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Frequency effects on the scale and behavior of acoustic streaming
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Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing
significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating
from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating
through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate
fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency
and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar
jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at
micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the
critically problematic acoustic source singularity present in Lighthill’s model, replacing it with a finite emission
area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and
hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half
power dependence (U ∼ P 1/2 ∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be
applied to jets produced at low powers—and hence low jet Reynolds numbers ReJ—where a linear relationship
between the beam power and streaming velocity exists: U ∼ P ∼ Re2

J . The ability of the laminar jet model to
predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool
in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the
literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show
that the choice of frequency is a vitally important consideration in the design of small-scale devices employing
acoustic streaming for microfluidics.
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I. INTRODUCTION

Recently, much interest has been paid to ultrasonic sources
as a means to induce fluid motion, known as acoustic stream-
ing, in microfluidic systems [1]. In particular, surface acoustic
wave (SAW) transducers operating at O(10–100 MHz) have
been demonstrated to generate fast acoustic streaming in
small-scale systems [2] such as in drops [3–5] and microchan-
nels [6–9]. Microtechnology exploiting this phenomenon
offers a controlled means to generate fluid flow with standard
microfabrication techniques and without moving parts. With
further advances in the field toward fluid actuation and
manipulation at progressively smaller dimensions, motivated
by the promise of nanofluidics for manipulation and detection
at a single molecule level [10], there is a need to extend
the entire suite of SAW microfluidic operations [1] to these
smaller scales. The main constraint in achieving SAW fluidic
actuation in submicron geometries, however, lies in the SAW
wavelength and hence frequency. This was clearly evident
in the SAW microchannel experiments of Tan et al. [6,11],
who demonstrated a strong relationship between the flow
characteristics and the channel dimension: unidirectional flow
was only achieved in the channel when the channel dimension
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was comparable to the sound wavelength in the liquid (that, in
turn, is dependent on the SAW frequency). It then becomes
apparent that higher SAW frequencies must therefore be
employed to drive SAW actuation in submicron channels.
Nevertheless, there is a lack of fundamental understanding
of the effects of frequency on acoustic streaming arising
from SAWs. We therefore conducted experiments in a large
fluid domain, over a broad frequency range (ω/2π = 20–
936 MHz), with the aim of investigating the behavior of the
acoustic jet unimpeded by solid boundaries. In particular, we
examine the effect of the applied frequency on the geometry
and velocity of the jet, and how these play a role in the
streaming of the fluid. While others have attempted to account
for the effect of frequency ω/2π through the attenuation length
over which the SAW decays, α−1, and hence the distribution of
energy that is leaked into the fluid [12], we contend (and will
show below) that a quantification of the effect of ω on the power
density and hence the streaming velocity u necessitates the
consideration of the acoustic attenuation length of the sound
beam in the fluid, β−1

u , and hence the length scale of the jet,
which itself scales as 1/ω2 [13].

More specifically, as a beam of sound propagates through
a fluid medium, it is attenuated due to viscous dissipa-
tion, relaxation effects, and turbulent fluctuations within the
fluid [13,14], giving rise to a body force along its length.
In microfluidic systems, this beam must be confined within
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FIG. 1. Schematic depicting the effect of frequency on the
attenuation of the sound beam. The cross-sectional area of the
streaming jet and the beam length both decrease as the frequency
of operation increases, resulting in higher streaming velocities u(X)
such that the momentum flux remains constant.

small fluid boundaries, and therefore could be confined in
length by the system geometry. The beam attenuation length
β−1

u , over which its particle velocity decays by a factor of e,
has no effect on the total force applied along the beam, but
greatly influences its distribution. Shorter attenuation lengths
and higher frequencies have the effect of reducing the total
“length” of the beam, thereby increasing its power density.
This is illustrated in Fig. 1, where a conical jet of velocity u and
radius S generated by a sound beam of constant power is shown
at two different frequencies. The “end” of each beam can be
defined by the point at which the beam power has decayed to
a small fraction of the source power, located at a distance Lb

from the source, equal to a few times β−1
u for reasons discussed

later. At this point, both jets have the same momentum flux
J = ρU 2

e A equal to the total acoustic force within the beam, if
viscous dissipation can be neglected; ρ is the fluid density, A is
the jet cross-sectional area, and Ue = [(1/A)

∫∫
A

u2 dA]1/2 is
the equivalent uniform cross-sectional velocity. For a conical
jet, A ∼ S2 ∼ g2X2, where g is a constant that describes
the growth rate of the jet, and hence Ue(X) ∼ J 1/2g−1X−1.
Relating the “end” of the beam to the attenuation length
X ∼ β−1

u and noting that β−1
u ∼ 1/ω2, we arrive at a relation

between the jet velocity and frequency at this point:

Ue

(
X = β−1

u

)
∼ J 1/2g−1ω2, (1)

revealing the effect of the frequency on the streaming velocity
due to the reduction in beam length. Nevertheless, the jet
growth S depends on a number of other factors (discussed later)
that, together with viscous dissipation of its energy, introduces
secondary dependencies on ω.

Here, we revisit the seminal work of Lighthill [14] and
rework his model for the growth of turbulent jets to also model
the laminar regime, which is more directly relevant to acoustic
streaming in small-scale systems at low operating powers,
and can be used to predict the behavior of such systems even
beyond the transition to turbulent jets, as will be shown later.
As high-frequency forcing results in a reduction in the jet
length scale (Table I), the necessity to examine the streaming
velocity field close to the source also requires us to replace
Lighthill’s point source with a source of finite area. In what
follows, we show that the model we derive is validated by the
good agreement between the theoretical scaling predictions we
obtain and measurements of the streaming velocity field from
our experiments over a frequency range that spans two orders

TABLE I. Attenuation length of the SAW surface displacement
at the LiNbO3-water interface, α−1 [Eq. (3)], attenuation length of
the sound beam particle velocity in deionized water, β−1

u [Eq. (12)],
and characteristic peak velocity location, XS , for each operating
frequency.

ω/2π α−1 β−1
u XS

(MHz) (mm) (mm) (mm)

19.7 2.4 120 ∼10
54.2 0.87 16 ∼6
122 0.39 3.1 ∼1
240 0.19 0.80 ∼0.5
490 0.097 0.19 ∼0.2
936 0.046 0.052 < 0.1

of magnitude. We will, however, first provide a description of
our experimental setup in the following section.

II. EXPERIMENTAL METHOD

Rayleigh SAW devices with frequencies ranging from
20 to 936 MHz were produced by fabricating interdigital
transducers (IDTs) comprising straight finger electrode pairs
on 127.68◦ Y-rotated, X-propagating cut, single crystal lithium
niobate wafers (Roditi Ltd., London). This was carried out
using a standard lift-off technique in which a 60 nm layer
of gold was deposited atop a 6 nm chromium adhesion
layer. The IDT finger width and gap are each one quarter
of a SAW wavelength, i.e., λSAW/4; for our 20–936 MHz
devices, λSAW ranges from 196 to 4 µm. The IDTs of the
20–490 MHz and the 936 MHz devices had an aperture of 3.3
and 1.7 mm, respectively. While masking the IDTs, a layer
of trichloro(1H,1H,2H,2H–perfluoro-octyl)silane was vapor
deposited [15] onto the substrate to force the contact angle
of the working liquid (here, we use deionized water) meniscus
to close to 90◦, measured using side-view microscopy (BXFM
Microscope, Olympus, Tokyo) to determine the contact angle.
After removal of the masks, the devices were subsequently
fixed to a mount and the IDTs were permanently connected
to an SMA connector with wire and silver conductive paste.
A network analyzer (E5062A, Agilent, Santa Clara, CA) was
used to determine the appropriate excitation frequencies of
the SAW devices. The SAW vibration velocities generated at
each frequency, η̇, were then measured using a laser Doppler
vibrometer (LDV; UHF–120, Polytec GmBH, Waldbronn,
Germany). We note that the 490 and 936 MHz devices exhib-
ited a frequency decrease of up to 2% and 7%, respectively, as
power was increased; for these devices, the center frequencies
were determined using the LDV (as the network analyzer
operates at low power), defined as the frequency at which the
SAW displacement is at its maximum, suitable for our purposes
here [16]. All other devices were found to have a negligible
shift in their resonance frequency behavior. To determine the
vibration velocity of the SAW η̇ in each experiment, the
maximum vibration velocity η̇m (occurring before contact with
the liquid) was measured for each device over the same input
power range using the LDV and averaged across the width of
the transducer as a function of the voltage. Once in contact
with the fluid, the SAW then attenuates along the axis defined
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FIG. 2. (Color online) (a) The SAW device was vertically
mounted and partly immersed in a water-filled chamber as shown,
not to scale, with a representation of the jet that is generated in
the chamber. (b) Long exposure image produced from a video of
the acoustic streaming at 54 MHz showing the formation of the jet.
(c) Corresponding streaming velocity field calculated over an average
of 500 frames.

by its propagation direction along the substrate surface y:
η̇ = η̇me−αy, (2)

where
α = ρc

ρsVRλSAW
(3)

is the SAW attenuation coefficient [17]. In the above, ρ and
ρs are the liquid (998 kg/m3) and substrate (4630 kg/m3)
densities, respectively, c is the speed of sound in the liquid
(1498 m/s for water), and VR = λSAWω/2π is the Rayleigh
wave phase velocity. We note that the SAW energy leaks into
the liquid in the form of planar waves emitted with a wave
vector parallel to the Rayleigh angle θR = sin−1(c/VR) ≈ 22◦,
measured from the axis normal to the substrate surface (Fig. 2).
It is this angle that defines the axis along which the sound beam
propagates through the liquid. The sound beam within the fluid
must have the same frequency as the SAW, and is assumed to
have equal particle velocity at the solid-liquid interface, given
by Eq. (2). The total power of the sound beam can then be
calculated from [17]

P =
∫ ∞

0
ρwVR η̇2dy, (4)

where w is the width of the wavefront. In this way, the
measured SAW amplitude data can be correlated with the beam
power for each streaming experiment, which we describe next.

Briefly, each device was suspended vertically in a glass-
walled liquid chamber 75 mm long and 25 mm wide, which
was filled with deionized water to within approximately 2 mm

of the lower IDT edge (20 mm total depth), as illustrated in
Fig. 2; we choose chamber dimensions that are sufficiently
large to ensure that the largest jets at low frequencies are
unimpeded within the viewing region. A glass coverslip was
placed on the air-water interface to maintain a no-slip boundary
and ensure that the jet energy is not dissipated through the
excitation of capillary waves [18]. The coverslip was placed
approximately 1 mm from the device surface to avoid contact
and hence interaction with the emanating sound beam. For
the 936 MHz device, the coverslip was removed as the jet
length became comparable to the gap between the device and
the coverslip, and its presence in this case was found to have
minimal influence on the streaming velocity measurements.

To visualize the flow, the liquid in the chamber was
seeded with 4.8 µm fluorescent polystyrene microspheres—
adequately large to avoid Brownian effects and for sufficient
light scatter to accurately determine their positions, but not
large enough for direct acoustic radiation forces on the particle
to overwhelm the drag exerted on the particle [19], important
for accurate flow visualization. The particle trajectories were
assumed to follow the flow streamlines, based on the support-
ing observation in the particle tracking results that indicated
paths were steady in time and did not cross. The flow was
viewed as illustrated in Fig. 2, from the side parallel to both
the SAW device surface and the air-water interface; a mercury
lamp (Fiber-Lite MH–100, Dolan Jenner, Boxborough, MA)
was used to illuminate the flow from above. Each device
was connected to a signal generator (SMBV100A, Rhode
and Schwarz, Munich, Germany) and amplifier (10W–1000C,
Amplifier Research, Souderton, PA) via the SMA cable, with
a small connector placed in series to allow for coupling to a
voltage probe. A range of input power was applied to each
device in this arrangement and the acoustic streaming was
recorded with a high speed camera (Fastcam SA–5, Photron,
San Diego, CA) at 500–2000 frames/s, chosen to ensure
sufficient resolution of the streaming velocity. The camera
was connected to a long working distance microscopic lens
(K2/SC, Infinity, Boulder, CO), positioned so that the focal
plane intersected the central axis of the acoustic jet; the image
area captured approximately 8 mm × 8 mm of the flow field.
The input power range was limited to ensure that the jet was
not disturbed by the effect of the recirculation from the far
wall of the chamber.

Each video was analyzed using particle-tracking software
(Diatrack, Semasopht, Chavannes, Switzerland) that converted
a 500-frame section of each video into an array of displacement
vectors for each particle. The array was processed in MATLAB
(Mathworks, Natick, MA) to produce a velocity field for
each frequency and input power. This was carried out by
averaging the displacement vectors at each spatial location
and dividing by the time between successive frames. It is then
possible to characterize the streaming in each frame by the
maximum velocity within the jet, US , located on the central
beam propagation axis a short distance from the source, XS .

III. EXPERIMENTAL RESULTS

The long-exposure image shown in the bottom left image
of Fig. 2 is a typical representation of the acoustic streaming
generated by each of the SAW devices when operated at its

013203-3



MICHAEL B. DENTRY, LESLIE Y. YEO, AND JAMES R. FRIEND PHYSICAL REVIEW E 89, 013203 (2014)

1 mm

Streaming velocity (mm/s)

0 40 80 120

(b)

(c)

(a)

(d)

FIG. 3. (Color online) Effect of increasing the beam power on
the streaming velocity field for a 54.2 MHz device: (a) 5.8 mW,
(b) 17.3 mW, (c) 50.2 mW, and (d) 108.2 mW. The streaming velocity
was observed to increase with the beam power, but the flow geometry
appeared to be relatively constant.

center frequency. Across the range of frequencies and powers
tested, the streaming appears to generally assume the form
of a steady jet, of semiangle θ ≈ 10◦, produced within the
bulk of the fluid due to the attenuation of the sound beam
arising from the acoustic energy leaked into the fluid from the
SAW. As the applied power was increased to each device, the
streaming velocity is observed to increase, although the flow
structure of the jet appeared to remain relatively constant, as
shown in Fig. 3. Across different devices with different center
frequencies, however, a significant change in the jet geometry
was observed, as depicted in Fig. 4.

While the jet structure is observed to be preserved across
the range of frequencies, the jet length scale, characterized by
XS , is seen to decrease as the frequency is increased. This is
because the attenuation length of the sound beam decreases as
1/ω2, as suggested by the relationship in Eq. (1), thus reducing
the beam length and increasing the power density within the
jet. We further note that the reduction of scale of the system
with increasing frequency also forces recirculation to occur
within a smaller localized region closer to the source, thus
increasing the jet’s velocity and shear stress. This shifts the
location of maximum velocity within the jet, XS , closer to
the acoustic source, evident by the characteristic XS values
measured for each frequency in Table I: XS spans two orders
of magnitude. Power was also found to have a smaller effect
on the location of XS , which we shall address later.

We note that beam power governs the total momentum
imparted by the jet, and thus the length scale required to diffuse
it; therefore, an increase in power extends the total length
of the jet beyond the end of the acoustic forcing within the
beam (Fig. 5). It does not, however, affect the distribution of

1 mm Normalized streaming velocity

0 0.50.25 0.75 1

(b) (c)(a)

(d) (e) (f)

FIG. 4. (Color online) Effect of increasing frequency on the
streaming velocity field u, normalized against the maximum stream-
ing velocity US : (a) 19.7 MHz, (b) 54.2 MHz, (c) 122 MHz,
(d) 240 MHz, (e) 490 MHz, and (f) 936 MHz. The power level for
each frequency was selected for each frequency so it was comparable
across the frequency range: (a) US = 7 mm/s, P = 7.4 mW;
(b) US = 23 mm/s, P = 5.8 mW; (c) US = 47 mm/s, P = 2.7 mW;
(d) US = 27 mm/s, P = 3.2 mW; (e) US = 42 mm/s, P = 7.5 mW;
and (f) US = 28 mm/s, P = 0.8 mW.

the acoustic forcing as this is solely a function of frequency
(when nonlinear effects are negligible), and thus it requires
that even at small input powers the length scale of the acoustic
forcing is comparable to the beam length. This is shown in
Fig. 5, where a beam of low power is compared to one of
high power for a constant frequency of 122 MHz: despite the
large difference in power between the two cases, the flow is
accelerated to maximum velocity over a similar length scale.
However, beyond the end of the beam, the streaming within
the jet of high power remains strong due to the increased jet
momentum.

In all of the cases we examine, the jet is observed to remain
nonturbulent, characterized by steady streamlines and low
hydrodynamic Reynolds numbers Res = ρUsL/µ of order
1–100, µ being the shear viscosity of the fluid (10−3 Pa s)
and L the characteristic system length scale (typically 1 mm).

Though Lighthill’s model [14] suggests a rapid transition to
turbulence from laminar flow as a consequence of the appear-
ance of convective acceleration as a significant component

1 mm

(a)

XS

(b)

XS

2.3 -1 2.3 -1

FIG. 5. (Color online) Effect of increasing the beam power on
the streaming velocity field for a 122 MHz device: (a) P ≈ 0.1 mW,
US = 6 mm/s; (b) P = 3 mW, US = 47 mm/s. A radius equal to
2.3β−1 = 3.7 mm is shown as an estimate of the end of the beam: the
location at which the beam power drops to 1% of the source power.

013203-4



FREQUENCY EFFECTS ON THE SCALE AND BEHAVIOR . . . PHYSICAL REVIEW E 89, 013203 (2014)

FIG. 6. (Color online) Schematic representation of the geometry
of the sound beam and resultant streaming jet. The beam originates
from a source of finite area L1L2 (in Lighthill [14], a point source
is assumed) and grows in dimensions s1 and s2 along the beam
propagation axis X. Both beam and jet are assumed to have a Gaussian
distribution about the central beam propagation axis. Also shown at
the bottom is a typical representation of the jet velocity variation
along its central axis, along which the beam energy attenuates
U (X) = u(X,s1 = 0,s2 = 0), showing that U attains a maximum
value US at a distance from the source XS before decaying. This
is, however, only true for an acoustic source of finite area; as shown
in Fig. 7, the jet velocity generated by a point acoustic source does
not have a characteristic maximum at some distance but asymptotes
to infinity as X → 0.

of the momentum in the jet, we see inertial effects on the
flow but no direct evidence of turbulence [20]. This and the
necessity to examine the streaming flow field close to the
source warrants a modification of Lighthill’s model that was
derived for a turbulent jet emanating from a point acoustic
source; the modified form treats laminar flow from a finite
area source. In the next section, we proceed to develop such a
model.

IV. THEORETICAL MODEL

A number of forms of acoustic streaming have been inves-
tigated since the original work by Rayleigh [21]. These studies
predominantly fall within two groups: streaming generated
within either the boundary layer [22–24] or in the fluid bulk
along the length of an attenuating sound beam, giving rise to
a steady momentum flux that is proportional to the applied
power [14]. An analytical solution for the latter—the focus of
the present work—was developed by Eckart [25], Nyborg [26],
Markham [27], and Westervelt [28], constructing a general
relationship between the purely oscillatory sound field,
and a time-averaged acoustic forcing that drives the steady

FIG. 7. (Color online) Predictions of the streaming velocity U of
the jet along the beam propagation axis X generated by a 100 MHz
source for a beam power of (a) 0.1 mW, (b) 1 mW, and (c) 10 mW.
The finite area source model predictions are provided as solid black
lines for laminar and dotted black lines for turbulent flow. In these
models, the jet velocity reaches a maximum US at a distance XS

from the source, indicated by blue squares for the laminar jet and
red diamonds for the turbulent jet: note how XS depends upon the
input power for the case of a laminar jet but does not for the turbulent
jet. Compare these results to Lighthill’s turbulent jet model with a
point source [14] (dashed red lines): there is no ability to compute the
maximum jet velocity US in his representation, and the jet velocity
near the source grows to infinity.

streaming. The acoustic forcing was identified to be a
consequence of Reynolds stress gradients present in an
attenuating beam of sound, though the particular solutions
derived by the above authors were limited to very slow
flows [14].

Lighthill [14], on the other hand, presented a method
to calculate the acoustic streaming field generated by high-
intensity acoustic fields, taking the form of a turbulent jet.
The model assumes a sound beam that originates from a
point source and propagates through the liquid to produce
an axisymmetric turbulent jet whose spreading, S, along the
axis of the beam propagation, X (Fig. 6), can be determined
by requiring the energy of the system to be conserved as the
beam energy attenuates. The beam width is allowed to grow as
kX to produce an axisymmetric fluid jet along the same axis
with an assumed Gaussian axial velocity distribution along the
radial axis, s:

u(s) =
√

2f (X)
πS2

exp

[

−
(

s

S

)2
]

, (5)

where S is a measure of the jet radius, and f (X) is a function
governing the momentum flux of the jet, ρf (X). We note
that the relationship between the jet momentum flux, velocity,
and area in Eq. (5) is for a point source and therefore results
in a velocity that is singular at the source as S → 0, as
shown in Fig. 7: it is only valid some finite distance from
the point source. In any case, the beam model is designed to
approximate an analytical solution to an otherwise complex
acoustic field, requiring numerical solution for each case. A
SAW-generated acoustic field is defined by a continuously
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decaying vibration amplitude as a boundary condition, caused
by the decay of the SAW along the substrate; the emitted waves
then also attenuate within the fluid bulk: an acoustic field
satisfying these constraints in three dimensions is necessarily
complex, as shown in Ref. [29]. Here we apply the beam model
approximation to avoid this difficulty, as the small attenuation
length of the SAW [O(1 − 0.01 mm)] confines the acoustic
energy to a narrow beam close to the source (as shown in
Fig. 3 of [29]).

Given the nonturbulent nature of the jets in our study, we
modify Lighthill’s turbulent jet model [14] to allow application
to jets in the laminar regime. This is done by simply exchanging
the turbulent dissipation mechanism with one of viscous
dissipation. In addition, we extend the model to allow for
a finite source area from which the sound energy emanates
into the fluid. This is particularly important here as the
high-frequency sound fields are confined to very small length
scales, generating flows close to the source, and on a similar
length scale. The finite source model allows us to examine the
streaming velocity in this location. Further, the dimensions of
the source area are allowed to be frequency-dependent, and
hence proportional to the SAW attenuation length, such that
the model is more readily applicable to SAW devices.

We define an orthonormal basis aligned with the axis shared
by the beam and the jet, X (defined by the Rayleigh angle, θR ,
Fig. 2), and the lateral axes on which the cross sections of
the beam and jet are defined, s1 and s2. The acoustic source
area is assumed to be rectangular with finite dimensions L1
and L2, defined along s1 and s2, from which a sound beam
with acoustic force per unit volume F , and a fluid jet with
velocity u, emanate along X, as illustrated in Fig. 6. In the
present case, the geometry of the source is essentially related
to the distribution of the SAW on the device substrate: the
width of the acoustic source L2 is constant and approximately
equal to the aperture of the IDTs, whereas the source length
L1 is related to the distance over which the SAW decays along
the substrate. The power P of the sound beam arising from
the SAW energy that is imparted into the fluid is proportional
to η̇2 from Eq. (4), and therefore the intensity of the SAW
decays along the fluid-solid interface (defined along y) as I ∼
exp(−2αy), obtained on substitution of Eq. (2) in Eq. (4). The
SAW intensity therefore decays to 1% of the input intensity
over a distance − ln(0.01)/2α = 2.3/α; taking the projection
of this length on s1 then allows us to define an acoustic source
dimension L1 = 2.3 cos θR/α.

The jet velocity, u, is modified to take the form of a
two-dimensional Gaussian along s1 and s2, required by the
introduction of a rectangular acoustic source of finite area,
described by

u(s1,s2) =

√
2f (X)
πS1S2

exp
[
−

(
s1

S1

)2

−
(

s2

S2

)2 ]
, (6)

such that the total momentum flux across the jet cross section
for constant X is given by

ρf (X) = ρ

∫ ∞

−∞

∫ ∞

−∞
u2ds1ds2. (7)

In the above, Si is a measure of the jet width, differing from
that defined in Ref. [14] in that it must account for the finite
initial geometry defined by Li , as shown in Fig. 6. We do this

by setting Si = S + Ai , where Ai is a measure of the width of
the acoustic source in dimension i (measured from the central
axis, i.e., half Li). For simplicity, we assume that the jet growth
S is equal along both s1 and s2, i.e.,

dS1

dX
= dS2

dX
= dS

dX
, (8)

on the basis that the fluid medium is homogeneous and
isotropic.

As the Gaussian profile extends to infinity along s1 and s2,
following [14] we define a finite “edge” of the jet where the
jet velocity u drops to 1% of its axial value, located on the s1
and s2 axes at si = 2.15Si , i.e., exp(−2.152) = 0.01. We set
the edge of the jet at the origin (X = 0) beyond the edge
of the acoustic source, to account for viscous entrainment of
flow adjacent to the acoustic beam. This is approximated by
defining the initial Gaussian profile such that the point at which
the velocity has dropped to 1/2 of its central value is located
at the edge of the acoustic source, si = Li/2, where the jet
has not yet begun spreading (i.e., Si = Ai as S = 0), implying
Ai = Li/2

√
− log[0.5] = Li/1.67.

Similarly, the acoustic body force per unit volume, F ,
within the beam is assumed to take the form of a two-
dimensional Gaussian distribution in s1 and s2, growing
along X:

F (X,s1,s2) = ρf ′(X)
πK1K2

exp
[
−

(
s1

K1

)2

−
(

s2

K2

)2 ]
, (9)

such that the acoustic force per unit length of the beam, equal
to the derivative of the momentum flux, can be specified for
constant X as

ρf ′(X) =
∫ ∞

−∞

∫ ∞

−∞
F ds1ds2. (10)

As with the jet velocity profile, the beam width is related to
a factor Ki = kX + Bi , describing the growth of the beam
kX (here it is linear, as in Ref. [14], and equal in both
s1 and s2). The edge of the beam is defined as the point
at which the acoustic force, F , drops to 1% of its axial
value, i.e., si = 2.15Ki . The beam differs with the jet in
that its initial profile at the origin (X = 0) is set such that
the beam edge is located at the edge of the acoustic source,
giving Bi = Li/2

√
− log[0.01] = Li/4.3. For purposes of

comparison with the experimental results, we estimate the
beam semiangle as φ ≈ 10◦, approximately equal to that of the
jets observed in the experiment. This simplification is justified
as φ was found to have little influence on the maximum
streaming velocity: varying φ between 0◦ and 30◦ predicts
a velocity shift of <10%. The growth rate of the jet is then
characterized by k = tan θb/2.15 since 2.15kX = X tan φ.

Given that the momentum flux of the jet, ρf (X), increases
as the sound beam decays along the wave propagation axis, X,
we then write

f (X) = 1
ρc

P [1 − exp(−βX)], (11)

where P is the power of the sound beam, which can be
related back to that of the acoustic source and hence the
SAW input power through Eq. (4). The attenuation coefficient
of the beam power, β, is equal to twice the value of its
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counterpart describing the decay of the particle velocity, βu,
as P ∼ u2 ∼ exp(−2βuX). Therefore, β is given by [30]

β = 2βu = bω2

ρc3
, (12)

where b = ( 4
3µ + µ′), in which µ′ is the bulk viscosity of the

liquid. The body force in Eq. (9) and the jet velocity in Eq. (6)
arising from the momentum flux, ρf (X), generated from the
dissipation of acoustic energy can then be specified.

From [14], the growth rate of the jet can thus be calculated
by equating the spatial rate change of the jet energy flux to the
acoustic energy influx from the body force given by Eq. (9)
minus the rate of viscous shear or turbulent energy dissipation:

d

dX

∫ ∞

−∞

∫ ∞

−∞

1
2
ρu3 ds1ds2

=
∫ ∞

−∞

∫ ∞

−∞
uF ds1ds2

−
∫ ∞

−∞

∫ ∞

−∞
µ

[ (
∂u

∂s1

)2

+
(

∂u

∂s2

)2 ]
ds1ds2. (13)

Substituting the body force and velocity expressions given by
Eqs. (9) and (6), respectively, into Eq. (13), and assuming the
jet and beam grow equally in both dimensions, as specified by
Eq. (8), we then arrive at an expression for the rate at which
the jet grows:

dS

dX
= C

(S1S2)1/2

S1 + S2

(
S2

S1
+ S1

S2

)

+ 3
f ′

f

S1S2

S1 + S2

⎛

⎝1 − 2S1S2
(
S2

1 + K2
1

) 1
2
(
S2

2 + K2
2

) 1
2

⎞

⎠ .

(14)

For the laminar jet model derived above,

C = 6µ

ρ

√
π

2f
, (15)

which contains a dependence on f from substitution of u on
the left side of Eq. (13).

In Ref. [14], the turbulent eddy viscosity µe = 0.016ρ
√

F
is, however, used in place of µ in Eq. (13) to account for
turbulent dissipation in the jet, and hence the equivalent rate
of growth for a turbulent jet is simplified through C in Eq. (14)
becoming a constant:

CT = [0.016ρ
√

f ]
6
ρ

√
π

2f
= 0.12. (16)

It can be shown that Lighthill’s model for the axisymmetric
turbulent jet originating from a point source is recovered by
setting Ai = Bi = 0, which implies S1 = S2 = S and K1 =
K2 = kX. Upon setting C = CT in Eq. (14), the dissipative
mechanism becomes turbulent and we obtain the original
turbulent jet growth rate in Ref. [14]:

dS

dX
= 0.12 + 3

2
f ′

f
S

k2X2 − S2

S2 + k2X2
. (17)

We note that the laminar dissipation mechanism introduces
a factor f −1/2 to the otherwise constant growth term in

Eq. (14), thus imposing a dependence of S on power,
frequency, and position. Solving for the jet profile S(X), it
is then possible to determine the velocity along the beam
propagation axis (i.e., the maximum velocity of the jet at a
given cross section) U (X) = u(X,s1 = 0,s2 = 0) from Eq. (6).
The resultant velocities for the laminar and turbulent jet models
are plotted as black solid and dotted lines, respectively, in
Fig. 7. Unlike Lighthill’s turbulent jet model for a point source
(dashed red lines), which is singular as βX → 0, we observe
that the velocities in the vicinity of the source remain finite,
thus allowing the jet to be analyzed in this region.

The velocities predicted by the different models never-
theless converge far from the source for large βX. More
importantly, however, we note the existence of a maximum
velocity US ≡ maxX U (X,s1,s2) = maxX U (X,0,0) along the
beam propagation axis X in the finite source models that is
absent in the point source model. In the next section, the
existence and amplitude of this predicted maximum velocity
are shown to be present in our experimental results. Its
existence is due to the competition between the rate at which
momentum is added to the jet by the acoustic body force, which
increases the jet velocity along its length, and the rate at which
the jet dissipates due to viscous and turbulent dissipation [as
seen from the loss term in Eq. (13)], which reduces the jet
velocity.

V. DISCUSSION

The experimentally measured SAW vibration velocities, η̇,
which are a function of the applied SAW power, facilitate
comparison between experiment and theory. Used to calculate
the beam power for each experiment from Eq. (4), they predict
the spreading of the jet, S(X), from the laminar and turbulent
jet models described by Eqs. (15) and (16), respectively,
together with Eq. (14). These can then be used to solve
for the axial streaming velocity along the length of the jet
using Eq. (6). Figure 8 shows a comparison between the ex-
perimentally measured and theoretically predicted maximum
streaming velocities at XS , the latter using both laminar and
turbulent jet models. Table II shows a comparison of XS

as predicted by theory and measured experimentally for a
range of power levels at each frequency, found to be in close
proximity. A small increase in XS is observed when power
is increased, but this is dwarfed by the effect of frequency,
clearly shown comparing the 54 and 490 MHz devices, the
latter having XS an order of magnitude smaller, for the same
beam power. A detailed comparison of the two-dimensional
(2D) jet velocity field between theory and experiment for one
experimental case is shown in Fig. 9(i), along with the velocity
distribution along s2 in Fig. 9(ii), over three different power
levels. The choice of a Gaussian jet velocity profile is validated
by reasonably good agreement between experiment and theory,
though in all cases there is an expected and observed error in
magnitude, originating from the aforementioned theoretical
approximations. To further investigate the validity of the
Gaussian jet profile, we fit the assumed function directly to
the data (shown by the red line).

The differences between the two models and between the
turbulent model and the experimental results are especially
evident at lower SAW amplitudes, as shown in Fig. 8.
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FIG. 8. (Color online) Comparison between the experimentally measured and theoretically predicted maximum streaming velocities US

as a function of the applied SAW vibration velocity η̇ for the 20, 54, 122, 240, 490, and 936 MHz SAW devices. Individual points denote
the experimental results, while solid and dashed curves indicate the predictions of the laminar and turbulent finite area source jet models,
respectively. The 490 and 936 MHz measurements were taken (and calculated) at a distance of approximately 200 µm from the source, as the
peak velocity was located too close to the source for accurate measurement. The vertical error bars represent the standard error of the mean
in the maximum streaming velocity measurements. For some of the results, the error bars are hidden by the size of the marker, indicating the
error is relatively insignificant. The standard error for η̇ is smaller than the size of the mark used for each data point for all measurements, and
hence we instead define the horizontal bars as the standard deviation of η̇ to illustrate its variation over the width of the IDT.

Good correlation between the laminar jet prediction and
the experimental results is found in this range, below a

TABLE II. Location of the maximum velocity of the jet, XS ,
measured in the experiments, compared with the theoretical predic-
tion for the various frequencies, ω/2π , used in the experiment. The
peak velocity location for the 19.7 MHz case could not be measured
exactly as the total length could not be captured in a single frame, and
for the 936 MHz device where the length was too short to accurately
determine.

ω/2π P XS (Theor.) XS (Expt.)
(MHz) (mW) (mm) (mm)

19.7 149–373 16.4–17.3 >7
54.2 6 5.7 6
54.2 17 6.9 6.5
54.2 50 8.2 7
122 0.03 0.7 1.2
122 0.07 0.8 1.3
122 0.20 1.0 1.5
240 3 0.42 0.5
240 10 0.46 0.5
240 32 0.51 0.5
490 4–8 0.13 ∼0.2
936 0.9–0.6 0.03 <0.1

SAW vibration velocity of η̇ ≈ 100 mm/s (equivalent to
hydrodynamic Reynolds numbers Res < 100).

The dependence of the streaming velocity on the applied
SAW power and hence the beam power, related by the SAW
substrate displacement velocity through Eq. (4), can be seen in
Fig. 10. Here, the power is recast in terms of a dimensionless
jet Reynolds number [14],

ReJ =

√
ρP

µ2c
, (18)

evident from a substitution of Eq. (11) in Eq. (15), from which
the dissipative function in the laminar jet model then becomes

C = 6
ReJ

√
π

2
[1 − exp(−βX)]−1/2; (19)

ReJ thus captures the relative inertial contribution to the jet
through the momentum generated by the sound beam as it
propagates through the liquid with the viscous losses due to
shear and turbulent dissipation, culminating in the spreading of
the jet. Small ReJ values, therefore, imply viscous dominant
jets in which the velocity gradient is smoothed across the
flow field due to viscous entrainment of surrounding fluid
into the jet, whereas large ReJ values imply inertial dominant
jets in which the viscous entrainment is negligible compared
to the convection within the jet, thus leading to high shear
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FIG. 9. (Color online) (i) Comparison of the jet velocity distribution between theory (top half) and experiment (bottom half) for the 54 MHz
device for a beam power of 17.3 mW, calculated from Eq. (6) at s2 = 0. A comparison of (ii) the axial velocity (at s1 = s2 = 0) predicted
and measured for the 54 MHz device, and (iii) the jet cross-section velocity profile (at fixed X and at s2 = 0) of the 54 MHz device, for
increasing input power: (a) 2.5 mW, (b) 5.8 mW, and (c) 17.3 mW. The error bars correspond to the standard error of the measurement (n > 50).
Fitting a theoretical Gaussian profile to the experimental data (red line) shows reasonable correspondence, justifying the choice of a Gaussian
distribution to model the jet.

gradients at the jet periphery. We observe that the turbulent
solution for the streaming velocity scales linearly with η̇ and
as P 1/2 or ReJ, in agreement with [14]. However, the laminar
solution does not follow a particular power-law relationship.
At low powers, it scales linearly with P or Re2

J , consistent
with observations of slow streaming [31]. At high powers,
the scaling of the laminar solution changes, approaching
the scaling of the turbulent solution. The limiting behavior
between these two power laws arises from the magnitude of
the dissipative term—the second term on the right side of

FIG. 10. (Color online) Influence of the beam power P , captured
through a jet Reynolds number ReJ defined by Eq. (18), on the
maximum streaming velocity US predicted by the laminar and
turbulent jet finite area source models at two SAW frequencies:
(i) 19.7 MHz and (ii) 121.7 MHz, chosen to represent the phenomenon
across the frequencies; the other frequencies provide similar results,
although they are omitted here for clarity.

Eq. (14); this is governed by ReJ, present in Eq. (19). The
streaming velocity, Eq. (6), is proportional to the square root
of the momentum flux, (ρf )1/2 ∼ P 1/2, and inversely with the
square root of the “area” of the beam: (S1S2)−1/2. At high ReJ,
the dissipation term is small, and so it exerts little influence
on the growth of the jet, dS dX: the streaming velocity should
then be proportional to f 1/2, which implies it will scale with
P 1/2 for small ReJ. For large ReJ, the viscous term dominates,
which implies dS dX ∼ C ∼ P −1/2, and therefore S ∼ P −1/2:
an additional dependence on power is introduced. In this case,
the jet area becomes power-dependent, (S1S2)1/2 ∼ P −1/2,
causing the jet velocity to scale as u ∼ f 1/2(S1S2)−1/2 ∼ P .
This explains the origin of the linear relationship with power
observed at low ReJ.

The results in and of themselves cannot be used to determine
the transition between laminar and turbulent flow, because
the hydrodynamic Reynolds number is too low (1–100) to
support such a transition in our system [18]. In fact, Lighthill’s
computation of a transition to turbulence at a streaming jet
ReJ = 3.16 for his particular arrangement [from Eq. (60) of
Ref. [14]] does not correspond to the transition from viscous to
inertia-dominated flow in either the experimental or theoretical
results found in our study, let alone any transition to turbulence,
though it is important to remember here the differences in
the jets we and Lighthill considered. Here, the change of the
scaling of the laminar solution is due to the appearance of
convective acceleration of the flow in the jet. However, the
power dependence in the relationship between the streaming
velocity and input power elucidated by the laminar jet model
provides an explanation for the findings of Alghane et al. [32],
who observed a departure from the linear scaling with power
as the power was increased.
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FIG. 11. (Color online) Normalized streaming velocity as a func-
tion of the applied frequency for a beam power of (a) 10 mW,
(b) 1 mW, and (c) 0.1 mW. The experimental measurements, denoted
by the data points, are represented as the average maximum streaming
velocity US across all power levels at each frequency, with error bars
denoting the maximum and minimum power. The experimental data
for the 936 MHz device (d) are measured at a distance of 200 µm from
the source due to experimental limitations and thus are smaller than
the theoretical peak velocity, located at approximately 30 µm. The
10 mW solutions are normalized as US/

√
Pα/ρc in (e), accounting

for the effect of the frequency-dependent source area.

The effect of the applied frequency ω/2π on the maximum
streaming velocity can be observed in Fig. 11. To clarify
the frequency dependence, we normalize US by

√
P/ρc, as

apparent from Eqs. (6) and (11), to incorporate its dependence
on the beam power. We then observe the normalized streaming
velocity US/

√
P/ρc to scale as ω2 at low frequencies, in

agreement with that predicted by Eq. (1), but approaching a
scaling of approximately ω1/2 at high frequencies. Therefore,
the commensurate increase in the streaming velocity with
increasing frequency is diminished as frequency is increased:
for example, doubling the frequency of a 1 mW beam from
20 to 40 MHz results in a 230% increase in US , but only a
50% increase when doubling the frequency from 500 MHz
to 1 GHz. This behavior is a result of the shortened length
of the beam: as frequency is increased, the beam attenuates
so rapidly that the jet spreads by only a small fraction of
its source dimensions before the beam has decayed entirely,
thus having little effect on peak streaming velocity. However,
the SAW-emitted beam source area itself is dependent on
frequency, through the attenuation length of the SAW on
the substrate, α−1 ∼ ω−1. At high frequencies, where the jet
spreading is minimal at XS , the jet width is highly dependent
on the source dimensions; therefore, setting S1 ∼ α−1 in
Eq. (6) reveals an approximate ω1/2 dependence of US , due
to the reduction in source area. This scaling is only dominant
at high frequency, where the spreading of the jet is small
compared to the change in source area. Normalizing US

against power and the additional factor α−1, i.e., US/
√

Pα/ρc,
removes this dependency and represents the expected behavior
of an arbitrary sound beam emitted from a source area of
constant size, shown in Fig. 11(e). In this case, the normalized
peak streaming velocity then approaches a constant at high
frequency, indicating that for a non-SAW device of constant

source area, only a small increase in streaming velocity would
be achieved by increasing frequency beyond approximately
100 MHz.

To illustrate the practical implications of these findings,
we consider briefly the cost of producing a device versus
the benefit of higher streaming velocities as the frequency
is increased. Estimating the cost of fabricating such devices is
inherently dependent on production rates and desired yields,
and is therefore difficult, but a reasonable estimate is to
note that the typical output power required for a particular
microfluidics application is constant, implying in turn that
the size of the device would remain a constant because
the electromechanical coupling is likewise fixed. The cost
in this case to produce a device increases in proportion to
the frequency of the device, because the cost is, roughly,
inversely proportional to the minimum feature size used in
fabrication [33], and this is, in turn, directly proportional to
the wavelength of the SAW. This places Fig. 11 in a new
context: the benefit versus cost of increasing frequency is
greatest below approximately 100 MHz, beyond which it is
reduced. In the case of a fixed acoustic source area (a non-SAW
device), fabrication at higher frequencies offers little benefit,
as the normalized streaming velocity approaches a constant
value.

VI. CONCLUSIONS

We have investigated the effect of the applied frequency
on the acoustic streaming generated by SAW devices. Exper-
imental flow visualization by seeding fluorescent particles in
the flow field revealed that the streaming generated assumes
the form of steady laminar jets that emanate from a source of
finite area on the SAW device at the point where it first comes
into contact with the fluid. The jets arise as a consequence of
the leakage of acoustic energy from the SAW into the fluid
at the Rayleigh angle, which subsequently propagates through
the fluid as an attenuating sound beam, thereby imparting a
nonzero time-averaged momentum flux and hence a body force
that drives the flow in the jet. Due to viscous dissipation, the jet
spreads laterally, which results in the subsequent decrease in its
velocity away from the acoustic source. The length over which
the sound beam attenuates then defines the length of the jet,
and also plays a significant role in the jet velocity. Given that
the beam attenuation length scales as the inverse square of the
applied frequency, higher frequencies result in shortened jet
lengths and hence increased power densities, leading to faster
streaming velocities. As such, a maximum in the streaming
velocity will exist at some position along the beam propagation
axis before the jet velocity decreases again due to its spreading
under viscous dissipation. Unlike previous studies on the effect
of frequency on acoustic streaming in small-scale applications
that only account for the decrease in the SAW attenuation
length scale with increasing applied frequency, we contend that
a proper investigation of the effect of frequency necessitates
not just a consideration of the attenuation length of the SAW
along the substrate under the fluid, as suggested in previous
studies [12], but also a careful examination of the attenuation
length of the sound beam in the fluid as a function of the
applied frequency, and its coupling into the dissipation and
spreading of the jet.

013203-10



FREQUENCY EFFECTS ON THE SCALE AND BEHAVIOR . . . PHYSICAL REVIEW E 89, 013203 (2014)

We derived a theoretical prediction for the streaming
velocity based on the turbulent jet model of Lighthill [14]
that accounts for energy conservation in the jet to determine
the spreading and hence the velocity distribution within the
jet, but with specific modifications to accommodate the high
frequency and small-scale SAW system. The infinitesimally
small source was replaced with a finite source defined by the
size of the SAW aperture and the length scale of the SAW’s
attenuation in the substrate, enabling not only the calculation
of the flow field adjacent to the source, but also the prediction
of a maximum acoustic streaming velocity and its location
for the jet, which were both shown to be consistent with
our experimental measurements. The assumption of turbulent
streaming was removed, instead employing a laminar jet
representation after observing that the turbulent jet model
does not accurately determine the streaming velocity at lower
excitation powers.

The laminar jet model we derive is validated through the
good agreement we observe between the theoretical prediction
and experimental measurements of the maximum streaming
velocity across a wide range of applied frequencies and SAW
powers. At higher powers where the convective acceleration
within is relevant, the laminar and turbulent models predict
similar streaming velocities. We observe that the model not
only captures the correct U ∼ P ∼ Re2

J scaling and matches
the experimentally determined velocities at low powers (or low
jet Reynolds numbers), but it also approaches the U ∼ P 1/2 ∼
ReJ scaling of the turbulent model at high powers (or high jet

Reynolds numbers). On this basis, we assert that the laminar
model presented here, which accounts for scale-dependent
frequency and power effects, is an appropriate model that can
be applied to good approximation for predicting the scaling
of the acoustic streaming in cases in which the length of the
beam is considered to be finite, across low to moderately high
Reynolds numbers and across a wide frequency spectrum.
Finally, we conclude that the choice of frequency is thus
an important consideration for the effective application of
acoustic streaming in microfluidic devices, given its significant
effect on the geometry and scale of the flow.
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