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Abstract

In recent decades, the cost of acoustic technologies has
declined dramatically. Advances in networks, storage de-
vices, and power management have made it practical to
consider the remote location of sensors. Nonetheless, many
challenges remain for the fabrication, deployment, and use
of remote sensors.

This paper provides an overview of the issues involved
in developing remote acoustic sensors. We discuss physi-
cal design and the integration of components, data storage
and communication issues, signal acquisition and classifi-
cation, and the relationship of these issues to power usage
requirements.

1 Introduction

The design, implementation, and deployment of remote
acoustic sensors is a broad area with many cross discipline
aspects. Remote acoustic sensors come in all sizes and
shapes, ranging from simple stand alone recording devices
to integrated sensor networks where acoustics may be only
one of many modalities. In many cases, remote acoustic
sensors have stringent energy requirements which can place
restrictions on the storage, communication, processing, and
signal acquisition properties of the devices.

In locations with limited infrastructure, power manage-
ment and the ability for the user to access or retrieve the data
are paramount. In some situations, the need for localization
or improved signal to noise ratio may dictate the use of mi-
crophone arrays. Deployment in hostile environments such
as arctic or deep sea conditions requires additional consid-
erations.

Remote sensors are capable of generating large acoustic
or mixed media data sets. With these large corpora, the need

for automated processing becomes critical as the staffing re-
quirements for human analysis are both cost and labor pro-
hibitive. The development of automated analysis can yield
valuable data such as seasonal or diel behavioral patterns of
animals, surveillance, or perimeter intrusion detection.

While many of the aspects of remote acoustic sensors
are interdependent, this overview paper is organized into
sections which discuss individual facets of these devices.
Section 2 describes choices related to the physical design
of the sensor and the integration of components. Sections 3
and 4 discuss power and communication/data management
issues. Section 5 describes design choices and issues related
to data acquisition, and classification of the data is covered
in section 6. Finally, we conclude with a summary of rele-
vant trends and research directions.

2 Packaging and System Integration

Packaging refers to all of the mechanical aspects of an
embeddable node, while system integration refers to the
process of selecting appropriate components and modules
and integrating them into a working system. Because these
tend to be less technical issues, they are often glossed over
in research reports, despite the fact that they comprise some
of the most time-consuming elements of building an em-
bedded sensing system. In addition, the decisions made in
this process ultimately determine the scope of features that
a system can support.

When developing a new design for remote deployment,
there are a number of design requirements to take into con-
sideration:

Form Factor. The size and weight of the system, as well as
the number of separate components, all make a tremendous
difference in the amount of effort required to deploy the sys-
tem. This is especially important for systems that must be
deployed and removed rapidly.
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Environmental Conditions. Difficult weather conditions
such as moisture, extreme temperatures, wind, dust, immer-
sion in water, or high pressure will require special pack-
aging. The activity of animals can present problems; e.g.,
animals destroying cabling, antennas, or microphone wind
screens. For many remote applications, protection from hu-
man tampering or theft is also required.

Mechanical Sensor Configuration. Holding the sensors in
a solid mechanical frame will provide higher reliability and
enable more repeatable experiments. For sensor arrays, the
ideal size and shape may depend on the application.

Lifetime. Remote systems are often costly to visit for main-
tenance, and in some cases maintenance visits are impos-
sible [31]. Routine maintenance such as replacement of
batteries and local storage media can be planned based on
maintenance costs. On-site maintenance caused by failures
is generally difficult to predict without experience and ex-
tensive testing to work out bugs.

Computational Capacity. Local computation can be used
to implement real-time responses at the sensor, as well as
data reduction to maximize the utility of limited storage and
network capacity. Some designs, such as LEAP [20] sup-
port a low-power always-on “preprocessor” that can wake a
main processor when events of interest occur. The specific
algorithms to be used determine the requirements in terms
of RAM and processing power. Local processing increases
the software complexity of the system as well as energy and
heat dissipation requirements.

Storage Capacity. Large-capacity persistent storage can
archive raw data, eliminating the need for local data reduc-
tion or real-time network transfer. Flash drives have smaller
capacity than hard drives, but are more mechanically robust
and energy-efficient.

We will see throughout this paper that these choices
have a significant impact across many aspects of building
a remote embedded sensing system. In practice, many of
these choices are dictated by component availability and re-
sources, both in terms of time and funding. The task of as-
sembling a platform is a difficult compromise between cost,
capability, and flexibility in the face of unknown future re-
quirements.

3 Energy Management

Energy is one of the most difficult challenges in devel-
oping a remote embedded acoustic system. Much of the
prior work in embedded sensing has focused on low-rate
sensing of environmental parameters, such as temperature
and humidity [34] [12]. While low-rate sensors can con-
serve energy by sleeping much of the time, this problem is
much more challenging in acoustic sensing. In addition, the

much higher data rates associated with acoustic sampling
typically require more processing, storage, and network re-
sources, in general leading to higher energy requirements.

3.1 Factors Contributing to Energy Con-
sumption in Acoustic Sensing

There are several primary contributors to the energy re-
quirements of an acoustic sensor system, including: the ana-
log front end, sampling, digital processing, storage, and net-
work transmission.

Analog Front End and Sampling. As a rule, the cir-
cuits required to amplify and sample the acoustic sensors
draw a significant amount of power, at best between 10 and
100 mW, and often considerably more.1 This is partly due
to theoretical lower bounds on energy requirements [35] and
partly due to inefficiencies imposed by practical implemen-
tations [22]. Achieving low power performance often re-
quires custom designs, since off-the-shelf solutions are of-
ten not designed for energy saving.

Some applications may only need to be active at certain
specified times when the phenomenon of interest occurs,
and can “duty cycle” by shutting the system down when
it is not needed. But for those applications that require con-
tinuous digital monitoring, there is no way around this cost.
In some cases, a continuously running low power analog fil-
ter can be used to trigger digital sampling and processing.
However, if the trigger circuit incurs latency, this type of
design will typically lose some part of the triggering event
in the interim before the sampling process starts.

Digital Processing. The energy requirements of a main
processor board vary widely depending on the architecture,
clock rate, and the amount and type of RAM. Processor ar-
chitecture and feature sets have a wide-ranging impact, in-
cluding bit width, virtual memory support, floating point
support, “MMX” instruction sets, support for special digi-
tal signal processing (DSP) features, and voltage and clock
scaling. Often specialized DSP chips can yield performance
gains, although these solutions tend to be more customized
and typically do not support a full-featured operating sys-
tem, which makes building a sophisticated system more dif-
ficult.

The cost of refreshing dynamic RAM (DRAM) is one of
the most significant power costs after the CPU itself, and
scales with the size of the RAM. This cost dominates in
situations where the processor is idle or in “standby mode.”
Saving the RAM to persistent storage and shutting down
the CPU completely eliminates that cost, but incurs a long
startup latency. One promising new technology is “Unified
Memory,” in which a small, fast SRAM is used as a write

1Our systems are based on the 4-channel Digigram VXPocket 440,
which draws 2 W, and a custom preamplifier that draws 40 mW [11].
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cache for a larger flash memory. Such a solution can avoid
both the power cost of DRAM and the limited speed and
write cycles of flash.

Persistent Storage. Persistent storage technologies include
flash, hard drives, and new “hybrid” drives that are just start-
ing to become available from Samsung. Flash has a low
power cost and high mechanical robustness, but has many
disadvantages; in particular, the slow speed of the erase cy-
cle, the limited number of permitted write-erase cycles, and
the smaller capacities relative to hard drives. Hard drives are
very costly in power and must be protected against shock,
although smaller drives tend to be more shock resistant.
The lowest power and most durable hard drives currently
available are “microdrives,” which typically require about
45 mW standby power and 800 mW when writing.2 Hy-
brid drives are a forthcoming technology that couple a hard
drive to a large flash write buffer. Internal software writes
new data to flash, only spinning up the drive when necessary
to clear space in the flash. The flash write buffer eliminates
the standby cost and optimizes write costs.

Networking. Wireless networking is another significant en-
ergy cost. Since wireless systems must emit energy to com-
municate, there are theoretical lower bounds on the energy
costs [7]. In addition, inter-node coordination, channel es-
timation and negotiation, and recovery from message loss
introduce significant additional overhead. In general, wire-
less networks impose a significant energy cost when idle,
waiting to receive, and higher costs to actually send and
receive data. For example, the SMC 2532W 802.11B card
draws 0.5 W in “power save” mode and 3 W when transmit-
ting.3 To avoid this idle cost, the system must completely
shut down the radio, which requires additional coordination
in the network to determine when to bring the network up.
In some instances, a low-power paging channel can be used
for coordination, as in the LEAP platform [20] and related
work.

3.2 Energy Technologies

For some remote embedded sensing applications,
infrastructure-supplied energy may be available. For the
rest, the system will need to store energy for its use, and
possibly recharge that energy supply. In this section we dis-
cuss different alternatives for this.

Batteries. Battery technologies vary in energy density and
in ease of use. The highest energy densities are currently
achieved by the Lithium Ion (Li+) battery technology, com-
monly used in laptops. These batteries are very lightweight
and have high energy density, but are also expensive and

2Technical specifications from Hitachi 3K6 Microdrive.
3From specifications on the SMC website, http://www.smc.com.

easily damaged. In addition, specialized charging circuits
are required to use Li+ batteries without damage, and most
providers of off-the-shelf solar power solutions do not sup-
port them. However, Li+ batteries are ideal for fielded sys-
tems where the batteries are periodically swapped, or for
temporary deployments.

Deep-cycle lead-acid batteries are the most commonly
used type of battery for solar charging applications. These
batteries are heavy but tend to be inexpensive and durable.
Charge controllers that integrate with wind generators or so-
lar cells are readily available off-the-shelf.

Solar Panels. Depending on the deployment environment,
different energy sources may be available: wind, water, and
sunlight are the most common. Solar panels are desirable
because they do not require any moving parts. However,
solar panels can perform poorly for several reasons. Dirt
on the panel from animals or from wind-carried dust can
block the sun from the panel. In addition, the entire panel
must have access to the sun. Because the panel is composed
of many cells wired in series, any cell that is not in sunlight
will consume rather than generate energy. This means that a
panel in shadows or with partial coverage will have greatly
reduced output.

4 Communication Environment and Data
Reduction

Networking remote embedded sensors varies greatly
across different deployments, from cases where there is
very limited or no connectivity to cases where direct In-
ternet access is possible. Given a data rate and local data
reduction policy, the capabilities of the network, combined
with local storage capacity, determine the duration of the
experiment. There are several networking technologies to
consider:

No Connectivity. Deployments on the sea floor, in caves,
and other locations that have no RF connectivity may sim-
ply rely on mass storage to collect data, perhaps with an
alarm mechanism or very low bandwidth link for control
and status monitoring. Such sites may also be served by
“data mules” that physically visit and download data.

Satellite Internet. Satellite Internet can provide high speed
access to remote locations, although uplink speeds are gen-
erally limited to 56 Kbps. However, with limited sample
rates and data compression, it may be possible to stream
back complete data. Satellite phones are also a possibil-
ity, although they are costly and provide only 2.4 Kbps data
rates.

Long-range Wireless. Long-range wireless links may be
useful for reaching nearby infrastructure, although instal-
lation of such links requires both time and monetary in-
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vestment. Off-the-shelf 802.11 radios can be coupled with
amplifiers and directional antennas to provide a low-cost
long-range link. Work at CENS on the MASE seismic ar-
ray has deployed a multi-hop 802.11 network with links as
long as 10 Km.4 Multi-hop wireless networks are difficult
to implement; for this deployment a significant investment
in custom routing software was required. High speed con-
nections are also feasible. HPWREN5 deploys a number of
embedded sensors (including audio) on a wireless regional
network which spans large portions of the county of San
Diego, California with a 45 Mbps wireless backbone. When
audio is deployed on a large network, quality of service is-
sues become relevant for some applications.

Short-range Wireless. Compared with long-range multi-
hop networks, short range networks are relatively easy
to implement; many routing solutions exist off-the-shelf,
e.g., [1]. Using a short-range network, a single point can
act as a local server or a gateway to the Internet for a col-
lection of rapidly deployable nodes. For remote deploy-
ments, the server can be a single node with enhanced stor-
age, processing, and user interface capabilities. Short-range
networks can also provide time synchronization services.
Systems that implement cooperative signal processing of-
ten rely on the Global Positioning System (GPS) to pro-
vide tight time synchronization, but GPS is not available in
all locations, e.g., inside buildings or under dense canopies
of foliage. Short-range networks can be used to propa-
gate GPS time references to nodes in GPS-denied areas, en-
abling them to participate in cooperative signal processing
algorithms [6] [17].

In consideration of these different technologies, there
are clearly limits to the amount of acoustic data that can
be carried. A single channel at 16 bit / 24 KHz amounts
to 384 Kbps, already larger than the low-end Digital Sub-
scriber Line (DSL) uplink speed, and significantly more
than what can be achieved with satellite hardware. For
many applications, higher sample rates and sensor arrays
are desirable; these requirements multiply the raw data
rates.

Local data reduction can address these issues. Lossless
compression using the Free Lossless Audio Codec6 or Wav-
Pack7 can often achieve lossless reduction of 50% or more.
Selecting the minimum sample rate required, or applying a
decimation filter in software also cuts down the data rate.
In cases where the phenomenon is well-understood, lossy
reduction algorithms can be used, such as wavelet compres-
sion or event detection and segmentation.

4See http://www.cens.ucla.edu/Project-Descriptions/
Seismology/index.html.

5See http://hpwren.ucsd.edu
6See http://flac.sourceforge.net.
7See http://www.wavpack.com.

Lossy techniques can be used to reserve the limited net-
work bandwidth only for events of interest, while locally
storing all data, or can be used to extend the lifetime of the
experiment by locally storing only a subset of the raw data.
In the latter case, a tiered data retention policy should be
formed in which complete raw data are stored for portions
of the experiment, and the remaining space is used to store
reduced data covering a longer time period.

5 Signal Acquisition

In Sections 2 and 3 we discussed some of the factors
concerning signal acquisition. Solid packaging and secure
wiring are critical to getting good results from an acoustic
sensing system. In this section we expand on this topic,
discussing a number of issues relevant to signal acquisition.

5.1 Minimizing Electronics Noise

Commercial off-the-shelf products are usually well-
designed, but it is often the case that custom hardware must
be assembled, either to provide specialized functionality or
for reasons of cost. When building custom acquisition hard-
ware, there are several key design points to consider.

First, it is best to design or purchase an ADC that
supports a differential or balanced input. A differential
input amplifies the voltage difference between two lines
(see [14]), independent of a ground reference. This ap-
proach has two advantages: 1) it ignores any differences
in the ground reference on opposite ends of the signal line,
and 2) any pickup from EMI will affect both lines equally
and will have no effect on the difference.

Second, the signal lines should be impedance matched
and if run over a long distance, they should be a twisted
pair. Impedance matching is critical for noise property (2)
above to hold true. This can be accomplished by placing
closely matched resistors in series with both signal lines.

Third, it is important to provide sufficient power supply
filtering on the supply for the sensor biasing and preamp
electronics. Typically these filters are made up of several
different sizes of capacitor that bypass different ranges of
noise frequency, as in [15]. It may also be best to use a
linear regulator rather than a switching power supply, to cut
down on supply noise.

5.2 Minimizing Environmental Noise

Noise in the environment presents problems for an
acoustic sensing system. In cases where the noise is limited
and restricted to a specific band, it can be readily filtered out
after sampling. However, if the noise level is high enough
to saturate the ADC, then it will not be possible to filter.

Environmental noise can be filtered before sampling in
two ways: 1) using an analog electronic filter on the output
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of the preamp, and 2) using mechanical filters that attenu-
ate noise. Analog filters are typically designed with a fixed
rather than configurable transfer function. They add to the
complexity of the analog front end design, but are a good
idea in cases where the nature of the noise is well-known
ahead of time.

Mechanical acoustic filters are more commonly used to
address environmental noise problems. Wind filters can be
constructed to shield microphones. The operational theory
of wind filters is to shunt wind around the microphone us-
ing a material that is relatively transparent to sound. The
filters are typically composed of a soft, fur-like material
suspended on a mesh around the microphone. In marine
environments, the mechanical coupling between a surface
float and a hydrophone can cause the hydrophone to move
up and down in the water column, producing noise due to
turbulence. Alternatively, when the hydrophone is floated
from an anchor, a current can produce strum on the line. In
both cases, this problem is typically addressed by adding
one or more acoustic dampers to reduce the coupling effect
between the hydrophone and float.

5.3 Signal Enhancement

Once the signal is sampled and recorded digitally, many
signal enhancement options present themselves. With suf-
ficient local processing capacity, many of these techniques
can be applied directly at the sensor, to help with data reduc-
tion. In this section we describe several methods of signal
enhancement.

Filtering. The simplest form of enhancement is filtering
to select portions of the signal based on frequency con-
tent. There are many different types of filter implementa-
tion. The most general method of filtering is to use a Dis-
crete Fourier Transform (DFT) to represent the signal in the
frequency domain. In the frequency domain representation,
individual frequency ranges can be zeroed out, attenuated,
or enhanced arbitrarily. Then, after transforming back to
the time domain, the resulting signal will be a filtered ver-
sion of the original [32]. While the DFT is very useful for
filtering finite segments of signals, it is more difficult to ap-
ply continuously, and is computationally heavier than other
filtering algorithms.

The Finite Impulse Response (FIR) filter is a second type
of filtering algorithm. The FIR produces each output value
based on a linear combination of the previous N input val-
ues, called “taps.” An FIR filter can be designed using a
number of different design tools. FIR filters can represent
low-pass, high-pass, or band-pass filters, and can provide a
variety of “roll-off” characteristics (i.e., how quickly the fil-
ter transitions from the pass to stop band). Sharper roll-off
requires more taps, hence more state in the filter and more
work to compute the linear combination.

A concern for filtering systems is the amount of time
needed to reach steady state. Until samples are available for
all of the N taps, the filter output is ill defined. For systems
triggered by analog events (see Section 3.1), this adds to the
delay in acquiring the signal. The number of taps required
to implement a given FIR filter is inversely proportional to
the width of the transition between pass and stop bands, and
filter designers should take care to avoid making transition
bands narrower than needed.

The Exponentially Weighted Moving Average (EWMA)
smoothing filter is a third type. An EWMA filter is easy
to implement and computationally cheap: at each step, the
new output is a weighted sum of the input and the previous
output. While EWMA may be a good choice for certain
types of application, it suffers from “phase distortion,” in
which phase delays vary as a function of frequency.

Beamforming. When a sensor array is available, beam-
forming techniques can be used to enhance a signal [36]. In
beamforming, signals from multiple sensors are combined
to produce a single, enhanced version of the signal arriving
from a particular direction.

Beamforming is based on the principle that signals arriv-
ing from a particular direction arrive at the sensors at differ-
ent times, as a function of the geometry of the array, the di-
rection of arrival, and the propagation speed of the signals.
If the direction of arrival (DOA) of a signal is known, the
components coming from that direction can be combined
together to emphasize the signals from that direction, while
de-emphasizing other signals.

In the simplest form of this technique, the signals from
several microphones are shifted in phase and added to-
gether. The phase shift is performed in the frequency do-
main so that the phase shift need not be an integral number
of samples. By adding the shifted signals, signals from the
desired direction are emphasized, while other signals will
tend be more likely to cancel each other out.

Beamforming is often combined with an algorithm to es-
timate direction of arrival; see for example algorithms based
on maximum likelihood estimates [3]. These algorithms
will typically estimate the direction of arrival for energy
found in a specific set of frequencies. The resulting DOA
estimate can be used as the input to a beamforming algo-
rithm to enhance the signal, and can be combined across
nodes to localize the source.

6 Signal Detection and Classification

Signal detection and classification are necessary to pro-
vide useful information about large acoustic datasets which
cannot be effectively summarized by human staff due to
cost and time constraints. System designers must make
choices about where the processing will occur, the feature
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set to use, and the types of classification schemes that will
be implemented.

Location of Processing. In most instances, the ideal situ-
ation is to perform all processing on the embedded sensor
and to report classification results as part of the metadata
for the acoustic data. For some applications, only the meta-
data itself need be transmitted, greatly reducing bandwidth
requirements. An example of this type of system is one
where tactical observations are reported to a command and
control center [9]. In other cases, such as for bioacoustic
studies, the acoustic data must be reported in addition to
the metadata as it may be archived for further study or ver-
ification. For bioacousticians, it is frequently desirable to
archive the entire acoustic signal as the data may be used
for new studies at later dates8.

For many embedded sensors, the power, computational,
and storage requirements necessary to implement classifiers
are prohibitive and the acoustic sensor either does limited or
no preprocessing. In these cases, sampled or parameterized
acoustic data is typically sent to a general purpose computer
or cluster where detailed analysis is performed.

Signal Detection. In most applications, it is desirable
to have a low cost algorithm which can identify potential
events of interest. This is typically accomplished using ei-
ther a rule- or classifier-based signal detector. Rule-based
classifiers are typically finite state machines with transition
rules between signal and noise based upon a measure of the
energy in the signal. Li et. al. [19] provide a good example
of this type of system. In contrast, classifier-based systems
such as [27] use machine learning techniques to discrimi-
nate between the signal and the noise. The advantage of the
classifier-based systems is that they are usually more easily
adapted to new environments and do not require as much
tweaking of the parameters to obtain good results. Unfortu-
nately, many classifier-based algorithms have higher com-
putational cost and may not be as well suited for sensors
with limited computational capacity. When multiple net-
worked sensors detect the same event, it is possible to have
the detectors collaborate to determine bearing and report the
acoustic data with the highest SNR.

Feature Extraction. For complex signals such as human
speech, a representation of the short-time spectrum is typ-
ically desirable. Cepstral coefficients (CC) are derived ei-
ther from the output of perceptual filterbanks such as the
so-called Mel filters or from the signal’s linear prediction
coefficients (LPC) [24] (perceptual weighting is possible
for LPC cepstra [13]). The homomorphic transform used
to create the cepstrum has the advantage of transforming
signals that have been convolved into ones that are added,
making it possible to approximate the vocal tract filter or

8John A. Hildebrand, personal communication 2005.

compensate for convolutional noise. It is common to pro-
vide information about the rate of spectral change by ap-
pending the first and second differences of the CCs to the
feature vector.

While perceptually weighted CC are well accepted for
speech technologies, their use is not appropriate in many
non-speech applications. For bioacousticians working with
species whose hearing is radically different from humans,
the use of human centric filters is inappropriate although it
is still possible to obtain good results in certain cases [5, 18].
Recently, Clemins et al. [4] have proposed an extension to
the work of [13] to permit perceptual filters for species with
known hearing characteristics. For non-biological noises,
perceptual filters are not necessarily appropriate.

Classification. A wide variety of classifiers have been ap-
plied to acoustic data. An issue that is likely to have an
influence on classifier choice is whether or not the data has
an expected structure over time such as speech or stereo-
typed animal calls. When the audio has unknown temporal
characteristics (e.g. recognizing a speaker without requir-
ing a predetermined phrase), classifiers that do not typically
capture time domain structure have been shown to be suc-
cessful. Examples of such classifiers include Gaussian mix-
ture models (GMMs) [30, 29], classification and regression
trees (CARTs) [23], support vector machines (SVMs) [2],
and neural networks [8].

Data with structure over time is typically recognized
by other methods. When the acoustic pattern is relatively
consistent from one production to the next, matched filters
[33], correlated spectrograms [21], or dynamic time warp-
ing [26] can be used. For more variable acoustic data, hid-
den Markov models (HMMs) [26, 16] are frequently used
classifiers. HMMs provide a set of state dependent distri-
butions and distributions which govern the transitions be-
tween states. As each observation is processed, the HMM
has the possibility of transitioning to another state. The
state sequence is considered to be hidden, and dynamic pro-
gramming techniques are used to determine the likelihood
of either all possible state transition sequences or the best
one. Most current systems use GMMs to model the state
dependent distributions, but many of the aforementioned
time-independent classifiers [16] have been used in place
of GMMs with excellent results.

The implementations of classifiers cited throughout this
discussion all assume that data has been sent to a centralized
processing location and do not typically address the prob-
lem of distributed learning where decisions are based upon
input from multiple sensors. While less studied, there are
examples in the literature of classification systems which
fuse multiple sensors. Garg et al. [10] demonstrate a system
which uses an ensemble method to improve a Bayesian net-
work which fuses the outputs of visual detectors and a sim-
ple audio signal detector. The interested reader is referred
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to [25] for a general introduction to distributed learning on
a sensor network.

7 Directions for Research

It is always a difficult task to determine the issues whose
resolution will result in the greatest advancement to the
field, and any attempt at soothsaying will of necessity be
biased by the experiences of the researchers making the pre-
diction. We identify three areas that we believe will permit
significant improvements with respect to both the capabili-
ties and deployment of embedded sensors.

Throughout this article, we have made consistent refer-
ences to sensor limitations which can be traced to power re-
quirements. We believe that advances in both power sources
and power management can yield significant improvements
for distributed sensor technologies and should thus be a sig-
nificant focus of research for the future.

Secondly, further work needs to be done on classifica-
tion in noisy environments. While techniques such as beam
forming and means subtraction [16] can help enhance sig-
nals, the contributions of additive and convolutional noise
still remain significant challenges for recognition. Recent
work has addressed the issue of missing or corrupted data,
and proposed techniques for either estimating or ignoring
portions of the short-time spectrum which are determined
to be unlikely to be associated with the signal (see [28] for
a summary). These techniques show promise and should
continue to be explored.

Finally, the majority of systems described in the liter-
ature are experimental in nature and require a significant
learning curve for scientists in other disciplines to use. As
these systems begin to mature, further consideration needs
to be given to user interfaces and how to package complex
concepts into tools that can be easily learned and deployed.
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