.3 97.2 0.12 

Joint reinforcement 70.0 75.0 0.06 
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Table 6.3 Summary of structural response of Specimen 2 during the tests. 

Motion 
No. Test ID 

Specimen 
period  

after test 
(s) 

Eff.  
Intensity 

Ieff 
(x MCE) 

PGA 
(g) 

Peak 
 roof 
accel. 

(g) 

Peak  
roof  
drift  
ratio 
(%) 

Peak  
base  
shear 
(kips) 

1 EC1940 
63%-A 0.068 0.31 0.43 -0.53 -0.01 104.6 

2 EC1979 
36%-A 0.068 0.34 0.43 0.56 -0.01 -110.9 

3 EC1940 
84%-A n.a. 0.38 0.59 -0.72 0.02 140.9 

4 EC1940 
63%-B n.a. 0.35 0.42 -0.63 n.a. 123.9 

5 EC1979 
36%-B 0.070 0.36 0.41 0.68 -0.01 -134.3 

6 EC1940 
63%-C n.a. 0.46 -0.52 -0.71 0.03 139.2 

7 EC1979 
36%-C 0.088 0.59 0.43 1.09 -0.04 140.3 

8 EC1979 
48%-A 0.090 0.69 0.54 1.28 -0.06 -251.5 

9 EC1940 
84%-B 0.108 0.89 -0.66 -1.48 0.08 290.9 

10 EC1979 
72%-A 0.140 1.05 1.13 1.68 -0.14 -331.5 

11 EC1979 
72%-B n.a. 0.82 0.78 1.43 -0.14 -281.3 

12 EC1979 
72%-C 0.146 0.81 0.76 1.45 -0.15 -285.1 

13 EC1979 
86% 0.166 0.94 0.89 1.56 -0.18 -308.2 

14 EC1979 
108% 0.185 1.08 1.06 1.66 -0.24 -327.3 

15 
EC1979 
122%-

A 
0.249 1.34 1.19 1.71 -0.34 -336.6 

16 EC1979 
137% 0.352 1.52 1.27 -1.56 -0.60 308.1 

17 
EC1979 
122%-

B 
0.398 1.24 1.06 1.31 -1.02 -258.0 

Note: Test ID indicates the scaling of the original record in addition to the similitude scaling. The 
letters A, B, or C next to the percentage indicates the 1st, 2nd, and 3rd time the same motion was 
applied. 
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Table 6.4 Material parameters for smeared-crack shell elements in the model of Specimen 2 (see 
Figure 2.8 for the parameter definitions). 

Shells 
elements fm (ksi) fo (ksi) Em (ksi) ft (ksi) εο εu 

Net  
width 
(in) 

Grouted 
masonry 2.39 1.59 1434 0.40 0.003 0.040 7.625 

Ungrouted 
units 1.54 1.03 924 0.40 0.003 0.015 2.8 

 

Table 6.5 Material parameters of cohesive-crack interface elements in the model of Specimen 2 
(see Section 2.5.2 for the parameter definitions). 

Interface 
elements 

Dnn / Dtt  
(ksi/in) 

so  
(ksi) μο / μr ro / rr  

(ksi) 
GfI  

(kips/in) 
GfII  

(kips/in) 
ζdil,o / 
ζdil,r 

do  
(in) 

Net  
width 
(in) 

Grouted 
masonry 5000 0.4 1.4 / 

1.0 
0.05 / 
0.01 0.0004 0.004 0.4 / 

0.001 0.4 7.625 

Ungrouted 
units  5000 0.4 1.2 / 

1.0 
0.05 / 
0.01 0.0004 0.004 0.2 / 

0.001 0.2 2.8 

Mortar 
joints 300 / 125 0.1 0.95 / 

0.85 
0.02 / 
0.01 0.0002 0.002 0.10 / 

0.001 0.035 2.5 (head) / 
2.13 (bed)  

Base 
interface 5000  0.4 1.5 / 

1.5 
0.05 / 
0.01 0.0004 0.004 0.4 / 

0.001 0.4 7.625 

 

Table 6.6 Material parameters for beam elements representing reinforcing steel in the model of 
Specimen 2 (see Section 2.6 for the parameter definitions). 

Size  fy (ksi) fu (ksi) Es (ksi) εsh (εsh1, fsh1) εu Dcr 

Vertical: #3 65.5 104.2 29000 0.01 (0.03, 84) 0.11 0.55 
Horizontal: #4 66.3 97.2 29000 0.01 (0.03, 84) 0.12 0.55 
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Table 6.7 Material properties of bond-slip/dowel-action interface elements in the model of 
Specimen 2 (see Section 2.7.3 for parameter definitions). 

Masonry 
compressive 

strength used 
for bond 

strength (ksi) 

Confinement 
condition 

Grout 
compressive 

strength 
 used for 

dowel 
 strength (ksi) 

Displacment 
parameters 
for dowel 
model law 
d1 / du (in) 

2.39 Confined 4.8 0.03 / 0.06 

 

 

Table 6.8 Material parameters for beam elements and bond-slip/dowel action interface elements 
of the joint reinforcement in the model of Specimen 2. 

Wire  
diameter 

(in) 
fy (ksi) 

Mortar 
strength, fmor 

(ksi) 

Bond  
strength 

(ksi) 

0.1875 71 3.7 0.073 

 

 

 

Table 6.9 Load capacities reached in the pushover analyses of the four design alternatives. 

Loading 
direction 

Lateral load capacity (kips) 

DG/JR DG SG/JR SG 

Positive 464.5 441.2 337.8 269 

Negative -461.5 411.2 358.6 310 
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Figure 6.1 Configuration and wall components of the test structure. 
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Figure 6.2 Reinforcement details of Specimen 2. 
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Figure 6.3 Construction of Specimen 2. (a) Roughening of footing surface and dowel bars in 
Main Walls; (b) ladder-type joint reinforcement embedded in a mortar joint; (c) prefabricated 

joint reinforcement segments at a T-wall; (d) construction of W4; (e) construction of W5. 
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Figure 6.4 Locations of strain gages at the south wall of Specimen 2. 

 

 

Figure 6.5 Earthquake records used for testing Specimen 2 and scaled to the DE after the 
similitude scaling is applied. 



275 
 

 
Figure 6.6 Ground motion and structural period change of Specimen 2. (a) Acceleration response 

spectra of Motion 8 and 16; (b) change of structural period. 

 

 

 
Figure 6.7 Crack pattern of Specimen 2 in south wall and flanges. 
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Figure 6.8 Damage in Specimen 2 at the end of testing. 
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Figure 6.9 Global response of Specimen 2. (a) Time history of roof drift ratio during Motion 17; 

(b) hysteresis curves for Motions 14 through 17; (c) comparison with Specimen 1. 
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Figure 6.10 Yielding of reinforcement at the locations of the strain gages of Specimen 2. 
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Figure 6.11 Strains in vertical bars of Specimen 2 measured during Motions 15 and 16. 

 

 

 



281 
 

 
Figure 6.12 Finite element model of Specimen 2. 
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Figure 6.13 Comparison of numerical and experimental results for: (a) Motion 13; (b) Motion 

14; and (c) Motion 15. 
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Figure 6.14 Comparison of numerical and experimental results for: (a) Motion 16; and (b) 

Motion 17. 
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Figure 6.15 Damage shown by the time-history analysis. Deformations are magnified by 70 
times in (a) and (b), and by 5 times in (c), and (d). The joint reinforcement is not shown for 

clarity. 
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Figure 6.16 Strains developed in the vertical bars of the model during the time-history analysis 

with Motion 17. 
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Figure 6.17 Comparion of pushover load-displacement response of the DG/JR (Specimen 2), 

DG, SG, and SG/JR designs. 

 
Figure 6.18 Damage in the pushover analysis of the SG design at: (a) the peak strength in the 

negative direction (magnified by 15); (b) the peak strength in the positive direction (magnified 
by 70); (c), (d) at drift 1.50% in the negative and positive direction (magnified by 4). 
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Figure 6.19 Damage in the pushover analysis of Specimen 2 at: (a), (b) the peak strength in the 
negative and positive direction (magnified by 15); (b); (c), (d) drift 1.50% in the negative and 

positive direction (magnified by 4). Locations of joint reinforcement rupture are indicated. 

 

 

Figure 6.20 Damage in the pushover analysis of the SG/JR design at: (a), (b) the peak strength in 
the negative and positive direction (magnified by 15); (b); (c), (d) drift 1.50% in the negative and 

positive direction (magnified by 4). Locations of joint reinforcement rupture are indicated. 
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Figure 6.21 Damage in the pushover analysis of the DG design at: (a), (b) the peak strength in 
the negative and positive direction (magnified by 15); (b); (c), (d) drift 1.50% in the negative and 

positive direction (magnified by 4). 

 

 

 

 

 

 

 

 

 

 



289 
 

 
Figure 6.22 Comparison of the SG, SG/JR, DG, and DG/JR designs under 1940 El Centro scaled 

by a factor of 2.3. 
 

 



290 
 

 
Figure 6.23 Damage at the peak base shear of SG, SG/JR, DG, and DG/JR designs under 1940 El 

Centro scaled by a factor of 2.3 (deformation magnified by 40 times). 

 

 
Figure 6.24 Damage at the peak roof drift of SG, SG/JR, DG, and DG/JR designs under 1940 El 

Centro scaled by a factor of 2.3 (deformation of DG and DG/JR magnified by 4 times). 
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Figure 6.25 Damage at the end of the analysis under under 1940 El Centro scaled by a factor of 

2.3 for the designs of: (a) SG and (b) SG/JR. 

 
Figure 6.26 Shear and axial forces of the wall components in DG/JR, DG, SG, and SG/JR.  
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7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

7.1 Summary 

This dissertation presents a numerical and experimental study on the seismic behavior of 

modern reinforced masonry (RM) structures. Both fully grouted and partially grouted masonry 

(PGM) structures have been examined. Objectives of this research were to develop numerical tools 

that can predict the response of RM structures under rare, high intensity earthquakes, and to 

investigate the seismic performance of PGM building systems through large-scale shake-table tests 

and numerical analyses. 

A detailed finite element (FE) modeling framework has been developed for the simulation 

of the inelastic response of RM structures under severe earthquake loading through collapse. The 

framework has been developed with the goal to predict the response of wall components 

developing flexure-dominated or shear-dominated modes of failure and to simulate the seismic 

behavior of existing building systems in a refined manner. To this end, smeared-crack shell 

elements are combined with cohesive-crack interface elements to capture the compressive 

behavior and tensile fracture of masonry. A robust and numerically efficient orthotropic concrete 

law has been implemented to be used with the shell elements, while a previously proposed 

cohesive-crack constitutive law has been adopted for the interface elements. The cohesive-crack 

law adopted is able to represent the opening and closing of cracks in masonry or mortar joints and 

the sliding along cracks in a realistic fashion. Reinforcing bars are modeled with fiber-section 

beam elements with material and geometric nonlinearities to capture bar buckling in a natural 

manner. A material law that can reproduce the uniaxial behavior of steel and accounts for rupture 
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due to low-cyclic is adopted. The reinforcement beam elements are attached to the masonry shell 

element through interface elements that simulate the bond-slip and dowel-action effects. An 

existing bond-slip interface element formulation is improved to account for large rigid-body 

rotations than may occur in analyses. The smeared-crack shell elements and cohesive-crack 

interface elements account for large rigid-body rotations as well. The uniaxial bond-slip law 

adopted was originally developed for reinforcing bars embedded in well-confined concrete. In this 

study, assumptions are made to indirectly account for the opening of splitting cracks and the 

subsequent loss of the bond resistance for bars embedded in masonry, which normally has 

unconfined conditions. A new element removal procedure is introduced to help avoid numerical 

problems created by element distortion and unrestrained degrees of freedom and to simulate severe 

masonry crushing, bar buckling, and bar rupture in an accurate manner. The FE program LS-

DYNA is used as the analysis platform in which the aforementioned material models, interface 

elements, and element removal procedure have been implemented as user-defined features. 

The proposed modeling scheme has been validated with data from several quasi-static 

cyclic tests on shear-dominated and flexure-dominated wall segments. The values used for the 

parameters of the constitutive laws have been reported in detail and were assigned in a consistent 

manner throughout the analyses. As in a FE model involving softening, strain localization can 

occur. This results in the concentration of masonry crushing and subsequent bar buckling in the 

first row of shell elements above the base of a wall failing in flexural. To circumvent this issue, an 

improved element removal scheme is developed so that the unsupported length of the bars as a 

result of masonry crushing can be specified a priori as a modeling parameter. The use of the 

proposed scheme has been demonstrated in the analyses of flexure-dominated cantilever wall tests. 

Walls with lap splices within the plastic hinge region have also been examined. 



294 
 

The behavior of the proposed modeling framework under dynamic loading has been 

assessed with data from the shake-table tests of two RM wall structures. The first structure had 

two stories, door and window openings, and was tested by Mavros et al. (2016) up to a first-story 

drift ratio of 1.9%. The second structure had one story, two T-walls, and six rectangular walls 

perpendicular to the direction of the applied motion and was tested by Cheng et al. (2019), 

including the author of this dissertation, to the verge of collapse with a roof drift exceeding 13%. 

The damage of the latter structure primarily involved wide diagonal cracks, crushing, and rupture 

of several horizontal bars.  

The proposed modeling framework has been applied to gain insight into the seismic 

performance and collapse potential of a two-story commercial archetype building which was 

designed (by KL&A Inc.) for a high seismic zone following the current code provisions and design 

practice. The archetype building had six RM walls to resist lateral forces and gravity loads and a 

system of steel beams and columns that were designed to carry only gravity loads. The FE model 

developed for the structure has been subjected to three bidirectional earthquake records that have 

been scaled to the level of the maximum considered earthquake (MCE) and two times the MCE.  

The FE modeling scheme has been extended for the analyses of PGM walls. A new zero-

thickness interface element has been developed to model the mortar joints in a discrete fashion and 

to also model discrete cracks though the ungrouted concrete blocks. The new interface element 

accounts for the cavity between the face shells of a concrete unit; thereby, a single element can be 

used to model contact along the two parallel face shells. A co-rotational element coordinate system 

has been adopted for the element to handle large rigid-body rotations. The modeling scheme has 

been validated with results from the quasi-static cyclic tests of two rectangular PGM walls and 

two wall assemblies that had wall flanges and a window opening. One of the wall assemblies had 
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also joint reinforcement in the form of steel wires embedded in the horizontal mortar joints. The 

joint reinforcement is represented with beam elements that are connected to the masonry shell 

elements through bond-slip/dowel-action interface elements. The models are able to predict 

reasonably well the experimental response and failure mechanisms. 

The seismic behavior of PGM wall systems has been studied through large-scale shake-

table tests and additional numerical analyses. Two full-scale, one-story, PGM structures were 

tested on the shake table of the NEES facility at UC San Diego. The two structures had the same 

wall geometry, but different reinforcement details. The first structure, Specimen 1, was tested to 

acquire a better understanding on the seismic performance of a PGM building built according to 

current design provisions and practice. The structure was designed according to the current code 

provisions in the U.S. for areas of moderate seismicity and had widely spaced vertical grouted 

cells and bond beams. The design of the masonry walls was based on an elastic analysis and the 

assumption that the capacity of the wall system would be reached when one of the shear-critical 

wall components first reached its shear capacity. During the tests, under an MCE-level motion, the 

structure developed a response dominated by base sliding. After base sliding was restrained, in 

Phase 2 of testing, the structure reached a peak base shear that was 2.8 times the design base shear. 

In Phase 2, the structure was able to withstand four motions with effective intensities above the 

MCE-level, including two motions with an effective intensity above two times the MCE-level. 

Nonetheless, in a subsequent motion, the structure exhibited significant load degradation at a roof 

drift of about 0.4% due to shear cracks that propagated through the vertical grouted cells. The load 

drop was followed by the severe crushing and detachment of the ungrouted masonry units. 

The second structure was tested to assess alternative reinforcing details aimed to result in 

a more ductile response. Specimen 2 had stronger vertical grouted elements, each consisting of 
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two side-by-side (double) grouted vertical cells. Furthermore, joint reinforcement with 3/16” 

longitudinal wires was placed in every horizontal mortar joint in addition to the horizontal bond 

beams, which were also present in Specimen 1. The structure was tested up to a roof drift of 1.1% 

showing gradual load degradation and no sudden shear failures. It developed a peak base shear 

resistance that was 18% higher than the capacity reached by Specimen 1.  

The behavior of the two structures was further studied with nonlinear FE analyses. FE 

models were developed for the two structures and validated with the results from the shake-table 

tests. The models were used to understand the distribution of the lateral resistance among the wall 

components and to assess the shear-strength equation of TMS 402 (2016). Additional time-history 

and nonlinear static analyses were conducted to evaluate the influence of the continuous bond 

beams below the window openings, the double grouted vertical cells, and the joint reinforcement 

on the seismic performance of the test structures.  

7.2 Main Observations and Conclusions 

7.2.1 Finite element modeling 

The detailed FE modeling framework developed in LS-DYNA has been extensively 

validated with results from quasi-static tests of wall segments and wall assemblies, and results 

from shake-table tests of fully and partially grouted masonry wall systems. The detailed models 

presented in this study capture the failure behavior of RM masonry structures with details beyond 

any of the previous works. The results demonstrate that the proposed modeling scheme can predict 

the cyclic load-displacement response of RM wall segments and systems, including the peak lateral 

load capacity, load degradation, and damage pattern, with a satisfactory level of accuracy. The 

models were also able to predict severe failures such as the rupture of several horizontal reinforcing 

bars, which occurred in the second fully grouted shake-table test structure considered, and the 
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extensive crushing and detachment of ungrouted masonry units observed in the final motion of the 

shake-table tests of the first PGM specimen. In addition, the use of geometrically nonlinear beam 

elements for modeling the reinforcing bars helped in capturing the reinforcement buckling 

observed in the tests of flexure-dominated walls. The validation analyses are also valuable in 

determining the values of material parameters that are otherwise hard to obtain from tests on 

material samples, such as the friction coefficient along a crack, the fracture energy under tension, 

or the parameters controlling the dilatation of a mortar joint. Furthermore, the proposed modeling 

scheme in LS-DYNA has been proven to be robust under static and dynamic loading scenarios. 

The modeling approach together with the proposed values for the material parameters can 

be used as predictive tools. The framework can be applied to evaluate the seismic performance of 

existing RM structures, whose behavior may be different than what was assumed in the design, to 

assess the design-code provisions, and to calibrate or validate simplified models. The numerical 

case study of the two-story commercial building archetype revealed that the structure is able to 

develop a base shear capacity that was three times the design base shear. This is because the design 

considered the RM shear walls as cantilevers, while in reality, the rotational restraints exerted by 

the floor diaphragm at the top of the first-story walls reduce the shear-span ratio of the walls and 

increased the shear capacity. Nonetheless, the structure performed well in the analyses. The walls 

developed either a flexure-dominated response or a response governed by combined flexure and 

shear. The structure collapsed under the most demanding record that has been scaled to two times 

the MCE. The first-story drift ratio at the moment of incipient collapse exceeds 10%. 

7.2.2 Shake-table tests and analyses of partially grouted masonry wall systems 

 The shake-table tests of the first PGM specimen showed that a PGM system with ordinary 

walls can withstand several MCE-level motions without significant damage because of the 
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overstrength. Although the structure eventually failed in a brittle manner at a roof drift ratio of 

only 0.4%, it was able to retain a significant residual lateral strength which was equal to 50% of 

the peak base shear capacity until the roof drift ratio reached 2.25%. At that point, the local drift 

ratio experienced by the wall components was 4%, which is much higher than that reached in any 

of the previous experimental studies on PGM walls. 

The high overstrength achieved in the tests was due to conservative assumptions and the 

use of an elastic frame model in the design in that the capacity of the structure was assumed to be 

reached when the critical wall component reached the shear capacity in the analysis. However, it 

has been shown that the wall components can maintain a substantial portion of their load capacity 

at displacements beyond the point of their peak load resistance. This allowed different wall 

components to develop significant lateral resistance at the same time, and the resistance continued 

to increase as the axial compressive loads in the walls increased, resulting in a base-shear capacity 

much higher than the design base shear (2.8 times). The nonlinear pushover analysis has also 

showed that a wall component in tension provides only a small portion of the lateral resistance. 

However, within a wall system, a wall component in tension may contribute to a higher axial 

compression in the other wall components and therefore it may indirectly enhance the shear 

resistance of the system. Such effects cannot be captured by elastic analyses. Conservative the 

assumptions made in the design of Specimen 1 appear to be adequate considering the brittle 

behavior exhibited in the test. The overstrength factor of 2.8 is close to the value of 2.5 suggested 

by ASCE/SEI 7 for ordinary load-bearing RM shear walls. 

The continuous bond beams introduced below the window openings in PGM walls are 

found to be beneficial to the performance of the building. This was indicated by the large strains 

(exceeding 2%) registered in the horizontal reinforcement of Specimen 1 during the last motion of 
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the test and was further verified through a parametric study conducted with the FE model. The 

model also shows that the benefit of a bond beam in the first course above the footing is negligible 

if sliding does not occur. 

The test results of Specimen 1 also showed that lightly reinforced PGM wall structures can 

be prone to base sliding if their foundation surface is not intentionally roughened and their weight 

is not sufficiently high. It was found that the shear-friction equation in TMS 402 (2016) predicts 

well the shear-friction resistance deduced from the test data (before base sliding was restrained) if 

a coefficient of friction of 0.7 is assumed. 

The design proposed for the second PGM test structure enhanced the performance in terms 

of lateral strength and ductility as compared to Specimen 1. The double grouted vertical cells 

introduced in Specimen 2 developed a flexure-dominated response. Horizontal cracks related to 

flexure formed at distinct locations along the height of the vertical cells inducing high tensile 

strains in the vertical bars. Uniform cracks developed in the ungrouted masonry and significant 

sliding was observed between the masonry units in the ungrouted panels. No crushing of masonry 

units occurred. In the tests, the joint reinforcement may have been beneficial in restraining the 

opening of cracks in ungrouted masonry. Nonetheless, its contribution during the later and most 

demanding motions of the sequence is questionable because the mortar joints had been 

significantly weakened from prior motions of lower intensity.  

The pushover analyses and the time-history analyses conducted with a single earthquake 

motion reveal that joint reinforcement can contribute to the lateral load resistance of the structure 

and can reduce the width of the shear cracks in ungrouted masonry. However, the benefit from the 

placement of joint reinforcement is shown to be higher when used with single grouted vertical 

cells. The results also indicate that the loading history can influence the lateral load resistance of 
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a PGM structure. As discussed in Chapter 6, higher capacities are achieved in the monotonic 

pushover analyses than in the time-history analyses.  

With the assumption that the pushover analyses are accurate, the shear-strength equation 

of TMS 402 (2016) appears to be adequate for different design details, including designs with 

single grouted vertical cells with and without joint reinforcement, and designs with double grouted 

vertical cells with and without joint reinforcement. In general, the shear strength of the wall 

components calculated with the code equation is lower than those given by the FE model, except 

for a few cases where the wall components are subjected to tension. Furthermore, the code equation 

appears to be more conservative for wall components with double grouted vertical cells. The 

results also indicate that the wall flange may improve the shear resistance when it is in 

compression. 

7.3 Recommendations for Future Research 

In spite of the fact that the shear-strength equation in TMS 402 (2016) has been found to 

be adequate for PGM when compared to the FE analysis results, further studies are needed to 

understand why it overestimates the shear capacities of PGM wall components tested in some other 

studies. In particular, the influence of the spacing of grouted cells, wall aspect ratio, boundary 

conditions, and wall flanges should be investigated. The effect of the loading history on the shear 

strength of PGM walls is another factor that should be further examined experimentally and 

analytically. 

Simplified methods should be developed to predict the lateral load capacity of a PGM 

system in an accurate and efficient manner. The use of a strut-and-tie approach can be a viable 

means to evaluate the load capacity of a perforated wall system. Results from the shake-table tests 

and FE models can be used to validate such an approach. 
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In this dissertation, the seismic behavior of modern PGM wall systems under uniaxial base 

excitation has been studied. The behavior of PGM structures under bidirectional earthquake 

excitations should also be investigated. The proposed modeling scheme can be employed to 

provide insight into that and can be used as a tool for the design of future shake-table tests.  

Tests should also be conducted to characterize the cyclic bond-slip and dowel-action 

behaviors of reinforcing bars embedded in masonry. The influence of the bar size, grout strength, 

and clear cover should be among the variables to consider. Furthermore, the bond-slip behavior of 

joint reinforcement embedded in mortar joints has not been studied so far and needs to be 

investigated. Having such data will improve the design-code provisions and lead to more accurate 

and reliable numerical models. 

The verification analyses presented in this dissertation are conducted without an 

accompanying sensitivity study. Such a study will be desirable to demonstrate the influence of 

various material parameters and the element size on the numerical results. 
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