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The introduction of image guided radiation therapy (IGRT), defined as regular patient 

imaging during the course of a radiation therapy treatment regimen, has resulted in significant 

improvements in both the quality and safety of radiotherapy treatments. Accurate visualization of 

the target and nearby normal tissue has allowed for the reduction of planning target volume 

(PTV) margins, leading to increased normal tissue sparing. Daily image guidance can also 

increase the safety of radiation therapy treatments, as the patient is imaged prior to each 

treatment fraction to verify target location and compensate for inter-fraction anatomical changes.  

However, the introduction of daily imaging into the clinical workflow has been coupled with a 

simultaneous introduction of so-called “IGRT errors.” IGRT errors arise from inaccuracies in 

registering the patient’s daily setup images with the simulation images acquired prior to 
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treatment. Such errors could arise due to technical challenges with the image registration 

algorithms themselves, problems with applying the image registration algorithms to a particular 

set of patient images, or human mistakes made while interpreting the results of an image 

registration. While IGRT has increased the precision of radiotherapy treatments, it can lead to 

treatments that are “precisely wrong.”  

As a preliminary step to mitigate IGRT errors, we propose the development of novel 

tools for the automatic detection of IGRT errors. Specifically, we develop a convolutional neural 

network (CNN)-based model for detecting the rare but serious IGRT error of off-by-one 

vertebral body misalignments in radiation therapy treatments targeting the thoracic spine. We 

develop a second CNN-based model for detecting the more generic IGRT error of translational 

shifts of 1 cm from treatment isocenter in all anatomic regions. We apply both models to 

retrospective image data from patients aligned using daily image guidance in order to detect 

previously unreported IGRT errors and near miss events, and to understand where in the clinical 

workflow such incidents originated. 

Finally, we understand that new evidence-based tools can only be effective if they are 

successfully integrated into the clinical environment. A rigorous implementation science 

approach is a necessary step to integrating novel technologies and reducing the well-documented 

lag time from research to practice. We study the barriers and facilitators to use of both automated 

tools that are commercially available as well as automated tools still in development. We use a 

survey study to evaluate medical dosimetrists’ perceptions of auto-contouring and automated 

treatment planning tools and their perceived barriers to regular clinical use of such tools. To 

better understand how a new automated tool designed to assist in the IGRT review portion of 
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weekly chart checks could be integrated clinically, we use a novel thematic analysis approach to 

analyze the current weekly chart check workflow from the perspective of the clinical medical 

physicist.  
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 INTRODUCTION 

1.1 Introduction to radiation therapy 

Radiation therapy is a type of cancer treatment that uses high energy particles to deliver 

high doses of radiation to cancer cells within the body. Cancer cells are killed as a result of DNA 

damage caused by the radiation1. This type of treatment is both safe and effective, and it is 

estimated that 50% of new cancer diagnoses worldwide would benefit from radiation therapy2–4. 

Delivering a high dose of radiation to the tumor is crucial, but it is also the goal of radiation 

therapy to spare nearby healthy tissue as much as possible5.  

The overarching goal of radiation therapy has always been to maximize dose to the target 

while simultaneously minimizing dose to nearby normal tissue. Recent technological 

advancements, specifically new imaging modalities and advanced linear accelerators6, have 

enabled providers to design precise radiotherapy treatment plans to accomplish this goal. Modern 

linear accelerators equipped with retractable multi-leaf collimators allowed for the development 

of an advanced type of radiation therapy termed intensity modulated radiation therapy (IMRT). 

The improved dose conformity and steep dose gradients achievable with IMRT necessitated the 

subsequent development of improved imaging in order to accurately localize patient anatomy7. 

The highly conformable nature of IMRT coupled with new advanced imaging techniques gave 

rise to image guided radiation therapy, or IGRT. IGRT is defined by daily imaging of the patient 

prior to radiation delivery. This frequent imaging allows for the patient to be accurately 

positioned, and for adjustments to be made immediately in response to anatomical changes8.  
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1.2 Image guidance during radiation therapy 

Although radiation therapy as a treatment modality for cancer has been employed for 

well over 100 years now, it is only within the past few decades that the routine use of IGRT has 

become mainstream. Several review papers detail the rapid rise in clinical use of IGRT and 

summarize the various technologies, along with the advantages and disadvantages of each9–12. 

IGRT was quickly adopted into routine clinical use, with the vast majority of radiation 

treatments in the United States currently using some form of image guidance13,14. Image 

guidance can increase both the quality and the safety of radiation therapy treatments, and the 

technology became a defining feature of modern radiotherapy soon after its inception15,16. 

The benefits of IGRT have been well documented in the literature. IGRT enables the 

radiotherapy treatment team to achieve high accuracy in the patient setup17, and this high 

accuracy subsequently allows for a reduction to be made in the planning target volume (PTV) 

margins used during treatment planning18. Geometric variability of the target setup is reduced 

through the consistent use of daily imaging19–21, ultimately meaning that the prescribed dose is 

more likely to be delivered as intended22. IGRT has been clinically implemented for a wide 

variety of anatomical sites and radiotherapy applications, including pelvis23, prostate24, rectal25, 

lung26, head and neck27, respiratory motion management28, and stereotactic body radiotherapy 

(SBRT)29. Regular clinical use of IGRT has been shown to lead to both higher tumor control 

rates and reduced toxicity to nearby normal tissue30,31, in addition to a significant reduction in the 

frequency of gross treatment errors32. IGRT has become a fundamental component of modern 

radiation therapy and has advanced the ultimate goal of precise and accurate treatments33. 
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1.3 Limitations of image guided radiation therapy  

The introduction of IGRT into routine clinical practice has not been without its own set 

of unique challenges and clinical considerations. Daily imaging does result in increased dose to 

the patient15, although this is typically negated by the PTV margin reduction that can be 

achieved. This increased dose is perhaps more relevant for pediatric patients, and careful 

consideration of the potential long-term effects is necessary34. IGRT also comes with increased 

expenses in terms of capital, maintenance costs, and already limited human resources8. The use 

of daily imaging has the potential, perversely, to increase the likelihood of errors resulting from 

misinterpreting the images that are directly guiding a patient’s treatment10. Daily imaging also 

has the potential to provide false reassurance if used inappropriately or without a robust quality 

assurance program in place22. IGRT can increase the quality and safety of radiation therapy, but 

the American Society for Radiation Oncology (ASTRO) cautioned that it must be deployed in a 

robust and safe manner35. Ultimately, failure to understand and appropriately use IGRT can 

result in a treatment that is “precisely wrong”36. 

1.4 Characterization of the ExacTrac image guidance system 

1.4.1 Technical specifications 

ExacTrac (Brainlab AG, Feldkirchen, Germany) is one specific type of image guidance 

currently available for clinical use. The imaging system consists of two floor-mounted 

kilovoltage x-ray tubes that project obliquely through the patient onto two corresponding flat-

panel detectors mounted on the ceiling (Figure 1.1). After acquisition of the two stereoscopic x-

rays, the six degree of freedom fusion software compares the 2D images with digitally 
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reconstructed radiographs (DRRs) generated from the patient’s planning computed tomography 

(CT) scan at various translational and rotational shifts. The fusion algorithm locates the pair of 

generated DRRs that show maximum similarity to the acquired x-rays and calculates the 

translational and rotational shifts that should be performed on the patient. A more detailed 

description of the ExacTrac system and image registration algorithm can be found in the 

literature37,38. ExacTrac has demonstrated submillimeter alignment accuracy39,40, overall spatial 

accuracy on the order of 1.24-1.35 mm41, and mean deviations of less than 1 degree in all three 

rotational directions42. Use of daily ExacTrac imaging can allow for the patient’s position to be 

reproduced within 1 mm from one treatment day to the next43. Furthermore, it has been shown 

that this high level of accuracy in locating the treatment isocenter position is achievable even 

when an initial patient setup has a large error44.  

 

Figure 1.1: Geometry of the ExacTrac IGRT system. 
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1.4.2 Predominant uses 

Due to the high positioning accuracy that can be obtained with ExacTrac, it is frequently 

used for imaging prior to and during high-dose SBRT treatments. SBRT involves delivering dose 

to the patient over a small number of fractions (typically 1-5), with a high dose delivered per 

fraction. Because of the high dose per fraction, accurate target localization and patient 

immobilization during treatment is crucial. Early immobilization techniques were often invasive 

and uncomfortable for the patient, involving surgically implanted metal devices. Numerous 

studies have found that the accuracy of target localization obtained with ExacTrac imaging is 

comparable to that obtained with these invasive stereotactic frames45–47, leading to a new 

approach of frameless SBRT treatments. Care must still be taken to properly immobilize the 

patient during treatment in order for frameless SBRT to be successful48, but when done properly 

this technique achieves very high local tumor control that is well tolerated by patients49. 

1.4.3 Known limitation: thoracic spine 

While patient setup using ExacTrac has been shown to be highly accurate, the system 

does have some critical limitations, especially with regard to radiation therapy targeting the 

thoracic spine. In this region, implanted markers are still more effective in patient positioning, 

reducing the deviation from the planned isocenter by up to half a millimeter50. Intra-fraction 

motion can be of particular concern as well, with one study finding that vertebral anatomy can 

vary as much as 3 mm between measurements, and that this movement could occur in as little as 

5 minutes51. Perhaps most critically, intensity-based 2D-3D image registration methods such as 

that employed by ExacTrac are particularly susceptible to local minima in the algorithm’s cost 

function52. Practically speaking, this means that the algorithm has the potential to lock on to an 
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adjacent vertebral body instead of the one intended for treatment depending on the accuracy of 

the initial patient setup. Because adjacent vertebral bodies in the thoracic spine look similar, this 

particular error can be difficult to visually verify. 

1.5 Errors in medicine  

In 1999, the Institute of Medicine released a report estimating that between 44,000 and 

98,000 patients die in hospitals each year in the United States due to preventable errors53. The 

renowned psychologist James Reason theorized that accidents like those occurring in the 

healthcare system result from two distinct types of errors: active, or unsafe acts directly linked to 

an event, and latent, or systemic conditions and practices leading to an event54. Furthermore, he 

argued that latent human errors are more significant than technical failures55, a sentiment echoed 

by the finding that up to 80% of accidents in high risk industries can be attributed to operator 

error56. This work ultimately led Reason to propose his “Swiss cheese model”57 (Figure 1.2) to 

explain how system failures occur, even with multiple barriers in place to mitigate against 

accidents.  

 

 

 

 

 

 

 

 
Figure 1.2: Reason's Swiss cheese model of system failures. 
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1.6 Errors in radiation oncology  

The field of radiation therapy is far from immune from system failures of the type 

described by Reason. One study estimated that 269 potential failure modes exist in the planning 

and delivery of radiation therapy58. Redundant safety checks exist at almost every stage of the 

radiation oncology clinical workflow, drastically reducing the chances for errors to reach the 

patient and cause harm. Even so, studies have found a high incidence of treatment errors in 

radiation oncology due to incorrect patient setup59,60. Such errors can have devastating, at times 

even fatal, consequences, as was highlighted in a 2010 New York Times exposé61. 

Misalignment of radiation treatments to the patient anatomy, even when using IGRT, 

remains an important source of error. The Radiation Oncology Incident Learning System (RO-

ILS) was established in 2014 as an inter-institutional error reporting system. In a 2018 report, 

396 incidents were investigated, of which 40 were classified as “wrong shift instructions given to 

therapists,” and 34 as “wrong shift performed at treatment.62” The Quarter 3 2016 RO-ILS 

summary report describes a case of a treatment misaligned by 3 cm and opined: “This is one of 

approximately 28 IGRT events documented this quarter. Clearly we need to increase the 

attention paid to how to decrease the number of IGRT-related issues throughout the field.63”  

1.7 Clinical significance of patient setup errors 

The importance of ensuring accurate patient setup prior to radiation therapy treatment 

cannot be overstated. Patient setup and dose delivery errors that occur during the course of a 

treatment fraction are difficult to detect, meaning that there are likely quality issues in radiation 

oncology that are not currently well-studied. The patient positioning step of the treatment 

workflow is both high severity and high risk, and was ranked in the top 20% most hazardous 
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steps by an AAPM Task Group Report64. Additional studies have supported this finding, 

documenting a high incidence of treatment errors in radiation therapy caused directly by 

incorrect patient setup59,60,65. One study found that geometric misses of the target had the highest 

error probability, and once again tied this failure mode back to improper patient setup66. While 

many patient-specific factors have been shown to influence the reproducibility of the patient 

setup67, the specific type of radiation treatment used also plays a role. As radiation therapy has 

become more precise with the development of IMRT and, subsequently, IGRT, these precise 

treatments are more affected by small patient misalignments than more traditional (and more 

simple) methods of radiation delivery68. Yamashita et al. found that a target margin of up to 8 

mm was necessary to account for the various types of patient setup error present in patients being 

treated for esophageal cancer69, highlighting the impact these errors can have on precise radiation 

delivery. Incorrect patient setup has been shown to lead to both a significant decrease in PTV 

coverage70,71 and increases in the dose delivered to nearby normal tissue71.  

1.8 Incident learning in radiation oncology  

Radiation therapy remains a remarkably safe treatment modality for patients, with error 

rates per delivery fraction of well under 1% reported in the literature. Some highly publicized 

accounts of egregious radiation therapy errors61,72–75 have caught public attention, even though 

the vast majority of the rare errors that do occur have little to no observable clinical 

consequences. Still, knowledge of the exact rate and types of radiation mis-administration is 

critical information for all members of the treatment team. While some previous studies have 

attempted to define the error rate within radiation therapy treatments, such studies are limited in 

that they rely on self-identified and self-reported errors76. RO-ILS, jointly sponsored by ASTRO 



9 

 

and AAPM, represents the most comprehensive effort to date within the field to collect data on 

errors. Incident learning systems such as RO-ILS are widely regarded as invaluable tools for 

improving both the safety and the quality of patient treatments77. Literature in recent years has 

highlighted some successes with implementing incident learning systems in various radiation 

oncology clinics78,79, and has synthesized some key themes regarding incident learning systems. 

These include an emphasis on incident learning (rather than incident reporting) and the value of a 

non-punitive department culture80, the importance of information sharing to prevent future 

incidents and facilitate safety improvements81, and the value of viewing near-misses as valuable 

“free lessons”82. The explosion of technological advancements in radiation therapy in recent 

years has reduced the likelihood of certain errors but simultaneously introduced new avenues for 

other errors83, a trend that shows no indication of abating. Understanding and mitigating such 

errors is critical for the safe delivery of radiation treatments to the patient. While incident 

learning systems represent a vital component of the safety policies and procedures, their efficacy 

is limited in that they cannot be used to truly measure department error rates84 due to the 

aforementioned known issue of under-reporting. There is still a pressing need to better 

understand the true frequency of errors, particularly those which are most likely to lead to patient 

harm85.  

1.9 Automation to prevent radiation therapy errors 

Because errors in radiation therapy can have such severe ramifications, it is of the utmost 

importance to introduce multiple safety barriers into each stage of the treatment workflow. Such 

safety barriers can take many forms, as illustrated in Figure 1.3, but automated checks and 

forcing functions have been shown to be more effective at error prevention than policies and 
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procedures or staff training86. Various automated tools have been proposed for different types of 

error prevention, including eliminating the common error pathway of providing incorrect shifts 

to therapists87, treatment plan quality control88, and the use of cameras to detect treatment of the 

incorrect patient or anatomic site89. Recently, several papers have summarized the advancements 

made in applying convolutional neural networks (CNNs) to problems of medical image 

analysis90–92. The excellent performance of CNNs on image analysis problems led to the novel 

concept of using IGRT as an additional means of ensuring patient safety93. Subsequent studies 

have shown promise in using CNNs during IGRT for the narrow tasks of treatment target 

localization94,95 and image registration95,96, but the concept of using IGRT itself as a safety 

barrier has been relatively understudied to date.  

Figure 1.3: Hierarchy of hazard mitigation effectiveness, adapted from Hendee et al.  



11 

 

1.10 Clinical adoption of novel technologies  

The challenges of translating basic science research into clinical practice have been well 

documented97,98. On average, there is a lag time of 17 years for research evidence to reach 

routine clinical practice99. In comparison to funding for basic science research, very little funding 

is awarded for studying best practices to shorten this lag time100. However, it is clear that a 

focused effort on understanding the barriers to implementation is crucial for ensuring that 

advances in research translate to advances in patient care101. This identification of barriers is 

essential for maximizing the clinical adoption of new evidence-based tools and techniques102. 

In order to address the gap between research and clinical practice, the field of 

implementation science was born. Implementation science is fundamentally based on the concept 

that the successful implementation of evidence-based practices requires an evidence-based 

approach to their actual implementation103. The factors preventing successful uptake of a new 

technology can vary widely, but often depend on contextual factors significantly more than the 

proven effectiveness of the new innovation104. Various groups have proposed strategies for 

successfully implementing implementation science105–107. In general, these strategies focus on 

human factors as a key component to increasing the likelihood that a new technology is 

successfully integrated into a given organization.  

Implementation science has proven to be quite successful in facilitating the adoption of 

evidence-based practices into routine clinical use, ultimately leading to improved patient 

care106,108. It has become an established and indeed widely accepted field in healthcare 

broadly109. The incorporation of strategies from human factors research is a small but significant 

shift within implementation science focusing on healthcare110,111, and is especially critical in 
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light of the fact that so much of successful implementation science hinges on human behavior. 

Implementation science has been well-studied in other healthcare fields, and its application to 

specific radiation oncology tools is a natural extension of the underlying theory. 

1.11 Overview and specific aims 

The goal of this dissertation is threefold: to develop novel automated tools for the 

detection of patient misalignments in image guided radiotherapy, to apply these automated tools 

to archived image data in order to better understand IGRT error rates, and finally to analyze best 

practices for introducing automated tools more broadly into the current radiation oncology 

clinical workflow. The individual specific aims are as follows: 

1. Develop and validate automated tools for detecting both off-by-one vertebral body 

misalignments and gross patient misalignments in ExacTrac IGRT. 

2. Utilize automated methods to identify misalignments in archived ExacTrac patient setup 

images that represent previously unreported IGRT errors or radiation therapy incidents. 

3. Evaluate the barriers and facilitators to clinical implementation of both automated 

treatment planning tools and automated tools intended to address and prevent IGRT 

errors. 

Chapter 2 addresses Specific Aim 1 by proposing the use of an automated tool for the detection 

of off-by-one vertebral body misalignments in 2D ExacTrac images developed using a multi-

institutional collaboration of image data. Chapter 3 describes improvements made to this model 

in the form of incorporating the stereoscopic geometry of the ExacTrac system into the training 

data. Chapter 4 again addresses Specific Aim 1 by proposing the development and validation of 

an automated tool to detect gross patient misalignments in a wide variety of anatomical treatment 
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sites all imaged using the ExacTrac IGRT system. Chapter 5 provides a solution to Specific 

Aim 2 by using the models for detecting patient misalignments described in Chapter 3 and 

Chapter 4 to perform a retrospective search for previously unreported treatment incidents, 

hereby allowing for an independent quantification of the IGRT error rate. Chapter 6 addresses 

Specific Aim 3 by using a survey study of medical dosimetrists to identify their perceived 

barriers to use of both auto-contouring and automated treatment planning tools in their routine 

clinical workflow. Chapter 7 again addresses Specific Aim 3 by using thematic analysis to gain 

insight into the current practices employed by clinical medical physicists during their weekly 

chart checks, and identify openings for automation to assist in the IGRT review portion of such 

checks. 
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 DEVELOPMENT AND MULTI-INSTITUTIONAL VALIDATION                   

OF AN AUTOMATED TOOL FOR DETECTING VERTEBRAL BODY 

MISALIGNMENTS 

2.1 Introduction 

2.1.1 Off-by-one vertebral body misalignments 

Off-by-one vertebral body errors are particularly insidious due to the translational 

symmetry of the vertebral column112. Redundant safety checks are in place during the simulation 

imaging, treatment planning, setup imaging, and treatment delivery phases, with the overall goal 

of catching potential errors and correcting them before treatment is actually delivered to the 

patient. Identification of error pathways64,113,114, the use of established safety protocols115,116, and 

redundant safety checks117 are common approaches to radiation therapy error mitigation. 

However, ample evidence demonstrates inadequate compliance with safety protocols in practical 

healthcare situations. Recent studies have reported surgical safety checklist compliance of 52-

80%118–120. In a 2017 report of adverse events in Minnesota121, the most commonly identified 

root cause category was “Rules/Policies/Procedures”, and within that category the most 

commonly reported factor was “policies/procedures are in place, but not followed”. Mallet et 

al122 studied eight cases of wrong site/procedure/patient events occurring from 2008-2010 at an 

academic medical center. They stated “the Rules, Policies, and Procedures category contained 

the highest number of failure modes (22) and was present in all 8 wrong-person, procedure, and 

site events analyzed. Every failure mode within this category reflects an incomplete or improper 

use of the 3 steps involved with the Universal Protocol (emphasis added).” 
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2.1.2 IGRT errors in ExacTrac 

In this dissertation we focus on what has been termed an “IGRT Error”, in which human 

error contributes to misalignment of a radiotherapy treatment even with the use of image 

guidance. Setup imaging prior to each fraction of radiation is an important part of the safety 

protocols in place to ensure that the patient is correctly aligned and that the radiation is delivered 

to the appropriate target. However, IGRT still depends on manual verification of patient 

alignment, a process that can be improved upon with the introduction of a quantitative image 

alignment metric123. One study found that patient setup errors accounted for almost half of all 

documented incidents at their institution over a 10 year period65.  

Many different imaging modalities can be used to perform setup imaging, but in this 

work we focus on the planar x-ray setup imaging system ExacTrac39. This type of imaging is 

commonly used for patients receiving high dose radiation to the cranial or spinal regions due to 

its high precision48. For ExacTrac imaging, two stereoscopic x-rays of the patient are acquired 

after initial positioning on the treatment couch. These x-rays are then matched to corresponding 

DRRs that are generated using the simulation CT to determine what translational and rotational 

shifts need to be done to the patient to align them properly before treatment. The ExacTrac 

system allows for highly precise patient alignment on the order of submillimeter accuracy39; 

however, due to a relatively small field of view and the possibility of an image similarity-based 

minimization process to lock on to local minima in the cost function52, the system can align to an 

adjacent vertebral body instead of the one intended for treatment. This effect is particularly 

pronounced in the lower cervical spine and thoracic spine since adjacent vertebral bodies in these 

regions can be difficult to visually differentiate124,125. A wrong level vertebral body mismatch 
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can have dire consequences for the patient undergoing treatment including reduced tumor control 

as well as increased normal tissue damage. Some institutions attempt to mitigate this risk factor 

by pairing ExacTrac imaging with additional imaging to provide a redundant check on the 

patient’s treatment position, but even with this safety measure in place errors can and do still 

occur.  

2.1.3 Automated image review  

Due to the limitations of protocol- and redundant check-based IGRT error mitigation, our 

group proposed that an automated image-review algorithm could be inserted into the IGRT 

process to act as an interlock to detect and prevent IGRT errors93. While deep learning 

algorithms have been introduced to many parts of the radiation oncology patient treatment and 

quality assurance workflows126–129, to our knowledge our work is the first to tackle the 

application of deep learning as a failsafe to strengthen the human effort of IGRT image review. 

Previous work applying deep learning to computer vision problems in the spine has focused on 

approaches for automatic segmentation130,131, detection132, diagnosis133,134, and even motion 

monitoring135, with good results. Furthermore, since the mid-2010s CNNs have been shown to 

greatly outperform other methods in image classification tasks136, leading us to choose this 

methodology for our own work.  

2.1.4 Study overview 

Our work develops the novel application of a deep learning-based tool for the automatic 

detection of patient misalignments in IGRT. Here we introduce a highly accurate deep learning-

based approach to detect off-by-one vertebral body misalignments developed and validated using 

a multi-institutional patient dataset. By assembling a dataset consisting of images from a multi-
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institutional collaboration, our work overcomes a common limitation of artificial intelligence 

algorithms, namely the lack of robustness due in large part to a lack of data137,138. This problem 

was called out specifically by Qu et al. who argue that “shared huge datasets are needed” in order 

to overcome the current limitations of deep learning-based spine image analysis139. Our goal in 

this work is to present a robust and validated deep learning-based solution to the known problem 

of vertebral body misalignments in the ExacTrac imaging setup system.  

2.2 Materials and methods 

2.2.1 Data collection and curation  

Anonymized patient data was collected from all six participating institutions under the 

auspices of an approved Institutional Review Board (IRB) research protocol at the coordinating 

institution (UCLA). Each institution searched their own internal database to identify thoracic 

spine patients imaged using ExacTrac during the course of their radiation treatment. In all, 429 

patient datasets were collected. Table 2.1 details the datasets provided by each institution.  

Table 2.1: Dataset statistics for the multi-institutional collaboration. 

Institution Number of Patients Number of Fractions Number of Clinical Images Date Range 

UCLA 87 330 660 6/2014 – 12/2017 

Institution 2 72 246 492 10/2017 – 10/2021 

Institution 3 45 228 456 4/2015 – 7/2021 

Institution 4 38 116 232 7/2020 – 11/2021 

Institution 5 174 642 1,284 7/2020 – 11/2021 

Institution 6 13 30 60 12/2013 – 1/2021 

For each of these patients, ExacTrac x-ray/DRR pairs from each treatment fraction were 

anonymized and collected into a central image database at UCLA. If multiple x-ray/DRR pairs 

were present in a single fraction (typically the case), the final x-ray/DRR pair from that treatment 

fraction was used. The final database consisted of 3,184 x-ray images, representing 1,592 

individual treatment fractions since each fraction generates two x-ray setup images, as well as 
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the corresponding DRRs. A representative x-ray/DRR pair is shown in Figure 2.1. It was 

visually validated that these clinically-approved image sets did not inadvertently contain 

misaligned images (i.e. actual treatment errors). 

 

 

 

 

 

 

 

 

 

2.2.2 Simulation of misaligned data 

Simulated off-by-one vertebral body misalignments were then created for each x-

ray/DRR pair using a semi-automated method based on a grid search of local maximum values 

of the cross-correlation coefficient. The x-ray image and DRR were each first down-sampled by 

a factor of four. The down-sampled DRR was then shifted pixel-wise against the stationary x-ray 

image, and the cross-correlation coefficient computed for each of these shifts. Cross-correlation 

coefficients were used as the image similarity metric since they exhibit good performance in the 

2D to 3D medical image registration domain140. Finally, the local maximum values were labeled 

Figure 2.1: X-rays (left) and DRRs (right) from an example 

properly aligned thoracic spine patient. 
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on the grid view of all cross-correlation coefficients. From this map of values, the two local 

maximum points representing a shift in each direction along the spinal column were manually 

selected. These shifted DRRs were verified against the original x-ray image to ensure that the 

images did indeed represent a visual shift by one vertebral body. Figure 2.2 illustrates the semi-

automated method and shows the resulting shifted DRRs that were generated for a representative 

patient case. 

 

 

 

 

 

 

 

In some instances, such as patients with spine fixation hardware present or a targeted 

vertebral body with a visible pathology in the images, the position of the local maximum did not 

correspond to an off-by-one vertebral body shift as judged by visual interpretation. For those 

images, the vertebral body shifts were performed manually without the aid of the cross-

Figure 2.2: Synthetic shifted DRRs (red arrows) obtained by shifting the correctly aligned DRR 

(green arrow) both superiorly and inferiorly along the spinal column and realigning to a local maximum of 

the cross-correlation coefficient as shown by the surface plot of cross-correlation coefficient values. 
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correlation coefficient values. While these cases likely represent a relatively easy target for the 

error detection algorithm, we believed it was appropriate to include the entire data sample as 

representative of the population of treated patients. 

A graphical user interface (GUI) was used to blend between the shifted DRR and 

unshifted x-ray to ensure that the chosen shift was visually reasonable. All images were cropped 

to maintain uniform image dimensions across the two classes of shifted and non-shifted images. 

Of note, each of the two stereoscopic images from the ExacTrac image guidance system was 

treated independently for this study. 

Finally, 2-channel image arrays were created out of the final set of shifted and non-

shifted images. The final set of DRRs contained one non-shifted, one shifted up by one vertebral 

body, and one shifted down by one vertebral body, for each original image pair. Each of these 

three DRRs was matched with the corresponding (non-shifted) x-ray. The final dataset consisted 

of 9,552 such 2-channel image arrays spanning the six collaborating institutions. 

2.2.3 Data organization  

Once the x-ray/DRR pairs were collected from each institution and synthetic alignment 

errors generated, the final dataset of 9,552 2-channel image arrays was organized in two distinct 

ways. Our primary objective was to analyze the robustness of our model using a “leave one out” 

approach, where the model was trained using data from all institutions but one and tested on data 

from the institution left out. Our secondary objective was to compare the classification accuracy 

from a pooled multi-institutional model to that of a single-institutional model, where for each 

model the training and test datasets were organized in such a way so as to ensure that no patient 

from any institution ended up in both datasets.  
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For the “leave one out” approach, all of the 2-channel images from five of the six 

collaborating institutions were pooled into a single training dataset. The size of the dataset 

ranged from 5,700 to 9,372 distinct 2-channel image arrays depending on which five of the 

institutions were used. This training dataset was then randomized and split into training and 

validation datasets using a 75/25 training/validation split. The testing dataset consisted of the 

images from the sixth institution, which had been left out of the training phase entirely. 

For the pooled multi-institutional model, two steps were taken to create the image 

datasets. First, the images from each of the six individual institutions were divided into training 

and test datasets using an approximately 80/20 split. The split was performed on the data 

organized in alphabetical order by anonymized name label, with no randomization. When the 

exact 80/20 split occurred in the middle of a set of images from the same patient, all images from 

that patient were grouped into the training dataset. This was done to ensure that patients who 

appeared in the training dataset would not also appear in the test dataset (even if they were 

treated with multiple fractions) because this would potentially bias the evaluation of the final 

model accuracy. Second, the training datasets from all institutions were compiled into a training 

dataset of 7,686 distinct 2-channel image arrays, then randomized and split into final 

training/validation datasets using a 75/25 split. The training dataset from UCLA, consisting of 

1,626 image arrays, was duplicated and saved separately prior to compiling for use in the single-

institution model. The testing dataset from UCLA alone consisted of 354 image arrays while the 

pooled testing dataset from all six institutions consisted of 1,866 image arrays. 
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2.2.4 Model design – comparison of network architectures 

We arrived at our final model architecture after first exploring multiple machine learning 

methods for our specific classification problem. We used the same spine image training dataset 

from UCLA to first investigate the most accurate model to use before moving to the full multi-

institutional dataset. Three models were developed: a logistic regression model, a pre-trained 

CNN that was adapted to our application using transfer learning, and a CNN trained from 

scratch.  

The logistic regression model was developed as a benchmark in order to compare our 

CNN results against more traditional machine learning techniques. This model used a 

combination of pixel-wise cross-correlation coefficients, cross-correlation coefficients of down-

sampled images, and gradient-based cross-correlation coefficients as independent variables to 

classify x-ray/ DRR pairs as either shifted or non-shifted.  

For transfer learning, a neural network previously trained on simple translational shifts of 

a fixed 1 cm was used to evaluate the potential for adaption to our specific application of 

detecting shifts of one vertebral body. Because relatively few thoracic spine images were 

available across all collaborating institutions (in comparison to the 1.2 million images originally 

used to train AlexNet, for example), we hypothesized that transfer learning could be an effective 

classification method as shown in other work90,141. For this transfer learning CNN, the original 

dataset consisted of 28,518 x-ray/DRR pairs from a variety of anatomical sites. For each of these 

pairs, the DRR was shifted by a fixed 1 cm in one of eight pre-determined translational 

directions to generate synthetic misaligned image data, leading to a final dataset size of 57,036 2-

channel image arrays. Following training on this large dataset, the pre-trained network was then 
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applied to the smaller vertebral body training dataset described in the earlier section. The top 

layer of the network was trainable, whereas the weights in all preceding layers were frozen.  

Finally, our purpose-built CNN was not trained on the translational images used for 

transfer learning, but instead was trained from scratch on the vertebral body image dataset. We 

investigated various network depths and parameter values as this model was trained. Unlike in 

our transfer learning model, weights were trainable at all levels of this model.  

Receiver operating characteristic (ROC) curves were used to evaluate the performance of 

these three models. When the purpose-built CNN for UCLA’s data was used to classify the 

previously unseen test image pairs, the resulting area under the curve (AUC) was 0.972. For 

comparison, the transfer learning-based CNN and the logistic regression models tested on the 

same single-institution test image dataset obtained AUCs of 0.876 and 0.801, respectively. With 

the specificity fixed at 99%, the purpose-built CNN achieved a sensitivity of 64.5% in correctly 

classifying shifts of one vertebral body as compared to a sensitivity of 32.3% for the transfer 

learning-based CNN and 23.7% for the logistic regression model. From these results, it was 

determined that a neural network trained from scratch would give the highest classification 

accuracy for our particular problem of detecting vertebral body misalignments. 

2.2.5 Model design – parameters and hyper-parameters 

Model design and hyper-parameter tuning were performed on data from UCLA alone. 

Network architectures of various depths were investigated and optimal classification results were 

achieved with a five convolutional block neural network similar to that of AlexNet136 (shown in 

Figure 2.3). While increasing CNN depth has been shown to improve final classification 

accuracy142 when trained on datasets with millions of images, it also increases the possibility of 
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overfitting when used with smaller datasets such as ours. Convolutional layers were followed by 

rectified linear activation functions and batch normalization layers. Max pooling layers were 

interspersed with convolutional layers. Two dense layers, each of which was followed by a 50% 

dropout layer to reduce overfitting143, were used before the final classification layer. The 

learning rate was set to 1e-4144. The Adam optimizer145 and sparse categorical cross-entropy loss 

function were used for training. These hyper-parameters were tuned using the data from UCLA 

and remained unchanged for all subsequent multi-institutional model training. Early stopping 

was implemented on all models, again with the aim of reducing model overfitting. The training 

and validation accuracy and loss as a function of training epoch are shown in Figure 2.4 for an 

example model training. 

Figure 2.3: Purpose-built CNN architecture for x-ray/ DRR vertebral body image pair classification. 

Figure 2.4: Model accuracy (left) and loss (right) as a function of training epoch for a 

representative model training with Institution 6 left out of the training and validation sets. Early 

stopping was implemented and model training stopped after 69 epochs for this particular training 

iteration, with the model from epoch 19 being saved and used for further analysis. 
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2.2.6 Model training 

We designed and trained a series of CNNs to perform the binary classification task of 

discriminating between shifted and non-shifted images. These CNNs took as input the 2-channel 

arrays described in the Data collection and curation section above, where each array was labeled 

as either “Shifted” or “Unshifted” and consisted of either correctly aligned or mis-aligned x-

ray/DRR pairs. After the CNN had been trained, it was tested on the reserved 2-channel arrays. 

These arrays were input into the CNN, and the model would output a score from 0 to 1 based on 

how likely it thought the images were to represent a patient misalignment.  

Once the CNN architecture with the optimal performance on UCLA data had been 

identified and training hyper-parameters set, the CNN was retrained on the multi-institutional 

image data in two different ways: 

First, we trained six models using a “leave one institution out” approach to estimate the 

accuracy of the model when applied to an entirely new institution’s data during the testing phase. 

In this step, we re-trained a model using the CNN architecture and parameters described in the 

previous section, with the training data consisting of all images from five of the six different 

institutions as described above. Early stopping was implemented in all of our models with the 

aim of reducing overfitting, but all other hyper-parameters remained unchanged once they had 

been optimized using UCLA’s data. At testing time, the trained model was applied to all images 

from the institution that had been left out of the training dataset to evaluate robustness to an 

outside institution’s image data. This process was repeated to generate six models, each one 

representing each institution being left out of the training dataset.  
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To establish the necessity of using multi-institutional data for this error detection 

algorithm, we compared the CNN’s performance when trained on multi-institutional versus 

single-institutional data. The CNN was trained using the training dataset of 1,626 x-ray/DRR 

pairs from UCLA. A pooled model was created by training the CNN on the pooled training 

dataset composed of 7,686 image arrays from all six institutions. The single-institution model 

was tested separately on the reserved set of patient data from UCLA, and on the pooled test set 

described above. The pooled model was tested only on the pooled test set. 

2.2.7 ROC analysis  

For both the pooled model and the six “leave one institution out” models, ROC curves 

were used to evaluate model performance. From these curves, the area under the curve is 

reported as a measure of overall model accuracy. The network outputs a continuous variable in 

the range of 0 to 1 representing a likelihood of image misalignment. Clinical implementation as a 

binary error-detection classifier would require application of a threshold, which would depend on 

what was deemed an acceptable sensitivity-specificity tradeoff.  Sensitivity results for three 

different specificity values of interest, namely, 99%, 95%, and 90%, are also reported. A 

specificity of 99% would correlate to approximately one false positive per treatment machine per 

week under a typical treatment load, assuming an automated error detection algorithm was 

applied to every treatment—an acceptable rate of false positive disruptions compared to other 

safety interlocks in common use. We focus on this high specificity threshold due to the well-

documented patient safety implications of alert fatigue in healthcare146,147. While alarm fatigue is 

not the only factor that can contribute to decreased staff performance in a healthcare setting148, it 

is nonetheless still recognized as an important factor. Recent work has highlighted the lack of 
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research into alarm fatigue within radiation oncology specifically149, and attempted to raise 

awareness of this problem. Specificity of 95% or 90%, corresponding to 5% and 10% false 

positive rates, could be appropriate in the context of stereotactic spine radiotherapy, which is a 

relatively infrequent and high-risk procedure. The choice of an appropriate threshold at which an 

alarm is triggered is an important step in reducing alarm fatigue in the clinic147. 

2.2.8 Small shift sensitivity analysis  

We also analyzed the false positive rate when small shifts, on the order of a few pixels, 

were present in the test data. We used the final “leave one out” model where Institution 1 

(UCLA) was left out of the training dataset. We first tested the final model on all images from 

UCLA to obtain the ROC curves and the sensitivity values at a few set specificity values, as 

described just above. We obtained the threshold value corresponding to the 95% specificity level 

for this analysis. 12 patients, representing 31 individual treatment fractions, were randomly 

selected from UCLA. For each fraction, both horizontal and vertical shifts of ±1 pixel, ±2 pixels, 

±3 pixels, ±5 pixels, and ±8 pixels were then applied to each DRR. For the ExacTrac system, 5 

pixels corresponds to a shift of approximately 1 mm, while 8 pixels corresponds to a shift of 

approximately 1.5 mm. Finally, the trained model was applied to all of the shifted images, and 

any prediction value above the threshold set by the 95% specificity level was labeled as a false 

positive. 
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2.3 Results 

2.3.1 ROC analysis – “leave one institution out” models  

When the six “leave one institution out” models were used to classify image pairs from 

the institution left out during training, the resulting AUC values ranged from 0.976 to 0.998 

(Figure 2.5). With the specificity fixed at 99%, the corresponding sensitivities ranged from 

61.9% to 99.2% with a mean of 77.6% (Table 2.2). When the specificity was set at 95%, 

corresponding sensitivities from 85.5% to 99.8% (mean: 92.9%) were observed. The median 

threshold value required for the 95% specificity set point was 0.682.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Comparison of classification performance in correctly identifying shifts of one 

vertebral body among the six distinct “leave one institution out” models. Each label describes the 

institution that was left out of training and used as the test dataset. 
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Table 2.2: Corresponding sensitivities for the neural network output value thresholds corresponding to 90%, 95%, and 

99% specificity, respectively, for the six “leave one institution out” models. 

 

2.3.2 ROC analysis – pooled institution model  

When the purpose-built CNN was trained and tested using only UCLA’s data, it obtained 

an AUC of 0.975 (Figure 2.6). When this model trained on a single institution’s data was then 

applied to a multi-institutional test set, the AUC dropped to 0.942. By comparison, a model with 

the same network architecture and hyper-parameters, but trained and tested using pooled data 

from all collaborators, obtained an AUC of 0.992. Sensitivity and specificity threshold values for 

all three of these models are reported in Table 2.3. It is worth noting that at the fixed specificity 

of 99%, the model trained using only a single institution’s image data obtained a sensitivity of 

just 67.9% (single-institution test set) or 57.4% (multi-institution test set) as compared to 79.3% 

for the multi-institutional model. When the specificity was fixed at 95%, the single-institution 

model obtained sensitivities of 91.9% and 77.4% on the single- and multi-institutional test sets, 

respectively, and the multi-institution model obtained a sensitivity of 97.7%. 

 

 

 

Institution Used for Testing % Sensitivity at 

90% Specificity 

% Sensitivity at 

95% Specificity 

% Sensitivity at 

99% Specificity  

Institution 1 (UCLA) 95.8 87.5 61.9 

Institution 2 99.9 99.8 99.2 

Institution 3 99.8 98.9 79.8 

Institution 4 96.7 89.6 75.0 

Institution 5 99.8 96.0 65.2 

Institution 6 100.0 85.5 84.6 
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Table 2.3: Corresponding sensitivities for the neural network output value thresholds corresponding to 90%, 95%, and 

99% specificity for the three models trained and tested using the datasets shown in the leftmost column. The complete ROC 

curves are shown in Figure 2.6. 

2.3.3 Sensitivity to small shifts 

When the model trained on data from Institutions 2-6 was applied to the 12 patients from 

UCLA with clinically insignificant misalignments, the false positive rate did not differ 

appreciatively from that seen when it was applied to the clinical (no error) images. For these 12 

patients, the false positive rate was 3.2% on the unshifted images, 4.0% on the images shifted by 

±1 pixel, 5.6% on the images shifted by ±2 pixels, and 6.9% on the images shifted by ±3 pixels. 

Training Dataset/ 

Testing Dataset 

% Sensitivity at 

90% Specificity  

% Sensitivity at 

95% Specificity 

% Sensitivity at 

99% Specificity  

Single-Institution/ 

Single-Institution 

95.3 91.9 67.9 

Single-Institution/ 

Multi-Institution 

85.6 77.4 57.4 

Multi-Institution/ 

Multi-Institution 

99.3 97.7 79.3 

Figure 2.6: Comparison of classification performance in correctly identifying shifts of one 

vertebral body among three models: one trained and tested on UCLA’s image data, a second trained on 

UCLA’s data and tested on pooled data from all six collaborating institutions, and a third trained and 

tested on pooled data from all six collaborating institutions. 
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The model flagged 19.4% of the images shifted by 5 pixels (approximately 1mm) and 51.2% of 

the images shifted by 8 pixels (approximately 1.5 mm) as misaligned. It is worth noting that in 

many institutions, a shift of 1 mm is considered to be the upper end of the typical tolerance used 

for these high-dose stereotactic spine regimens. These results are shown in Figure 2.7.  

 

2.4 Discussion 

Based on the results presented above, application of this error detection model to data 

from an unseen institution would result in an error detection sensitivity of at least 86%-100% 

(mean: 93%) if a false positive rate of approximately 5% was accepted, or a sensitivity of 62%-

99% (mean: 78%) if only a 1% false positive rate was accepted. We believe these results 

demonstrate sufficient accuracy to warrant clinical implementation of this error detection model. 

The corresponding effort to deal with the level of false positives flagged by this model is small 

compared to other safety processes already in use and would be expected to reduce IGRT errors 

Figure 2.7: False positive rate at five different pixel shifts of interest. Of note, shifts of 5 pixels 

correspond to approximately 1 mm, a tolerance commonly used in clinical practice. 
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by approximately a factor of 5. If up to 5% false positive rate was allowed, which could be 

acceptable given the relative infrequency of spinal radiotherapy (particularly high-risk 

stereotactic regimens), then errors could be reduced by a factor as large as 10. 

However, further improvements in accuracy would allow this error detection algorithm to 

truly run in the background and only disturb the workflow in case of an actual error. Because 

relatively few thoracic spine patients are treated with ExacTrac at any one of our institutions in a 

given year, the size of our training dataset was relatively small in comparison to the truly big 

data such as ImageNet150, a database containing over 10 million images which is used to train 

state-of-the-art image classification models. Further increasing the amount of training data, as 

well as the number of institutions involved, could be expected to improve upon the accuracy and 

robustness of our error detection model. Others have proposed the use of transfer learning to 

adapt models trained on ImageNet to the medical domain where high-quality training data is 

more limited151. We found in our specific implementation that transfer learning was not as 

effective as training from scratch, but this avenue warrants further exploration. Finally, while the 

stereoscopic imaging system generates a set of two oblique x-ray images, for the purposes of this 

work we considered each of these images independently. This limitation arose due to challenges 

in simulating vertebral body misalignments that preserve geometric correlations between the two 

stereoscopic images. Chapter 3 focuses on a method for treating the two x-ray images and the 

associated DRRs as a single, interdependent image set, potentially increasing the error-detecting 

power of the model.  

We incorporated multi-institutional data into the development of our error-detection 

model because we anticipated that it would lead to better accuracy on data from unseen 
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institutions. This expectation was validated by the results of our “leave one institution out” 

methodology. We can infer the presence of qualitative differences in ExacTrac image data from 

participating institutions by differences in algorithm sensitivity of as much as 14% at a 95% 

specificity threshold. All institutions utilize similar default imaging parameters for their thoracic 

spine patients (25 mAs and 120 or 130 kVp). A trend towards higher sensitivity for institutions 

with the higher default kVp value was observed, but no statistically significant correlations were 

observed. We were not able to identify obvious visual features in the data samples that might 

explain those differences. This is highlighted in Figure 2.8 showing some representative false 

positive images flagged by the different “leave one institution out” models at the 95% specificity 

threshold for each model. We computed the distributions of the average x-ray pixel values for 

each institution, and found that the distribution for Institution 2 differed significantly from the 

other institutions (p-value < 0.05) when a Mann-Whitney U test was performed. The leave-one-

out model where Institution 2 was left out of the training dataset and used as the test set achieved 

the highest performance, and the statistically significant difference in average x-ray pixel values 

suggests a real difference in the images. However, the exact nature and underlying cause of that 

difference is unknown and beyond the scope of the current work. Possibilities include imager 

performance, differences in patient populations, or a different mix of spine levels treated at each 

institution. At this time, all participating institutions are academic and/or high-volume medical 

centers that are considered expert institutions in spine radiotherapy. These data may not be 

representative of ExacTrac image data at all clinics in the radiotherapy community, and the 

model performance has not been tested on data from institutions that may image using 

suboptimal imaging techniques (improper mAs or kVp, for example).  



34 

 

 

 

 

 

 

 

 

 

 

 

The power of automation to promote radiotherapy safety and efficiency is widely 

recognized, with most research to date focusing on automation in machine quality assurance152, 

treatment planning153 and plan evaluation154, and auto-contouring155. However, little has been 

done to incorporate automation and machine learning into the task of image review, which is a 

function that requires a significant amount of effort from radiation oncologists, physicists and 

technologists in the IGRT workflow14,156. We believe our work adds significantly to this effort.  

2.5 Conclusion 

In this work we have developed a convolutional neural network-based model for the 

automatic detection of vertebral body misalignments in planar x-ray setup images. We believe 

such an algorithm could be integrated into the treatment workflow, either directly within an 

Figure 2.8: Some representative false positive x-ray/ DRR pairs from Institution 2 (a), Institution 4 (b), 

and Institution 5 (c). DRRs are shown on the left of each image, and the corresponding x-ray is shown on the right. 

Each image pair was incorrectly classified by the model trained using data from all institutions except the one from 

which these images came. 
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image-guided radiotherapy system or as a standalone ancillary system, to provide a software 

interlock to prevent treatment of the incorrect vertebral body. Our results demonstrated that this 

misalignment detection model is robust when applied to previously unseen test data from an 

outside institution, indicating that this proposed additional safeguard against misalignment is 

feasible.   
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 INCORPORATING EXACTRAC’S STEREOSCOPIC GEOMETRY INTO A 

TOOL FOR DETECTING VERTEBRAL BODY MISALIGNMENTS 

3.1 Introduction 

3.1.1 ExacTrac’s stereoscopic geometry 

The ExacTrac onboard imaging system is combined with a six degree of freedom 

treatment couch that is able to shift the patient in the standard three translational directions, with 

the addition of pitch, roll, and yaw rotational shifts. Phantom studies have shown that the 

combination of IGRT with a six degree of freedom couch leads to improved positioning accuracy 

over a traditional couch utilizing only translational shifts39. Furthermore, the ExacTrac system 

can detect rotational setup errors with a high level of accuracy, enabling the patient to be reliably 

positioned within 1 degree in all three rotational directions157. When this type of couch is 

installed clinically, it has been observed that all six axes are used extensively for patient setup 

during routine radiation therapy treatments158. 

In Chapter 2 we developed an automated error detection algorithm trained on simulated 

off-by-one vertebral body errors that were generated within the imaging plane of the 2D clinical 

DRRs. However, treating each of the two x-ray/ DRR sets independently may lead to artificially 

inflated model performance, as the training data does not truly replicate errors that would be seen 

clinically. Detailed descriptions of the unique geometry of the ExacTrac system can be found in 

the literature37,38 and are summarized in Chapter 1, but it is worth emphasizing here that the two 

stereoscopic x-rays and their associated DRRs are correlated. This means that generating 

synthetic off-by-one vertebral body errors exclusively within the imaging plane, as was done in 
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Chapter 2, is not geometrically the same as incorrectly aligning the patient and re-generating the 

new set of oblique x-rays. 

3.1.2 Study overview 

In Chapter 2 the two stereoscopic x-rays were treated independently, and the error 

generation was limited to 2D translational shifts within the confines of the image plane. While 

this is crucial groundwork, a translation in the imaging plane by one vertebral body is not 

geometrically the same as a true misalignment by one vertebral body in the patient. Furthermore, 

internal tests from Brainlab showed that monoscopic image matching results in a higher 

registration failure rate than that obtained by utilizing the stereoscopic view. Given these 

limitations, in this chapter we developed a method of generating synthetic shifts in order to more 

closely match the images that would result from a true off-by-one vertebral body shift. The work 

we present here builds upon the work done in Chapter 2 by correcting a geometric inaccuracy 

present in our earlier generation of training images, and improves the error detection accuracy of 

our automated tool in detecting off-by-one vertebral body shifts that are more representative of 

true clinical cases.   

3.2 Materials and methods 

3.2.1 Data collection 

Archived clinical patient datasets were identified from the years 2014-2017 for a single 

treatment machine at UCLA where ExacTrac image guidance was used for patient alignment. 

We searched the prescribed treatment plan names for all patients to identify only those that were 

treated to the thoracic spine. This was possible because of the adherence to standard plan naming 
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conventions present in the treatment prescription documents for all patients. 83 unique patient 

datasets were identified across the four years, totaling 317 treatment fractions. The final dataset 

consisted of 634 day-of x-ray images (two from each treatment fraction), where the first set of 

images acquired for each given treatment fraction was extracted for our purposes. The detailed 

breakdown by year is shown in Table 3.1. In addition, we extracted the simulation CT DICOM 

files for each patient, which were used to generate both aligned and simulated misaligned DRRs 

corresponding to each set of day-of x-rays, as described in the DRR generation section that 

follows.   

Table 3.1: Number of patients, unique treatment fractions, and setup x-rays collected from each year. 

 2014 2015 2016 2017 Total 

Patients 18 18 27 20 83 

Treatment fractions 85 39 90 103 317 

X-rays 170 78 180 206 634 

 3.2.2 DRR generation  

We combined the functionalities of the ExacTrac offline Replay with an open-source 

DRR generator to produce two geometrically-realistic off-by-one vertebral body misalignments 

for each unique treatment fraction (Figure 3.1). This methodology overcomes the primary 

limitation made apparent by our earlier work; namely, that treating the two stereoscopic images 

independently does not properly replicate real patient misalignments likely to be seen during 

radiation therapy treatment. By generating misaligned data in this way, we were able to preserve 

the interdependent nature of the stereoscopic x-rays. An additional advantage of this method for 

shifted DRR generation was that it eliminated the need for cropping of the final images, which 

likely preserves image information that may be of benefit during algorithm training.  
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Unlike most imaging modalities used in the radiation oncology clinic, the ExacTrac 

workstation has a window that allows for retrospective review of patient cases and replay of the 

image alignment performed at the time of treatment. While this offline review does allow for the 

manual simulation of off-by-one vertebral body misalignments, it does not currently support the 

export of the corresponding DRRs. Using the Replay function of the ExacTrac workstation, a 

user is able to manually misalign day-of patient imaging. Once this manual misalignment has 

been performed, the system can be forced to find the optimized patient alignment using the 

automatic registration function. After this optimization has taken place, the corresponding shift 

coordinates are reported within the workstation (Figure 3.2). 

Figure 3.1: Correctly aligned DRRs (green boxes) and synthetically misaligned DRRs (red boxes) for an example 

treatment fraction. Close examination of the images, for example focusing on the feature indicated by the red arrows, 

confirms the successful misalignment by one vertebral body.  
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Our group has recently published an open-source tool for the offline generation of DRRs 

that takes as input a patient’s simulation CT and any specified treatment couch shifts159. This 

algorithm uses the libraries from the Insight Segmentation and Registration Toolkit (ITK)160 to 

generate geometrically-realistic DRRs based on any arbitrary shift of the patient’s 3D simulation 

CT imaging. Importantly, the algorithm incorporates six degrees of freedom into the image 

generation parameters—three-dimensional translations, plus the pitch, yaw, and roll rotations. 

Once these shifts are applied to the 3D CT, a new interdependent set of stereoscopic DRRs can 

be simultaneously generated. 

Figure 3.2: Shift coordinates obtained by manually misaligning the patient by one vertebral body and forcing the ExacTrac 

system to find the optimal registration between the x-rays and misaligned DRRs.  
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3.2.3 Data organization  

4-channel arrays consisting of two x-rays and the two corresponding DRRs (shifted or 

non-shifted) were then created out of the final set of generated DRRs from 2014-2017. The final 

training dataset consisted of 951 such 4-channel arrays, with each treatment fraction contributing 

an array with non-shifted DRRs and two arrays with shifted DRRs (both inferior and superior 

along the spinal column). This dataset was split into training and test datasets using an 

approximately 80/20 training/ test split. This division occurred at the patient level, and the 

patients included in each dataset were identical to those included in the training and testing 

datasets from the single-institution model described in Chapter 2. We purposely included the 

same patients in each respective dataset here in order to facilitate an unbiased model comparison. 

The training dataset was randomized and then further divided into final training and validation 

datasets using a 75/25 split. 

3.2.4 Model design and training  

Treating the two stereoscopic images as one interdependent image set leads us to propose 

the use of a multi-input network for this work. Multi-input networks have shown excellent 

performance in image classification tasks, even in relatively small datasets comparable in size to 

our own161. We investigated various depths of network architectures and found that optimal 

classification results were achieved using the five convolutional block multi-input neural 

network architecture shown in Figure 3.3. 
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The five convolutional layers were applied independently to each of the two 

corresponding DRR/ x-ray image sets within the larger 4-channel array. These separate 

convolutional layers were then merged into a single layer, with subsequent dense and dropout 

layers applied to the merged data. Convolutional layers in our model architecture were followed 

by rectified linear activation functions and batch normalization layers. Two dense layers, each of 

which was followed by a 50% dropout layer to reduce overfitting143, were used before the final 

classification layer. The learning rate was set to 1e-4144. The Adam optimizer145 and categorical 

cross-entropy loss function were used for training. Early stopping was implemented during 

model training, again with the aim of reducing overfitting. The dataset reserved for validation 

was used to evaluate the model during the training process and update layer weights at the end of 

each training epoch. 

Figure 3.3: Multi-input CNN architecture for detecting off-by-one vertebral body misalignments using the full 

stereoscopic image set consisting of two x-rays and two corresponding (unshifted or shifted) DRRs from each treatment fraction. 
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3.2.5 Model analysis 

An ROC analysis was performed by applying the trained model to the unseen testing 

dataset and calculating the AUC as a measure of overall model accuracy. We compared the 

model performance on the holdout testing dataset to that obtained by the single-institution model 

trained and evaluated in Chapter 2. This was done to evaluate whether the use of interdependent 

image sets during model training leads to an improvement in the final model performance, 

specifically increased sensitivity at our specificity thresholds of interest. Sensitivity results for 

three specificity values of potential clinical interest (99%, 95%, and 90%) are reported here. Our 

model output is a continuous variable, ranging from 0 to 1, for each 4-channel image input. 

Clinical implementation of this model would ultimately require applying a threshold cutoff value 

for flagging images based on the desired specificity-sensitivity tradeoff. 

3.3 Results 

3.3.1 Comparison to previous model 

When the final model trained to detect vertebral body misalignments in the 

interdependent set of stereoscopic images was used to classify the 20% of data reserved for 

testing, the resulting AUC was 0.988. In comparison, the final model from Chapter 2, tested on 

independent planar images from the same patients, achieved an AUC of 0.975. The ROC curves 

from both models are shown below in Figure 3.4.  
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With the specificity fixed at 99%, the CNN trained on the stereoscopic image sets 

achieved a sensitivity of 43.8% in correctly identifying off-by-one vertebral body shifts. When 

the specificity was decreased to 95%, the corresponding sensitivity increased to 96.4%. Table 

3.2 highlights the differences in sensitivity between the two models at three different specificity 

thresholds.   

Table 3.2: Comparison of sensitivity-specificity tradeoffs between the model trained and tested on independent planar 

image sets in Chapter 2 and the model trained and tested on stereoscopic image sets discussed in detail in this chapter. Shaded 

cells indicate the model with the higher sensitivity for each given specificity.  

 % Sensitivity at 

90% Specificity 

% Sensitivity at 

95% Specificity 

% Sensitivity at 

99% Specificity 

Stereoscopic Image Sets 99.1 96.4 43.8 

Independent Planar Image Sets 95.3 91.9 67.9 

 

Figure 3.4: Comparison of classification performance in correctly identifying shifts of one vertebral body 

between the model trained and tested on independent planar image sets (monoscopic) and the model trained and tested on 

the interdependent stereoscopic image set. 
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3.3.2 Detection of known errors 

Two patients, one treated in 2017 and the second treated in 2023, were previously 

identified by members of the UCLA radiation oncology team as having been misaligned by one 

vertebral body during certain treatment fractions. Retrospective physician chart checks identified 

the patient in 2017, and a combination of physics oversight at the treatment machine with 

automated tools to aid in IGRT review identified the misaligned and nearly misaligned fractions 

from 2023. The final trained model was applied to the five total fractions having been identified 

as containing off-by-one vertebral body misalignments. When the threshold corresponding to 

95% specificity on the testing dataset was used, the model succeeded in flagging all five of the 

fractions. Images from one of the treatment fractions known to contain an off-by-one vertebral 

body misalignment are shown in Figure 3.5. A close manual review identified the error based on 

the misaligned position of the surgical clip, indicated by the red arrows. 
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3.4 Discussion 

Our results show that the application of this trained stereoscopic model to clinical data 

would result in an error detection sensitivity of over 96% when a specificity of 95% is used. 

Considering the high risk of high-dose stereotactic regimens commonly employed to treat targets 

in the thoracic spine region, we believe this specificity-sensitivity tradeoff is acceptable for 

clinical use. The level of effort required to deal with any false positives resulting from the 

application of our model to clinical data is low enough to be deemed reasonable, and well worth 

the additional time spent to prevent gross misalignments. In addition, we have demonstrated that 

Figure 3.5: Day-of x-rays (left) and DRRs (right) misaligned by one vertebral body 

for a patient treated at UCLA. The presence of the surgical clip, indicated by the red arrows, 

ultimately led to the identification of this treatment error. 
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training our model using clinically realistic, interdependent stereoscopic image sets does not 

degrade the model’s performance from that observed when the model was trained using 

independent planar image sets. This is a key finding, as application of this automated error 

detector clinically would ultimately require the ability to seamlessly apply the trained model to 

the full set of images generated during the course of a patient’s treatment. Finally, the ability of 

our trained model to successfully flag real patient images from all of the five fractions previously 

known to represent true off-by-one misalignments bolsters the clinical reliability of this method. 

Had this automated error detector been implemented into the clinical workflow at the time of 

these specific patient treatments, these rare but serious errors could potentially have been 

avoided.  

As we go from treating the stereoscopic images independently (as was done in Chapter 

2) to treating them as one single interdependent set, we essentially cut our raw amount of 

training data in half. Our model’s classification accuracy and robustness would both likely be 

improved by the incorporation of training data from more patients, and specifically patients from 

multiple institutions, as was shown with our earlier work162. In Chapter 2, we demonstrated that 

the incorporation of training data from six institutions improved the AUC to 0.992, as compared 

to an AUC of 0.975 when the model was trained on data from only a single institution. We 

would expect to see similar results for the current model trained on stereoscopic image sets. 

Future work should focus on the incorporation of more image data, particularly image data from 

a variety of medical centers, into the training dataset. 

Based on a conversation with our industry contact at Brainlab, the results of the 

monoscopic image matching may appear to perform better for real patient cases than the 
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stereoscopic image matching. This could be due in part to the incorrect spatial information in the 

2D independently translated DRRs generated in Chapter 2, making the classification job of the 

model much easier to perform. The value of the work proposed in this chapter primarily lies in 

the generation of more clinically-accurate data used to train our model. A model that could 

potentially be acceptable for eventual clinical use must have good discriminatory power on the 

interdependent stereoscopic images and be able to accurately classify errors that involve a 

complex and subtle mix of translations and rotations.   

3.5 Conclusion 

In this work we have developed an updated method for generating off-by-one vertebral 

body misalignments that are more representative of how such errors would appear in real clinical 

situations. Our results show that the use of geometrically-realistic image data for CNN training 

improves the final model performance on unseen testing data, indicating that this updated model 

has clinical potential in detecting real off-by-one vertebral body errors in patient images.  
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 DEVELOPMENT OF A CONVOLUTIONAL NEURAL NETWORK TO 

DETECT TRANSLATIONAL PATIENT SETUP ERRORS  

4.1 Introduction 

4.1.1 Time requirements of IGRT review 

Detecting and preventing patient setup errors is of the utmost importance in the radiation 

oncology clinic. Chapter 1 highlights some of the clinical implications resulting from incorrect 

patient setup, primarily decreased dose to the target and worsened normal tissue sparing. Image 

guidance has proven to be a reliable safeguard against errors stemming from incorrect patient 

setup, but can provide false reassurance if used incorrectly22. The American Society for 

Radiation Oncology highlighted this limitation, cautioning its members that IGRT must be 

deployed in a safe manner, with robust quality assurance protocols in place, in order for patients 

to ultimately benefit from this new technology35. Clinical medical physicists are vital to the safe 

deployment of IGRT in the clinic, and are responsible for both the acceptance testing of new 

equipment and the development and implementation of quality assurance protocols163. 

Even when IGRT is implemented safely and reliably, the review and interpretation of 

patient images requires a significant amount of effort from all members of the radiation oncology 

team14,156. Automated methods have been successful in making many aspects of the radiation 

therapy workflow more efficient, but the quality and safety applications129,164,165 are of particular 

relevance to our own work. Here we propose the use of a convolutional neural network-based 

tool to efficiently analyze patient setup images for egregious misalignments that can potentially 

lead to significant harm. CNNs have previously shown excellent performance on various other 
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medical image analysis problems90–92, more recently including automated IGRT review 

applications from our group162,166–168. 

4.1.2 Study overview 

Due to the significant time required for a thorough review of patient setup images, our 

group proposed that an automated image review algorithm could be developed to detect gross 

patient misalignments in setup images. Here we introduce a novel approach for automatically 

detecting patient misalignments in ExacTrac images from all anatomical treatment sites using a 

CNN trained on 1 cm translational shifts. A shift of 1 cm is large enough to negatively impact a 

patient’s treatment, but small enough that it could potentially be missed by the treating radiation 

therapist or overseeing physician at the treatment console. Our goal in this work is to present an 

automated method for detecting patient setup errors in ExacTrac images, ultimately allowing for 

increased efficiency in the currently time-consuming IGRT image review process.  

4.2 Materials and methods 

4.2.1 Training data collection 

Archived clinical patient datasets were initially identified from the years 2014-2017 for a 

single treatment machine at UCLA where ExacTrac image guidance was used for patient 

alignment. We first excluded a small number of patients in each year of training data who did not 

have at least one nominal beam angle of 0 degrees. During our step of generating aligned and 

synthetically misaligned DRRs (described in the Generation of simulated DRRs section that 

follows), we discovered that patients without a treatment beam at 0 degrees were likely to be set 

up initially with the treatment couch positioned at the angle of the first beam. Since the ExacTrac 
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system expects the couch to be initially positioned at 0 degrees for imaging before being moved 

to the appropriate angle, this introduced large unexpected shifts that could not be accounted for 

in our DRR generation step. Following exclusion of these patients from our dataset, 2,407 total 

patients remained.  

We next created a filter based on the prescribed treatment plan name to exclude any 

patients where the daily image guidance specified final patient alignment to either soft tissue or 

implanted fiducial markers. Since the ExacTrac system was only used for initial patient 

positioning for these treatment plans, we expect to see initial misalignments in the ExacTrac 

images that are corrected with subsequent imaging (typically cone beam CT or, less often, 

kilovoltage x-ray) and should therefore be excluded from our training data. The specific plans 

excluded under these criteria, along with the final number of patient datasets, are shown in Table 

4.1.  

Table 4.1: Number of patients excluded from each year, along with the final number of patient datasets collected for 

our training dataset from each year. 

 2014 2015 2016 2017 Total 

Initially identified 419 640 789 559 2,407 

      

Treatment plan name      

Prostate 12 11 28 24 75 

Lung 69 92 98 91 350 

Rib 4 2 9 8 23 

Abdomen 3 10 7 1 21 

Liver 14 7 4 2 27 

Pancreas 3 3 1 1 8 

Adrenal 2 2 2 2 8 

Bladder 2 0 0 0 2 

Esophagus 0 2 0 0 2 

Heart 0 0 0 0 0 

      

Final number of 

patient datasets 

310 511 640 430 1,891 

Day-of x-ray images were extracted from all 11,266 treatment fractions (from the 1,891 

unique patient datasets remaining after the application of our exclusion filter). In addition, we 
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extracted the unique simulation CT DICOM files for each patient. These files were used to 

generate our training dataset, with the details of the process described in the Generation of 

simulated DRRs section below. 

4.2.2 Generation of simulated DRRs 

Our colleagues have published an open-source tool for the offline generation of DRRs 

that takes as input a patient’s simulation CT and any specified treatment couch position159. 

Details can be found in Chapter 3, but it is worth emphasizing again that the algorithm 

incorporates all three translational parameters and all three rotational parameters into the image 

generation, in order to accurately replicate the six degrees of freedom present in the ExacTrac 

system. Once these shifts are applied to the 3D CT, a new interdependent set of stereoscopic 

DRRs can be simultaneously generated.  

We used this open-source DRR generator to generate new sets of interdependent DRRs to 

be used as training data for our model. The physician-approved patient shifts were used for 

generating the “no error” data in the training dataset of all images from 2014-2017. Random 

translational shifts of 1 cm from the treatment isocenter were used to generate our “error” data. 

One centimeter was chosen because this represents a shift large enough to potentially be 

clinically significant, but small enough that it is reasonable to believe such a shift might not be 

noticed by the treating radiation therapist or physician at the treatment console. Once these shifts 

in the translational directions were randomly selected, they were used in conjunction with the 
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DRR generator to create both a new set of stereoscopic “no error” and “error” DRRs for each 

treatment fraction (Figure 4.1).  

4.2.3 Data organization 

4-channel arrays consisting of two x-rays and the two corresponding DRRs (shifted or 

non-shifted) were then created out of the final set of generated DRRs from 2014-2017. The final 

training dataset consisted of 22,532 such 4-channel arrays, since each treatment fraction 

contributes both an array with non-shifted DRRs and an array with shifted DRRs. This dataset 

was split into training, validation, and test datasets for model training and testing using an 

approximately 80/10/10 training/ validation/ test split. The splits occurred at the patient level, so 

that for patients with multiple treatment fractions, images from all fractions would only appear in 

one dataset.  

Figure 4.1: Aligned (green arrow) and simulated misaligned (red arrow) DRRs generated from a representative 

patient's simulation CT scan. 
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4.2.4 Model design and training 

Optimal classification results were achieved using the multi-input neural network 

architecture shown in Figure 4.2. Multi-input networks have shown excellent performance in 

classification tasks where multiple image inputs are present161, and the interdependent nature of 

the ExacTrac images lends itself well to this architecture. Networks of various depths were 

investigated since increasing CNN depth can improve final classification accuracy142 when 

trained on large datasets, but can also increase the possibility of overfitting when used with 

relatively small datasets such as our own. 

The convolutional layers C1 and C2 were applied independently to each of the two 

corresponding DRR/ x-ray image sets within the larger 4-channel array, followed by a max 

pooling layer. These two separate convolutional layers were then merged into a single layer. 

Subsequent convolutional and max pooling layers were applied to the merged data. 

Convolutional layers in our model architecture were followed by rectified linear activation 

functions and batch normalization layers. Two dense layers, each of which was followed by a 

50% dropout layer to reduce overfitting143, were used before the final classification layer. The 

Figure 4.2: Multi-input CNN architecture for classifying 4-channel x-ray/ DRR arrays as aligned or misaligned. 
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learning rate was set to 1e-4144. The Adam optimizer145 and categorical cross-entropy loss 

function were used for training. Early stopping was implemented during model training, again 

with the aim of reducing overfitting. The 10% of the dataset reserved for validation was used to 

evaluate the model during the training process and update layer weights at the end of each 

training epoch. 

4.2.5 Data analysis  

After our model was finished training, the ROC curve was used to evaluate its 

performance on the holdout testing dataset. The AUC was calculated and used as a measure of 

overall model accuracy. Like the model for detecting vertebral body misalignments, this model 

also outputs a continuous variable in the range from 0 to 1. Clinical implementation of this 

model as a real-time alert in the IGRT workflow would require a determination of the optimal 

specificity-sensitivity tradeoff and application of the corresponding threshold. Sensitivity results 

for three potential specificity values of interest (99%, 95%, and 90%) are reported here. 

4.3 Results 

4.3.1 ROC analysis   

When the final model trained to detect 1 cm translational misalignments was used to 

classify the previously unseen images from the 10% of the dataset reserved for testing, the 

resulting AUC was 0.970 (Figure 4.3). With the specificity fixed at 99%, this trained CNN 

achieved a sensitivity of 55.6% in correctly classifying translational shifts of 1 cm (Table 4.2). 

While this high specificity is desirable in order to reduce alarm fatigue in the clinic146,147, it must 

be balanced with a reasonably high sensitivity in order to successfully flag patient alignment 
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errors. Incorrect patient setup has been shown to be an important factor in radiation oncology 

treatment errors59,60, and successfully detecting such errors is of high interest to the radiation 

oncology community. When the specificity was lowered to 95%, the corresponding sensitivity 

increased to 94.7%, indicating a drastic improvement in the model’s ability to detect patient 

misalignments at this specificity threshold. 

 

Table 4.2: Three specificity-sensitivity tradeoffs of potential clinical interest. 

Specificity Corresponding sensitivity 

99% 55.6% 

95% 94.7% 

90% 95.8% 

Figure 4.3: Model classification performance in correctly identifying 1 cm translational shifts in the unseen 

test dataset. 
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4.4 Discussion 

Based on the results presented here, application of our automated error detection tool to 

clinical data from UCLA would result in an error detection sensitivity of approximately 95% if a 

5% false positive rate was accepted. We believe these results are sufficient to warrant 

incorporation of this tool into the clinical workflow, either as a real-time check of clinical images 

or as an aid in daily offline image review. The level of effort required to deal with the false 

positives flagged by the model is small in comparison to the processes and procedures already in 

use clinically, especially when considering the types of gross misalignments preventable through 

implementation of this tool. 

We are cognizant of the limitations of this IGRT error detection algorithm. While our 

dataset of over 22,000 training images is relatively large in comparison to other studies involving 

medical image data, it is still small in comparison to true “big data” such as ImageNet150, which 

contains over 10 million images and has been used to train some of the highest performing 

classification models. Increasing the amount of training data would be expected to further 

improve our model’s classification accuracy. In addition, the image data used for training came 

from a single institution. Studies have shown that assembling a multi-institutional collaboration 

of image data is key for improving model robustness162,166. Incorporating data from multiple 

institutions would be a crucial next step in improving robustness, ultimately allowing us to apply 

our model to image data from outside institutions and have confidence in the results. Finally, 

while our model demonstrated excellent performance in detecting translational shifts of 1 cm, we 

recognize that this is far from the only type of patient setup error that could realistically occur in 

the clinic. For example, other work from our group has focused on the specific problem of 
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detecting off-by-one vertebral body misalignments in patient setup images. Rotational shifts 

were not incorporated into the generation of simulated errors for the purposes of this work, even 

though this is another type of error that could potentially occur in the clinic. Other errors, such as 

wrong patient or wrong anatomical site, were likewise not investigated. 

Research to date regarding the incorporation of automation into the radiation oncology 

clinical workflow has shown promising results, with success in automating certain tasks at the 

contouring, treatment planning, plan quality evaluation, and machine quality assurance stages. 

However, the automation of image review tasks has lagged significantly. Image review requires 

a great deal of time and effort to be expended from an already overworked radiation oncology 

team. We believe that our work here shows great promise in beginning to automate parts of this 

task and allowing for cognitive resources to be more efficiently directed towards interpreting the 

results of such a tool.   

4.4 Conclusion 

In this work we have developed and validated a convolutional neural network-based 

model that enables the automatic detection of general translational errors in ExacTrac images 

that have the potential to be clinically significant. We believe such an algorithm could enable a 

more thorough review of patient setup images, either at the time of treatment or during 

retrospective image review checks, by providing a fast, automated method for flagging potential 

misalignments. Our results demonstrated that this misalignment detection model achieves a high 

sensitivity at the 95% specificity, indicating that this proposed tool has clinical potential in 

successfully identifying true misalignments with a correspondingly low level of algorithmic false 

positives. 
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 A CONVOLUTIONAL NEURAL NETWORK-BASED RETROSPECTIVE 

SEARCH FOR PREVIOUSLY UNREPORTED RADIATION EVENTS 

5.1 Introduction 

5.1.1  Promise and limitations of large imaging databases 

The rapid acceleration of technology in radiation oncology combined with the existing 

demands on the clinical medical physicist’s time means that already limited physicist time 

resources must be allocated thoughtfully83. One specific area within the medical physicist’s 

domain that presents both a promise and an enormous challenge is that of image review. With 

the vast majority of radiation treatments now using some form of image guidance13,14, a wealth 

of visual data is generated every day. These archival clinical imaging databases present an 

opportunity to leverage the aggregate data in order to drive evidence-based improvements in 

clinical safety interventions169. Some of the challenges associated with big data initiatives such 

as this one are not new to the medical physicist. Articles in recent years have highlighted the 

logistical challenges of data storage170, management and processing of time-sensitive health care 

data171, and translation of big data into impactful clinical tools172 as significant barriers within 

radiation oncology. With respect to image review, an additional challenge becomes apparent: the 

sheer size of most imaging databases within radiation oncology departments are simply so large 

that a manual review of every image by a physicist is infeasible. This is especially true in light of 

research demonstrating that medical physicists experience the highest workload out of all 

members of the radiation oncology team173, coupled with a high level of reported burnout174,175. 

Thus, new tools must be developed in order to support the analysis of large imaging databases 
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and the subsequent advance of the department’s incident learning system. The integration of 

voluntary reporting systems such as RO-ILS have been shown to lead to improved identification 

of the clinical areas where safety improvements are necessary176; however, they are limited since 

unknown errors have no way of being reported or documented. Analysis of large imaging 

databases represents an opportunity for large-scale image analysis for previously unreported and 

undocumented incidents. 

5.1.2 Automation and incident learning systems 

There is a pressing need for new tools to be developed to help support the efforts of 

incident learning systems, including data mining of big datasets82. Machine learning tools in 

particular have shown promise in many aspects of the radiation oncology clinical workflow, 

including a variety of applications in quality and safety initiatives177. Many of the review tasks 

currently performed by humans in radiation oncology have the potential to be streamlined by the 

development of novel automated tools178. Furthermore, machine learning methods are beginning 

to show potential in detecting when something (such as an organ contour) may be suboptimal179. 

Such tools, in combination with the big databases already present in radiation oncology, offer 

new opportunities for detecting and addressing preventable patient errors180. The potential for 

machine learning to assist with the continuous development of incident learning systems181, 

coupled with the well-documented under-reporting of healthcare incidents182, points directly to a 

need for new automated tools to improve the efficacy of learning healthcare systems.  

5.1.3 Study overview 

Due to the combined limitations of protocol- and redundant check-based IGRT error 

mitigation and the limitations of incident reporting systems, this chapter proposes a novel 
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automated method to retrospectively search for previously unreported incidents and near-miss 

events at our institution. The clinical impact of such a procedure is twofold. Using an algorithm 

to analyze large image databases as a “first pass” and pre-select suspicious images for a narrowly 

focused, manual review allows the time of the reviewer to be spent analyzing patient cases that 

are more likely to represent errors. The use of such tools could allow for a more comprehensive 

and thorough search for clinical errors and near-miss events. By analyzing previously unknown 

incidents and near-miss events, more focus can be turned on the situations in which these 

incidents occur, thus reducing the overall clinical error rate183. In addition, the use of our 

automated method could assist in obtaining a more accurate quantification of the true error rate 

in our department. Previous studies on the radiation oncology error rate have relied on errors that 

were identified and reported, whereas our method eliminates this requirement. We present here a 

method for identifying treatment errors and calculating the radiation therapy error rate of our 

department that is independent from the human-based methods traditionally employed for such 

tasks. 

5.2 Materials and methods 

5.2.1 Overview of models 

Two CNN-based error detectors trained on stereoscopic x-ray/ DRR image sets from the 

ExacTrac IGRT system were used for the task of detecting previously unreported incidents at 

UCLA. The first model was trained to detect the rare but serious specific error of off-by-one 

vertebral body misalignments, described in detail in Chapter 3. At the 95% specificity, this 

model achieved a sensitivity of 96.4% in detecting misalignments by one vertebral body. The 
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second model, described in Chapter 4, was trained to detect general misalignment errors 

between the x-rays and DRRs using random simulated translational errors of 1 cm. At the 95% 

specificity, the sensitivity of this model in detecting translational shifts of 1 cm was 94.7%.  

5.2.2 Evaluation data collection 

We used our final trained models to retrospectively analyze five years of treatment 

images for previously unreported treatment incidents. 3,122 patients were initially identified 

from 2018-2022 that were treated on the same treatment machine at our institution, again using 

ExacTrac image guidance. We first applied a filter based on the treatment plan name to exclude 

cases where the final patient alignment was based on soft tissue or fiducial markers. Table 5.1 

details the number of plans excluded by year, along with the final number of patient datasets per 

year. We also report the subset of patients per year out of this final number who were treated to 

the thoracic spine. Such patients were ultimately analyzed using both the model trained to detect 

off-by-one vertebral body misalignments along with the model trained to detect more general 

misalignments. 
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Table 5.1: Number of patients excluded from each year, along with the final number of patient datasets collected for 

evaluation for each year. We also report the subset of patients from each year who were treated to the thoracic spine, as both 

models were applied to the images from these patients. 

 

The final evaluation set consisted of 2,279 patients across the five years, 188 of whom 

were treated to the thoracic spine region. Day-of x-ray images along with the corresponding 

clinical DRRs were extracted from all 12,523 treatment fractions. For patients where repeat 

ExacTrac imaging was performed within the same fraction, only the first set of x-rays and the 

corresponding DRRs were used. 4-channel arrays were then created for each treatment fraction 

using the two clinical x-rays and the two corresponding clinical DRRs. The final dataset 

consisted of 12,523 arrays from all anatomical treatment sites and 521 arrays from the subset of 

patients treated to the thoracic spine region, with the breakdown by year shown in Table 5.2.  

Table 5.2: Number of 4-channel arrays created per year of evaluation data using clinical x-ray/ DRR image sets for all 

anatomical treatment sites and for the subset of patients treated to the thoracic spine. 

Evaluation Year 2018 2019 2020 2021 2022 

Clinical 4-Channel Arrays 2,938 2,873 2,263 2,123 2,326 

Spine Clinical 4-Channel Arrays 102 114 104 117 84 

 

 2018 2019 2020 2021 2022 Total 

Initially identified 755 793 650 531 393 3,122 

       

Treatment plan name       

Prostate 85 111 89 57 3 345 

Lung 86 111 80 50 16 343 

Rib 8 24 21 19 3 75 

Abdomen 3 1 6 6 2 18 

Liver 2 14 3 0 0 19 

Pancreas 1 9 2 3 0 15 

Adrenal 0 7 1 2 0 10 

Bladder 1 0 0 1 0 2 

Esophagus 0 0 0 0 0 0 

Heart 1 7 5 2 1 16 

       

Final number of 

patient datasets 

568 509 443 391 368 2,279 

Final number of spine 

datasets 

41 43 29 48 27 188 
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5.2.3 Application of models to evaluation dataset 

Both trained models were applied to the previously unseen evaluation data from 2018-

2022 in order to flag potential alignment errors or near-miss events that were previously 

unreported. For the model trained to detect general 1 cm misalignments, this image data 

consisted of 12,523 clinical 4-channel arrays from 2,279 patients, representing the full range of 

anatomical treatment sites. For the model trained to detect the specific error of off-by-one 

vertebral body errors, this image data consisted of 521 clinical 4-channel arrays from 188 

patients treated to the thoracic spine. After each model was applied to the evaluation data, an 

image set was considered flagged for a potential misalignment if it was scored higher than the 

threshold corresponding to 95% specificity for that respective model.  

5.2.4 Manual review of flagged images 

All flagged images from these years were cross-referenced with our institution’s record-

and-verify systems, incident learning systems, and external image-guidance systems. A manual 

review was performed on each flagged image set to determine whether they represented 

treatment errors, near miss events, true imaging errors that did not ultimately translate into 

treatment errors, or algorithmic false positives. For those x-ray/ DRR image pairs that were 

verified to indeed be misaligned, further investigation was done to ascertain whether the 

misalignment on ExacTrac eventually translated into a treatment error, or whether downstream 

processes remedied the alignment error prior to patient treatment. 
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5.3 Results 

5.3.1 Classification of flagged images 

When the CNN trained to detect general 1 cm misalignments was used to classify clinical 

4-channel arrays from 2018-2022, a total of 337 fractions (out of 12,523 total fractions) were 

flagged as misaligned. When the second CNN, trained to detect off-by-one vertebral body 

misalignments, was applied to the subset of patients treated to the thoracic spine from the same 

years, 48 fractions (out of 521 total fractions) were flagged as misaligned. 

Cross-referencing of the 337 fractions flagged by the model trained to detect 1 cm 

translational shifts identified eight treatment errors, seven suboptimal alignments, and two near-

miss events that had not been previously reported to UCLA’s incident learning system. Ninety-

two additional fractions were correctly flagged as misaligned, but manual verification confirmed 

that further imaging (ExacTrac or alternative imaging modality) was performed and the patients 

were correctly aligned prior to treatment. For 45 of the fractions, it was impossible to tell if the 

patient was correctly aligned based on ExacTrac imaging alone. We verified that repeat imaging 

using a different modality was performed and the patient was properly aligned prior to treatment 

for each of these cases. In a single instance, the patient images were correctly flagged as 

misaligned but manual review of the treatment schedule indicated that the patient was ultimately 

not treated on this day. Imaging acquisition errors and algorithmic false positives accounted for 

the remaining 182 of the flagged fractions. The full results, broken down by year, are shown in 

Table 5.3. 
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Table 5.3: Full classification results for the fractions flagged by the model originally trained to detect 1 cm 

translational shifts. 

 2018 2019 2020 2021 2022 Total 

Total fractions 2,938 2,873 2,263 2,123 2,326 12,523 

Flagged fractions 71 70 51 75 70 337 

       

Treatment error 0 0 0 8 0 8 

Near-miss 2 0 0 0 0 2 

Suboptimal alignment 0 0 3 3 1 7 

Misaligned, corrected with 

repeat ExacTrac 

18 18 6 18 11 71 

Misaligned, corrected with 

different imaging modality 

4 4 4 3 6 21 

Misaligned, patient not 

ultimately treated 

0 1 0 0 0 1 

Can’t tell if aligned based on 

ExacTrac imaging alone 

10 5 1 10 19 45 

Imaging acquisition errors 9 2 4 3 4 22 

Algorithmic false positive 28 40 33 30 29 160 

 A full categorization of the fractions flagged by the model trained to detect off-by-one 

vertebral body misalignments is shown in Table 5.4. Manual review of the 48 flagged fractions 

identified no instances of previously unreported treatment errors or near-miss events. Twenty-

one fractions were correctly flagged by the algorithm as misaligned, but manual review 

confirmed that subsequent imaging either in the form of repeat ExacTrac or cone beam CT 

(CBCT) was performed and that the patient was accurately aligned prior to treatment. For five 

fractions, determining if the patient was aligned based on the ExacTrac images alone was not 

possible. For these cases, we confirmed that repeat imaging in the form of a CBCT was 

performed in order to correctly align the patient.  Ten of the flagged fractions were found to be 

image acquisition errors and 12 were algorithmic false positives.  
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Table 5.4: Full classification results for fractions flagged by the model originally trained to detect off-by-one vertebral 

body misalignments. 

 2018 2019 2020 2021 2022 Total 

Total fractions 102 114 104 117 84 521 

Flagged fractions 7 12 9 10 10 48 

       

Misaligned, corrected with 

repeat ExacTrac 

2 2 0 1 1 6 

Misaligned, corrected with 

CBCT 

0 5 1 6 3 15 

Can’t tell if aligned based 

on ExacTrac imaging alone 

0 3 1 0 1 5 

Imaging acquisition errors 5 1 3 1 0 10 

Algorithmic false positive 0 1 4 2 5 12 

5.3.2 Previously unreported treatment errors 

  Eight treatment fractions were ultimately determined to represent previously unreported 

treatment errors. Seven of the fractions were from a single patient treated to 54 Gy in 30 

fractions to the brainstem. Our manual review of the ExacTrac images for the seven flagged 

fractions revealed that the therapists were likely too aggressive with “masking” of the DRRs 

during the image registration process. Masking involves blocking out parts of the DRR, forcing 

the ExacTrac image registration algorithm to ignore that anatomy as it attempts to register the 

DRRs to the x-rays. For these fractions, the area around the orbits in particular appear to be well-

aligned. Closer inspection of the alignment as a whole however shows that the base of the skull 

was misaligned by approximately 1 cm in all of the seven flagged fractions. The ExacTrac 

images from one representative treatment fraction are shown in Figure 5.1. 
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5.3.3 Previously unreported near-miss events 

Two flagged fractions were determined to be previously unreported near-miss events, 

both involving mix-ups of patient names. For one of these flagged fractions (shown in Figure 

5.2), we immediately noticed that an attempt was made to align one patient’s brain treatment 

plan with a second patient’s pelvic x-rays. After performing a thorough manual review of the 

clinic schedule for this day, we realized that the treatment machine went down early in the day, 

interrupting the brain patient’s treatment. Both this brain patient and a pelvic patient scheduled 

for a later treatment time shared an uncommon first name. When the treatment machine came 

Figure 5.1: ExacTrac images for one out of the seven flagged fractions from a 

single patient ultimately determined to be previously unreported treatment errors. Each 

image is 10 cm x 10 cm, and the gridlines represent a distance of 1 cm. 
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back online later that day, it appears that the therapists mistakenly brought the pelvic patient 

back instead of the brain patient whose treatment needed to be resumed. It is likely that the 

therapists used only the patient’s first name in the waiting area, unaware that they had two 

patients at that time with the same name. This mistake was only caught after the pelvic patient 

was positioned on the treatment couch and imaged, and it appears that the therapists then 

immediately realized that they had the incorrect patient in the treatment vault. While this 

particular incident was caught immediately due to the patients being treated in vastly different 

anatomical regions, such a near-miss could be disastrous if the patients’ treatments involved 

similar anatomies.  

Figure 5.2: X-rays (left) and DRRs (right) for one of the previously 

unreported near-miss events. Two patients with the same uncommon first name, one 

being treated to the brain and the other to the pelvis, were mixed up by the therapists. 
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5.3.4 Suboptimal patient alignments  

Seven of the flagged fractions were reviewed and determined to represent suboptimal 

patient alignment, where the patient was misaligned by a few millimeters at most. Such instances 

represent learning opportunities and openings for further improving the quality of patient care 

delivered by all members of the radiation oncology department. For all of these cases, we 

determined that the suboptimal alignment would not have led to any treatment error. However, 

the patient could have been positioned more accurately, potentially resulting in a more optimized 

delivery of the intended dose. 

5.4 Discussion 

Application of the error detection method we present here to five years of unseen clinical 

data at our institution resulted in the discovery of eight treatment errors and two near-miss events 

that were previously unreported. These numbers correspond to an error rate per fraction of 0.06% 

for our institution, which is in line with error rates reported in the literature of well under 1% of 

total treatment fractions. We calculated a near-miss rate per fraction of 0.02% for our institution, 

but to our knowledge no reports on the rates of near-miss events exist in the literature with which 

to compare this figure. The two error detection models described in this work have shown great 

promise in identifying previously unreported incidents, and the relatively low false positive rate 

allows for a comprehensive manual review to be performed on all flagged patients.   

The discovery of the previously unreported treatment errors highlights opportunities for 

training on best practices to improve both the safety and the quality of patient treatments. Seven 

of the flagged fractions determined to be treatment errors likely occurred due to improper use of 

the masking function during the process of image registration at the ExacTrac console. This error 
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in particular highlights the importance of continued education on the best practices for each 

imaging modality. The ExacTrac system will generally do an excellent job at aligning patients 

with treatment targets located in the head, due to the plethora of bony anatomical landmarks. For 

this particular case, such landmarks were purposefully obscured and as a result the patient was 

ultimately treated in a misaligned position. Repeated training and education on the best practices 

to use with ExacTrac, or with any clinical system, is critical in a department dedicated to a 

culture of safety.  

Likewise, our discovery of the previously unreported near-miss events involving mix-ups 

of patient names represent another opportunity to revisit policies and procedures in order to 

ensure patient safety. For the vast majority of clinical days, it is highly unlikely that two patients 

in the waiting room would share a name, much less an uncommon first name. Thus, calling the 

patient back by first name and verifying at the treatment console is considered sufficient. The 

near-miss described in this chapter highlights the importance of the time out procedure at the 

therapist console, as this procedure was either not performed or not performed adequately for 

this particular treatment fraction. The mix-up was not discovered until the patient was on the 

treatment table and imaging was performed, and then only because the anatomical region was 

completely different from what was expected. Had the two patients been undergoing treatment to 

the same general region, this mix-up may not have even been noticed.  

29.4% (113 of the 385 total flagged fractions between the two models) were determined 

to be real patient misalignments. However, further investigation of these fractions found that the 

initial misalignment was corrected prior to treatment, either by subsequent ExacTrac imaging or 

by another imaging modality such as cone beam CT. These initial misalignments are common in 
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the course of a normal radiotherapy treatment, as the therapists acquire repeat imaging to 

determine the shifts needed to correctly align the patient, and to verify the patient’s position 

immediately prior to treatment. While these misalignments were all caught and corrected during 

the regular workflow, our algorithm still adds value in flagging these images for a manual review 

to ensure that the appropriate corrections were indeed applied. 

We found that the majority of the false positives (113/172) tended to be situations where 

the imaging quality was less than ideal. For example, the use of suboptimal mAs and subsequent 

overexposure in the resulting x-rays was a recurring theme in the list of false positives. Another 

subset of the patients ultimately classified as false positives had the presence of significant 

hardware in the imaging field of view. It is possible that deviations from expected imaging 

quality such as these ones may have led our algorithm to incorrectly classify such images as 

misaligned. However, we do not necessarily view this classification as problematic. Suboptimal 

imaging or deviations from routine patient imaging represent situations where mistakes could 

more easily be missed, and a careful review of such images at the time of treatment is necessary 

to ensure accurate radiation delivery.  

The rapid acceleration of image guided radiotherapy has resulted in huge databases of 

visual images that can be used to continually improve the quality and safety of the radiation 

oncology clinic. To date however, little has been done to incorporate automation and machine 

learning into the task of image review—a task which requires a significant amount of effort from 

radiation oncologists, physicists and technologists156. We believe our work here adds 

significantly to the effort both of automating image review and, subsequently, of more fully 

utilizing patient imaging databases to better identify treatment incidents.  
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5.5 Conclusion 

In this work we have developed a convolutional neural network-based approach for the 

automatic detection of potential IGRT misalignments in planar x-ray setup images that warrant 

further investigation via manual review. We believe such an algorithm could be a valuable asset 

in analyzing the large databases of patient setup images generated every day in the modern 

radiotherapy clinic for previously unknown errors and near-miss events. Our results 

demonstrated the potential feasibility of this application, with our misalignment detection 

algorithms identifying eight previously unknown incidents over five years of archived clinical 

image data. 
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 DOSIMETRISTS’ REPORTED BARRIERS AND FACILITATORS TO 

CLINICAL IMPLEMENTATION OF TREATMENT PLANNING AUTOMATION   

6.1 Introduction 

6.1.1  Automated tools in radiation oncology 

In recent years there has been a substantial increase in research and development 

involving automation of the radiation therapy treatment planning workflow. Treatment planning 

automation can be used to reduce the occurrence of sub-optimal treatment plan quality184, 

facilitate adaptive radiotherapy185, reduce treatment latency, and allow human cognitive 

resources to be directed to their most high value uses. Almost every step of the radiation 

treatment workflow, from normal tissue contouring155,186, to IMRT treatment planning153,187, to 

online adaptive replanning188, to the physics plan review process154,189,190, has been subject to 

automation research. Automated normal tissue contouring tools have demonstrated accuracy 

comparable to manual contours for many target organs191, and demonstrated significant time 

savings in clinical workflow studies192,193. A wealth of research has demonstrated that automated 

radiotherapy planning techniques are capable of producing clinical-quality plans194,195. 

Prospective studies have shown that in carefully controlled situations, automated treatment 

planning generates plans of comparable or better clinical quality, at significant time savings196–

198. A variety of commercially available automated tools exist, including but not limited to atlas-

based199 and deep-learning based193 auto-contouring, knowledge-based planning200, rule-based 

automated planning201, and automated field-in-field planning202.   
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6.1.2 Sparsity of implementation research  

However, little is known about the scale of clinical implementation of automated 

treatment planning techniques in the United States. We hypothesized that clinical adoption of 

treatment planning automation may be less than fully realized and furthermore that barriers to 

implementation may exist. These hypotheses were based on the reported observation of barriers 

to automation in similar areas of healthcare such as diagnostic radiology203,204 and pharmacy205. 

Additionally, the authors have previously collected anecdotal data that medical dosimetrists, who 

in many clinics perform the majority of treatment planning, often express hesitation at using 

treatment planning automation. In order to ensure that advances in research translate into 

advances in clinical care, a focused effort is required in order to understand the barriers to 

implementation101. While an individual clinic may be committed to the adoption of evidence-

based best practices in principle, the actual implementation of these practices requires a thorough 

understanding of all the breakpoints where such implementation can fail102. The diversity of 

health care settings in the United States represents a major challenge to the widespread 

dissemination of evidence-based best practices206.  

6.1.3  Study overview 

In this chapter, we examine the barriers and facilitators to adoption of commercially-

available automatic treatment planning tools into the clinical workflow using a survey of medical 

dosimetrists. We focus on how implementation of treatment planning automation is viewed by 

medical dosimetrists within the radiation oncology clinic. Here we define treatment planning 

automation as the automation of parts of the treatment planning workflow, such as auto-

contouring and automated dose optimization. To our knowledge, complete end-to-end 
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automation of the treatment planning workflow has very limited if any clinical implementation, 

but our survey left open the possibility for respondents to address complete automation as well. 

To date, no published research has examined whether or why medical dosimetrists may view 

these tools favorably or unfavorably. Our primary goal is to identify the barriers to 

implementation from the perspective of the medical dosimetrist. Our secondary goal is to offer 

potential facilitators to increase the adoption of evidence-based best practices with respect to 

automated treatment planning in the context of the radiation oncology clinic.  

6.2 Materials and methods 

6.2.1 Survey best practices 

Several of the best practices compiled by Krosnick in his 1999 review paper207 are worth 

briefly mentioning as they are relevant to our own survey methodology. First, in order to draw 

general conclusions about a population based on survey responses from a sample, it is imperative 

to ensure a representative sample has been obtained. Our survey measured familiarity with and 

attitudes towards automation, but we were careful not to restrict potential respondents based on 

their prior use of these tools. Instead, the only criteria we imposed was a sampling of 

dosimetrists currently employed in California, regardless of their prior experience with 

automation in their workplace. Second, we employed close-ended questions throughout our 

survey. Close-ended questions can be used effectively when the choices given constitute a 

comprehensive list of all possible options207. In all of our survey questions, great care was taken 

to ensure that respondents were presented with a comprehensive list of all possible options. 

Third, all points on rating scale questions were fully labeled and intended to divide the response 
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continuum into approximately equal intervals in order to maximize validity208. It is well-

documented that respondents have a tendency to place themselves towards the middle when 

answering rating scale questions207; however this phenomenon was not observed at large in our 

data. Finally, research has shown a tendency for respondents to agree with statements more 

frequently than they disagree207. While we did employ the frequent use of “agree/ disagree” 

question formats, care was taken to ensure that we maintained a balance between positive and 

negative descriptions of automation.  

6.2.2 Survey design 

Survey questions broadly probed the following areas: frequency of use of treatment 

planning automation (auto-contouring and automated dose optimization), positive and negative 

perceptions about automation performance, potential implementation changes that would affect 

accessibility and usability, and demographics and institutional descriptive statistics. Positive and 

negative questions were balanced to reduce bias209. Level of agreement questions were heavily 

utilized because they facilitate balanced positive and negative statements. 

The final survey questions can be broken down into five general subsections: Prior Use, 

Auto-Contouring (AC), Automated Treatment Planning (ATP), General Level of Agreement, 

and Demographics. The Prior Use section consisted of a single question that asked respondents 

to mark any specific automation tool they had used at any point during their career. Table 6.1 

lists the categories of treatment planning automation delineated in this question, along with the 

commercial product names used as examples of each category. Responses to this question 

determined the branching logic that would follow for the remainder of the survey. In the Auto-

Contouring section, respondents were asked questions to gauge their level of experience with AC 
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tools, what types of commercially-available tools they have used, what anatomic sites they have 

used AC for, and reasons why they view the tools they have used favorably or unfavorably. The 

Automated Treatment Planning section asked respondents to answer questions regarding their 

level of experience with ATP and how often they use it, what types of ATP algorithms they have 

used, what anatomic sites they have used ATP for, and reasons why they like or dislike the ATP 

tools that they have experience using. Branching logic was used to only show survey questions 

relevant to the specific AC and/or ATP tools that the participant had prior experience using. The 

General Level of Agreement section consisted of a list of statements designed to elicit responses 

on how participants view automation in ways that may not be specific to individual automation 

tools. The Demographics section consisted of questions about the participant’s age, gender, 

length of time employed in the field, education and relevant certifications, and current clinical 

environment. The survey was deployed using the secure survey platform Qualtrics. The complete 

list of survey questions can be found in Appendix 1. 

Table 6.1: Example products for each category of auto-contouring (AC) and automated treatment planning (ATP) 

surveyed.  

AC/ ATP Category Example Products 

Deep learning-based auto-contouring Mirada DLCExpert, MIM ContourProtege AI 

Atlas-based and/or model-based auto-contouring MIM Atlas Segment, Varian Velocity, RayStation 

MABS/MBS, Pinnacle SPICE, Elekta ABAS 

Knowledge-based plan quality assessment Sun Nuclear PlanIQ 

Automated planning using knowledge-based planning 

algorithms 

Varian RapidPlan 

Automated field-in-field planning Radformation EZFluence 

Automated planning using rule-based or template-

based algorithms 

Philips Pinnacle Auto-Planning, Raysearch Raystation 

Auto-Planning 

 

6.2.3 Recruitment of subjects  

Subjects were recruited through two different channels in accordance with the approved 

IRB protocol. We used LinkedIn to solicit responses from medical dosimetrists currently 
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employed in a clinical capacity within the state of California. All medical dosimetrists with 

LinkedIn accounts showing employment as clinical dosimetrists in California were contacted 

directly via LinkedIn. Additionally, professional contacts employed outside of our department 

were recruited. Finally, all chief physicists of non-academic medical centers in California listed 

in the AAPM member directory were contacted with requests for references to medical 

dosimetrists. This was done in an attempt to balance the responses in a way that more accurately 

reflected the distribution of academically and non-academically employed dosimetrists in 

California. No participant was recruited with whom there was a supervisorial relationship with 

any of the investigators. During the recruitment process, we did not require familiarity with or 

regular use of automated treatment planning as a prerequisite for survey participation. In the 

event of a non-response from a potential participant, we reached out a second time but did not 

aggressively pursue a higher response rate beyond this second contact. It has been shown that a 

low response rate does not inherently indicate the presence of non-response error in the final 

data210,211.  

6.2.4 Statistical analysis  

Fisher’s exact test was used to test for statistical significance of correlations between 

measures of use of automation with reported demographic variables. Clustering analysis was 

performed in the R programming environment212 in order to identify latent groups in the 

responses.  
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6.3 Results 

6.3.1 Respondent demographics 

In total 171 medical dosimetrists were contacted either on LinkedIn or by email, of which 

57 responded and were sent a survey link. Of the dosimetrists who were sent a survey link, 34 

completed the survey. Survey results broadly sampled level of education, gender, and place of 

employment (academic vs. non-academic hospital vs. community clinic), but appeared to be 

weighted towards relatively young dosimetrists, with 61.8% of respondents reporting ages less 

than 39. Complete demographics are contained in Table 6.2. 

Table 6.2: Survey respondent demographics. 

 Responses (n=34) 

1. Age  

20-29 4 

30-39 17 

40-49 5 

50-59 7 

60+ 1 

2. Years of Experience  

< 5 11 

5-9 11 

10-19 9 

20+ 3 

3. Gender  

Male 18 

Female 16 

4. Level of Education  

Associate’s degree 4 

Bachelor’s degree 16 

Master’s degree 13 

Doctorate 1 

5. Place of Employment  

Academic medical center 16 

Non-academic hospital 12 

Community practice 6 

6. Number of radiotherapy machines  

1 3 

2-4 14 

5-8 10 

9+ 7 
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6.3.2 Familiarity with AC and ATP 

Clinical use of AC remains limited, with 70.6% of respondents (24/34) reporting that 

they used auto-contouring less than weekly. Use of ATP was more frequent, with 41.2% 

reporting that they used it at least weekly. Respondents reported approximately equal familiarity 

with AC and ATP, with average familiarity scores of 2.82 and 2.59 out of 5 for AC and ATP 

respectively. Despite recent research demonstrating that deep learning-based AC is more 

accurate than atlas-based AC, most respondents reported that they used atlas-based AC. Use of 

ATP algorithms was more heterogeneous, and the most commonly used algorithm was 

automated field-in-field planning (see Figure 6.1).  

Respondents were more likely (18/34) to have heard the most about auto-contouring from 

scientific talks and vendor booths at professional meetings, and more likely (22/34) to have 

heard about it least frequently from peers at their own clinic or elsewhere.  

Figure 6.1: Reported frequency of use of commercially-available automated tools. Error bars represent one standard 

error.  
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6.3.3 Barriers and facilitators to use of automated tools 

A number of potential barriers and facilitators to use of automation were reported 

frequently (Figure 6.2). The most commonly identified barrier to clinical use of AC was contour 

inaccuracy, with 30 out of 34 survey respondents reporting that increased accuracy would make 

them more likely to use AC tools. The most commonly identified potential facilitator to use of 

ATP was if the ATP algorithms would produce plans that were easier to modify in order to get 

an optimal plan. 21 out of 34 participants responded this way. However, respondents did see 

value, or potential value, in both AC and ATP. A significant majority of respondents (23/34) 

reported liking ATP because it allowed them to work through a higher caseload (Table 6.3). 

 

 

 

 

Figure 6.2: Reported barriers and facilitators to use of auto-contouring (top) and automated treatment planning 

(bottom) tools. Error bars represent one standard error. 
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Table 6.3: Reported reasons for liking/ disliking auto-contouring (AC) and automated treatment planning (ATP). 

 Responses (%)  

1. Dislike of AC  

Would rather contour from scratch 70.6 

Concerned about algorithm making an error 64.7 

2. Dislike of ATP  

Do not believe plans are of the same quality 41.2 

Takes more time than generating plan from 

scratch 

44.1 

Enjoy optimization, do not want to lose that part 

of job 

58.8 

3. Like of ATP  

Work through higher patient caseload 67.6 

Higher degree of confidence in the plans 29.4 

An area of concern for dosimetrists was that the use of automation could increase the 

likelihood of errors. Amongst users of deep learning-based and atlas-based AC, 50% and 52.6% 

respectively were concerned that it could lead to treatment errors. Among users of knowledge-

based planning (KBP) quality assessment and KBP automated planning, 40% and 38.5% 

respectively were concerned that it would lead to treatment errors. Only 21.4% of users of 

automated field-in-field planning were concerned about errors. 

Dosimetrist perceptions of the impact of AC and ATP on job satisfaction and job security 

appeared to be important. A majority (20/34) reported that they “disliked ATP because they 

enjoy plan optimization and don’t want to give up that part of their job”, and 63.6% agreed or 

somewhat agreed with the statement that they “value their planning skills highly and would be 

disappointed to see them devalued”. Likewise, a majority (21/34) agreed or somewhat agreed 

with the statement “I worry that automated treatment planning will hurt the job market for 

dosimetrists.” A slight majority (19/34) agreed or somewhat agreed that routinely using ATP 

could lead to atrophy of planning skills.  
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6.3.4 Fisher’s exact test 

No statistically significant correlations were found between auto-contouring level of 

experience (rated on a scale of 1 to 5) or frequency of use versus level of education, place of 

employment, and number of machines in the clinic. Similarly, no significant correlation was 

found between automated treatment planning level of experience (rated on the same 1 to 5 scale) 

or frequency of use versus these same demographic variables. A statistically significant 

correlation was found between auto-contouring level of experience and view of planning goals at 

their clinic as standardized (p = 0.046), and between automated treatment planning level of 

experience and the same metric of planning goal standardization (p = 0.014).  

6.3.5 Latent class analysis  

Clustering analysis using latent class analysis identified a partition that related to the 

dosimetrist’s clinical environment as a barrier to use for both automated treatment planning and 

auto-contouring. A cluster of dosimetrists was identified (comprising 25.5% of respondents 

overall) that were mainly employed at hospital-based medical centers (HBMC) or community 

medical centers (CMC). 100% of participants in this cluster reported being more likely to use 

ATP if it was both purchased by their clinic and if they received more support from their 

supervisor or site physicist (Figure 6.3). This suggests that for dosimetrists employed at non-

academic institutions, lack of access to the technology itself may be an important barrier to use. 

In the complementary group comprising 74.5% of respondents, the majority reported 

employment at academic medical centers (AMC). Within this cluster, only 36.8% reported that 

they would be more likely to use ATP if it was purchased by their clinic, and only 25% reported 

that they would be more likely to use ATP if they received more support from their site physicist 
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or supervisor. For dosimetrists within this cluster, it appears that access to both ATP tools and 

support for those tools is a much less significant barrier than for their colleagues at non-academic 

institutions.  

An analogous clustering was identified in relation to use of AC with an almost identical 

group membership. Latent class analysis identified one group (comprising 21% of total 

respondents) where 20.1% of the cluster reported employment at an academic medical center, 

42.7% reported employment at a hospital-based medical center, and 37.2% reported employment 

at a community medical center. For this cluster, 100% of group members reported being more 

likely to use AC if it was purchased by their clinic while 99.4% reported being more likely to use 

AC if they received more support from their supervisor or site physicist (Figure 6.4). In the 

Figure 6.3: Percentage of dosimetrists reporting certain factors as potential facilitators to use of automated 

treatment planning by cluster (top); employment breakdown of Cluster 1 (bottom left); employment breakdown of Cluster 

2 (bottom right).  
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remaining 79% of respondents, 54.2% reported employment at an academic medical center, 

33.3% at a hospital-based medical center, and 12.5% at a community medical center. Only 

36.7% of this group reported being more likely to use AC if it was purchased by their clinic, and 

only 29.4% reported being more likely to use AC if they received more support from their 

supervisor or site physicist. These results again point to lack of access to tools and support for 

use of these tools as an important barrier for dosimetrists employed in a non-academic medical 

center setting.   

Figure 6.4: Percentage of dosimetrists reporting certain factors as potential facilitators to use of auto-

contouring by cluster (top); employment breakdown of Cluster 1 (bottom left); employment breakdown of Cluster 2 

(bottom right).  
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6.4 Discussion 

This survey has identified three broad barriers to use of automation in treatment planning. 

The first barrier relates to the limited accuracy and usability, or perception thereof, of the 

algorithms. A remarkable 30 of 34 respondents thought that auto-contouring inaccuracy limited 

its use. It is noteworthy that a minority of respondents (6/34) reported use of deep-learning based 

auto-contouring, which has been shown in the literature to be significantly more accurate than 

other methods191,213,214. Therefore, a broader availability of deep-learning based tools could 

facilitate a broader use of auto-contouring in the clinic. A strong majority of respondents thought 

that it was difficult to modify the output of an automated planning algorithm and this limited the 

algorithms’ usefulness. This points to human factors engineering111 as an important component 

of treatment planning automation—and of the subsequent clinical implementation—that needs 

more attention. It should also be noted that the limits of usable accuracy may be lower than what 

is typically perceived by treatment planners215. Survey results showed that dosimetrists heard 

about automation most frequently from scientific talks and vendors. Vendors and academic 

proponents of automated tools may be perceived as biased in their descriptions of algorithm 

performance. Peer-to-peer teaching and continuing medical education focused on automation 

could address this potential perception gap. Finally, statistically significant correlations were 

observed between level of experience with automated treatment planning and dosimetrists’ 

perceptions of the degree to which planning goals were standardized at their clinic. This 

highlights the importance of standardization of clinical goals for the uptake of automation and 

supports the potential role of automated planning in the context of clinical trials216. 
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The second barrier relates to the perception of the dosimetrist that using automation 

increases the probability of an error reaching the patient. This directly relates to the well-

documented automation bias217,218. In principle, all the results of treatment planning automation 

should be reviewed by one or typically more than one human observer. However, little is known 

about the effectiveness of this review and there is reason to believe it is less than 100% 

effective219. This points to the need for more research into the effects of automation bias in 

treatment planning, and if significant, approaches towards minimizing it. 

Third, dosimetrists are concerned that treatment planning automation will make their jobs 

both less satisfying and less secure. A large majority of dosimetrists reported that they enjoyed 

plan optimization, wouldn’t want to lose that part of their job or see it devalued, and expressed 

explicit job security fears. Contrastingly, in one of the most one-sided results, 25/34 respondents 

agreed or somewhat agreed that they would want to use ATP if it worked well. This points to the 

need for more attention given to developing a picture of what the dosimetrist role looks like as a 

clinic transitions more fully towards automated technologies220,221. Ultimately, dosimetrists 

viewed increasing levels of contouring automation as inevitable, with 82.4% agreeing or strongly 

agreeing that by the end of their career, most or all normal tissue contours will be auto-generated. 

A smaller fraction (17/34) believed that by the end of their career, ATP will replace most manual 

plan optimization. 

The results of this survey can be interpreted in light of a technology adoption model such 

as Venkatesh et al.’s Unified Theory of Acceptance and Use of Technology (UTAUT)105. 

Venkatesh et al. outlined four broad factors that determine how well new technology is taken up 

within the workplace: performance expectancy, effort expectancy, social influence, and 
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facilitating conditions. The perception of performance of auto-contouring tools was negative for 

most respondents. For automated treatment planning, most respondents felt that effort to use was 

higher than it should be (effort expectancy). Thus, efforts to improve these factors (or the 

perception of these factors) would be likely to improve adoption of treatment planning 

automation.  

While every effort was made to ensure we obtained a representative sample, we are 

cognizant of the limitations we faced. Since much of our subject recruitment was conducted via 

LinkedIn, our sample was weighted to those dosimetrists actively utilizing LinkedIn. We noticed 

that our sample demographic tended to skew younger than what a truly representative sample 

would likely show. However, research in this area has shown that statistically correcting for 

potential demographic biases is not likely to impact the overall conclusions drawn from the 

data222. Furthermore, the over-representation of younger dosimetrists in our sample has the 

potential advantage of offering insight into the factors that will be most relevant to the 

continuing clinical implementation of automation in radiation oncology, since the majority of the 

respondents likely expect to continue their employment in this field for decades to come. Finally, 

there may be a self-selection process at play because our sample was weighted to responses 

collected via LinkedIn. These dosimetrists may be more sensitive to or aware of new and 

emerging technologies in their field and have different perceptions of automated treatment 

planning than their colleagues not using LinkedIn. Every effort was made to emphasize that 

personal use of automated treatment planning was not a prerequisite for our survey, and in our 

own data we observed responses from dosimetrists ranging from no experience to highly 

experienced.  
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In regard to sample size, we acknowledge that our sample of 34 respondents is not large. 

We believe some factors mitigate the low absolute number of respondents in our survey. Our 

survey was detailed, requiring an estimated 15 minutes to complete, and each response provided 

a high density of information. Our 34 respondents came from 23 unique institutions (six 

academic and 17 non-academic) in California, and survey responses from individual dosimetrists 

likely represent practice patterns of other dosimetrists at those institutions and correspond to a 

considerable patient population served. We attempted to reach all medical dosimetrists employed 

in California by contacting them directly on LinkedIn, and systematically contacting all the chief 

physicists of non-academic medical centers in California who were listed in the AAPM member 

directory. Of note, no publicly available email directory exists for the American Association of 

Medical Dosimetrists, so we were unable to contact registered dosimetrists in a systematic way 

via this organization and any internal email address list it may maintain. Although limited in 

size, our sample required significant effort to collect and we believe will not be easily surpassed. 

Our data may also be limited due to effects from the social desirability bias207. 

Automation is a new and exciting field, and scores of research has emphasized the benefits of 

such technological advances223,224. Respondents may have felt pressure to conform to this social 

bias and offer responses in line with the prevailing opinion of automation as “good.” In our own 

data, almost all respondents expressed some positive and some negative views of automation. 

Our survey questions were designed to present both positive and negative views of automation in 

order to reduce this particular form of bias in the responses.   

Response order bias may arise in surveys when respondents process questions in a 

satisficing instead of optimizing way225. Satisficing respondents are more likely to choose the 
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first reasonable option they are presented with in a list of possible options. However, this effect 

was not observed in our data. This may be due to our use of “select all that apply” questions to 

evaluate the underlying attitudes towards automation of our survey sample. The majority of our 

respondents took the opportunity to select multiple options on these question types, suggesting 

that they were evaluating each option thoroughly.  

Another potential source of bias in our data is due to our use of “agree/ disagree” 

questions to measure respondents’ views of and attitudes towards automation. These questions 

can pose challenges through a tendency for respondents to initially agree with the assertion being 

made in the statement and spend more time looking for reasons to agree with the statement than 

looking for reasons to disagree207. In order to minimize this bias, we balanced level of agreement 

statements with positive and negative views of automation. We observed approximately equal 

numbers of agreement and disagreement, indicating a low degree of agreement bias in our 

results. 

6.5 Conclusion 

To our knowledge this is the first systematic investigation into the views of automation 

by medical dosimetrists, who perform the majority of treatment planning at many if not most 

radiotherapy facilities. We have explicitly identified potential barriers and facilitators to use of 

automated technologies in the radiation therapy treatment planning workflow. This investigation 

highlights several concrete approaches that could potentially increase the translation of treatment 

planning automation into the clinic, as well as areas of needed research.  
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 CLINICAL PHYSICISTS’ PERCEPTIONS OF WEEKLY CHART CHECKS 

AND THE POTENTIAL ROLE FOR AUTOMATED IMAGE REVIEW  

7.1 Introduction 

7.1.1 Weekly chart checks  

Physics weekly chart checks are an essential part of the professional responsibility of 

medical physicists, and are a key guardrail for identifying errors and improving quality226. They 

are imperfect however—the effectiveness of weekly chart checks is limited, with the sensitivity 

of detecting errors during physics chart checks reported in the literature ranging from 43% to 

63%62,226. In order to examine potential approaches for improving the effectiveness of weekly 

chart checks, it is of the utmost importance to hear directly from medical physicists. From the 

field of implementation science, we know that hearing directly from the end user is crucial to 

improving any clinical process.  

Automation of specific physics checks has been suggested as one potential avenue for 

reducing errors219. The earliest report of an automatic error detector dates back to 2007, with the 

publication of a clustering algorithm to detect plan outliers227. Since then, research into 

automating many parts of the physics check practice can be found in the literature154,228–231. 

These publications focus primarily on the verification of technical details or data transfer—

quantitative values which are good initial candidates for automation. Such studies make the case 

that automating repetitive tasks frees up time for the medical physicist to investigate events or 

complex issues, or to spend greater time on plan quality evaluation—in sum, to devote greater 

cognitive effort to complicated patient cases rather than the routine checking of treatment 
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parameters. However, limited research has been done into the applications of automation to the 

specific task of IGRT image review. Though there is wide practice variation in whether 

physicists perform image review, for those clinical medical physicists who routinely review 

images as part of their chart checks, it can be a time-consuming process. Thus, IGRT image 

review may be a good candidate for automation research.  

7.1.2 Recent AAPM guidelines 

Our work stands in light of the recent efforts of the American Association of Physicists in 

Medicine Task Group 275 (AAPM TG-275) who sought to “provide practical, evidence-based 

recommendations on physics plan and chart review for radiation therapy.” TG-275’s 

recommendations were given following a Failure Mode and Effects Analysis (FMEA)232 based 

partly on a survey distributed to clinical medical physicists working in radiation oncology. The 

results of the survey deployed as part of this Task Group highlight a wide range of different chart 

checking practices currently being used by clinical medical physicists233. While this survey 

covered a broad range of demographic and chart checking topics, it used multiple choice 

questions to capture data, which limits the potential for a deeper qualitative analysis into why 

such variations among institutions and professionals exist. The work we present here 

complements the efforts of TG-275, in that we utilized semi-structured interviews to understand 

in greater detail the current shortcomings of the weekly chart check process and examine 

potential ways for improving the process. 

Building off the findings in TG-275, the authors of Medical Physics Practice Guideline 

11.a (MPPG-11.a) strove to develop a professional guideline of the minimum standard of patient 

chart checks that should be performed in order to ensure patient safety234. Both AAPM TG-275 
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and MPPG-11.a acknowledge that as new technologies, particularly new automated 

technologies, enter the market, the workflow of chart checks will change. Deficiencies present in 

the error-detection potential of current chart checks62,226 further justify the need for continuous 

improvement of the chart check process, especially as patient treatments grow ever more 

complex. Indeed, the authors of TG-275 opined: “Taken together, the results of these studies 

indicate a need to improve plan/ chart review processes. Improvements are needed not only in the 

content of what is checked but also in the implementation of these checks to improve 

performance through various methods including standardization and automation” (emphasis 

added). 

7.1.3 Study overview 

The primary goal of this work is to understand clinical medical physicists’ perspectives 

on the current weekly chart check process and identify the shortcomings in the practice. We use 

a novel thematic analysis approach to identify common themes among semi-structured 

interviews of clinical medical physicists who are currently involved in their institution’s chart 

check process. The secondary goal is to collect feedback from clinical medical physicists to 

explore avenues for future work on development of automated tools to aid in the time-consuming 

IGRT image review portion of weekly chart checks—an area which has been understudied in the 

research to date. Specifically, our group aims to understand what features of automated tools 

designed to assist with IGRT image review tasks would be most useful to the end user—in this 

case, clinical medical physicists. A critical component of this secondary analysis involves 

investigating any potential barriers to implementation that may arise as a clinic moves forward 

with adopting such technologies into their clinical workflow. Identification of barriers and 
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facilitators is essential to maximizing the adoption and utility of a new tool, technique or 

innovation101,102. To meet these goals, we conducted a qualitative study, using semi-structured 

interviews with practicing medical physicists, and analyzed them using thematic analysis.  

7.2 Materials and methods 

7.2.1 Recruitment of subjects 

Our sampling frame included clinical medical physicists who participate in their 

institution’s weekly chart check process in both academic and non-academic (including 

governmental and community clinic) centers, across a multi-state sample including all regions of 

the United States. Table 7.1 shows how many physicists we interviewed belonging to each 

group. Interviewees were recruited in accordance with the approved IRB protocol. Participants 

were identified through professional contacts of the authors, and no one was recruited for an 

interview with whom there was any supervisorial relationship. Nineteen semi-structured 

interviews with physicists at 16 different clinics were conducted via Zoom with an approximate 

length of 30 minutes each. All interviews were recorded and saved for later analysis.   

Table 7.1: Employment demographics of our interviewees. 

 

 

7.2.2 Quantitative survey questions 

Our interview script included several quantitative survey questions. Respondents were 

first asked to describe their current weekly chart check workflow. They were asked how many 

weekly chart checks they perform per week, how often they perform IGRT image review as part 

of their regular weekly chart check, and how long they typically spend on this image review. 

Place of employment Number of interviewees 

Academic medical center 10 

Non-academic medical center 9 
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They were then asked about any tools they currently use to automate any part of their weekly 

chart check. Physicists were asked to rate on a scale from 1 to 10, where 1 was least important 

and 10 was most important, the importance of 1) reducing the time spent on image review, and 

2) increasing the effectiveness of image review.  

7.2.3 Semi-structured interview design 

Semi-structured interviews are a well-established technique for data collection in various 

healthcare fields235–239. Interviews follow a general script, while also allowing room for deviation 

from the script, potential probing questions, and for conversational flow. Our interview script 

included several topics. Respondents were asked open-ended questions regarding what they view 

as the shortcomings of the current chart check process, focusing specifically on the IGRT image 

review component. Interviewees were then asked about what features of an automated tool to 

assist with the IGRT image review portion of chart checks they would find useful. A beta version 

of an automated IGRT image review tool developed by our group240 was shown to interviewees 

and feedback was collected on desired features of such an automated tool. The software interface 

shown to interview participants displayed an image alignment score along with previous scores 

for the same patient and cumulative data for the clinic overall. Finally, respondents were asked to 

describe the potential barriers and facilitators to use of automation in the weekly chart check 

workflow that they could anticipate arising in their own clinic. The full interview script, 

including both the survey questions and the semi-structured topic questions, can be found in 

Appendix 2. 
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7.2.4 Transcription of interviews 

Zoom audio recordings of the interviews were transcribed using NVivo241 transcription 

software (Lumivero, Denver, CO). Manual review and correction were performed to ensure 

transcriptions were accurate.  

7.2.5 Thematic analysis  

Thematic analysis is, broadly speaking, “a method for identifying, analyzing, and 

reporting patterns (themes) within data”242. It has previously been identified as a research method 

that has broad applicability to a range of qualitative health research questions243. Thematic 

analysis involves the collection of data, often via semi-structured interviews or focus groups, and 

the subsequent analysis of common themes across that dataset. This technique is well-established 

in qualitative research, with applications ranging from analyzing the perceptions of corruption in 

the construction industry244 and identifying health themes in the realm of smart home 

technology245, to the more narrowly medical field-focused applications of generating themes 

describing the views of postnatal health care246 and, most recently, identifying themes related to 

the experiences of both frontline healthcare providers247 and patients248 during the COVID-19 

pandemic. Thematic analysis offers an accessible approach to qualitative research in general249, 

as it does not require the use of a pre-existing theoretical framework (unlike various other 

approaches to qualitative research). It is well-suited for our task of analyzing how clinical 

medical physicists currently conduct weekly chart checks and their feedback regarding the 

introduction of automation to the process.  

Clarke, Braun, and Hayfield, in their book chapter on the topic249, describe the six steps 

necessary to conduct a high quality thematic analysis: data familiarization, coding, generating 
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themes, reviewing themes, defining and naming themes, and writing the report. We conducted 

data familiarization through a preliminary read-through of our collected data, to gain a general 

familiarity with the type of data involved. During the coding process, we analyzed the data in 

finer detail and defined excerpts of text into various codes. Figure 7.1 depicts a frequency 

analysis of the ten most commonly used codes in this step. This step remained fluid, and we 

utilized a mix of semantic and latent coding250. Semantic codes focused on the things explicitly 

stated by participants, while latent codes focused more on the underlying meanings of what was 

said249. For this study we took an inductive approach to coding, where the codes were generated 

based directly on the data itself, rather than a deductive approach that brought in preconceived 

notions about what the data might show. This approach is favored for cases in which there are no 

previous studies on the topic that may inform the researcher about what to expect in the data251. 

During theme generation, we combined multiple codes into larger overarching themes that told a 

story about the data. In this step it was vital to not confuse themes with topics—a common issue 

in thematic analysis research identified by Braun and Clarke252. Themes are patterns of shared 

meaning, characterized by a central concept. Shared topics, such as all the responses to the same 

interview question, do not by default fit into this narrow definition. The themes were then 

reviewed, and particular attention paid to thinking critically about whether the story told through 

the candidate themes answered our original research questions253. The steps to this point were 

iterative, and we continually checked our codes and themes against the data to ensure that we 

both accurately portrayed the data through our themes and addressed the outlined goals of this 

work. Following multiple iterations, we defined and named our final themes, which are reported 
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in the Results section that follows. This chapter represents our work in writing up our findings to 

tell a cohesive story about the interview data through the distinct but related final themes. 

The entire research group met and discussed the interviews in order to gain a general 

familiarity with the topics brought up by the respondents. Two members of the group coded 

interviews independently, meeting regularly to discuss areas of agreement and of deviation in the 

coded interviews. Once nine interviews had been coded and reviewed, we determined that 

interviews were being coded the same by the two researchers and a single researcher coded the 

remaining ten interviews independently. New codes were still brought to the larger research team 

for discussion as they were developed. All members of the research team provided regular input 

as the codes (and later, themes) were developed and modified. The interdisciplinary nature of our 

team allowed us to maintain methodological rigor. Clinical investigators’ backgrounds included 

medical physics graduate students, clinical medical physicists, and a physician with qualitative 

research training and experience. 

Figure 7.1: A frequency analysis of the ten most commonly used codes in the thematic analysis.  
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7.3 Results 

7.3.1 Thematic Saturation  

We interviewed medical physicists from 16 unique institutions, located in 15 different 

states. Interviewees represented all geographic regions of the United States, including the 

Northeast, Southeast, Midwest, Southwest, and West. The saturation curve shown below in 

Figure 7.2 shows the integral number of new codes encountered as a function of interview 

number. Guest et al. used a similar methodology to show that thematic saturation in their dataset 

occurred within 12 interviews254. Based on this curve, we determined that conducting further 

interviews would likely not yield a significant number of new codes and thus would likely not 

change our final themes.  

Figure 7.2: The integral number of unique codes encountered during our coding process (with 158 total 

unique codes identified) as a function of the interview number. From this curve, we concluded that the addition of 

further interviews would likely not significantly change our final themes. 
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7.3.2 Quantitative results  

The medical physicists we interviewed reported reviewing an average of 21 ± 7 patient 

charts per week (range: 8 to 40). Thirteen physicists reported that they do not routinely review 

patient setup images during their weekly check, with only 5/19 reporting that they review all 

images as part of their physics check. The most commonly cited reason for not reviewing images 

was the physicist reporting that they consider this aspect of chart checks to be the physician’s 

responsibility, with nine respondents explicitly voicing this sentiment. While medical physicists 

who receive their graduate education at CAMPEP-accredited institutions are required to receive 

basic training in anatomy and physiology, the guidelines offered in AAPM Report No. 365255 are 

not comparable to the intense anatomy training required of physicians. When asked how much 

time they spend reviewing an image in a patient’s chart, the responses ranged from 30 seconds to 

ten minutes (median: 2.5 minutes). The responses to this question included physicists who 

reported reviewing all images as part of their weekly chart checks along with those who reported 

reviewing only select images. For those who reported reviewing only select patient images, the 

majority voiced that the images they do review tend to be those that appear to have an issue or 

that are complicated cases, and thus significantly more time must be devoted to image review. 

The time difference in IGRT image review between these two groups is reflected in the large 

time range reported above. Thirteen physicists reported currently using some form of automation 

in their weekly chart check workflow, including both commercially-available tools and in-house 

software. Physicists did rank highly the value of using automation to reduce the time spent on 

weekly chart checks (average 6.3 on a scale from 1 to 10), but they placed significantly more 
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value on increasing the effectiveness of weekly chart checks (that is, catching more errors), 

reporting an average of 9.2 on this same scale. 

7.3.3 Four major themes  

Thematic analysis identified four major themes across the semi-structured interviews that 

we conducted. 

A. Weekly chart checks need to adapt to an electronic record-and-verify chart 

environment  

While physicists we interviewed shared that they personally had caught errors during the 

course of their weekly chart checks, these errors tended to be documentation errors. Physicists 

expressed frustration with the current weekly chart check workflow, specifically calling out the 

long list of documentation checks as an inefficient use of time. 

“I would say the vast majority are small things like documentation, like something was 

left out or like a document wasn’t put in or, you know, maybe something wasn’t entered right.” 

(Non-academic medical center) 

“Here’s what I’m going to hear that I’ve made a suboptimal chart check, it’s because 

something wasn’t billed correctly. Some document that is there wasn’t approved. Or some 

document that was there was mislabeled…which has nothing to do with actually checking if the 

treatment went well or not.” (Academic medical center) 

Physicists called attention to the fact that many of the things that are still being checked 

during the physics weekly chart checks are holdovers from an earlier era of paper charts. 

Specifically, physicists mentioned many failure modes are now extremely improbable with the 
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electronic record-and-verify systems in place in most clinics, and yet these failure modes are still 

a major part of the weekly checks. 

“I think nowadays it’s just, there’s so many things that are like more robust, more 

automated. There’s just so much less room. You’re not going to have the wrong MU, like the 

machine is not going to let you have the wrong MU. So things like that that could have been a 

big problem before are not really issues anymore, and we’re still treating them like they are.” 

(Non-academic medical center) 

“We used to check SSDs and some machines we have, like with Siemens, like surface 

mapping. So guess what? The SSDs are always right.” (Academic medical center) 

“We’re looking at the paper, we’re calculating the number of fractions, the dose and 

total dose. We’re doing all this manually in the past, as you remember. Now like in the Varian 

system, everything is calculated for you.” (Non-academic medical center)   

Instead, physicists said that a greater focus and priority should be given to directing 

cognitive resources and expertise towards investigating anomalies in patient charts, and away 

from menial chart check tasks. 

“There should be some way to filter out things so that you pay attention to the [chart] 

that’s important. Most of them go like clockwork. But there are those odd ones where you have 

to stop and think, and it would be better to devote time to those.” (Academic medical center) 

“And so effectively, your weekly chart checks would just be like reviewing anything that 

looks unusual.” (Non-academic medical center) 

Overall, physicists felt that current weekly chart check workflows were inefficient and of 

low value: 
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“Spending five or ten minutes on the patient just for the sake of doing that, which seems 

to be kind of more the approach right now, I don’t think is really useful.” (Academic medical 

center) 

“It seems like a lot of time that goes into something that doesn’t add a whole lot of value. 

And I personally, I question if that’s where we should be spending our time.” (Non-academic 

medical center) 

B. Physicists have the potential to add value to patient care by analyzing images without 

duplicating the work done by physicians 

The majority of the physicists we interviewed reported that they don’t routinely review 

patient setup images. The most commonly given reason for this was that the physicist views 

IGRT image review as a physician responsibility. 

“I kind of leave that to the physician and look for their feedback, if there’s a problem 

with the images.” (Academic medical center) 

“We just take a glance at them then make sure they are reviewed but we’re not 

necessarily the ones review[ing] them. It’s the physicians’ charge code, so it’s physicians’ 

responsibility.” (Academic medical center) 

An additional factor limiting physicist review of images is a perception that they are not 

appropriately trained to do so: 

“Some of us don’t even know that much of anatomy to say, you know, whether the image 

is good or not good. That’s how I see it from my point of view, right? I’m not clinically trained in 

looking at anatomy and telling what’s right, what’s wrong.” (Non-academic medical center) 
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“I think a physician probably cares more about details of the anatomy alignment. I’m 

looking at the rough error there.” (Non-academic medical center) 

Several interviewees reported that their interpretation of setup images could be hindered 

by the fact that the physician alignment priorities were not documented in a way that was easy to 

integrate into the weekly chart check process. Thus, for those physicists who did report 

reviewing images regularly or for the patient cases where a physicist image review was 

necessary, a significant amount of time was spent on understanding setup instructions rather than 

on a review of the images themselves. 

“If there’s an issue with the setup, I have questions like, why does this setup look this 

way? There’s not really a good communication between what was done at the machine versus 

what someone can look up later to understand the decisions they made at the time of treatment.” 

(Academic medical center) 

“I think probably the thing that takes me the longest is trying to figure out what the 

physician has ordered.” (Academic medical center) 

However, many physicists still expressed that IGRT image review was one area where 

their technical expertise could potentially have the greatest impact on patient care and treatment 

quality.  

“That’s probably the most useful thing you can do is like, look at, verify images.” (Non-

academic medical center) 

“So I think that the place we have the most room to gain … or to add the most value is a 

better review of our images. But the way we do it right now, a human looking at it and then 
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having to remember what they looked at last week or from two days, like the Monday versus the 

Tuesday image, is really ineffective.” (Academic medical center) 

When IGRT image review is being done by a physicist, it’s currently done in isolation. 

Interviewees expressed that opportunities likely exist to utilize automation for a different look at 

image review. For example, automation could allow physicists to analyze large volumes of 

image data quantitatively or to look at setup images as a continuation of trending image 

alignment metrics. The introduction of a new algorithmic approach to image review and the 

interpretation of its results would be well within the purview of the clinical medical physicist, 

and could add a new layer of information not currently accessible, ultimately improving patient 

safety.  

“If you have to do [image review], it can take a ton of time, and you’re still left guessing 

at the end whether it was right or wrong. So something that’s objective, that can look through a 

large volume of data very quickly, that would be helpful.” (Academic medical center) 

 “One of the biggest issues is there’s no way to assess qualitatively; you look at each one 

in a vacuum.” (Academic medical center)  

C. Greater support for trending analysis would increase the value of weekly checks 

A lack of trending information was identified as a major shortcoming in the current 

weekly chart check process. Interviewees specifically reported that the large amount of data was 

difficult for a human to interpret without looking at it as part of a larger trend, but that such 

trending information is difficult to access in the current weekly chart check workflow.  
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“I believe that there is more value to trending different parameters from the Linac and 

from the imaging as you do it and from the delivery basically all together than to the actual 

review of the chart because everything is computerized.” (Non-academic medical center) 

“We have no way to trend right now in ARIA. You know, there’s no automated report to 

say, show me all the head and neck patients that have large target volumes and their daily shifts 

or their daily image alignment score, right?” (Academic medical center) 

“That’s something that computers and the software can do really well and humans can’t. 

With all this AI stuff—like humans, we can’t trend well. But computers can, and they can get that 

information in a way that’s useful for us.” (Academic medical center) 

The importance of trending was highlighted even further when interviewees talked about 

image review. Physicists expressed the need for a greater focus to be given to trending analysis 

in IGRT image review, citing bladder and rectal filling in prostate cases, weight loss and tumor 

shrinkage in head and neck cases, and adaptive re-planning as examples of patient cases where 

tracking and trending setup images over time could help them be more efficient and proactive in 

their chart checks.  

“I, as a human, have a hard time integrating the information from one daily image to 

another. And I think there’s a lot of information to be gained there.” (Academic medical center) 

“I do not know exactly how much the structure of the organs have changed. I don’t have 

like any trending of, as I said, bladder filling or rectal filling for prostates. I don’t have any 

tracking in terms of volume changes of the patient’s GTV in a head and neck case.” (Non-

academic medical center) 
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“One issue that I have is really if you’re considering re-simulating a patient due to 

anatomic changes, that’s a very, you know, qualitative decision at this point. It would be nice to 

have some sort of algorithmic approach to this with some threshold.” (Non-academic medical 

center) 

D. Increased automation has the potential to make weekly checks a higher value activity  

Physicists expressed that many of the things currently being checked on their weekly 

chart checks are documentation or numerical checks, which are prime candidates for a transition 

to automated checks. Opportunities likely exist to utilize automation for many of these checks 

and rethink what should be manually reviewed by the physicist as part of their weekly chart 

check process.  

“I mean, we lack a lot of automation. I think there’s a lot of things that can be 

automated, as you say, a pre-check, weekly check and all kinds of stuff can be automated.” 

(Non-academic medical center) 

“Because we lack automation to really just kind of turn over every stone [chart checks] 

are, you know, a medium level of activity.” (Academic medical center) 

“More of that kind of stuff is better and then, you know, it’s safer and it takes away all 

the bean counting of our job, which is great.” (Non-academic medical center) 

One benefit of automation is that humans have a limited attention span when faced with 

repetitive tasks, and so might not catch all the errors present in the data. Physicists expressed this 

concern directly, citing that human error likely makes weekly chart checks less effective than 

they should be. 
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“I think it’s better to catch those things than a human eye. And because you are doing 

that as a routine, you get fatigued and you skip things.” (Non-academic medical center) 

“Most of the time, everything works like clockwork, so you become accustomed to that. 

But then there are those that for some reason don’t fit and you have to have either a sharp eye or 

just be very lucky to spot it.” (Academic medical center) 

Many of the physicists we interviewed expressed that a thorough weekly chart check is 

very effective at catching egregious errors, but it is not scalable because of the time it takes. In 

their view, the current weekly chart check process contains many inefficiencies and ultimately 

takes too much time and mental energy for every single patient check to be done thoroughly.  

“I feel like the problem with the weekly chart checks is number over quality.” (Academic 

medical center) 

“In some ways I’m impressed and some other ways I’m like, well, how much time does it 

take spent on a weekly check to catch that? And how much is actually luck and how much is 

there in parallel that we don’t catch. I mean, to me, it always seems like it’s the visible tip of the 

iceberg, and if we caught that there were probably quite a few other things.” (Academic medical 

center) 

Interviewees pointed out that a key opportunity for automation was the flagging of anomalies for 

further investigation. Such tools could allow for physicists’ time and cognitive resources to be 

directed in a more focused manner on investigating the complex patient cases, ultimately 

improving patient safety in the clinic overall.  

“An ideal setup for me for chart check would be something that is really good at flagging 

suspicious things.” (Academic medical center) 
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“With the machine, automation can kick in to replace that part and we spend time to 

investigate the real problem, that will be nice.” (Non-academic medical center) 

“We’ll catch errors more consistently than all of us doing slightly different weekly chart 

check. Second we’ll be efficient. And so we free up time for us to do something more constructive 

than repetitive work.” (Academic medical center) 

7.3.4 Barriers to use 

Three broad categories of potential barriers to use of automation in the weekly chart 

check workflow were reported in response to our semi-structured interview questions on the 

topic: existing clinic environment, workload and time concerns, and tool-specific technical 

factors. The most commonly reported barriers to use in each of these categories are shown in 

Figure 7.3. The single most commonly identified barrier to clinical use of an automated tool was 

overcoming their clinic’s IT permissions, with 11 out of the 19 respondents reporting this barrier 

could hinder their adoption of such tools. Other existing clinical environment factors that could 

be barriers to implementation included the cost of a new tool and software fatigue (meaning a 

wide variety of software is already in use in their clinic, and there is low motivation to introduce 

more). A second area of concern for physicists was that their clinic’s adoption of automated tools 

could, perversely, lead to increased workload on the physics staff. Physicists reported concern 

that the time needed to trust algorithm results, the time needed to implement a new tool, and the 

time needed to operate the software and interpret results could all lead to increased strain on an 

already busy physics staff. Third, physicists pointed to several tool-specific technical factors that 

could present barriers to clinical adoption. Algorithm reliability (or lack thereof), vendor-
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agnostic integration, and a lack of trust in “black box” machine learning algorithms were all 

mentioned as potential barriers to clinical use.  

7.4 Discussion 

Our results show that most physicists believe that change of their weekly chart check 

procedures is urgently needed. As technology change in the radiation oncology clinic has 

continued and indeed accelerated over the past few decades, weekly checks have not kept pace. 

Physicists pointed out many checks currently done as a matter of routine practice in their weekly 

chart checks that no longer add to patient safety the way they did when they were first 

introduced. This reflects a key recommendation of AAPM TG-275, which points to the need for 

a TG-100 FMEA approach to be taken in regards to the physics weekly chart checks. It is 

noteworthy that none of the physicists we interviewed directly mentioned the need for FMEA to 

Figure 7.3: The most commonly reported barriers to the use of automation in the weekly chart check workflow. 
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be considered in weekly chart checks, nor was TG-275 mentioned even indirectly. TG-275 and 

the associated practice guidelines are relatively recent; perhaps it will simply take time for this 

recommendation to be widely adopted.  

Physicists rated the value of increasing the effectiveness of weekly chart checks higher 

than decreasing the time spent. This sentiment could be attributed to physicists’ dedication to 

safety or, due to the perfunctory nature of many current chart check tasks, physicists may be 

spending minimal time on weekly checks to begin with. Physicists we interviewed spoke to the 

human error and mental fatigue aspects of weekly chart checks as limitations in their value. 

Clearly, physicists feel that chart checks have imperfect sensitivity to detect errors, and evidence 

exists in the literature to support this62,219,226.  

Our data suggest that the field of medical physics could examine the potential for 

physicists to be more involved in image review. Not all physicists perform image review as part 

of their weekly chart check tasks, as we have shown in this chapter. It is beyond the scope of this 

work to set forth guidelines for the clinical medical physicist regarding image review, but the 

results presented here may help inform the debate of whether and how medical physicists should 

be involved in the process. Currently, physicists are under ever increasing time pressures256,257, 

which means that more and greater complexity chart checks are being done with less resources. 

Physicists have the potential to add value in a different, perhaps more algorithmic, approach to 

image review. The physicists we interviewed expressed the sentiment that if physicist resources 

could effectively be freed up for image review, this could be a valuable additional layer of safety 

in the clinical workflow. Weekly chart checks currently take a good deal of physicists’ time to 
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complete, but if the routine checks could be automated or otherwise made more efficient then 

physicist efforts could be more realistically dedicated to analyzing new image review metrics.   

Physicists we interviewed felt that there was a potential role for automation in the weekly 

chart check workflow to supplement the human checks, and did not express concern about 

automation replacing them in the clinic. Specifically, physicists reported the desire for more 

automated tools that flag anomalies, allowing them to analyze complex cases and investigate 

complex problems. AAPM TG-275 suggests that software vendors should continue to work 

towards the development of automated tools that can assist with chart review tasks, while also 

being cognizant of the limits of automation. Automation bias is a real and well-documented 

concern217,218, and the development of automated tools should be coupled with research into 

minimizing the associated automation bias. It is noteworthy that only one physicist cited job 

security as a barrier to use of automated tools in their weekly chart checks. This contrasts 

strongly with job security concerns related to automated treatment planning, which is a 

considerable source of worry for dosimetrists with our work in Chapter 6 finding that 21/34 

dosimetrists explicitly voiced this concern258. While computers and automation can assist in the 

process and make the weekly checks more efficient and more effective, physicists still seem to 

feel that there will be a place for them in the clinic. This sentiment fits neatly within one of the 

stated trajectories of Medical Physics 3.0 (MP3.0)259, namely Sustainability, which argues for a 

redistribution of the medical physicist’s responsibilities in order to better pursue value-based 

goals. Physicists can preserve a place for themselves in the clinic by advocating for new 

automated tools that complement their role and allow them to shift their focus to complex tasks, 

thereby increasing their value to the clinic overall. 
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When interviewees were asked about what features of a new automated weekly chart 

check tool would be important, every single one of them highlighted the need for trending 

analysis. Many of the checks currently being performed in the weekly chart check workflow are 

performed in isolation, and the physicists we interviewed spoke of the value that trending 

analysis could add. As more and more automated tools are put forward by industry, our data 

suggest that examining what sort of trending analysis support can be offered by such tools could 

be useful to clinical medical physicists. Physics checks encompass a huge volume of data, which 

is potentially an opening for AI-based dimensionality reduction techniques to assist with a more 

effective chart review. While automation can perhaps support a greater emphasis on trending 

analysis, physicists pointed out that their expertise would still be needed in the clinic to interpret 

such results. 

Even as the applications of automated technologies continue to expand, there is still a gap 

between research findings and the clinical implementation of those findings. As new automated 

technologies are developed, a conscious effort should be made to study the barriers to use and 

ensure that advances in research translate to advances in clinical care. We found that the most 

commonly reported barriers to use of automated weekly chart check tools can be broken down 

into the following categories: existing clinic environment, workload and time concerns, and tool-

specific technical factors. As researchers and developers continue to automate ever more of the 

physics chart check tasks, a focused effort should be given to understanding these barriers and 

the implications for clinical adoption of their automated tools. 

Our study has a number of limitations. While we attempted to reach a diverse group of 

medical physicists through our recruitment efforts, we are cognizant of the limitations we faced. 
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Only two of our 19 respondents reported employment at community clinics, although we did 

reach seven physicists employed at governmental health clinics. Taking these two groups 

together, we interviewed nine physicists employed at non-academic medical centers in 

comparison with the ten physicists employed at academic medical centers. Our respondents 

represented 16 unique institutions and 15 states from all regions of the country (Northeast, 

Southeast, Midwest, Southwest, and West), although our cohort was limited to clinical physicists 

currently practicing in the United States. The conclusions we reach in this study may not 

translate well to other countries, where the chart check requirements could be vastly different for 

clinical medical physicists. By soliciting participants based on professional contacts, we may 

have introduced a selection bias in the physicists we considered for this study, but this does not 

necessarily translate to a true self-selection bias in the respondents. Of the 21 clinical physicists 

who were contacted about this study, only two declined to participate or did not respond. Related 

to selection bias, we may have interviewed physicists with strong opinions on weekly chart 

checks or automation research, and not reached those who are ambivalent on the topics. Finally, 

we acknowledge that our sample size of 19 respondents is not large. This is not atypical for a 

qualitative research study; studies published in recent years investigating Diversity, Equity, and 

Inclusion in radiation oncology260 and resilience among medical physics residents261 have 

conducted semi-structured interviews with cohort sizes of 26 and 32, respectively. In addition, a 

rigorous thematic analysis includes depth of data collection and achieving thematic saturation, 

more than the specific number of people interviewed. Our structured interview script was 

detailed, requiring 30 minutes to complete, and each interview provided a wealth of information. 

As noted above, during the course of our thematic analysis of these 19 interviews, we concluded 
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that thematic saturation had been achieved and that further interviews would likely not yield 

additional themes.  

7.5 Conclusion 

In this work, we use a novel thematic analysis to identify the shortcomings of the weekly 

chart check process from the perspective of the clinic medical physicist. We describe four major 

themes, which each complement the findings and recommendations of AAPM TG-275. Clinical 

medical physicists described both a need for greater automation in the weekly check process and 

a sentiment that the process itself must adapt in light of increasingly automated systems. As 

automated technologies continue to become increasingly prevalent in the clinic, the FMEA 

approach advocated by TG-275 and the value-based care focus advocated by MP3.0 suggest that 

the current way of doing weekly chart checks needs to be re-evaluated. This would allow for 

more effective physics chart checks that emphasize follow-up, trending analysis, FMEA, and 

other higher value tasks that improve patient safety.  
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 CONCLUSIONS AND FUTURE WORK 

8.1 Summary of work 

The goal of Specific Aim 1 was to develop novel tools for the automatic detection of 

patient misalignments in daily setup images. In Chapter 2 we developed a CNN-based model to 

automatically detect off-by-one vertebral body misalignments in patients treated to the thoracic 

spine. We established the necessity of using image data from a multi-institutional collaboration 

in order to improve model performance, increasing the area under the ROC curve from 0.942 to 

0.992 with the incorporation of training data from all institutions. At the 95% specificity, the 

leave-one-institution-out models achieved a mean sensitivity of 92.9% in detecting off-by-one 

vertebral body misalignments. The model sensitivities ranged from 85.5% to 99.8%, suggesting 

that there are real quantifiable differences in the images from different institutions. An updated 

method for generating off-by-one vertebral misalignments that are consistent with the 

stereoscopic geometry of the ExacTrac system was developed in Chapter 3. A multi-input CNN 

trained on this geometrically-realistic data obtained an AUC of 0.988 as compared to 0.975 for a 

model trained on independent planar image sets from the same patients. We observed that the 

sensitivity at 99% specificity decreased from 67.9% to 43.8% by using stereoscopic data in our 

model training, but that the sensitivity increased from 91.9% to 96.4% at the 95% specificity 

level. Overall, the model performance did not degrade with the transition to clinically-realistic 

image data used for model training and testing. In Chapter 4, we evaluated the performance of a 

model developed to detect more generic patient misalignments. A multi-input model trained and 

tested on random translational shifts in all anatomic regions achieved an area under the ROC 
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curve of 0.970 in detecting shifts of 1 cm from treatment isocenter. At the 95% specificity, the 

model achieved a sensitivity of 94.7% in detecting these translational misalignments. 

A novel method for quantifying the IGRT error rate at UCLA was developed to address 

Specific Aim 2. In Chapter 5, we applied the models developed in Chapter 3 and Chapter 4 to 

retrospective image data collected from patients’ daily setup imaging in order to search for 

previously unreported treatment errors and near miss events. A treatment error resulting from 

overly aggressive masking during x-ray to DRR image registration was discovered as a result of 

applying the generic multi-input model. Manual review determined that this patient was 

misaligned for 7 of 30 fractions, and that the magnitude of the misalignment was approximately 

1 cm at the base of the skull. We calculated an error rate per fraction of 0.06% for UCLA, which 

is in line with the well under 1% figure commonly cited in the literature. We also identified two 

previously unreported near miss events, both involving mix-ups of patient names. Based on these 

incidents, we calculated a near-miss rate per fraction of 0.02%, although no data currently exists 

in the literature with which to compare this figure. 

In Specific Aim 3, we evaluated the barriers and facilitators to implementing new 

automated technologies clinically. Chapter 6 addressed the barriers to use of auto-contouring 

and automated treatment planning tools as reported by medical dosimetrists. The most 

commonly reported barriers to use were contour inaccuracy and the inability to easily modify 

automated plans. Dosimetrists also expressed explicit job security concerns, with 21/34 worrying 

that automated tools would hurt the job market. Cluster analysis showed that dosimetrists 

employed at community-based clinics were more likely to report that lack of access to automated 

tools was an important barrier to use than their peers employed at academic medical centers. The 
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current weekly physics chart check workflow was evaluated in Chapter 7 to understand how a 

new tool designed to assist with IGRT image review could best be clinically integrated. 

Thematic analysis was used to generate four distinct themes from semi-structured interviews of 

clinical medical physicists: 1. weekly chart checks need to adapt to an electronic record-and-

verify chart environment, 2. physicists have the potential to add value to patient care by 

analyzing images without duplicating the work done by physicians, 3. greater support for 

trending analysis would increase the value of weekly checks, and 4. increased automation has the 

potential to make weekly checks a higher value activity. Physicists ranked highly the value of 

using automation to reduce the time spent on weekly chart checks (average 6.3 on a scale from 1 

to 10), but they placed significantly more value on increasing the effectiveness of weekly chart 

checks (that is, catching more errors), reporting an average of 9.2 on this same scale. 

8.2 Future directions 

When training our CNN-based model to detect vertebral body misalignments, we 

originally treated each set of x-ray/ DRR image pairs independently. Image data was only 

considered in-plane, ignoring the stereoscopic geometry of the ExacTrac system. Chapter 3 

describes the preliminary stages of incorporating the stereoscopic geometry into the generation 

of synthetically shifted training data. Extending this methodology to a multi-institutional 

collaboration of institutions and larger dataset would likely show even further improvements in 

the model performance. Our multi-input model to detect more general setup errors was trained 

on the limited set of generated 1 cm translational errors. Introducing different, perhaps subtler, 

types of errors in the data generated for training purposes could allow for the detection of a wider 

range of patient misalignments that could occur in the clinic. 
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Both of the models we developed for automatic detection of patient misalignments were 

applied to retrospective image data from patients who had already completed their treatments. 

Five years of treatments were analyzed for treatment errors, but future work could either expand 

the time frame investigated at UCLA or investigate retrospective data from outside institutions to 

better quantify the true IGRT error rate. In addition, it would perhaps be more powerful or 

clinically useful to integrate both into the clinical workflow for real-time alerts of patient 

misalignments. Future work on integrating the models to provide feedback at the time of 

treatment is worth exploring. 

Our survey study of medical dosimetrists only investigated reported barriers and 

facilitators to use of automated tools that are commercially available. Expanding the scope of the 

questions to include automated tools currently in development could provide valuable feedback 

and directions to researchers regarding features that would be helpful to the end user. Future 

work using qualitative research methods to explore the motivations behind the reported barriers 

to use in greater depth could also prove illuminating. The semi-structured interviews we 

conducted with clinical medical physicists allowed us to understand the current weekly chart 

check workflow and how a proposed automated tool could fit into this pipeline. Follow up 

studies investigating the results of implementing such a tool and quantifying the clinical impact 

should be explored.    
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APPENDIX 

A.1  Survey distributed to medical dosimetrists  

Prior Use: 

1. I have used the following types of automation tools for radiation oncology (select all 

that apply). Please select all options that you have used at any point in your career, even if 

you do not currently use that tool or if you have used it infrequently. 

- Deep learning-based auto-contouring (for example, Mirada DLCExpert, MIM 

ContourProtege-AI) 

- Atlas-based and/or model-based auto-contouring algorithms (for example, MIM Atlas 

Segment, Varian Velocity, RayStation MABS/MBS, Pinnacle SPICE, Elekta ABAS) 

- Knowledge-based plan quality assessment (for example, Sun Nuclear PlanIQ) 

- Automated planning using knowledge-based planning (KBP) algorithms (for example, 

Varian RapidPlan) 

- Automated field-in-field planning (for example, Radformation EZFluence) 

- Automated planning using rule-based or template-based algorithms (for example, Phillips 

Pinnacle Auto-Planning, Raysearch Raystation Auto-Planning) 

- Automated planning using other algorithm not listed above 

- Automated planning, specific algorithm unknown  

1b. If you selected “other algorithm”, please specify the algorithm used in the field 

below: 

Auto-Contouring: 
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2. Please rate your level of experience with auto-contouring from 1 (not familiar at all) to 

5 (extremely familiar) 

- 1 

- 2 

- 3 

- 4 

- 5 

3. I have used deep learning-based auto-contouring (e.g. Mirada DLCExpert, MIM 

ContourProtege-AI) for the following body sites (select all that apply): 

- Head and neck 

- Thorax 

- Breast 

- Pelvis (prostate, bladder, rectal, etc.) 

- Extremities 

- Intra-cranial 

- None of the above 

4. I have used atlas-based and/or model-based auto-contouring (e.g. MIM Atlas Segment, 

Varian Velocity, RayStation MABS/MBS, Pinnacle SPICE, Elekta ABAS) for the following 

body sites (select all that apply): 

- Head and neck 

- Thorax 

- Breast 
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- Pelvis (prostate, bladder, rectal, etc.) 

- Extremities 

- Intra-cranial 

- None of the above 

5. How often do you use auto-contouring? 

- Daily 

- Weekly 

- Once or twice a month 

- Less than once a month 

- Never 

6. Please rank the following options to indicate where you have heard about auto-

contouring. Enter 1 for where you’ve heard about it the most and 4 for where you’ve heard about 

it the least. 

- Scientific talks at professional meetings 

- Vendor booths at professional meetings 

- Peers at other clinics 

- Colleagues at my own workplace 

7. I would be more likely to use auto-contouring algorithms if (select all that apply): 

- My clinic purchased an auto-contouring product 

- My site physicist and/or supervisor provided more support of auto-contouring 

- Auto-contouring algorithms were more accurate. 
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- Auto-contouring algorithms could produce contours that followed my institution’s 

contouring guidelines. 

- Auto-contouring algorithms would leave image slices blank rather than producing a 

contour in those slices that then needed to be heavily edited 

- Auto-contouring algorithms could tell me specific parts of the contour that needed my 

attention 

- Other 

7b. Please specify other things that would make you more likely to use auto-contouring 

algorithms in the field below: 

8. I dislike auto-contouring because (select all that apply): 

- I would rather start contouring from scratch than have to modify auto-contours, even if 

the time taken is about the same 

- I am concerned that the algorithm will make a contouring error that I won’t catch 

- Other  

8b. Please specify other reasons you dislike auto-contouring in the field below: 

9. Please rate your level of agreement with the following statements based on your 

personal experience using deep learning-based auto-contouring (e.g. Mirada DLCExpert, 

MIM ContourProtege-AI). If you feel that the statement does not apply to your personal 

experience, select “not relevant to me.” 

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me 

- Modifying auto-contours takes longer than creating the contours from scratch 
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- The contours produced by the deep learning-based algorithm are often so incorrect that 

auto-contouring adds nothing of value 

- Auto-contouring saves enough time for me to think that it’s worth using  

- I am concerned that use of auto-contouring could lead to treatment errors; for example if 

the algorithm contours an organ incorrectly and leads to an overdose of that organ 

- I believe that deep learning-based auto-contouring is ready for routine clinical use 

- When I use deep learning-based auto-contouring, I spend a lot of time checking the 

contours produced by the algorithm 

10. Please rate your level of agreement with the following statements based on your 

personal experience using atlas-based and/or model-based auto-contouring (e.g. MIM Atlas 

Segment, Varian Velocity, RayStation MABS/MBS, Pinnacle SPICE, Elekta ABAS). If you feel 

that the statement does not apply to your personal experience, select “not relevant to me.” 

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me 

- Modifying auto-contours takes longer than creating the contours from scratch 

- The contours produced by the atlas-based/ model-based algorithm(s) are often so 

incorrect that auto-contouring adds nothing of value 

- Auto-contouring saves enough time for me to think that it’s worth using 

- I am concerned that use of auto-contouring could lead to treatment errors; for example if 

the algorithm contours an organ incorrectly and leads to an overdose of that organ 

- I believe that atlas-based/ model-based auto-contouring is ready for routine clinical use 
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- When I use atlas-based/ model-based auto-contouring, I spend a lot of time checking the 

contours produced by the algorithm 

Automated Treatment Planning: 

11. Please rate your level of experience with automated treatment planning in general 

from 1 (not familiar at all) to 5 (extremely familiar) 

- 1 

- 2 

- 3 

- 4 

- 5 

12. I have used knowledge-based plan quality assessment (e.g. Sun Nuclear PlanIQ) for 

the following body sites (select all that apply): 

- Head and neck 

- Thorax 

- Breast 

- Pelvis (prostate, bladder, rectal, etc.) 

- Extremities 

- Intra-cranial 

- None of the above 

13. I have used automated planning using KBP algorithms (e.g. Varian RapidPlan) for the 

following body sites (select all that apply): 
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- Head and neck 

- Thorax 

- Breast 

- Pelvis (prostate, bladder, rectal, etc.) 

- Extremities 

- Intra-cranial 

- None of the above 

14. I have used automated field-in-field planning (e.g. Radformation EZFluence) for the 

following body sites (select all that apply): 

- Head and neck 

- Thorax 

- Breast 

- Pelvis (prostate, bladder, rectal, etc.) 

- Extremities 

- Intra-cranial 

- None of the above 

15. I have used automated planning using rule-based or template-based algorithms (e.g. 

Phillips Pinnacle Auto-Planning, Raysearch Raystation Auto-Planning) for the following body 

sites (select all that apply): 

- Head and neck 

- Thorax 

- Breast 
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- Pelvis (prostate, bladder, rectal, etc.) 

- Extremities 

- Intra-cranial 

- None of the above 

16. I have used automated treatment planning for the following body sites (select all that 

apply): 

- Head and neck 

- Thorax 

- Breast 

- Pelvis (prostate, bladder, rectal, etc.) 

- Extremities 

- Intra-cranial 

- None of the above 

17. How often do you use automated treatment planning? 

- Daily 

- Weekly 

- Once or twice a month 

- Less than once a month 

- Never 

18. I would be more likely to use automated treatment planning if (select all that apply): 

- I was provided with more information about how to use the tools 
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- I was provided with more information about how the algorithms work behind the scenes 

- My clinic purchased an automated treatment planning product 

- My site physicist and/or supervisor provided more support and/or more training on 

automated treatment planning 

- The automated treatment planning algorithm produced a plan that was easier to modify or 

“tweak” to get the optimal plan 

- The automated treatment planning algorithm produced better plans that didn’t need any 

modifications by the dosimetrist 

- Automated treatment planning was available for a wider range of types of treatment plans 

- Other 

18b. Please specify other things that would make you more likely to use automated 

treatment planning in the field below: 

19. I like automated treatment planning because (select all that apply): 

- It allows me to work through a higher patient caseload 

- I have a higher degree of confidence in the quality of the plans that I am submitting to the 

prescribing physician 

- Other 

19b. Please specify other reasons that you like automated treatment planning in the field 

below: 

20. I dislike automated treatment planning because (select all that apply): 

- I do not believe that the plans are of the same quality as those generated by experienced 

dosimetrists 
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- Modifying automated plans takes more time than generating a comparable quality plan 

from scratch 

- I enjoy plan optimization and I don’t want to give up that part of my job 

- Other 

20b. Please specify other reasons that you dislike automated treatment planning in the 

field below: 

21. Please rate your level of agreement with the following statements based on your 

personal experience using knowledge-based plan quality assessment (e.g. Sun Nuclear 

PlanIQ). If you feel that the statement does not apply to your personal experience, select “not 

relevant to me.”  

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me 

- Knowledge-based plan quality assessment leads to higher quality treatment plans 

- Knowledge-based plan quality assessment saves time by helping me know when my plan 

is good enough so that I can stop optimizing 

- I am concerned that use of knowledge-based plan quality assessment could lead to 

treatment errors; for example if the algorithm makes an error and I don’t catch it. 

- Knowledge-based plan quality assessment decreases the amount of time I spend on any 

single patient case. 

- I believe that knowledge-based plan quality assessment is ready for routine clinical use. 
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22. Please rate your level of agreement with the following statements based on your 

personal experience using KBP automated treatment planning (e.g. RapidPlan). If you feel 

that the statement does not apply to your personal experience, select “not relevant to me.” 

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me 

- KBP automated planning leads to higher quality treatment plans 

- KBP automated planning saves time by helping me know when my plan is good enough 

so that I can stop optimizing 

- I am concerned that use of KBP automated planning could lead to treatment errors; for 

example if the algorithm makes an error and I don’t catch it. 

- KBP automated planning decreases the amount of time I spend on any single patient case. 

- I believe that KBP automated planning is ready for routine clinical use. 

23. Please rate your level of agreement with the following statements based on your 

personal experience using automated field-in-field planning (e.g. EZFluence). If you feel that 

the statement does not apply to your personal experience, select “not relevant to me.” 

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me 

- Automated field-in-field planning leads to higher quality treatment plans 

- I am concerned that use of automated field-in-field planning could lead to treatment 

errors; for example if the algorithm makes an error and I don’t catch it. 

- Automated field-in-field planning decreases the amount of time I spend on any single 

patient case. 
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- I believe that automated field-in-field planning is ready for routine clinical use. 

24. Please rate your level of agreement with the following statements based on your 

personal experience using automated treatment planning using rule-based or template-based 

algorithms (e.g. Pinnacle Auto-Planning, RayStation Auto-Planning). If you feel that the 

statement does not apply to your personal experience, select “not relevant to me.” 

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me 

- The automated treatment planning tool I have used leads to higher quality treatment plans 

- I am concerned that use of automated treatment planning could lead to treatment errors; 

for example if the algorithm makes an error and I don’t catch it. 

- Automated treatment planning decreases the amount of time I spend on any single patient 

case. 

- I believe that the automated treatment planning tool I have used is ready for routine 

clinical use. 

25. Please rate your level of agreement with the following statements based on your 

personal experience using automated treatment planning. If you feel that the statement does not 

apply to your personal experience, select “not relevant to me.” 

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me 

- The automated treatment planning tool I have used leads to higher quality treatment plans 

- I am concerned that use of automated treatment planning could lead to treatment errors; 

for example if the algorithm makes an error and I don’t catch it. 
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- Automated treatment planning decreases the amount of time I spend on any single patient 

case. 

- I believe that the automated treatment planning tool I have used is ready for routine 

clinical use. 

General level of Agreement: 

26. Please rate your level of agreement with the following statements: 

Options: disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, 

not relevant to me. 

- I believe auto-contouring will continue to get better and by the end of my career, most or 

all normal tissue contours will be automatically generated. 

- I worry that automated treatment planning will hurt the job market for dosimetrists. 

- If automation reduces the time to make a plan, I will just get more plans and be even 

busier. 

- I worked hard to gain my treatment planning skills and I value them highly. To see them 

devalued would be a disappointment. 

- I am concerned that routinely using automated treatment planning will cause me to get 

out of practice on planning difficult patient cases. 

- I believe automated treatment planning algorithms will continue to get better and by the 

end of my career will replace most manual treatment plan optimization. 

- Planning goals at my clinic aren’t very standardized. 

- I would want to use automated treatment planning tools if I knew they worked well. 

Demographics: 



134 

 

27. What is your age? 

- 20-29 

- 30-39 

- 40-49 

- 50-59 

- 60+ 

- Prefer not to answer 

28. How many years have you been employed as a medical dosimetrist? 

- Less than 5 

- 5-9 

- 10-19 

- 20+ 

29. Are you certified by the Medical Dosimetrist Certification Board? 

- Yes 

- No 

30. What is your gender? 

- Male  

- Female 

- Other/ non-binary 

- Prefer not to answer 

31. What is your highest level of education? 
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- Associate’s degree 

- Bachelor’s degree 

- Master’s degree 

- Doctorate  

- Prefer not to answer 

32. Which of the following best describes your current clinical environment? 

- Non hospital-based community practice 

- Hospital-based non-academic medical center 

- Academic medical center 

33. How many radiotherapy treatment machines are in use at your clinic (including any 

satellite clinics)? 

- 1 

- 2-4 

- 5-8 

- 9+ 

A.2 Semi-structured interview script  

First I will be asking you a few questions about your current workflow: 

1. How many chart checks do you perform per week? 

2. How many setup/treatment images do you review per week? 

a. About how many images are generated per patient per week? 

b. Do you review kV and/or MV planar images? Do you review CBCT images? 
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c. Do you review them in Offline Review, or a similar “live” system that allows review 

of the fusion, or do you review them in PDF form only? 

3. Please talk me through how long you think you might spend reviewing the images per patient 

for a weekly check. Consider all time costs, including the time it takes to open the patient in 

the review software, load each image, and close the patient. 

Prompts: 

a. How fast does it go with images that are easy to check? What fraction of images is 

this? 

b. How fast does it go with images that are more subtle to check? 

4. Do you use any products that automate weekly chart checking? Automate pre-treatment 

checks?  

a. Prompt with Radformation ChartCheck, ClearCheck, Varian Chart QA. 

5. What are the shortcomings of the current weekly chart check image review process in your 

view?  

Our group is developing software to work with the ARIA Oncology Information System 

from Varian.  It interrogates the treatment database at the end of the day, identifies new images, 

and uses an AI tool to assess the quality of the alignment and flag any anomalies.  A summary 

report then is automatically generated for all patients.   

(Show Powerpoint slides here) 

6. We think that the two most useful potential aspect of the tool are 1) to reduce the amount of 

time spent on weekly checks without increasing error rate; and 2) to increase the 
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effectiveness of weekly checks (catch more errors). Please rate the relative importance of the 

following: 

a. Reduce the amount of time spent on weekly checks without increasing error rate  (1-

10 1 being the lowest importance and 10 being the highest) 

b. Increase the effectiveness of weekly checks (catch more errors) 1-10 

Prompts/probes about why? 

a. Tell us about how you feel about the value of weekly chart checks? Do weekly chart 

checks frequently catch errors? 

b. Can you tell us an error you’ve caught with weekly chart checks? Was it correctible? 

Did it lead to a process change? 

As we develop the tool, we are looking to understand what would be most helpful for 

people who are going to use it.  

7. How would you prefer to interact with this tool? 

a. Program with a GUI that you start up when you want to use it? 

b. Receive an emailed report daily? 

c. Receive an emailed report at a configurable time interval? 

d. Any other method? 

8. There are a number of features we are considering including in this tool.  I am going to 

review a list of them to see whether you would find them useful or not and why. 

a. Would you like to see an alignment score for every image?  Why or why not? 
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b. Would you prefer that the tool flags images with alignment scores falling below a 

pre-determined threshold, or would you prefer for it to flag images with the lowest 

percentile alignment scores (so that it always flags a fixed percentage of images)? 

c. Would you like a graphical display of alignment scores?  Why or why not? 

d. Would you like to see per-patient trendlines?  Why or why not? 

e. Would you like the tool to include the images themselves, or would you revert to 

Offline Review to review flagged images?  Why or why not? 

f. Are there any other features you would suggest that I have not already mentioned? 

9. If you were using this tool, what might make you more comfortable decreasing the amount of 

time reviewing images not flagged by the tool? 

We are also interested in understanding more about potential barriers to using the tool.  

10. What barriers to your use of the tool might you anticipate? 

a. One potential barrier is IT permissions.  If the software tool could be easily loaded 

onto your Varian network, how difficult do you anticipate it would be to obtain 

permission to install the software?  (probe if difficult) What would make it difficult?  

(Probe if not difficult) What would make it not too difficult? 

b. Existence of appropriate computational infrastructure? 

c. Consider a recent example of technology adoption in radiation therapy that was (or 

was not) successful. What factors determined that technology’s success? What were 

the barriers to adoption that were or were not overcome? 

11. Would you be interested in using this tool if it was available?  

a. (If yes) why? (If not), why not? 
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b. Probe the issue of whether they review every single image or not – does this help 

improve safety or reduce time or both? 

12. Do you have any further comments, suggestions, concerns, or ideas regarding this 

tool? 
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