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Estimating the statistical power to detect set-size effects in 
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2Department of Psychology, University of California San Diego, San Diego, CA, USA

Abstract

The contralateral delay activity (CDA) is an event-related potential component commonly used to 

examine the online processes of visual working memory. Here, we provide a robust analysis of the 

statistical power that is needed to achieve reliable and reproducible results with the CDA. Using 

two very large EEG datasets that examined the contrast between CDA amplitude with set sizes 2 

and 6 items and set sizes 2 and 4 items, we present a subsampling analysis that estimates the 

statistical power achieved with varying numbers of subjects and trials based on the proportion of 

significant tests in 10,000 iterations. We also generated simulated data using Bayesian multilevel 

modeling to estimate power beyond the bounds of the original datasets. The number of trials and 

subjects required depends critically on the effect size. Detecting the presence of the CDA—a 

reliable difference between contralateral and ipsilateral electrodes during the memory period—

required only 30-50 clean trials with a sample of 25 subjects to achieve approximately 80% 

statistical power. However, for detecting a difference in CDA amplitude between two set sizes, a 

substantially larger number of trials and subjects were required; approximately 400 clean trials 

with 25 subjects to achieve 80% power. Thus, to achieve robust tests of how CDA activity differs 

across conditions, it is essential to be mindful of the estimated effect size. We recommend 

researchers designing experiments to detect set-size differences in the CDA collect substantially 

more trials per subject.
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1 | INTRODUCTION

The retention of information for ongoing visual cognition is known as visual working 

memory (VWM). Although our visual perception appears to be extremely rich, the capacity 

for VWM is surprisingly limited to approximately three items’ worth (Adam et al., 2017; 

Cowan, 2001; Luck & Vogel, 1997). With strong associations to measures of fluid 

intelligence (Fukuda et al., 2010; Unsworth et al., 2015) and overall cognition (Luck & 

Vogel, 2013), there has been continued interest from researchers in understanding the factors 

that influence VWM capacity.

A popular tool for examining capacity limits in VWM is the contralateral delay activity 

(CDA), an event-related potential (ERP) component measured using electroencephalography 

(EEG). The CDA is a sustained negative wave that emerges across the posterior and occipital 

electrodes during the retention period of a VWM task (Luria et al., 2016; Vogel & 

Machizawa, 2004). This wave tracks closely with VWM storage (Feldmann-Wüstefeld et al., 

2018; Hakim et al., 2019), increasing in amplitude with the set size of the memory display 

until it plateaus at the VWM capacity limit of approximately three to four items (Fukuda et 

al., 2015; Ikkai et al., 2010; Vogel & Machizawa, 2004). This memory load signal has 

proven to be useful as a window into online VWM processes that cannot be easily measured 

with a behavioral response at the end of the trial. For example, the CDA has been used to 

examine the influence of attention and long-term memory on working memory maintenance 

(Asp et al., 2019; Brady et al., 2016; Göddertz et al., 2018; Heuer & Schubö, 2016; Kuo et 

al., 2012; Quirk et al., 2020; Salahub et al., 2019; Williams & Woodman, 2012; Xie & 

Zhang, 2017) and to demonstrate the role of VWM in guiding visual search (Carlisle et al., 

2011; Emrich et al., 2009; Emrich et al., 2010; Gunseli et al., 2014; Williams & Drew, 2020; 

Woodman & Arita, 2011), in mental rotation (Prime & Jolicoeur, 2009), in attentional 

control (Vogel et al., 2005), in multiple object tracking (Drew et al., 2011), and in grouping 

(Balaban & Luria, 2015; Rabbitt et al., 2017). Likewise, the CDA has been used to track 

changes to working memory performance in clinical populations (Lee et al., 2010; Leonard 

et al., 2013; Meconi et al., 2014; Qi et al., 2014; Salahub & Emrich, 2019; Spronk et al., 

2013; Stout et al., 2013; Wiegand et al., 2016; Zaehle et al., 2013) and across the lifespan 

(Astle et al., 2014; Duarte et al., 2013; Jost et al., 2011; Pagano et al., 2015; Sander et al., 

2011; Spronk et al., 2012). In sum, load-dependent changes in CDA amplitude have been 

widely replicated, and the CDA has been fruitfully used to address a wide range of basic and 

applied questions. Nevertheless, in this article, we turn a critical lens on the potential 

methodological issue which may impede our ability to observe reliable effects with the 

CDA.

The effective use of the CDA, however, depends critically on collecting sufficient quantities 

of data to ensure robust estimates of the component. More broadly, there is a notable cause 

for concern that the majority of the published scientific literature may be false, due to the 

lack of statistical power leading to a high prevalence of false-positive findings (Ioannidis, 

2005). Estimates of statistical power have been worryingly low—approximately 24% across 

science in the past 60 years (Smaldino & McElreath, 2016) and between 8% and 31% across 

neuroscience disciplines (Button et al., 2013), much lower than the recommended level of 

80%. Many factors including the number of trials, the number of subjects, and effect size 
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influence statistical power and reliability in ERP studies (Boudewyn et al., 2018; Clayson et 

al., 2019; Thigpen et al., 2017) and analysis of ERP datasets involves many researcher 

degrees of freedom and can lead to bogus significant ERP effects (Luck & Gaspelin, 2017). 

Thus, to conduct robust and replicable research using the CDA, it is critical to explicitly 

consider the number of subjects and trials that are needed to observe the effect of interest. 

This is the only way for CDA studies to provide a robust platform for theory-building in 

cognitive neuroscience.

To this end, we present estimates of statistical power at various numbers of trials and sample 

sizes for the presence of the CDA itself, as well as the presence of a set-size difference in the 

CDA. To achieve this, we conducted a subsampling analysis of two very large datasets that 

contain measures of CDA amplitudes at various set sizes; Hakim et al. (2019) and Unsworth 

et al. (2015). This approach enables the visualization of power contours that show the 

relationship between the number of subjects and trials and expected statistical power (Baker 

et al., 2020) and has also been recently applied by others (Adam et al., 2020; Von Gunten & 

Bartholow, 2019; Westfall et al., 2014; Xu et al., 2018). Further, we use these datasets to 

build predictive models to extrapolate the power beyond the limits of the aforementioned 

datasets. We supplement these results with an interactive app (https://

williamngiam.shinyapps.io/CDAPower) that allows users to estimate their power to detect 

set-size differences in the CDA. This will allow researchers to optimize their parameters for 

their studies and justify their sample sizes.

2 | METHOD

2.1 | Datasets

The following datasets were selected as they contain EEG data on a lateralized change-

detection task at multiple set sizes collected from a substantial number of subjects and trials

—necessary to measure the CDA and reliably estimate statistical power.

2.1.1 | Unsworth et al. (2015)—The Unsworth et al. (2015) dataset contained 183 

participants recruited from the University of Oregon community. The participants completed 

a battery of working memory and fluid intelligence tasks. Here, we analyzed the EEG data 

recorded during the lateralized color change-detection task. On each trial of the lateralized 

color change-detection task, participants were cued to one side of the screen. Two or six 

colored squares were then presented on both sides of the screen for 500 ms before a 900 ms 

retention interval. Each participant completed a total of 400 trials (200 at both set size 2 and 

set size 6). EEG data were recorded from 22 tin electrodes (Electro-Cap International, 

Eaton, OH) with impedance values kept below 10kΩ. The CDA was recorded at the 

International 10/20 sites PO3, PO4, O1, O2, OL, OR, T5 and T6, and was calculated by 

averaging the difference in amplitude between the contralateral and ipsilateral sides of the 

to-be-remembered hemifield of each electrode pair from 400 to 1,000 ms after the offset of 

the memory array. Trials were inspected and rejected if they contained eye movements, 

blinks, muscle noise, or blocking. We excluded subjects with fewer than 170 remaining trials 

per set-size condition after artifact rejection, leaving 135 participants for our analysis.
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2.1.2 | Hakim et al. (2019)—We collapsed the data collected from 97 participants (73 

unique) of the University of Chicago community across both experiments in the Hakim et al. 

(2019) dataset. Participants performed either a color change-detection task (in 2 sub-

experiments; Experiment 1) or location change-detection task (in two sub-experiments; 

Experiment 2). On each trial, participants were cued to one side of the screen. Two or four 

stimuli—colored squares in Experiment 1 or circles in Experiment 2—were presented in 

both hemifields for 150 ms before a 1,300 ms retention period. As Hakim et al. (2019) found 

no effect of sub-experiment across the study, we collapsed the data across sub-experiments 

in these analyses as they did. EEG data were recorded from 30 active silver electrodes 

(actiCHamp, Brain Products, Munich, Germany) with impedance values kept below 10kΩ. 

The CDA was measured at the International 10/20 sites O1, O2, PO3, PO4, PO7, PO8, and 

P7, P8 for the color change-detection trials (Experiment 1) and the location change-detection 

trials (Experiment 2); 400 trials at set sizes 2 and 4 in both experiments. The CDA was 

calculated by taking the difference between the contralateral and ipsilateral electrodes 

relative to the to-be-remembered hemifield, then averaging across all trials and electrode 

pairs during the time window from 400 to 1,000 ms after the offset of the memory array. 

Trials were inspected and rejected if they contained eye movements, blinks, muscle noise, or 

blocking. We excluded subjects with fewer than 220 trials per set-size condition after artifact 

rejection, leaving 64 participants.

2.2 | Analysis

With each dataset, we conducted a subsampling analysis to estimate the statistical power at 

various combinations of trials and subjects to detect two effects—the presence of the CDA at 

the tested set sizes, and the difference in CDA amplitude between the tested set sizes. This 

entailed randomly sampling a given number of trials from a given number of subjects from 

the dataset and conducting a paired-samples t test on that subsampled data for the effects. At 

each combination of the number of trials and subjects, the proportion of statistically 

significant tests from 10,000 iterations was used as our estimate of statistical power.

We fit Bayesian multi-level models to each of the datasets to simulate data and estimate 

statistical power beyond the subject and trial bounds of the datasets. It should be noted that 

single-trial data distributions in both datasets were non-normal (there was statistically 

significant kurtosis in the distributions) but Gaussian models still provided overall accurate 

fits (see Results). All analysis code has been uploaded to Open Science Framework. 

Additionally, our results have been summarized using a Shiny app that can be used to 

estimate statistical power to detect the set-size effect.

3 | RESULTS

Estimated statistical power for each of the effects—the presence of the CDA at each set size, 

and the set-size difference in the CDA—is presented below as heatmaps. To anticipate our 

results, the presence of the CDA does not require very many clean trials to detect at standard 

sample sizes, but to detect CDA differences between set sizes requires a much larger number 

of trials and subjects.
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3.1 | Unsworth et al. (2015)

Figure 1 shows the estimated statistical power to detect a significant overall CDA amplitude 

(i.e., significant differences in contralateral vs. ipsilateral activity) in the set size 2 (Mean = 

−0.42μV, SD = 0.44) and set size 6 (Mean = −0.56μV, SD = 0.45) conditions. Thus, to detect 

the presence of the CDA, 25 subjects and approximately 30 clean trials were needed per 

condition to achieve 80% power, a typical standard for a well-powered study (Cohen, 1988). 

However, it required substantially more subjects and trials to achieve acceptable statistical 

power to detect differences in CDA amplitude across set sizes (Mean Difference = −0.15μV, 

SD = 0.44) in CDA amplitude (i.e., set size 2 vs. set size 6). With the maximum number of 

clean trials per condition in our dataset (170 trials), at least 55 subjects were required to 

detect the set-size difference between 2 and 6 in the CDA (Figure 2).

Next, we generated a simulated dataset using Bayesian mixed modeling of the Unsworth et 

al. (2015) dataset to estimate power beyond the ranges of the dataset. Our simulated 

subsampling analysis did not meaningfully deviate from the subsampling of the actual 

dataset, RMSE = 0.0279 (Figure 2c), verifying the validity of the simulation. It should be 

noted that the simulated dataset slightly overestimates the number of subjects and trials 

required to achieve 80% power. As the single-trial distributions are non-normal (kurtosis > 

3), this error in estimated statistical power may be improved by accounting for kurtosis. 

Going beyond the bounds of the Unsworth et al. (2015) dataset, for a typical set size of 25 

subjects, 360 clean trials per condition would be needed to achieve an acceptable statistical 

power of 80% to detect the difference between set size 2 and set size 6 (Figure 3).

3.2 | Hakim et al. (2019) dataset

Figure 4 shows the estimated statistical power to detect a significant CDA amplitude in the 

set size 2 (Mean = −0.39μV SD = 0.44) and set size 4 (Mean = −0.56μV, SD = 0.56) 

conditions. With 25 subjects, a typical sample size for ERP experiments, approximately 40 

to 50 clean trials are needed per condition for each condition to achieve 80% power for 

detecting the presence of the CDA component. Again, substantially more subjects and trials 

are needed to detect the set size difference in CDA, because this is a much smaller effect 

(Mean = −0.17μV, SD = 0.50). With the maximum number of clean trials per condition in 

the dataset (210 trials), at least 45 subjects were required to detect the set-size difference 

between 2 and 4 in the CDA (Figure 5a) with 80% power.

Like with the Unsworth et al. (2015) dataset, our simulated subsampling analysis did not 

meaningfully deviate from the subsampling of the actual dataset, RMSE = 0.0395, but we 

note that the simulated dataset slightly overestimates the number of subjects and trials 

required to achieve 80% power. As the single-trial distributions are non-normal (kurtosis > 

3), this error in estimated statistical power may be improved by accounting for kurtosis. 

Going beyond the bounds of the Hakim et al. (2019) dataset, for a typical set size of 25 

subjects, approximately 390 clean trials per condition would be needed to achieve an 

acceptable statistical power of 80% (Figure 6).
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3.3 | Summary

With these analyses, we have estimated statistical power at various numbers of trials and 

subjects for three effects: the presence of the CDA, a significant difference in CDA between 

set sizes 2 and 6, and a significant difference in CDA between set sizes 2 and 4. The number 

of trials and subjects is clearly dependent on the effect size—to achieve enough power to 

robustly detect a larger effect like the presence of the CDA requires a smaller number of 

clean trials and subjects whereas with smaller effects like the set-size differences in the 

CDA, a significantly larger number of clean trials and subjects is required.

4 | DISCUSSION

As the CDA is a popular tool for studying VWM, it is important to design studies that 

achieve robust levels of statistical power for detecting the effects of interest. Underpowered 

studies contribute to false positives in the scientific literature (Maxwell, 2004). Reliance on 

past studies alone to guide sample sizes may have the undesired effect of perpetuating 

underpowered approaches. Thus, our goal was to provide a rigorous estimate of the number 

of subjects and trials required to achieve robust power by conducting subsampling analyses 

of two large EEG datasets collected during a change-detection task: Unsworth et al. (2015) 

and Hakim et al. (2019). These analyses show that to observe a significant CDA in any set-

size condition (set sizes 2, 4, and 6 in our datasets here), approximately 50 clean trials for a 

typical sample size of 25 subjects is sufficient. However, to achieve the same statistical 

power of 80% for detecting set-size effects in the CDA requires larger sample sizes and 

number of trials than is typically seen in the literature. Our simulations suggest that closer to 

400 clean trials with a sample size of 25 would be required to detect set-size differences in 

the CDA (at least between set size 2 and 4, and between set size 2 and 6). Our figures and 

interactive power calculator (https://williamngiam.shinyapps.io/CDAPower) provide 

researchers a principled method of selecting numbers of subjects and trials to include in their 

CDA experimental design, or to estimate the statistical power of their existing designs.

Our simulations demonstrate that the number of subjects and trials required to achieve robust 

power depends critically on the magnitude of the expected effect to be observed with the 

CDA. Here we quantify that for two classes of effects with different magnitudes—the 

presence of the CDA itself and set-size differences in CDA amplitude. On one end, the effect 

size for the CDA itself is large enough to make it fairly easy to reliably detect it, whereas the 

effect size for the set-size difference in the CDA (at least set size 2 vs. set size 6 and set size 

2 vs. set size 4 comparisons) is much smaller and requires substantially larger sample sizes 

and clean trials collected. This may motivate changes in experimental designs such as 

including a set size 1 condition instead (if the goal of the study allows) as the magnitude of 

the CDA difference will be much larger when comparing to a set size 1 condition and thus 

will require fewer trials or subjects to achieve the same statistical power for detecting a set-

size difference (see Fukuda et al., 2015 for a set-size function of CDA amplitudes). 

However, when the inclusion of a set size 1 condition may not be possible or is not 

informative to the research aims, it may be most expedient to boost power by increasing the 

number of trials collected rather than the number of subjects because collecting EEG data 

take a considerable investment of resources and time per subject from preparing the 
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electrode cap and organizing the subject for the experiment. Note that this recommendation 

is not applicable when the goal is to document individual differences in CDA activity, where 

a higher number of subjects will also be essential once an adequate number of trials has been 

collected.

Our power calculator (https://williamngiam.shinyapps.io/CDAPower) will help users 

estimate a sufficient number of trials and subjects required to detect various effect sizes with 

the CDA. This interactive power calculator (https://shiny.york.ac.uk/powercontours/) is also 

available for researchers to optimize the number of trials or subjects for their design given an 

expected effect size outside of the ones we have estimated here (Baker et al., 2020). Our 

estimations of statistical power serve as a guideline and may not generalize precisely to 

other CDA experiments that examine effects beyond set size and vary in significant ways to 

the datasets we have reanalyzed here. That is, researchers examining condition effects other 

than set size should not automatically carryover the estimates for set-size differences that we 

have presented here for their own experiments. For example, both datasets we subsampled 

from used simple color stimuli in their change-detection tasks. The magnitude of any set-

size effect in the CDA and the trial-to-trial noise may vary with the use of different stimuli, 

differences in task demands, and differences in data quality (e.g., electrode impedance, 

Kappenman & Luck, 2010; electrode type, Laszlo et al., 2014; Mathewson et al., 2017; 

overall data quality, Luck et al., 2019, etc.). Researchers should be mindful of their expected 

effect sizes and subsequent statistical power of their designs, perhaps collecting substantially 

more trials per subject or more subjects to ensure the robustness of their observed effects.
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FIGURE 1. 
(a) Estimated statistical power for observing a significant CDA at set size 2. Number of 

subjects refers to the subsampled sample size and the number of clean trials per condition 

refers to the number of trials following artifact rejection that were sampled. Each 

combination of the number of subjects and clean trials per condition is plotted as a cell in the 

heatmap with its estimated statistical power portrayed by color on the accompanying color 

scale. (b) Estimated statistical power for observing a significant CDA at set size 6
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FIGURE 2. 
(a) Estimated statistical power for observing a significant difference in CDA amplitude 

between set sizes 2 and 6. (b) Simulated statistical power for observing a significant 

difference in CDA between set sizes 2 and 6 (c) The residual of statistical power estimated 

from the actual dataset and estimated from the simulated dataset (actual – simulated)
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FIGURE 3. 
Estimated statistical power for observing a significant difference in CDA amplitude between 

set sizes 2 and 6 from our simulated models
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FIGURE 4. 
(a) Estimated statistical power for observing a significant CDA at set size 2. (b) Estimated 

statistical power for observing a significant CDA at set size 4
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FIGURE 5. 
(a) Estimated statistical power for observing a significant difference in CDA amplitude 

between set sizes 2 and 4. (b) Simulated statistical power for observing the same effect. (c) 

The residual of estimated statistical power from the simulated dataset compared to the 

Hakim et al. (2019) dataset (actual – simulated)
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FIGURE 6. 
Simulated statistical power for observing a significant difference in CDA amplitude between 

set sizes 2 and 4 beyond the bounds of the Hakim et al. (2019) dataset
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