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Proton’s gluon GPDs at large skewness and gravitational form factors from
near threshold heavy quarkonium photoproduction

Yuxun Guo ,1,2,* Xiangdong Ji,1,† and Feng Yuan2,‡
1Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,

College Park, Maryland 20742, USA
2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 12 October 2023; accepted 18 December 2023; published 17 January 2024)

We study the exclusive near threshold photoproduction of heavy quarkonium in the framework of the
generalized parton distribution (GPD) factorization, taking the J=ψ production as an example. Because of
the threshold kinematics, the Compton-like amplitudes are related to gluon GPDs at large skewness ξ,
distinct from the common kinematics in asymptotic high energy where the skewness is typically small. We
discuss the nature of large-ξ expansion of these amplitudes in terms of the moments of gluon GPDs in the
large-ξ limit. Based on that, we propose several ways to extract the first few moments of the gluon GPDs
from these amplitudes, with the leading ones corresponding to the gluonic gravitational or energy-
momentum tensor form factors (GFFs). We apply these methods to analyze the recent near threshold J=ψ
production measurements by the J=ψ 007 experiment and GlueX Collaboration and find that the ξ scaling
of the measured differential cross sections is consistent with the asymptotic behavior. However, the current
data are not accurate enough yet for a complete determination of the gluonic GFFs, and therefore we
consider some prospects for better extractions in the future.

DOI: 10.1103/PhysRevD.109.014014

I. INTRODUCTION

In the past decades, it has been realized how important a
role gluons play inside the nucleon with quantum chromo-
dynamics (QCD). The exclusive productions of heavy
quarkonium off the nucleon have therefore drawn increas-
ing attention for their accessibility to the gluonic structure
in the nucleon. Extensive programs measuring the exclu-
sive meson production have been planned with the future
Electron-Ion Collider (EIC) [1–3]. Meanwhile, near thresh-
old heavy quarkonium photoproduction, e.g., J=ψ produc-
tion, has been carried out recently by experiment groups at
Jefferson Laboratory (JLab) [4–6]. Near threshold produc-
tions provide unique opportunities to study the nucleon
structure at large momentum transfer, distinct from the
common deeply virtual measurements where momentum
transfer is considered small at high energy in the collinear
limit. This has spurred many theoretical developments
aiming to extract the critical information on the gluonic

structures from such processes [7–24]. In addition, other
production mechanisms that include the coupled channel
contributions and resonance pentaquark state contributions
have also been considered in Refs. [25,26].
In this work, we focus on the generalized parton

distribution (GPD) factorization framework [13], where
the near threshold photoproductions of heavy quarkonium
are expressed in terms of the gluon GPDs in the heavy
quark limit. In this case, the large momentum transfer also
indicates large skewness for the GPD, i.e., the momentum
transfer will be mainly in the longitudinal direction near the
threshold. It has been argued that, in the limit ξ → 1, the
amplitude will be dominated by the leading moments of
GPDs that correspond to the gravitational form factors
(GFFs) [13]. However, realistically, one has ξth ∼ 0.6 at the
threshold in the case of J=ψ production. Therefore, more
careful study examining such relations away from ξ ¼ 1 is
needed, for which the general behavior of GPDs at large ξ
will be of interest.
The large-ξ behavior of GPDs has not been discussed

much in the literature, as most GPD studies are within the
collinear factorization framework with small momentum
transfer squared t and small skewness parameter ξ accord-
ingly. Partonic interpretation of GPDs will go through an
important transition from the forward limit ξ → 0 to the
large-ξ limit ξ → 1 [27,28]. When jxj > ξ, GPDs resemble
the parton distribution functions (PDFs), which are inter-
preted as the amplitudes of emitting and reabsorbing a
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parton; whereas for jxj < ξ, they resemble the distribution
amplitudes (DAs) and are interpreted as the amplitudes
of emitting/absorbing a parton-antiparton pair [27]. In the
large-ξ limit, GPDs will be dominated by the DA-like
region jxj < ξ, which does not couple to the PDF-like
region that we know well from the forward limit.
Despite the lack of knowledge about the large-ξ behavior

of GPDs, in this work we attempt to extract the impor-
tant information on the gluonic structures from the
Compton-like amplitude at large ξ utilizing the end point
constraints that GPDs must vanish at jxj ¼ 1. In previous
work [5,13,14], the analyses are based on the Taylor
expansion of the Wilson coefficients,

1

xþ ξ
−

1

x − ξ
¼ 2

ξ

X∞
n¼0

�
x
ξ

�
2n
; ð1Þ

as also suggested for the strange quark in Ref. [29].
However, this Taylor series only converges for x ≤ ξ,
which does not generally hold. Therefore, concerns about
its applicability as well as the reliability of the extracted
leading terms arise naturally, which could damage the very
foundation of all the extractions based on it.
In this work, we argue that the Compton-like amplitudes

at large ξ can be considered as an asymptotic series in terms
of the moments of GPDs. As we will show, in the ξ → 1−

limit, the real parts of the Compton-like amplitudes can be
asymptotically written as

ReHgCðξ; tÞ¼C gðtÞþ ξ−2A ð2Þ
g ðtÞþξ−4A ð4Þ

g ðtÞþ �� � ; ð2Þ

ReEgCðξ; tÞ¼−C gðtÞþ ξ−2Bð2Þ
g ðtÞþξ−4Bð4Þ

g ðtÞþ �� � ; ð3Þ

whereas the imaginary parts vanish. Such behaviors
predict unique features in the ξ dependence of the ampli-
tudes and the differential cross sections correspondingly.
Consequently, in the context of asymptotic expansion, the
previous analyses are justified in the large-ξ region even
though the series itself might diverge. Additionally, the
knowledge of the ξ dependence can be used to account for
the higher-moment contributions in the extraction of
gluonic GFFs, which are one of the most important
higher-order corrections.
As we will show, this ξ dependence from asymptotic

expansion is consistent with the recent near threshold
J=ψ photoproduction measurements by the J=ψ 007
experiment [5] and the GlueX Collaboration [6]. Based
on this, we consider several scenarios for the examination
of this framework, as well as the possible extraction of the
gluonic GFFs with it. The previous leading-moment
approximation corresponds to the simplest scenario here,
which can be improved, especially when more ξ depend-
ence of the data will be obtained.
The organization of the paper is as follows. In Sec. II,

we first briefly review the GPD framework for the near

threshold heavy quarkonium production, and then we study
the large-ξ behaviors of GPDs and the corresponding
asymptotic expansion of the amplitude. In Sec. III, we
consider the two recently published measurements by the
J=ψ 007 experiment [5] and the GlueX Collaboration [6]
and study their ξ-scaling behaviors. We propose several
scenarios for examination and the extraction of gluonic
GFFs utilizing these observations. In Sec. IV, we summa-
rize the current status of the gluonic GFF extraction in
the GPD framework and comment on the impact of the
future experimental developments. In the end, we conclude
in Sec. V.

II. HEAVY QUARKONIUM THRESHOLD
PRODUCTION, LARGE-ξ GPDs,
and ASYMPTOTIC EXPANSION

We start with a brief review of the GPD framework for
the near threshold heavy quarkonium production presented
in Ref. [13] for completeness. It was shown therein that
near the threshold the differential cross section can be
written as

dσ
dt

¼ αEMe2Q
4ðW2 −M2

NÞ2
ð16παSÞ2
3M3

V
jψNRð0Þj2jGðξ; tÞj2; ð4Þ

where the hadronic matrix elementGðξ; tÞ can be expressed
as the convolution of the gluon GPDs Fgðx; ξ; tÞ and the
Wilson coefficient Aðx; ξÞ,

Gðξ; tÞ ¼ 1

2ξ

Z
1

−1
dxAðx; ξÞFgðx; ξ; tÞ; ð5Þ

where the leading-order Wilson coefficient reads

Aðx; ξÞ≡ 1

xþ ξ − i0
−

1

x − ξþ i0
: ð6Þ

The gluon GPD Fgðx; ξ; tÞ is defined as

Fgðx; ξ; tÞ≡ 1

ðP̄þÞ2
Z

dλ
2π

eiλx

×

�
P0
����Faþi

�
−
λn
2

�
Faþ
i

�
λn
2

�����P
�
; ð7Þ

which can be parametrized as [30,31]

Fgðx; ξ; tÞ ¼
1

2P̄þ ūðP0Þ
�
Hgγ

þ þ Eg
iσþαΔα

2MN

�
uðPÞ; ð8Þ

where Hg and Eg are the well-known Hgðx; ξ; tÞ and
Egðx; ξ; tÞ GPDs.
In the heavy quark limit with MV → ∞, the momentum

transfer squared jtj approaches infinity near the threshold
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and ξ → 1 accordingly. Then the Gðξ; tÞ can be expanded
as a power series of x=ξ, leading to [13,29]

Gðξ; tÞ ¼
X∞
n¼0

1

ξ2nþ2

Z
1

−1
dxx2nFgðx; ξ; tÞ; ð9Þ

which converges for ξ ≥ 1. Under the approximation that
the series is dominated by the leading terms, such processes
serve as the probe of the gluonic GFFs. However, since the
summation in Eq. (9) could be divergent in the realistic case
where ξ < 1, it should be understood as a formal summa-
tion rather than an actual one in the most general case. In
this sense, the left-hand side will be the analytical con-
tinuation of the summation on the right-hand side when it
does not converge. Consequently, the series itself may be
regarded as an asymptotic series that does not generally
converge.
To examine this, note that Eq. (9) can be rewritten with

the Mellin moments of the gluon GPD Fgðx; ξ; tÞ defined as

F ðnÞ
g ðξ; tÞ≡

Z
1

0

dxxn−1Fgðx; ξ; tÞ; ð10Þ

to be

Gðξ; tÞ ¼
X∞
n¼0

2

ξ2nþ2
F ð2nþ1Þ

g ðξ; tÞ: ð11Þ

One sufficient but not necessary condition for it to converge

is that F ð2nþ1Þ
g ðξ; tÞ < ξ2F ð2n−1Þ

g ðξ; tÞ as n → ∞. To illus-
trate the higher-moment behavior, we start by considering
the near forward region of the GPD with small/medium ξ
and fixed t. Omitting the ξ and jtj dependence in this case,1
the gluon GPD Fgðx; ξ; tÞ near the end point x ¼ 1 can be
written as

Fgðx; ξ; tÞ ∼ ð1 − xÞβ as x → 1; ð12Þ

with β > 0 according the requirement that GPDs vanish at
end points. Correspondingly, the Mellin moments will
behave as

F ðnÞ
g ðξ; tÞ ∼ n−β−1 as n → ∞; ð13Þ

asymptotically, and we have

F ð2nþ1Þ
g ðξ; tÞ

ξ2F ð2n−1Þ
g ðξ; tÞ

∼ ξ−2
�
2n − 1

2nþ 1

�
βþ1

as n → ∞; ð14Þ

which approach ξ−2 < 1 as n → ∞ and indicates the
divergence of the series with small/medium ξ.
Apparently, this oversimplified argument does not prove

the asymptotic behaviors of the gluon GPD Fgðx; ξ; tÞ for
large ξ, which would require more concrete information on
GPDs beyond the scope of this work. In the following
subsection, we will explore the large-ξ behavior of GPDs
through a GPD model.

A. Numerical examination of asymptotic expansion
through a GPD model

The above heuristic arguments can be examined by
numerical calculations with certain GPD models. Here we
consider a simple GPD parametrization model, the double
distribution method, which writes the GPDs as [32,33]

Hgðx;ξ; tÞ ¼HDD
g ðx;ξ; tÞ þ jξjθðjξj− jxjÞDgðx;ξ; tÞ; ð15Þ

Egðx; ξ; tÞ ¼ EDD
g ðx; ξ; tÞ − jξjθðjξj − jxjÞDgðx; ξ; tÞ; ð16Þ

where fH;EgDD represent the double distribution (DD)
terms and Dgðx; ξ; tÞ is commonly called the D-term.
The DD-terms can be written in terms of the integral

transformation of double distributions as [32–34]

HDD
g ðx; ξ; tÞ ¼

Z
1

−1
dβ

Z
1−jβj

−1þjβj
dαδðx − β − αξÞ

× πgðα; jβjÞjβjfgðjβj; tÞ; ð17Þ

EDD
g ðx; ξÞ ¼

Z
1

−1
dβ

Z
1−jβj

−1þjβj
dαδðx − β − αξÞ

× πgðα; jβjÞegðjβj; tÞ; ð18Þ

where the πgðα; βÞ is the so-called profile function for a
double distribution parametrization, and for the gluon GPD
it is commonly chosen to be

πgðα; jβjÞ ¼
15

16

ðð1 − jβjÞ2 − α2Þ2
ð1 − jβjÞ5 : ð19Þ

The fgðx; tÞ and egðx; tÞ are the t-dependent PDFs that
correspond to the gluon GPDs Hgðx; ξ; tÞ and Egðx; ξ; tÞ in
the semiforward limit ξ → 0. Accordingly, they are subject
to the constraints from the forward gluon PDF gðxÞ, e.g.,
fgðx; t ¼ 0Þ ¼ gðxÞ. In the following, we will mostly focus
on the Hg GPD without loss of generality, where similar
arguments should apply to the Eg GPD of which the end
point constraint exists as well. Taking the gluon PDF from
the CT18 global analysis [35], we have

gðxÞ ¼ a0xa1−1ð1 − xÞa2Pg
aðyÞ; ð20Þ

with y≡ ffiffiffi
x

p
and

1According to the polynomiality condition [27], these Mellin
moments F ðnÞ

g ðξ; tÞ depend on ξ nontrivially, i.e., they are finite-
order polynomials of ξ. However, for small/medium ξ, they are
dominated by the lowest order in ξ, namely, the ξ0 terms, while
the other terms are suppressed by powers of ξ.
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Pg
aðyÞ ¼ sinh a3ð1 − yÞ3 þ sinh a43yð1 − yÞ2

þ a53y2ð1 − yÞ þ y3; ð21Þ
where the parameters ai are presented in Ref. [35]. These
parameters together with the profile function πgðα; βÞ
provide a model of the x and ξ dependence of the DD-
term of the gluon GPD HDD

g ðx; ξ; t ¼ 0Þ, whereas the t
dependence is not of concern here for the large-ξ analysis.
The D-terms acquire their name for a different reason:

they generate the highest power of ξ in the Mellin moments
of GPDs, which are the CgðtÞ or DgðtÞ gravitational form
factors depending on the conventions in the case of leading
moments [27,30].2 These terms have support solely in the
DA-like region jxj < ξ and thus can be parametrized in
terms of a set of polynomials of z≡ x=ξ that are complete
on ½−1; 1�. The Gegenbauer polynomials are commonly
chosen as they are multiplicatively renormalizable to the
leading order of QCD evolution [36], with which the
D-terms can be written as

Dgðx; ξ; tÞ ¼
3

2
ð1 − z2Þ2

X
n¼1;odd

dðnÞg ðtÞCð5=2Þ
n−1 ðzÞ: ð22Þ

The dðnÞg nðtÞ’s correspond to combinations of the GFF
DgðtÞ and other generalized form factors in the highest
power of ξ, and they parametrize the D-term.
Even though the D-terms are generally nonzero and crucial

for the polynomiality condition of the GPDs [27,37], we will
not consider them here for the analysis of asymptotic
expansion. Since their contributions to the Gðξ; tÞ can be
written explicitly with Eq. (22) as

1

2ξ

Z
ξ

−ξ
dxAðx; ξÞξDgðx; ξ; tÞ ¼ 2

X
n¼1;odd

dðnÞg ðtÞ; ð23Þ

they generate zero imaginary part and the real part con-

verges as long as dðnþ2Þ
g ðtÞ < dðnÞg nðtÞ as n → ∞, which is

generally assumed to be true unless the higher moments
anomalously increase. Therefore, we will focus on the
asymptotic behaviors of the DD-terms.
Given the above GPD model, we now consider the

hadronic matrix element Gðξ; tÞ. Summing/averaging over
all the final/initial proton polarizations in the unpolarized
case, one has the squared hadronic matrix element as

jGðξ; tÞj2 ¼
�
ð1 − ξ2ÞjHgCj2 − 2ξ2Re½H�

gCEgC�

−
�
ξ2 þ t

4M2
p

�
jEgCj2

�
; ð24Þ

where the gluonic Compton form factor (gCFF) HgC is
defined as

HgCðξ; tÞ≡ 1

2ξ

Z
1

−1
dxAðx; ξÞHgðx; ξ; tÞ ð25Þ

and similarly the EgC. Here we consider the GPD Hg and
gCFF HgCðξ; tÞ as an example without loss of generality.
Both HgCðξ; tÞ and EgCðξ; tÞ are complex, although the

GPDs are real, since the Wilson coefficient Aðx; ξÞ is
complex. The real part of the gCFFHgCðξ; tÞ can be written
as a principal-value integral of the Wilson coefficient
Aðx; ξÞ and the gluon GPD Hgðx; ξ; tÞ that reads

ReHgCðξ; tÞ ¼
Z

1

−1
dxPV

1

ξ2 − x2
Hgðx; ξ; tÞ

¼
X∞
n¼0

2

ξ2nþ2
Hð2nþ1Þ

g ðξ; tÞ; ð26Þ

where PV stands for taking the principal value and

Hð2nþ1Þ
g ðξ; tÞ are the Mellin moments of Hgðx; ξ; tÞ GPD

defined similar to Eq. (10), whereas the imaginary part of
the gCFF can be written with the GPD at the crossover
line x ¼ �ξ as

ImHgCðξ; tÞ ¼
π

2ξ



Hgðξ; ξ; tÞ þHgð−ξ; ξ; tÞ

�

¼ π

ξ
Hgðξ; ξ; tÞ: ð27Þ

As just mentioned, since the D-terms vanish at x ¼ �ξ and
generate zero imaginary part, the imaginary part of the
gCFF will be from the DD-terms only.
In Fig. 1 we show the asymptotic behavior of such

expansions for different values of ξ where we define

R≡HgCðξÞ=ReHgCðξÞ ¼ 1þ irImðξÞ: ð28Þ

For discussion, we set t ¼ 0 and all suppressed t should be
considered to be zero in this section, although we note that
there could be nontrivial entanglements of x, ξ, and t in
general.3 The solid line stands for the R ¼ 1 line that the
real part of R should approach if the series converges, and
the dashed line stands for the rImðξÞ that approaches zero in
the ξ → 1 limit according to the end point constraint,

2We do not define separate notations for the GFFDgðtÞ and the
D-term Dgðx; ξ; tÞ, which are distinguished by their different
arguments.

3For instance, one might expect the higher moments of GPDs
to be typically harder, i.e., they are associated with larger pole
masses and thus flatter t slopes. Therefore, the jth moment is
enhanced by a factor of ðM2

j=M
2
1Þp compared to the first moment

with p ¼ 2 or 3 for dipole or tripole, etc. at large t. This
enhancement competes with the higher-moment suppression as t
gets large, which, however, cannot be quantitatively examined at
this point.
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ImHgCðξ; tÞ ¼
π

ξ
Hgðξ; ξ; tÞ → 0 as ξ → 1: ð29Þ

The open blue dots are the individual contributions from
moments of different n, whereas the solid dots are the
partial sums of them.
The real part of the gCFF HgCðξ; tÞ does behave as

expected from the plot. At ξ ¼ 1, the series appears
convergent even when summing over the very high
moments, a behavior likely model independent. By con-
trast, for ξ < 1, although the partial sums start to look
convergent for the lower moments, they ultimately diverge
when higher moments are involved. In addition, a trunca-
tion at the minimal term always leads to R ≈ 1, which is
known as the superasymptotic approximation. As ξ
decreases, the asymptotic expansion will diverge earlier
and faster and eventually cease to work. On the other hand,
the behavior of the imaginary part is more obscure apart
from their vanishing behavior at ξ → 1. As shown in Fig. 1,
the imaginary ratio rImðξÞ (dashed line) indeed vanishes in
the top ξ ¼ 1 plot and then increases as ξ gets lower. The

full ξ dependence of rImðξÞ is also shown in Fig. 2. A more
careful treatment to take these imaginary parts into account
could be to parametrize and include them in analyses as
well. However, we will focus on the real parts in this work.
Therefore, we comment that the gCFFs HgCðξ; tÞ and

EgCðξ; tÞ can be approximated by their leading Mellin
moments in the sense of an asymptotic expansion in the
ξ → 1− limit. For relatively lower ξ, there are two main
corrections from the higher moments’ contributions and the
nonvanishing imaginary part.

B. Asymptotic form of the gCFFs

The asymptotic expansion of the gCFFs HgCðξ; tÞ and
EgCðξ; tÞ provides a rather effective tool to study the
behavior of them in the ξ → 1− limit. In addition to the
leading-moment approximation, we could also obtain other
useful information in a larger region of ξ < 1. To show this,
consider the polynomiality conditions of the gluon GPDs
that read [27]

Hð2nþ1Þ
g ðξ; tÞ ¼

Xn
i¼0

ð2ξÞ2iAð2nþ2;2iÞ
g ðtÞ

þ ð2ξÞ2nþ2Cð2nþ2Þ
g ðtÞ; ð30Þ

Eð2nþ1Þ
g ðξ; tÞ ¼

Xn
i¼0

ð2ξÞ2iBð2nþ2;2iÞ
g ðtÞ

− ð2ξÞ2nþ2Cð2nþ2Þ
g ðtÞ; ð31Þ

which require that the Mellin moments of the GPDs, the

Hð2nþ1Þ
g ðξ; tÞ and Eð2nþ1Þ

g ðξ; tÞ here, must be finite-order
polynomials of ξ. The coefficients in these polynomials, the

Að2nþ2;2iÞ
g ðtÞ, Bð2nþ2;2iÞ

g ðtÞ, and Cð2nþ2Þ
g ðtÞ, are known as the

generalized form factors. We note that when n ¼ 0 these
generalized form factors correspond to the well-known

gluonic GFFs [30]: AgðtÞ ¼ Að2;0Þ
g ðtÞ, BgðtÞ ¼ Bð2;0Þ

g ðtÞ, and

FIG. 1. The asymptotic behavior of the R ratios for different
values of ξ. The solid line stands for the R ¼ 1 line to which the
real part of R should converge, and the dashed line stands for the
rImðξÞ. The open blue dots are the contribution from moments of
different n, whereas the solid blue dots are the partial
sums of them.

FIG. 2. The imaginary ratio rImðξÞ as a function of ξ. It
approaches zero when ξ → 1, resulting from the end point
constraints.
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CgðtÞ ¼ Cð2Þ
g ðtÞ, which will be used to avoid redundant

indices.
Plugging them back into Eq. (26), we obtain the

asymptotic behaviors of the real parts of gCFFs as
presented in the Introduction,

ReHgCðξ; tÞ ¼ C gðtÞ þ ξ−2A ð2Þ
g ðtÞ þ ξ−4A ð4Þ

g ðtÞ þ � � � ;
ð32Þ

ReEgCðξ; tÞ ¼ −C gðtÞ þ ξ−2Bð2Þ
g ðtÞ þ ξ−4Bð4Þ

g ðtÞ þ � � � ;
ð33Þ

where each of the new coefficients A ð2nÞ
g ðtÞ, Bð2nÞ

g ðtÞ, and
C gðtÞ are given by those generalized form factors as

A
ð2nÞ
g ðtÞ≡X∞

k¼0

22kþ1Að2kþ2n;2kÞ
g ðtÞ; ð34Þ

B
ð2nÞ
g ðtÞ≡X∞

k¼0

22kþ1Bð2kþ2n;2kÞ
g ðtÞ; ð35Þ

BgðtÞ≡
X∞
k¼0

22kþ3Cð2kþ2Þ
g ðtÞ; ð36Þ

where n is a positive integer. Each of the series expansions
here should similarly be understood as an asymptotic
expansion that contains infinite terms. The coefficients

A
ð2nÞ
g ðtÞ and B

ð2nÞ
g ðtÞ contain moments of order 2nþ 2k

for non-negative integers k according to Eqs. (34) and (35).
Thus, higher-order coefficients with n ≥ 2 contain higher-

order moments with 2n ≥ 4, and A
ð2Þ
g ðtÞ, B

ð2Þ
g ðtÞ, and

C gðtÞ are the three coefficients that contain leading
moments, namely, the gluonic GFFs. Therefore, the behav-
ior of the real part of the gCFFs could be approximated by
these new coefficients as

ReHgCðξ; tÞ ≈ C gðtÞ þ ξ−2A ð2Þ
g ðtÞ; ð37Þ

ReEgCðξ; tÞ ≈ −C gðtÞ þ ξ−2Bð2Þ
g 2ðtÞ; ð38Þ

where higher-order coefficients are dropped. In the leading-
moment approximation, one has

A
ð2Þ
g ðtÞ ≈ 2AgðtÞ; ð39Þ

B
ð2Þ
g ðtÞ ≈ 2BgðtÞ; ð40Þ

C gðtÞ ≈ 8CgðtÞ; ð41Þ

whereas the other coefficients are just zero. Then the
formula reduces to the previous one in Ref. [13].

In Fig. 3, we show the ξ dependence of the ReHgCðξ; tÞ
at t ¼ 0 calculated with the same DD GPD model as

above except that a D-term with dð1Þg ð0Þ ¼ 5=4Dgð0Þ is
added so that the C gðtÞ coefficient will be nonzero. We
take Dgð0Þ ¼ −1.93 from the lattice simulation of gluonic
GFFs [38] as the input. In the upper plot, the ξ depen-
dence of the numerical ReHgCðξ; tÞ is shown to be
approximated well by the form aþ bξ−2 when ξ > 0.6,
consistent with the asymptotic form above. As ξ gets
smaller, e.g., for ξ > 0.3 as shown in the lower plot, the
higher-order coefficients get more relevant and an extra ξ−4

term is needed. It looks like the asymptotic form holds
even at relatively low ξ, where the leading-moment
approximation may not. However, this could depend on
the GPD model.
It is interesting to note that numeric calculations lead

to the following behavior for ReHgCðξ; t ¼ 0Þ at large ξ:
limξ→1ReHgCðξ; 0Þ ≈ 5=4ð2Agð0Þ þ 2Dgð0ÞÞ. This may
come from the particular parametrization of the double
distribution part of the GPD gluon distributions used in our
analysis. This feature will be discussed in more detail in the
next subsection.
Thus, we obtain the asymptotic forms of the real parts of

the gCFFs with a set of coefficients to be determined.
Although the gCFFs also have imaginary parts, they vanish
in the large-ξ limit. Therefore, in the large- or even
medium-ξ region, such forms are supposed to describe
the experimental measurements well and allow us to extract
these coefficients from the data. This will be discussed with
more details in the next section.

FIG. 3. The ξ dependence of the ReHgCðξ; 0Þ calculated with
the above DD model. When only large ξ > 0.6 (upper) is
considered, the ReHgC can be fitted well with just two terms,
whereas an extra ξ−4 term is needed when including the medium
ξ > 0.3 as well (lower).
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C. Reconstruction of leading moments
and conformal moment expansion

Before moving on to the data, we discuss the last step in
the extraction of the gluonic GFFs. Suppose these coef-

ficients A
ð2Þ
g ðtÞ, Bð2Þ

g ðtÞ;C gðtÞ;… are reliably extracted
with the asymptotic forms of the gCFFs HgCðξ; tÞ and
EgCðξ; tÞ. Can we reconstruct the leading moments,
the gluonic GFFs, from these coefficients? In the
leading-moment approximation, one could simply use

Eqs. (39)–(41) and take AgðtÞ ≈ 1=2A ð2Þ
g ðtÞ, BgðtÞ≈

1=2Bð2Þ
g ðtÞ, and CgðtÞ ≈ 1=8C gðtÞ, noting that there are

corrections from higher moments. In this subsection, we
will consider such reconstructions more carefully.
We start with the example in the previous subsection

shown in Fig. 3. Suppose these numerical ReHgCðξ; 0Þ
were obtained with experimental measurements with
infinite precision in the ideal limit; we will consider if
and how the leading moments can be reconstructed. With
the asymptotic form in Eq. (37) of the ReHgCðξ; 0Þ, we
consider the simplest two-term fit in the form of aþ bξ−2

for ξ > 0.6 in the upper plot, which gives

ReHgCðξ; 0Þ ¼ −4.81þ 1.04ξ−2 ðξ > 0.6Þ: ð42Þ

On the other hand, for a larger range of ξ > 0.3 in the lower
plot, we consider instead a three-term fit in the form
aþ bξ−2 þ cξ−4 and obtain

ReHgCðξ; 0Þ ¼ −4.70þ 1.02ξ−2 − 0.03ξ−4 ðξ > 0.3Þ:
ð43Þ

Since the ξ > 0.3 and ξ > 0.6 data are generated with the
same GPD, the similar extracted coefficients for the
constant and ξ−2 terms in the two fits reflect the reliability
of the extraction. On the other hand, the ξ−4 term in the
three-term fit has a small coefficient, suggesting that the
asymptotic form still holds and the terms from higher
moments are still suppressed, although, as noted above, this
could depend on the GPD model.
We also consider a two-term fit to the ξ > 0.3 data,

which will not fit the data as well and the extracted
coefficients deviate from the large-ξ ones,

ReHgCðξ; 0Þ ¼ −4.23þ 0.74ξ−2 ðξ > 0.3Þ: ð44Þ

Such results suggest that, even when the asymptotic form
holds, the leading-moment approximation could still
receive sizable corrections, particularly for lower ξ.
Therefore, it will be more reliable to first use the asymptotic

form to extract the leading-order coefficients A
ð2Þ
g ðtÞ,

B
ð2Þ
g ðtÞ, and C gðtÞ from the measured gCFFs rather than

to apply the leading-moment approximation directly to the
extraction.
With that in mind, we take the extracted values of the two

coefficientsA ð2Þ
g ð0Þ and C gð0Þ to be around 1.04 and −4.8,

respectively, based on the numerical gCFFs HgCðξ; tÞ.
Once these coefficients are extracted, the GFFs Agð0Þ
and Cgð0Þ can be reconstructed in the leading-Mellin-
moment approximation to be

1

2
A

ð2Þ
g ð0Þ ≈ 0.52 and

1

8
C gð0Þ ≈ −0.60; ð45Þ

which are, however, larger than the input values of them,

Agð0Þ ≈ 0.385 and Cgð0Þ ≈ −0.48: ð46Þ

The differences are caused by the higher moments in

A
ð2Þ
g ð0Þ and C gð0Þ according to Eqs. (34) and (36). To

make things worse, such differences persist in the ξ → 1
limit: the leading moments Agð0Þ or Cgð0Þ take up only
about 80% of the total contributions, causing a consistent
systematical uncertainty of about 25% in the extraction
under leading-moment approximation even at ξ ¼ 1.
While this discrepancy between the extracted and input

leading moments should be mitigated when explicitly
including the higher moments, we note that these higher-
order Mellin moments are typically even harder to obtain,
making the attempt to separate their contributions from
the leading ones rather unrealistic. Instead, we consider
a method that does not require their explicit values to
improve the extraction. Suppose we can rearrange the
asymptotic series such that the leading terms get more
relevant, then the leading-moment approximation will work
better. Accordingly, we consider another expansion of the
GPDs besides the Mellin moments expansion, which is
known as the conformal moment expansion.
We will not fully go through the conformal moment

expansion of GPDs, which has been systematically studied
in Ref. [39]. Simply speaking, the conformal moment
expansion projects the GPD onto a complete set of

Gegenbauer polynomials CðλÞ
n ðx=ξÞ and expresses the

GPD as the formal sum of these Gegenbauer polynomials
with λ ¼ 5=2 for the gluon. So, we have

Fgðx; ξ; tÞ ¼ −
X∞
j¼1
odd

ðpg;jðx; ξÞ þ pg;jð−x; ξÞÞF conf
g;j ðξ; tÞ;

ð47Þ

and the jth conformal moment F conf
g;j ðξ; tÞ is defined as

F conf
g;j ðξ; tÞ≡

Z
1

−1
dx cg;jðx; ξÞFgðx; ξ; tÞ; ð48Þ
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where pg;jðx; ξÞ and cg;jðx; ξÞ are known functions express-
ible in terms of the Gegenbauer polynomials Cð5=2Þ

j−1 ðx=ξÞ,
which can be found in Ref. [39].
With the conformal moment expansion, one can show

that the gCFFs can be written in terms of the corresponding
conformal moments as

ReHgCðξ; tÞ ¼ 2
X∞
j¼1
odd

ξ−j−1Aconf
j F conf

g;j ðξ; tÞ; ð49Þ

where Aconf
j is the Wilson coefficient in the conformal

moment space that reads [39]

Aconf
j ¼ 2jþ2Γð5=2þ jÞ

Γð3=2ÞΓð4þ jÞ : ð50Þ

Then we can equivalently use Eq. (49) as an asymptotic
expansion of the real part of the gCFFs.
In Fig. 4 we study the asymptotic behavior of the

conformal moment expansions for different values of ξ

analogous to what we did with the Mellin moment
expansion before. Similar to the previous case, the series
seems convergent at ξ ¼ 1, whereas for ξ < 1 it behaves as
an asymptotic series that reaches the best approximation at
the minimal term. On the other hand, the conformal
moment expansion appears to converge (and diverge after
passing the minimal term) faster compared to the Mellin
moment expansion shown in Fig. 1. As we discussed, this
can be understood as a reshuffle of the higher moments into
the lower ones.
Because of this reshuffle effect, it looks like the con-

tribution from the leading conformal moment dominates
over all the other moments in the ξ → 1 limit; i.e., we have

Rconf
1 ≡ 2ξ−2Aconf

1 F conf
g;1 ðξ; tÞ

ReHgCðξ; tÞ
≈ 1: ð51Þ

This also magically holds even for lower ξ as shown in
Fig. 4. In the three plots with ξ ¼ 1, 0.8, and 0.6, the
relative contributions of the leading conformal moments are
Rconf
1 ¼ 1, 1.06, and 1.08, compared to those of the leading

moments RMel
1 ¼ 0.8, 0.85, and 0.86. We also note that

their ratio is always 5=4 since

Aconf
1 ¼ 5

4
and F conf

g;1 ðξ; tÞ ¼ F ð1Þ
g ðξ; tÞ; ð52Þ

where the relation between the conformal and Mellin
moment only holds at j ¼ 1 though.
Thus, it appears that the leading-conformal-moment

approximation with an extra conformal ratio Aconf
1 multi-

plied can be considered as an improvement to the leading-
Mellin-moment approximation. Then we have

A
ð2Þ
g ðtÞ ≈ 2Aconf

1 AgðtÞ; ð53Þ

B
ð2Þ
g ðtÞ ≈ 2Aconf

1 BgðtÞ; ð54Þ

C gðtÞ ≈ 8Aconf
1 CgðtÞ: ð55Þ

Applying this back to the coefficients A ð2Þ
g ðtÞ ≈ 1.04 and

C gðtÞ ≈ −4.8 obtained before, the conformal
reconstruction of leading moments reads

Agð0Þ ≈ 0.42 and Cgð0Þ ≈ −0.48; ð56Þ

which agrees well with the input values in Eq. (46). Note
that the extracted Agð0Þ is affected by the higher moments
of PDFs, whereas the extracted Cgð0Þ is not since only one

D-term dð1Þg ð0Þ ¼ 5=4Dgð0Þ was put in. This explains the
almost perfectly extracted Cgð0Þ, while the extracted Agð0Þ
is a bit off, but reasonably close.

FIG. 4. The asymptotic behavior of the R ratios for different
values of ξ based on the conformal moment expansion. The solid
line stands for the R ¼ 1 line to which the real part of R should
converge. The open brown dots are the contribution from mo-
ments of different j, whereas the solid brown dots are the partial
sums of them.
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D. Dispersion relation and applicability
to general GPDs

At the end of the section, we discuss the applicability of
the above arguments to more general GPDs. First, we note
that the arguments in this section rely mostly on the end
point constraints of the GPD as well as the analyticity of the
Compton-like amplitudes, which are generally assumed to
be true for all GPDs/amplitudes.
The analyticity property of the GPDs and gCFFs can be

exploited with the dispersion relation [40,41], which
analytically continues the GPDs and gCFFs to the ξ > 1
region at fixed t. Utilizing Cauchy’s integral formula, the
gCFF can be expressed in terms of a contour integral along
the branch cut above the threshold, and one eventually
obtains [40,41]

HgCðξ; tÞ ¼
1

π

Z
ξth

0

dξ0
2ξ0ImHgCðξ; tÞ

ðξ − ξ0 − i0Þðξþ ξ0 þ i0Þ þ C gðtÞ;

ð57Þ
where the C gðtÞ is the so-called subtraction term, which
coincides with the C gðtÞ coefficient defined previously. A
similar relation applies to the EgCðξ; tÞ with an extra minus
sign in the subtraction term. The dispersion relation
naturally applies to the region below the threshold, i.e.,
ξ > ξth ≈ 1 > ξ0. Therefore, it can be expanded as

ReHgCðξ; tÞ ¼ 2
X∞
n¼0

ξ−2n−2ImHð2nþ1Þ
gC ðtÞ þ C gðtÞ; ð58Þ

where ImHðnÞ
gC ðtÞ is defined as the nth moment of the

imaginary part of the amplitude by

ImHn
gCðtÞ≡ 1

π

Z
1

0

dξξnImHgCðξ; tÞ

¼
Z

1

0

dξξn−1Hgðξ; ξ; tÞ: ð59Þ

Comparing it with the previous results, one obtains the
matching condition

ImHð2nþ1Þ
gC ðtÞ ¼

X∞
k¼0

22k Að2nþ2kþ2;2kÞ
g ðtÞ ¼ 1

2
A

ð2nþ2Þ
g ðtÞ;

ð60Þ
where similar relations in terms of the conformal moments
are presented in Ref. [41]. Thus, the asymptotic expansion
is consistent with the dispersion relation and our coeffi-

cients A
ð2nÞ
g ðtÞ and B

ð2nÞ
g ðtÞ can also be regarded as the

Mellin moments of the imaginary part of the gCFFs. Note
that the Mellin moments of the imaginary gCFF should be
distinguished from the those of the GPDs themselves—the
imaginary gCFFs correspond to GPDs at x ¼ ξ, while for
GPDs x and ξ are uncorrelated.

Then, we could have very similar arguments for the
asymptotic behaviors of the real part of the gCFF utilizing
the end point constraint of the imaginary part of the gCFFs.
Assuming that the imaginary part of the gCFFs approaches
zero according to ð1 − ξÞα when ξ → 1, due to the end point
constraint that it vanishes at ξ ¼ 1, its Mellin moments at
large n will be asymptotically

ImHðnÞ
gC ðtÞ ∼ n−α−1 as n → ∞; ð61Þ

and hence we have

ImHð2nþ1Þ
gC ðtÞ

ξ2ImHð2n−1Þ
gC ðtÞ

∼ ξ−2
�
2n − 1

2nþ 1

�
αþ1

as n → ∞: ð62Þ

This applies to the ξ → 1− case, different from the near
forward arguments at the beginning of this section.
Consequently, the asymptotic expansion is expected in
the ξ → 1− limit.
To examine the parametrization dependence of the

large-ξ behavior of GPDs, we also go through the above
analysis with another parametrization of GPDs based on
conformal moments [42,43]. We observe similar behaviors
in the large ξ → 1− limit, though in the medium-/lower-ξ
region, the higher-moment contamination appears stronger
due to the larger higher moments in this parametrization.
Thus, one should be more careful of the applicability to
the medium-/lower-ξ region. Additionally, the leading-
conformal-moment approximation still works better than
the leading-Mellin-moment approximation with this para-
metrization, although a rigorous proof of such statements
seems improbable with only the end point constraints.
Furthermore, we note that it is well known that there

is the so-called inverse problem that GPDs cannot be
uniquely determined by the Compton-like amplitudes. This
inverse problem is reflected in Eqs. (37) and (38) in that the

gCFFs contain, in principle, infinite coefficients A ð2nÞ
g ðtÞ,

where each of them contains infinite generalized form
factors. However, the asymptotic expansion allows one to

extract the dominant coefficients such as A ð2Þ
g ðtÞ, Bð2Þ

g ðtÞ,
and C gðtÞ from the gCFFs in the large-ξ limit, distin-
guished from the general case where the ξ dependence is
not known. Then the leading moments can be effectively
extracted with these coefficients, while the higher-moment
contamination will enter the systematical uncertainties.
Lattice calculations of GPD moments have shown the
suppression of higher moments up to the fifth moments for

the Aðn;0Þ
q ðtÞ and Bðn;0Þ

q ðtÞ form factors [44], while similar
behaviors could be expected for the other generalized form
factors including the gluonic ones. These results provide
extra support for the leading-moment approximation.
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III. ANALYSIS OF THE DIFFERENTIAL CROSS
SECTION OF THE NEAR THRESHOLD J=ψ

PHOTOPRODUCTION

Until now, we have studied the large-ξ properties of
gCFFs based on the end point behaviors of the gluonic
GPDs. We find that, in the large ξ → 1− limit, the real parts
of the gCFFs can be written as an asymptotic series in
powers of ξ, whereas the imaginary parts would vanish and
serve as higher-order corrections only. Then, these asymp-
totic behaviors of the gCFFs will also be reflected in the
differential cross sections of, for instance, the near thresh-
old J=ψ photoproduction, which will be further investi-
gated in this section.
With the asymptotic forms of the real parts of the gCFFs

ReHgC and ReEgC as in Eqs. (37) and (38), we obtain the
asymptotic form of the squared hadronic matrix element
Gðξ; tÞ given in Eq. (24) as

jGðξ; tÞj2 ¼ ξ−4


G0ðtÞ þ ξ2G2ðtÞ þ ξ4G4ðtÞ

�þ � � � ; ð63Þ

where � � � stands for terms associated with the higher-order

coefficients A
ð4Þ
g ðtÞ, B

ð4Þ
g ðtÞ and the imaginary gCFFs

ImHgCðξ; tÞ and ImEgCðξ; tÞ, which are not considered
for now. The coefficients of different ξ-scaling terms can

be written in terms of the coefficients A
ð2Þ
g ðtÞ, Bð2Þ

g ðtÞ,
and C gðtÞ as

G0ðtÞ ¼
�
A

ð2Þ
g ðtÞ


2
−

t
4M2

N

�
B

ð2Þ
g ðtÞ


2
; ð64Þ

G2ðtÞ ¼ 2A
ð2Þ
g ðtÞC gðtÞ þ 2

t
4M2

N
B

ð2Þ
g ðtÞC gðtÞ

−
�
A

ð2Þ
g ðtÞ þB

ð2Þ
g ðtÞ


2
; ð65Þ

G4ðtÞ ¼
�
1 −

t
4M2

N

�
ðC gðtÞÞ2: ð66Þ

We note that these expressions are equivalent to the
ones in the previous work [13] if one takes the leading-
Mellin-moment approximation. However, since the
leading-Mellin-moment approximation is made under the
assumption ξ ¼ 1, in principle, it cannot predict any ξ
dependence; i.e., the ξ should be taken to be 1 in this case.
The explicit ξ dependence was kept in Ref. [13] to partially
account for the effect of the relatively small ξ of the
measurements. This work, on the other hand, predicts the ξ
scaling in the gCFFs and accordingly in the differential
cross sections in the large ξ < 1 region, in addition to
providing a justification for the leading-moment approxi-
mation in this region. Therefore, it is crucial to look for
such behaviors in the measurements to justify this frame-
work and also to extract these coefficients.

In this section, we will study the ξ scaling of the
differential cross sections of near threshold J=ψ photo-
production utilizing the recently published data from
the J=ψ 007 experiment [5] as well as the GlueX
Collaboration [6]. We should also note that, just like in
the previous works [13,14], large ξ will still help suppress
the systematical uncertainties here. However, since we
focus on the ξ scaling of the data itself, rather than the
actual extraction of gluonic GFFs, we will keep the small-ξ
data for comparison.

A. The ξ scaling of the J=ψ production data

To start with, we consider the kinematical coverage of
the differential cross section data. As shown in Fig. 5, these
data roughly cover the near threshold region, although
much fewer data exist in the large-jtj region with larger
uncertainties due to the lack of events. According to
Eq. (63), the differential cross sections are expected to
have the ξ−4; ξ−2, and ξ0 scaling behaviors at fixed jtj,
corresponding to the G0ðtÞ, G2ðtÞ, and G4ðtÞ at the leading
order of the asymptotic expansion. Since we do not have
enough measurements at the same jtj, we combine the data

FIG. 5. Differential cross section data points on the ðEb;−tÞ
plane. Each dot represents a data point from the J=ψ 007
experiment at JLab Hall C (circle) [5] or GlueX Collaboration
at Hall D (square) [6]. Solid lines correspond to contours of equal
ξ, while the data points with relatively close jtj will be binned
together according to the dashed line for comparisons.
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with relatively close jtj as shown in Fig. 5 with the dashed
line. In Fig. 6, we show the ξ dependence of the differential
cross section binning data with similar jtj. It is clear from
the plots that the differential cross sections have nontrivial
dependence on the ξ and generally get suppressed with
increasing ξ, consistent with the expected ξ-scaling behav-
iors from the asymptotic expansion. However, due to the
limited quality of the data overall, as well as the kinematical

constraint that for given jtj there will be a maximum ξ it
could reach,

jtj ≥ 4ξ2

1 − ξ2
M2

N; ð67Þ

it is challenging to extract the full ξ dependence at given jtj
with the current data. Consequently, one has to consider the
combination of all the data with different jtj to study the ξ
dependence, for which one has to take the nontrivial jtj
dependence into account as well.4

To test the ξ-scaling behavior with all the differential
cross section data of different jtj, we consider one of the
simplest Ansatz for the jGðξ; tÞj2,

jGðξ; tÞj2 ¼ Nξ−α
�
1 −

t
Λ2

�
−6
; ð68Þ

where Λ represents the effective tripole mass [note that
jGðξ; tÞj2 is the square of form factors, so it has a power
of 6 for tripole], N corresponds to the normalization,
and α indicates the power of the ξ scaling. Fitting to the
differential cross section measurements, we obtain N ¼
0.027� 0.007, α ¼ 5.17� 0.25, and Λ ¼ 3.57� 0.22
with reduced χ2 ¼ 1.23. The best-fit α is around 5 which
is quite close to the expected value of 4 from asymptotic
expansion. Actually, by fixing α ¼ 4, we obtain N¼
0.096�0.005 and Λ¼ 2.96� 0.10 with reduced χ2¼1.42.
Both fits produce quite reasonable reduced χ2’s, indicating
strongly that differential cross sections scale with ξ accord-
ing to ξ−4 or ξ−5.
We note that these fits assume factorizable t dependence

as Eq. (68), which would not be generally true. However,
not enough information can be obtained about the poten-
tially entangled ðξ; tÞ dependence given the present amount
of data and factorized ξ and t dependence appears to
work fine.
To show the ξ scaling of differential cross sections more

clearly, in Fig. 7, we plot the rescaled differential cross
sections multiplied to ξ4ð1 − t=Λ2Þ6. It is apparent that
most of the data are statistically consistent with the constant
orange band after the rescaling, whereas there appears to be
some rising in the ξ dependence according to the GlueX
measurements at large ξ. This observation has been dis-
cussed by the GlueX Collaboration as their measured
differential cross sections anomalously increase as jtj
increases [6]. However, this was not seen in the J=ψ
007 measurements, partially due to its limited coverage at
large jtj. With that in mind, we shall note that this nontrivial
behavior could be important for studying the ξ dependence

FIG. 6. Differential cross sections dσ=dt (nb/GeV2) of the
threshold J=ψ photoproduction versus ξ combining the J=ψ 007
(circle) [5] and the GlueX measurements (square) [6]. The
measurements are binned into groups with similar jtj and plotted
with respect to the ξ.

4The differential cross section also depends on the beam
energy Eb which can be equivalently expressed in terms of the
center of mass energy W, see, e.g., Eq. (4). However, near the
threshold W ∼MN þMJ=ψ so the W dependence is weak.
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of the differential cross section, although more data are
needed to further justify this observation.
At the end of this subsection, we also comment on the

remnant ξ dependence in addition to the overall ξ−4 scaling.
According to Fig. 7, one might claim that the differential
cross sections scale as ξ−4 without remnant ξ dependence,
and thus the G2ðtÞ and G4ðtÞ terms in Eq. (63) vanish.
However, it is worth noting that the data do not distribute
evenly among all the different ξ—a major part of the data
have 0.3 < ξ < 0.5, while only about 1=3 of them have
ξ > 0.5. In addition, these data with large ξ typically have
lower quality and are less weighted statistically. Therefore,
the remnant ξ dependence is not excluded by the current
data. Attempting to extract the G2ðtÞ andG4ðtÞ by fitting to
the current data will lead to nonzero best-fit G2ðtÞ and
G4ðtÞ with massive uncertainties, consistent with these
arguments.

B. Several scenarios for the extraction
of gCFFs and gluonic GFFs

With the above discussion, we further explore the
extraction of the gCFFs and even the gluonic GFFs in
this subsection, which has been studied in previous
works [5,13,14]. However, as we discussed in the previous
subsection, the current differential cross section data only
support the overall ξ−4-scaling behavior. Any additional
conclusions one attempts to draw from them may suffer
from insufficient data, which is consistent with the finding
in the previous work that the CgðtÞ form factors cannot
be effectively constrained with the current data [5,13,14].
Therefore, we note that it is still crucial to obtain more data

with higher quality, especially at large momentum transfer
jtj, to get further information on the gCFFs or even the
gluonic GFFs. However, to illustrate how the analysis could
be done, we will use the current data as an example to
consider several scenarios where the gCFFs or gluonic
GFFs can be extracted.

1. Scenario 1: Leading-moment approximation

The simplest way to obtain the gluonic GFFs is through
the leading-moment approximation, with either the
leading-Mellin-moment approximation or the leading-
conformal-moment approximation that differs by a factor
of Aconf

1 ¼ 5=4. The analysis reduces to the ones in the
previous work [5,13,14] in the leading-Mellin-moment
approximation. Extensive analyses of the current data with
careful treatments of the leading-moment approximation
and large-ξ expansion have been presented in Ref. [14]
recently.
Here we make two more remarks: First, in Ref. [14] the

leading-Mellin-moment approximation has been applied
to the data with ξ > 0.4 due to the lack of large-ξ data.
However, the example in Fig. 3 indicates that the leading-
moment approximation works best with ξ > 0.6, while
there are noticeable interferences from the ξ−4 term when
extending to ξ > 0.3. The corresponding systematic uncer-
tainties from the ξ−4 term can be roughly estimated to be
20%–30% based on the difference between Eqs. (44)
and (43). Second, the extra factor of Aconf

1 ¼ 5=4 will lead
to a slightly different result for the extraction of gluonic
GFFs, which agrees better with the gluonic GFFs from
lattice simulation [38].

2. Scenario 2: Modified leading-moment approximation

Motivated by the above observations, a modified
approach can be proposed by multiplying an extra nor-
malization factor to the leading-moment approximation.
There are several benefits to doing so. First, this extra
normalization will take care of the difference between the
leading-Mellin-moment and leading-conformal-moment
approximation as well as other potential higher-moment
effects. Second, the numerical example in Fig. 3 indicates
that the extracted coefficients may be off by an extra factor
when including lower-ξ data. This could be partially
accounted for by the extra normalization. Third, there
might be overall normalization from the higher-order
effects that could be absorbed into the extra normalization.
Therefore, an extra normalization seems reasonable, espe-
cially when lower-ξ data will be included, although it
cannot represent all the other effects. Thus, we consider the
approximation

A
ð2Þ
g ðtÞ ≈ 2NgCFFAconf

1 AgðtÞ; ð69Þ

C gðtÞ ≈ 8NgCFFAconf
1 CgðtÞ; ð70Þ

FIG. 7. Rescaled differential cross sections ξ4ð1 − t=Λ2Þ6dσ=dt
(nb/GeV2) of the threshold J=ψ photoproduction versus ξ
combining the J=ψ 007 (circle) [5] and the GlueX measurements
(square) [6]. The orange band corresponds to the best-fit value
and its width is calculated based on the different Eb among all the
data (8.7 < Eb < 11 GeV).
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with NgCFF the extra normalization constant to be deter-

mined, where the B
ð2Þ
g ðtÞ will still be set to zero.

However, with the current data even including the lower-
ξ ones, the extraction of the gCFFs with the extra
normalization NgCFF still suffers from insufficient data,
especially for the C gðtÞ coefficient. We remark that it really
takes the nontrivial ξ dependence to separate the two
gluonic GFFs. This will be discussed with more detail in
the next section.

3. Scenario 3: Extraction with complete ξ dependence

In the ideal case, where the amount and quality of the
data are unlimited, we could consider the most model-
independent way to extract the gCFFs and gluonic GFFs. In
this case, we would first obtain the coefficients G0ðtÞ,
G2ðtÞ, and G4ðtÞ in Eqs. (64)–(66) from the full ξ
dependence of the differential cross sections. Then we

could try to reconstruct the coefficients A
ð2Þ
g ðtÞ, Bð2Þ

g ðtÞ,
and C gðtÞ or even the leading moments AgðtÞ, BgðtÞ, and
CgðtÞ from them. Even though the reconstruction in the
second step still suffers from the interference of the higher
moments, the extraction of G0ðtÞ, G2ðtÞ, and G4ðtÞ in the
first step could avoid the potential contamination from the
higher-order terms or the imaginary part of the gCFFs
that scale differently in ξ. More importantly, such extraction
allows a direct test of the factorization and the asymptotic
expansion with gluon GPDs, i.e., the differential cross
sections should have the ξ-scaling behaviors as predicted
by Eq. (63) to the leading order independent of the specific
values of the gluon GPDs.
In the previous subsection, we showed that the overall ξ

scaling of the differential cross section is consistent with
the expected ξ−4 behavior, whereas no further information
can be unambiguously obtained. Although the GlueX
measurements seem to indicate some nontrivial remnant
ξ dependence in the differential cross section as ξ get large,
we note that such observations also depend on how one
parametrizes the t dependence, and it is crucial to have
more data to confirm such observations. Moreover, we note
that this scenario could apply to a larger range of ξ as long
as the asymptotic ξ-scaling behavior is satisfied.

IV. CURRENT STATUS AND FUTURE
DEVELOPMENTS

The above scenarios certainly put nontrivial require-
ments on both the quantity and the quality of the available
data, which cannot be fulfilled with the current J=ψ
threshold production measurements, especially in the
large-jtj region. Accordingly, in this section, we will
discuss the impact of the current data as well as the future
developments on the extraction of the gluonic GFFs in the
GPD factorization framework. We will focus on the current

limitations in the extraction and the possible improvements
from future developments.

A. Current status of the gluonic GFFs extraction

To start with, we shortly summarize the current status of
the extraction of the gluonic GFFs in the GPD framework.
These extractions are all under scenario 1, where the
leading-moment approximation is made due to the limited
amount of data [5,13,14]. The most up-to-date analyses
have been presented in Ref. [14]. As discussed therein, the
gluonic GFFs still cannot be fully determined from the
current J=ψ threshold production measurements alone,
even under the leading-moment approximation. Typically,
the AgðtÞ and CgðtÞ form factors are parametrized in the
tripole form, and then the Agð0Þ form factor is fixed by the
gluon PDF in the forward limit where Agð0Þ ¼ 0.414 to
make the extraction of GFFs feasible [35]. With such
a setup, the AgðtÞ form factor could be reasonable con-
strained/extracted from the J=ψ threshold production
measurements, whereas the CgðtÞ form factor still
could not.
It is noteworthy that the squared hadronic matrix element

jGðξ; tÞj2 reads

jGðξ; tÞj2 ≈ ξ−4
�
ð1 − ξ2Þ

�
A

ð2Þ
g ðtÞ


2 þ 2A

ð2Þ
g ðtÞξ2C gðtÞ

þ
�
1 −

t
4M2

N

��
ξ2C gðtÞ

�
2

�
þ � � � ; ð71Þ

when ignoring B
ð2Þ
g ðtÞ. Based on the gluon PDF, we

have A
ð2Þ
g ð0Þ ≈ 5=2Agð0Þ ≈ 1 [35], and we also estimate

C gð0Þ ≈ 10Cgð0Þ ≈ −5 from lattice QCD simulations [38].
Therefore, for the major part of the current data with
0.3 < ξ < 0.5, we have roughly 0.45 < ξ2jC gð0Þj < 1.25,

which is comparable to A
ð2Þ
g ð0Þ ≈ 1. Thus, we have

A
ð2Þ
g ð0Þ ∼ ξ2jC gð0Þj, indicating the AgðtÞ and CgðtÞ form

factors could have comparable contributions to the squared
hadronic matrix element and the sensitivities of the data to
them could be comparable accordingly. Moreover, the
sensitivity to the AgðtÞ form factor will be suppressed with
increasing ξ by the prefactor of ð1 − ξ2Þ. Thus, one should
expect increasing sensitivity to the CgðtÞ form factors when
large-ξ data are obtained. We note that this picture will be
modified when considering their generally different t
dependence and the large systematical uncertainties asso-
ciated with the leading-moment approximation in the
lower-ξ region.
However, the above estimation is rather contrary to the

observation in the current extraction where the AgðtÞ form
factor is much better constrained [5,13,14], mainly due to
the extra off-forward constraint on the AgðtÞ form factor
from gluon PDFs. Therefore, in addition to the systematical
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uncertainties, one should keep such model dependence
in mind when extracting the gluonic GFFs with leading-
moment approximation and fixed Agð0Þ. More coverage of
the large-ξ region will be crucial to gain more sensitivity of
the CgðtÞ form factor and to clarify such model depend-
ence. Actually, the result in Fig. 7 clearly indicates that only
one coefficient is effectively constrained. Accordingly,
extraction of any extra information requires extra input,
such as what has been done in Refs. [5,13,14].
To illustrate the effect of the large-ξ data on the

extraction of the GFFs, particularly the CgðtÞ form factor,
we consider the different ξ-scaling behaviors corresponding
to different values of theCgðtÞ form factor. From Eq. (71), it
is clear that the ξ scaling of the differential cross sections

depends on the ratio rCðtÞ≡ C gðtÞ=A ð2Þ
g ðtÞ, which corre-

sponds to 4CgðtÞ=AgðtÞ or DgðtÞ=AgðtÞ in terms of the
gluonic GFFs in the leading-moment approximation.
Generally, the ratio rCðtÞ will have residual t dependence,
which will be neglected for discussions. We consider
three cases, where rCðtÞ ∼þ1, rCðtÞ ∼ −1, and rCðtÞ ∼ 0.5

Then the corresponding ξ-scaling behaviors of the
jGðξ; tÞj2 will be

jGðξ; tÞj2 ∼ ξ−4ð1 − ξ2Þ; rCðtÞ ∼ 0; ð72Þ

jGðξ; tÞj2 ∼ ξ−4ð1 − 3ξ2 þ 2ξ4Þ; rCðtÞ ∼ −1; ð73Þ

jGðξ; tÞj2 ∼ ξ−4ð1þ ξ2 þ 2ξ4Þ; rCðtÞ ∼þ1; ð74Þ

respectively, where we assume the overall tripole t depend-
ence and approximate −t=ð4M2

NÞ ∼ 1 for simplicity. Then
we use similar Ansätze to Eq. (68) to examine the different
ξ-scaling behaviors. For comparison, we fix the tripole
mass Λ ¼ 3 GeV from the previous fit and only fit the
different normalization prefactor N to the data for each
of them.
In Fig. 8, we show the three rescaled differential cross

sections ξ4ð1 − t=Λ2Þ6dσ=dt with different rCðtÞ. In Fig. 9,
we show the direct comparisons of the total cross section
with different rCðtÞ. All normalization factors are deter-
mined by fitting to all differential cross section data, and all
three fits have reasonably reduced χ2’s: 1.34 for rCðtÞ ¼ 0,
1.64 for rCðtÞ ¼ −1, and 1.66 for rCðtÞ ¼ 1. In addition,
we have several remarks regarding these results. First,
we emphasize that these fits should not be regarded as
extractions of gluonic GFFs since the actual t dependence
could be much more complicated. Moreover, these different
sets show clearly that the data do not uniquely determine
the remnant ξ scaling. For instance, in Fig. 8 the rising solid
line corresponding to rC ¼ 1 appears to agree better with

the data overall, which is not supported by the reduced χ2,
which is dominated by small-/medium-ξ data. Thus, more
coverage in the large-ξ region and higher quality of the data
are crucial for further justification. As mentioned before,
there are two main corrections due to the higher moments
and the nonvanishing imaginary part. The higher moments
will modify the coefficients of lower power of ξ, namely,
the G0ðtÞ, G2ðtÞ, and G4ðtÞ and also cause higher power
of ξ, namely, G6ðtÞ, G8ðtÞ, and even higher. Explicitly
including these higher moments would improve the extrac-
tion, which is, nevertheless, impractical given the difficulty

FIG. 8. Rescaled differential cross sections ξ4ð1 − t=Λ2Þ6dσ=dt
(nb=GeV2) with different rCðtÞ of which the normalization
factors are fixed by fitting to all the differential cross section
data. The solid, dashed, and dotted lines correspond to fits with
rC ¼ 1, rC ¼ 0, and rC ¼ −1with fixed Eb ¼ 11 GeV. Note that
the differential cross section depends on Eb, but only weakly.

FIG. 9. Total cross sections σ (nb) with different rCðtÞ com-
pared to the GlueX measurements. The solid, dashed, and dotted
lines correspond to fits with rC ¼ 1, rC ¼ 0, and rC ¼ −1.
Normalization factors are determined by the differential cross
section only.

5Based on the lattice simulation [38], rCðtÞ ranges from around
−1 to −5 with Oð1Þ uncertainties when t varies from about −0.1
to −2 GeV2.
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in obtaining them. Thus, we note that there will be
corrections from the higher moments, though they are
generally suppressed compared to the leading ones and can
be partially separated with their different ξ scaling. As for
the nonvanishing imaginary part, its behavior at lower ξ is
generally not known, which could cause significant sys-
tematic uncertainties and break the ξ-scaling behavior in
the lower-ξ region. Thus, the usage of the lower-ξ data for
this analysis should be avoided if possible unless the impact
of the imaginary gCFF is properly considered and extra
care should be taken in the lower-ξ region.

B. Impact of the future facilities and experiments

To obtain better extractions beyond the above results,
more experimental inputs are necessary. Here we discuss
several important future developments and their impact on
the study of the gluonic structures with threshold heavy
meson production in the GPD framework.
The planned solenoidal large intensity device (SoLID)

detector for Hall A at JLab is a large acceptance spec-
trometer capable of handling high luminosity [45]. This
would allow an unprecedented precision measurement of
the differential cross section J=ψ production near the
threshold over a large kinematical range. As we discussed
in the previous section, both large kinematical coverage and
high precision are crucial for the study of the ξ-scaling
behaviors and the potential extraction of the gCFFs and
gluonic GFFs. This would be much easier with the future
SoLID detector.
Moreover, there has been rising interest in pursuing an

energy upgrade to 20 GeV or higher of the Continuous
Electron Beam Accelerator Facility at JLab [46]. For the
threshold heavy quarkonium photoproduction, this energy
upgrade will bring in a new possibility for measuring the
production of ψ 0 or ψð2SÞ [45], the first excited state of
J=ψ . Its slightly heavier mass Mψ 0 ¼ 3.686 GeV will be
beneficial in suppressing the higher-order effects as well as
approaching the larger-ξ region. Although the improvement
might not be significant given the similar masses of J=ψ
and ψ 0, the simultaneous measurement of the productions
of two distinguishable but similar particles would allow a
direct examination of the production mechanism, i.e., the
factorization and the universality of the GPD.
Looking further into the future, we also have the

EIC [3,47], of which the much higher center-of-mass
energy will provide a unique opportunity for studying
the production of the heavier quarkonium, like the ϒ with
quasireal photon [17]. It will be harder to measure the
production close to the threshold with colliders, of which
simulations show that one can get the center-of-mass
energy W ≳ 12 GeV making use of the low-energy setting
of the EIC, noting that Wth ¼ 10.4 GeV. Consequently,
approaching the large-ξ region near the threshold with
ξth ∼ 0.8 for ϒ production could be challenging for the
EIC. However, we still have ξ≳ 0.5 at W ∼ 12 GeV for ϒ

production, improving from ξ≳ 0.35 in the case of J=ψ
production. Moreover, the much larger mass Mϒ ¼
9.46 GeV will be extremely helpful in suppressing the
higher-order corrections, which have not been systemati-
cally studied yet.
Additionally, we note that the polarized measurements

will be extremely helpful as well. Since different target
polarizations correspond to different combinations of the
gCFFs in the amplitude, they could serve as a direct
examination of the production mechanism as well, similar
to the ψ 0 or ϒ productions. Moreover, with different target
polarizations, the sensitivity to different combinations of
the gCFFs will facilitate the disentanglement of these
gCFFs, and enhance the extraction eventually.

V. CONCLUSION AND COMMENTS

To conclude, we study the exclusive productions of
heavy quarkonium near the threshold, utilizing the large
skewness behaviors of GPDs. The end point constraints at
jxj ¼ 1 suppress the PDF-like region ξ < jxj < 1 in the
large-ξ limit and cause the behavior of GPDs to be
dominated by the DA-like regions. Consequently, the
Compton-like amplitudes can be written as an asymptotic
series in terms of the moments of GPDs. We examined such
possibilities with a double distribution parametrization of
GPDs and another parametrization based on conformal
moments. We find that in the large-ξ limit the real parts
of the Compton-like amplitudes in these cases are indeed
well approximated by the asymptotic series with super-
asymptotic approximation, whereas the imaginary parts are
suppressed.
We then apply the above observation to the recent

measurements of the threshold J=ψ production by the
J=ψ 007 experiment [5] and the GlueX Collaboration [6].
We find that the ξ scaling of the measured differential cross
sections is consistent with the asymptotic predictions,
although the extraction of further information is limited
by the quality and the ξ coverage of the current data. More
specifically, while the measured t dependence of the
differential cross sections could effectively constrain the
overall t dependence of the form factors, more coverage in
the large-ξ region is crucial to separate the contributions of
the AgðtÞ and CgðtÞ form factors, assuming that Agð0Þ can
be obtained from forward gluon PDFs. We also present
several scenarios for the extraction of the gluonic GFFs
from such processes and discuss the impact of future
experimental developments.
We would like to emphasize that our analyses in this

paper were based on the leading-order perturbative calcu-
lations of the heavy quarkonium production in the GPD
formalism. We expect the generic features of the above
results will remain even at higher-order approximation in
strong coupling. Of course, it will be highly desired to
pursue such analysis at the next-to-leading order (NLO).
We notice that the NLO calculations for exclusive
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photoproduction of heavy quarkonium states have been
carried out in the literature for high-energy scattering
process, i.e., at small skewness [48–50]. When these
calculations are extended to more general kinematics,
including the near threshold region, we can further check
the asymptotic expansion relations found in our paper.
Furthermore, we note that, since the analyses in this

work mostly rely on the large-ξ kinematics and the end
point behaviors of the GPDs, it may be possible to
implement them to the quark GPDs with similar processes
like the photoproduction of lepton pairs. The kine-
matical setup overlaps with that of the timelike Compton
scattering [51,52], but large skewness will be preferred.
There has been work on the extraction of the quark GFFs
CqðtÞ with deeply virtual Compton scattering [53,54].
Although they are under a different framework with the
dispersion relation using small-/medium-ξ data, this work,
especially the discussion at the end of the Sec. II on the

connection to the dispersion relation, seems to provide a
justification of the analyses therein from the large-ξ
perspective. Such sensitivities to the CqðtÞ form factor
[which is essentially the C qðtÞ coefficient analogous to the
gluonic one C gðtÞ] are encouraging for future studies.
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