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Abstract: Moissanite, SiC, is an uncommon accessory mineral that forms under low oxygen fugacity.
Here, we analyze natural SiC from a Miocene tuff-sandstone using synchrotron Laue microdiffraction
and Raman spectroscopy, in order to better understand the SiC phases and formation physics.
The studied crystals of SiC consist of 4H- and 6H-SiC domains, formed from either, continuous
growth or, in one case, intergrown, together with native Si. The native Si is polycrystalline, with a
large crystal size relative to the analytical beam dimensions (>1–2 µm). We find that the intergrown
region shows low distortion or dislocation density in SiC, but these features are comparatively high in
Si. The distortion/deformation observed in Si may have been caused by a mismatch in the coefficients
of thermal expansion of the two materials. Raman spectroscopic measurements are discussed in
combination with our Laue microdiffraction results. Our results suggest that these SiC grains likely
grew from an igneous melt.

Keywords: SiC; Laue diffraction; microdiffraction; natural silicon; moissanite; Si; synchrotron;
polymorph; mineral deformation

1. Introduction

SiC may be the archetypal polytypic material (e.g., polymorphs only differ in the stacking sequence
of identical sheets or structural units) with greater than 250 known synthetic polytypes, ~11 of which
are reported as naturally occurring [1]. The polytypes are typically described with a number that
refers to the number of layers that repeat along the stacking direction, and a letter that refers to the
crystal system [2]. They generally lie on a continuum between the wurtzite (2H) and zinc-blende (3C)
structures, depending on the relative interplanar layering of Si and C. Figure 1 shows the stacking
sequence of three of the simplest naturally-occurring polytypes of SiC. Moissanite, the naturally
occurring SiC mineral, is typically considered to be either, the 6H- or, to a lesser extent, 4H- and
15R-SiC structure types. Predicting which polytype forms under natural conditions is complicated,
and currently there are several well-summarized theories to explain formation [3], ranging from
thermodynamic, kinetic, and growth considerations. Moreover, transformation from one polytype to
another is thought to occur by periodic slip around dislocations [4], diffusional rearrangement with the
nucleation and expansion of stacking faults [5], and/or changes in Si/C ratios during crystallization [6].
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rearrangement with the nucleation and expansion of stacking faults [5], and/or changes in Si/C ratios 
during crystallization [6]. 

 

Figure 1. 3C-, 6H- and 4H-SiC structures can be interpreted through the orientation of alternating Si 
and C layers [7,8]. The unit cell in each case is represented by a dashed line. The layers are labelled 
based on relative stacking position and depth coming out of the page. 

Naturally occurring moissanite (SiC) was first discovered within the impact rocks of the Canyon 
Diablo meteor crater of Arizona [9]. Moissanite was once considered a geological aberration [10]. 
Many synthetic routes have been reported (see review by Abderrazak and Hmida [11]), with 
variations in the resulting crystal properties, but none truly mimic geological conditions, which range 
from relatively low pressure (upper crust) to high pressure (mid to lower mantle), high temperature, 
and very low oxygen fugacity. For more than a century, natural occurrences of moissanite have been 
reported in the literature and these reports show that SiC origin may be broken up into three 
categories: (i) high-, ultra-high pressure environments, such as upper- and lower mantle and mantle 
transition zone, and even core–mantle boundary; (ii) ambient/low-pressure environments, such as 
metamorphic, magmatic rocks and hydrothermal processes recorded in both continental and oceanic 
crust; or (iii) formation of SiC and native metals during lightning strikes in the ophiolitic rocks exposed 
on the Earth’s surface [12–20]. All require temperature ranged from 700–800 °C to 2500 °C, and extremely 
low oxygen fugacity, e.g. ~8 to <12 log-bar units [21], or 6 to 8 log-bar units [22] below the iron-wüstite 
(IW) buffer. In the last two decades many more well-documented, including in-situ, finds of natural 
moissanite have been reported [12–18,23–43]. These reports suggest that moissanite may be a much 
more common accessory mineral than previously thought. More analytical data and measurements 
from well-documented in situ natural SiC are necessary in formulating a less incontrovertible 
mechanism of moissanite formation under geological conditions. 

Here, we analyze naturally-occurring SiC in a tuff-sandstone, focusing on the understanding of 
the mechanism of SiC formation, and on the intrinsic relationship between SiC and Si, recorded in 
one of the studied moissanite grains. We employ X-ray Laue microdiffraction (μXRD) and Raman 
spectroscopy to investigate the microstructure, distortion, and phase relations in both SiC and Si. 

2. Materials and Methods 

2.1. Sample Description 

The sample is a lithified tuff-sandstone (also referred to as tuffite) related to the Miocene age 
Lower Basalt Formation in the Yizre’el Valley of Kishon River, Israel. The rock includes fragments of 
local sediments mixed with the pyroclastic material deposited during volcanic eruption (e.g., Baer et 
al., [44]). The research sample consists of the hypidiomorphic crystals of picroilmenite, magnetite and 
ulvospinel intermixed with eroded round crystals of quartz and anorthite, all of which are cemented 
with secondary Ca, Fe, Mg-hydrous carbonates, chlorite and serpentine (see detailed description in 
Dobrzhinetskaya et al., [41]). The thin section used for this research is a piece of the same sample, 
described in Dobrzhinetskaya et al., [41] as tuffite. However, it can be now identified more precisely 
as a tuff-sandstone, due to presence of a microfossil (Figure 2a). The rock was cut by a diamond mini-
saw and mounted into an epoxy disc followed by polishing with 50 μm, 15 μm, and 3 μm size 

Figure 1. 3C-, 6H- and 4H-SiC structures can be interpreted through the orientation of alternating Si
and C layers [7,8]. The unit cell in each case is represented by a dashed line. The layers are labelled
based on relative stacking position and depth coming out of the page.

Naturally occurring moissanite (SiC) was first discovered within the impact rocks of the Canyon
Diablo meteor crater of Arizona [9]. Moissanite was once considered a geological aberration [10].
Many synthetic routes have been reported (see review by Abderrazak and Hmida [11]), with variations
in the resulting crystal properties, but none truly mimic geological conditions, which range from
relatively low pressure (upper crust) to high pressure (mid to lower mantle), high temperature,
and very low oxygen fugacity. For more than a century, natural occurrences of moissanite have
been reported in the literature and these reports show that SiC origin may be broken up into three
categories: (i) high-, ultra-high pressure environments, such as upper- and lower mantle and mantle
transition zone, and even core–mantle boundary; (ii) ambient/low-pressure environments, such as
metamorphic, magmatic rocks and hydrothermal processes recorded in both continental and oceanic
crust; or (iii) formation of SiC and native metals during lightning strikes in the ophiolitic rocks exposed
on the Earth’s surface [12–20]. All require temperature ranged from 700–800 ◦C to 2500 ◦C, and
extremely low oxygen fugacity, e.g. ~8 to <12 log-bar units [21], or 6 to 8 log-bar units [22] below
the iron-wüstite (IW) buffer. In the last two decades many more well-documented, including in-situ,
finds of natural moissanite have been reported [12–18,23–43]. These reports suggest that moissanite
may be a much more common accessory mineral than previously thought. More analytical data
and measurements from well-documented in situ natural SiC are necessary in formulating a less
incontrovertible mechanism of moissanite formation under geological conditions.

Here, we analyze naturally-occurring SiC in a tuff-sandstone, focusing on the understanding of
the mechanism of SiC formation, and on the intrinsic relationship between SiC and Si, recorded in
one of the studied moissanite grains. We employ X-ray Laue microdiffraction (µXRD) and Raman
spectroscopy to investigate the microstructure, distortion, and phase relations in both SiC and Si.

2. Materials and Methods

2.1. Sample Description

The sample is a lithified tuff-sandstone (also referred to as tuffite) related to the Miocene age Lower
Basalt Formation in the Yizre’el Valley of Kishon River, Israel. The rock includes fragments of local
sediments mixed with the pyroclastic material deposited during volcanic eruption (e.g., Baer et al., [44]).
The research sample consists of the hypidiomorphic crystals of picroilmenite, magnetite and ulvospinel
intermixed with eroded round crystals of quartz and anorthite, all of which are cemented with
secondary Ca, Fe, Mg-hydrous carbonates, chlorite and serpentine (see detailed description in
Dobrzhinetskaya et al., [41]). The thin section used for this research is a piece of the same sample,
described in Dobrzhinetskaya et al., [41] as tuffite. However, it can be now identified more precisely as
a tuff-sandstone, due to presence of a microfossil (Figure 2a). The rock was cut by a diamond mini-saw
and mounted into an epoxy disc followed by polishing with 50 µm, 15 µm, and 3 µm size corundum
pastes and ultrasonic rinsing in distilled water after each step of polishing. The SiC crystals were
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identified with the aid of optical microscopy and Raman spectroscopy. Three grains of moissanite,
labelled SiC1, SiC2—containing native Si inclusions, and SiC3, were chosen for analysis (Figure 2a–d).
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Figure 2. (a) The microscope image of the sample clearly shows the location of the SiC grains (b–d),
which have different reflectivities from the surrounding rock matrix. The red circle indicates the location
of a microfossil (Figure S1). Locations of SiC grains in a. and the Si inclusion in SiC2 (c)are indicated.

2.2. Data Collection

X-ray fluorescence (XRF) and µXRD were collected at beamline 12.3.2 of the Advanced Light
Source at Lawrence Berkeley National Laboratory. A white light beam (5–24 keV) was focused to an
area of ~1 µm × 1 µm using Kirkpatrick-Baez mirrors. The sample was placed onto a high-precision
translational stage at 45◦ relative to the incident beam and raster scanned. XRF data was collected
using a Vortex-EM XRF detector at a 20 µm × 20 µm resolution. Scanning was performed at a rate
of 0.5 s/pixel. The emission lines of Cr, Fe, Ni, Ca, and Ti were used to determine crystal grain
locations. Since the XRF detector is only sensitive in the 2000–20,000 eV range, Si (Kα = 1740 eV) and
C (Kα = 277 eV) cannot directly be detected, so the SiC location was determined through the absence
of any signals.
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Microdiffraction mapping was performed on SiC1, SiC2, and SiC3 grains (Table 1), allowing some
margin around each crystal to account for the penetration depth of the beam (~100 µm in SiC) and
the 45◦ geometry of the sample relative to the incident beam. Data was collected in 90◦ geometry by
a Pilatus 1M detector using a 0.5 s exposure time. The sample-to-detector distance was calibrated
using an unstrained synthetic Si sample. Further information about the experimental setup can be
found in Kunz et al. [45] and Stan et al. [46]. µXRD data analysis was performed using XMAS [45,47],
the super-computing facilities at the National Energy Research Scientific Computing Center (NERSC).

Table 1. Measurement conditions for microdiffraction.

Grain Map Dimensions (µm2) Pixel Dimension (µm)

SiC1 798 × 972 6
SiC2 1064 × 1080 8
SiC2 a 382 × 202 2
SiC3 665 × 755 5

a The second map was performed over the area where Si was present.

Raman maps of the Si inclusion in SiC2 were collected on a Horiba LabRam Evolution Raman
spectrometer with a focal length of 800 mm. Spectra were collected from 450–900 cm−1 and the colors
were assigned based on the first order Raman mode of Si and the manifold of TO modes for 4H- and
6H-SiC centered near 775 cm−1. Spectra were collected in a backscattered geometry with an excitation
wavelength of 532 nm and an 1800 lines/mm grating, which results in a spectral resolution of ~1 cm−1.
An Olympus BXFM-ILHS microscope with a 50× long working distance objective was used to focus
the laser beam to a ~2 µm spot size onto the sample. Maps were collected using a 2 µm step size.
A synthetic, unstrained Si chip was used to calibrate the Raman spectrometer. The peaks were fit using
non-linear least squares to background-subtracted pseudo-Voight or Gaussian line profiles using the
program Igor Pro (Version 8.0.4.2, WaveMetrics, Inc., Lake Oswego, OR, USA).

3. Results

Three grains of SiC (size ~0.5–1 mm) were chosen for detailed studies. XRF measurements
corresponded well with the known shape and dimensions of each grain, as expected from optical
microscope images of the sample (Figure 2).

3.1. SiC1

Initial µXRD measurements indicates that the sample consists of a strongly diffracting single
crystal. Initial indexing attempts focused on the 4H-SiC polytype, which we anticipated based on
previous TEM and Raman spectroscopic work [41]. Most of the scanned area could be indexed as
either 4H- or 6H-SiC, with more than 30 peaks indexed for both polytypes (Figure 3). It is expected
in general that 6H-SiC would have more diffraction peaks than 4H-SiC over the same angular range,
due to the difference in the c-axis length between the two phases. This can easily be seen in the relative
number of indexed peaks (Figure 3a,b).

The grain contains an area of overlap where both unit cells can be indexed (Figures 3 and 4).
On the left-hand side of the grain, all observed peaks can be indexed as 4H-SiC only (Figure 4a),
whereas on the right-hand side, all peaks can be indexed as 6H-SiC only (Figure 4c). In the center, the
diffraction pattern contains peaks from both, and both can be indexed, with some peaks overlapping
for both unit cells (Figure 4b).
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3.2. SiC2 

The bulk of this grain consists of a strongly diffracting single crystal that indexes as 4H-SiC 
(Figure 5). The lower right-hand portion of the SiC2 sample contains both, the region where an Si 
inclusion was found, as well as a more poorly indexed region that is better fit as a 6H-SiC (Figure 5b). 
Although, a second Si inclusion was identified by optical microscopy and scanning electron 
microscopy (SEM) [41], the diffraction data were of insufficient quality to index it. We chose the 
mixed 4H/6H-SiC area for more detailed mapping and analyzed it with 2 μm × 2 μm resolution. The 
bulk 4H-SiC crystal pattern is visible in this entire area. However, single crystal diffraction, taking 
the form of continuous lines, can also be observed (Figure 6). We can fit the pattern using a 6H-SiC 
unit cell, which provides a more accurate fit than the 4H-SiC pattern of the rest of the crystal body. 

Figure 3. Grain can be indexed as both (a) 4H-SiC; and (b) 6H-SiC; (c) c-axis orientation with respect to
the sample normal is also shown, to demonstrate the intergrowth of the two crystal types along the
same stacking direction. The black outline indicates the surface expression of the sample, based on
microscopy images. The squares labelled a, b, and c correspond to the diffraction pattern locations
from Figure 4.

Minerals 2020, 10, 204 5 of 16 

 

  

Figure 3. Grain can be indexed as both (a) 4H-SiC; and (b) 6H-SiC; (c) c-axis orientation with respect 
to the sample normal is also shown, to demonstrate the intergrowth of the two crystal types along the 
same stacking direction. The black outline indicates the surface expression of the sample, based on 
microscopy images. The squares labelled a, b, and c correspond to the diffraction pattern locations 
from Figure 4. 

The grain contains an area of overlap where both unit cells can be indexed (Figures 3 and 4). On 
the left-hand side of the grain, all observed peaks can be indexed as 4H-SiC only (Figure 4a), whereas 
on the right-hand side, all peaks can be indexed as 6H-SiC only (Figure 4c). In the center, the 
diffraction pattern contains peaks from both, and both can be indexed, with some peaks overlapping 
for both unit cells (Figure 4b). 

 

Figure 4. Diffraction patterns from SiC1 can be indexed as either the 4H- or 6H-SiC. (a). This part of 
the sample indexes solely as 4H-SiC. The inset shows squares around all successfully identified peaks. 
No additional peaks remain. (b). This area can be indexed as both 4H- and 6H-SiC. The two insets 
show that all peaks are identified as being part of one or the other stacking type. (c). This pattern can 
be fully indexed as 6H-SiC, as seen in the inset. 

3.2. SiC2 

The bulk of this grain consists of a strongly diffracting single crystal that indexes as 4H-SiC 
(Figure 5). The lower right-hand portion of the SiC2 sample contains both, the region where an Si 
inclusion was found, as well as a more poorly indexed region that is better fit as a 6H-SiC (Figure 5b). 
Although, a second Si inclusion was identified by optical microscopy and scanning electron 
microscopy (SEM) [41], the diffraction data were of insufficient quality to index it. We chose the 
mixed 4H/6H-SiC area for more detailed mapping and analyzed it with 2 μm × 2 μm resolution. The 
bulk 4H-SiC crystal pattern is visible in this entire area. However, single crystal diffraction, taking 
the form of continuous lines, can also be observed (Figure 6). We can fit the pattern using a 6H-SiC 
unit cell, which provides a more accurate fit than the 4H-SiC pattern of the rest of the crystal body. 

Figure 4. Diffraction patterns from SiC1 can be indexed as either the 4H- or 6H-SiC. (a). This part of
the sample indexes solely as 4H-SiC. The inset shows squares around all successfully identified peaks.
No additional peaks remain. (b). This area can be indexed as both 4H- and 6H-SiC. The two insets
show that all peaks are identified as being part of one or the other stacking type. (c). This pattern can
be fully indexed as 6H-SiC, as seen in the inset.

3.2. SiC2

The bulk of this grain consists of a strongly diffracting single crystal that indexes as 4H-SiC
(Figure 5). The lower right-hand portion of the SiC2 sample contains both, the region where an Si
inclusion was found, as well as a more poorly indexed region that is better fit as a 6H-SiC (Figure 5b).
Although, a second Si inclusion was identified by optical microscopy and scanning electron microscopy
(SEM) [41], the diffraction data were of insufficient quality to index it. We chose the mixed 4H/6H-SiC
area for more detailed mapping and analyzed it with 2 µm × 2 µm resolution. The bulk 4H-SiC crystal
pattern is visible in this entire area. However, single crystal diffraction, taking the form of continuous
lines, can also be observed (Figure 6). We can fit the pattern using a 6H-SiC unit cell, which provides
a more accurate fit than the 4H-SiC pattern of the rest of the crystal body. This can be seen when
comparing Figure 6e,f, where all maxima can be captured with a 6H-SiC fit except for a select few,
which correspond to 4H-SiC. However, most of the grain is polycrystalline in this area, with a few
discrete orientations dominating (Figure 5c).
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A native Si inclusion was initially identified by visual inspection due to differences in its reflectivity
relative to the surrounding SiC. This inclusion occurs within the mixed 4H-/6H-SiC region of the
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sample. By scanning through the diffraction patterns, we find one area with broad, deformed peaks
(Figure 7) that can be indexed as diamond structured (Fd3m) Si. At least 3 distinct crystallographic
orientations can be indexed, indicating that the native Si inclusion is polycrystalline, but with large
grain sizes (Figure 7b–d). These grains overlap for some part of the sample. A {113} reflection is the
most intense in all three crystallites. Examination of this peak, however, indicates that it is likely that
many more subgrains exist, as evidenced by the existence of several overlapping maxima (Figure 7e–g).
This is also indicative of a plastic deformation that is significant enough to cause a subgrain boundary
formation. Although, an area of only ~36 µm × ~30 µm is exposed to the surface, we can track the
persistence of the {113} reflection in these three main Si grains for at least 340 µm horizontally and
590 µm vertically. This area of persistence is roughly coincident with where 6H-SiC is present, but with
inhomogeneous diffraction intensity suggesting varying emplacement depths and/or grain thickness
in Si.
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Figure 7. (a). This is a representative pattern taken in the region of exposed Si inclusion. (b)., (c)., and
(d). show indexation fits for three different Si orientations (~33.5, 15.5, and 24.8◦ c-axis orientation with
respect to sample normal, respectively). (e). This is a magnified view of the {113} reflection outlined by
a white box in (a,f). and (g). show three-dimensional (3D) projections of the peaks from e. in vertical,
and horizontal transects, respectively.

A Raman map of the Si inclusion is shown in Figure 8. The 4H- and 6H-SiC can also be identified
from the Raman spectra, but were not the focus of this measurement. The single Raman mode of silicon
is due to the first-order Raman scattering of the longitudinal optical (LO) and the transverse optical
(TO) phonon modes, which are degenerated at the Γ-point [48]. Its room pressure and temperature
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position has been reported to range from 519.5 ± 0.8 cm−1 to 523.0 ± 1.0 cm−1 [49–52]. The large
range of reported frequencies is likely due to many factors, such as instrument calibration, tensile,
or compressive stress state of the Si sample. More recently it has been shown that the Raman mode of
un-stressed Si is observed between 520.5 and 520.7 cm−1 [48,53]. In this sample, the Si Raman mode
ranges from 522.3 to 525.2 cm−1.
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3.3. SiC3

Like SiC1, the SiC3 grain is made of two overlapping domains, which easily index to 4H-SiC or
6H-SiC (Figure 9). The overlap region is like that of SiC1 (Figure 4), where peaks from both orientations
can be observed, suggesting that the two structures are intercalated. A second SiC orientation is
observed on the left-hand side of the grain, which visually appears to coincide with the presence of
both a slight fracture in the grain as well as the presence of a metal silicide inclusion [41]. The data
were insufficient to determine the mineral type of the silicide.
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4. Discussion

4.1. SiC Formation—Geological Context

The three crystals of SiC in the studied sample are characterized as xenocrysts transported
together with other pyroclastic materials by the volcanic vent related to Miocene intraplate alkali
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basalt activities [41]. Together with other pyroclastic materials, they mixed with ashes and local
sediments containing microfauna (Figure S1) to become a part of the tuffite/tuffo-sandstone formation.
Dobrzhinetskaya et al. [41] hypothesized that SiC, presented in the 4H-SiC and 6H-SiC polytypes,
was formed at depth ~60–100 km, through the reaction of SiO2 (melt) with highly reducing fluids
(H2O–CH4–H2–C2H6, as proposed by Zhang and Duan, [54]). This is supported by well-known
reactions which could assist the formation of both SiC and Si:

SiO2 (melt) + CH4→ SiC + 2H2O (1)

2CH4 + H2O→ 4H2 + 2CO→ C+ CO2 + 4H2 (2)

SiO2 + C→ Si + CO2 (3)

According to Dobrzhinetskaya et al. [41], the ultra-reduced fluid, originating from a mantle hot
spot, could pass through an alkaline basalt magma reservoir and interact with the SiO2 available from
the walls of the crustal rocks surrounding this magmatic reservoir. This would lead to the formation of
SiC, and this process could be accompanied by the reduction of metal-oxides to native metals, alloys,
and silicides that could have originated from droplets of an immiscible melt fraction trapped by SiC
during its crystallization.

4.2. Stress/Strain Relationships and Crystal Grain Formation

The three SiC grains fall into two distinct categories, based on the spatial distribution of the
4H- and 6H- unit cells. In the case of SiC1 and SiC3, there is an orientational relationship between
the 4H- and 6H-SiC regions, where both unit cells can be described by the same orientation matrix.
By traversing a sample, we can observe a 4H-SiC region, a mixed region where some lattice planes
are shared, and finally a 6H-SiC region. The intercalation and lack of reorientation suggests that the
sample is a single grain. Studies suggest that the degree of hexagonality of SiC varies with the Si/C
ratio (Haase et al. [6] and references contained therein). Therefore, grains with variable structure,
such as SiC1 and SiC3, could have grown from a slowly cooling Si/C melt slightly enriched in Si,
where SiC growth would have led to C depletion in the melt and an increased Si/C ratio. In such a
scenario, 4H-SiC would be formed at first, and continuous grain growth would lead to a less hexagonal
(containing some cubic ABC stacking planes) structure over time as the surrounding melt changed,
explaining the transition region between the two crystal types and the final 6H-SiC structure.

In the case of SiC2, there is no such relationship in the orientation of 4H-SiC and 6H-SiC, nor
between SiC and Si. It is more likely that the 4H-SiC grain, which is visible in the diffraction patterns
where 6H-SiC is also present, formed independently during different melting events from the 6H-SiC,
and that these single crystals became intergrown or cemented together by remaining liquid Si at a
later time.

The differential stress and strain in both SiC and Si were calculated from the indexed Laue
diffraction map. In the 4H-SiC region, the stress/strain across the crystal was homogeneous for a given
tensor, so we focus the discussion mainly on the part of the map that covers the exposed Si region
and the entire 6H-SiC region. The strain in this area for all 3 crystal types is presented in Figure 10a–c.
The overall strain in the 4H-SiC region of the sample is low, except for some tensile differential strain
in the z direction of the sample; this observation may be due to the release of pressure as a result of
cutting and polishing the sample. The Si is under compressive differential strain in the XY plane and
tensile differential strain in the Z direction. The strain state seems not to depend on the crystallographic
orientation of any of the 3 phases.
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A possible explanation for this may be that greater plastic deformation and differential strain in Si
is due to a differential in the coefficient of thermal expansion (CTE) for the two materials, where SiC =

4.36 × 10−6 K−1 [55] and Si = 2.63 × 10−6 K−1 [56]. In prior studies of dislocation generation between
materials with contrasting CTE, it was found that the dislocation density increased relative to the pure
materials when subjected to similar temperature conditions [57,58]. We assume that the Si inclusion
formed while the sample was at high temperature, which is reasonable as this SiC sample likely formed
at a depth of 60–100 km (~2 GPa) and a temperature range of 1000–1600 ◦C [41]. Then the factor of ~2
differences in their CTE is likely the cause of the higher dislocation densities associated with the Si and
SiC in the 6H-SiC region. In essence, SiC would contract at a faster rate than Si, leading to greater
strain in the Si. We map the dislocation densities in both, assuming a {001}<110> slip system in SiC
(Figure 11). This assumption is borne out by the presence of diffraction “lines” in the single-crystal Laue
diffraction of SiC, which are indicative of stacking faults and are direct evidence of the activation of
this slip system. Overall, Si displays a much greater density of dislocations than SiC. This is supported
by observations in the diffraction, which suggest that the Si is under more plastic deformation at every
point where both are present.



Minerals 2020, 10, 204 11 of 16

Minerals 2020, 10, 204 11 of 16 

 

 
Figure 11. Geometrically necessary dislocation density of the mixed 4H-/6H-SiC region and Si 
inclusion. Notably the dislocation density of the Si inclusion is high at the edges and low in the middle 
and the SiC grain shows a very low dislocation density. 

4.3. SiC/Si Relationship 

One of the goals of our study was to understand the formation of a native silicon inclusion, such 
as that found in SiC2, which requires extremely reducing conditions of formation [21]. Due to the 
wide use of silicon in the semiconductor industry the effects of tensile and compressive stresses, 
hydrostatic pressure, temperature, and polishing on the first order Raman mode position and width 
are well-characterized [48,50,52,53,59–66]. It is well-known that tensile and compressive stress affect 
the Raman line by a redshift, and blueshift, respectively [61,62]. Anastassakis et al. [59] reported a 
splitting of the first order Raman mode of Si under uniaxial stress along the [001] or [111] direction. 
Thus, the observed shift in the first order Raman mode of our Si inclusion (Figure 8a) may be evidence 
of residual compressive stress. Most of the grain shows a shift of ~1.5–2.7 cm−1 (Figure 8a) from the 
ambient pressure value of 520.7 cm−1. Taking the pressure shift of the first order Si Raman mode 
reported by Weinstein and Piermarini [52] this could suggest that the Si grain records a residual 
pressure of ~0.3–0.5 GPa. 

The FWHM of this peak ranges from ~4–9 cm−1 (Figure 8b). The room pressure and temperature 
FWHM of unstrained Si has previously been reported to range from ~3.2–7.0 cm−1 depending on the 
laser power [50,60,63,64]. Fitting very low intensity modes can be difficult and can result in larger 
errors in peak position and FWHM. However, even disregarding the very large and small observed 
FWHMs, the majority of the Raman spectra of the Si inclusion have FWHM of ~5.5–7.7 cm−1. 
Weinstein and Piermarini [52] report that there is no appreciable change in the peak shape with 
applied pressure to ~10 GPa. Hence, our observed peak widths and shapes did not unambiguously 
indicate that our inclusion recorded any residual pressure. 

Not surprisingly, the largest mode shifts are observed near the edge of the Si inclusion, and the 
smallest shifts near the center of the inclusion. These shifts also correspond to regions of largest 
FWHM and lowest intensity (Figure 8c). We also observe some asymmetry to the higher wave-
number side of the observed Si Raman modes primarily in the spectra collected near the edge of the 
Si inclusion, suggesting a uniaxial component to the residual stress. This is consistent with the 
diffraction measurements discussed above, where plastic deformation was clearly observed as 
asymmetrical streaking in three-dimensional (3D) peak shape (Figure 7e–g). Furthermore, a lower 
Raman intensity is observed at the edges of the inclusion, which can be explained by considering the 
penetration depth of the Raman measurements. The penetration depth of a laser is dependent on the 
material absorption coefficient, α, which is wavelength- and temperature-dependent, but for a 
constant α, intensity decays exponentially with depth, according to the Beer-Lambert Law. For a 532 
nm laser the penetration depth in Si is ~0.7 μm [67]. The lowest intensities are from just outside where 

Figure 11. Geometrically necessary dislocation density of the mixed 4H-/6H-SiC region and Si inclusion.
Notably the dislocation density of the Si inclusion is high at the edges and low in the middle and the
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4.3. SiC/Si Relationship

One of the goals of our study was to understand the formation of a native silicon inclusion,
such as that found in SiC2, which requires extremely reducing conditions of formation [21]. Due to
the wide use of silicon in the semiconductor industry the effects of tensile and compressive stresses,
hydrostatic pressure, temperature, and polishing on the first order Raman mode position and width
are well-characterized [48,50,52,53,59–66]. It is well-known that tensile and compressive stress affect
the Raman line by a redshift, and blueshift, respectively [61,62]. Anastassakis et al. [59] reported a
splitting of the first order Raman mode of Si under uniaxial stress along the [001] or [111] direction.
Thus, the observed shift in the first order Raman mode of our Si inclusion (Figure 8a) may be evidence
of residual compressive stress. Most of the grain shows a shift of ~1.5–2.7 cm−1 (Figure 8a) from the
ambient pressure value of 520.7 cm−1. Taking the pressure shift of the first order Si Raman mode
reported by Weinstein and Piermarini [52] this could suggest that the Si grain records a residual
pressure of ~0.3–0.5 GPa.

The FWHM of this peak ranges from ~4–9 cm−1 (Figure 8b). The room pressure and temperature
FWHM of unstrained Si has previously been reported to range from ~3.2–7.0 cm−1 depending on the
laser power [50,60,63,64]. Fitting very low intensity modes can be difficult and can result in larger errors
in peak position and FWHM. However, even disregarding the very large and small observed FWHMs,
the majority of the Raman spectra of the Si inclusion have FWHM of ~5.5–7.7 cm−1. Weinstein and
Piermarini [52] report that there is no appreciable change in the peak shape with applied pressure
to ~10 GPa. Hence, our observed peak widths and shapes did not unambiguously indicate that our
inclusion recorded any residual pressure.

Not surprisingly, the largest mode shifts are observed near the edge of the Si inclusion, and the
smallest shifts near the center of the inclusion. These shifts also correspond to regions of largest
FWHM and lowest intensity (Figure 8c). We also observe some asymmetry to the higher wave-number
side of the observed Si Raman modes primarily in the spectra collected near the edge of the Si
inclusion, suggesting a uniaxial component to the residual stress. This is consistent with the diffraction
measurements discussed above, where plastic deformation was clearly observed as asymmetrical
streaking in three-dimensional (3D) peak shape (Figure 7e–g). Furthermore, a lower Raman intensity
is observed at the edges of the inclusion, which can be explained by considering the penetration depth
of the Raman measurements. The penetration depth of a laser is dependent on the material absorption
coefficient, α, which is wavelength- and temperature-dependent, but for a constant α, intensity decays
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exponentially with depth, according to the Beer-Lambert Law. For a 532 nm laser the penetration depth
in Si is ~0.7 µm [67]. The lowest intensities are from just outside where the Si inclusion is exposed to
the surface, and these spectra also show peaks that are from SiC (Figure 8c).

Nazzareni et al. [43] report natural SiC from a peralkaline syenite from the Azores. They identified
an Si inclusion with Raman spectroscopy and report that the first order Raman mode of Si was observed
to be at 519.65 cm−1, and the position of the synthetic Si first order Raman mode is 520.72 cm−1.
As discussed above and by Nazzareni et al. [43], the residual pressure of the Si inclusion was calculated
using the pressure shift of the first order Raman mode of Si, reported by Weinstein and Piermarini [52].
In contrast to our results, Nazzareni et al. [43] report that the first order Raman mode of their Si
inclusion is observed to be lower than the ambient pressure value, suggesting that it records a negative
residual pressure. It should be noted that, in the absence of a detailed compositional analysis of the Si
inclusion, reported by Nazzareni et al. [43], the negative shift could be due to impurities such as Fe,
which, for example, has been reported in native silicon from the Luobusa Ophiolite [68]. Much of our
Si inclusion is still enclosed within SiC, and only the upper part of the inclusion was exposed to the
surface during cutting. Therefore, we can hypothesize that the positive shift of the Raman mode of our
Si inclusion probably reflects some residual pressure similar but opposite to the conclusions reached
by Nazzareni et al. [43].

A considerable amount of work has been reported on subsurface damage in Si, due to polishing
and grinding [66,69]. It is possible that our observed shift in the first order Si Raman mode is a result
of damage caused during sample polishing. Shifts of ~1 cm−1 are observed in the core of the exposed
Si inclusion while larger shifts are observed at the edge of the exposed inclusion. Zhang et al. [66]
report that the position of the first order Si Raman mode for several Si wafers that were polished with
different grain sizes ranging from ~70–~4 µm. The ground wafer surfaces mainly present compressive
states that are dependent on the grain sized used for polishing and shifts up to 4 cm−1 from the
ambient value are observed. The main reason for the generation of residual stresses is due to phase
transitions. Zarudi and Zhang [69] discuss subsurface damage of single-crystal silicon due to grinding
and polishing. They show that the depth of damage is related to the particle size of the abrasives used,
and that the damage can be removed with polishing (about 10 h). Phase transitions to α-Si, Si-III,
and Si-XII are also observed in polished Si samples and the phases that are observed is dependent
on the grain size of the polish that was used [66]. We do not observe any peaks from α-Si, Si-III, or
Si-XII in our spectra. The stress regime in the near-surface environment of the polished and exposed Si
inclusion isn’t simple, and likely grades from mostly compressive near the edges to more tensile in the
middle. It is difficult to deconvolve the signals from, (1) actual residual pressure that may be recorded
by the grain, due to thermal expansion differences, (2) artefacts from polishing the sample, and (3) the
exposure of the Si inclusion to the surface on one side. To verify these statements, it will be necessary
to conduct additional Raman experiments of synthetic Si crystals before, and after, polishing.

5. Conclusions

We performed µXRD and Raman spectroscopy studies of three grains of natural SiC and found
that each of them consists of two polytypes of SiC, 4H- and 6H-SiC. These SiC polytypes were found to
be either, intergrown during a single growth event (SiC1 and SiC3), or cemented together after the initial
formation of SiC crystals (SiC2) with polycrystalline, more deformed Si. There is no straightforward
explanation for which SiC polytype will form first, and current theories, include impurity arguments,
kinetic, and growth considerations, as well as thermodynamics. In a natural system the liquid will
have a particular Si/C ratio, as well as some quantity of impurities. This liquid will cool at some rate
and a certain SiC polytype will crystallize. Since we observe both 4H- and 6H-SiC, and if we assume a
closed system crystallization of SiC, crystal growth will change the Si/C ratio. It has been proposed
that the Si/C ratio will determine which type of polytype will form [6]. This hypothesis aims to explain
the natural zoned SiC that was found in metamorphic rocks from Bulgaria [42]. Thus, we propose that
for SiC1 and SiC3 one nucleation event led to grain formation through a change in the Si/C ratio, likely
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caused by C depletion during grain growth, and in the case of SiC2 two different nucleation events
likely occurred.

Despite its high hardness, SiC deforms plastically and polygonizes at a high temperature [70].
Dislocations in (0001), dislocations with

[
1120
]

vectors, pileups formed by slip, and dislocation walls
formed by climb, were all reported by Amelinckx et al. [70]. Dislocations in microdiamonds have also
been reported [71,72]. Kvasnytsya and Wirth [72] report a high density of curved dislocations in one of
their microdiamond samples from a meteorite impact area and suggest a thermally activated process
where the diamond experienced a period of thermal annealing after deformation. Dobrzhinetskaya
et al. [71] found dislocations in microdiamonds from ultra-high-pressure metamorphic terranes and
assigned them to dislocations of growth, e.g., during the nucleation process, the volume may have been
under differential stress. The observed low dislocation density in the examined SiC crystals suggests
that the samples may not have remained at high temperatures for an extended period, nor did they
undergo any high temperature deformation at any time after their initial crystallization. While these
new results still cannot place any constraint on the depth of formation of these grains, they do support
their high-temperature origin which was reported earlier by Dobrzhinetskaya et al. [41]. Given the
wide stability field of SiC, from the shallow mantle to the deep Earth, one should be cautious when
interpreting formation conditions of natural SiC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/3/204/s1,
Figure S1: (a). Optical microscope image of the tuffite sample containing 3 SiC crystals. The red outline indicates
the location of the microfossil/microfauna. (b). Microfossil/microfauna as seen at larger magnification.
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