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ABSTRACT OF THE DISSERTATION

Data-driven Stabilization of Unknown Feedback-Linearizable and Partially

Feedback-Linearizable Systems

by

Lucas Martin Fraile Vazquez

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Paulo Tabuada, Chair

This thesis reports on my research in data-driven control, addressing the problem of data-

driven stabilization, i.e., stabilization of unknown nonlinear systems without making explicit

use of a model. Broadly speaking, it’s aim is to answer the question: can we design simple

plug-and-play controllers to streamline a control engineer’s work? While the trivialization

of a controls engineering is probably out of anyone’s reach, and most certainly out of mine,

I focus on a special class of systems. These are general enough to be practically useful, yet

well-behaved to the point of making the problem at hand tractable. My hope is to simplify

the design of low-level controllers thus reducing the need for, among other things, hardware-

specific controller design, allowing the engineer to focus primarily on the high-level control

task. To that end, this work focuses primarily on single-input single-output (SISO) feedback

linearizable and partially-feedback linearizable systems with stable or input-to-state stable

(ISS) zero-dynamics. We start by considering the stabilization of the former, something

accomplished by requiring only a minimal amount of real-time output data and without

the need for persistency of excitation. This is achieved through a novel understanding of

ii



how to guarantee the asymptotic stability of unknown continuous-time systems through the

use of families of approximate discrete-time models and Lyapunov-based techniques. It fol-

lows by expanding onto the multiple-input multiple-output extension and introducing dirty

derivatives as a derivative estimation technique with the aim of ameliorating the method’s

sensitivity to measurement noise. Finally, it concludes by presenting a strikingly simple

continuous-time controller capable of stabilizing SISO feedback linearizable and partially-

feedback linearizable systems with ISS zero-dynamics. This controller is constructed resort-

ing to well-known techniques, a linear observer and a linear dynamic controller. Based on

the simplicity of the methods here developed, the stability guarantees provided and their

need of minimal knowledge of the underlying system, I believe they will find future use in

practical applications.
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CHAPTER 1

Introduction

This work aims to address the problem of data-driven stabilization, i.e., stabilization of

unknown nonlinear systems without making explicit use of a model. The underlying motiva-

tion arises from the proliferation of highly-dynamic cyber-physical systems usually controlled

through hierarchical structures. By this I refer to systems in which a high-level controller

produces set-points or trajectories that are then taken as references for low-level controllers

to follow. A specific example of this are common quad-copters for which a high-level algo-

rithm plans a viable trajectory satisfying some given requirements,e.g., navigating a cluttered

environment while avoiding dynamic obstacles, which is then fed to one or more low-level

controllers in charge of each individual rotor. Low-level controllers tend to be hardware

specific, making hardware replacements problematic and time-consuming, sometimes even

requiring changes to the high-level controller. Ameliorate this issue constitutes the motiva-

tion to design data-driven controllers capable of “learning” the low-level hardware dynamics,

providing stability guarantees despite their design being agnostic of the hardware parame-

ters. The research here presented was performed in collaboration with Matteo Marchi, and

under my advisor Prof. Paulo Tabuada, who provided the motivation for this work in his

manuscript [1].

Data-driven control has been a field of fast expansion over the recent past, with sev-

eral hundred related articles published in the top control journals, such as Automatica and

Transactions on Automatic Control, in the last five years. The key question in this research

area is how to control a system solely based on input and output data, i.e., without ex-
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plicitly using a model. There is a clear overlap between data-driven control and adaptive

control, making their distinction fuzzy at times. There exists a vast variety of methods for

data-driven control, such as: PID [2] and intelligent PID control [3, 4]; optimization based

methods [5] including iterative and virtual reference feedback tunning; Model-free adaptive

control, and other dynamic-linearization-based schemes [6]; the behavioural approach [7, 8];

koopman-operator-based methods [9, 10]; extremum seeking [11, 12]; and reinforcement and

machine-learning-based techniques [13, 14]. Each of these methods has its own advantages,

yet they tend to suffer from well-documented challenges, many of which are faced by tra-

ditional adaptive control methods [15]. These include sensitivity to measurement noise and

the need for large amounts of offline or online collected data, for previous on-line training,

for the data to be sufficiently informative [16], usually requiring persistency of excitation, or

for knowledge of bounds on the unknown systems’ parameters. The aim of this thesis is to

design a data-driven control methodology that addresses some of these issues.

Chapter 1 presents an overview of the contents of the thesis and defines specific notation

to be used throughout the rest of the work.

Chapter 2 reports on the developments of [17], where I presented a methodology for sta-

bilizing single-input single-output (SISO) feedback-linearizable systems by output-feedback

when no system model is known and no prior data is available to identify a model. This

is accomplished without the need for persistency of excitation or knowledge of bounds on

the systems’ parameters. I provide therein a specific discrete-time data-driven controller

composed of a linear dynamic controller paired with least-squares-based state estimation.

Conceptually, this methodology has been greatly inspired by the work of Fliess and Join

on intelligent PID controllers (e.g., [3, 4]), and the results in this chapter provide suffi-

cient conditions under which a modified version of their approach is guaranteed to result in

asymptotically stable behavior. One of the key advantages of these results is that, contrary

to other model-free (or partially model-free) approaches to controlling dynamical systems,

such as reinforcement learning, there is no need for extensive training nor large amounts
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of data. Technically, the results draw heavily from the work of Nesic and co-workers on

observer and controller design based on approximate models [18, 19]. Along the way, we

also make connections with other well established results such as high-gain observers and

adaptive control. Although this chapter focuses only on the simple setting of single-input

single-output feedback-linearizable systems, I believe the results therein are already theoret-

ically insightful and practically useful. Despite demonstrating robustness towards external

disturbances in experimental settings, such controller is relative sensitive to measurement

noise due to relying on unweighted least-squares for state estimation purposes, see [20].

Chapter 3 extends the results to unknown multiple-input multiple-output feedback-

linearizable systems and introduces the dirty-derivative estimation approach as a promising

substitute for least-squares-based estimation. Regarding the former, I focus on systems that

satisfy the condition of sign definiteness in the input gain matrix and discuss the need for this

restriction. In terms of the latter, I provide motivation for the use of these dirty derivatives

by portraying the robustness to noise and improvement in performance they can offer to the

methods presented in Chapter 2.

Chapter 4 leverages the linear dynamic controller proposed in Chapter 2, together with

the dirty-derivative-based extended-state high-gain observer introduced in Chapter 3 to show

how this simple techniques may be combined to perform data-driven control in continuous

time. This is particularly interesting as it provides evidence that the approximate model

techniques and the assumption of “sufficiently fast sampling rate” utilized in Chapter 2 are

not necessary to recover the results therein presented. The controller introduced in Chapter

2 allows us to avoid the need for bounds on the control gain, usually required by extended-

state-observer-based controllers as is the case in active disturbance rejection control [21,22].

The dirty-derivative-based observer enjoys the properties of traditional high-gain observers

without requiring any information of the underlying system’s dynamics, making it especially

useful when working with unknown partially-feedback linearizable systems and providing

more robust estimates against measurement noise when compared to least-squares-based

3



estimation. We note that this controller may be implemented in a discrete fashion through

a forward Euler approximation, doing so and following the methodology of Chapter 2 one

recovers the results therein presented.

1.1 Notation

1.1.1 Miscellanea

The natural numbers, including zero, are denoted by N, the real numbers by R, the non-

negative real numbers by R+
0 , and the positive real numbers by R+. Given a function

f : X → Y , the domain of f is X and its codomain is Y . The image of f is the set of

values attained by the function when its argument ranges in its domain. If c : R → Rn is

a function of time, we denote its first time derivative by ċ. When higher time derivatives

are required, we use the notation c(k) defined by the recursion c(1) = ċ and c(k+1) =
(
c(k)
)(1).

The Lie derivative of a function h : Rn → R along a vector field f : Rn → Rn, given by ∂h
∂x
f ,

is denoted by Lfh, the nth Lie derivative of h along the vector field f is denoted by Ln
fh.

We denote the identity matrix on Rn × Rn by In and the zero matrix on Rn × Rm by

0n×m. Positive definite, positive semi-definite, negative semi-definite and negative definite

matrices are symmetric square matrices with positive, non-negative, non-positive and nega-

tive eigenvalues, respectively. Given a matrix A, we write A > 0, A ≥ 0, A ≤ 0 or A < 0

if A is positive definite, positive semi-definite, negative semi-definite or negative definite,

respectively. Consequently, given two matrices A and B, we write A > B, A ≥ B, A ≤ B

or A < B if A− B is positive definite, positive semi-definite, negative semi-definite or neg-

ative definite, respectively. Given a symmetric matrix Q we denote by λmin(Q) its smallest

eigenvalue and by λmax(Q) its largest eigenvalue. A square matrix is said to be Hurwitz if

all its eigenvalues have negative real part.

Given two compact sets A and B we denote that B is a subset or proper subset of A by

B ⊆ A or B ⊂ A, respectively. If B ⊂ A, we denote the complement of B in A by A− B.
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The absolute value of a real number is denoted by | · |. The standard Euclidean norm,

or the induced matrix 2-norm, is denoted by ∥·∥. Let f : S → R be a real valued function

defined on a set S ∈ Rn, then a ∈ R+
0 is an upper bound of f(x) in S if f(x) < a for all x ∈ S

and the supremum of f(x) in S, supx∈S |f(x)|, is the least upper bound of f(x) in S. The

L∞-norm of f(x) is denoted by ∥f∥∞ and defined as ∥f∥∞ = supx∈S |f(x)|. In a measure

space, a is said to be an essential upper bound of f(x) in S if it holds that |f(x)| < a for all

x ∈ S except for a set of measure zero. The essential supremum of f , ess supx∈S |f |, is then

given by the least essential upper bound. In the case of a vector valued function f : S → Rn

by f(x) = (f1(x), · · · , fn(x)) where fi(x) are real valued functions, we define the essential

supremum as ess supx∈S ∥f∥ = ess supi∈{1,··· ,n} (ess supx∈S |fi|) , we define the supremum and

infinity norm of f similarly.

A function α : R+
0 → R+

0 is of class K if α is continuous, strictly increasing, and α(0) = 0.

If α is also unbounded, it is of class K∞. A function β : R+
0 ×R+

0 → R+
0 is of class KL if, for

fixed t ≥ 0, β(·, t) is of class K and β(r, ·) decreases to 0 as t → ∞ for each fixed r ≥ 0.

A diffeomorphism is a continuously differentiable map with a continuously differentiable

inverse. A function f : D → Rn defined in D ⊆ Rn is said to be Lipschitz continuous if

there exists some constant L ∈ R+, named Lipschitz constant, such that for all x1, x2 ∈ D

the bound ∥f(x1)− f(x2∥ ≤ L ∥x1 − x2∥ holds. Said function f is called locally Lipschitz

continuous if for every x ∈ D there exists a neighborhood D0 ∈ D of x such that f restricted

to D0 is Lipschitz continuous.

1.1.2 Stability

We use the usual definitions of practical, asymptotic, and exponential stability of equilibrium

points of dynamical systems, and of input-to-state (ISS) stability of systems as given in

Chapter 4 of [23]. Specifically, consider a continuous-time dynamical system of the form:

ẋ = f(x), (1.1.1)
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where x ∈ Rn is the state and f : Rn → Rn is a smooth function. The origin of (1.1.1) is:

• asymptotically stable if there exists β ∈ KL such that:

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀t ≥ t0 ≥ 0.

• practically stable if there exists β ∈ KL and c ∈ R+ such that:

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + c, ∀t ≥ t0 ≥ 0.

• exponentially stable if there exists c, k and γ ∈ R+ such that:

∥x(t)∥ ≤ k ∥x(t0)∥ exp−γ(t−t0) .

Consider a continuous-time dynamical system of the form:

ẋ = f(x, u), (1.1.2)

where x ∈ Rn is the state, u(t) is a piecewise continuous function and f : Rn × Rm → Rn

is a piecewise continuous function. System (1.1.2) is said to be input-to-state stable (ISS) if

there exists β ∈ KL and γ ∈ K such that for any initial state x(t0) and any bounded input

u(t), the solution x(t) exists for all time t ≥ t0 and satisfies:

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + γ(ess sup
t0≤τ≤t

∥u(τ)∥).

Consider the system:

ẋ = f(x, u), (1.1.3)

where x ∈ Rn is the state, f : Rn × Rm → Rn is a smooth function and u ∈ Rm is an input

signal produced by some feedback law satisfying v̇ = ϕ(x, v, k), u = χ(v, x, k). The system

(1.1.3) is said to be rendered semi-globally asymptotically stable if for any given compact

set S, controller parameters k can be chosen so that the origin is rendered asymptotically

stable for all the solutions starting on S. The same applies, mutatis mutandis, to semi-global

practical and exponential stability.
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1.1.3 Feedback linearization

We follow the definitions of feedback linearization provided in Chapter 13 of [23], reproduced

below for completeness.

A nonlinear system:

ẋ = f(x) + g(x)u (1.1.4)

where x ∈ D and u ∈ R are the state and input, and f : D → Rn and g : D → Rn are smooth

in a domain D ⊆ Rn, is said to be feedback linearizable if there exists a diffeomorphism

T : D → Rn such that Dz = T (D) contains the origin and the change of variables z = T (x)

transforms the system (1.1.4) into the form:

ż = Az +B (α(x) + β(x)u) , (1.1.5)

with (A,B) controllable, and α(x) and β(x) continuous functions with β(x) non-zero for all

x in D.

Given that one does not always have access to the full state of a system, of particular

interest is the input-output case of feedback linearization. Before presenting that case we

introduce the concept of relative degree. Consider the single-input single-output system:

ẋ = f(x) + g(x)u, y = h(x), (1.1.6)

where f, g, and h are smooth in a domain D ⊆ Rn. The system is said to have relative

degree ρ, 1 ≤ ρ ≤ n, in a region D0 ⊆ D if the Lie derivatives of h along f and g satisfy:

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , ρ− 1; LgL

ρ−1
f h(x) ̸= 0,

for all x ∈ D0.

With this definition at hand, we introduce Theorem 13.1 from [23], that provides a

practical way of verifying if a system of the form (1.1.6) is feedback linearizable. Consider

the system (1.1.6) and assume it has relative degree ρ ≤ n. If ρ = n, then for every x0 ∈ D,
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a neighbourhood N of x0 exists such that the map:

T (x) = (h(x), Lfh(x), · · · , Ln−1
f h(x)),

restricted to N , is a diffeomorphism on N .

This implies that a system of the form (1.1.4) is feedback linearizable if a function h(x)

exists such that under the output y = h(x) the system has relative degree n. It is shown

in Chapter 13.3 of [23] that this is also a necessary condition. Note that in this case the

functions α(x) and β(x) in (1.1.5) are given by α(x) = Ln
fh(x) and β(x) = LgL

n−1
f h(x).

If ρ < n, then we recover the partial feedback linearization case. Specifically, if ρ < n,

then for every x0 in D, a neighbourhood N of x0 and smooth functions ϕ1(x), · · · , ϕn−ρ(x)

exist such that:
∂ϕi

∂x
g(x) = 0, for 1 ≤ i ≤ n− ρ,∀x ∈ N ,

and the map:

T (x) = (h(x), Lfh(x), · · · , Lρ−1
f h(x), ϕ1(x), · · · , ϕn−ρ(x)),

restricted to N , is a diffeomorphism on N . In this case the dynamics of the first ρ elements

are called the output dynamics while the dynamics of the last n− ρ elements are named the

zero dynamics.

The existence of a function h such that system (1.1.6) has relative degree n can be char-

acterized by necessary and sufficient conditions on the vector fields f and g, first presented

by Krener in [24]. Before introducing these conditions we need to define the notions of Lie

brackets and invariant distributions. Given two vector fields f and g on D ⊆ Rn, the Lie

bracket [f, g] is a third vector field defined by:

[f, g](x) =
∂g

∂x
f(x)− ∂f

∂x
g(x),

where ∂g
∂x

and ∂f
∂x

are Jacobian matrices. One may repeat the bracketing of g with f , we

define:

ad0fg(x) = g(x), ad1fg(x) = [f, g](x), adifg(x) = [f, adi−1
f g(x)](x).
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For vector fields f1, f2, · · · , fk on D ⊆ Rn, let ∆(x) = span{f1(x), f2(x), · · · , fk(x)} be

the subspace of Rn spanned by the vectors f1(x), f2(x), · · · , fk(x) at any fixed x ∈ D. The

collection of all vector spaces ∆(x) for x ∈ D is called a distribution and referred to by:

∆ = span{f1, f2, · · · , fk}.

The dimension of ∆(x), defined by dim(∆(x)) = rank[f1(x), f2(x), · · · , fk(x)], may vary

with x. If the vector fields {f1(x), f2(x), · · · , fk(x)} are linearly independent for all x ∈ D,

then dim(∆(x)) = k for all x ∈ D and the distribution ∆ is said to be a nonsingular

distribution in D, generated by f1, f2, · · · , fk. A distribution is involutive if f1 ∈ ∆ and

f2 ∈ ∆ implies [f1, f2] ∈ ∆. If ∆ is a nonsingular distribution generated by f1, f2, · · · , fk,

then ∆ is involutive if and only if [fi, fj] ∈ ∆ for all i, j ∈ {1, 2, · · · , k}.

1. the matrix G(x) = [g(x), ad1fg(x), · · · , adn−1
f g(x)] has rank n for all x ∈ D0;

2. the distribution ∆ = span{g(x), ad1fg(x), · · · , adn−2
f g(x)} is involutive in D0.

The definitions in this subsection can be extended to the multiple-input multiple-output

case, for which we define the concept of vector relative degree. Consider the multiple-input

multiple-output system:

ẋ = f(x) + g(x)u, y = h(x), (1.1.7)

where x ∈ D, u(t) ∈ Rm and y ∈ Rm are the state, inputs and outputs of the system,

f : D → Rn, g : D → Rn × Rm and h : D → Rm are smooth in a domain D ⊆ Rn. Let gi

and hi for i = {1, 2, · · · ,m} be the ith column of g(x) and entry of h(x), respectively, then

the multivariate nonlinear system (1.1.7) has a vector relative degree {ρ1, ρ2, · · · , ρm} in a

region D0 ⊆ D if:

1. the Lie derivatives of h along f and g satisfy LgjL
k
fhi(x) = 0, for all 1 ≤ j, i ≤ m, for

all k ≤ ρi − 1 and for all x ∈ D0.
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2. the matrix A ∈ Rm×m:

A(x)


Lg1L

ρ1−1
f h1(x) · · · LgmL

ρ1−1
f h1(x)

Lg1L
ρ2−1
f h2(x) · · · LgmL

ρ2−1
f h2(x)

· · · · · · · · ·

Lg1L
ρm−1
f hm(x) · · · LgmL

ρm−1
f hm(x)

 ,

is nonsingular for all x ∈ D0.

We refer the reader to in Lemma 5.2.1 in [25] for the following result. Consider the

system:

ẋ = f(x) + g(x)u (1.1.8)

where x ∈ D and u(t) ∈ Rm are the state and inputs of the system, f : D → Rn and

g : D → Rn × Rm are smooth in a domain D ⊆ Rn. Assume the matrix g(x) has rank m,

then the system is feedback linearizable in a region D0 ⊆ D if and only if there exists m

real-valued functions h1(x), · · · , hm(x), defined on D0 such that the resulting system of the

form (1.1.7) has some vector relative degree {ρ1, · · · , ρm} in D0 and
∑m

i=1 ri = m.

The textbook [25] presents an in-depth analysis of SISO and MIMO feedback linearization

that the interested reader might find appealing.

1.1.4 Big O notation

Consider a function f : R+
0 ×Q → Rn with Q ⊆ Rn. We use the notation f(t, x) = Ox(T )

to denote the existence of constants M,T ∈ R+ so that for all t ∈ [0, T ] and x ∈ Q we have

∥f(t, x)∥ ≤ MT∥x∥ with ∥x∥ denoting the 2-norm of x. Going forward we only consider

T ≤ 1, thus the following rules apply to this notation where the equalities below are to be

used to replace the left-hand side with the right-hand side:

Ox(T
2) = Ox(T ), (Ox(T ))

2 = Ox2(T 2), TOx(T ) = Ox(T
2), g(x)Ox(T ) = Ox(T ).

The subscript x2 in Ox2(T 2) indicates we are squaring the norm, i.e., Ox2(T 2) denotes the

upper bound MT 2∥x∥2. Moreover, the function g is assumed to have bounded norm, i.e.,
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there exists b ∈ R+ so that ∥g(x)∥ ≤ b for all x ∈ Q. To illustrate the use of these equalities,

consider the equality f(t, x) = Ox(T
2) which is defined by ∥f(t, x)∥ ≤ MT 2∥x∥. Given that

we chose T ≤ 1, we have the bound T 2 ≤ T that enables us to conclude ∥f(t, x)∥ ≤ MT∥x∥,

i.e., f(t, x) = Ox(T ). Using the above rules we can directly replace f(t, x) = Ox(T
2) with

f(t, x) = Ox(T ).

1.1.5 Persistency of excitation

There are several equivalent definitions of persistency of excitation, see [26–28], we refer to

those provided in the latter, with the discrete version provided in [29], specifically:

1. The piecewise-continuous uniformly bounded function x : R → R1×n is said to be

persistently exciting (of period T) if there exist t0, T and a ∈ R+ such that the following

inequality holds uniformly in t0:

t0+T∫
t0

x(τ)Tx(τ)dτ ≥ aIn.

2. A sequence x(t) ∈ R1×n is said to be persistently exciting (in N steps), if there exist

t0, N and a ∈ R+ such that for all t ≥ t0 the following inequality holds:

t0+N∑
t=t0+1

x(t)Tx(t) ≥ aIn.

Persistency of excitation is concept that has been present in the adaptive control lit-

erature since the 1960s, generally appearing as a requirement on the input signal when

performing parameter estimation. It was noted in [30] that “When persistency of excitation

is lost in adaptive systems, the system variables from time to time exhibit bursts of oscil-

latory behaviour”. The signal or sequence that must satisfy the persistency of excitation

requirement, and in how many steps it must do so to be sufficiently exciting, depends on the

adaptive system in question. Despite this, it is generally the case that one can translate the
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requirement onto the input sequence or onto a sequence of vectors composed by consecutive

inputs as is the case in the behavioural setting, see [31]. Informally, one can interpret this

as the requirement that the input signal is rich enough such that all the modes of the plant

it is applied to are excited. For an in depth analysis of the need for persistency of excitation

in adaptive control see Chapters 6 and 8 in [28].
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CHAPTER 2

Data-driven stabilization of unknown single-input

single-output feedback-linearizable Systems

2.1 Introduction

2.1.1 Motivation

The work presented in this chapter was motivated by two initially independent lines of

inquiry: the thought-provoking work of Fliess and Join on intelligent PID controllers [3, 4],

and the growing impact of machine learning, in particular deep learning, on a wide variety

of engineering problems [14,32]. Curiously, the techniques of Fliess and Join can be seen as

a method to transform sensor measurement data into control inputs with minimal reliance

on plant models. Therefore, we can interpret intelligent PID controllers as data-driven1

controllers and this is the view espoused in this work.

1The term model-free is sometimes used in lieu of data-driven. However, we know from behavioral systems
theory that data generated by interacting with a system, i.e., its behavior, is essentially a model for such
system. Therefore, we find the term data-driven more adequate as it only suggests that state-space models
are not explicitly used.
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2.1.2 Contribution

The main contribution of this chapter is the identification of a class2 of nonlinear systems for

which a modified version of intelligent PID controllers can guarantee asymptotic stability.

This is by no means the largest class of such systems, but a large enough class to make the

technical contribution of this chapter relevant to applications, as illustrated by the experi-

mental results presented in Section 2.8. Moreover, the techniques used to prove the results

are also of interest as they rely on an apparently unrelated line of work by Nesic and co-

workers [18,19] on state estimation and control based on approximate models. In particular,

this chapter shows how the results in [18, 19] can be used to provide a formal justification

for the working assumption upon which the analysis of Fliess and Join [3,4] relies: the sam-

pling rate can be made high enough so that the relevant signals can be considered constant in

between sampling instants.

Although the use of learning techniques has been surging3 within the control community,

learning has always been an integral part of the scientific discipline of control. Classical

bodies of work within control, such as a system identification [33,34] and adaptive control [28,

35], are essentially learning techniques tailored to the needs of control. The results in this

chapter make connections with, and sometimes have been inspired by, such classical results.

Several of these connections will be exposed throughout the chapter although readers with a

different background may see other connections that have eluded the author. Yet, it matters

to highlight the advantages of the results in this chapter over other learning techniques for

control. First, the proposed data-driven controllers require neither large amounts of data nor

lengthy offline or online training. In this sense, they are much closer to adaptive control than

to techniques based on reinforcement learning [36] or deep learning [37]. However, contrary

2Essentially single-input single-output feedback-linearizable systems, see Section 2.7 for a formal state-
ment of the main results. Note, however, that the results conceptually extend to multiple-input, multiple-
output systems and even to slowly time varying systems.

3As revealed, e.g., by a search using the keywords “data-driven” and “control”.
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to most work on adaptive control that relies on linearly parameterized models (for the plant

or controller), the proposed data-driven controllers do not attempt to learn parameters and,

instead, directly learn the input to be fed to the plant. Hence, one always works on small

finite-dimensional spaces and, for this reason, only needs small amounts of data. A further

advantage of the proposed data-driven controllers is that its users only need, yet are not

restricted, to employ linear control techniques, an observation that justifies the well crafted

title of [3]. Finally, the results in this chapter should be regarded as a design methodology

since its key steps can be performed by resorting to different techniques. To show feasibility

of the approach, and ease of use, I propose a specific technique for each step although it

should be clear these are by no means unique or even the best. We shall return to this

point in more detail in Section 2.4 where I provide an outline of the proposed data-driven

control methodology. It is worth mentioning that the presented methodology results in

asymptotically stable behavior without resorting to persistency of excitation assumptions.

This is a key contribution, setting us apart from most adaptive control techniques, since it

is often hard to justify or validate persistency of excitation in practical applications.

We would be remiss if we did not give due importance to the limitations of the proposed

data-driven control methodology: it can be quite sensitive to measurement noise. This is a

consequence of the need to estimate derivatives of sensed signals. While we leave a detailed

study of how to best handle noise for future work4, the experimental results in Section 2.8

already offer evidence that the proposed data-driven methodology can be practically useful

despite the aforementioned limitation.

2.1.3 Related work

As previously stated, the results in this chapter were directly inspired by the work of Fliess

and Join on intelligent PID controllers. I regard the papers [3, 4] as entry points into this

4See Chapter 3 for an incipient step in that direction.
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literature since the number of papers on this topic has been growing over the last ten years.

The main contributions with respect to this line of work are: 1) to rigorously formalize

the idea that signals can be treated as constant in between sampling times provided the

sampling rate is high enough; 2) to identify a class of nonlinear systems for which this type

of data-driven controllers is guaranteed to result in asymptotically stable behavior. This

was accomplished by: 1) proposing several modifications to intelligent PID controllers; 2)

a feedback linearizability assumption; and 3) leveraging the work of Nesic and co-workers

on estimation and control based on approximate models. Moreover, I also address the case

where the control gain is unknown whereas it is assumed to be known in the intelligent PID

literature. Although the focus is on the simple case of single-input single-output systems, the

attentive reader will notice the results can be generalized to multiple-input multiple-output,

and partially feedback-linearizable systems. We discuss such extensions in Section 2.7 and

later in Chapter 3.

Two recent papers [38, 39], inspired by behavioral techniques, have also proposed data-

driven control techniques. It is shown, in both cases, that the proposed controllers can be

used with nonlinear systems even though they were developed for linear systems. The key

requirement is that the mismatch between the linear and nonlinear models is small. A similar

idea is used in this chapter: by choosing a suitably high sampling rate, a point-wise linear

approximation suffices for control. For this reason the author suspects it may be possible to

combine these different perspectives to obtain even stronger results. The use of behavioral

techniques for the development of data-driven control techniques is not recent and had been

advocated before, see [8, 40]. However the algorithms proposed in this earlier work are

better suited for offline computation as they require several complex matrix operations. All

the aforementioned papers, as well as [41], rely on acquiring enough sufficiently informative

data to produce control inputs (see [42] for a discussion on how much informative data is

required for different control tasks). This requires that enough experiments are conducted

using persistently exciting inputs. In contrast, no prior data or persistency of excitation is
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required for the results herein presented.

The previous observation sets the current chapter apart from much work on data-driven

control as well as other work that, although was not developed under the recent data-driven

perspective, can be interpreted as such. One such example is the use of extremum seeking

ideas, originally developed for optimization purposes, for stabilization, see [12]. Extremum

seeking relies on persistent high-frequency perturbations to estimate gradients and for this

reason it is only possible to establish practical stability with this technique, even in the

absence of noise. In this line of work, persistency of excitation is typically not stated as an

assumption since it is enforced by incorporating high-frequency signals into the input.

Another example is the control of nonlinear systems using Euler approximations that are

learned in real-time, see [43]. This line of work bears some similarities with the approach

described in this chapter. A key difference is that while in [43] an approximate plant model

is learned, in this chapter we directly learn the input to be applied to the plant, which

provides the benefit of not requiring knowledge of upper and lower bounds on the control

gain. Furthermore, the results in [43] rely again on persistency of excitation which is enforced

by design and, for this reason, cannot guarantee asymptotic stability but rather practical

stability.

The attentive reader might also find some similarities between the approach presented

in this chapter and Khalil’s work on extended high-gain observers and feedback control

via disturbance compensation [44]. On the one hand, both of these approaches seek to

guarantee the observer’s and controller’s dynamics are sufficiently fast relative to the plant’s

dynamics. On the other hand, this objective is achieved in very different ways. While

in [44] the key technical idea is the use of high gains to “speed up” the controller’s dynamics

with respect to the plant’s, the proposed data-driven controllers “slow down” the plant’s

dynamics through high-frequency sampling. By dispensing with the need for high gains, our

data-driven approach becomes exempt from the peaking phenomenon, thereby not requiring

saturation of the input or state estimates.
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Preliminary versions of the results in this chapter appeared in the conference publica-

tions [1, 45]. While in [1] the control gain is assumed to be known this assumption was

dropped in [45]. However, the results in [45] rely on a persistency of excitation assumption

that, as previously mentioned, is difficult to verify in practice. In this chapter we assume nei-

ther the control gain to be known (although we assume knowledge of its sign) nor persistency

of excitation.

2.2 Models

We consider an unknown single-input single-output nonlinear system described by:

ẋ = f(x) + g(x)u (2.2.1)

y = h(x) + d, (2.2.2)

where f : Rn → Rn, g : Rn → Rn, and h : Rn → R are smooth functions and we denote by

y ∈ R, x ∈ Rn, u ∈ R, d ∈ R, the output, state, input, and measurement noise, respectively.

We make the assumption that this system has relative degree n, i.e., this system is feedback-

linearizable. This implies that LgL
i
fh(x) = 0 for i = 0, . . . , n− 2 and LgL

n−1
f h(x) ̸= 0 for

all x ∈ Rn. Since the function LgL
n−1
f h is continuous and never zero, its sign is constant.

We assume the sign of LgL
n−1
f h to be known and, without loss of generality, take it to be

positive. Knowledge of the sign of LgL
n−1
f h is not a strong assumption beyond LgL

n−1
f h ̸= 0.

A simple input/output experiment can be performed to infer the sign of LgL
n−1
f h. While

requiring some knowledge of the control gain in the form of bounds is standard practice when

handling unknown systems, such is the case in, e.g., [12] and [43], this approach is free of

such assumption.

With the objective of presenting the results in its most understandable form, we assume

n = 2 throughout this chapter, although all the results hold for arbitrary n ∈ N. This

enables us to perform all the necessary computations explicitly and without the need for

distracting bookkeeping. To further reduce bookkeeping, we perform most of the analysis
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under the assumption of noise free measurements (i.e., d = 0), which leads to our main

result, Theorem 2.7.1. Given that this assumption does not usually hold when working with

physical systems, we also provide Theorem 2.7.3 which establishes stability guarantees under

essentially bounded measurement noise.

Invoking the feedback linearizability assumption, we can rewrite the unknown dynamics

in the coordinates (z1, z2) = Ψ(x) = (h(x), Lfh(x)):

ż1 = z2 (2.2.3)

ż2 = α(z) + β(z)u (2.2.4)

y = z1, (2.2.5)

where α = L2
fh◦Ψ−1 and β = LgLfh◦Ψ−1. We note that f , g, and h are unknown and thus

so are α and β. This form of the dynamics has the advantage of using the two scalar valued

functions α and β to describe the full dynamics, independently of the value of n. This is a

key observation that underlies the claim that the results below hold for arbitrary n ∈ N.

System (2.2.3)-(2.2.5) will be controlled using piece-wise constant inputs for a sampling

time T ∈ R+. This means that inputs u : R+
0 → R satisfy the following equality for all

k ∈ N:

u(kT + τ) = u(kT ), ∀τ ∈ [0, T [.

It will be convenient to use u to denote an input only defined on [0, T [. Since the curve u is

constant on the interval [0, T [, we identify it with the corresponding element of R.

The solution of (2.2.3)-(2.2.4) is denoted by F e
t (z, u) = (F e

t,1(z, u), F
e
t,2(z, u)), for t ∈

[0, T [, and satisfies F e
0 (z, u) = z. The superscript “e” reminds us that this is an exact

solution. In the next section we discuss approximate solutions.
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2.3 Approximate models

In this section we develop an approximate solution of (2.2.3)-(2.2.4) based on the well known

Taylor’s theorem that we now recall.

Theorem 2.3.1 (See [46]). Let c : I → Rn be an n times differentiable function where

I ⊆ R is an open and connected set. For any t, τ ∈ I such that τ + t ∈ I we have:

c(τ + t) = c(τ) + c(1)(τ)t+ c(2)(τ)
t2

2
+ . . .+ c(n−1)(τ)

tn−1

(n− 1)!
+ c(n)(τ ′)

tn

n!
, (2.3.1)

for some τ ′ ∈ [τ, τ + t].

Applying this result to F e
τ+t,1 we obtain:

F e
τ+t,1(z, u) =F e

τ,1(z, u) +
(
F e
τ,1

)(1)
(z, u)t+

(
F e
τ,1

)(2)
(z, u)

t2

2
+
(
F e
τ ′,1

)(3)
(z, u)

t3

3!
.

If we only retain the first three terms we obtain an approximate solution with an approx-

imation error given by the magnitude of the (neglected) fourth term. The following result

provides a bound for the approximation error in a form useful for the results derived in this

chapter.

Proposition 2.3.2. Let D ⊂ R3 be a compact set. Then, there exist T ∈ R+ and M ∈ R+

such that: ∥∥∥∥(F e
τ ′,1

)(3)
(z, u)

t3

3!

∥∥∥∥ ≤ MT 3∥(z, u− u0)∥, (2.3.2)

for all (z, u) ∈ D, all t, τ ′ ∈ [0, T ], and where u0 = −β−1(0)α(0).

Using the O notation, this result states that:

(
F e
τ ′,1

)(3)
(z, u)

t3

3!
= O(z,u−u0)(T

3).

Proof. Since (2.2.3)-(2.2.4) is a smooth differential equation (recall that inputs are constant),

solutions exist for all τ ∈ [0, Tz,u[ where [0, Tz,u[ is the maximal interval for which the solution

F e
τ,1(z, u) exists. The function (z, u) 7→ Tz,u is lower semi-continuous and, given that (z, u)
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belongs to the compact set D, it achieves its minimum on D. Let T ∈ R+ be smaller than

min(z,u)∈D Tz,u. By definition of T , for any (z, u) ∈ D solutions exist on the interval [0, T ].

Consider now the function
(
F e
τ ′,1

)(3) and note it is continuously differentiable, by assumption,

and thus Lipschitz continuous on D × {τ ′} for each fixed τ ′ ∈ [0, T ]. Hence, by definition of

Lipschitz continuity we have:∥∥∥(F e
τ ′,1

)(3)
(z, u) −

(
F e
τ ′,1

)(3)
(z′, u′)

∥∥∥ ≤ L(τ ′)∥(z, u)− (z′, u′)∥ (2.3.3)

for all (z, u), (z′, u′) ∈ D and all τ ′ ∈ [0, T ]. Noting that, according to (2.2.3)-(2.2.4),

F e
τ ′(0, u0) = 0 for u0 = −β−1(0)α(0) and all τ ′ ∈ [0, T ], we conclude that

(
F e
τ ′,1

)(3)
(0, u0) = 0.

Using this equality in (2.3.3) we obtain:∥∥∥(F e
τ ′,1

)(3)
(z, u)

∥∥∥ ≤ L(τ ′)∥(z, u)− (0, u0)∥ = L(τ ′)∥(z, u− u0)∥,

by setting z′ = 0 and u′ = −u0. If we now take M = 1
3!
maxτ ′∈[0,T ] L(τ

′) we obtain the desired

inequality. Note that M is well defined since L is continuous and [0, T ] compact.

Based on Proposition 2.3.2 we can write the exact solution F e
t of (2.2.3)-(2.2.4) valid for

all t ∈ [0, T [, as:

F e
t,1(z, u) = z1 + z2t+ (α(z) + β(z)u)

t2

2
+O(z,u−u0)(T

3) (2.3.4)

F e
t,2(z, u) = z2 + (α(z) + β(z)u)t+O(z,u−u0)(T

2). (2.3.5)

By setting5 t equal to T , the previous model provides a family of discrete-time approximate

models indexed by T :

z1(k + 1) = z1(k) + z2(k)T + (α(k) + β(k)u(k))
T 2

2
(2.3.6)

z2(k + 1) = z2(k) + (α(k) + β(k)u(k))T, (2.3.7)

where z(k), α(k), and β(k) denote the value of z, α(z), and β(z) at time kT , k ∈ N,

respectively. For later use we introduce the notation:

F a
T,1(z, u)

def.
= z1(k) + z2(k)T + (α(k) + β(k)u(k))

T 2

2

5Although t ∈ [0, T [, solutions are not altered by changing the input on a zero measure set.
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F a
T,2(z, u)

def.
= z2(k) + (α(k) + β(k)u(k))T,

where the superscript “a” emphasizes the fact that z is the solution of an approximate model.

2.4 A data-driven control design methodology

In this section we summarize the proposed data-driven control design methodology that is

presented in detail in Sections 2.5 and Section 2.6. The design will be based on different

approximate models, all of which are based on the discrete-time approximate model (2.3.6)-

(2.3.7). We start by observing that the model (2.3.6)-(2.3.7) is affine and thus all the design

techniques described in this chapter only require knowledge of linear systems theory.

The affine nature of the model (2.3.6)-(2.3.7) suggests that we could use the preliminary

controller:

u(k) = β−1(z(k))(−α(z(k)) + v(z(k)), (2.4.1)

where v(z) is a new input, to cancel the effect of the nonlinear functions α and β provided that

z(k) and the values of α and β at the current state z(k) were known. After this preliminary

controller, it would be easy to design a virtual controller stabilizing the resulting linear

system with input v. As an example design technique, we show in Section 2.6 how to design

linear controllers that perform this task.

By considering6 α and β to be constant functions in (2.3.6)-(2.3.7) we obtain an observ-

able linear system by formally treating α+ βu as a new state z3 and using the measurement

equation y = z1. Hence, any technique to reconstruct the state of an observable linear

system can be employed provided the reconstruction error is of order T , as specified by

equation (2.5.6) in Section 2.5. As an example design technique, in Section 2.5 we propose

to reconstruct the state by directly solving the equation Y = Oz where Y is a sequence

6Formally justifying this design assumption is one of the purposes of the results in Section 2.7.
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of measurements and O is the observability matrix of the aforementioned observable linear

system.

Once an estimate of z3 is obtained, we formally treat z3 as an observation. It is well

known that reconstructing α and β from the measurement equation z3 = α + βu is not

possible unless a persistency of excitation assumption is placed on the input u. Rather

than assuming persistency of excitation, we note this type of problem has been extensively

studied in adaptive control [28, 35] and it is known that any choice of parameters α and β

that satisfies the measurement equation z3 = α + βu suffices for control purposes. Inspired

by this, we directly utilize the observation z3 in a dynamic controller generating inputs which

asymptotically converge to those generated by our preliminary static controller (2.4.1).

Once the two aforementioned components – state estimator and static controller – have

been designed to satisfy the relations (2.5.6) and (2.6.1), it follows from our main result,

Theorem 2.7.1, that their concurrent execution, combined with the dynamic controller we

provide, results in asymptotically stable behavior.

2.5 State estimation

For state estimation purposes it is convenient to formally treat α(k)+β(k)u(k), in the family

of approximate models (2.3.6)-(2.3.7), as the state z3 to obtain:

z1(k + 1) = z1(k) + z2(k)T + z3(k)
T 2

2
(2.5.1)

z2(k + 1) = z2(k) + z3(k)T (2.5.2)

z3(k + 1) = z3(k). (2.5.3)

Note that this approximate model states that z3 is constant although
(
F e
t,1

)(2) will, in general,

not be so. Equality (2.5.3) follows from applying Proposition 2.3.2 to
(
F e
t,1

)(2) and dropping

the error term O(z,u−u0)(T ). Since (2.5.1)-(2.5.3) is a linear model, it can be written in the
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form:

z(k + 1) = Az(k), y(k)
def.
= z1(k) = Cz(k).

Moreover, it can be easily checked that A is invertible and we thus denote by O the observ-

ability matrix for the pair (A−1, C) which allows us to write:

Y (k)
def.
=


y(k)

y(k − 1)
...

y(k − ρ+ 1)


= Oz(k), (2.5.4)

where ρ ∈ N, ρ ≥ n+1, is the number of measurements that will be used for state estimation.

The estimate ẑ(k) of the state vector z(k) can then be obtained by solving this equation via

least-squares:

ẑ(k) = (OTO)−1OTY (k). (2.5.5)

Given that equalities (2.5.1), (2.5.2), and (2.5.3) only hold up to O(z,u−u0)(T
3), O(z,u−u0)(T

2),

and O(z,u−u0)(T ), respectively, we can easily establish the equality z = ẑ +O(z,u−u0)(T ). If

we introduce the estimation error ez, defined by ez = z − ẑ, it follows that:

ez = O(z,u−u0)(T ). (2.5.6)

It is straightforward to show that in the presence of essentially bounded noise on the mea-

surements (2.5.4) the state estimation error is given by:

ez = O(z,u−u0)(T ) +O d (T
−n), d

def.
= ess sup

t∈R+
0

∥d(t)∥, (2.5.7)

where n is the relative degree of the system.

As previously stated, the control scheme proposed in Section 2.6 only depends on the

preceding equality. Hence, we can replace least-squares estimation with any other estimation

technique leading to (2.5.6). In particular, the parameter ρ is not relevant to the theoretical

analysis although it will play an important role in mitigating the effect of sensor noise: larger

values of ρ “average out” the effect of noise.

24



Remark 2.5.1. In [47] it is shown that the algebraic techniques proposed in [48], and used

in [3, 4] to estimate derivatives of a measured signal, can be interpreted as estimating the

state of the state-space linear model governing the signals y satisfying y(3) = 0. If we denote

the constructability Gramian of this linear model by Wcn and its state-transition matrix by

Φ, the estimate is given by the well known expression (see (3.9), page 250, [49]):

W−1
cn

∫ t1

t0

ΦT (τ, t1)C
Ty(τ)dτ.

Equality (2.5.5) can be seen as the discrete-time analogue of this finite-time estimation tech-

nique.

Remark 2.5.2. The matrix (OTO)−1OT contains terms of the form T−1 on its second row

and terms of the form T−2 on its third row. Hence, it can be conceptually understood as

a linear high-gain observer with finite-time convergence and where T plays the role of the

parameter ε used in [44]. Similarly to high-gain observers, the estimate provided by (2.5.5)

can be very sensitive to measurement noise. This can be mitigated by using more samples

for estimation so as to “average out” noise, i.e., by increasing ρ. Contrary to high-gain

observers, however, we do not need to explicitly worry about the peaking phenomenon when

computing the estimate since it is not computed recursively. As mentioned before, (2.5.5)

could be replaced with a high-gain observer or even the more recent low-power high-gain

observers [50]. Which specific estimation technique works better in practice, and in the

context of the results in this chapter, is an important problem that we revisit in Chapter 3

where I motivate the use of dirty-derivative-based estimation.

2.6 Controller design

If we assume the parameters α and β to be known, we can design a family of controllers (pa-

rameterized by T ) for the family of approximate models (2.3.6)-(2.3.7) with the objective of

asymptotically stabilizing the origin in the following specific sense: there exists a symmetric
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and positive definite matrix Pz and constants λz, T0 ∈ R+ so that Vz(z) = zTPzz satisfies:

Vz(F
a
T (z, u))− Vz(z) ≤ − λzT∥z(k)∥2 +O(z,u−u0)2(T

2), (2.6.1)

for all T in the interval [0, T0]. Strikingly, we can achieve this inequality with the very simple

family of virtual controllers which is independent of T :

u = β−1(−α + v(z)), (2.6.2)

v(z) = Kz, (2.6.3)

where K is a suitable matrix. We note that the approximate model (2.3.6)-(2.3.7) can be

written as:

F a
T (z(k), u) = Az(k) +Bα(k) +Bβ(k)u(k) = Az(k) +Bv(z(k)), (2.6.4)

where the matrices A and B are of the form:

A = I + A1T, B = B1T +B2T
2.

Since (A1, B1) is a controllable pair, there exists a controller v(z) = Kz and a symmetric

and positive definite matrix Pz so that:

(A1 +B1K)TPz + Pz(A1 +B1K) = −Q, (2.6.5)

for some symmetric and positive definite matrix Q. Any choice of K such that the matrix

(A+BK) is Hurwitz ensures (2.6.5), and thus (2.6.1), are satisfied, as shown below. Using

this controller we have:

F a
T (z(k), u) = (A+BK)z = (I + (A1 +B1K)T +B2KT 2)z.

Computing Vz(F
a
T (z(k), u))− Vz(z) provides:

Vz(F
a
T (z(k), u))− Vz(z) = zT (A+BK)TPz(A+BK)z − zTPzz

= zT ((A1 +B1K)T )TPzz + zTPz((A1 +B1K)T )z
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+Oz2(T
2) +Oz2(T

3) +Oz2(T
4)

= −TzTQz +Oz2(T
2)

≤ −λmin(Q)T∥z∥2 +O(z,u−u0)2(T
2),

which is the desired inequality (2.6.1).

The dynamics in (2.6.4) are stated for the preliminary control law u = β−1(−α + v(z)),

yet since neither α nor β are known, this controller cannot be directly implemented. Instead,

we note that this controller enforces α + βu = v(z) and design a dynamic controller that

asymptotically enforces this equality by guaranteeing convergence to the origin of the error:

eu(k) = v(z(k))− (α(k) + β(k)u(k)) . (2.6.6)

To achieve this we propose a dynamic control law of the following form:

u(k + 1) = u(k) + γ (v(ẑ(k))− ẑ3(k)) , (2.6.7)

where γ ∈ R+ is sufficiently small7. Note that this controller does not enforce persistency of

excitation, nor does it require estimating or parameterizing the unknown functions α and β

as is often the case in adaptive control, see [51].

In order to fully specify this controller, we need to describe its operation during the

initial transient of ρ − 1 steps during which enough measurements are collected to produce

the first state estimate according to (2.5.5). We simply choose a fixed sequence of inputs

u∗
0, u

∗
1, . . . , u

∗
ρ−2 to be used during this transient. Although different sequences lead to differ-

ent transients, the results in Section 2.7 are independent of this choice.

The main results in the next section explain why such a dynamic controller works despite

being designed for an approximate model while assuming knowledge of the exact values of

the parameters and states in its design.

7If an upper bound β for β is known, γ < β
−1

suffices. This is shown in the proof of Theorem 2.7.1,
specifically in equation (2.9.11) and the discussion proceeding it.
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2.7 Main results

2.7.1 The noise-free scenario

It is pedagogically convenient to start with the noise-free scenario, i.e., d = 0 in (2.2.2), as it

allows us to expose the key ideas in a simpler manner. Notwithstanding the absence of noise,

the proofs of the main results in this section are quite long and for this reason can be found

in the Appendix. The author hopes its length does not hide the simple idea upon which

it rests: we can formally justify the use of approximate models for observer and controller

design by using the frameworks developed by Arcak and Nesic in [18] for the former, and

by Nesic and Teel in [19] for the latter. This combination of ingredients shows that for any

compact set of initial conditions there exists a sufficiently small sampling time ensuring the

proposed controller keeps all the signals bounded and drives the state to the origin.

Theorem 2.7.1. Consider an unknown nonlinear system of the form (2.2.1)-(2.2.2) where

the output function h has relative degree n. In the absence of measurement noise, i.e., d = 0,

for any compact set S ⊂ Rn of initial conditions containing the origin in its interior there

exists a time T ∗ ∈ R+ and a constant b ∈ R+ (both depending on S) so that for any sam-

pling time T ∈ [0, T ∗], the dynamic controller (2.6.7), where the virtual input v is provided

by (2.6.3), using the state estimates provided by an estimation technique satisfying (2.5.6),

renders the closed-loop trajectories bounded, i.e., ∥ẑ(k)∥ ≤ b and ∥eu∥ ≤ b for all k ∈ N, and

∥x(t)∥ ≤ b for all t ∈ R+
0 . Moreover:

lim
t→∞

x(t) = 0.

Although the previous result only claims that trajectories converge to the origin, it can

be readily applied to trajectory tracking problems by considering convergence to zero of the

error between the real trajectory and the trajectory to be tracked.

Extending these results to MIMO control systems is conceptually simple, with the caveat

that β and γ (now matrices) must be chosen so that the eigenvalues of I−βγ reside in the unit
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circle, ensuring convergence of the error eu. An extension to partially feedback-linearizable

systems is also possible by assuming a well behaved zero dynamics, a continuous-time version

is presented in Chapter 4.

We now introduce the following lemma which provides a sufficient condition for the

results of Theorem 2.7.1 to hold under a virtual controller v different from the one provided

in (2.6.3):

Lemma 2.7.2. Let the virtual input v : Rn → R be such that the following conditions hold:

Vz

(
F a(z(k), β−1(k) (α(k) + v(z(k)))

)
− Vz(z(k)) ≤ −λT∥z∥2 +O(z,u−u0)2(T

2) (2.7.1)

v(z(k) +O(z,u−u0)(T )) = v(z(k)) +O(z,u−u0)(T ), (2.7.2)

where Vz is defined in section 2.6, then the results of Theorem 2.7.1 remain unchanged when

using such virtual input in place of the one provided by equation (2.6.3).

2.7.2 The noisy scenario

As previously mentioned, in the presence of essentially bounded measurement noise, the

state estimation error under the state estimation technique described in Section 2.5 is now

given by:

ez = O(z,u−u0)(T ) +O d (T
−n), d

def.
= ess sup

t∈R+
0

∥d(t)∥,

where d is the noise bound and n is the relative degree of the system. This expression shines

light on the trade-off between choosing a small sampling time to render the approximate

models adequate and choosing a large sampling time to reduce the amplification effect on

noise. As with the noise-free case, the proof of the following result can be found in the

Appendix.

Theorem 2.7.3. Consider an unknown nonlinear system of the form (2.2.1)-(2.2.2) where

the output function h has relative degree n and assume the noise d to be essentially bounded,

i.e., there exists a constant d ∈ R+
0 satisfying d = ess supt∈R+

0
∥d(t)∥. For any compact
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set S ⊂ Rn of initial conditions containing the origin in its interior there exists a time

T ∗ ∈ R+ (depending on S), and constants b1, b2, b3 ∈ R+ (depending on S and T ∗) so that

for any sampling time T ∈ [0, T ∗], if d ≤ b1, the dynamic controller (2.6.7), where the

virtual input v is provided by (2.6.3), using the state estimates provided by an estimation

technique satisfying (2.5.6), renders the closed-loop trajectories bounded, i.e., ∥ẑ(k)∥ ≤ b2

and ∥eu∥ ≤ b2 for all k ∈ N, and ∥x(t)∥ ≤ b2 for all t ∈ R+
0 . Moreover:

lim sup
t→∞

∥x(t)∥ ≤ b3 d T
−n

2.8 Experimental evaluation

In this section we report on an experimental evaluation of the proposed data-driven controller

to regulate the altitude of a quad-copter. The experiments were performed on a Bitcraze

Crazyflie 2.1 and an Optitrack Prime 17W motion capture system was used to measure

the quad-copter’s altitude during the experiments. An experimental demonstration of the

robustness of the proposed data-driven controller is available in the video:

https://www.youtube.com/watch?v=9EVcRvLOGVo.

2.8.1 Experimental setup

The Crazyflie 2.1 is a small open source modular quad-copter designed by Bitcraze AB [52]

equipped with an IMU based on a 3-axis accelerometer and gyroscope. The baseline firmware

for the Crazyflie includes a PID based flight controller. We partitioned this controller into

attitude and altitude controllers, keeping the former and replacing the latter with a data-

driven controller.

To provide the data-driven controller with altitude measurements we used eight Optitrack

Prime 17W cameras [53] distributed on three sides along the top of a roughly cubic area.

The cameras have a refresh rate of up to 360Hz and provide position and pose measurements
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Figure 2.1: Measurement noise while the quad-copter is stationary on the ground.

by triangulating a set of markers placed on the quad-copter. Whereas the PID controller

regulating attitude receives measurements from the IMU and the motion capture system, the

data-driven controller only receives altitude measurements from the motion capture system.

A qualitative view of the measurement noise, when the quad-copter is static on the floor,

is presented in Figure 2.1. The real altitude corresponds to the location of the markers on top

of the quad-copter. We observe the noise typically has a magnitude of 1 mm, i.e., d = 0.001,

although there are occasional troughs in the noise signal corresponding to instants where the

motion capture system loses track of some of the markers.

2.8.2 Model

To obtain a single-input single-output system we kept the PID controller regulating atti-

tude and restricted the quad-copter’s motion to a vertical line. Therefore, assuming perfect

attitude regulation, the quad-copter’s motion can be described by:

ẋ1 = x2

ẋ2 = − g

m
+

1

m
utr,
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y = x1,

where x1 denotes altitude, g is gravity’s constant, and the input utr represents the thrust

created by the propellers rotation. The thrust is commanded by a PWM signal8 and the

relation between the commanded PWM signal u and the exerted thrust utr is well described

by the affine map utr(u) = σ0 + σ1u. The input u in this expression represents the fraction

of the maximum allowed thrust, e.g., u = 0.6 represents 60% of the maximum thrust. This

results in the dynamics:

ẍ1 =
σ0 − g

m
+

σ1

m
u, (2.8.1)

from which we can infer the relative degree of y to be 2 with α(x) = σ0−g
m

and β(x) = σ1

m
.

Since our results apply to the case where α and β are functions, rather than constants, we

emulate in software the functions:

β(x) =
σ1

m
− x4

1

2
, α(x) =

σ0 − g

m
+ 2 sin(x2

1), (2.8.2)

i.e., when the data-driven controller requests the input u, we create the input signal u −
m
σ1
(x4

1u+ 4 sin(x2
1)). This effectively turns the control gain into a nonlinear state-dependent

function. Given that σ1

m
≈ 18, our assumption that β is greater than zero is satisfied as long

as the drone does not reach altitudes higher than 2.4 meters.

In conclusion, the drone dynamics take the form:

ẋ1 = x2

ẋ2 =
σ0 − g

m
+ 2 sin(x2

1) +

(
σ1

m
− x4

1

2

)
u,

y = x1. (2.8.3)

2.8.3 Data-driven controller and its implementation

The quad-copter receives altitude measurements from the motion capture system and uses

them for state estimation using (2.5.5) with ρ = 4. This choice of ρ mitigates the effects of

8We only use PWM values up to 90% so as to leave some control authority for the attitude controller.
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the measurement noise that can be appreciated in Figure 2.1. The resulting state estimate

is then fed to the controller (2.6.7) where K = [−9 − 6] so as to place both eigenvalues of

A1 + B1K at −3 and γ = 0.002. For the initial transient we use the sequence of inputs

1.0, 1.0, 1.0, 1.0. The experiments were executed with a sample time of T = 0.0028s which

corresponds to the maximal rate at which the motion capture system provides data.

2.8.4 Experiments

The data-driven controller successfully regulates altitude for the non-linear system (2.8.3)

as shown in Figure 2.2: in the top horizontal panel we can observe the desired set-points

displayed in red and the quad-copter’s trajectory in blue; the second panel from the top shows

that this framework achieves altitude steady-state errors consistently below 5 millimeters;

the bottom two panels portray the values taken by the state-dependent non-linear functions

α(z) and β(z). A comparison between the input requested by the static controller (2.6.2)-

(2.6.3), assuming knowledge of α and β, and the input generated by the dynamic controller

(2.6.7) is presented in Figure 2.3. As expected, we can see the latter converging to the

former, made evident in the magnified detail.

The experimental results show that, in spite of measurement errors, the proposed data-

driven controller can successfully regulate altitude. In terms of selecting the gains K and

γ, we can intuitively understand reductions in γ as leading to both an increase in noise

attenuation, through “averaging” of the estimation errors in ẑ3 arising from measurement

noise, and a reduction to control responsiveness. Given that large gains in K coupled with a

small enough parameter γ will give rise to oscillations in the system’s trajectory, as often seen

in systems with input delays, we recommend the following heuristic: start the tuning process

with low control gains K and a parameter γ of the order of T−1, judiciously increasing the

gain K thereafter until either a satisfactory performance is observed or oscillations arise, the

latter meaning an increase in γ might be required before continuing to increase K.
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Figure 2.2: Experimental results portraying the quad-copter’s trajectory and reference tra-

jectory, tracking error, and values of the state-dependent non-linear functions α(z) and β(z).

2.9 Conclusions

In this chapter we have set the foundations in the development of a novel data-driven ap-

proach to control that requires neither a model nor previously stored system data. We have

proven this framework to stabilize unknown SISO feedback-linearizable systems given suf-

ficiently fast sampling rates and illustrated its practical usefulness and robustness through

the experimental stabilization of a quad-rotor.

There are several important questions that were left unaddressed here. Feedback lineariz-

ability was convenient to construct the technical arguments but one can easily see extensions

to partially feedback-linearizable systems with well behaved zero dynamics. The extension
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Figure 2.3: Comparison between the input requested by the static controller (2.6.2)-(2.6.3),

assuming knowledge of α and β, and the input generated by the dynamic controller (2.6.7),

in terms of the PWM’s duty cycle. Note that the input is computed on-board the drone and

reported, along with the states and parameters, to an external server at a rate of 100 Hz to

avoid draining the microprocessors resources.

to the multi-input multi-output case is conceptually easy, as discussed in Section 2.7 and is

part of the focus of Chapter 3. Identifying the largest class of systems to which the results

in this chapter (or suitable generalizations thereof) apply is also a worthwhile endeavor.

Equally worthwhile is investigating which state estimation and controller design tech-

niques result in better performance in the context of the proposed data-driven methodology

since it would make the results more useful in practical applications. In particular, investi-

gating how to best mitigate the effect of measurement noise would be especially important.

I motivate so-called dirty derivatives as possible answer to this issue in the second part
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of Chapter 3 and present a controller based on them, and this chapter’s developments, in

Chapter 4.

36



Proofs

Proof Theorem 2.7.1. The proof is be based on the feedback linearized form (2.2.3)-(2.2.5) of

the dynamics rather than the original nonlinear form (2.2.1)-(2.2.2). This results in no loss

of generality since both systems are related by the diffeomorphism Ψ that satisfies Ψ(0) = 0.

For simplicity, we denote the set Ψ(S) simply by S. Since Ψ is continuous, Ψ(S) is still a

compact set.

The initial transient: the state estimate ẑ requires ρ samples to be collected. To

simplify the argument we consider the case where ρ = 3 which leads to an initial (fixed)

sequence of ρ − 1 = 2 inputs u∗
0, u

∗
1 used at time k = 0 and k = 1. This corresponds to an

initial transient that must be analyzed separately.

By applying Proposition 2.3.2 to the compact set D = S×{u∗
0} we conclude the existence

of a time T0 so that trajectories are well defined for all T ∈ [0, T0] and for all initial conditions

in S. We regard T0 as the time elapsed during the first time step under input u∗
0. The set of

points reached under all these trajectories and for all T ∈ [0, T0] is denoted by Z0. We can

repeat this argument, using Z0 as the set of initial conditions (and assuming the initial time

to be zero) and the input u∗
1 to conclude the existence of a time T1 so that trajectories are well

defined for all T ∈ [0, T1] and for all initial conditions in Z0. By taking T2 = min{T0, T1} we

conclude that solutions are well defined for the sequence of inputs u∗
0, u

∗
1 where each input is

applied for T2 units of time. Let now Z be the set of points reached under all the trajectories

with initial conditions in S and that result by applying u∗
0 for T units of time, followed by

applying u∗
1 for T units of time with T ranging through all the values in the set [0, T2]. This

set is used several times in the remainder of the proof.

At time step k = 2 the state estimate is readily available. Let us denote by E the set

of possible values taken by the dynamic controller’s state eu at time k = 2 depending on

the different initial conditions and the chosen constants u∗
0, u∗

1. Since the input error eu is

a continuous function of the initial condition z(0) that belongs to the compact set S and
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the constants u∗
0, u∗

1, E is a bounded set. Consider also the set R defined as the smallest

sub-level set of W = Vz + Veu that contains Z × E where Veu : R → R is the Lyapunov

function defined by Veu(s) = s2 and Vz is the Lyapunov function satisfying (2.6.1). The

objective is to show that R is an invariant set.

Existence of solutions one step beyond the transient: we first show that it is

possible to continue the solutions from R by employing again Proposition 2.3.2. For future

use, we define the projections π1 : R2 → R, πZ : R2×R → R2, and πE : R2×R → R defined

by π1(z1, z2) = z1, πZ(z, eu) = z, and πE(z, eu) = eu. The dynamic controller is a function of

ẑ, however, since ẑ is a function of z, we can regard the controller as a smooth function of

z. We can thus consider the set of inputs U ⊂ R defined by all the inputs obtained via the

proposed dynamic controller when u = u∗
1, z ranges in πZ(R) and ẑ is given by (2.5.5) with

Y (2), defined in (2.5.4), ranging in (π1 ◦ πZ(R))ρ, the ρ-fold Cartesian product of π1 ◦πZ(R).

By taking its closure, if needed, we can assume the set πZ(R)×U to be compact and apply

Proposition 2.3.2 to obtain a time T3 ensuring that solutions starting at πZ(R) exist for all

T ∈ [0, T3]. Moreover, Proposition 2.3.2 ensures the existence of a constant M for which the

bound (2.3.2) holds and, as a consequence, the approximate model (2.3.6)-(2.3.7) is valid for

any solution with initial condition in R and any input in U . If T2 < T3 we proceed by only

considering sampling times in [0, T2] and note that none of the conclusions reached so far

change. If T2 > T3, we can use sampling times in [0, T3] while noting that all the reached

conclusions remain valid by redefining Z to be the set of points reached for any time in [0, T3]

(if the conclusions hold for the (non-strictly) larger Z set they also hold for the (non-strictly)

smaller Z obtained by reducing T2 to T3).

Invariance of the set R: we can now establish invariance of R by computing, in

several steps, W (F e
T (z, u), G

e
T (eu))−W (z, eu) for all (z, eu) ∈ R with u given by (2.6.7) and

Ge
T denoting the exact dynamics of the input error eu.

In the first step we establish that the evolution of Vz under F e
T equals the evolution of Vz
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under F a
T up to O(T 2) terms. In order to do so, we recall that F e

T (z, u) can be expressed as:

F e
T (z, u) = F a

T (z, u) +O(z,u−u0)(T
2)

= Az +B(α + βu) +O(z,u−u0)(T
2)

(2.9.1)

We then have:

Vz(F
e
T (z, u))− Vz(z) = (F a

T (z, u) +O(z,u−u0)(T
2))TPz(F

a
T (z, u) +O(z,u−u0)(T

2))− zTPzz

= Vz(F
a
T (z, u))− Vz(z) + 2OT

(z,u−u0)
(T 2)PzF

a
T (z, u)

+OT
(z,u−u0)

(T 2)PzO(z,u−u0)(T
2)

≤ Vz(F
a
T (z, u))− Vz(z) + 2OT

(z,u−u0)
(T 2)PzF

a
T (z, u) +O(z,u−u0)2(T

4)

= Vz(F
a
T (z, u))− Vz(z) + 2OT

(z,u−u0)
(T 2)PzAz

+ 2OT
(z,u−u0)

(T 2)PzB(α + βu) +O(z,u−u0)2(T
4)

= Vz(F
a
T (z, u))− Vz(z) +O(z,u−u0)2(T

2) +O(z,u−u0)2(T
3) +O(z,u−u0)2(T

4)

= Vz(F
a
T (z, u))− Vz(z) +O(z,u−u0)2(T

2), (2.9.2)

where we used the relationship ∥z∥ ≤ ∥(z, u− u0)∥ and boundedness of α, β, and u in virtue

of (z, u) belonging to the compact set πZ(R)× U , to obtain the fourth equality.

Noting that from the definition of eu, equation (2.6.6), one can reach the expression:

u = β−1(−α + v(z))− β−1eu, (2.9.3)

we consider the term ∥(z, u− u0)∥ in more detail,

∥(z, u− u0)∥ ≤ ∥z∥+
∥∥β−1(−α + v(z))− β−1eu − u0

∥∥
≤ ∥z∥+

∥∥β−1(−α + v(z))− u0

∥∥+ ∥∥β−1eu
∥∥ . (2.9.4)

As the function β−1(z)(−α(z) + v(z)) is Lipschitz continuous (with Lipschitz constant L)

on πZ(R), and it produces the value u0 at z = 0, we conclude that:∥∥β−1 (−α + v(z))− u0

∥∥ ≤ L∥z∥. (2.9.5)
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The preceding sequence of inequalities, and boundedness of β−1 on πZ(R), lead to the useful

expression:

O(z,u−u0)(T ) = Oz(T ) +Oeu(T ). (2.9.6)

Combining the previous bounds (2.9.2) and (2.9.6) we obtain:

Vz(F
e
T (z, u))− Vz(z) = Vz(F

a
T (z, u))− Vz(z) +Oz2(T

2) +Oe2u
(T 2), (2.9.7)

establishing that the decrease of Vz imposed by F e
T equals the decrease imposed by F a

T up

to O(T 2) terms.

In the second step we use the definition of eu in the form given by (2.9.3) to show that

Vz(F
a
T (z, u))− Vz(z) is negative definite up to Oz2(T

2) and Oe2u
(T ) terms. Using expression

(2.9.3), the approximate dynamics are given by:

F a
T (z, u) = Az +Bv(z)−Beu.

We can now compute Vz(F
a
T (z, u))− Vz(z) as:

Vz(F
a
T (z, u))− Vz(z)

= (Az +Bv(z))TPz(Az +Bv(z))− Vz(z)

− euB
TPz(Az +Bv(z))− (Az +Bv(z))TPzBeu +BTPzBe2u

= Vz(F
a
T (z, u))− Vz(z)

− euB
TPz(Az +Bv(z))− (Az +Bv(z))TPzBeu +BTPzBe2u

≤ − λmin(Q)T∥z∥2 +O(z,u−u0)2(T
2) + 2T∥(A+BK)Pz(B1 +B2T )∥∥z∥∥eu∥

+ T 2(B1 + TB2)
TPz(B1 + TB2)e

2
u

≤ − λmin(Q)

2
T∥z∥2 + cTe2u +Oe2u

(T 2) +O(z,u−u0)2(T
2)

≤ − λzT∥z∥2 +Oz2(T
2) +Oe2u

(T ), (2.9.8)

where we reach: the second equality due to (2.6.4); the first inequality due to (2.6.1); the sec-

ond inequality, which holds for any c ∈ R satisfying c > 2
λmin(Q)

∥(A+BK)P (B1 +B2T )∥2,
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by completing squares; and the last inequality by using equality (2.9.6) and selecting λz ∈ R+

satisfying λz ≤ λmin(Q)
2

.

In the third step we analyze the effect of using the estimates ẑ and ẑ3 when implementing

the control law (2.6.7) by substituting ẑ = z+ez(1,2) and ẑ3 = z3+ez(3) , where ez(1,2) represents

the vector composed of the first two entries of ez and ez(3) represents its third entry, and

evaluating the dynamics of the error eu. Based on the relation (2.5.6), the control law (2.6.7)

can be expressed as

u(k + 1) = u+ γ (v(ẑ)− ẑ3)

= u+ γ
(
v(z) +Kez(1,2) − (α + βu) + ez(3)

)
= u+ γ (v(z)− (α + βu)) +Kez(1,2) + ez(3)

= u+ γeu +O(z,u−u0)(T ), (2.9.9)

Before going forward, we apply Proposition 2.3.2 to (α, β) ◦ F e
T (z, u) to obtain

α(T ) = α(0) +O(z,u−u0)(T ), β(T ) = β(0) +O(z,u−u0)(T ). (2.9.10)

With these equalities at hand, we compute Ge
T (eu) = eu(k + 1):

Ge
T (eu(k)) = v(z(k + 1))− z3(k + 1)

= v
(
z +O(z,u−u0)(T )

)
− (α(k + 1) + β(k + 1)u(k + 1))

= v(z(k)) +KO(z,u−u0)(T )−
(
α(k) +

(
β(k) +O(z,u−u0)(T )

)
u(k + 1) +O(z,u−u0)(T )

)
= v(z(k)) +O(z,u−u0)(T )− (α(k) + β(k)u(k + 1)) + u(k + 1)O(z,u−u0)(T )

= v(z(k))− (α(k) + β(k)u(k))− β(k)γeu(k)− β(k)O(z,u−u0)(T )

+
(
u(k) + γeu(k) +O(z,u−u0)(T )

)
O(z,u−u0)(T ) +O(z,u−u0)(T )

= (1− β(k)γ) eu(k) +O(z,u−u0)(T ) +O(z,u−u0)2(T
2)

= (1− β(k)γ) eu(k) +O(z,u−u0)(T ), (2.9.11)

where we reach: the second equality by using the exact model (2.3.4)-(2.3.5) with t = T

aggregating all terms with a T coefficient inside O(z,u−u0)(T ), and the definition of z3 from
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Section 2.5; the third equality by using (2.9.10); the fifth equality by substituting u(k + 1)

with (2.6.7) and using the definition of eu(k) from (2.6.6); the sixth equality by absorbing u

and eu into the O(z,u−u0)(T ) term on account of eu and u being bounded in R; and the last

equality by noting that O(z,u−u0)2(T
2) = O(z,u−u0)(T ) on account of z and u belonging in the

compact sets R and U .

Coming back to the Lyapunov function Veu(eu) = e2u, we can now compute Veu(G
e
T (eu))−

Veu(eu):

Veu(G
e
T (eu))− Veu(eu) =

(
(1− βγ) eu +O(z,u−u0)(T )

)2 − e2u

=
(
−2βγ + β2γ2

)
e2u + 2 (1− βγ) euO(z,u−u0)(T ) +O(z,u−u0)2(T

2)

≤
(
−βγ + β2γ2

)
e2u + cO(z,u−u0)2(T

2)

≤ −λue
2
u +O(z,u−u0)2(T

2)

≤ −λue
2
u +Oz2(T

2) +Oe2u
(T 2), (2.9.12)

where: we reach the first inequality, which holds for any c ∈ R satisfying c >

1 + (1− βγ)2 / (βγ), by completing squares; the second inequality holds for sufficiently

small9 γ, λu ∈ R+; we reach the last inequality by using equality (2.9.6). We now put the

three intermediate steps, (2.9.7) and (2.9.8), and (2.9.12) together:

W (F e
T (z, u), G

e
T (eu))−W (z, eu) ≤ −λzT∥z∥2 − λu∥eu∥2 +Oz2(T

2) +Oe2u
(T )

≤ −λzT∥z∥2 − λu∥eu∥2 +MT 2∥z∥2 +MT∥eu∥2.

where M ∈ R+ is the largest constant stemming from the definition of the O terms. If we

choose λ ∈ R+ and T4 ∈ R+ satisfying:

λ < min{λz, λu},

T4 < min

{
(λz − λ)

M
,
(λu − λ)

M

}
,

9In particular, this inequality holds for any γ and λu satisfying γ ≤ β
−1

and λu ≤
(
1− βγ

)
βγ, where

β = maxz∈R β(z) and β = minz∈R β(z).
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it follows that for all T ∈ [0, T4] we have:

W (F e
T (z, u), G

e
T (eu))−W (z, eu)≤−λT∥z∥2 − λ∥eu∥2. (2.9.13)

Therefore, for any T ∈ [0, T5], T5 = min{T1, . . . , T4}, we have that R remains invariant.

By noting that trajectories remain in R for any time in [0, T5] we conclude that we can

apply the same argument to establish that trajectories remain in R for any number of time

steps since we only assumed that inputs were generated based on output measurements that

remained in π1 ◦ πZ(R). Compactness of R establishes that trajectories are bounded and

thus there exists a constant b1 ∈ R+ so that ∥eu(k)∥ ≤ b1 and ∥z(k)∥ ≤ b1 for all k ∈ N.

Moreover, (2.9.13) informs us that both z and eu will converge to the origin. Invoking

Theorem 1 in [54], combined with invariance of R and smoothness of the dynamics, we

conclude that the solutions of (2.2.1), when using the dynamic controller (2.6.7) , where the

virtual input v is provided by (2.6.3), using the state estimates provided by an estimation

technique satisfying (2.5.6), are bounded, i.e., there exists a constant b2 ∈ R+ so that

∥x(t)∥ ≤ b2 and, moreover, limt→∞ x(t) = 0. Hence, by taking b = max{b1, b2} we conclude

the proof.

Proof of Theorem 2.7.2. It is sufficient to verify that the sections of the proof of Theo-

rem 2.7.1 that depend on v(z) hold under any virtual input satisfying the conditions 2.7.1-

2.7.2, the rest remains unchanged. An attentive reader will notice that only equations (2.9.8),

(2.9.9) and (2.9.11) could be affected by a change in v(z). That being said, it is straight-

forward to see that if v(z) is such that if condition (2.7.1) is satisfied, then (2.9.8) remains

unchanged, and similarly, that if (2.7.2) holds then equation (2.9.9) and inequality (2.9.11)

hold. Thus, we conclude that Theorem 2.7.1 holds when replacing v(z) as provided in (2.6.3)

with any v(z) satisfying conditions (2.7.1) and (2.7.2).

Proof of Theorem 2.7.3. As stated in Section 2.5, in the presence of essentially bounded

noise the estimation error is given by ez = O(z,u−u0)(T ) + O d (T
−n). This proof follows the
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same arguments of the proof of Theorem 2.7.1 while accounting for the effect of measurement

noise in ez. Therefore, we shall describe only the required modifications.

Due to measurement noise, we redefine E as the set of possible values taken by the

dynamic controller’s state eu at time k = 2 depending on the different initial conditions, and

the chosen constants u∗
0, u∗

1. Since the input error eu is a continuous function of the initial

condition z(0) that belongs to the compact set S and the constants u∗
0, u∗

1, E is a bounded

set. Consider also the set R defined as the smallest sub-level set of W = Vz + Veu that

contains Z × E where Veu : R → R is the Lyapunov function defined by Veu(s) = s2 and Vz

is the Lyapunov function satisfying (2.6.1). The objective is to show that R is an invariant

set.

Existence of solutions one step beyond the transient: we first show that it is

possible to continue the solutions from R by employing again Proposition 2.3.2. For future

use, we define the projections π1 : R2 → R, πZ : R2×R → R2, and πE : R2×R → R defined

by π1(z1, z2) = z1, πZ(z, eu) = z, and πE(z, eu) = eu. The dynamic controller is a function of

ẑ, however, since ẑ is a function of z, we can regard the controller as a smooth function of

z. We can thus consider the set of inputs U ⊂ R defined by all the inputs obtained via the

proposed dynamic controller when u = u∗
1, z ranges in πZ(R) and ẑ is given by (2.5.5) with

Y (2), defined in (2.5.4), ranging in (π1 ◦ πZ(R))ρ, the ρ-fold Cartesian product of π1 ◦πZ(R).

By taking its closure, if needed, we can assume the set πZ(R)×U to be compact and apply

Proposition 2.3.2 to obtain a time T3 ensuring that solutions starting at πZ(R) exist for all

T ∈ [0, T3]. Moreover, Proposition 2.3.2 ensures the existence of a constant M for which the

bound (2.3.2) holds and, as a consequence, the approximate model (2.3.6)-(2.3.7) is valid for

any solution with initial condition in R and any input in U . If T2 < T3 we proceed by only

considering sampling times in [0, T2] and note that none of the conclusions reached so far

change. If T2 > T3, we can use sampling times in [0, T3] while noting that all the reached

conclusions remain valid by redefining Z to be the set of points reached for any time in [0, T3]

(if the conclusions hold for the (non-strictly) larger Z set they also hold for the (non-strictly)
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smaller Z obtained by reducing T2 to T3).

Due to measurement noise, the subset U ⊂ R is now defined by all the inputs obtained

via the proposed dynamic controller when u = u∗
1, z ranges in πZ(R), d ∈ [−d, d] and ẑ is

given by (2.5.5) with Y (2), defined in (2.5.4), ranging in (π1 ◦ πZ(R))ρ, the ρ-fold Cartesian

product of π1 ◦ πZ(R). Given that U is still compact we can use the same arguments as in

Theorem 2.7.1 to guarantee existence of solutions one step beyond the transient.

We now note that to establish boundedness of all the signals it is sufficient to establish

the existence of a sub-level set R of W that is forward invariant and satisfies S ⊆ πZ(R).

As in the previous proof we define R to be the smallest sub-level set of W = Vz + Veu that

contains Z × E at the end of the initial transient. Given that R is a compact set we can

define c1 = max(z,eu)∈R ∥(z, u− u0)∥ and c2 = min(z,eu)∈δR
√
T∥z∥2 + ∥eu∥2, where δR is the

boundary of the set R. Note that c2 is greater than zero as the origin is assumed to be

contained in the interior of S which is itself contained in the interior of R.

Under measurement noise d, equality (2.9.9) becomes:

u(k + 1) = u(k) + γeu +O(z,u−u0)(T ) +Od
m(T−n). (2.9.14)

This in turn results in Ge
T (eu) = eu(k + 1) becoming:

Ge
T (eu(k)) = (1− β(k)γ) eu(k) +O(z,u−u0)(T ) +Od(T

−n) (2.9.15)

Based on this equality, it can be shown that:

V eu(G
e
T (eu))− Veu(eu) ≤ −λue

2
u +Oz2(T

2) +Oe2u
(T 2) +O

d
2(T−2n) (2.9.16)

Inequality (2.9.16) allows us to conclude that:

W (F e
T (z, u), G

e
T (eu))−W (z, eu) ≤ −λT∥z∥2 − λ∥eu∥2 +Md

2
T−2n,

≤ −λc22 +Md
2
T−2n.

Thus,

W (F e
T (z, u), G

e
T (eu))−W (z, eu) < 0
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holds for all (z, eu) ∈ δR and d < b1 =
(√

λ
M
c2

) 1
2

T n, showing that R is invariant. This

guarantees that all signals remain bounded, i.e., if we define b′2 as the radius of the smallest

ball containing R we conclude that ∥ẑ(k)∥ ≤ b′2 and ∥eu∥ ≤ b′2 for all k ∈ N. By using

arguments similar to those employed in the proof of Theorem 2.7.1, there exists a constant

b′′2 so that ∥x(t)∥ ≤ b′′2 for all t ∈ R and we can define b2 to be max{b′2, b′′2}.

Moreover, trajectories will converge to the smallest sub-level set of W containing the ball

of radius r centered at zero where r is the smallest real number satisfying −λr2+Md
2
T−2n ≤

0, i.e., r = d T−n
(

λ
M

)− 1
2 . Since said sub-level set is contained in the ball centered at the origin

and of radius rλmax(Pw)/λmin(Pw) where Pw is the matrix defining the quadratic Lyapunov

function W (z, eu) = wTPww, w = (z, eu), the result is proved by taking:

b3 =

(
λ

M

)− 1
2 λmax(Pw)

λmin(Pw)
.
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CHAPTER 3

Extensions to data-driven control

3.1 Motivation

The work presented in this chapter involves two crucial extensions in the path to turning the

theory developed in Chapter 2 into a practically useful method at large. While not directly

connected, both the extension to multiple-input multiple-output feedback-linearizable sys-

tems and the introduction of dirty-derivative estimation provides data-driven control with a

larger range of applicability, enabling its application to benchmark control systems such as

quad-copters and increasing robustness to measurement noise injected by real sensors. With

this in mind, this chapter is divided in two sections.

3.2 Extension to multiple-input multiple-output systems

3.2.1 Model

Extending the previous chapter’s findings to multiple-input multiple-output systems is con-

ceptually straightforward, thus I only present here the changes that would be required in

Chapter 3 for this extension to hold. In place of system (2.2.1)-(2.2.2), consider the following

system:

ẋ = f(x) + g(x)u (3.2.1)

y = h(x) + d, (3.2.2)
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where f : Rn → Rn, g : Rn → Rn×m, and h : Rn → Rm are smooth functions and we denote

by x ∈ Rn, y ∈ Rm, u ∈ Rm, d ∈ Rm, the state, output, input, and measurement noise,

respectively. We make the assumption that each element hi of the output function h has a

respective relative degree si, such that
m∑
1

si = n, i.e., this system is feedback-linearizable.

This implies that LgL
j
fhi(x) = 0 for j = 0, . . . , si − 2 for each i = 0, . . . ,m, and that the

matrix 
LgL

s1−1
f h1(x)

LgL
s2−1
f h2(x)
...

LgL
sp−1
f hl(x)


is non-singular for all x ∈ Rn, i.e., it has a non-zero determinant.

We consider the dimensions n = 5, m = 2 and s1 = 2, s2 = 3 in an attempt to

preserve simplicity yet still demonstrate the richness of the method. Invoking the feed-

back linearizability assumption, we can rewrite the unknown dynamics in the coordinates1

(z1, z2, z4, z5, z6) = Ψ(x) = (h1(x), Lfh1(x), h2(x), Lfh2(x), L
2
fh2(x)):

y1 = z1 (3.2.3)

ż1 = z2 (3.2.4)

ż2 = α1(z) + β1,1(z)u1

+β1,2(z)u2 (3.2.5)

y2 = z4 (3.2.6)

ż4 = z5 (3.2.7)

ż5 = z6 (3.2.8)

ż6 = α2(z) + β2,1(z)u1

+β2,2(z)u2 (3.2.9)

where α1 = L2
fh1 ◦ Ψ−1, α2 = L3

fh2 ◦ Ψ−1 and β1,1 = Lg1Lfh1 ◦ Ψ−1, β1,2 = Lg2Lfh1 ◦ Ψ−1,

β2,1 = Lg1L
2
fh2 ◦Ψ−1 and β2,2 = Lg2L

2
fh2 ◦Ψ−1. We note that f , g, and h are unknown and

thus so are α1, α2 and β1,1, β1,2, β2,1 and β2,2. As seen before, this form of the dynamics has

1Note that we skip z3 here to ease with notation as we later use a dynamic extension.
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the advantage of using the scalar valued functions αi and βi,j to describe the full dynamics,

independently of the values of si. This is a key observation that underlies the claim that the

results below hold for arbitrary si ∈ N.

System (3.2.3)-(3.2.9) will be controlled using piece-wise constant inputs for a sampling

time T ∈ R+. This means that inputs ui : R+
0 → R satisfy the following equality for all

k ∈ N:

ui(kT + τ) = ui(kT ), ∀τ ∈ [0, T [.

It will be convenient to use ui to denote an input only defined on [0, T [. Since the curve ui

is constant on the interval [0, T [, we identify it with the corresponding element of R.

The solution of (2.2.3)-(2.2.4) is denoted by F e
t (z, u) = (F e

t,1(z, u), F
e
t,2(z, u)), for t ∈

[0, T [, and satisfies F e
0 (z, u) = z. The superscript “e” reminds us that this is an exact

solution. In the next section we discuss approximate solutions.

3.2.2 Aproximate Models

Note that proposition 2.3.2 can be readily modified to hold for u = [u1, u2], and applied

separately to each output, by redefining:

α(k) =

α1(k)

α2(k)

 (3.2.10)

β(k) =

β1,1(k) β1,2(k)

β2,1(k) β2,2(k)

 (3.2.11)

u0 = −β(0)−1α(0)

Doing so leads to the expressions:∥∥∥∥(F e
τ ′,1

)(3)
(z, u)

t3

3!

∥∥∥∥ ≤ M1T
3∥(z, u− u0)∥, (3.2.12)∥∥∥∥(F e

τ ′,3

)(4)
(z, u)

t4

4!

∥∥∥∥ ≤ M2T
4∥(z, u− u0)∥. (3.2.13)
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These allow us to write the exact models:z1
z2

 (k + 1) =

1 T

0 1

z1
z2

 (k) +

T 2

2

T

 (α + βu)1 +

O(z,u−u0)(T
3)

O(z,u−u0)(T
2)

 (3.2.14)


z4

z5

z6

 (k + 1) =


1 T T 2

2

0 1 T

0 0 1



z4

z5

z6

 (k) +


T 3

6

T 2

2

T

 (α + βu)2 +


O(z,u−u0)(T

4)

O(z,u−u0)(T
3)

O(z,u−u0)(T
2)

(3.2.15)

where (α + βu)i represents the ith entry of the vector (α + βu). Mirroring Chapter 2, we

drop the O terms to build the approximate models:z1(k + 1)

z2(k + 1)

 =

1 T

0 1

z1(k)
z2(k)

+

T 2

2

T

 (α(k) + β(k)u(k))1 (3.2.16)


z4(k + 1)

z5(k + 1)

z6(k + 1)

 =


1 T T 2

2

0 1 T

0 0 1



z4(k)

z5(k)

z6(k)

+


T 3

6

T 2

2

T

 (α(k) + β(k)u(k))2, (3.2.17)

which can be written as:z1(k + 1)

z2(k + 1)

 = As1

z1(k)
z2(k)

+Bs1(α(k) + β(k)u(k))1 (3.2.18)


z4(k + 1)

z5(k + 1)

z6(k + 1)

 = As2


z4(k)

z5(k)

z6(k)

+Bs2(α(k) + β(k)u(k))2, (3.2.19)

3.2.3 State Estimation

State estimation does not differ much from what was developed in Section 2.5, as we can

treat each output independently as if working with individual single-input single-output

systems. We are able to do this due to the si derivative of output i being considered

constant for the purposes of state estimation. Following this idea we estimate the extended

state (z1, z2, z3, z4, z5, z6, z7), only requiring measurements of the outputs z1 and z4 to

obtain the sets of estimates (ẑ1, ẑ2, ẑ3), and (ẑ4, ẑ5, ẑ6, ẑ7), respectively.
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Each of these state observers may use a different number of consecutive measurements ρi

where ρi ≥ si + 1. The results in Section 2.5 extend directly, from which we conclude that

each of these observers achieves an error ez̄i = O(z1,z2),u−u0)(T ) where z̄i represents the states

estimated by observer i. One can easily show that running both observers synchronously

results in ez = O(z,u−u0)(T ), according to the equation:

ez̄1 = O((z1,z2,z3),u−u0)(T ) = M1T∥((z1, z2), u− u0)∥ (3.2.20)

ez̄2 = O((z4,z5,z6,z7),u−u0)(T ) = M2T∥((z4, z5, z6), u− u0)∥ (3.2.21)

ez ≤ (M1 +M2)T∥(z, u− u0)∥ = O(z,u−u0)(T ). (3.2.22)

Two observers provide the possibility of having different sampling periods, T1 and T2.

Let T = max{T1, T2}, T = min{T1, T2} and T = qT for some finite q ∈ Z+. Without

loss of generality assume that T = T1 and T = T2 and let ρ2 ≥ q(s2 + 1). As before,

ez̄1 = O(z,u−u0)(T1) and ez̄2 = O(z,u−u0)(T2), furthermore, since T1 > T2 it follows that

M2T2∥((z4, z5, z6), u− u0)∥ < M2T1∥((z4, z5, z6), u− u0)∥, implying ez̄2 = O(z,u−u0)(T1). Set-

ting T = T1 gives the state estimation error ez = O(z,u−u0)(T ) under a similar argument

as the previous paragraph. Due to the condition T = qT2, the observers for the states,

parameters and the controller can be synchronized.

By using two sampling periods the user has access to a design tool that introduces a

trade-off in each output between increased noise effect due to smaller sampling periods and

decreased noise effect due to a higher degree of averaging by using more samples for state

estimation.

3.2.4 Controller design

The family of controllers we use mirror that one presented in Chapter 2 and the development

is identical with the exception that now α and β are respectively given by (3.2.10) and

(3.2.11). Given systems (3.2.16)-(3.2.19), it follows that:

As1 = I2 + A1s1
T, Bs1 = B1s1

T +B2s1
T 2A
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As2 = I3 + A1s2
T + A2s2

T 2, Bs2 = B1s2
T +B2s2

T 2 +B3s2
T 3.

Let A and B be defined as:

A =

A1s1
02×3

03×2 A1s2

 , B =

B1s1
02×1

03×1 B1s2

 ,

as the pair (A,B) is controllable, there exists a controller v(z) = Kz and symmetric and

positive definite matrices Pz and Q such that:

(A+BK)TPz + Pz(A+BK) = −Q.

As in chapter 2, the control law satisfies the dynamics:

u(k + 1) = u(k) + γ

Kẑ(k)−

ẑ3(k)
ẑ7(k)

 , (3.2.23)

where γ ∈ Rn×n is chosen such that the eigenvalues, ηi, of (I2 − βγ) lie inside the unit

circle. In order to fully specify this controller, we need to describe its operation during

the initial transient of ρ = max{ρ1, . . . , ρp} steps during which enough measurements are

collected to produce the first state estimate for all elements of (3.2.23). We simply choose a

fixed sequence of inputs u∗
0, u

∗
1, . . . , u

∗
ρ−1 to be used during this transient. Although different

sequences lead to different transients, the results are independent of this choice.

3.2.5 Changes to the main proof

The main proof follows with basically no changes, except for the following required alter-

ation to inequality (2.9.12): Under a choice of γ guaranteeing maxi=1...n∥ηi∥ < 1, where

{η1, . . . , ηn} are the eigenvalues of (I2 − βγ), there exists some positive definite matrices P

and Q such that

(I2 − βγ)TP (I2 − βγ)− P = −Q.

With this in mind, we define the Lyapunov function Veu(eu) = eTuPeu and compute

Veu(G
e
T (eu))− Veu(eu):

V eu(G
e
T (eu))− Veu(eu)
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=
(
(I2 − βγ) eu +O(z,u−u0)(T )

)T
P
(
(I2 − βγ) eu +O(z,u−u0)(T )

)
− eTuPeu

= eTu
(
(I2 − βγ)TP (I2 − βγ)− P

)
eu +O(z,u−u0)2(T

2)

+ eTu (I2 − βγ)T PO(z,u−u0)(T ) +O(z,u−u0)(T )
TP (I2 − βγ) eu

≤ −eTuQeu +O(z,u−u0)2(T
2) + 2∥P (I2 − βγ) ∥∥eu∥∥O(z,u−u0)(T )∥

≤ −λu∥eu∥2 +O(z,u−u0)2(T
2) + 2∥P (I2 − βγ) ∥∥eu∥∥O(z,u−u0)(T )∥

≤ −λu

2
∥eu∥2 + cO(z,u−u0)2(T

2)

≤ −λu

2
∥eu∥2 +Oz2(T

2) +Oe2u
(T 2), (3.2.24)

where we reach the second inequality by taking λu ∈ R+, λu ≤ λmin(Q), and the third by

completing squares, where c ∈ R, c > 2
λu
∥P (I2 − βγ)∥2.

Remark 3.2.1. The same changes as those applied to the noise-free case are required in the

proof of Theorem (2.7.3).

With this we conclude the extension of the theory to the multiple-input multiple-output

case. Despite this extension being conceptually simple, applying the resulting controller does

present a major challenge. Designing γ without knowledge of β is not an easy task. In the

following subsection I analyse the limitations posed by this issue, specifically what level of

knowledge of β is required to successfully design γ.

3.2.6 Designing γ

We can reach an equivalent formulation of the problem by recasting the controller design in

Section 3.2.4. We consider the design of a control law such that the quantity eu converges

to zero. This quantity evolves according to the equations:

eu(k) = v(k)− (α(k) + β(k)u(k))

eu(k + 1) = v(k)− (α(k) + β(k)u(k + 1)) .
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Without loss of generality we note that u(k + 1) = u(k) + δu(k), which allows us to write

the dynamical system for eu:

eu(k + 1) = eu(k)− β(k)δu(k).

If we now choose the Lyapunov function Veu(s) = sT s we have that:

Veu(eu(k + 1))− Veu(eu(k)) = eu(k + 1)T eu(k + 1)− eu(k)
T eu(k)

= (eu(k)− β(k)δu(k))T (eu(k)− β(k)δu(k))− eu(k)
T eu(k)

= −eu(k)
Tβ(k)δu(k)− δu(k)Tβ(k)T eu(k)

+δu(k)Tβ(k)Tβ(k)δu(k).

Selecting δu(k) = γeu(k) where γ ∈ Rm×m results in:

Veu(eu(k + 1))− Veu(eu(k)) = −eu(k)
T
(
β(k)γ + γTβ(k)T − γTβ(k)Tβ(k)γ

)
eu(k).

To show the system is stable we need to solve the Riccati-like equation:

β(k)γ + γTβ(k)T − γTβ(k)Tβ(k)γ = Q, (3.2.25)

where Q is positive definite, β unknown and γ to be designed.

Claim 3.2.2. Designing γ such that βγ is positive definite with eigenvalues in ]0, 2[ is re-

quired for equation (3.2.25) to hold.

Proof. We begin by rewriting equation (3.2.25) as:

I2 − (I2 − β(k)γ)T (I2 − β(k)γ) = Q. (3.2.26)

Given that the term (I2−β(k)γ)T (I2−β(k)γ) is a quadratic form of the matrix (I2−β(k)γ),

we can conclude that it represents a positive semi-definite matrix with eigenvalues in the ray

[0,∞[ depending on the eigenvalues of the matrix βγ. Let ai, bi and qi with i ∈ {1, 2, . . . , n}
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represent, in descending order, the eigenvalues of matrices I2, (I2−β(k)γ)T (I2−β(k)γ) and

Q. By inequalities (2) and (11) in [55], it follows that:

q1 ≤ a1 + b1 qn ≥ an + bn,

we conclude that for Q to be positive definite, considering that ai = 1 ∀i ∈ {1, 2, . . . , n}, the

eigenvalues of (I2 − β(k)γ)T (I2 − β(k)γ) must reside in the interval [0, 1[.

The eigenvalues bi are squares of the eigenvalues of (I2 − β(k)γ), due to the latter being

a square matrix. This implies that for the eigenvalues bi to reside in the interval [0, 1[, γ

must be designed such that the eigenvalues of (I2 − β(k)γ) reside in the interval ] − 1, 1[.

Moreover, the eigenvalues of I2−βγ satisfy (I2−βγ)v = λv, from where it is straightforward

to see that the eigenvalues of βγ must satisfy (βγ)v = (1− λ)v. Thus we conclude that the

eigenvalues of βγ must reside in the interval ]0, 2[ for a positive definite matrix Q to exist

such that equation (3.2.25) to holds.

Rendering βγ positive definite through a suitable choice of γ can easily be done if the

definiteness of β is known, i.e., if β is known to be either positive or negative definite. In

this case the problem of selecting γ reduces to selecting a sufficiently small scalar number

of the same sign as the eigenvalues of β. If β satisfies neither of those properties, then

more knowledge of β is required. This requirement is a recurring issue across the literature,

[8,39,40,42] and aligns with the observations by Nussbaum in [56] regarding the impossibly

of solving this problem with a rational dynamic controller when the sign of the controller

gain is unknown, in that case a specific class of controllers is needed. This type of controllers

have the property that as the controller output’s magnitude increases so does the frequency

with which it changes sign. These have been widely studied, and have come to be known as

Nussbaum gain controllers. Despite their capacity to stabilize unknown systems in which not

even the control gain is known, their aggressive transient behaviour and lack of robustness

makes them somewhat impractical for implementation [57].
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3.3 Estimation through dirty derivatives

In this section we motivate the use of the so-called dirty derivatives as a state estimation

technique for data-driven control. Let x : R+ → R be a smooth function, we call v : R+ → R

a dirty derivative of x(t) if their Laplace transforms, respectively V (s) and X(s), satisfy the

relationship:

V (s) =
σs

s+ σ
X(s),

for some positive σ ∈ R+. If one considers sX(s) as the transform of the derivative of x(t),

it is easy to see that the dirty derivative is nothing more than the output of a low-pass filter

with input ẋ(t) and a pole set at σ. While this implies that they can be quite useful to filter

a noisy derivative signal, the property that makes dirty derivatives particularly interesting

is that we can obtain v(t) solely based on x(t) by means of the dynamical system:

q̇(t) = −σ(q(t) + σx(t)) (3.3.1)

v(t) = q(t) + σx(t), (3.3.2)

providing a low-gain approach for “estimating”2 derivatives through integration. This itself

results in discrete approximations which do not required dividing by the sampling time,

which in on itself greatly reduces the effect of measurement noise in the estimates. This can

be seen when using a simple forward Euler approximation method:

q(k + 1) = q(k)− σT (q(k) + σx(k)) (3.3.3)

v(k + 1) = q(k + 1) + σx(k). (3.3.4)

Dirty-derivative estimates can be recursively obtained for derivatives of higher order. Let

x1(t) be a smooth signal of which we wish to estimate its n− 1 first derivatives, and denote

by x̂i the estimate of x(i−1)(t) for i ∈ {2, · · · , n}. Then the dirty-derivative estimates are

2I use quotation marks here as dirty derivatives are not exactly estimates of the derivatives of a signal.
In a slight abuse of notation we omit the quotation marks going forward.
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defined as:
q̇1(t) = −σ(q1(t) + σx1(t)),

x̂2(t) = q1(t) + σx1(t),

q̇i(t) = −σ(qi(t) + σx̂i(t)),

x̂i+1(t) = qi(t) + σx̂i(t),

(3.3.5)

for all i ∈ {2, · · · , n−1}. Similarly to (3.3.3), we can obtain a discrete approximation of this

system through the forward Euler method that contains no divisions by the sampling time

T . Note that (3.3.5) implies that the dirty derivative’s own derivatives become:

˙̂xi+1 = q̇i + σ ˙̂xi = −σ(qi + σx̂i) + σ ˙̂xi = −σ(x̂i+1 − ˙̂xi).

The analysis in chapter 4 is based on the latter expression.

Khalil introduced cascaded high-gain observers in [58], of which dirty-derivative-based

observers can be shown to be a special case, with particularly well-behaved autonomous

dynamics due to all eigenvalues being placed at −σ. This type of observers have been

widely used in practical [2, 59] and theoretical [60–63] applications for decades but, to the

best of my knowledge, no stability proof existed prior to Khalil’s work. To portray the

potential benefits of using dirty derivatives as a proxy for derivative estimation, I provide two

simulation examples: the first one presenting the dirty derivatives as an estimation method

and comparing its performance with a state-of-the-art observer, a low-power peaking-free

high-gain observer; and the second one presents the improvement in close-loop performance

when replacing the estimation method introduced in Section 2.5 with the forward Euler

approximation of system (3.3.5).

3.3.1 Dirty derivatives as an observer

We begin this subsection by reminding the reader that a dirty derivative is not exactly an

estimate of the derivative of a signal. This is important to notice as one would expect the

performance of any observer to outperform a dirty-derivative-based estimation. While this
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is true in the absence of noise, the low-pass filtering effect, low implementation gain and

estimation through integration aspect of dirty derivatives provide such robustness against

noise that we found dirty derivatives to routinely match or outperform classical observers

when measurement noise is present in the simulation.

For the examples that follows we consider the recently developed low-power peaking-free

high-gain observer [50], which has been shown to outperform traditional low-power high-

gain observers. We reproduce the example presented therein, including observer gains and

system’s initial conditions. The system under consideration is given by:

ẋ1 = x2 (3.3.6)

ẋ2 = x3 (3.3.7)

ẋ3 = x4 (3.3.8)

ẋ4 = x5 (3.3.9)

ẋ5 = 0.2(x2
1 − 1)− x2 − x3 − 4x4 − x5, (3.3.10)

and the low-power peaking-free high-gain observer presented in equations (11a) in [50] has

full knowledge of the dynamics. We obtain our dirty-derivative estimates from system (3.3.5)

with n = 5 and σ = 1. While in the presence of noise the dirty-derivative-based observer

matches or outperforms the high-gain obeserver in all the estimates, we present only the first

two derivatives to simplify the exposition.

Figure 3.1 portrays the original signal x(t) overlaid onto the noisy signal fed to both

observers obtained by adding measurement noise to x(t) generated as white noise with fre-

quencies in the band 0-200Hz. Figures 3.2 and 3.3 respectively compare the estimates and

absolute estimation errors for the first and second derivatives of x(t) as estimated under

measurement noise by both observers.

I believe these figures underscore the potential robustness against measurement noise

that dirty derivatives can offer. The next subsection emphasizes this point in a close-loop

example.
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Figure 3.1: Original signal overlaid onto the noisy signal created by adding measurement

noise generated as white noise in the band 0-200 Hz.

3.3.2 Dirty derivatives in data-driven control

For this section we simulate the model presented in Section 2.8, specifically the system

described by (2.8.1), comparing the performance of the data-driven controller designed in

Section 2.6 in close loop with the least-squares estimation method developed in Section

2.5 and the dirty-derivative estimation method. As mentioned before, the least-squares

estimation is highly sensitive to noise, so it is no surprise that the data-driven controller

performs noticeably better when in close-loop with the dirty-derivative estimation.

Figures 3.4 and 3.5 respectively compare the trajectories and absolute trajectory track-

ing errors for the data-driven controller designed in Section 2.6 in close-loop with the least-

squares estimation method and the dirty derivative estimation method under the measure-

ment noise modeled as white noise with an amplitude of 0.05m.
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Figure 3.2: Comparison between estimates for the first and second derivatives of the signal in

Figure 3.1 provided by a peaking-free low-power high-gain observer and the dirty-derivative

method.
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Figure 3.3: Comparison between absolute estimation error for the first and second derivatives

of the signal in Figure 3.1 provided by a peaking-free low-power high-gain observer and the

dirty-derivative method.
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Figure 3.4: Comparison between the desired trajectory and the achieved trajectories between

the data-driven controller designed in Section 2.6 in close-loop with the least-squares estima-

tion method and the dirty derivative estimation method under measurement noise modeled

as white noise with an amplitude of 0.05m.
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Figure 3.5: Comparison between absolute tracking error between the data-driven controller

designed in Section 2.6 in close-loop with the least-squares estimation method and the dirty

derivative estimation method under measurement noise modeled as white noise with an

amplitude of 0.05m.
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CHAPTER 4

Data-driven control via dirty derivatives and

output-feedback stabilization

4.1 Introduction

As stated in Chapter 1, the main contribution of this chapter is to provide a concrete

example on how simple and widely known control techniques may be combined to avoid

most of the challenges currently faced by data-driven control. To that end I leverage the

linear dynamic controller developed in Chapter 2 together with the dirty-derivative-based

extended-state high-gain observer, introduced in Chapter 3. This linear dynamic controller

allows us to avoid the need for bounds on the control gain, usually required by extended-

state-observer-based controllers as is the case in active disturbance rejection control [21,22].

The dirty-derivative-based observer enjoys the properties of traditional high-gain observers

without requiring any information of the underlying system’s dynamics, making it especially

useful when working with unknown partially feedback linearizable systems and providing

more robust estimates against measurement noise when compared to least-squares-based

estimation. The resulting scheme may be compared to the one recently presented in [64],

where semi-global practical stability of unknown partially-feedback linearizable SISO systems

under unmodeled dynamics is achieved. The controller herein proposed offers better stability

guarantees as long as the unmodeled dynamics do not affect the relative degree of the system,

recovering the stability guarantees provided in [64] otherwise. In particular, I demonstrate

semi-global exponential stability in two cases: when the system is feedback linearizable; and
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when it is partially feedback linearizable and the unforced zero dynamics are exponentially

stable. These results are further extended to global exponential stability when the unknown

functions in the output dynamics and their Jacobians are globally bounded and the zero

dynamics are globally Lipschitz. One may apply the techniques developed in Chapter 3 to

the forward Euler discretization of this controller to reach similar stability results as therein.

4.2 Problem Statement

We consider an unknown single-input single-output nonlinear system of the form:

ẋ = f(x) + g(x)u, y = h(x),

where now f : Rn → Rn, g : Rn → Rn, and h : Rn → R are smooth functions and we denote

by y ∈ R, x ∈ Rn and u ∈ R, the output, state and input respectively, with n ∈ N. We make

the assumption that the output function h has relative degree1 n− 1, where n− 1 + ρ = n

for some n, ρ ∈ N, i.e., this system is partially feedback linearizable. This implies that

LgL
i
fh(x) = 0 for i = 0, . . . , n− 3 and LgL

n−2
f h(x) ̸= 0 for all x ∈ Rn. Since the function

LgL
n−2
f h is continuous and never zero, its sign is constant. We assume the sign of LgL

n−2
f h to

be known and, without loss of generality, take it to be positive. Invoking the partial feedback

linearizability assumption, we can rewrite the unknown dynamics in the coordinates:

(η, z) = Ψ(x) = (h(x), Lfh(x), . . . , L
n−2
f h(x)), (4.2.1)

1The choice of n− 1 instead of n simplifies notation in the main theorem’s proof.
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with dynamics:

η̇1 = η2

...

η̇n−2 = ηn−1

η̇n−1 = α(η, z) + β(η, z)u

ż = ω(η, z)

y = η1,

(4.2.2)

where α = Ln−1
f h ◦Ψ−1 and β = LgL

n−2
f h ◦Ψ−1. We note that f , g, and h are unknown and

so are α, β and ω. This description of the system has the advantage of using the two scalar

valued functions α and β to describe the full output dynamics, independently of the value

of m or n.

4.3 Controller design

We propose a surprisingly simple dynamic controller in order to stabilize the system despite

the function α(η, z) and, more importantly, the controller gain β(η, z) being unknown. To

do so, we first introduce the following notation:

• Given a column vector x ∈ Rn, and some i, j ∈ {1, 2, . . . , n}, i ≤ j, we denote by

xi:j = (xi, xi+1, . . . , xj) the column vector composed of the entries i through j of x.

• We define A ∈ R(n−1)×(n−1) and B ∈ R(n−1)×1 as:

A =

0(n−2)×1 In−2

0 01×(n−2)

 , B =

0(n−2)×1

1

 .

Drawing inspiration from the controller presented in Chapter 2, we propose the use of a

dynamic controller of the form:

u̇ = −γ (η̇n−1 −Kη) , (4.3.1)
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where γ ∈ R>0 and K ∈ R1×(n−1) is such that the equality:

(A+BK)TP + P (A+BK) = −Q, (4.3.2)

is satisfied for some symmetric positive definite matrices P and Q, existence of which is

guaranteed due to (A,B) being a controllable pair. The motivation for the use of this

controller is that it attempts to asymptotically enforce the equality η̇n−1 = Kη without the

need of explicitly estimating β(η, z). If one could enforce that equality, then the output

dynamics would become:

η̇ = (A+BK)η.

In the following, we use ηn to denote η̇n−1 and η to denote (η1, . . . , ηn), which allows us to

rewrite (4.3.1) as:

u̇ = −γ (ηn −Kη1:n−1) . (4.3.3)

Closing the loop with controller (4.3.3) in state-feedback fashion results in the closed-loop

output-dynamics system:

η̇1 =η2

...

η̇n−1 =ηn

η̇n =φz(η1:n, z)ω + φη(η1:n, z)η2:n − β(η1:n−1, z)γ (ηn −Kη1:n−1)

y =η1

(4.3.4)

where
φη(η, z) =

∂α(η1:n−1, z)

∂η1:n−1

+
∂β(η1:n−1, z)

∂η1:n−1

u

=
∂α

∂η1:n−1

+
∂β

∂η1:n−1

β−1(ηn − α),

and where we obtained the final expression by using the identity:

ηn = α(η1:n−1, z) + β(η1:n−1, z)u.
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We define φz(η, z) in a similar manner as φη(η, z), where the partial derivatives of α and β

are taken with respect to z instead of η1:n−1.

As we do not have access to the system’s state, the controller (4.3.3) is implemented by

using state estimates provided by a dirty-derivative-based observer.

4.4 State estimation

The motivation behind the use of dirty-derivative estimation in place of traditional estimation

methods is bipartite. Dirty derivatives have long been used in industry as the preferred

derivative estimation method due to their innate noise filtering properties [2,59,65,66] when

compared to algebraic estimation. Moreover dirty derivatives do not require knowledge of

the control input, or control gain, to be implemented. This last trait is particularly useful in

our setting, allowing us to use this observers in conjunction with the data-driven controller

developed in Chapter 2.

As most high-gain observers, dirty derivatives suffer from peaking during an initial tran-

sient period. To ameliorate this issue, saturation is applied to the estimates as proposed

in [58]. To that end we define the function sat(y,M) = M min{ |y|
M
, 1}sign(y). Let η̂ denote

the vector
[
η̂1, . . . , η̂n

]T
where η̂i is an estimate of ηi, for every i ∈ {1, 2, . . . , n}, and let
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ξ ∈ Rn denote the internal state of our observer. Then η̂ satisfies the dynamics:

η̂1 = η1

ξ̇1 = −σ(ξ1 − η1)

η̂2 = sat(−σ(ξ1 − η1),M1)

ξ̇2 = −σ(ξ2 − η̂2)

η̂3 = sat(−σ(ξ2 − η̂2),M2)

...

ξ̇n = −σ(ξn − η̂n)

η̂n = sat(−σ(ξn − η̂n),Mn),

(4.4.1)

where M1, . . . ,Mn are positive design constants. The selection of constants Mi is quite

straightforward and requires no knowledge of the system’s dynamics. Whether the user is

performing set-point regulation or trajectory tracking, these constants should be selected

such that the set in which the output y and its derivatives are desired to be contained is a

proper subset of M = [−M1,M1] × [−M2,M2] × · · · × [−Mn,Mn]. As shown in the main

result of the paper, Theorem 4.5.1, as long as the initial conditions of the system belong to

said set, sufficiently large choices of γ and σ guarantee said set to be forward invariant.

While the dirty derivatives as presented in (4.4.1) might seem different that those defined

in Chapter 3 even when saturation doesn’t take place, both systems produce the same

estimates under the assumption of equal initial conditions. We use this representation here

to more closely resemble the system analysed in [58].

4.5 Main result

Consider the following set of assumptions:

(i) The function β(η1:n−1, z) satisfies:

β(η1:n−1, z) > 0 ∀η1:n−1 ∈ Rn−1,∀z ∈ Rρ.
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(ii) The zero dynamics are ISS with respect to η1:n−1.

(iii) The origin is an exponentially stable equilibrium of the zero dynamics when η1:n−1 = 0.

Theorem 4.5.1. Let assumptions (i)-(ii) hold. Consider system (2.2.1), for any compact set

S ⊂ Rn there exists γ ∈ R>0, such that for any γ ∈ (γ,∞) there exists σ ∈ R>0 such that for

any σ ∈ (σ,∞) the dynamic controller defined by (4.3.3), implemented using the estimates

provided by the dirty-derivative-based observer defined in (4.4.1), renders the origin into:

a) a semi-globally practically stable equilibrium for the closed-loop system.

b) a semi-globally exponentially stable equilibrium for the closed-loop system if system

(2.2.1) is feedback-linearizable, i.e., there are no zero dynamics.

c) a semi-globally exponentially stable equilibrium for the closed-loop system if assumption

(iii) holds.

Furthermore, if the functions α(η1:n−1, z), β(η1:n−1, z) and their Jacobians are uniformly

globally bounded then one recovers the global versions of cases a) and b), and if w(η1:n−1, z)

is also globally Lipschitz, the global version of case c).

The proof of this theorem can be found in the appendix.

Although the previous result only claims that trajectories converge to the origin, it can be

readily applied to trajectory tracking problems by considering convergence to zero of the error

between the system’s trajectory and the desired trajectory to be tracked. Extending this

result to multiple-input multiple-output systems is conceptually simple and can be achieved

by applying the observer (4.4.1) to each output individually and selecting the matrix γ so

that the matrix product βγ, is positive definite, much like what was done in Chapter 3.
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4.6 Conclusion

In this chapter I have provided a strikingly simple data-driven linear dynamic controller to

semi-globally stabilize unknown partially-feedback linearizable SISO nonlinear systems. The

required knowledge of the system is only the relative degree of the output and the sign of

the control gain, dispensing with the need of upper bounds for the latter, as is often the

case in adaptive and data-driven control methods. Moreover, the controller does not require

persistency of excitation to be enforced or previously recorded data to be provided. This

was achieved using well-known control techniques, a linear dynamic controller and a dirty-

derivative-based observer. Through a Lyapunov-based proof I demonstrate several different

degrees of stability are attainable depending on the unknown system’s properties. This

positions the proposed controller as an easy-to-use, straight forward control method in the

absence of system models.

Appendix

Proof of Theorem 4.5.1

Proof. Let Ψ(S) denote the image of S under the diffeomorphism Ψ, given by (4.2.1), which

satisfies Ψ(0) = 0. Then Ψ(S) is the set of initial conditions for the state of system (4.2.2)

given the set of initial conditions S for system (2.2.1). Due to Ψ being continuous, Ψ(S) is

a compact set. Consider the function ϕ : Rn−1 × Rρ × R → Rm+1 by:

ϕ(η1:n−1, z, u) = (η1:n−1, α(η1:n−1, z) + β(η1:n−1, z)u−Kη1:n−1, z). (4.6.1)

Given the set Ψ(S) and any compact set U0 ⊂ R of initial inputs u∗
0, let the set S ⊂ Rm+1

denote the image of ϕ(η1:n−1, z, u) when (η1:n−1, z, u) range in Ψ(S) × U0. Due to ϕ being

a bijection, it follows that the sets Ψ(S) × U0 and S are isomorphic to each other. Thus,

without loss of generality, we base the following proof on system (4.2.2) and the set of initial

conditions S.
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For brevity, we may use α, β, φη, φz and ω to denote α(η1:n−1, z), β(η1:n−1, z), φη(η1:n, z),

φz(η1:n, z) and ω(η1:n−1, z) respectively. Let eu and ei,0 be defined as:

eu = ηn −Kη1:n−1, ei,0 = η̂i − ηi, (4.6.2)

for all i ∈ {2, . . . , n}. We denote by e the vector (e1,0, . . . , en,0), where2 e1,0 = 0. We use

(4.6.2)-(4.6.12) to rewrite η̇n as:

η̇n =φz(η1:n, z)ω + φη(η1:n, z)η̇1:n−1 − β(η1:n−1)γ(eu +Ke),

and the derivatives of η1, η2, . . . , ηn−1 as:

η̇1:n−1 = Aη1:n−1 +Bηn = (A+BK)η1:n−1 +Beu, (4.6.3)

where we used (4.6.2) to obtain the second equality. This enables us to compute the derivative

of eu:
ėu =η̇n −Kη̇1:n−1

=− (βγ + φ′B) eu + φzω − φ′Aη1:n−1 − βγKe,
(4.6.4)

where we define A = A+BK and φ′ = K − φη, and K =
[
−K 1

]
.

To finalize this preamble we present the following useful lemma:

Lemma 4.6.1. All triples a, b, ε with a, b ∈ Rn and ε ∈ R>0 satisfy the inequality:

± 2aT b ≤ ε ∥a∥2 + 1

ε
∥b∥2 .

First step: we show that system (4.3.4) is ISS with respect to z and e. Consider the

Lyapunov function V1 : Rn−1 ×R → R given by V1(η1:n−1, eu) = ηT1:n−1Pη1:n−1 + e2u, where P

2This is done to simplify bookkeeping throughout the proof.
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satisfies (4.3.2) by assumption. We compute the time-derivative of V1(η1:n−1, eu) as:

V̇1(η1:n−1, eu) =ηT1:n−1PAη1:n−1 + ηT1:n−1A
T
Pη1:n−1 + 2ηT1:n−1PBeu

− 2eu
(
(βγ + φ′B) eu + φzω + φ′Aη1:n−1 + βγKe

)
=− ηT1:n−1Qη1:n−1 + 2ηT1:n−1PBeu − 2(βγ + φ′B)e2u − 2euφ

′Aη1:n−1

− 2euβγKe− 2euφzω

≤− λ ∥η1:n−1∥2 − 2(βγ − ∥φ′B∥) ∥eu∥2 + 2
(∥∥φ′A

∥∥+ ∥PB∥
)
∥η1:n−1∥ ∥eu∥

+ 2βγ
∥∥K∥∥ ∥eu∥ ∥e∥+ 2 ∥eu∥ ∥φzω∥

where we reach: the first equality by using (4.6.3) and (4.6.4); the second equality by

way of (4.3.2); and the last inequality by taking norms and noting that ηT1:n−1Qη1:n−1 ≤

−ληT1:n−1η1:n−1, where λ = λmin(Q). We now bound the terms of the last inequality in an

individual fashion using lemma (4.6.1) to reach the inequalities:

2
∥∥φ′A

∥∥ ∥η1:n−1∥ ∥eu∥ ≤λ

8
∥η1:n−1∥2 +

8

λ

∥∥φ′A
∥∥2e2u,

2 ∥PB∥ ∥η1:n−1∥ ∥eu∥ ≤λ

8
∥η1:n−1∥2 +

8

λ
∥PB∥2e2u,

2βγ
∥∥K∥∥ ∥e∥ ∥eu∥ ≤βγe2u + βγ

∥∥K∥∥ ∥e∥2 ,
2 ∥φz∥ ∥eu∥ ≤βγ

2
e2u +

2

βγ
∥φzω∥2 .

Assumption (ii) implies the function ω(η1:n−1, z) is locally Lipschitz and satisfies ω(0, 0) = 0.

Let V ⊂ Rm+1 be a compact set, to be defined later in the proof, and Lω denote the Lipschitz

constant of ω when the state (η1:n−1, eu, z) ranges in V , it follows that:

∥ω(η1:n−1, z)∥ ≤ Lω ∥(η1:n−1, z)∥ .

Consequently, one obtains the bound:

∥φzω(η1:n−1, z)∥2 ≤ ∥φz∥2 L2
ω ∥η1:n−1∥2 + ∥φz∥2 L2

ω ∥z∥
2 . (4.6.5)
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Substituting the previous bounds in (4.6.5) we reach:

V̇1(η1:n−1, eu) ≤−
(
3λ

4
− 2

βγ
∥φz∥2 L2

ω

)
∥η1:n−1∥2

−
(
βγ

2
− 2 ∥φ′B∥ − 8

λ

∥∥φ′A
∥∥2 − 8

λ
∥PB∥2

)
∥eu∥2

+ βγ
∥∥K∥∥ ∥e∥2 + 2

βγ
∥φz∥2 L2

ω ∥z∥
2 .

(4.6.6)

Inequality (4.6.6) establishes ISS of the system (4.6.3)-(4.6.4) with respect to z and e,

provided3 β, φz, φη and Lω are bounded. Due to these functions being smooth, bounds are

guaranteed to exist as long as their domains are contained in some compact set. We show

that for any such compact domain, sufficiently large gains may be selected to guarantee

stability thereby rendering our results semi-global. Note that β is a continuous function

of η1:n−1 and z, and φη, φz, and φ′ are continuous functions of η1:n and z. Given that

ηn = eu +Kη1:n−1, the functions φz(η1:n, z), φη(η1:n, z) and φ′(η1:n, z) can be expressed as a

functions of η1:n−1, z and eu: φη(η1:n−1, z, eu), φz(η1:n−1, z, eu) and φ′(η1:n−1, z, eu). Then, if

we consider states (η1:n−1, eu, z) in a compact set4 V , we can define the following bounds:

∥φη(η1:n, z)∥ ≤ max
(η1:n−1,eu,z)∈V

∥φη(η1:n−1, z, eu)∥ = φη,

∥φz(η1:n, z)∥ ≤ max
(η1:n−1,eu,z)∈V

∥φz(η1:n−1, z, eu)∥ = φz,

∥φ′(η1:n)∥ ≤ max
(η1:n−1,eu,z)∈V

∥φ′(η1:n−1, z, eu)∥ = φ′,

β(η1:n−1, z) ≤ max
(η1:n−1,eu,z)∈V

β(η1:n−1, z) = β,

β(η1:n−1, z) ≥ min
(η1:n−1,eu,z)∈V

β(η1:n−1, z) = β,

(4.6.7)

where β > 0 due to assumption (i). Let Sη and Sz denote the projections of S on its first

n and last ρ dimensions, respectively. Note that Sη and Sz contain all the initial conditions

3Note that the existence of a bound for the latter implies a bound for φ′.

4If α, β and their Jacobians are globally bounded, and ω is globally Lipschitz, the need to define the
compact set V disappears and one recovers the global results corresponding to the semi-global cases provided
by this theorem.
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for (η1:n−1, eu) and z, respectively. Let VSη be the smallest sub-level set of V1 containing

Sη, and V1 be any sub-level set of V1 strictly larger5 than VSη . Under assumption (ii)

the zero dynamics are ISS with respect to η1:n−1, thus there exist some Lyapunov function

V2 : Rρ → R such that V̇2(z) = −κ1(∥z∥) + κ2(∥η1:n−1∥) where κ1 and κ2 are class K∞

functions. Let V2 = {z : V2(z) < c2} be any sub-level set of V2 that is forward invariant

when η1:n−1 ranges in V1 and that contains the set of initial conditions Sz. We define

V = V1 × V2.

With the bounds (4.6.7) at hand we conclude the inequality:

V̇1(η1:n−1, eu) ≤− λ

2
∥(η1:n−1, eu)∥2 +

λγ

4γ
∥z∥2 + βγ

∥∥K∥∥ ∥e∥2 , (4.6.8)

holds for (η1:n−1, eu, z) ∈ V for any γ ∈ R>0 satisfying:

γ > max{γ, γ c1
c0
},

γ ≥ max

{
2

β

(
λ

2
+ 2 ∥φ′B∥+ 8

λ

∥∥φ′A
∥∥2 + 8

λ
∥PB∥2

)
,
8

βλ
φ2
zL

2
ω

}
,

(4.6.9)

where c0 = max(η1:n−1,eu)∈VSη
∥(ηi, eu)∥2 and c1 = maxz∈V2 ∥z∥

2 . The inequality (4.6.8) allows

us to conclude that the output dynamics’ system described by (4.6.3)-(4.6.4) is ISS with

respect to z and e. Notice that z is guaranteed to remain in V as long as (η1:n−1, eu) remains

in V1. In the following we show that V1 is a forward invariant set.

Second step: We now consider the dirty-derivative estimates. Due to the peaking

phenomena we partition the analysis in two segments: the first one dealing with the tran-

sient period involving peaking and during which saturation of the variables takes place; and

the second one considering the steady-state phase where no saturation takes place and the

estimation errors follow smooth dynamics.

Based on V we define Mi, the saturation limits in (4.4.1), as Mi > max(η1:n−1,eu,z)∈V ∥ηi∥

for all i in the set {2, 3, . . . , n}. Consider (4.6.8), (4.6.9) and let M = maxi∈{1,...,n}Mi, given

5This requirement is needed for the analysis of the transient period.
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that the set of initial conditions for η1:n−1 are contained in VSη ⊂ V1, the chosen values for

Mi guarantee the bound:

V̇1(η1:n−1, eu) ≤ −λ

4
c0 + 2nβγ

∥∥K∥∥M, (4.6.10)

holds as long as (η1:n−1, eu) ∈ V1 − VSη . Noting that the right hand side of (4.6.10) is

positive for sufficiently large values of γ and that Sη ⊆ VSη ⊂ V1, there exists a time

t1 ∈ R>0, independent on the value of σ, such that (η1:n−1, eu) ∈ V1 for all t ∈ [0; t1[. Thus

the state (η1:n−1, eu, z) remains in V , and as such bounded, for all t ∈ [0; t1[. We may then

apply Theorem 1 in [58]. This implies that there exists σ∗ ∈ R+ such that for all σ > σ∗ the

estimation error e remains bounded and there exists time T (σ) satisfying limσ→∞ T (σ) = 0,

such that ∥e∥ < aσ−1 for all t > T (σ), for some positive constant a. As a consequence,

the peaking period may be rendered arbitrarily short, and the norm of the estimation error

arbitrarily small, by choosing sufficiently large values for the gain σ. This allows us to

guarantee forward invariance of V for all time t > 0. Specifically, one may select σ such that

the bound ∥e∥ <
√
λ(4βγ

∥∥K∥∥)−1c0 holds for all t > t∗ for an arbitrarily small t∗. Given

that t1 is independent of σ, we require:

σ > σ∗,where T (σ∗) = t∗ < t1. (4.6.11)

Consequently, it follows that V̇1(η1:n−1, eu) < 0 for all t > t∗ and (η1:n−1, eu) ∈ V1 − VSη .

Given that (η1:n−1, eu) ∈ V1 for all t ∈ [0, t1], this implies trajectories starting in VSη will

remain in V for all time t.

To analyse the steady-state behaviour of the estimation error dynamics we introduce the

auxiliary error states:

ei,j = η̂
(j)
i − ηi+j, ∀i ∈ {2, . . . , n},∀j ∈ {1, . . . , n− i} (4.6.12)

where η̂
(j)
i denotes the jth derivative of η̂i with respect to time. Note that the maximum

value of j is n − i, so that i + j ≤ n and the error term ei,j is always well-defined. This

leaves us with a set of n(n−1)
2

error variables for the state estimates. We define e to be the
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vector containing all ei,j for i ∈ {2, . . . , n} and j ∈ {0, . . . , n − i}. Given (4.6.12), the time

derivatives of the error variables when no saturation is active are given by:

ėi,j = ˙̂η
(j)

i − η̇i+j = −σ
(
η̂i − ˙̂ηi−1

)(j)
− η̇i+j

= −σ(η̂
(j)
i − η̂

(j+1)
i−1 )− η̇i+j,

(4.6.13)

where the second equality is obtained by substituting ˙̂ηi with the corresponding right-hand

side in the equations of the dynamical system (4.3.4). This results in the following two cases:

e2,j =− σ(η̂
(j)
2 − η

(j)
2 )− η̇2+j = −σe1,j − η̇2+j,

ei,j =− σ(η̂
(j)
i − ei−1,j+1 − ηi+j)− η̇2+j

=− σei,j + σei−1,j+1 − η̇2+j,

where we used the identity η̂
(j+1)
i−1 = −ei−1,j+1 − ηi+j in the second case. With these at hand,

consider the Lyapunov function V2 : R
n(n+1)

2 → R≥0 given by:

V (e) = eT e =
n∑

i=1

n−i∑
j=0

e2i,j. (4.6.14)

Computing the time derivative of (4.6.14) results in:

V̇2(e) =2
n∑

i=2

n−i∑
j=0

ei,j ėi,j

=− 2

(
σ

[
n∑

i=2

n−i∑
j=0

e2i,j −
n∑

i=3

n−i∑
j=0

ei,jei−1,j+1

]
+ (φηB + βγ)eu

n∑
i=2

ei,n−i

−2φzω
n∑

i=2

ei,n−i + βγKe
n∑

i=2

ei,n−i + φηAη1:n−1

n∑
i=2

ei,n−i +
n−1∑
i=2

n−i−1∑
j=0

ei,jηi+j+1

)
.

(4.6.15)

Just as in the first step, we proceed by deriving upper bounds for all of the terms

in (4.6.15). The first term can be written as:

− 2σ

[
n∑

i=2

n−i∑
j=0

e2i,j −
n∑

i=3

n−i∑
j=0

ei,jei−1,j+1

]
= 2σ

n∑
k=2

(
−

k−1∑
ℓ=0

e2k−ℓ,ℓ +
k−2∑
ℓ=0

ek−ℓ,ℓek−ℓ−1,ℓ+1

)
,
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where, through a slight abuse of notation, we define the sum
j∑
i

1 to be zero whenever j < i.

We claim that for any k there exists a constant dk ∈ R>0 such that:

−
k−1∑
ℓ=0

e2k−ℓ,ℓ +
k−2∑
ℓ=0

ek−ℓ,ℓek−ℓ−1,ℓ+1 ≤ −dk

k−1∑
ℓ=0

e2k−ℓ,ℓ. (4.6.16)

This can be shown by first defining ηℓ = ek−ℓ,ℓ and applying the following lemma6.

Lemma 4.6.2. For any k ∈ N>0, the quadratic form −
∑k

i=2 η
2
i +

∑k−1
i=2 ηiηi+1 is negative

definite.

Finally, inequality (4.6.16) is reached by noting that the negative definiteness of the left

terms implies the existence of dk ∈ R>0 such that the inequality holds. Inequality (4.6.16)

allows us to write:

−2σ

[
n∑

i=2

n−i∑
j=0

e2i,j −
n∑

i=3

n−i∑
j=0

ei,jei−1,j+1

]
=2σ

n∑
k=2

(
−

k−1∑
ℓ=0

e2k−ℓ,ℓ +
k−2∑
ℓ=0

ek−ℓ,ℓek−ℓ−1,ℓ+1

)

≤− 2σ
n∑

k=2

dk

k−1∑
ℓ=0

e2k−ℓ,ℓ = −2σdeT e,

where
∑n

i=2

∑n−i
j=0 e

2
i,j =

∑n
k=2

∑k−1
ℓ=0 e

2
k−ℓ,ℓ, and d = min{d1, d2, . . . , dn}. All other terms may

6This lemma can be easily proved by rewriting the quadratic form as −ηTMη, with M ∈ Rk×k a symmetric
matrix and noting that M can be reduced to upper triangular form with strictly negative elements on the
diagonal by using row operations. This implies that det(M) < 0 and since M is negative semidefinite by
Gershgorin’s circle theorem, it’s enough to prove strict negative definiteness of M .
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be bounded by resorting to lemma 4.6.2, resulting in the bounds:

−2 (βγ + φηB) eu

n∑
i=2

ei,n−i ≤
λ

16
e2u +

16n

λ

(
β2γ2 + ∥φηB∥2

)
eT e,

−2φzω
n∑

i=2

ei,n−i ≤
2n

σ
φ2
zL

2
ω ∥η1:n−1∥2 +

2n

σ
φ2
zL

2
ω ∥z∥

2 +
σ

2
eT e,

−2βγKe
n∑

i=2

ei,n−i ≤2nβγ
∥∥K∥∥ eT e,

−2φηAη1:n−1

n∑
i=2

ei,n−i ≤
λ

16
∥η1:n−1∥2 +

16n

λ

∥∥φηA
∥∥2 eT e,

−2
n−1∑
i=2

n−i−1∑
j=0

ei,jηi+j+1 ≤c3e
T e+

λ

16
∥η1:n−1∥2 +

λ

16
∥eu∥2 ,

where c3 =
(

16(n2−5n+6)
λ

+ 16(n−2)
λ

+ 16(n−2)
λ

KKT
)
. Note that all η terms in the right-hand

side of the second equality have indices between 1 and n−1. Substituting all of these bounds

in (4.6.15), we can bound V̇2 by:

V̇2(e) ≤−
(
3

2
σd− 16n

λ

(
β2γ2 + ∥φηB∥2 +

∥∥φηA
∥∥2)− 2nβγ

∥∥K∥∥− c3

)
eT e+

λ

4
e2u

+

(
λ

8
+

2n

σ
φ2
zL

2
ω

)
∥η1:n−1∥2 +

2n

σ
φ2
zL

2
ω ∥z∥

2

≤− σd ∥e∥2 + λ

4
∥(η1:n−1, eu)∥2 +

λσ

8σ
∥z∥2 ,

(4.6.17)

where the last inequality holds for all σ ∈ R>0 satisfying:

σ ≥ σ = max

{
2

d

(
16n

λ

(
β
2
γ2 + ∥φB∥2 +

∥∥φηA
∥∥2)+ 2nβγ

∥∥K∥∥+ c3

)
,
16n

λ
φ2
zL

2
ω

}
.

(4.6.18)

Due to inequality (4.6.17) we conclude that the estimation error dynamics are ISS with

respect to η1:n−1, eu and z.

Step three: we now show that we satisfy the assumptions of the small-gain theorem for

the closed-loop system, when considering z as an external signal. We refer to Theorem 3.1 in

[67], were we equate u1 and u2 in [67] to z. Assumption (8) is satisfied due to V1 and V2 being
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quadratic, assumptions (15) and (16) are satisfied with θu1 (|u1|) = θu2 (|u2|) = d1 = d2 = 0,

and based on (4.6.6) and (4.6.17) we define:

α1(V1(η1:n−1, eu)) =
λ

2λmax(P )
V1(η1:n−1, eu),

α2(V2(e)) = σdV2(e),

θη1(V2(e)) = βγ
∥∥K∥∥V2(e),

θη2(V1(η1:n−1, eu)) =
λ

4λmin(P )
V1(η1:n−1, eu),

where P is the block diagonal matrix with blocks P and 1. Following Corollary 3.1 in

[67], we define κ1 =
βγ∥K∥

σd
and κ2 = 1

2
λmax(P )

λmin(P )
, such that θη1(V2(e)) = κ1α2(V2(e)) and

θη2(V1(η1:n−1, eu)) = κ2α1(V1(η1:n−1, eu)), and note that both κ1 and κ2 are positive. It is

straight-forward to see that by choosing σ to be sufficiently large one can make the intercon-

nection gain to be arbitrarily small, fulfilling the requirement that κ1κ2 < 1, thus satisfying

all the assumptions of Corollary 3.1, and consequently Theorem 3.1, in [67]. By applying said

theorem we conclude that the output-dynamics in closed-loop with the proposed controller

and observer are ISS with respect to z. Furthermore, [67] informs us that the composite func-

tion V (η1:n−1, eu, e) = V1(η1:n−1, eu) + c4V2(e) is a valid Lyapunov function for said system,

where c4 satisfies κ1 < c4 < κ−1
2 . Given that κ−1

2 ≤ 2 and that κ1 can be made arbitrarily

small by increasing σ, we may select c4 < 2 and it follows that:

V̇ (η1:n−1, eu, e) <− c5 ∥(η1:n−1, eu, e)∥2 +
(
c4λσ

8σ
+

λγ

4γ

)
∥z∥2 ,

where7 0 ≤ c5 ≤ (1− c4
2
)λ
2
. Note that γ and σ can always be increased, respecting the bounds

(4.6.9), (4.6.11), and (4.6.18), such that the coefficient
(

c4λσ
8σ

+
λγ

4γ

)
is rendered arbitrarily

small.

As a result we conclude:

a) If system (2.2.1) is feedback-linearizable, i.e., there are no zero dynamics, then the

7Note that we can increase σ to ensure k1 <
(
σdk − βγ

∥∥K∥∥) without affecting the choice of c4.
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closed-loop system is rendered semi-globally exponentially8

b) If the zero dynamics are ISS with respect to η1:n−1 and exponentially stable when

η1:n−1 = 0 then the closed-loop system is rendered semi-globally exponentially stable.

Exponential stability of the unforced system implies, through Theorem 4.14 in [23],

that the unforced zero-dynamics admit a quadratic Lyapunov function V2. Given than

ω is locally Lipschitz in V it follows that V̇2 ≤ −c6 ∥z∥2 + c7 ∥η1:n−1∥2 for some c6 and

c7 ∈ R+. Applying again the small-gain theorem as we have done in step 3 using V

and V2 recovers the result.

c) If the zero dynamics are ISS with respect to η1:n−1, the closed-loop system is rendered

semi-globally practically stable.

d) If α, β and their Jacobians are globally bounded then one recovers global stability

results in cases a) and c), and if ω is also globally Lipschitz one recovers global expo-

nential stability in b). This is due to there not being a need for defining V . In this

case the proof follows through without needing saturation in the observer, yet this is

not advised in practice as it might result in aggressive transients.

8It can readily be shown that e is a linear function of e, η3:n−1 and eu, thus V = V1 + c4V2 is a
positive-definite, quadratic function of (η, eu, e). It can be similarly shown that the time derivative of V is
a negative-definite quadratic function of (η, eu, e).
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CHAPTER 5

Conclusion

The previous chapters have addressed the problem of stabilization of unknown nonlinear sys-

tems without making explicit use of a model. I have focused on partially and fully feedback

single-input single-output linearizable system, utilizing both recent results and well-known

techniques to circumvent issues and constraints well-documented in the field of adaptive

control. The result is a pair of controllers, a discrete-time and a continuous-time one, char-

acterized by their ease of implementation, minimal system model knowledge requirements

and asymptotic stability guarantees. An extension of this results to the multiple-input

multiple-output case was presented and its practical limitations analysed, matching what is

currently the state-of-the-art.

There are several further avenues to expand the results herein contained, amongst them

non-feedback linearizable systems and applications to specific classes of systems, such as

Euler-Lagrangian systems. With collaborators and coauthors leading the charge, I am hope-

ful this research will provide the foundations for simple and safe, plug-and-play data-driven

control of a large class of nonlinear systems.
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