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Abstract

Essays on Uncertainty and Stabilization

by

Seung Joo Lee

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Yuriy Gorodnichenko, Co-Chair

Professor Nicolae Gârleanu, Co-Chair

How should monetary policy deal with endogenous stock and bond market fluctuations? This
dissertation focuses on the interaction among uncertainty arising from financial markets, risk-
premium (and term-premium), and the business cycle. The main objective is to study various
effective monetary policy responses for stabilization purposes.

The first chapter offers a non-linear version of the standard New-Keynesian framework, in
which I provide an illustration of how the consideration of the first-order effects of endogenous
and time-varying aggregate risks changes the business cycle dynamics. With conventional
monetary policy rules, my non-linear characterization of the solution features interesting po-
tentials for the sunspot equilibria arising from the aggregate business cycle volatility. I provide
a new monetary policy rule that restores model determinacy and achieves the economy’s full
stabilization again. The entire results rely on the interaction between aggregate consumption
demand and the economy’s aggregate risk through the famous precautionary savings channel.
This result is novel.

In the second chapter, I develop a more full-fledged New-Keynesian framework with active
stock markets that features a potential for self-fulfilling financial uncertainty arising from its
interaction with risk-premium, wealth, and aggregate demand. The model remains tractable,
providing closed-form expressions for higher-order moments tied to the financial uncertainty
and their relations to the rest of the economy. I re-examine the optimality of conventional
monetary policy rules and show that the ‘Taylor principle’ no longer guarantees determinacy,
with sunspots in aggregate financial volatility not precluded by aggressive targeting of inflation
and output gap alone. I then characterize the joint dynamic evolution of financial volatility,
risk-premium, asset prices, and the business cycle in a rational expectations equilibrium with
sunspots, and uncover that variations in financial uncertainty generate reasonable crises and
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booms along the business cycle that are consistent with my empirical estimates based on
the US data. As this pitfall of the traditional policy rules lies in their inability to target the
expected return on aggregate wealth, the relevant rate in stochastic environments, I then
propose a ‘generalized’ Taylor rule that targets risk-premium and asset price, and describe
the necessary conditions that restore determinacy and achieve the ultra-divine coincidence:
the joint stabilization of inflation, output gap, and risk-premium. Finally, I revisit the zero
lower bound (ZLB) and show it amplifies the duration, severity, and welfare costs of fluctua-
tions in financial volatility. Alternative policies such as forward guidance reduce these welfare
costs on average, but risk worsening economic situations with a non-zero probability, raising
interesting trade-offs for policymakers.

The failure of conventional monetary policy to stabilize the economy at the zero-lower
bound (ZLB) has made unconventional interventions more prevalent in recent times, which
calls for a new macroeconomic framework for properly analyzing these policies. In the third
chapter, I develop a New-Keynesian framework that incorporates the term-structure of fi-
nancial markets and an active role for government and central bank’s balance sheet size and
composition. I show that financial market segmentation and the household’s endogenous
portfolio reallocation are crucial features to properly understand the effects of Large-Scale
Asset Purchase (LSAP) programs. I propose a new micro-foundation based on imperfect
information about expected future asset returns that easily accommodates distinct degrees
of market segmentation across asset classes and maturities, while providing intuitive and
tractable expressions for the household’s portfolio shares. My analysis reveals that govern-
ment’s issuance of risk-less bonds stimulates the economy when conventional monetary policy
is constrained at the ZLB, which is consistent with the literature on the so-called “safe-asset
shortage problems". I also find that central bank’s bond purchases across different maturities
act as a major determinant of the level and slope of the term-structure, and yield-curve-
control (YCC) policies that actively manipulate long-term yields are powerful in terms of
stabilization both during normal times and at the ZLB. As a drawback, YCC policies increase
the likelihood of ZLB episodes and their durations, thereby locking the central bank in a
position in which the short-term rate is less useful as a policy tool.
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Chapter 1

Monetary Policy as a Financial Stabilizer:
A Standard New-Keynesian Framework

1.1 Standard Model

We consider a standard non-linear New-Keynesian economy where the stock market is closed.1

The representative household simply owns the entire firms and get the profit stream in a lump-
sum way. For simplicity, we assume a perfectly rigid price: pt = p̄ for ∀t so there is no inflation
in the economy. It is not crucial but allows us to focus on the key mechanism we want to
illustrate.

The representative household chooses her usual intertemporal consumption-saving deci-
sions, solving the following optimization problem:

max
{Bt ,Ct ,Lt}t≥0

E0

∫ ∞
0

e−ρt [logCt − V (Lt)] dt s.t. Ḃt = itBt − p̄Ct + wtLt +Dt , (1.1.1)

where Ct and Lt are her consumption and labor supply, where V (Lt) is the disutility of
labor supply Lt , Bt is her nominal bond holding, and Dt is the entire firms’ profit and fiscal
transfers from the government. wt is an equilibrium wage, and it is the policy rate set by the
central bank. We assume that there is no government spending, therefore, the aggregate
consumption determines output in this demand-determined environment: Ct = Yt where Yt
is an aggregate output.

The following equation is the optimality condition for the representative household’ in-

1See Woodford (2003) for the standard treatment of a textbook New-Keynesian model.
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tertemporal consumption-saving decisions:

− itdt = Et
(
dξNt
ξNt

)
, where ξNt = e−ρt

1

Ct

1

pt
, (1.1.2)

where dξNt
ξNt

is the instantaneous (nominal) stochastic discount factor (SDF) and its expectation
yields the nominal risk-free rate it . A similar condition holds for the real interest rate rt as
follows:

− rtdt = Et
(
dξrt
ξrt

)
, where ξrt = e−ρt

1

Ct
. (1.1.3)

With our rigid price assumption pt = p̄ for ∀t, equation (C.1.2) and equation (C.1.3) are
equivalent with it = rt . We can rewrite equation (C.1.2) can be exactly written as

Et
(
dCt
Ct

)
= (it − ρ)dt + Vart

(
dCt
Ct

)
, (1.1.4)

where the last term Vart(
dCt
Ct

) is absent in conditions based on log-linearization, and arises here
from the effect of ‘endogenous’ volatility of an aggregate consumption process. In contrast
to canonical linearized models, our non-linear characterization allows the aggregate risk to
be priced, affecting the drift of the aggregate consumption process, where both aggregate
risk and drift are endogenous objects. This additional term reflects the precautionary savings
channel in which the more volatile a business cycle fluctuation becomes, households engage
more in a precautionary saving, reducing their consumption and raising the consumption
process’ expected growth.

Let us assume that the ‘natural’ (benchmark) economy’s output Y nt follows the following
stochastic process:

d Y nt
Y nt

=

 r nt︸︷︷︸
Natural rate

−ρ+ (σt)
2

 dt + σt︸︷︷︸
Natural volatility

dZt , (1.1.5)

where r nt is the natural rate of interest. We regard equation (1.1.5) as the exogenous process2

that our monetary policy cannot affect or control. This benchmark economy can be any
target economy the central bank hopes to attain through its monetary policy, including a
usual flexible-price economy. Here, we observe that: given {Y nt } process, an increase in the
‘natural’ volatility σt brings down the natural rate r nt as agents’ demand for the precautionary

2Given the {σt} process, equation (1.1.5) is derived from equation (C.1.3) with rt = rnt with Yt = Y nt .
Therefore, we regard dZt as an aggregate shock that drives the natural output Y nt . In most models, it can be
a technology shock.
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saving rises in response.
Then, let us think about the ‘current’ economy that the central bank manages through its

monetary policy. We let σst be an ‘excess’ volatility the current output process {Yt} features
compared with the benchmark economy (equation (1.1.5)), therefore:

Vart

(
d Yt
Yt

)
= (σt + σst )2dt (1.1.6)

holds. Note that σst can be regarded an ‘endogenous’ volatility to be determined in equilibrium
by the monetary policy. By plugging equation (1.1.6) into equation (C.1.2), we obtain

d Yt
Yt

=
(
it − ρ+ (σt + σst )2

)
dt + (σt + σst )dZt . (1.1.7)

With the usual definition of output gap Ŷt = ln
(
Yt
Y nt

)
, we can get the following dynamic IS

equation written in Ŷt :3

dŶt =

it −
r nt

New terms︷ ︸︸ ︷
−

1

2
(σt + σst )2 +

1

2
(σt)

2


 dt + σstdZt . (1.1.8)

The equation (1.1.8) features an interesting feedback effect that is abstracted away in
log-linearized equations: given the policy rate it , an increase in the endogenous volatility σst
pushes up the drift of equation (1.1.8), bringing down the current level of output gap Ŷt . It is
because a more volatile business cycle induces the household to save more in a precautionary
manner (first-order effect) and reduce consumption, thereby inducing a recession.

For the illustration purpose, we can compare the above equation (1.1.8) with the usual
IS equation based on the linearization technique, which is given by:

dŶt = (it − r nt ) dt + σstdZt , (1.1.9)

where an endogenous aggregate volatility σst has no first-order effect on the current level
of output. In contrast, our fully non-linear characterization of the solution keeps a proper
first-order price of risk, which changes the business cycle dynamics.

We define a risk-adjusted natural rate

rTt = r nt −
1

2
(σt + σst )2 +

1

2
(σt)

2 (1.1.10)

3Basically we subtract equation (1.1.5) from equation (1.1.7) based on the continuous-time mathematics
to get equation (1.1.8).
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that is a function of an endogenous volatility σst . In particular, we see rTt depends negatively
on σst . With this new non-linear structure and the feedback effect from the business cycle’s
volatility to the drift in mind, we ask a very important question: does a conventional monetary
policy, following the Taylor rule, still achieve a model determinacy as it does in the linearized
model?

1.2 Taylor rules and Indeterminacy

In this section, we answer whether the conventional Taylor rule guarantees model determinacy
and can fully stabilize the economy.4 We assume that the central bank uses the following
conventional monetary policy:

it = r nt + φy Ŷt , where φy > 0. (1.2.1)

Here, φy > 0 is a condition called ‘Taylor principle’ that guarantees no sunspot in the log-
linearized model without the first-order effects of volatilities. Here, we ask whether it still
can guarantee no sunspot in this non-linear economy with the presence of feedback effects
from volatility to drift.

Plugging equation (1.2.1) into equation (1.1.8), we get the following Ŷt dynamics.

dŶt =

φy Ŷt −(σt)
2

2
+

(σt + σst )2

2︸ ︷︷ ︸
New terms

 dt + σstdZt . (1.2.2)

Multiple equilibria Instead of equation (1.2.2), if Ŷt dynamics is represented by

dŶt =
(
φy Ŷt

)
dt + σstdZt , (1.2.3)

then Blanchard and Kahn (1980) ensures we obtain a unique rational expectation equilibrium:
Ŷt = 0, which is a fully stabilized path.

Now that the endogenous volatility σst affects the drift of equation (1.2.2), we have multi-
ple equilibria and sunspots in σst can appear. We provide one rational expectation equilibrium
that supports an initial sunspot σs0 > 0 in aggregate excess volatility, by constructing an equi-
librium path where {Ŷt} process follows martingale. The case for negative sunspot σs0 < 0 can

4As our dynamic IS equation (equation (1.1.8)) has the same mathematical structure as the one in Lee
and Carreras (2021a), the same logic applies here. For a more detailed treatment of the issue, see Lee and
Carreras (2021a).
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be similarly constructed. This equilibrium path should (i) support an initial sunspot σs0 > 0,
and (ii) on expectation not diverge in the long-run, following Blanchard and Kahn (1980).

Martingale equilibrium Here we provide the explicit equilibrium in which σs0 > 0 appears,
the dynamics follows equation (1.2.2), and Ŷt is martingale. As the drift of the {Ŷt} process
(equation (1.2.2)) must be 0, we get the following formula for Ŷt :

Ŷt = −
(σt + σst )2

2φy
+

(σt)
2

2φy
. (1.2.4)

The martingale equilibrium guarantees a rationality of the equilibrium, as on average the
paths of {Ŷt} stay at the same levels, satisfying E0(Ŷt) = Ŷ0. The last step to show that
there is a stochastic path of {σst} starting from σs0 that supports this equilibrium. This
equilibrium then both (i) supports an initial sunspot σs0 > 0 and (ii) does not diverge in the
long-run.

Using equation (1.2.2) and equation (1.2.4), we obtain the stochastic process of σst as
5

dσst = −(φy)2 (σst )2

2(σt + σst )3
dt − φy

σst
σt + σst

dZt . (1.2.5)

Therefore, equation (1.2.4) and equation (1.2.5) constitute this particular rational equi-
librium dynamics supporting σs0 > 0. What does this martingale equilibrium look like? The
following Proposition 1 sheds lights on behaviors of {Ŷt , σst} paths and argues: business cycle
almost surely converge to the perfectly stabilized path in the long run. Those few paths
which do not converge can blow up asymptotically and sustain the initial sunspot σs0 > 0, as
the economy is forward-looking.

Proposition 1 (Taylor Rules and Indeterminacy). The rational expectation equilibrium that
supports an initial sunspot σs0 > 0 (Ŷt dynamics in equation (1.2.4), and stochastic process
for σst in equation (1.2.5)) features σst

a.s→ σs∞ = 0 and Ŷt
a.s→ 0. And E0(maxt(σ

s
t )2) = ∞

holds.

The conditions σst
a.s→ σs∞ = 0 and Ŷt

a.s→ 0 imply that equilibrium paths that start from the
initial sunspot σs0 > 0 are almost surely stabilized in the long run. Then, how is it possible for
a sunspot σs0 > 0 to appear at first? The condition E0(maxt(σ

s
t )2) = ∞ implies: an initial

5When σt = 0 for ∀t, this process becomes the following Bessel process:

dσst = −
φ2

2σst
dt − φdZt .

which stops when σst hits the σ
q,n = 0. For general properties of Bessel process, see Lawler (2019).
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spike in σs0 and the ensuing crisis is sustained by a tiny probability of a very gigantic volatility
in the future.

Intuitions We explain in a detailed manner (i) how an initial sunspot σs0 in the aggregate
volatility can appear, and (ii) results in Proposition 1. For that purpose, we simplify the
economic environment and make the following assumptions:

A.1 A shock dZt at each period takes one of two: {+1,−1} with equal probability 1
2

A.2 Aggregate demand Ŷt equals a conditional expected value of the next-period aggregate
demand Ŷt+1: therefore, if Ŷt+1 takes either Ŷ (1)

t+1 or Ŷ (2)
t+1, then Ŷt = 1

2
(Ŷ

(1)
t+1 + Ŷ

(2)
t+1)

A.3 Aggregate demand Ŷt falls, as a conditional variance of the next-period’s Ŷt+1 rises
(precautionary saving). Both {Ŷt} and {σst} are set to be 0 on the stabilized path

Since we have only two possible realizations of the shock at each period, we can draw a tree
diagram as follows.

Ŷ0

Ŷ
(2)

1

Ŷ
(4)

2

Ŷ
(8)

3

-

Ŷ
(7)

3

+

-

Ŷ
(3)

2

Ŷ
(6)

3

-

Ŷ
(5)

3

+

+

-

Ŷ
(1)

1

Ŷ
(2)

2

Ŷ
(4)

3

-

Ŷ
(3)

3

+

-

Ŷ
(1)

2

Ŷ
(2)

3

-

Ŷ
(1)

3

+

+

+

σ
s,(1)
1

σ
s,(2)
2 σ

s,(1)
2

σ
s,(4)
3 σ

s,(3)
3 σ

s,(2)
3

σ
s,(1)
3

Stabilized

Ŷt < 0←
Average path

BP

Agents0

BP

Agents1

BP

Agents2

BP

Agents3

Sunspot

Figure 1.1: A sunspot in σs0 as a rational expectation equilibrium

In Figure 1.1, a thick vertical line represents the stabilized path, with its left and right
representing recessions and booms, respectively. The key to build a rational expectation equi-
librium supporting a sunspot σs0 > 0 is to construct a path-dependent consumption strategy
of intertemporal agents. First, let us imagine that the current period agents (Agents0) believe
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suddenly that the future agents will choose the path-dependent consumption demands6 so
that the next-period’s Ŷ1 becomes Ŷ (1)

1 after dZ0 = +1 is realized and Ŷ (2)
1 after dZ0 = −1 is

realized, with Ŷ (1)
1 > Ŷ

(2)
1 . Then the current output Ŷ0 becomes Ŷ0 = 1

2
(Ŷ

(1)
1 + Ŷ

(2)
1 ) with Ŷ0

below the stabilized path, as Agents0 believe there is a dispersion in the next-period business
cycle, which is given as σs,(1)

1 = Ŷ
(1)

1 − Ŷ (2)
1 .

Imagine that dZ0 = −1 is realized. For Agents0’s belief that Ŷ1 = Ŷ
(2)

1 to be correct,
Agents1 now must believe the future agents will choose consumption paths in a way that
the next period’s Ŷ2 becomes Ŷ (3)

2 when dZ1 = +1 is realized and Ŷ (4)
2 when dZ1 = −1 is

realized, with the conditional volatility σs,(2)
2 = Ŷ

(3)
2 − Ŷ (4)

2 higher than σs,(1)
1 , since Ŷ (2)

1 is
lower than the initial output Ŷ0.

After dZ1 is realized, Agents1’s belief about Ŷ2 can be made consistent by future agents’
coordination and it keeps going on for future agents {Agentsn≥2}. We observe: all the nodes
in Figure 1.1 satisfy the assumptions A.2 and A.3, with distance between adjacent nodes
getting narrower as the current output gets closer to the stabilized path and wider as the
output deviates more from the stabilized level. Since the output {Ŷt} is a martingale here,
we ensure that the economy does not diverge in the long run in expectation.

In sum, Agents0’s initial doubt (sunspot) that the next-period business cycle would be
volatile can be made consistent by coordinations between intertemporal agents (the repre-
sentative household) at each node.7

Note that (i) we have a stochastic aggregate volatility in this equilibrium: i.e., σst is
dependent on the path of shocks, as output {Ŷt} is stochastic and depends negatively on the
conditional volatility of its next-period level. Actually, equation (1.2.5) specifies the exact
stochastic process of {σst} starting from σs0 > 0, (ii) since volatility σst becomes smaller
as the output Ŷt approaches the stabilized path, the economy is likely to stick around the
stabilized path if it somehow gets there (therefore, the stabilized path attracting sample
paths), justifying the result of Proposition 1 that σst almost surely converges to 0 over time.
As volatility σst rises whenever output Ŷt deviates more from the stabilized level, it aligns with
the result of Proposition 1 that a maximal σst diverges: E0(maxt(σ

s
t )2) =∞.

While the monetary policy is stabilizing the disruption caused by σs0 > 0 sunspot, the econ-
omy features the crisis phase with low aggregate demand and a higher business cycle volatility.

Escape clause If the central bank and/or government credibly commit to prevent Ŷt from
going below a predetermined threshold through interventions,8 these sunspot equilibria arising

6Their consumption demand determines output in this demand-determined environment.
7It is possible since all future agents share a common knowledge of their consumption strategies and there

is no behavioral friction that blocks communications between intertemporal agents. This sunspot equilibrium is
closely related to a notion of ‘self-confirming equilibrium’. For this issue, see Fudenberg and Levine (1993).

8For example, government might ]commit to incur huge fiscal deficits whenever the economy undergoes
a severe recession. This prescription entails the similar implication about what government can do to restore
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from the aggregate financial volatility σq0 supported by the paths in Figure 1.1 (martingale
equilibrium) are not sustained anymore as a possible rational expectations equilibrium (REE).
This escape clause illustrates how the credible commitment of the government entity to
intervene whenever the economy (probabilistically) enters a big recession actually precludes
a possibility of the crisis phase initiated by the positive sunspot shock σs0 > 0.

Whether this type of commitment from government and central bank is credible is impor-
tant, as here we need a 100% credibility to kill the sunspot equilibrium supporting σs0 > 0.

Negative sunspot We can similarly construct a rational expectation equilibrium that supports
the initial downward sunspot σs0 < 0. The sunspot equilibrium features the boom phase with
buoyant aggregate demand and a lower business cycle volatility. Therefore, our non-linear
characterization of the model actually generates a reasonable prediction of (i) why we have
boom-crisis phases with a sunspot appearance, and (ii) time-varying behaviors of the first
(level) and the second (volatility) moments together during either crisis or boom.9

Now, we study a possible monetary policy rule that restores model determinacy.

1.3 A New Monetary Policy

Imagine that instead of equation (1.2.1), the central bank uses the following monetary policy:

it = r nt + φy Ŷt −
1

2

(
(σt + σst )2 − (σt)

2
)

︸ ︷︷ ︸
Aggregate volatility targeting

, where φy > 0, (1.3.1)

which targets an aggregate volatility of the business cycle, with targeting coefficient 1
2
, in

addition to output gap Ŷt . By plugging the above monetary policy (equation (1.3.1)) into
our dynamic IS equation (equation (1.1.8)), we return to equation (1.2.3), which guarantees
model determinacy and ensures Ŷt = 0 for ∀t as a unique equilibrium.

Interpretation How do we interpret equation (1.3.1)? The additional targeting of aggre-
gate volatility is necessary as it offsets the feedback channel from (endogenous) volatility to
(endogenous) drift of the business cycle and allows no sunspot in σs0.

determinate equilibrium to Benhabib et al. (2002). Benhabib et al. (2002) deals with the role of monetary-fiscal
regimes in regards to eliminating indeterminacy posed by ZLB. In a similar way, Obstfeld and Rogoff (2021)
illustrates how a probabilistic (and small) fiscal backing to the currency by government rules out speculative
hyper-inflations in monetary models.

9Our sunspot equilibria work in a similar way to how we think about animal spirits and their effects in driving
the business cycle. For the neoclassical treatment of this issue, see Angeletos and La’O (2013).
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We acknowledge that it sounds very difficult for central banks to target the business cycle
volatility directly. In the next chapter 2 (or Lee and Carreras (2021a)), we offer an alternative
theoretical framework with explicit stock markets, where agents decide their portfolio choices.
It turns out that those volatility targeting can be interpreted as the central bank’s risk-premium
targeting.
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Chapter 2

Monetary Policy as a Financial Stabilizer

This chapter is coauthored with my classmate and also one of my best friends, Marc Dordal
i Carreras. I appreciate him for allowing me to use our joint work as part of this dissertation.
All errors are mine.

2.1 Introduction

How should monetary policy respond to stock market fluctuations? The current narrative
posits that central banks (-governments) need two separate sets of instruments: macropru-
dential policies and regulations to ensure the stability of financial markets, and monetary
(-fiscal) policies to fulfill the traditional objective of macroeconomic stabilization.1 However,
the debate on this issue is far from being settled for many reasons. For example, the stock
market plays a dual role: it is a source of business cycle fluctuations (e.g., the Great De-
pression) and it is a propagation channel itself (e.g., stock prices merely reflect the collective
wisdom on expected future business cycle conditions). Relatedly, resolving this debate has
proven difficult because mainstream macroeconomic frameworks lack meaningful stock mar-
ket fluctuations (if there is a stock market in such models) or rely on approximation techniques
and numerical methods which can cloud the economic intuition.

In this paper, we shed some lights on this longstanding debate by proposing a New-
Keynesian framework with stock markets and optimal portfolio decisions. We incorporate
endogenous and time-varying second-order moments such as stock market volatility and risk-
premium. Furthermore, our continuous-time framework allows intuitive analytic expressions

1For example, at the press conference held on September 16, 2020, Federal Reserve chair Powell explicitly
mentioned “Monetary policy should not be the first line of defense - is not the first line of defense on financial
stability. We look to more appropriate tools in the first instance, as a first line of defense. And those would be
regulation, supervision, high-capital, high-liquidity stress testing, all of those things, macroprudential tools.”.
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which highlight the underlying mechanisms behind our results. The model features an impor-
tant role of financial volatility and risk-premium for business cycle fluctuations: a more volatile
financial market (with higher risk-premia) brings down aggregate financial wealth (through
individual investor’s portfolio decisions), thereby affecting aggregate demand and output.
Because endogenous second-order terms (financial volatility) feed back into the first-order
moments (financial wealth and aggregate demand), we explore how monetary policy should
be connected to financial stability issues (i.e., financial volatility). We claim that the current
monetary policy framework based on two macroeconomic mandates (e.g., stable inflation and
stable output gap) is not sufficient for macroeconomic stabilization. In addition to these two
mandates, we call for targeting time-varying risk premium as a separate policy objective.

Our model solution uncovers that there exists a sunspot equilibrium that arises from ag-
gregate volatility and risk-premium of financial markets2: fear of a financial crisis possibly
stemming from a rise in risk-premium and stock market volatility, for example, induces in-
vestors to reduce their demand for the stock market investment, bringing down the current
asset price and wealth and thus generating self-fulfilling increases in the expected stock mar-
ket return and risk-premium. In particular, we characterize rational expectations equilibria
that follow self-fulfilling shocks to the financial volatility and risk-premium, where we derive
a tractable expression for the joint dynamic evolution of financial volatility, risk-premium,
and business cycle variables after those sunspots appear as a function of fundamentals and
policy interventions. We prove that under these sunspot equilibria, the financial volatility gets
almost surely stabilized in the long run, but a probability-zero event in which this volatility
diverges in the long run leading to a severe recession makes the sunspot’s initial appearance
possible. As it takes time for initial volatility sunspots to be eliminated by monetary policy
response, our equilibrium features crisis periods (with spikes in stock market volatility and
risk-premium and drops in wealth and output) and boom phases (with low financial volatility
and buoyant wealth and production), depending on the directions of initial sunspots.3

We then study conventional monetary policy rules in regard to model determinacy and
financial stability. Our analysis shows that traditional Taylor rules that focus on macroe-

2Even in the ‘textbook’ New-Keynesian model without explicit stock markets and portfolio decisions, the
economy’s time-varying aggregate risk can have a first-order impact on the aggregate consumption demand due
to the precautionary savings channel. That is the reason, in chapter 1, why we provide an alternative standard
New-Keynesian model without stock markets and characterize non-linear equilibrium conditions to (i) illustrate
the first-order (feedback) effects of endogenous and time-varying aggregate risks on business cycle levels, and
(ii) show that sunspot equilibria arise with conventional monetary policy rules. Therefore, most of main results
continue to hold in chapter 1 including determinacy issues.

3This result aligns with Basu et al. (2021), where they emphasize roles of fluctuations in risk-premia as a
main driver of the business cycle driving movements and comovements among aggregate variables. In Appendix
B.1, we estimate a simple vector autoregression (VAR) with real and financial uncertainty indexes developed
by Ludvigson et al. (2015) and uncover that a 1-3% (5-10%) drop in industrial production (S&P-500 index)
follows after a one standard deviation shock to financial uncertainty, which our calibrated model replicates.
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conomic aggregates (i.e., inflation and output gap) cannot fully prevent the appearance of
sunspots in aggregate financial volatility, but a stronger targeting of macroeconomic man-
dates shortens the time it takes for initial volatility sunspot to get stabilized in our rational
expectations equilibrium. This stronger responsiveness of monetary policy comes with a side
effect, however: a more aggressive targeting of inflation and output gap amplifies the finan-
cial market volatility following sunspot shocks, which generates stronger but short-lived boom
and bust financial cycles. We argue that the failure of conventional policy rules to restore
determinacy lies in their inability to adequately target the expected risky return of financial
markets, which governs the agents’ intertemporal decision-making.

We then propose a generalized policy reaction function that restores determinacy in our
stochastic environment. Specifically, we argue that optimal policy rules should target the
risk-premium of financial markets in addition to their usual mandates. Intuitively, agents in
our model optimally allocate their wealth between risky and riskless assets, and the return
on aggregate financial wealth becomes the relevant rate for their intertemporal consump-
tion smoothing decisions. Therefore, the optimal monetary rule aims to control the return
on agents’ aggregate wealth, but in order to succeed, it must take into account the risky
component of the portfolio return, which is summarized by risk-premium. Thus, our analysis
suggests that aggregate wealth should be an intermediate target of the central bank for the
purpose of macroeconomic stabilization. This new policy rule that targets risk-premium in a
specific way achieves what we describe as ‘ultra-divine’ coincidence: the joint stabilization of
inflation, output gap and risk-premium (equivalently, financial volatility).

Following this rule poses its own challenges though, as the central bank is required to
target risk premium with just the right amount of responsiveness. If the policy response is
too accommodating or strong, monetary policy is again unable to prevent the appearance
of sunspots. Nonetheless, even when the central bank is unable to restore the equilibrium
determinacy, targeting financial variables remains an optimal strategy as it enables a faster
convergence back to the steady state following a sunspot shock.

We then analyze the effects of the zero lower bound (ZLB) on macroeconomic stabiliza-
tion. The ZLB in our framework causes stock prices to fall, leading to drops in business cycle
variables, as in Caballero and Simsek (2020b).4 We ask whether we should expect heightened
financial instability once the policy tool of central banks is constrained at zero, and find that
a credible commitment to economic stabilization upon ZLB-exit is enough to ensure financial
stability during ZLB episodes. However in cases where post ZLB or forward guidance exit
stability is not guaranteed, ZLB is likely to amplify the duration, severity, and welfare costs
of fluctuations in financial market volatility after its sunspots appear.5

4In Section 2.4.4, we explore two macroprudential policies at the ZLB that induce investors to bear more
risks, thereby raising asset prices and business cycle levels: (i) a tax cut on capital gain taxes and (ii) redistribution
across agents.

5Even if central bank’s post-ZLB stabilization prevents the additional financial instability at the ZLB,
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Related Literature Our paper is related to a broad literature on the intersection between
macroeconomics and finance. Our model builds on the idea that changes in financial wealth
levels (usually housing and stock) affect aggregate economic outcomes, documented by Mian
et al. (2013), Mian and Sufi (2014)6, Guerrieri and Iacoviello (2017), Berger et al. (2018),
Caballero and Simsek (2020b), Caballero and Simsek (2020a), Di Maggio et al. (2020),
Caramp and Silva (2020)7 and Chodorow-Reich et al. (2021), among others. In line with this
literature, an endogenous stock price level shifts aggregate demand in our framework through
its effect on aggregate financial wealth. In addition, our framework features endogenous risk-
premium and financial volatility as key factors that drive fluctuations in financial markets and
the business cycle, in line with arguments made by Gilchrist and Zakrajšek (2012), Brunner-
meier and Sannikov (2014), Chodorow-Reich (2014), Stein (2014), Cúrdia and Woodford
(2016), Guerrieri and Lorenzoni (2017), Di Tella and Hall (2020), and Basu et al. (2021)8

among others, that financial (and in particular, credit) disruptions have large impacts on
aggregate demand, especially when monetary policy is constrained. Campbell et al. (2020)
points out that New-Keynesian channels, through which a higher inflation pushes down bond
returns while propping up aggregate output, dividends, and stock returns, can explain the
correlation reversal between bond and stock returns which turned negative in recent years.
Our framework shares the same intuitions and sheds lights on how stock market fluctuation
can be embedded in conventional New-Keynesian models.9

Our result that monetary policy must be systematically concerned with financial markets

business cycle still can feature high levels of volatility and risk-premium due to fundamental risks (e.g., TFP
volatility). In Section 2.4.3, we show that by credibly committing to sacrifice financial stabilization in the future,
central bank can attain welfare-enhancing commitment equilibria, in which it boosts asset prices and output,
and reduces risk-premium and financial volatility today at the ZLB.

6In their works, consumers with a high marginal propensity to consume (MPC) who experience large drops in
their housing prices, reduce the consumption amounts due to both wealth effects and a binding credit constraint,
the latter of which we do not consider in this paper.

7Caramp and Silva (2020) introduced rare-disasters and positive private debt and characterized the roles of
time-varying risk-premia and financial wealth in a linearized setting.

8Basu et al. (2021) emphasize roles of fluctuations in risk-premia as a business cycle driver, showing that
the shock that explains fluctuations in risk-premia can explain a large fraction of business cycle movements and
co-movements. They rely on the third-order perturbation to solve their model. In addition, Kekre and Lenel
(2021) provide an elegant framework which illustrates the transmission of monetary policy through its impacts
on the equilibrium risk-premium level in the environment that features heterogeneity in households’ marginal
propensity to take risk (MPR). While their dynamic model relies on global solution methods, their analytic
counterpart relies on the third-order approximation.

9The previous literature usually focus on channels through which financial wealth and financial market
disruptions affect business cycle fluctuations. The other direction, an asset pricing implication of the New-
Keynesian model, is also addressed by De Paoli et al. (2010), Weber (2015) and Gorodnichenko and Weber
(2016).
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stability is related to prior literature including Bernanke and Gertler (2000), Stein (2012),
Woodford (2012), Cúrdia and Woodford (2016)10, Caballero and Simsek (2020a), Cieslak
and Vissing-Jorgensen (2021), Kekre and Lenel (2021), and Galí (2021)11. In contrast to
Bernanke and Gertler (2000)’s findings that monetary policy should not target stock prices,
which they concluded based on a model with ad-hoc bubbles, bubble components are omitted
in our model and thus only the fundamental stock price level serves as the key factor that
determines aggregate demand. Therefore, our specification with the stock price as an ag-
gregate demand shifter leads to the equivalence of targeting of stock price ‘level’ and more
conventional mandates such as output gap, and allows us to connect our work with Cieslak
and Vissing-Jorgensen (2021) which conclude that stock market performance is a powerful
predictor of the policy rate. In particular, Kekre and Lenel (2021) provide a beautiful theo-
retical framework in which an accommodation shock in monetary policy redistributes toward
those with a higher marginal propensity to take risk (MPR), thereby reducing risk-premium
levels and amplifying the monetary transmission. While their focus is on how monetary
policy following the conventional Taylor rule affects the economy through its impacts on
economy-wide risk-premia in the heterogenous agents New Keynesian (HANK) environment,
our analytic approach allows us to spot new indeterminacy around the second-order financial
variable (aggregate financial volatility) with conventional Taylor rules,12 thereby allowing us
to provide a more generalized Taylor rule that targets risk-premium as a way to facilitate
stabilization and (possibly) restore model determinacy. Our approach still aligns with their
view in that aggregate wealth is to be managed through monetary policy, and our generalized
Taylor rule illustrates that an internal rate of return on aggregate wealth, instead of just the
risk-free policy rate, must be responding to fluctuations in business cycle variables for the
model to restore determinacy and achieve perfect stabilization.

While Giavazzi and Giovannini (2010), Stein (2012), and Caballero and Simsek (2020a)
focus on the preemptive role of monetary policy in avoiding ‘future’ financial crises, our
model features a monetary policy rule targeting the risk-premium of financial markets for the
‘current’ stabilization purposes, in addition to its traditional inflation and output gap targets.
Our result that monetary accommodation props up the business cycle through its effect on
the stock market level is in line with evidence provided by Rigobon and Sack (2003), Azali et
al. (2013), and Kekre and Lenel (2021).

10Woodford (2012) and Cúrdia and Woodford (2016), in particular, incorporate a friction in financial inter-
mediation between agents with different marginal propensities to consume (MPC) and study how the optimal
monetary policy rule must be adjusted.

11Galí (2021) introduced rational bubbles in a New-Keynesian model with overlapping generations. He
argued that ‘leaning against the bubble’ policy, if properly specified, insulates the economy from aggregate
bubble fluctuations.

12Also, we contribute to the literature by providing an exact stochastic process for each business cycle
variable after those sunspots appear in the financial market.
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This paper is also related with literature on New-Keynesian environment and monetary
policy at the zero lower bound (ZLB). Due to nominal pricing rigidities à la Calvo (1983),
our economy is demand-driven and stock market performance drives the aggregate demand.
Thus, in order to characterize monetary policy’s stabilization role, endogenous fluctuations in
stock markets must be properly taken into account, a topic that has often been overlooked
by the previous literature. While several authors focus on demand recessions brought by
deleveraging borrowers at the ZLB and aggregate demand externality issues (i.e., Akerlof and
Yellen (1985), Blanchard and Kiyotaki (1987), Eggertsson and Krugman (2012), Farhi and
Werning (2012), Farhi and Werning (2016), Korinek and Simsek (2016), Schmitt-Grohé and
Uribe (2016), and Farhi and Werning (2017)), we turn our attention towards declines in the
aggregate demand for risky assets as the key driver behind financial recessions, a channel that
has been documented by Caballero and Farhi (2017) and Caballero and Simsek (2020b).

Our paper is similar to Caballero and Simsek (2020b) in terms of how an endogenous
asset market is interwoven with business cycle fluctuations. However, while their framework
focuses on how behavioral biases can generate interesting crisis dynamics in light with the
feedback loop between asset markets and the business cycle13, our focus is on the traditional
monetary policy rule under rational expectations, and the central bank’s capacity to intervene
in financial markets during crisis caused by the ZLB. Our model’s equilibrium determinacy re-
sults are similar to Acharya and Dogra (2020) in terms of how countercyclical risks can lead
to indeterminacy. While Acharya and Dogra (2020) focus on how determinacy conditions
change in the presence of exogenous idiosyncratic risks that are functions of aggregate out-
put, we investigate the existence of sunspots stemming from aggregate financial risk, which
is countercyclical in nature and affects both financial markets and business cycle fluctuations,
and study the monetary policy mechanisms that restore determinacy and/or improve eco-
nomic and financial stability.

Layout In Section 2.2, we present the model with explicit stock markets and characterize
the equilibrium conditions. Section 2.3 focuses on the proper monetary policy rules in lights
with our framework’s new features. In Section 2.4, we analyze zero lower bound (ZLB) crises
and possible unconventional fiscal and monetary measures that mitigate recessions, focusing
on the derivation of key trade-offs that central banks must take into account. Section 3.5
concludes.

In Appendix B.1, we provide evidence on the importance of financial volatility as a driver
of business cycle fluctuations, based on a structural Vector Autoregression (VAR) approach.
Appendix B.2 contains additional figures and tables. Appendix B.3 contains derivations and

13Caballero and Simsek (2020b) features optimists and pessimists who have different beliefs about the
probability of an upcoming recession. During ZLB episodes, an endogenous decline in the risky asset valuation
generates a demand recession due to a drop in optimists’ wealth.
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proofs. Appendix B.4 derives the quadratic welfare loss function in this framework.

2.2 The Model with Stock Markets

In this Section 2.2, we consider a slightly different theoretical framework, which enables us
to analyze the effects of higher-order moments tied to the aggregate financial volatility on
aggregate demand, and provides us the practical implications about monetary policy rules.

2.2.1 Setting

Time is continuous, and a filtered probability space (Ω,F , (Ft)t∈R,P) is given. The economy
consists of a measure one of capitalists, who we regard as neoclassical agents, and the same
measure of hand-to-mouth workers, who we regard as Keynesian agents. There is a single
source of exogenous variation in the aggregate production technology At , which is adapted
to the filtration (Ft)t∈R and evolves according to a geometric process with a possibly time-
varying volatility σt :

dAt
At

= g︸︷︷︸
Growth

dt + σt︸︷︷︸
Fundamental risk

dZt . (2.2.1)

We regard the aggregate TFP’s volatility σt as the economy’s ‘fundamental’ risk. We assume
it to be constant in most scenarios, but later, as in Caballero and Simsek (2020b), we will
allow σt to jump and analyze how it affects the equilibrium dynamics. For convenience, we
also assume the average growth rate g to be constant over time.

Finally, there is a standard set of intermediate good producers that face nominal price
rigidities, thus making the economy New-Keynesian in nature. Next, we describe roles of
each type of agents (capitalists and workers) and firms.

Firms and Workers

There are a measure one of monopolistically competitive firms, each producing a differenti-
ated intermediate good yt(i), i ∈ [0, 1]. There also exists a competitive representative firm
which transforms intermediates into a final consumption good yt according to a Dixit-Stiglitz
aggregator with an elasticity of substitution ε > 0 in the following way.

yt =
(∫ 1

0

yt(i)
ε−1
ε di

) ε
ε−1

. (2.2.2)
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Each intermediate good firm i has the same production function yt(i) = At(NW,t)
αnt(i)

1−α,
where NW,t is the economy’s aggregate labor and nt(i) is the labor demand of an individual
firm i at time t. The reason that we introduce a production externality à la Baxter and
King (1991) is that it helps us match empirical regularities on asset price and wage co-
movements, and it does not affect other qualitative implications of our framework.14 Each
firm i faces the downward-sloping demand curve yi(pt(i)‖pt , yt), where pt(i) is the price of
its own intermediate good and pt , yt are the aggregate price index and output, respectively:

yi(pt(i)‖pt , yt) = yt

(pt(i)
pt

)−ε
. (2.2.3)

The set of prices charged by intermediate good firms, {pt(i)}, is aggregated into the price
index pt as

pt =
(∫ 1

0

pt(i)
1−εdi

) 1
1−ε
. (2.2.4)

We also impose a nominal price rigidity à la Calvo (1983), and firms can change prices of their
own intermediate goods with δdt probability in a given time interval dt. In the cross-section,
this implies that a total δdt portion of firms reset their prices during a given dt time interval.

A representative hand-to-mouth worker supplies labor to intermediate good producers,
gets an equilibrium wage income, and spends every dollar he earns on final good consumption.
We assume that each worker solves the following optimization at every moment t, where CW,t ,
NW,t and wt are his consumption, labor supply and wage at time t, respectively.

max
CW,t ,NW,t

(CW,t
At

)1−ϕ

1− ϕ −
(NW,t)

1+χ0

1 + χ0

s.t. ptCW,t = wtNW,t , (2.2.5)

where χ0 is the inverse Frisch elasticity of labor supply. Note that we normalize consumption
CW,t by technology At , which governs the economy’s size.15 As wage wt is homogeneous
across firms, labor demanded by each firm i , {nt(i)}, are simply combined into aggregate

14In our framework, rising asset prices tend to be correlated with the decreasing wage compensation to
workers since firm value (stock price) usually rises if firms can pay less to workers. It violates empirical regularities
documented by Chodorow-Reich et al. (2021) in which a rise in stock price tends to push up local aggregate
demand variables such as employment and wage. Our production function with externality à la Baxter and King
(1991) provides us a reasonable calibration that matches these empirical regularities because higher asset prices
and aggregate demand raise the firms’ marginal product of labor, thus increasing labor demand and wages.
Basically, our externality plays similar roles to the capital in the production function, with a higher degree of
tractability.

15The qualitative results of the model are not affected by the consumption normalization, which we introduce
to simplify the analytic expressions of the model.
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labor NW,t in a linear manner as

NW,t =

∫ 1

0

nt(i)di . (2.2.6)

Final good output yt can be written as a function of total labor NW,t by the following
aggregate production function with price dispersion ∆t defined below.16 Due to the Baxter
and King (1991) externality, the aggregate production function becomes linear in NW,t as

yt =
AtNW,t

∆t

, where ∆t ≡
(∫ 1

0

(pt(i)
pt

)− ε
1−α
di
)1−α

. (2.2.7)

Financial Market and Capitalists

Unlike conventional New-Keynesian models where a representative household owns the inter-
mediate goods sector and receives rebated profits in a lump sum way,17 we assume that firm
profits are capitalized in the financial market as a representative stock fund. Capitalist then
face an optimal portfolio decision problem involving the allocation of their wealth between a
risk-free bond and the risky stock at every instant t.

The total nominal financial wealth of the economy is ptAtQt , where Qt is the normalized
(or TFP detrended) real asset price. Qt is an endogenous variable adapted to filtration
(Ft)t∈R and assumed to evolve according to the process in equation (2.2.8), with both
endogenous drift µqt and volatility σqt terms. In particular, we regard σqt as a measure of
financial uncertainty or disruption, as we usually observe spikes in asset price volatility during
financial crises. Like Qt , we assume that the price aggregator pt follows the general stochastic
process in equation (2.2.9), in which drift πt and volatility σpt are endogenous. Thus, it
follows that total financial market wealth ptAtQt evolves as a geometric Brownian motion
with volatility (σt + σqt + σpt ). Intuitively, if some capitalist invests in the stock market, they
have to bear all three risks: inflation risk, technology (fundamental) risk, and (detrended)
real asset price risk.

dQt
Qt

= µqt dt + σqt︸︷︷︸
Financial volatility

dZt , (2.2.8)

dpt
pt

= πtdt + σpt︸︷︷︸
Inflation risk

dZt . (2.2.9)

16See Woodford (2003), Yun (2005), Kaplan et al. (2010) among others for the role of relative price
dispersion ∆t in business cycle fluctuations and economic stabilization issues.

17We already studied non-linear implications in the context of standard New-Keynesian models in Section
1.1.
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Here, σqt is determined in equilibrium and can be either positive or negative. σqt < 0 corre-
sponds to the case where total real wealth AtQt is less volatile than the TFP process {At}.
The nominal price process has inflation rate πt as its drift, and in general has a volatility part
σpt , which we call an inflation risk. In most cases other than the flexible price benchmark, we
show that σpt = 0 holds and we do not need to concern ourselves with this term.

In addition to the stock market, we assume that there is a risk-free bond with an associated
nominal rate it that is controlled by the central bank. Bonds are in zero net supply in
equilibrium because all capitalists are equal. A measure one of identical capitalists chooses
the portfolio allocation between a risk-free bond and a risky stock, where in the latter case,
they earn the profits of the intermediate goods sector as dividends, as well as the nominal price
revaluation of the stock due to changes in pt , At and Qt . Financial markets are competitive,
thus each capitalist takes the nominal risk-free rate it , expected stochastic stock market
return imt , and the risk level σt + σqt + σpt as given when choosing her portfolio decision.18

If a capitalist invests a share θt of her wealth at in the stock market, she bears a total risk
θtat(σt + σqt + σpt ) between t and t + dt. Therefore, the riskiness of her portfolio increases
proportionally to the investment share θt in the stock. Capitalists are risk-averse, and ask for
a risk-premium compensation imt − it when they invest in the risky stock, which must also be
determined in equilibrium.

Each capitalist with nominal wealth at has log-utility and solves the following optimization:

max
Ct ,ωt
E0

∫ ∞
0

e−ρt logCtdt s.t. dat = (at(it + θt(i
m
t − it))− ptCt)dt+θtat(σt + σqt + σpt )dZt ,

(2.2.10)
where ρ is her time discount rate and Ct is final good consumption. At every instant, she
earns returns out of both the risk-free bond and the risky stock investments, and spends on
final good consumption. From Merton (1971), we know that the solution of the problem
features an optimal consumption expenditure rate which is exactly a ρ portion of her wealth
at , thus satisfying

ptCt = ρat . (2.2.11)

Note that a less patient capitalist (higher ρ) increase her instantaneous consumption rate in
a proportional manner.

18This competitive market assumption is related to the reason we initially assume a measure one of identical
capitalists. This assumption turns out to be an important aspect of the framework for explaining inefficiencies
caused by the aggregate demand externality that individual capitalist’s financial investment decision imposes on
the aggregate economy.
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2.2.2 Equilibrium and Asset Pricing

In equilibrium, every agent with the same type (either worker or capitalist) is identical and
chooses the same decisions. Because in equilibrium bonds are in zero net supply, each capital-
ist’s wealth share θt in the stock market must satisfy θt = 1, which pins down the equilibrium
risk-premium value demanded by capitalists. Due to the log-preference of capitalists, risk-
premium is given by (σt + σpt + σqt )2, as in equation (2.2.12). In equilibrium, capitalists hold
a wealth amount that equals the total financial market wealth. These equilibrium conditions
can be summarized as follows.

rpt ≡ imt − it = (σt + σqt + σpt )2︸ ︷︷ ︸
Risk-premium

and at = ptAtQt︸ ︷︷ ︸
Market wealth

, (2.2.12)

where the risk-premium rpt demanded by capitalists increases with either of the three volatil-
ities {σt , σqt , σpt }. As the financial volatility σqt is endogenous, the risk-premium rpt term is
endogenous as well and needs to be determined in equilibrium. Note also that by the previous
expression, the wealth gain/loss of the capitalist is equal to the nominal revaluation of the
stock.

We can characterize the good’s market equilibrium and the equilibrium asset pricing con-
dition of the expected stock return imt as follows: Since capitalists spends ρ portion of their
wealth at on consumption expenditure and they hold the entire wealth, Ct = ρAtQt holds
in equilibrium. Thus we can write the equilibrium condition for the final good market as
follows.19.

ρAtQt +
wt
pt
NW,t =

AtNW,t
∆t

. (2.2.13)

Due to the log-utility of capitalists, their nominal state-price density ξNt
20 is given in the

following way, where the stochastic discount factor between time t (now) and s (future) is
by definition given as ξNs /ξ

N
t .

ξNt = e−ρt
1

Ct

1

pt
. (2.2.14)

Total stock market wealth (ptAtQt) is by definition the sum of discounted profit streams from
the intermediate goods sector, which are priced by the above ξNt because capitalists are natural
stock market investors in equilibrium. Thus we can price the entire stock market value as in
the following relation, where we discount future profits with the stochastic discount factor
generated by the state-price density {ξNt }. We know that the entire profit of the intermediate

19Here NW,t is the solution of the worker’s optimization problem in equation (2.2.5).
20A superscript N means it is a nominal state-price density, where a superscript r means a real state-price

density.
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goods sector is given as:

Dt ≡
∫

(pt(i)yt(i)− wtnt(i))di =

∫
pt(i)yt(i)di︸ ︷︷ ︸

=ptyt

−wtNW,t︸ ︷︷ ︸
=ptCW,t

= pt(yt − CW,t) = ptCt ,

(2.2.15)

where we use the Dixit-Stiglitz aggregator properties (total expenditure equals the sum of
expenditures on each good) and linear aggregation of labor (equation (2.2.6)). Regardless
of price dispersion across firms, the aggregate dividend Dt is equal to the consumption
expenditure of capitalists, who are the natural stock investors in equilibrium as hand-to-mouth
workers spend all their income on consumption.

Plugging the above expressions into the fundamental asset pricing equation yields the
following condition.

ptAtQt = Et
1

ξNt

∫ ∞
t

ξNs

(
Ds︸︷︷︸

=psCs from equation (2.2.13)

)
ds =

ptCt
ρ
, (2.2.16)

which becomes Ct = ρAtQt , the same expression as capitalist’ optimal consumption (equa-
tion (2.2.11)) when at is given by equation (2.2.12). Thus, in order to determine the asset
price and close the model, we need an additional condition.21 In general, we can obtain the
exact Qt levels when we have the information about equilibrium levels of labor NW,t from
equation (2.2.13). As we know that NW,t only depends on time t real wage wt

pt
, it ultimately

requires information about the real wage level to pin down an expression for Qt .

The nominal expected return on the risky stock imt in equilibrium consists of the dividend
yield from the intermediate goods sector profits and the nominal stock price re-valuation
(capital gain) due to fluctuations in {pt , At , Qt}. Within our specifications, the dividend yield
always equals ρ, the discount rate of capitalists. Therefore, when imt changes, only nominal
stock prices can adjust endogenously, as the dividend yield is fixed.

With {Imt } as the cumulative stock market return process, the following equation (2.2.17)

21Usually, a monetary policy rule takes this role in the New-Keynesian literature
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shows the decomposition of imt into dividend yield and stock revaluation:

dImt =

Nominal dividend︷ ︸︸ ︷
��pt

(
yt −

wt
pt
NW,t︸ ︷︷ ︸

=Ct

)

��ptAtQt︸ ︷︷ ︸
Total capital market wealth

dt +
d(ptAtQt)

ptAtQt︸ ︷︷ ︸
Capital gain

= ρdt +
d(ptAtQt)

ptAtQt

= [ρ+ πt︸︷︷︸
Inflation

+g + µqt + σqt σ
p
t + σt(σ

p
t + σqt )]

︸ ︷︷ ︸
=imt (Expected return)

dt + (σt + σqt + σpt )︸ ︷︷ ︸
Risk term

dZt .

(2.2.17)

The equilibrium conditions we have obtained consist of the worker’s optimization (solution
of equation (2.2.5)), labor aggregation (equation (2.2.6)), total output (equation (2.2.7)),
capitalist’s optimization (equation (2.2.12)), the good market equilibrium (equation (2.2.13)),
and determination of the risky stock return (equation (2.2.17)). To close the model, we also
have to derive the supply block of the economy (pricing decisions of intermediate good firms
à la Calvo (1983)) and define the monetary policy rule, which is the most important topic of
our interest.

Before we characterize the benchmark case without nominal rigidities, the following
Lemma 1 adapts the Fisher equation when there is a correlation between the (aggregate)
price process and the wealth process. The Lemma 1 shows that the inflation premium should
be added to the original Fisher relation.

Lemma 1 (Inflation Premium). Real interest rate is given by the following variant of the
Fisher identity.

rt = it − πt + σpt (σt + σpt + σqt )︸ ︷︷ ︸
Wealth volatility︸ ︷︷ ︸

Inflation premium

(2.2.18)

Lemma 1 is useful when we characterize the flexible price equilibrium of the model where
the nominal price process is arbitrary and does not affect the real economy.

2.2.3 Flexible Price Equilibrium

As a benchmark case, we study the flexible price equilibrium. When firms can freely reset
their prices (δ → ∞ case), the real wage becomes proportional to aggregate technology
At . The following proposition summarizes the real wage, asset price process, natural rate of
interest r nt (the real, risk-free rate that prevails in this benchmark economy), and consumption
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process of the capitalist in the flexible price equilibrium. Before we proceed, we define the
following parameter, which is the effective labor supply elasticity of workers taking their
optimal consumption decision into account.

Definition 1. Effective labor supply elasticity of workers χ−1 ≡
1− ϕ
χ0 + ϕ

Proposition 2 (Flexible Price Equilibrium). 22 In the flexible price equilibrium, the following
conditions for real wage wnt

pnt
, asset price Qnt , natural rate of interest r nt , and consumption of

capitalists Cnt , hold.
(i) Every firm charges the same price (∆t = 1,∀t), and the real wage is proportional to
aggregate technology At .

pt(i) = pt ,∀i ∈ [0, 1] and
w n
t

pnt
=

(ε− 1)(1− α)

ε
At (2.2.19)

(ii) Equilibrium (detrended) asset price Qnt is constant and given as follows.

Qnt =
1

ρ

((ε− 1)(1− α)

ε

) 1
χ
(

1−
(ε− 1)(1− α)

ε

)
and µq,nt = σq,nt = 0 (2.2.20)

(iii) Natural interest rate r nt depends on parameters ρ, g, σt in the following way.

r nt = ρ+ g − σ2
t (2.2.21)

(iv) Consumption of capitalists evolves with the following stochastic process, which depends
on r n, ρ, σt , χ.

dCnt
Cnt

= (r nt − ρ+ σ2
t︸ ︷︷ ︸

≡µc,nt

)dt + σt︸︷︷︸
≡σc.nt

dZt (2.2.22)

In flexible price equilibrium, proposition 11 shows that we can characterize closed-form
expressions of the real wage wnt

pnt
, (detrended) stock price Qnt and natural rate r nt . A few points

are worth mentioning. In the flexible price economy, σq,nt = 0 holds, which implies that there
is no additional financial risk running in the economy, in addition to the TFP risk, σt . This
feature arises because our economy features no explicit frictions (other than nominal rigidity,
which is absent for now) and thus every variable other than the labor supply Nw,n(t) becomes
proportional to At . This means that real wealth AtQnt has the exact same volatility as At
itself, and the financial market imposes no additional risk on the economy.

A higher ε increases competition among firms, raising the real wage wnt
pnt
. It also has

two competing effects on the asset price Qnt . A higher real wage pushes down the profit

22We assign a superscript n to denote variables in the flexible price (natural) equilibrium of the economy.
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of the intermediate sector and reduces the stock price Qnt . On the other hand, a higher
wage induces workers to supply more labor to firms, raising output and stock price Qnt . The
effective labor supply elasticity χ−1 matters in this second effect, thus equation (2.2.20)
features χ−1 exponent on the term that increases with ε. As Qnt is constant, its drift µq,nt
also satisfies µq,nt = 0 for all t.

The natural real interest rate r nt consists of two parts with countervailing forces. A higher
growth rate g induces capitalists to engage in more intertemporal substitution (into both
bonds and stocks) and raises the value of r nt . A higher σt pushes down the natural rate r nt
in two ways: with higher σt , capitalists engage more in precautionary savings, bringing down
the natural rate r nt . This effect is well documented in the literature.23 Another channel in
which a higher σt pushes down r nt works through the risk-premium. A higher σt raises the
equilibrium risk-premium level, inducing capitalists to pull their wealth out of the stock market,
forcing r nt to go down in order to prevent a fall in the financial wealth. The second channel
is present in our framework as we explicitly model the portfolio decision of each capitalist,
which collectively pins down the equilibrium wealth and thus the aggregate demand level.

With the flexible price equilibrium as a benchmark, we move on to the sticky price equi-
librium and show how our framework differs from the usual New-Keynesian models.

2.2.4 Sticky Price Equilibrium

When price resetting is sticky à la Calvo (1983), we obtain the Phillips curve that describes
inflation dynamics. Since a fixed portion δdt of firms changes their prices on a given infinites-
imal interval dt, we have no stochastic fluctuation in the price process in equation (2.2.8),
thus σpt = 0 holds. Now, we just need a monetary policy rule to close the model. Before
analyzing the proper monetary rule in this framework, we first describe the ‘gap’ economy,
which is defined as the economy where every variable is a log-deviation from the correspond-
ing level in the flexible price economy. That is, we define any business cycle variable xt ’s gap,
x̂t , to be the log-deviation of xt from its natural level xnt , which is the level of the variable in
the flexible price equilibrium.

x̂t ≡ ln
xt
xnt
. (2.2.23)

Because the asset price acts as an endogenous aggregate demand shifter, we first write
every other variable’s gap in terms of the asset price gap. The following Assumption 1 is the
first step.24

23For example, see Acharya and Dogra (2020) for the recent treatment of precautionary saving in the
New-Keynesian environment.

24Assumption 1 ensures our framework matches the empirical regularities observed in the data, and holds
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Assumption 1 (Labor Supply Elasticity). χ−1 >

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε

.

Assumption 1 is needed to guarantee the positive co-movement between the asset price
and business cycle variables (e.g., real wage and consumptions of both capitalists and workers)
observed in the data. With a large ε, firms’ mark-ups decrease as competition between them
intensifies, and real wage level rises as a result. This has a negative impact on the stock
price as firm profits decrease, making it harder to satisfy a positive co-movement between
the asset price and real wage gaps.25 A larger α amplifies the effect of the Baxter and King
(1991) externality, and an increase in asset price gap can result in higher labor demand and
real wage. Without Assumption 1, a positive gap in the asset price depresses wages, labor,
and consumption of workers, which might explain a portion of the observed long-run trend
towards increased wealth inequality and income stagnation.26

The following Lemma 2 argues that given Assumption 1, gaps in consumptions of cap-
italists and workers, asset price, employment, and real wage are all linearly dependent and
co-move with one another up to a first-order. Therefore, for stabilization purposes, the cen-
tral bank only needs to deal with the asset price gap Q̂t .27 From Ct = ρAtQt , we infer that
Q̂t = Ĉt holds. Thus from now on we can interchangeably use Q̂t or Ĉt to denote gaps of
asset price Qt and consumption of capitalists Ct .

Lemma 2 (Co-movement). Given assumption 1, gaps in consumption of capitalists Ct and
workers (CW,t), employment (NW,t), and real wage (wt

pt
) co-move with a positive correlation.

under a standard calibration of the model (see Table B.2). Even without Assumption 1, the main qualitative
features of our model remain unchanged.

25When the demand elasticity ε is larger, profits of firms per unit revenue decrease, as firms face a fiercer
competition. In those cases, a drop in profits cam lead to decreases in both the asset price and capitalists’
consumption, while hand-to-mouth workers enjoy a rise in wage income, and hence consumption. A higher
χ−1 means a higher output elasticity with respect to aggregate technology, which tends to generate a positive
correlation between consumption of capitalists and workers.

26For example, see Saez and Zucman (2020) for the trend on rising wealth and income inequality in the
US. Also, see Autor et al. (2020) for evidence on a decreasing labor share and effects from the rise of market
concentration. Especially, growth in pre-tax income for bottom 50% has been only 0.2% on average per year
since 1980s, while S&P-500 index has risen almost by 8% per year.

27In this demand-determined environment, a positive asset price gap induces stronger economic activities in
general, resulting in positive gaps in real wage, employment, and consumption.
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Up to a first-order, the following approximation holds.

Q̂t = Ĉt =
(
χ−1 −

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε

)
︸ ︷︷ ︸

>0

ŵt
pt

=

χ−1 −

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε
1 + χ−1︸ ︷︷ ︸

>0

ĈW,t . (2.2.24)

Using Lemma 2, we can actually get the following relation between Q̂t and ŷt .

ŷt = ζQ̂t , where ζ ≡
χ−1

χ−1 −

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε

> 0, (2.2.25)

where Assumption 1 implies ϕ > 0.28

Demand block Now we formulate one of the key building blocks of this paper, a dynamic
{Q̂t} process. This {Q̂t} process serves as the demand block of the model, while the Phillips
curve will serve as a supply block.

The dynamic IS equation in our model features some important modifications from the
canonical New-Keynesian model. Before we characterize it, we define the risk-premium level
rpt ≡ (σt + σqt )2 and its natural level in the flexible price economy rpnt ≡ (σt)

2 with σq,nt = 0,
as we characterized in equation (2.2.20). By subtracting rpnt from the current risk-premium
level rpt , we define risk-premium gap r̂ pt ≡ rpt − rpnt . Basically, as the risk-premium gap
rises, capitalists ask for a higher compensation to bear financial risks, which causes asset
prices to fall below its natural level. We also define the risk-adjusted natural rate rTt as we
defined similarly in the standard non-linear New-Keynesian setting (equation (1.1.10)), which
is related to its natural correspondent as follows.

rTt ≡ r nt −
1

2
r̂ pt . (2.2.26)

rTt serves as a real rate anchor for monetary policy. A positive risk-premium gap (r̂ pt > 0), for
example, lowers the demand of capitalists for the risky stock compared with the benchmark

28Since aggregate production is linear in aggregate labor up to a first-order, aggregate mark up gap becomes
negation of the real wage gap.
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economy, and thus decreases the risk-free rate rTt that supports the equilibrium dynamics.
In the following proposition, we characterize an asset price gap Q̂t process, which is similar

to the usual dynamic IS equation in textbook New-Keynesian models but different in a very
important aspect: the natural rate r nt is replaced with the risk-adjusted natural rate rTt .

Proposition 3 (Asset Price Gap Process (Dynamic IS Equation)). With inflation {πt}, we
have the following Q̂t process, where rTt takes the role of r nt in the conventional IS equation.

dQ̂t = (it − πt − rTt )dt + σqt dZt . (2.2.27)

Thus, endogenous financial volatility σqt directly affects the drift of the {Q̂t} process, which
governs how all other gap variables fluctuate over time.

With σpt = 0 due to the nature of staggered pricing à la Calvo (1983), when capitalists
invest in the stock market they bear (σt + σqt ) amount of risk. We know that the log-
preference of capitalists determines the risk-premium level to be (σt + σqt )2. In flexible price
equilibrium, the natural rate is given as r nt and σqt equals σ

q,n
t = 0. Thus, the level of expected

(instantaneous) real return in stock market investment becomes r nt + (σt)
2 − 1

2
(σt)

2, where
the factor 1

2
(σt)

2 is from the quadratic variation factor that arises from the second-order
Taylor expansion. In a sticky price equilibrium with asset price volatility σqt , risk premium
changes from (σt)

2 to (σt + σqt )2. Therefore, with monetary policy rate it and inflation πt ,
the real expected stock market return becomes it − πt + 1

2
(σt + σqt )2. If this value differs

from r nt + 1
2

(σt)
2, then asset price gap Q̂t endogenously adjusts, and this adjustment creates

a real distortion from its effect on aggregate demand.
Equation (2.2.27) has the same mathematical structure as equation (1.1.8) in the stan-

dard New-Keynesian model. In Section 1.1, the endogenous business cycle volatility has a
first-order impact on aggregate demand through precautionary savings channel, whereas in
the current model with stock markets, an aggregate financial market volatility affects risk-
premium and financial wealth, thereby affecting stock prices and aggregate demand. Due to
this isomorphic structure between two frameworks, we will show that novel findings in Section
1.1 continue to hold here, with important implications about monetary policy.

Thus we get the lesson that the monetary policy it should take deviation in risk-premium
from its natural level into account as well as the natural rate of interest r nt , since otherwise
asset price Qt will deviate from its natural level and generate business cycle fluctuation.
rTt can be interpreted as the real risk-free rate that ensures that the real return on stock
market investment is equal to its level in the benchmark economy, as shown in the following
equation (2.2.28).

r nt +
1

2
(σt)

2︸ ︷︷ ︸
=rpnt

= rTt +
1

2
(σt + σqt )2︸ ︷︷ ︸

=rpt

. (2.2.28)
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When σqt = σq,nt = 0 holds, the risk-adjusted rate rTt equals the natural rate r nt and
equation (2.2.27) becomes the canonical New-Keynesian IS equation in equation (2.2.29).

dĈt = (it − πt − r nt )dt. (2.2.29)

The crux of the problem is that σqt is itself an endogenous variable to be determined in
equilibrium, with no guarantee that it will equate its natural level σq,nt = 0.

The endogenous financial volatility σqt can be interpreted a measure of financial disruption,
as its rise, given monetary policy rate it , reduces stock prices and thus aggregate demand,
dragging the economy into recession. This channel has been pointed out by many authors
including Gilchrist and Zakrajšek (2012), Stein (2014), Chodorow-Reich (2014), Guerrieri and
Lorenzoni (2017), Di Tella and Hall (2020) among others, with different aspects of financial
disruption affecting economic activity. Woodford (2012) and Cúrdia and Woodford (2016)
especially introduced a friction in credit intermediation between borrowers and savers to the
New-Keynesian framework and derived similar dynamics for output gap, but their friction is
exogenous and relies on ad-hoc assumptions.

The existence of this new stock market volatility channel invites us to re-think the tra-
ditional monetary policy framework, to which we devote Section 2.3. Before we jump on
to the next topic, if we plug equation (2.2.21) into equation (2.2.26), we get the following
expression for rTt .

rTt = ρ+ g −
σ2
t

2
−

(σt + σqt )2

2
. (2.2.30)

Figure 2.1a represents rTt as a function of σqt given σt level. Intuitively, when σ
q
t jumps up,

a rise in risk-premium rpt ensues and the rate rTt falls. We see rTt aligns with the natural rate
r nt when σqt equals σ

q,n
t = 0. Figure 2.1b illustrates the effect of a spike in σt . When σt rises,

the curve in Figure 2.1a uniformly shifts down. The formula σq,nt = 0 in equation (2.2.20)
implies that σq.nt remains unchanged, but the natural rate of interest r nt still falls due to equa-
tion (2.2.21).

Supply block We follow the standard literature on pricing à la Calvo (1983) to deter-
mine inflation dynamics. The above Lemma 2 allows us to express the firms’ aggregate
marginal cost gap in terms of the asset price gap up to a first order, as asset price determines
aggregate demand, which in turn determines such variables as the aggregate marginal cost.

The following Phillips curve in Proposition 4 describes πt dynamics, and is of the same
form as in many New-Keynesian models.

Proposition 4 (Phillips Curve). Inflation πt evolves according to the following stochastic pro-
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′

Figure 2.1: rT as a function of σqt and σt

cess with Q̂t entering in the position of output gap in conventional New-Keynesian models.29

Etdπt = (ρπt −
κ

ζ
ŷt)dt where, κ ≡

δ(δ + ρ)Θ

χ−1 −

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε

, Θ =
1− α

1− α+ αε
.

(2.2.31)

Plugging equation (2.2.25) into the Phillips curve, we get Etdπt = (ρπt −κQ̂t)dt, which
is expressed in terms of Q̂t . Under Assumption 1, a higher asset price gap Q̂t means the
economy is over-heated, and thus inflation rates would jump up. Note that: as price resetting
probability increases (δ → ∞), then we have κ → ∞ and Q̂t = 0 in equilibrium. Thus, we
achieve the flexible price equilibrium when δ →∞.

Now that we characterize the model’s demand block (the IS equation for Q̂t (equa-
tion (2.2.27))) and supply block (Phillips curve in equation (2.2.31)), we need to specify the
policy reaction function it to close the model. Before we move on to the analysis of policy
rules, we briefly discuss the traditional approach to the problem of financial and macroeco-
nomic stabilization in the literature.

29The coefficient χδ(δ + ρ)Θ is attached to the output gap ŷt in equation (2.2.31). In standard New-
Keynesian models with a representative agent whose utility is of the same form as our workers’, the coefficient
becomes (χ0 + ϕ)δ(δ + ρ)Θ, which is different from χδ(δ + ρ)Θ as χ 6= χ0 + ϕ.
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Macroprudential policies and regulations There are in general two goals in short (and/or
medium)-run macroeconomics: macro-stabilization and financial stability. Many policymakers
(including central bankers) and academic economists believe that financial stability should
be dealt with by regulations and macroprudential policies imposed on banks and financial
institutions, with business cycle stabilization being the sole focus of monetary policy. Because
our model is parsimonious and does not include any complex financial market participants,
those macroprudential regulations that tackle potential financial instabilities can be regarded
as a policy avenue to prevent σqt from deviating from σq,nt = 0. If σqt = σq,nt = 0, then as
in equation (2.2.29), our model features exactly the same dynamics as conventional New
Keynesian models. Therefore, in that case a conventional monetary policy rule can solely
focus on business cycle stabilization.

One interesting aspect built in our model is that financial stability (volatility and risk-
premium) issues are intertwined with macro-stabilization. The more volatile financial markets
features higher risk-premium levels, thereby driving down aggregate financial wealth and ag-
gregate demand. Our view is that even without perfect macroprudential policies to guarantee
σqt = σq,nt = 0, monetary policy might be able to tackle both concerns simultaneously, as
stabilization in one dimension might help stabilize the other.

Now we move onto the analysis of distinct monetary policy rules and revisit the classical
question on the role of monetary policy as a financial stabilizer.

2.3 Monetary Policy

In this Section 2.3, we study the monetary policy’s roles of macroeconomic stabilization in the
context of our model. First, we analyze conventional Taylor rules with inflation and output
gap as policy targets. After showing limitations of such policies and how sunspot equilibria
can arise, we propose a generalized version of the Taylor rule for stochastic environments
that successfully achieve twin objectives of financial and economic stability.

For simplicity, we assume throughout Section 2.3 the constant TFP volatility σt = σ for
all t such that the real natural rate r nt = ρ+g−σ2 > 0 and the natural risk-premium rpnt = σ2

are constants.
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2.3.1 Old Monetary Rule

Conventional Taylor rule and Bernanke and Gertler (2000) rule

We start with a conventional Taylor rule with a constant intercept equal to the natural rate
r n, and standard inflation and output gap targets.

it = r n + φππt + φy ŷt , (2.3.1)

where ŷt is the output gap, πt inflation and note we implicitly assume a zero trend inflation
target, π̄ = 0. As output gap ŷt is positively correlated with the asset price gap Q̂t as in
equation (2.2.25), we can express equation (2.3.1) as the monetary policy rule that targets
asset price Q̂t as well as inflation:

it = r n + φππt + φyζ︸︷︷︸
≡φq>0

Q̂t

= r n + φππt + φqQ̂t .

(2.3.2)

Bernanke and Gertler (2000), by adding stochastic ad-hoc bubbles to the fundamental asset
price in a model based on Bernanke et al. (1999), conducted an analysis on whether mone-
tary rules that directly target asset price as in equation (2.3.2) can effectively stabilize the
economy. They conclude that such rules are undesirable as they deter real economic activity
when the ‘bubble’ appears and bursts.30 In contrast, our framework features no irrational
asset price bubble: here, fluctuations in Q̂t reflect rational expectation about future business
cycle fluctuations, and thus from central bank’s perspective, targeting the asset price gap Q̂t
is equivalent to targeting the output gap ŷt , as the two gaps are perfectly correlated up to a
first-order. Therefore in our model, a conventional monetary policy rule is equivalent to the
rule of Bernanke and Gertler (2000).

Now we study whether equation (2.3.2) achieves divine coincidence as in textbook New-
Keynesian models. Our objective now is to show that this rule cannot guarantee equilibrium
determinacy even if it satisfies the so-called Taylor principle. Let us assume the monetary
authority relies on Bernanke and Gertler (2000) rule in equation (2.3.2) that targets two
factors, πt and Q̂t . We define the coefficient φ ≡ φq + κ(φπ−1)

ρ
> 0, which is the total

responsiveness of monetary policy to inflation and asset price gap. φ > 0 corresponds to
the conventional Taylor principle that excludes the possibility of sunspot in inflation. Thus,

30Galí (2021) introduces rational bubbles in a New-Keynesian model with overlapping generations. He
argues that ‘leaning against the bubble’ monetary policy, if properly specified, can insulate the economy from
the aggregate bubble fluctuations, as only rational bubbles shift the aggregate output in his framework.
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it follows

it = r n + φππt + φqQ̂t , where φ ≡ φq +
κ(φπ − 1)

ρ
> 0. (2.3.3)

Plugging equation (2.3.3) into equation (2.2.27), we get the following Q̂t dynamics.

dQ̂t =
(

(φπ − 1)πt + φqQ̂t −
σ2

2
+

(σ + σqt )2

2︸ ︷︷ ︸
New terms

)
dt + σqt dZt . (2.3.4)

Multiple equilibria Instead of equation (2.3.4), if Q̂t dynamics is represented by

dQ̂t =
(

(φπ − 1)πt + φqQ̂t

)
dt + σqt dZt , (2.3.5)

then, with the Taylor principle φ > 0 satisfied we achieve divine coincidence: Q̂t = πt = 0 is
the unique possible rational expectations equilibrium from the Blanchard and Kahn (1980).
In contrast, now that the financial volatility σqt affects the drift of equation (2.3.4), we
have multiple equilibria and sunspots in σqt can possibly appear. The reason is similar to the
reason why we might have sunspots in aggregate business cycle volatility in the standard
New-Keynesian model in Section 1.1. Here, the dynamic IS equation in (2.3.4) features a
countercyclical financial volatility σqt . Since an increase in σ

q
t raises the risk-premium, it brings

down financial wealth and aggregate demand31 (thus, raising the drift of equation (2.3.4)).
For example, imagine that capitalists fear of a possible financial crisis arising from higher
levels of risk-premium and financial volatility: they respond by reducing the demand for
the risky stock, which leads to the collapse of the asset price, and self-justifies a higher
expected return in the stock market investment and a rise in risk-premium. This result
is related to Acharya and Dogra (2020)’s findings about equilibrium determinacy issues in
models with countercyclical income risks, even though their paper focuses on idiosyncratic
risks and effects from precautionary savings, while ours centers on the sunspot equilibria
stemming from aggregate endogenous risk.

We now formalize the multiple equilibrium intuition presented above by constructing a
rational expectations equilibrium that supports an initial sunspot σq0 . For simplicity, we focus
on the case in which σq0 jumps off from σq,n = 0 (thus, σq0 > 0), and study how the sunspot
σq0 can be rationally sustained in equilibrium. For that purpose, a rational expectations equi-
librium must: (i) support an initial hike σq0 > 0, and (ii) not diverge (on expectation) in the
long-run, following Blanchard and Kahn (1980).

31Monetary policy in equation (2.3.2) responds when its mandates Q̂t and πt are affected by a sunspot in
σqt , but does not directly target the sunspot or volatility σqt .
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Martingale equilibrium32 In particular, we study one rational expectations equilibrium that
supports an initial sunspot σq0 : the equilibrium in which asset price gap Q̂t follows a martingale
after the initial sunspot σq0 happens. As Q̂t is martingale, we get the following formula for πt
by iterating equation (2.2.31) over time.

πt = κ

∫ ∞
t

eρ(s−t) Et(Q̂s)︸ ︷︷ ︸
=Q̂t

ds =
κ

ρ
Q̂t , (2.3.6)

which implies inflation closely follows the trajectory of Q̂t . Plugging equation (2.3.6) into
equation (2.3.4) and imposing a martingale condition, we obtain

Q̂t = −
(σ + σqt )2

2φ
+
σ2

2φ
and πt =

κ

ρ

(
−

(σ + σqt )2

2φ
+
σ2

2φ

)
.33 (2.3.7)

Our martingale equilibrium does not diverge (on expectation) in the long-run, as the
paths of {Q̂t , πt} stay, on expectation, at the initial values of the variables, thus satisfying
E0(πt) = π0 and E0(Q̂t) = Q̂0, ∀t ≥ 0. The last step is to show that there exists a
stochastic path of {σqt } starting from σq0 that supports this equilibrium. This equilibrium then
both (i) supports an initial sunspot σq0 > 0 and (ii) does not diverge in the long-run. Using
equation (2.3.4) and equation (2.3.7),34 we obtain the stochastic process of σqt as35

dσqt = −
φ2(σqt )2

2(σ + σqt )3
dt − φ

σqt
σ + σqt

dZt . (2.3.9)

Both equation (2.3.7) and equation (2.3.9) constitute the dynamics of this particular rational
equilibrium supporting σq0 > 0. What does this equilibrium look like? The next Proposition
5 sheds light on the behavior of Q̂t and πt paths and argues that business cycles almost
surely converge to a perfectly stabilized path in the long run. The very few paths that do
not converge can blow up asymptotically and, together with the forward-looking nature of

32Under some regularity conditions dictating how the expected risk-premium evolves in the long run, our
martingale equilibrium becomes a ‘unique’ rational expectations equilibrium that supports an initial sunspot
σq0 > 0. A martingale process for Q̂t is consistent with the previous findings of the literature on the ‘Efficient
Market Hypothesis (EMH)’ (For example, see Fama (1970)).

33Thus in this particular equilibrium, σqt > σq,n = 0 causes Q̂t to drop below zero, causing a recession.
34Since Q̂t process is a martingale, the drift part in equation (2.3.4) must be 0.
35When σ = 0, this process becomes the following Bessel process:

dσqt = −
φ2

2σqt
dt − φdZt . (2.3.8)

which stops when σqt reaches σq,n = 0. For general properties of Bessel processes, see Lawler (2019).
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the economy, help sustain the initial crisis.

Proposition 5 (Bernanke and Gertler (2000) Rule and Indeterminacy). For any value of
Taylor responsiveness φ > 0:

1. Indeterminacy: there is always a rational expectations equilibrium (REE) that supports
initial sunspot σq0 > 0 and is represented by Q̂t and πt dynamics in equation (2.3.7),
and σqt process in equation (2.3.9)

2. Properties: the rational expectations equilibrium that supports an initial sunspot σq0 > 0

satisfies:

(i) σqt
a.s→ σq∞ = σq,n = 0, (ii) Q̂t

a.s→ 0 and πt
a.s→ 0, and (iii) E0 (maxt(σ

q
t )2) =∞

The conditions σqt
a.s→ σq∞ = σq,n, Q̂t

a.s→ 0, and πt
a.s→ 0 imply that equilibrium paths

supporting an initial sunspot σq0 > 0 are almost surely stabilized in the long run. Then, how
is it possible for a sunspot σq0 > 0 to appear at first? The finding E0(maxt(σ

q
t )2) = ∞

implies that an initial spike in σq0 and the ensuing crisis is sustained by the tiny probability of
an ∞-severe financial disruption in the future. This result has similar implications to Martin
(2012) in a sense that our framework does not assume the existence of specific disasters
but disaster risk is always present even if monetary authority satisfies the Taylor principle
and actively stabilizes the business cycle. Martin (2012) applied a similar logic to pure asset
pricing contexts and showed that the pricing of a broad class of long-dated assets is driven
by the possibility of extraordinarily bad news in the future. The intuitions we derived here
continue to hold in our simple discrete-time framework in Lee and Carreras (2021b).

Calibration and Simulation For the rest of the paper, we calibrate the parameters of
our model to values commonly found in the literature: see Table B.2 in Appendix B.2 for
further details. A few points are worth mentioning. For worker’s risk-aversion parameter ϕ,
we use ϕ = 0.2 following Gandelman and Hernández-Murillo (2014).36 For individual firm’s
labor share in production, we use 1−α = 0.6 following Alvarez-Cuadrado et al. (2018), as we
regard the aggregate labor in the production function as a proxy for the capital in conventional
macroeconomic models. With this calibration, our co-movement condition (Assumption 1)
is satisfied.

36Their estimates of ϕ range between 0.2 and 10. In our environment, a higher risk-aversion of workers
makes their labor supply (and therefore, output) less responsive to business cycle fluctuations. In that scenario,
a higher asset price tends to translate into less wage income distributed to workers, making it harder to satisfy
the co-movement condition (Assumption 1). Thus, we pick a value on the lower end of the acceptable range
and set ϕ = 0.2.
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(a) With φπ = 1.5 (b) With φπ = 2.5.

Figure 2.2: {σqt , Q̂t} dynamics when σq,n = 0 and σq0 = 0.9, with calibration in Table B.2

Figure 2.2 illustrates the martingale equilibrium’s dynamic paths of {σqt , Q̂t} supporting
σq0 = 0.9 > σq,n = 0. Normalization shows that as σq0 jumps off by σ, stock price falls by
2−10%, which is consistent with our empirical findings in Appendix B.1 (Figure B.1b). Figure
2.2 also explores the effects on the martingale equilibrium of a change in policy responsiveness
to inflation φπ. The right panel 2.2b uses the default calibration value φπ = 2.5, while the
left panel 2.2a assumes a more accomodating stance φπ = 1.5. As we raise φπ, the average
sample path converges faster towards full stabilization, but at the expense of an increased
likelihood of a more severe crisis path in a given period of time. We obtain similar results
when looking at changes in policy responsiveness to the asset price gap φq (alternatively,
output gap φy), and find that a change in φ ≡ φq + (φπ − 1)κ

ρ
, the measure of combined

responsiveness of monetary policy it , brought by any combination {φπ, φq} follows the same
patterns depicted in Figure 2.2.

Booms In an analogous way, we can construct a rational expectations equilibrium that sup-
ports an initial downward sunspot σq0 < σq,nt ≡ 0. The equilibrium paths feature a boom
phase with buoyant production and consumption with lower levels of financial volatility and
risk-premium. A higher φ value speeds up the stabilization process, but increases the likeli-
hood of an equilibrium path with an overheated economy.37

37We have two singular points in the {σqt } process (equation (2.3.9)): as σqt hits −σ, the drift and volatility
of the process diverge, and {σqt } process features a jump. When σqt hits 0, it stays there forever. Thus, when
σq0 is below −σ, we might end up in paths where we have a jump in σqt to a positive value, which eventually
converges to 0.
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2.3.2 Modified Monetary Rule

A modified monetary policy rule includes risk-premium as a separate factor in the following
way:

it = r n + φππt + φqQ̂t︸ ︷︷ ︸
Bernanke and Gertler (2000)

−
1

2
r̂ pt︸ ︷︷ ︸

Risk-premium targeting

, where r̂ pt ≡ rpt − rpn.
(2.3.10)

Thus, the above monetary policy rule contains a ‘risk-premium gap term’ as a factor in
addition to inflation and asset price gap. It also can be written in terms of the risk-adjusted
natural rate rTt as

it = rTt + φππt + φqQ̂t , (2.3.11)

where a higher r̂ pt brings down rTt , forcing it to fall. The next Proposition 6 establishes that
a monetary policy rule consistent with equation (2.3.10) and that satisfies the Taylor principle
(corresponding to φ > 0) restores equilibrium determinacy and fully stabilizes the economy.

Proposition 6 (Ultra-Divine Coincidence with Risk-Premium Targeting). The monetary policy
rule

it = r n + φππt + φqQ̂t −
1

2
r̂ pt , where φ ≡ φq +

κ(φπ − 1)

ρ
> 0, (2.3.12)

achieves Q̂t = πt = r̂ pt = 0. Therefore, the monetary policy rule in equation (2.3.12)
attains (i) output (asset price) stabilization, (ii) price level (inflation) stabilization, and (iii)
financial market (financial volatility and risk-premium) stabilization. We call it a ultra-divine
coincidence.

This result is a direct consequence of Blanchard and Kahn (1980) and Buiter (1984).
The reason central banks must target risk-premium as a separate factor is that this term
directly appears in the drift part of our dynamic IS equation (equation (2.2.27)). According
to the rule in equation (2.3.12), a central bank lowers the policy rate it when rpt > rpn to
boost Q̂t and Ĉt38, since a higher risk-premium drags down asset price and business cycle
levels. If monetary policy kills an initial excess volatility (or excess risk-premium) with this
additional target in its rule, it precludes the possibility of sunspots in financial volatility that
we discussed. Since the Taylor principle (φ > 0) guarantees there is no sunspot inflation,

38Even with Bernanke and Gertler (2000) rule, monetary policy responds to a rise in risk-premium since
it negatively affects the asset price gap Q̂t and inflation πt . Our point here is that the policy rate must
systematically respond to deviations of rpt from its natural level rpn given Q̂t and πt levels.
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the policy rule in equation (2.3.12) restores equilibrium determinacy and achieves both macro
stability (with Q̂t = πt = 0) and financial stability (with r̂ pt = 0, which implies rpt = rpn

and σqt = σq,n = 0). The equilibrium interest rate then becomes it = r n, which is the same
level as in the equilibrium path of a canonical New-Keynesian model. Therefore, the ultra-
divine coincidence result implies: one policy tool (it rule) achieves an additional objective
(financial stability) in addition to the two usual mandates (output gap and inflation stability).
This is possible in our framework because financial markets and the business cycle are tightly
interwoven and real and financial instabilities are equivalent to each other.

A common view in the literature holds that monetary policy must respond to financial mar-
ket disruptions only when they affect (or to the degree that they affect) the original central
bank mandates of inflation stability and full employment (or full output). This premise is at
odds with the results of our paper: the failure to target the risk-premium of financial markets
subjects the economy to the apparition of sunspot shocks and the corresponding recessions
and overheating episodes that ensue. Only by targeting risk-premium in the particular way
characterized in equation (2.3.10), the monetary authority can re-establish equilibrium deter-
minacy and achieve the ultra-divine coincidence outlined in the previous paragraphs.

Interpretation We can rewrite our modified Taylor rule (equation (2.3.12)) as

it + rpt︸ ︷︷ ︸
=imt

−
1

2
rpt︸︷︷︸

Ito term

= r n + rpn︸ ︷︷ ︸
=im,nt

−
1

2
rpn︸︷︷︸

Ito term

+ φππt + φqQ̂t︸ ︷︷ ︸
Business cycle targeting

, (2.3.13)

or equivalently as

ρ︸︷︷︸
Dividend
yield

+
Et (d log at)

dt︸ ︷︷ ︸
Internal rate of return
of aggregate wealth︸ ︷︷ ︸

Cum-dividend return

= ρ︸︷︷︸
Dividend
yield

+
Et (d log ant )

dt

︸ ︷︷ ︸
Benchmark cum-dividend return

+ φππt + φqQ̂t︸ ︷︷ ︸
Business cycle targeting

, (2.3.14)

where at is the economy’s aggregate financial wealth and ant is the aggregate wealth of the
natural (flexible price) economy. Our modified monetary policy that targets a risk-premium
as prescribed in equation (2.3.12) thus can be interpreted as the rule on the rate of change
of log-aggregate wealth as a function of traditional inflation and output gap (asset price)
targets.

In the standard linearized New-Keynesian model (or alternatively, a model under per-
fect foresight), the economy’s risk-free rate (i.e., policy rate) equals the rate of change
in log-wealth, whereas the expected stock market return takes that role in our model with
risk. Therefore, equation (2.3.14) restores determinacy and attains divine coincidence both
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in the standard linearized model and in our framework where the endogenous volatility of
stocks (equivalently, the risk premium) affects expected asset returns. We interpret equa-
tion (2.3.14) as the generalized Taylor rule that holds in both linearized and risk-centric
environments. With this rule, the central bank uses the aggregate wealth and its rate of
return as intermediate targets towards achieving business cycle stabilization, as wealth itself
affects aggregate demand, and its internal rate of return changes how a demand-driven econ-
omy evolves along the cycle.

Practicality Some issues exist about the feasibility to implement this new policy rule. First,
the risk-premium gap r̂ pt in equation (2.3.10) depends on the natural risk-premium level,
which is a counterfactual variable by definition, and therefore its observation is subject to
some form of measurement error. Second, there are multiple kinds of risk-premia in financial
markets that can be possibly targeted through monetary policy, and the construction of an
aggregate risk-premium index as featured in our model might be subject to error as well.39,40

More importantly, and related to the previous two points, the coefficient attached to risk-
premium in equation (2.3.10) is exactly 1

2
. Given the potential for measurement error in r̂ pt ,

it might be impossible for the central bank to target the risk-premium with the exact strength
demanded by equation (2.3.10).41 To understand the consequences of deviating from the 1

2

risk-premium target, we consider the following alternative rule:

it = r n + φππt + φqQ̂t − φrpr̂ pt , (2.3.15)

where φrp is a constant term potentially different from 1
2
. We have the following {Q̂t} process

with the policy rule in equation (2.3.15):

dQ̂t =
(

(φπ − 1)πt + φqQ̂t +
(1

2
− φrp

)
r̂ pt

)
dt + σqt dZt . (2.3.16)

With φrp = 1
2
, we return to determinacy (Proposition 6). With φrp 6= 1

2
, the martingale

39Our framework features only an ‘index’ of the stock market as a feasible vehicle to invest in, but there are
multiple risk-premia (including term-premia) covering stocks and bonds in the real world.

40There have been long-standing debates about whether monetary authorities should adjust policy rates in
response to fluctuations in risk-premia of financial markets. For example, Doh et al. (2015) argued “adjusting
short-term interest rates in response to various estimated risk premium levels could be appropriate, especially
if the risk premiums are low for a sustained period. In contrast, if policymakers are predominantly concerned
about the most likely macroeconomic outcome, monitoring estimated risk premiums and adjusting the monetary
policy stance accordingly may be of little benefit.". This argument is based on the fact that information about
possible tail risks is summarized by the risk-premia levels in financial markets.

41As an example, consider a multiplicative measurement error εt such that r̂ pobst = εt · r̂ pt , where r̂ pobst

stands for the observed risk-premium. It is easy to see that the central bank following the policy rule in
equation (2.3.10) will target the ‘true’ risk-premium with a coefficient 6= 1

2 .
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equilibrium reappears and is characterized by42

Q̂t = −
(σ + σqt )2

2φφrp
+

σ2

2φφrp
and πt =

κ

ρ

(
−

(σ + σqt )2

2φφrp
+

σ2

2φφrp

)
with φφrp ≡

φ

1− 2φrp
,

(2.3.17)
where {σqt }’s stochastic process after an initial sunspot σq0 appears is given as

dσqt = −
φ2
φrp

(σqt )2

2(σ + σqt )3
dt − φφrp

σqt
σ + σqt

dZt . (2.3.18)

When φrp < 1
2
(including Proposition 5, the case of φrp = 0), a rise in φrp leads to an

increase in φφrp in equation (2.3.17). From equation (2.3.18) we observe that a higher φφrp
accelerates the convergence of sample paths while creating more amplified paths after the
initial sunspot σq0 appears. As far as φrp < 1

2
, a higher φrp means monetary policy responds

more strongly to fluctuations in r̂ pt , which allows faster stabilization. As φrp goes up from 0

to 1
2
, fluctuations in r̂ pt have less direct effects on dynamics (equation (2.3.16)). Thus, the

volatility of the {σqt } process (in equation (2.3.18)) must rise to ensure that {Q̂t} eventually
is stabilized43, which results, on average, on shorter but more amplified sample paths.

φrp < 0 case is interesting since it implies central bank raises the policy rate when risk-
premia rise in financial markets. It is consistent with the “Real Bills Doctrine” which was a
popular idea during the first half of the 20th century. Basically, the doctrine advocated for
the Fed discount rate to track the average interest rate of the financial markets, as a means
of stabilization.44 In our framework, φrp < 0 pushes down φφrp from φ, which effectively slows
down the pace of stabilization after sunspots hit the stock market. Therefore, we see that
“Real Bills Doctrine” with φrp < 0 is not suitable for stabilization purposes, as empirically
documented by Richardson and Troost (2009).

With φrp > 1
2
, monetary policy responds too strongly to fluctuations in risk-premium, thus

with an initial positive sunspot σq0 > 0, policy rate drops excessively and creates an artificial
boom instead of a crisis.45 A higher φrp reduces |φφrp| and slows down stabilization since a

42The equations (equation (2.3.15) and equation (2.3.17)) are easily derived in a similar way to the proof
of Proposition 5 in Appendix B.3.

43Here with the monetary policy in equation (2.3.15), ( 1
2 − φrp)r̂ pt appears in the drift of the {Q̂t} process

(equation (2.3.16)). When φrp < 1
2 , a higher φrp implies that {σqt } path, on average, features more volatility

(of {σqt } path itself) to raise r̂ pt given the levels of Q̂t and πt , as r̂ pt is a convex function of σqt . Eventually,
Q̂t and πt adjust as they are jump variables.

44Richardson and Troost (2009) studied the effects of such policy during the Great Depression era, exploiting
the fact that the state of Mississippi is divided by the Federal Reserve act between the 6th (Atlanta) and 8th
(St. Louis) districts which had different approaches to the economy-wide banking panics and depressions.

45With φrp > 1
2 , we have φφrp < 0 from equation (2.3.17), thus σqt > 0 is equivalent to the boom phase

with πt > 0 and Q̂t > 0.
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higher φrp means monetary policy deviates more from determinacy (the case of φrp = 1
2
),

and therefore becomes less efficient at stabilization. Figure 2.3 illustrates that with φrp > 1
2
,

a spike in financial volatility, σqt > 0, actually acts as a boon to the economy, as we have
Q̂t > 0 and πt > 0 along sample paths. Moreover, with φπ = 2.5 fixed, as we raise φrp
(from 1 to 1.5), stabilization slows down46 as we further deviate from the determinacy case
(φrp = 1

2
).

These results are summarized in Table 2.1.

φrp < 0 (Real Bills Doctrine) 0 ≤ φrp <
1
2

(i) With φrp ↓, convergence speed↓
and less amplified paths

(ii) σqt > σq,nt = 0 means a crisis
(Q̂t < 0 and πt < 0)

(i) With φrp ↑, convergence speed↑
and more amplified paths

(ii) σqt > σq,nt = 0 means a crisis
(Q̂t < 0 and πt < 0)

φrp = 1
2

φrp >
1
2

No sunspot
(ultra-divine coincidence)

(i) With φrp ↑, convergence speed↓
and less amplified paths

(ii) σqt > σq,nt = 0 means a boom
(Q̂t > 0 and πt > 0)

As φ ↑, convergence speed↑ and ∃ more amplified paths

Table 2.1: Effects of different parameters {φrp, φ} on stabilization

(a) With φrp = 1 (b) With φrp = 1.5.

Figure 2.3: {σqt , Q̂t} dynamics when σq,n = 0 and σq0 = 0.9, with varying φrp > 1
2

46Also, a higher φrp causes less amplification from the initial sunspot σq0 > 0.
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In Figure 2.2, we observe that an initial sunspot σq0 > 0 can be amplified endogenously
through monetary policy’s responses to the business cycle fluctuation, which might drag the
economy into zero lower bound (ZLB) episodes when the {σqt } path hits some threshold from
below. When monetary policy is constrained at those episodes, both asset market and busi-
ness cycle would collapse, which we observed in the 2007-2009 Global Financial Crisis (GFC).
In the next Sections, we formally study ZLB issues following the prior literature and discuss
possible fiscal-monetary policies that mitigate recessionary pressures and stabilize financial
markets and the real economy.

2.4 Zero Lower Bound (ZLB) and Forward Guidance

The ZLB featured prominently during the Great Financial Crisis, and in this section we will
show that it has, indeed, very interesting implications for the costs of financial volatility
sunspot shocks. In the previous section, and as depicted in Figure 2.2, we have shown that
a less responsive monetary policy (to πt and Q̂t) results in persistent sunspot recessions.
During a ZLB episode, the policy rate is stuck at zero, and therefore the unresponsiveness of
monetary policy can be approximated, to a first pass, as an extreme case of very low monetary
responsiveness, in which case ZLB amplifies the duration -and the costs- of positive sunspot
shocks. Central banks have developed alternative tools like forward guidance to retain their
capacity to intervene in the economy and minimize the costs of ZLB recessions. In this
section, we will study the capacity of this tools to stabilize the economy and financial markets,
and the potential trade-offs in terms of stabilization that their use entails.

Following Werning (2012), we consider a scenario in which exogenous TFP volatility σt
jumps in a deterministic manner between t = 0 and T . In particular, we consider the case
where σt = σ̄ for 0 ≤ t ≤ T and σt = σ for t ≥ T . We assume that r ≡ r n(σ̄) < 047 and
r̄ ≡ r n(σ) > 0, thus monetary policy is constrained by the ZLB until t = T .

2.4.1 Perfect Stabilization after ZLB or Forward Guidance

Perfect stabilization after ZLB We assume that after t = T , monetary policy follows
the modified Taylor rule (equation (2.3.12)) and achieves perfect stabilization, satisfying
πt = Q̂t = 0 for t ≥ T .48 From equation (2.2.27) and equation (2.2.31), the fact that

47From equation (2.2.21) we can express natural rate rnt as a function of fundamental volatility σt only.
Throughout this Section 2.4.1 we assume rn(σ̄) < 0 and rn(σ) > 0.

48Basically, we assume that monetary policy returns to the modified Taylor rule that includes a risk-premium
factor as one of targets as in equation (2.3.10) after t = T . For t ≤ T , since σt = σ̄ satisfies rn(σ̄) < 0,
monetary authority cannot implement this rule and is constrained by the ZLB.
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Q̂T = πT = 0 is pinned down implies that there is no volatility for both Q̂t and πt processes
before T thus σqt = σq,nt = 0 and σπ,t = 0 for t ≤ T . Therefore, in this case the risk-
adjusted natural rate rTt equals the natural rate r = r n(σ̄) for t ≤ T and we get exactly the
same dynamics for πt and Q̂t as in Werning (2012) and Cochrane (2017). For a reasonable
calibration,49 Figure 2.4 (dashed black for {Q̂t} and dashed gray for {πt}) illustrates Q̂t and
πt dynamics during ZLB crises. Both variables are negative until T and become stabilized
after T due to our generalized Taylor rule that targets risk-premium.

Notice that even though we have similar dynamics for {Q̂t , πt} to the ones in Werning
(2012) and Cochrane (2017), the forces that drive our results are different. Here, the ZLB
constraint causes asset price Q̂t to fall, as the ZLB is higher than the risk-free rate that is
needed for full stabilization, which reduces capitalists’ demand for stock market investment.
This eventually translates into a reduction of aggregate financial wealth and demand.50 In
canonical New-Keynesian models, on the other hand, the ZLB induces agents to engage in
deleveraging and reduce consumption, which collectively lowers the aggregate output through
the aggregate-demand externality. Note also that the dynamics in Figure 2.4 depend on the
perfect stabilization after T due to our modified Taylor rule. We get an important lesson from
Figure 2.4: central banks can prevent the appearance of sunspot equilibria at the ZLB by
credibly committing to stabilize financial markets at some future date T < +∞. Therefore,
even if the monetary authority is unable to temporarily follow the modified Taylor rule in
equation (2.3.12) due to a binding ZLB, the additional financial stability costs of policy
inaction can be contained (indeed, eliminated) by a credible commitment to stabilization
upon-ZLB exit. A corollary of this result is that the costs of the ZLB might be highly
heterogeneous across countries: countries with a monetary authority committed to financial
stabilization will ‘only’ experience the demand-driven recession outlined above, while countries
without that capacity (or willingness) to stabilize financial markets might suffer additional
costs from long-lived sunspot shocks to financial volatility.

Now we turn our eyes to the forward guidance policy, in which central banks commit to
keep the policy rate at zero for a longer duration than T . In our framework, forward guidance
is a powerful tool as in Werning (2012) and Cochrane (2017), with the premise that after
the forward guidance is over, central banks return to our modified monetary policy rule that
stabilizes the financial market.

49We use parameters: T = 3, σ = 0.0090, σ̄ = 0.2090r = −1.54%, r̄ = 2.82% in simulating our equilibrium
throughout this Section 2.4. The ZLB can be created by not only a spike in σt , but also downward jump in g.

50This is the other side of Caballero and Farhi (2017). While Caballero and Farhi (2017) showed that a high
demand for safe assets drags the economy into recession when monetary policy is constrained, we argue that
it causes marginal investors to pull their wealth out of the stock market, thereby reducing stock market wealth
and aggregate demand.



43

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Time

-5

-4

-3

-2

-1

0

1

2

P
e

rc
e
n
t

Figure 2.4: Zero lower bound (ZLB) crisis and forward guidance: {Q̂t , πt} dynamics

Perfect stabilization after forward guidance Now central bank keeps it at zero until T̂ >
T . After T̂ , central bank fully stabilizes the economy with Q̂t = πt = 0 for t ≥ T̂ with
the generalized Taylor rule in equation (2.3.10). Due to the same reason exposed in the
analysis of ZLB, we know that σqt = σq,nt = 0 and σπ,t = 0 for t ≤ T̂ and therefore,
equation (2.2.29) and equation (2.2.31) characterize {Q̂t , πt} dynamics until T̂ with Q̂T̂ =

πT̂ = 0. Forward guidance in our framework features similar dynamics to the ones in Werning
(2012) and Cochrane (2017), but acts through a different mechanism. In our framework,
forward guidance is powerful because it raises asset price Q̂t from T to T̂ , leading to a rise
in Q̂t even before T , thus increasing the consumption level of capitalists. In traditional New-
Keynesian models, forward guidance is useful as it raises household consumption and thus
income from T to T̂ , leading to a rise in consumption before T due to the usual intertemporal
substitution channels and general equilibrium effects.

To characterize optimal T̂ , we minimize the following quadratic loss function with respect
to T̂ ,51which is derived in Appendix B.4.

L({Q̂t , πt}t≥0) = E0

∫ ∞
0

e−ρt(Q̂2
t + Γπ2

t )dt. (2.4.1)

Figure 2.4 (thick blue for {Q̂t} and red for {πt}) illustrates {Q̂t , πt} dynamics with the

51With our calibrated parameters, we have Γ = 161.8876. A basic intuition is that since Q̂t , the asset price
gap, drives fluctuations in other business cycle variables, our loss function (equation (2.4.1)) has Q̂t in the
position of the output gap.
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optimal forward guidance duration T̂ = 3.602 > T = 3. Q̂t and πt drop less than in cases
without forward guidance (dashed black for {Q̂t} and dashed gray for {πt}) and Q̂t is even
positive for some periods during the ZLB episode due to forward guidance. After T̂ = 3.602,
Q̂t and πt are both stabilized since monetary policy becomes active again and targets risk
premium in addition to {Q̂t , πt}.

Note that the heterogeneous costs of the ZLB reappear under forward guidance: cen-
tral banks that can credibly commit to stabilize financial markets after T̂ do not face any
adverse financial volatility costs from the implementation of such policies, and results are
unambiguously positive in terms of welfare and business cycle stabilization. This conclusion
changes dramatically when a central bank cannot commit to perfect stabilization after T̂ , as
the economy is subject to the appearance of sunspot shocks (which are specially costly at
the ZLB). In that scenario, voluntarily lengthening the time spent at the ZLB is a risky busi-
ness: by keeping a passive monetary policy until T̂ , a central bank risks aggravating the costs
stemming from the endogenous financial volatility of the economy -precisely at the moment
in which those costs are higher-.52 We believe this constitutes a novel result on the trade-offs
involved in forward guidance policy, and think that it might be one of the reasons behind
the cautiousness with which central bankers around the world approach the implementation
of such policies in practice. In the next Section 2.4.2, we look into this case where central
banks cannot credibly commit to attain perfect stabilization after ZLB or forward guidance,
and instead uses a conventional Taylor rule out of the ZLB, only targeting usual mandates.

2.4.2 Imperfect Stabilization after ZLB or Forward Guidance

For analytic tractability, we assume in this Section 2.4.2 that inflation is fixed at zero πt = 0

for ∀t, which corresponds to a perfectly rigid-price economy. First, we consider the usual
ZLB case without forward guidance.

Imperfect stabilization after ZLB In this section, we explore the case in which the central
bank cannot achieve full stabilization after T and instead relies on the conventional Taylor
rule it = r̄ + φqQ̂t for t ≥ T . Under imperfect financial stabilization, sunspots in σqt can
appear, and in this section we provide a rational expectations equilibrium of the economy at
the ZLB.

We can tackle the problem based on the standard backward induction logic. Assume
that a positive sunspot σq0 > 0 arises, based on the fact that the central bank cannot fully
stabilize the economy after T . Then, rational agents expect that upon-ZLB exit for t ≥ T ,
the economy follows the martingale equilibrium outlined in Section 2.3.2, with an initial date

52To be clear, even though the scope for forward guidance policies is reduced when the central bank cannot
commit to future stabilization, the gains from the policy are still positive, on expectation.
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t = T endogenous volatility σqT . Therefore, they expected the asset price gap Q̂t path for
t ≥ T to evolve according to equation (2.4.2).

Q̂t = −
(σ + σqt )2

2φq
+

(σ)2

2φq
for t ≥ T, (2.4.2)

with σqT ≥ 0 being stochastic from a t = 0 point of view. The asset price gap Q̂t process for
t < T follows

dQ̂t =

 −r︸︷︷︸
>0

+
1

2
(σ̄ + σqt )2 −

1

2
(σ̄)2

 dt + σqt dZt . (2.4.3)

We can integrate equation (2.4.3) and obtain Q̂t for t ≤ T as:

Q̂t = −
Et
(

(σ + σqT )2
)

2φq
+

(σ)2

2φq
+

∫ T

t

(
r −

1

2
Et
(

(σ̄ + σqs )2
)

+
1

2
(σ̄)2

)
ds. (2.4.4)

As equation (2.4.4) must satisfy the dynamic IS equation (equation (2.4.3)), we take a
total derivative to equation (2.4.4) to obtain:

−
dEt

((
σ + σqT

)2
)

2φq
−

1

2

∫ T

t

dEt
(

(σ̄ + σqs )2
)
ds︸ ︷︷ ︸

New ZLB term

= σqt dZt . (2.4.5)

Equation (2.4.5) is the stochastic differential equation (SDE) that the {σqt }-path starting
from σq0 > 0 follows until T during the ZLB. Unfortunately, this SDE has no know analytic
solution. Here, we try to understand heuristically how σqt evolves during the ZLB. Note that
in equation (2.4.5), without the new ZLB term, equation (2.4.5) becomes exactly the same
as the SDE that characterizes the martingale equilibrium.

We already know from Section 2.3.1 that outside ZLB episodes, a lower φq value slows
down the stabilization process of σqt in the martingale equilibrium. Therefore, we guess that
ZLB actually is very ineffective in stabilizing σq0 > 0 and σqT can still be large compared to
σq0 . In other words, under ZLB regimes, a positive sunspot σq0 is unlikely to disappear until
the economy exits the ZLB at t = T and monetary policy becomes active again.

Therefore, in our framework the ZLB raises the welfare costs of business cycle fluctuations
in two ways: (i) it brings down asset prices, financial wealth, and aggregate output (level
effect), and (ii) it keeps σqt sunspots alive, making business cycle more volatile (volatility
effect). Therefore, the inability of conventional monetary policy to intervene at the ZLB
and prevent financial disruption (in terms of endogenous volatility σqt ) supposes an additional
business cycle cost, in addition to the level effect.
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In this case, Q̂t-dynamics at the ZLB can be illustrated as in Figure 2.5. The solid blue
line corresponds to the equilibrium with perfect stabilization after T , while the two dashed
lines correspond to the other case where the central bank uses the conventional Taylor rule
and σq0 > 0 appears at t = 0.

t

Q̂t , rpnt

rpn1 = (σ̄)2

T

rT1 (0)︸ ︷︷ ︸
<0

T

Q̂0

Q̂
(2)
T

Q̂
(1)
T

‘Martingale’ equilibrium

rpn2 = (σ)2

Figure 2.5: ZLB dynamics (Taylor rule after T ) with initial sunspot σq0 > 0

We observe: (i) compared with the perfect stabilization case (solid blue), paths under
imperfect future stabilization feature lower {Q̂t} levels, as financial volatility {σqt > 0} starting
from σq0 > 0 raises risk-premium and additionally depresses the levels of {Q̂t}. (ii) {Q̂t} is
stochastic, and {σqt } converges slowly to zero during the ZLB and faster after t ≥ T as
monetary policy becomes active again and responds to {Q̂t} following the conventional Taylor
rule. The dashed lines in Figure 2.5 correspond to two possible sample paths with stochastic
Q̂T (Q̂(1)

T or Q̂(2)
T ) from t = 0 perspective.

Mathematical explanation In the martingale equilibrium out of the ZLB (for t ≥ T ), {σqt }
starting from σqT follows:

dσqt = −(φq)2 (σqt )2

2(σ + σqt )3
dt − φq

σqt
σ + σqt

dZt , ∀t ≥ T. (2.4.6)
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Here, we provide a very heuristic explanation of why σqt does not fall, in general, during ZLB
regimes. Our strategy is to start with the σqt -process in equation (2.4.6) and how it should
be modified to satisfy equation (2.4.5) at the ZLB (for t < T ).

First, for simplicity, we replace equation (2.4.5) with

−
d
(

(σ + σqt )
2
)

2φq
−

1

2

∫ T

t

d
(

(σ̄ + σqt )
2
)
ds = σqt dZt , (2.4.7)

where we replace Et((σ+σqT )2) by (σ+σqt )2 (which holds with equation (2.4.6)) and Et((σ̄+

σqs )2) by (σ̄ + σqt )2 (which does not hold technically, but allows us to obtain some intuitions
as equation (2.4.7) is simpler than equation (2.4.5)). Since

d
(

(σ̄ + σqt )2
)

=

(
φq

σqt
σ + σqt

)2(
−
σ̄ + σqt
σ + σqt

+ 1

)
︸ ︷︷ ︸

<0

dt − 2φq

(
σ̄ + σqt
σ + σqt

)
σqt dZt , (2.4.8)

therefore, the (σ̄ + σqt )2-process has a negative drift, which by equation (2.4.7) implies that
(σ+σqt )2 must have a positive drift because the σqt dZt-process does not contain a drift term.
As the {σqt } process in equation (2.4.6) implies (σ+σqt )2 is a martingale without drift, the new
process that satisfies equation (2.4.7) must have a higher drift than equation (2.4.6), which
implies a slower stabilization under ZLB than in the martingale equilibrium in equation (2.4.6).

Imperfect stabilization after forward guidance With the lesson that keeping the policy
rate at zero does not help stabilize the financial volatility sunspot in mind, we consider the case
in which central banks return to the conventional Taylor rule it = r̄ + φqQ̂t after its forward
guidance program ends at T̂ . Forward guidance has two countervailing effects. (i) It raises
asset prices, aggregate financial wealth, and aggregate demand until T̂ (level effect). (ii)
slows the stabilization of financial volatility σqt between T ≤ t ≤ T̂ by prolonging the period
of policy inaction, thereby generating a welfare loss (volatility effect). Figure 2.6 illustrates
those two opposite forces generated by forward guidance under imperfect stabilization with
an initial sunspot σq0 > 0. Here, the solid gray line represents the Q̂t path with perfect
stabilization after T̂ , while the dashed lines represent stochastic paths under imperfect future
stabilization after T̂ .

In the next Section 2.4.4, we turn our attention to the study of possible macroprudential
interventions from the fiscal side to raise asset prices Q̂t and inflation πt during a ZLB crisis.
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t

Q̂t , rpnt

rpn1 = (σ̄)2

T

Q̂0
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T Q̂
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T̂

Q̂
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T̂
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T̂

rT1 (0)T+rT2 (0)(T̂ − T )

rpn2 = (σ)2

Figure 2.6: ZLB dynamics with initial sunspot σq0 > 0 and forward guidance until T̂ > T

2.4.3 Intertemporal Stabilization Trade-off with Commitment

During the Global Financial Crisis and afterwards, central banks around the world purchased
large amounts of assets in financial markets, which mitigated collapses in asset prices and
brought down levels of risk-premia for a variety of assets.53 As our framework’s Ricardian
structure does not allow the central bank’s balance sheet quantities to affect the equilibrium,
we turn our eyes to a different type of policy that can prop up asset markets and the business
cycle: a central bank commitment to passive financial stabilization in the future in exchange
for lower financial volatility at the ZLB.

To obtain sharper analytic results, in the following Section 2.4.3 we consider the rigid-
price case with no inflation (i.e. πt = 0 for ∀t). In Section 2.4.3 we consider the 3-equations
sticky price model (equation (2.2.27), equation (2.2.31), equation (2.3.10)) and extend our

53See Gagnon et al. (2010), Krishnamurthy and Vissing-Jorgensen (2011), and Gorodnichenko and Ray
(2018) for empirical evidence on how the Fed’s QE1 and QE2 programs affected asset prices and risk-premia in
financial markets. For example, Gagnon et al. (2010) presented evidence that asset purchases led to reductions
in interest rates on a range of securities, which reflects reductions in the levels of risk premia. Krishnamurthy
and Vissing-Jorgensen (2011) found that QE1, which involved large purchases of agency-backed MBSs, yielded
huge reductions in mortgage rates, while QE2, in contrast, involved only Treasury purchases and brought down
Treasury bond rates only. Gorodnichenko and Ray (2018) found: the more disrupted financial markets are,
asset purchases act more strongly as local demand shocks in financial markets.
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logic from Section 2.4.3. In this Section 2.4.3, we assume the same ZLB environment as in
Section 2.4.1.

Rigid Price Case

We assume: πt = 0, ∀t, which corresponds to the limit case with zero price-resetting proba-
bility, instead of the Phillips curve (equation (2.2.31)). This simplification allows us to derive
sharper analytic implications about the optimal commitment path.

General idea We discuss a possible central bank’s commitment path at the ZLB which
brings the higher expected welfare than the conventional forward guidance studied in the
previous sections. For that purpose, we make a strong assumption: central bank can choose
the path of endogenous financial volatility {σqt } if that path is consistent with the dynamic
IS equation (equation (2.2.27)) and the Phillips curve (equation (2.2.31)). In the forward
guidance path we described in Section 2.4.1, the fact that the central bank achieves perfect
stabilization after T̂ (in Figure 2.4) determines financial volatility levels during the ZLB,
including the forward guidance period (between T and T̂ ). To be specific, we derived that
σqt = σq,nt = 0 for both T ≤ t ≤ T̂ (forward guidance period) and t < T (ZLB period).
Therefore, the risk-premium level before T̂ is completely determined to be the same as its
natural correspondent rpnt and we have r̂ pt = 0 for t ≤ T̂ . This logic can be illustrated by
the following diagram.

1. Central bank achieves perfect stabilization after T̂ (Q̂t = 0,∀t ≥ T̂ )

2. Q̂T̂ = 0 guarantees σqt = σq,nt = 0, rpt = rpnt for t ≤ T̂

Figure 2.7: Mechanism under the Forward Guidance

We ask the following question: What if central bank can commit to forgo full stabilization
after the forward guidance period (after T̂ in Figure 2.4) while engineering an equilibrium
path with lower levels of risk-premium rpt both during the ZLB (until T ) and the forward
guidance period (from T to T̂ )? Specifically, from the central bank’s point of view, the risk
premium level, which is determined by the volatility of {At} process, is too high during the
ZLB episode and it causes the asset price to plummet, bringing the economy into a harsh
recession. Thus, central banks might conclude that pushing down σqt levels (or equivalently,
risk-premium levels) from σq,n = 0 will mitigate the crisis during the ZLB by propping up
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asset price levels, which eventually stimulate the aggregate demand. This policy can be
related to the central bank’s efforts to supply liquidity to financial markets through LSAP
policies, recapitalization and/or government guarantee of financial entities, and many other
bail-out policies aimed (in part) at reducing financial uncertainty, whereas in our model, this
reduction in uncertainty comes from the central bank’s commitment to deviate from the
perfectly stabilized path in the future (after T̂ ).

The possibility that σqt differs from σq,nt = 0 causes asset price gap Q̂t to fluctuate in
a stochastic manner until T̂ 54 and therefore, the central bank cannot attain Q̂T̂ = 0 surely.
Thus, the conjectured engineered path in which {σqt } is pushed down below {σq,nt = 0} until
T̂ for stabilization purpose would be successful only if the central bank commits ex-ante not
to pursue perfect stabilization even after the forward guidance period is over and the economy
returns to normal.55,56 This logic can be interpreted as a contrapositive to the one in Figure
2.7 and is illustrated by Figure 2.8.

In other words, when engineering an equilibrium path, the central bank must juggle be-
tween boosting the economy during ZLB by lowering the financial volatility {σqt } and risk-
premium rpt , and the perfect stabilization after the fundamentals return to normal, thus
effectively future stability for present stabilization at the ZLB.

¬2. σqt < σq,nt = 0, rpt < rpnt for t ≤ T̂

¬1. Q̂T̂ 6= 0. Central bank commits not to perfectly stabilize the economy after T̂

Figure 2.8: Financial Market Intervention and Stabilization

One thing to notice is that the central bank would like to reduce the financial volatility
level and the risk-premium even after the TFP volatility σt returns to σ (from T to T̂ ) while

54From equation (2.2.27), σqt 6= σq,n = 0 creates a stochastic movement in the asset price gap process
{Q̂t} until T̂ .

55It can be understood as follows: a σqt different from σq,n = 0 until T̂ means that the stock market
becomes separated from what is stipulated by the real economy. It will eventually lead to a failure of the
monetary authority to stabilize the economy at T̂ , the moment when forward guidance ends. If we interpret it
in a backward way, it implies: when the central bank tries to engineer business cycle paths while bringing down
the risk-premium it deems ‘too high’ during ZLB, it must consider how these paths would trouble the economy
after forward guidance is over. This feature arises as financial market and the real economy are connected with
each other in our model.

56For example, we assume that after T̂ the central bank uses the passive policy rule with just it = rn(σ),
creating a possibility of multiple equilibria after T̂ . In this Section 2.4.3, we select one equilibrium in which we
have σqt = σq,n = 0 after forward guidance ends (after T̂ in Figure 2.4). Therefore, Q̂t will remain at Q̂T̂ after
t ≥ T̂ with it = rn(σ).
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it still follows the forward guidance rate prescription (it = 0). It is because it would push up
Q̂t between T ≤ t ≤ T̂ , which further raises the asset price Q̂t during high-TFP volatility
periods (σt = σ̄ for t ≤ T ) as Q̂t is forward-looking. Since we have introduced another way
(manipulating financial market volatility) to stimulate the economy during and after ZLB,
forward guidance is not as necessary to prop up Q̂t as in Section 2.4.1, thus its duration
must decrease with this intervention.

To be more formal, we define rpn1 ≡ (σ̄)2, rpn2 ≡ (σ)2, and rpn3 ≡ (σ)2, the risk-premium
levels (i.e., (σt +σqt )2) in time-intervals t ≤ T , T < t ≤ T̂ , and t ≥ T̂ , respectively when the
central bank perfectly stabilizes the economy after ZLB. We define T̂ ′ to be the new forward
guidance duration under the newly engineered path, which is possibly different from T̂ , the
original forward guidance duration. For simplicity, we assume that the central bank maintains
the same financial volatility and risk-premium levels in the same regime: specifically, financial
volatility σqt is σq,L1 from 0 to T (High TFP volatility region), σq,L2 from T to T̂ ′ (Low TFP
volatility region with the forward guidance), and 0 after T̂ ′ (Low TFP volatility region). The
assumption that σqt = 0 after T̂ ′ means that the central bank does not manipulate financial
markets after T̂ ′ when the forward guidance ends.

Therefore, under this newly engineered path, the risk-premium levels rpt = (σt + σqt ) in
each time-interval become rp1 ≡ (σ̄ + σq,L1 )2 < rpn1 for t ≤ T , rp2 ≡ (σ + σq,L2 )2 < rpn2 for
T ≤ t ≤ T̂ ′, and rp3 ≡ (σ)2 after T̂ ′.57 Since the policy intervention lowers the economy’s
total risk, risk-premium levels fall and both asset price and business cycle levels rise in response.
From equation (2.2.30), we can express the risk-adjusted natural rates rT1 and rT2 that enter
the dynamic IS equation (equation (2.2.27)) as functions of σq,L1 and σq,L2 , respectively, as

rT1 (σq,L1 ) ≡ ρ+ g −
σ̄2

2
−

(σ̄ + σq,L1 )2

2
> r ≡ r n(σ̄) = rT1 (0) when σq,L1 < 0,

rT2 (σq,L2 ) ≡ ρ+ g −
σ2

2
−

(σ + σq,L2 )2

2
> r̄ ≡ r n(σ) = rT2 (0) when σq,L2 < 0.

(2.4.9)

We observe σq,L1 < 0 and σq,L2 < 0 imply rT1 > r and rT2 > r̄ , respectively, which yield higher
levels of {Q̂t} during and after the ZLB on average. That would be the reason the central
bank wants to push down σq,L1 and σq,L2 from zero, the natural level of financial volatility, but
from equation (2.2.27) we see that it creates a stochastic fluctuation of Q̂t , which brings
additional costs in terms of stabilization. Therefore, central bank faces a trade-off between
future and current stability when it engineers the new commitment path.

To pin down equilibrium paths (there are multiple equilibria and we need to select one
equilibrium), we assume that, at t = 0, the monetary authority anchors an expected value of

57We will eventually prove σq,L1 < σq,n1 = 0 and σq,L2 < σq,n = 0 at optimum. For illustration purposes, we
assume these conditions are satisfied in the rest of the argument in Section 2.4.3.
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T
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T
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Path1(Q̂t )

rpn2 = (σ)2

Figure 2.9: Possible Intervention Dynamics of {Q̂t} with σq,L1 < 0, σq,L2 < 0, and T̂ ′ < T̂

Q̂T̂ ′, the asset price gap level when the forward guidance is over, at zero, i.e., E0Q̂T̂ ′ = 0.58 In
Figure 2.9, the gray line is the original forward guidance path, while the green one is the path
of average (or deterministic component of) {Q̂t} when the central bank engineers a new path
with σq,L1 < 0 and σq,L2 < 0.59 As we now have σq,L1 6= 0 and σq,L2 6= 0, stochastic fluctuations
of {Q̂t} around the deterministic path are generated and illustrated by two possible sample
paths (dashed lines) in Figure 2.9. These stochastic fluctuations bring the welfare loss. We
also observe that: with σq,L2 < 0 and E0Q̂T̂ ′ = 0, the average level of Q̂t becomes higher
from T to T̂ ′ than in the gray forward guidance path. The rises in Q̂t from T to T̂ ′ bring
up Q̂t levels before T . In addition, σq,L1 < 0 for t ≤ T further props up the average level of
Q̂t during the high TFP volatility period (before T ) and thus Q̂0 falls less than in the (gray)
forward guidance path in Figure 2.9.

In sum, this type of financial market intervention must exploit a trade-off between higher
asset price and output levels before T̂ ′ and the future stabilization after the ZLB. Central
banks should balance this trade-off when manipulating (σq,L1 , σq,L2 , T̂ ′). Now, the next step is

58It does not have to be the asset price gap, since the other gap variables are all proportional to Q̂t .
59When we draw the deterministic path in Figure 2.9, we ignore the fact that we have stochastic fluctuations

of Q̂t .
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to check whether our conjecture-based analysis in Section 2.4.3 indeed holds as the optimal
commitment solution.

Central bank’s optimal commitment path The central bank chooses optimal σq,L1 , σq,L2 ,
and T̂ ′ to minimize the loss function in equation (2.4.1), with functions rT1 (·) and rT2 (·) defined
in equation (2.4.9). We assume that the central bank keeps it = 0 until T̂ ′. Therefore, T̂ ′

is our new forward guidance period as we explained above. After T̂ ′, it implements a passive
monetary policy (interest rate anchoring) with it = rT2 (0) = r n(σ), not seeking to stabilize
the economy. In sum, central bank solves the following optimization problem:

min
σq,L1 ,σq,L2 ,T̂ ′

E0

∫ ∞
0

e−ρt
(
Q̂t
)2
dt, s.t.



dQ̂t = −(rT1 (σq,L1︸ ︷︷ ︸
<0

))dt + (σq,L1 )dZt , for t < T,

dQ̂t = −(rT2 (σq,L2︸ ︷︷ ︸
>0

))dt + (σq,L2 )dZt , for T ≤ t < T̂ ′,

dQ̂t = 0, for t ≥ T̂ ′,
with Q̂0 = rT1 (σq,L1︸ ︷︷ ︸

<0

)T + rT2 (σq,L2︸︷︷︸
>0

)(T̂ ′ − T ).

(2.4.10)
The forward guidance path (Section 2.4.1 with πt ≡ 0) corresponds to (σq,L1 , σq,L2 , T̂ ′) =

(0, 0, T̂ ) case, and thus optimal (σq,L1 , σq,L2 , T̂ ′) combination yields the lower level of (quadratic)
loss function. It turns out our conjecture in Section 2.4.3 that we have σq,L1 < 0, σq,L2 < 0,
and T̂ ′ < T̂ at optimum is correct, as summarized by the next Proposition 7.

Proposition 7 (Optimal Commitment Path). The solution of the central bank’s optimiza-
tion program in equation (2.4.10) features σq,L1 < 0, σq,L2 < 0, and T̂ ′ < T̂ hold.

We solve equation (2.4.10) with T = 4.5 and parameters in Table B.2, and simulate
optimal commitment paths. We calculate a sample estimate of the loss function with:∫ ∞

0

e−ρtE0(Q̂2
t )dt '

∫ ∞
0

e−ρt
1

s

s∑
i=1

(Q̂
(i)
t )2dt. (2.4.11)

where Q̂(i)
t is the i th realized sample path.60 Our result reveals when σq,L1 , σq,L2 and T̂ are

chosen optimally, the loss value is reduced by 0.4239%, which constitutes a moderate gain.
In our simulation, we observe σq,L1 < 0, σq,L2 < 0, and T̂ ′ < T̂ all hold at optimum,61 which

60We use s = 1000 number of sample paths in our simulation.
61Our simulation yields T̂ ′ = 5.612 < T̂ = 5.614, σq,L1 = −1.4325×10−4 < 0, and σq,L2 = −1.0467×10−6 <

0.



54

aligns with Proposition 7, but with optimal volatilities of very small magnitudes. The reason
that the optimal commitment path features very small degrees of financial volatility (and
risk-premium) manipulation is because after T , there is no ZLB possibility at all, which raises
the cost of destabilization when central bank’s monetary policy becomes passive after T̂ ′.
In a more realistic setting, there exists the possibility that the economy gets trapped at the
ZLB in a stochastic way, which can raise the degree to which the central bank manipulates
financial market volatilities and risk-premia. This exercise clearly illustrates concerns that a
central bank must consider when it tries to change the business cycle path by manipulating
financial market variables at the ZLB.

Sticky Price Case

In cases where inflation πt evolves according to the Phillips curve (equation (2.2.31)), we
still preserve the logic of intervention from Section 2.4.3. Since we assume that central bank
does not pursue full stabilization after T̂ ′ based on interest rate anchoring, there arise multiple
equilibria in {Q̂t , πt} and we focus on the particular equilibrium where we have σπ,t = 0, ∀t
in equation (2.2.31). As in Section 2.4.3, we assume that the central bank manipulates the
financial volatility levels, and σq,L1 and σq,L2 are those levels at the ZLB (t ≤ T ) and in the
forward guidance (T ≤ t ≤ T̂ ′) region, respectively, that central bank targets while it tries
to engineer a new commitment path.

Before we state the central bank’s optimization problem, we first consider the dynamics
of {Q̂t} without its stochastic component (σqt dZt in equation (2.2.27)), where we assign
superscript c to denote it is a counterfactual. We do so in order to identify the pure benefits
that central bank’s manipulation of σq,L1 and σq,L2 brings in terms of welfare. In this particular
counterfactual path, we assume that after T̂ ′, the economy is fully stabilized so Q̂ct = πct = 0

for ∀t ≥ T̂ ′. Then we have the following IS equations, which together with our Phillips curve
(equation (2.2.31) with σπ,t = 0 for ∀t), characterize the complete {Q̂ct , πct } dynamics.

dQ̂ct =

{
−(rT1 (σq,L1 ) + πct )dt for t < T,

−(rT2 (σq,L2 ) + πct )dt for T ≤ t < T̂ ′,
and Q̂ct = πct = 0, for t ≥ T̂ ′. (2.4.12)

Observe σq,L1 < 0 and σq,L2 < 0 imply rT1 (σq,L1 ) > rT1 (0) = r n(σ̄) and rT2 (σq,L2 ) > rT2 (0) =

r n(σ). Therefore, the above counterfactual path in general yields a higher welfare than
the forward guidance path in Section 2.4.1, as falls in financial volatilities and risk-premia
mitigate the severity of ZLB. This welfare gain constitutes the benefit that the central bank’s
manipulation of asset price volatilities (σq,L1 , σq,L2 ) brings to the economy. We express the path
{Q̂ct (σq,L1 , σq,L2 ), πct (σq,L1 , σq,L2 )} satisfying equation (2.4.12) as a function of σq,L1 and σq,L2 ,
as equation (2.4.12) is deterministic. The more σq,L1 and σq,L2 are reduced from their natural
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levels, the more the levels of Q̂ct (σq,L1 , σq,L2 ) and πct (σq,L1 , σq,L2 ) rise, in a similar manner to
Cochrane (2017).

Now, we consider the case where there is a stochastic fluctuation term (σqt dZt in equa-
tion (2.2.27)). We assume that the path starts at {Q̂c0(σq,L1 , σq,L2 ), πc0(σq,L1 , σq,L2 )} given
the financial volatility levels σq,L1 and σq,L2 that central bank manipulates.62 And we assume
that after T̂ ′ central bank follows a passive monetary policy rule (interest rate anchoring)
it = r n(σ) = rT2 (0), committing not to seek to stabilize the economy, as in Section 2.4.3,

Therefore, we can write the central bank’s optimization problem in the following way.

min
σq,L1 ,σq,L2 ,T̂ ′

E0

∫ ∞
0

e−ρt(Q̂2
t + Γπ2

t )dt,



dQ̂t = −(rT1 (σq,L1︸ ︷︷ ︸
<0

) + πt)dt + σq,L1 dZt , t < T,

dQ̂t = −(rT2 (σq,L2︸ ︷︷ ︸
>0

) + πt)dt + σq,L2 dZt , T ≤ t < T̂ ′,

dQ̂t = (−πt)dt, t ≥ T̂ ′,
dπt = (ρπt − κQ̂t)dt, ∀t,

with Q̂0 = Q̂c0(σq,L1 , σq,L2 ) and π0 = πc0(σq,L1 , σq,L2 ).
(2.4.13)

As it is not possible to analytically characterize optimal σq,L1 , σq,L2 , and T̂ ′, we rely on
numerical simulation63 to check whether our intuitions in Section 2.4.3 still hold in the sticky
price case. The simulation result confirms our intuition that at the optimal commitment
equilibrium central bank is better off by pushing down σq,L1 and σq,L2 from zero, which is the
natural level of financial volatility, and the forward guidance duration T̂ ′ is shortened from T̂ ,
the original duration.64,65 Basically, when the central bank tries to engineer a new commitment
path by controlling the financial volatility level and the endogenous risk-premium, it must

62It is similar to our assumption in Section 2.4.3 that central bank anchors E0Q̂T̂ ′ = 0. Here, initial levels
of Q̂0, π0 are those that arise when there is no stochastic fluctuation in both variables. This way of selecting
an equilibrium helps us to separate benefits and costs that the optimal commitment path brings, and deal with
each part carefully.

63In particular, we use the following approximation similar to equation (2.4.11):∫ ∞
0

e−ρtE0(Q̂2
t + Γπ2

t )dt '
∫ ∞

0

e−ρt
1

s

s∑
i=1

((Q̂
(i)
t )2 + Γ(π

(i)
t )2)dt, (2.4.14)

where Q̂(i)
t , π

(i)
t are i ’th sample paths of {Q̂t , πt}. We use s = 1000 for the number of sample paths.

64With parameters in Section 2.4.1, the optimal forward guidance duration becomes T̂ ′ = 3.601 < T̂ =

3.602, and we have σq,L1 = −1.0491 × 10−5 < 0 and σq,L2 = −9.7365 × 10−6 < 0. The loss function value
drops by 0.03%.

65As we emphasize, the whole point of this exercise is not to accurately quantify the actual benefits of this
type of stock market intervention as is done in quantitative DSGE models, but to convey the key intuitions that
must be taken into account in conjunction with our monetary policy framework.
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trade-off some future stability (after the ZLB) to stabilize the present economy (during the
ZLB), and accept the future destabilizing effects that the policy entails.

2.4.4 Macroprudential Policies

In Section 2.4.4, we analyze two types of stimulative macroprudential policies at the ZLB.
First, we introduce a fiscal subsidy that incentivizes capitalists to bear higher levels of risks,
effectively raising asset price and other real activities. Second, we study direct fiscal redis-
tribution from capitalists to hand-to-mouth workers whose marginal propensity to consume
(MPC) is much higher than former. We show that this policy raises total dividends of the
stock market and eventually, asset price Q̂t and consumption. To isolate the effects of
macroprudential policies on the business cycle, forward guidance policy is not considered in
this Section 2.4.4.

Fiscal Subsidy on Stock Market Investment

For t ∈ [0, T ], monetary policy is constrained by the ZLB, and the risk-premium level de-
manded by capitalists puts a downward pressure on Q̂t and πt through the aggregate demand
externality that financial decisions of individual capitalist exert.66 In this section, we develop
a subsidy policy that induces capitalists to increase their demand for risky stocks, which raises
the aggregate asset price level Qt and corrects the aggregate demand externalities affecting
the economy.

We start by considering a government subsidy for the purchase of risky stock market
assets67, and which is funded by imposing a lump-sum tax on capitalists. In specific, instead
of the original expected return imt , capitalists get (1 + τt)i

m
t in expectation out of a 1$ stock

market investment. If the government imposes a Tt lump-sum tax on capitalists to finance
this subsidy, then each capitalist with nominal wealth at solves the following optimization
problem.

max
Ct ,θt
E0

∫ ∞
0

e−ρt logCtdt s.t. dat = (at(it+θt((1+τt)i
m
t −it))−ptCt−Tt)dt+θtat(σt+σqt )dZt .

(2.4.15)

66A number of papers have been written over relations between externalities (either pecuniary or aggregate-
demand) and macroprudential policies. See Caballero and Krishnamurthy (2001), Lorenzoni (2008), Farhi et
al. (2009), Bianchi and Mendoza (2010), Jeanne and Korinek (2010), Stein (2012), Farhi and Werning (2012,
2016, 2017), Korinek and Simsek (2016), Dàvila and Korinek (2018) among others.

67In our model, a stock market subsidy is equivalent to a tax break on capital income, which is most often
the policy implemented in practice by governments. We model this policy using the ‘subsidy’ version in order
to economize on notation.
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In equilibrium, capitalists end up paying a tax amount Tt = τtatθt i
m
t to finance the subsidy

on their own stock market investment. Imposing θt = 1 as the equilibrium condition, the
equilibrium stock market’s expected return can be expressed as

imt =
it + (σt + σqt )2

1 + τt
= ρ︸︷︷︸

Dividend yield

+ g + µqt + σtσ
q
t︸ ︷︷ ︸

Capital gain

. (2.4.16)

Note that given it = 0 (ZLB), the presence of subsidy τt > 0 pushes down the equilibrium
levels of imt and µqt , boosting the current Q̂t until T . Therefore, this policy mitigates the
severity of recessions, as summarized by the following Proposition 8. Notice that when τt →
∞, we immediately escape from the ZLB crisis and return to the fully stabilized economy.68

Proposition 8 (Fiscal Subsidy on Stock Market (Expected) Return). Under the ZLB environ-
ment of 2.4.1 with the fiscal subsidy τt > 0 on the expected stock market return, a dynamic
IS equation for Q̂t can be written as

dQ̂t = −
(

r︸︷︷︸
≡rn(σ̄)<0

+
τt

1 + τt
(σ̄)2︸ ︷︷ ︸

>0

+πt

)
dt. (2.4.17)

Since the central bank fully stabilizes the economy after T , we have σqt = σq,n = 0 for all t.

In equation (2.4.17), a positive τt > 0 raises the effective natural rate from r to r +
τt

1+τt
(σ̄)2, reducing the gap between the ZLB and the effective natural rate. The following

Figure 2.10 confirms recessionary pressures at the ZLB are alleviated and both Q̂t and πt
drop by less upon entering the ZLB, as we raise the subsidy rate τt .

A subsidy on risky asset holdings (or equivalently, a tax cut on capital gains) effectively
raises capitalists’ stock market demand, stimulating both financial markets and real activity
at the ZLB.

Tax on whom? What if government instead imposes a lump-sum tax Tt on hand-to-mouth
workers? In this case, each worker’s budget constraint changes as

wt
pt
NW,t = CW,t +

Tt
pt
. (2.4.18)

As workers are hand-to-mouth, this taxation reduces their consumption one-by-one and neg-
atively impacts the stock market’s total dividend amount and stock price Q̂t . Therefore, with

68Since we always have r+(σ̄)2 > 0, with τt →∞, the effective natural rate becomes positive, and therefore,
central bank can attain full stabilization.
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Figure 2.10: Zero lower bound (ZLB) crisis with varying τt rates: {Q̂t , πt} dynamics

a lump-sum tax on workers the stock market’s expected return imt is represented as

imt =

yt −
wt
pt
NW,t

AtQt
+ Et

(
d(ptAtQt)

ptAtQt

1

dt

)
= ρ− τt imt + Et

(
d(ptAtQt)

ptAtQt

1

dt

)
. (2.4.19)

where we plug Tt = τt i
m
t ptAtQt into the worker’s budget constraint (equation (2.4.18)).

69 As
it will turn out, the negative effect on Q̂t from drops in workers’ consumption (from the tax)
exactly cancels out with the positive effect of the stock subsidies on capitalists. Therefore,
there is no net effect (beyond pure redistribution from workers to capitalists) of the subsidy
policy on {Q̂t , πt} dynamics during a ZLB episode when it is financed by a tax on workers.
The following Proposition 9 summarizes this point.

Proposition 9 (Fiscal Subsidy and Tax on Workers). The policy of Section 2.4.4 that subsi-
dizes the expected return on risky stocks, if financed through a lump-sum taxation on workers,
would have no effect on {Q̂t , πt} dynamics during the ZLB. Such policy features the same
dynamics as in Figure 2.4.

69Therefore in equation (2.4.19), the dividend yield jumps down from ρ to ρ− τimt .
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Fiscal Redistribution

A direct fiscal transfer Tt > 0 from capitalists to hand-to-mouth workers can raise the total
amount of dividends in the financial market, thereby pushing up the current Q̂t at the ZLB.70

The formula for the expected stock market return imt in this case can be written as

imt =

yt −
wt
pt
NW,t

AtQt
+ Et

(
d(ptAtQt)

ptAtQt

1

dt

)
= ρ+

Tt
ptAtQt︸ ︷︷ ︸

>0

+Et
(
d(ptAtQt)

ptAtQt

1

dt

)
. (2.4.20)

If we assume capitalists pay ϕt portion of their wealth to finance this transfer, we will have
Tt = ϕtptAtQt and dividend yield becomes ρ+ϕt instead of just ρ. This raises the effective
natural rate of interest from r to r +ϕt during the ZLB, thereby increasing Q̂t and πt . The
following Proposition 10 summarizes this result.

Proposition 10 (Direct Redistribution). Under the ZLB environment of Section 2.4.1 and a
direct (instantaneous) transfer of ϕt portion of capitalists’ aggregate financial wealth towards
hand-to-mouth workers, the dynamic IS equation for Q̂t can be expressed as

dQ̂t = −( r︸︷︷︸
≡rn(σ̄)<0

+ ϕt︸︷︷︸
>0

+πt)dt. (2.4.21)

It is worth mentioning that from the perspective of capitalists with a nominal wealth at ,
paying Tt = ϕtat effectively lowers their equilibrium return by ϕt . The equilibrium return
jumps down by ϕt because the asset price value Q̂t rises so that the capital gain is reduced
also by ϕt . Thus, a transfer to workers with a higher marginal propensity to consume (MPC)
brings an additional stabilizing effect other than just pushing up the current consumption
and aggregate demand. This policy also raises the dividend yield, boosting Q̂t and therefore
increasing aggregate demand through a wealth effect.71

70If the dividend yield increases, the required capital gain for given policy rate falls and the current asset
price Q̂t jumps up at the ZLB.

71The policy that subsidizes firms’ payroll based on tax imposed on capitalists achieves exactly the same
dynamic IS equation as in equation (2.4.21). To be precise, if firms pay wtNW,t − Tt instead of wtNW,t as the
total payroll to workers, where Tt is financed by capitalists in a lump-sum way, this policy props up the profit
amounts that are to be distributed as dividends to capitalists, raising stock prices and business cycle. One
difference is that this policy lowers the effective marginal cost for firms, which affects firms’ pricing decisions
and distorts the Phillips curve as

dπt = (ρπt + δ(δ + ρ)Θτt︸ ︷︷ ︸
>0

−κQ̂t)dt, (2.4.22)
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In sum, macroprudential policies help to mitigate recessionary forces during ZLB crises
through their impact on financial markets and asset price Qt . However, there exist other
types of financial market interventions that are able to substitute monetary policy’s lack of
ammunition power during the ZLB and stimulate the economy through their impact on asset
markets. In the next Section 2.4.3, we analyze possible financial market interventions and
look into subtle issues that arise when the central bank distorts the stock market and manip-
ulates its risk in order to prop up the economy.

2.5 Conclusion

In this paper, we illustrate that properly accounting for higher-order moments related to the
business cycle and stock markets changes the business cycle dynamics of the New-Keynesian
framework and provides new implications about monetary policy. To that end, we develop
a model with stock markets that features higher-order stock market variables (time-varying
aggregate financial volatility and risk-premium). This setup allows a tractable analytical
characterization of the equilibrium conditions and uncovers interesting dynamics stemming
from the role of aggregate financial volatility: a rise in aggregate financial volatility raises the
risk-premium, reducing wealth and aggregate demand. This feedback structure from higher-
order terms (aggregate volatility and risk-premium) to first-order ones (wealth and aggregate
demand) opens up the possibility of second-order sunspot equilibria, which require a different
set of monetary policy rules for stabilization purposes.

Our analysis reveals that conventional monetary policy rules, even with aggressive tar-
geting of traditional macroeconomic measures, cannot guarantee determinacy. This failure
of conventional rules in ensuring determinacy lies in their inability to adequately target the
‘expected risky return’ of financial markets, the relevant rate in a stochastic environment. We
then propose a generalized Taylor rule that restores determinacy, with which the central bank
targets not only conventional mandates (inflation and output gap), but also the risk-premium
in a specific way, thus effectively managing the expected rate of return on aggregate finan-
cial wealth. This new policy rule achieves what we describe as the ultra-divine coincidence:
joint stabilization of inflation, output gap and risk-premium. Finally, we study various policy
options when the policy rate is constrained by the zero lower bound (ZLB).

Our framework opens new avenues for future research focused on understanding the inter-
action of the real economy and the higher-order variables of financial markets. For example,
in our model we largely abstract from wealth inequality and potentially heterogenous sensi-
tivity of economic players to financial volatility. We view future work aiming to incorporate

where this additional term would negatively affect πt and Q̂t during a ZLB crisis.
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these realistic features as a particularly fruitful direction to pursue.
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Chapter 3

A Unified Theory of the Term-Structure
and Monetary Stabilization

This chapter is coauthored with my classmate and also one of my best friends, Marc Dordal
i Carreras. I appreciate him for allowing me to use our joint work as part of this dissertation.
All errors are mine.

3.1 Introduction

Central banks’ various “unconventional" monetary policies1 have never been more “conven-
tional" than in recent decades, especially after the 2007-2008 Global Financial Crisis (GFC)
and the subsequent Great Recession. In environments where the short-term policy rate is
constrained by its lower bound (ZLB),2 policymakers devised ways to reduce long-maturity
rates, hoping that falling long-term rates would boost aggregate demand and mitigate the
recessionary pressure on the economy, and to that end, central banks tremendously increased
sizes of their balance sheets. Simultaneously, governments financed their spending increases
by raising their debt issuance. Unfortunately, this unprecedented economic environment in-
tensified in the wake of the Covid-19 pandemic recently and the Federal Reserve, as its policy
rate hit its effective lower bound again, has undertook another round of those measures for
stabilization purposes.3

1For example, the Quantitative Easing (QE) programs, and large scale asset purchases (LSAPs) programs
in general, and Operation Twist (OT) are possible forms of the unconventional monetary policy.

2For the long-term downward trend of neutral interest rates, see Rachel and Smith (2017). This trend
amplifies the important stabilizing roles of unconventional monetary policies.

3The Federal Reserve lowered its short-term interest rates to a range of 0% to 0.25% in March 2020.
While increasing its securities holdings and the size of its balance sheet tremendously, the Fed pledged not
to raise interest rates until the eonomy reaches full employment and consistently maintain 2% inflation. The



63

The textbook New-Keynesian framework features a single policy rate, abstracting from
the term-structure of interest rates and the presence of multiple assets. This omission is
not a simplification that can be easily incorporated, as expected returns across assets and
maturities are usually equalized in equilibrium in these models,4 rendering any additional
assets as a fully-dependent function of the policy rate, and therefore redundant for the study
of monetary policy.

In this paper, we build a tractable New-Keynesian framework featuring the endogenous
term-structure of interest rates of bond markets and private capital markets, with which
we study effects of alternative monetary (conventional and unconventional) and fiscal poli-
cies. Following prior theoretical and empirical works that point out ‘market segmentation’
across bonds of different maturities as a critical feature in explaining the effectiveness of
quantitative easing programs,5 we provide an alternative micro-foundation that enables us to
incorporate (i) bonds market segmentation, (ii) the household’s endogenous portfolio choices
across different asset classes and maturities, (iii) real effects of the government and central
bank’s balance sheet size and composition: all building blocks necessary for understanding
the transmission channel of unconventional monetary policies.6

Under market segmentation, our framework predicts that the total amount and maturity
structure of the government’s bond issuance affects the equilibrium interest rate levels and
the slope of the yield curve, while the central bank’s relative bond purchases across bonds
of different maturities are negatively related with yields. These results are consistent with
the findings of Krishnamurthy and Vissing-Jorgensen (2012) and Greenwood and Vayanos
(2014),7 who illustrate the short-run and long-run importance of both relative asset demand

unprecedented CARES Act also provided almost $500 billion to support the Fed. See Congressional Research
Service (CRS) report R46411 (2021) for the details.

4This result follows from the log-linearization technique and leads to the famous expectation hypothesis,
which holds in most log-linearized New-Keynesian models. According to this hypothesis, returns on long-term
bonds become just the average of expected future short-term rates.

5For empirical assessments of the market-segmentation hypothesis as a key determinant of the term struc-
ture, see D’Amico and King (2013) and Droste et al. (2021). For theory side, Ray (2019) adapts the preferred-
habitat framework developed by Vayanos and Vila (2021) and proposes a New-Keynesian model that features
bond market segmentation, revealing many interesting relationships between monetary policy and the term-
structure. Gourinchas et al. (2020) and Greenwood et al. (2020) study implications of the preferred-habitat
setting in joint determination of exchange rates and the term-structure of interest rates.

6For example, (ii) endogenous portfolio decision is important: a relative fall in the short-term rate leads
households to reallocate their savings into other assets and/or longer maturities bonds, thus diminishing marginal
effects of further changes in the policy rate on the household’s intertemporal consumption decision, and also
generates spill-over effects relevant for the determination of other rates.

7Krishnamurthy and Vissing-Jorgensen (2012) found that a higher debt-to-GDP ratio leads to lower corpo-
rate credit spreads, and this effect becomes stronger for longer maturities. Likewise, Greenwood and Vayanos
(2014) documented that the relative abundance of long term bonds supply (with respect to short term bonds)
is positively correlated with the term-spread.
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and supply across maturities in determining the yield curve.
We also study cyclical properties of distinct monetary interventions in the form of simple

policy rules. By explicitly incorporating the government and central bank’s balance sheets,
our framework easily accommodates policies aimed at controlling the yields, bond supplies or
a mixture of both at different maturities. We begin by focusing on the implementation of
a conventional policy rule on the short-term rate and its effect of the entire yield curve and
the economy. Then, we develop a more general yield-curve control (YCC) policy in which
the central bank directly controls the entire bond market yield curve. Our framework reveals
interesting phenomena and differences across policies, which become especially relevant when
the economy enters the ZLB episodes (thus, the short-term rate is constrained by the ZLB).
For example, our analysis reveals that when the central bank follows a conventional monetary
policy on short-term rates, a reduction in the government’s risk-free bond supply is reces-
sionary at the ZLB, as argued by the literature on safe-asset shortage (SAS) problems (see
for example, Caballero and Farhi (2017) and Caballero et al. (2021)). In contrast, under the
YCC policy, the central bank swiftly shifts down the entire yield curve and lowers the effec-
tive savings rate of households, boosting aggregate demand and preventing the economy’s
collapses.8 We find that YCC, in general, is a more powerful policy in terms of economic
stabilization which increases household’s welfare compared with a conventional short-term
rate policy.

However, YCC policy has interesting side-effects in forms of more frequent and prolonged
ZLB episodes. Active easing of long-maturity yields imposes an additional downward pressure
on the returns of short-term bonds, which stems from the household’s endogenous portfolio
reallocation: falling long-term rates induce the household to pull its wealth out of long-term
bonds and instead invest into (i) short-maturity bonds, imposing additional downward pres-
sures on short-term yields, and (ii) private capital (loan) markets, reducing firms’ borrowing
costs, and hence the consumption prices due to lower production costs.9 When the ZLB
binds, YCC policy disproportionately controls the yields of long-term bonds, which places ad-
ditional downward pressure on short-term rates and delays an exit from the ZLB. Therefore,
the household’s endogenous portfolio reallocation results in a feedback loop between ZLB
duration and the need for YCC policies: YCC raises ZLB duration and frequency, while the
economy relies more on the YCC’s stabilization power during ZLB episodes. Up to our best
knowledge, this result is new to the literature.10

8Even under the conventional policy, a falling short-term rate reduces long-term bond yields due to the
endogenous portfolio reallocation of the household, thereby reducing the effective savings rate. However, this
channel is insufficient for boosting aggregate demand, especially when the economy hits the ZLB constraint
and conventional policy becomes inactive.

9Drops in the aggregate price index further impose downward pressures on the policy rate following con-
ventional Taylor rules, which is already constrained at the ZLB.

10A similar result, but obtained through the completely different channel, is presented by Karadi and Nakov
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We propose a new theoretical foundation for the financial market segmentation based on
imperfect information about asset returns. We assume that the household is subdivided into
a continuum of families and family members, each of them having distinct and imperfect
information sets about those future asset returns. Then, unable to extract a common signal
from the pool of heterogeneous information sets, the household evenly splits aggregate sav-
ings across its members and lets them allocate their share on the assets that they deem more
profitable. This investment strategy effectively results in market segmentation, with cross-
sectional dispersions in each individual’s expectation of asset returns determining degrees of
market segmentation associated with each class of assets. We simplify the aggregation prob-
lem of individual portfolio choices among members by modeling the differences on expected
asset returns as Fréchet-distributed shocks around the respective rationally expected levels of
returns.11 This aggregation technique, which we borrow from the international trade litera-
ture (e.g., Eaton and Kortum (2002)), allows us to easily incorporate new asset varieties and
distinct degrees of market segmentation across different assets and maturities, while providing
analytically tractable expressions for the household’s portfolio shares as a function of relative
expected asset returns. Our formulation is fairly general and nests the famous expectations
hypothesis as a one special case, allowing deviations due to imperfect information and behav-
ioral reasons. A final benefit of this framework is that the demand elasticity of each asset
class becomes a sufficient statistic for its particular degree of market segmentation, making
the segmented market hypothesis easy to test and calibrate in contexts of our model.

Related Literature This paper contributes to several different strands of the literature in
macroeconomics and finance. First, previous works have shown that macroeconomic factors
are important in explaining behaviors of the term-structure of interest rates (e.g., Ang and
Piazzesi (2003), Rudebusch and Wu (2008), and Bekaert et al. (2010)).12 The frameworks
developed in this literature are usually based on an ad-hoc affine term-structure (e.g., Duffie
and Kan (1996)) without specific equilibrium micro-foundations.13 We contribute to this

(2021). The paper documents the ‘QE-addiction’ problems based on a model with financial frictions in which
private banks get accustomed to the central bank’s liquidity provisions, which reduce their incentive to recap-
italize without additional QE rounds. In that environment, Karadi and Nakov (2021) derive a gradual optimal
exit strategy from QE programs.

11For general properties of the Fréchet distribution, see Gumbel (1958).
12For example, Ang and Piazzesi (2003) found that models with business cycle factors forecast better

than models with only unobservable factors by analyzing the joint dynamics of bond yields and macroeconomic
variables in a VAR, with no-arbitrage as an identifying restriction.

13Bekaert et al. (2010) combined the no-arbitrage term-structure with a canonical New-Keynesian frame-
work, maintaining consistency between the household’s IS (intertemporal substitution) equation and the affine
pricing kernel. Even though their model delivers strong contemporaneous responses of the entire term structure
to various macroeconomic shocks, the household does not invest in the entire yield curve, and it does not feature
a full general equilibrium.
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literature by pinning down the term-structure of interest rates in the presence of multiple asset
classes (e.g., bonds for intertemporal smoothing and private loans for productive investments)
and nominal rigidities, with explicit roles of the government and central bank’s balance sheets
and the household’s endogenous portfolio choices along the entire yield curve, which allows
us to characterize how the business cycle variables and financial markets (including the term-
structure) are intertwined.

Another relatively nascent literature focuses on the relationship between central bank’s
endogenous balance sheet composition and monetary policy (e.g. Gertler and Karadi (2011),
Cúrdia and Woodford (2011), Christensen and Krogstrup (2018), Christensen and Krogstrup
(2019), Karadi and Nakov (2021)). This literature provides new insights on how the central
bank’s large scale asset purchase programs (LSAPs) help mitigate financial market disrup-
tions,14 but in many cases abstracts from the study of multiple bond market maturities, and
focuses instead on the aggregate expansion of central bank’s balance sheets.15 We con-
tribute to the literature by providing a unified framework that describes how central banks
can manipulate their bond portfolios in order to control targeted rates along the yield curve
for stabilization purposes. Especially, our implication that an active endogenous manipulation
of central bank’s long-term bond holdings can be welfare-improving aligns with Sims and Wu
(2021).16

Our analysis of the zero lower bound (ZLB) closely follows the previous literature (e.g.,
Swanson and Williams (2014), Caballero and Farhi (2017), and Caballero et al. (2021)) and
describes additional benefits of an active manipulation of the central bank’s balance sheet
(size and composition along the entire yield curve) when the economy enters the ZLB. To the
best of our knowledge, our paper is the first to characterize a general equilibrium economy
featuring both the term-structure of interest rates and a possibility of the binding ZLB,
together with the presence of multiple financial assets.

Layout In Section 3.2, we present a New-Keynesian framework incorporating capital mar-
kets and the term-structure of interest rates, and derive the main theoretical results on how
imperfect information leads to market segmentation. Section 3.3 focuses on the steady state
implications of distinct policies and the model calibration. Section 3.4 studies the cyclical
(short-run) responses of our model to different shocks under alternative monetary policy rules
and economic situations, including the ZLB. Section 3.5 concludes.

14For example, Gertler and Karadi (2011) pointed out that (i) central banks are not balance sheet con-
strained, and (ii) as the balance sheet constraints on private intermediaries tighten during financial crises, a net
benefit from the central bank’s intermediation increases.

15Cúrdia and Woodford (2011), for example, showed that targeted asset purchases by central bank’s credit
expansion is effective when financial markets are highly disrupted for some exogenous reason.

16The term-structure of interest rates is abstracted away in Sims and Wu (2021). Instead, Sims and Wu
(2021) assumes that a wholesale firm and fiscal authorities issue perpetuities with decaying coupon payments.
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3.2 Model

3.2.1 Non-technical Summary

We start by providing a non-technical overview of our theoretical framework and its key com-
ponents. There is a representative household and a continuum of monopolistically competitive
firms producing differentiated goods and subject to price stickiness á la Calvo (1983). Firms
use labor and capital in production, with the latter rented to firms by the competitive capital
producer. Firms are subject to a cash-in-advance constraint when renting capital, and borrow
from households through one-period loan contracts (equivalently, corporate one-period bond)
in order to fulfill the capital rental payment ahead of their production. Firms also pay a wage
to the household in exchange for its labor, and the household allocates its income between
consumption and savings.

The household allocates its savings across a menu of different assets that includes firm
loans and zero-coupon risk-free bonds. In contrast to canonical New-Keynesian models, the
bond market is comprised of bonds with multiple maturities.17 The household contains a con-
tinuum of individuals, each with a different information set regarding the assets’ profitability.
In order to construct its portfolio, we assume that the household evenly splits the savings
across its members and lets them freely allocate their share to their preferred asset. We show
that this difference in information sets across household members leads to financial market
segmentation, which breaks the conventional expectations hypothesis of linearized monetary
models and allows us to study the distinct impacts of different monetary policies on distinct
assets and maturities.

Our framework also contains the government with an exogenous public consumption de-
mand financed through taxation and bond issuance. By sustaining a positive steady state
deficit, which is a plausible assumption for most advanced economies, the government be-
comes the natural issuer of the entire risk-free bond market. The central bank then imple-
ments its preferred monetary policy by controlling the economy’s yield curve through open
market bond purchases that affect the size and composition of its balance sheet. We con-
sider two distinct policy rules that the central bank follows. First, a conventional policy rule
that controls the short(est)-term yield through active manipulation of its short-term bond
holdings, together with a passive targeting of the balance sheet volumes of longer bond ma-
turities. A movement of the policy rate leads the household to reallocate their portfolio (i)

17In this context, long-term bonds that exist through multiple periods are still subject to price revaluation
risks each period. We regard them risk-free by the virtue of their terminal payment being known and fixed upon
issuance.
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across bonds of different maturities, and (ii) between bonds and loans. This reallocation
changes the household’s effective savings rate and affects its consumption through the usual
intertemporal substitution channel (‘demand block’). In addition, a policy movement alters
the share of savings flowing into firms as private loans, which affects the effective loan rate,
firms’ capital demand, and the output level (‘supply block’).

Second, we consider a yield-curve control monetary policy rule that targets the entire
yield curve by actively trading bonds across all different maturities.18 We show that this
policy is very powerful in terms of stabilization, as it enables the central bank to lower the
effective savings rate of households even at the zero-lower bound (ZLB), during which con-
ventional policy is ineffective. As a drawback, this policy raises the likelihood and durations
of ZLB episodes, since falling long-maturity yields increases the demand for short-term bonds
and imposes additional downward pressure on their yields. Albeit being optimal from a wel-
fare perspective, the prolonged ZLB episodes that accompany such policy further amplify its
usefulness and chronify its application, suggesting that more frequent ZLB spells and uncon-
ventional interventions such as Large Scale Asset Purchases (LSAPs) might become the new
normal.

The key economic agents and financial markets of our framework are summarized in Figure
C.1. Next, we formally present the main components of our model.

3.2.2 Representative Household

The representative household maximizes the following objective function:

max
{Ct+j ,Nt+j}

Et
∞∑
j=0

βj

[
log (Ct+j)−

(
η

η + 1

)(
Nt+j

N̄t+j

)1+ 1
η

]
, (3.2.1)

where Nt = (
∫ 1

0
Nt(ν)

η+1
η dν)

η
η+1 is an aggregate labor index, N(ν) is labor supplied to

intermediate industry ν, η is the Frisch labor supply elasticity, and N̄t is the balanced growth
path population, which grows at constant gross rate GN. Variable Ct is consumption of the
final good.

At each period t, the representative household can invest in f -period zero-coupon govern-
ment bonds where f varies from 1 to F , and also provide loans to the firms.19,20 Therefore,

18More precisely, we assume that the central bank sets a Taylor-type rule for each yield along the entire yield
curve.

19Alternatively, we interpret it as households purchasing one-period corporate bonds
20Banks and financial intermediaries are abstracted away in our framework, and the representative household

issues direct loans to the firms instead. Without any relevant intermediation frictions, the results of both
representations are equivalent.
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the representative household’s period t budget constraint is written as

Ct +
Lt
Pt

+

∑F
f=1B

H,f
t

Pt
=

∑F−1
f=0 R

f
tB

H,f+1
t−1

Pt
+
RKt Lt−1

Pt
+

∫ 1

0

Wt(ν)Nt(ν)

Pt
dν +

Λt
Pt
, (3.2.2)

where Lt is the amount of one period loans to firms, with associated return RKt determined
upon issuance. Wt(ν) is the wage paid by industry ν, Pt is the price index of the final good,
and Λt are transfers from different sources, including government’s lump sum taxation and
profits of the central bank and firms. BH,ft ≡ Qft B̃

H,f
t is the nominal amount of dollars

invested in the f -maturity government bond paying one dollar at the terminal period t + f .
Qft is the price of such bond, with Q0

t equal to one. B̃H,ft is the amount of f -maturity bonds
held by the household, and we assume that the household is unable to credibly issue risk-free
bonds and therefore is constrained to hold a non-negative quantity of them, B̃H,ft ≥ 0 for all
f . Variable Rft is the return earned on an f -period bond, which corresponds to the rate of
bond price revaluation between two adjacent quarters, Rft = Qft /Q

f+1
t−1 . The gross yield of a

zero-coupon bond of maturity f is conventionally defined as Y Df
t ≡

(
Qft
)− 1

f , and hence we
can alternatively express bond return Rft as

Rft =

(
Y Df

t

)−f(
Y Df+1

t−1

)−(f+1)
.

Individual Savings

The representative household chooses the optimal level of consumption, employment, and
savings St , with the latter allocated either into government bonds BHt =

∑F
f=1B

H,f
t or firm

loans Lt , thus satisfying St = BHt + Lt . To generate a downward sloping demand curve for
each investment vehicle,21 we introduce the following machinery: After deciding the savings
level St , the household is equally split into a [0, 1] continuum of families that differ in their
preferred savings vehicle, which can either be loans or bonds. If a family prefers to invest in
the bond market instead of issuing loans, then the family is again split into a [0, 1] measure
of family members that differ on the preferred bond maturity f = 1 ∼ F . We use index m
to identify a family within the continuum, and index n to refer to one of its family members.
Each family m and each member n in the bond family m all have the same amount of savings
St as the household. We solve the allocation problem recursively in the following way.

Assuming that a family m has chosen bonds as their preferred savings vehicle, its member

21Otherwise, linearization of the model results in the perfect equalization, in equilibrium, of all expected asset
returns (including different bond maturities), which is consistent with the standard expectation hypothesis(see
Froot (1989)).
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n maximizes the expected savings return, solving the following problem.

max

F∑
f=1

Em,n,t
[
Qt,t+1R

f−1
t+1B

H,f
m,n,t

]
s.t. BHm,n,t ≡

F∑
f=1

BH,fm,n,t = St , B
H,f
m,n,t ≥ 0,

where Em,n,t is the expectations operator for member n in familym and Qt,t+1 is the stochastic
discount factor of the household. Due to the linear nature of the problem, we reach a corner
solution in which member n allocates her entire share of savings to the bond with the highest
expected discounted return.22 Formally,

BH,im,n,t =

St , if i = arg max
1≤j≤F

{
Em,n,t

[
Qt,t+1R

j−1
t+1

]}
,

0 , otherwise.

In the benchmark rational expectations environment, all members in the bond family m
choose the same allocation, and expected discounted returns Et

[
Qt,t+1R

f−1
t+1

]
for any maturity

f are equalized in equilibrium. This case aligns with the ‘expectation hypothesis’ in the log-
linearized economy, where long term rates are approximated as the average of future expected
short term rates.23 Since the short term rate R0

t+1 is controlled by the central bank, longer
yield maturities are fully determined by conventional monetary policy in this environment. This
precludes any meaningful role for other central bank policies such as QE, despite empirical
evidence on the contrary.24

We deviate from the expectations hypothesis and generate a downward sloping demand
curve for each bond of maturity f by imposing additional structure on the portfolio allocation
problem. We assume that each member n of the family has different expectations about the
discounted future returns of bonds. This difference can be attributed to each agent having
access to a distinct and imperfect information set (in a similar manner to Angeletos and La’O
(2013)) or simply by behavioral assumptions. In addition, we assume that family m doesn’t
have the capacity to aggregate the individual information from its members and perform a
centralized portfolio allocation based on signal extraction. Therefore, the family decides to
equally split the savings among its members and allows them to decide on the allocation of

22The exception would be if two or more bonds have exactly the same highest expected discounted return,
in which case the member n would be indifferent between allocations across these bonds. This, in general, will
happen with zero probability as it will become clear in the derivations below.

23In the linearized economy, the co-variation between Qt,t+1 and returns Rf−1
t+1 is omitted together with other

higher-order terms.Thus, expected returns for each bond maturity are equalized.
24For example, Krishnamurthy and Vissing-Jorgensen (2011) show that LSAP interventions lower long-term

interest rates
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their individual share. We assume the following functional form for member n expectations:

Em,n,t
[
Qt,t+1R

f−1
t+1

]
= z fn,t · Et

[
Qt,t+1R

f−1
t+1

]
, ∀f = 1, . . . , F,

where the expectation operator Em,n,t is a member-specific expectation, whereas Et is the
rational expectation. z ft,n are maturity-f specific shocks to member n’s expectations. Note
that, ceteris paribus, a high realization of z ft,n makes member n more willing to save in the
f -maturity bond.

For tractability, we model z ft,n as a Fréchet-distributed shock with location parameter
zero, scale parameter z ft and shape parameter κB, and assume it to be i.i.d. across members
n, maturities f and quarters t.25 Shape parameter κB determines the volatility of these
expectation shocks, with limκB→∞ V ar

(
z ft,n
)

= 0. Therefore, with z ft = Γ (1− 1/κB)−1 26

and κB → ∞, the model collapses to the standard rational expectations case with Em,n,t
aligning with Et . Otherwise, individual expectations deviate from the rational expectation.27

We define λHB,ft as the probability that the f -period bond provides the highest expected
discounted return to a family member n. By the properties of the Fréchet distribution, we
obtain a nice analytical expression for this probability as

λHB,ft =

(
z ft Et

[
Qt,t+1R

f−1
t+1

]
ΦB
t

)κB
, (3.2.3)

where ΦB
t ≡

[∑F
j=1

(
z jtEt

[
Qt,t+1R

j−1
t+1

])κB] 1
κB is an aggregate index that captures the average

expected discounted return across bonds of different maturities. Equation (3.2.3) implies that
demand for savings in the f -maturity bond increases when its return Rf−1

t+1 is relatively higher
to that of the average bond return across all maturities, ΦB

t .

Aggregating across families and family members, we obtain an expression for the house-
hold’s total holdings of each f -maturity bond as

BH,ft = λHB,ft · BHt , ∀f = 1, . . . , F, (3.2.4)

where BHt is the household’s aggregate bond holding amounts. Using equation (3.2.4), we

25See Eaton and Kortum (2002) and Carreras et al. (2021) for applications of the Frechét-distribution and
aggregation issues in international trade and macroeconomics literature.

26If we set the scale parameter to z ft = Γ (1− 1/κB)−1, then we have E(z fn,t) = 1, and member-specific
expectations fluctuate around the rational expectation.

27Thus, our framework nests the above benchmark case (no-arbitrage term structure) as a limiting case.
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obtain an aggregate expression for the returns to the household’s bond portfolio as

RHBt+1 =

F−1∑
f=0

λHB,f+1
t Rft+1. (3.2.5)

Now that we have found the allocation of savings across bond maturities, we turn our
eyes into the problem of how each family m decides between depositing its savings either in
bonds or loans. Family m maximizes savings returns out of the set of possible asset classes
(bonds and loans in our model) by solving the following problem:

max Em,t
[
Qt,t+1R

HB
t+1B

H
m,t

]
+ Em,t

[
Qt,t+1R

K
t+1Lm,t

]
s.t.

BHm,t + Lm,t = St , B
H
m,t ≥ 0, and Lm,t ≥ 0.

Family m takes as given that if it becomes a bond family, it will follow the investment
strategy outlined in equation (3.2.3) and obtain aggregate returns RHBt+1 (equation (3.2.5))
on its bond portfolio. In the benchmark rational expectation environment, all families choose
the same allocation, and in equilibrium, expected discounted returns Em,t

[
Qt,t+1R

HB
t+1

]
and

Em,t
[
Qt,t+1R

K
t+1

]
are equalized, making families indifferent in their portfolio allocation.

As before, we generate a downward-sloping demands for bonds and loans in the linearized
economy by assuming that each family m’s expectation operator deviates from the rational
expectation as follows:

Em,t
[
Qt,t+1R

K
t+1

]
= zKm,t · Et

[
Qt,t+1R

K
t+1

]
,

where Et is the rational expectation whereas Em,t is a family m-specific expectation. We
model zKm,t as a Fréchet-distributed shock with location parameter zero, scale parameter
zKt and shape parameter κS, and assume it to be i.i.d. across families m and quarters t.
As before, κS governs the expectation shock’s volatility, satisfying limκS→∞ Var

(
zKm,t

)
= 0.

Thus, when zKt = Γ (1− 1/κS)−1 and κS →∞, the model collapses to the standard rational
expectation case with Em,t aligning with Et .

Similar to what we found before, we can now aggregate decisions of each family m and
find the share of aggregate savings that will be allocated to loans as

λKt =

(
zKt Et

[
Qt,t+1R

K
t+1

]
ΦS
t

)κS
, (3.2.6)

where ΦS
t =

[(
Et
[
Qt,t+1R

HB
t+1

])κS +
(
zKt Et

[
Qt,t+1R

K
t+1

])κS] 1
κS is an aggregate index that



73

captures the average expected discounted return of bonds and loans.28 Using equation (3.2.6),
we can now express the aggregate amount of savings flowing into bonds of each maturity as

BH,ft =
(

1− λKt
)
· λHB,ft · St , ∀f = 1, . . . , F,

and the aggregate return on household savings,

RSt =
(

1− λKt−1

)
RHBt + λKt−1R

K
t . (3.2.7)

Observe that RSt depends on the rates of all available assets including (i) bonds of differ-
ent maturities and (ii) loans (private one-period bond) with endogenous weights determined
by relative returns of these assets. Finally, we can rewrite the budget constraint in equa-
tion (3.2.2) as

Ct +
St
Pt

=
RSt St−1

Pt
+

∫ 1

0

Wt(ν)Nt(ν)

Pt
dν +

Λt
Pt
. (3.2.8)

Note that the representative household problem now resembles that of a conventional New-
Keynesian model, which constitutes a remarkably tractable result given the asset variety and
market segmentation that we introduce.

Remarks on aggregation: The assumption about separate information sets on asset re-
turns (which we model as extreme type Fréchet deviations from the rational equilibrium),
effectively creates market segmentations (i) between bond and loan markets, and (ii) among
different maturities in the bond market, which is also empirically supported by the literature
(see D’Amico and King (2013)). Shape parameters (κB, κS) control the degree of market
segmentation across maturities and assets, respectively, and the conventional expectations
hypothesis framework without market segmentation is nested as an special case of our model
when κB, κS → ∞. Most notably, the nested CES structure of our asset markets can be
easily extended to accommodate a wide variety of assets and maturity structures. Also, the
shape parameters (κB, κS) summarize the demand elasticity of financial products to move-
ments in their expected returns (equations (3.2.3) and (3.2.6)). These elasticities can take
distinct values across asset classes, and they can be easily estimated from the data in order
to capture different degrees of market segmentation across assets and maturities.

28Observe that equation (3.2.6) implies that family preference for issuing loans increases when the return
on loans RKt+1 becomes relatively higher to that of the aggregate bond portfolio RHBt+1.
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Optimality Conditions

The solution to the household’s problem in equation (3.2.1) subject to the budget in equa-
tion (3.2.8) brings the following equilibrium conditions:(

Nt(ν)

N̄t

) 1
η

=

(
Ct

N̄t

)−1
Wt(ν)

Pt
, (3.2.9a)

1 = βEt
[
RSt+1Ct

Ct+1Πt+1

]
, (3.2.9b)

where Πt+1 ≡ Pt+1

Pt
is the gross inflation rate. Note that the Euler equation (3.2.9b) informs

us that the effective savings rate RSt+1 has now become the reference rate for the household’s
intertemporal consumption decisions.

3.2.3 Capital Producer

There is a representative firm that produces capital Kt and rents it to the intermediate good
producers at price PKt . Capital is produced by using the final good as an investment input,
depreciates at rate δ and there is one-period lag for investment It to be deployed as new
capital. The evolution of capital is thus given by

Kt = (1− δ)Kt−1 + It−1.

Solving the capital producer’s profit maximization problem with respect to investment It ,
we obtain the following first order condition.

1 = Et
[
Qt,t+1Πt+1

[
(1− δ) +

PKt+1

Pt+1

]]
.

3.2.4 Firms

There is a continuum ν ∈ [0, 1] of intermediate goods, each produced by a monopolist ν with
the following production function employing capital and labor:

Yt(ν) =

(
Kt(ν)

α

)α(
AtNt(ν)

1− α

)1−α

, (3.2.10)

where At is the aggregate production technology, wich grows at the exogenous gross rate
GAt . A representative and perfectly competitive firm aggregates intermediate products into
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a final good according to the familiar Dixit-Stiglitz aggregator,

Yt =

[∫ 1

0

Yt(ν)
ε−1
ε dν

] ε
ε−1

,

where ε > 1 is the elasticity of substitution between varieties. Household’s demand for
intermediate good ν is given by

Yt(ν) =

(
Pt(ν)

Pt

)−ε
Yt , (3.2.11)

where P (ν) is the price of intermediate ν. The aggregate price index is given by

Pt =

[∫ 1

0

Pt(ν)1−ε dν
] 1

1−ε

. (3.2.12)

Intermediate producers have sticky prices à la Calvo (1983), and reset prices at the
beginning of the quarter with probability 1 − θ. All price-changing firms reset to the same
optimal price within a given period, which we denote by P ∗t . This allows us to recursively
express equation (3.2.12) as

P 1−ε
t = (1− θ) (P ∗t )1−ε + θ (Pt−1)1−ε

. (3.2.13)

Firms are subject to a cash-in-advance constraint on rented capital, which they finance
via one-period household loans.29 Formally, firm ν constraint is

Lt(ν) ≥ PKt Kt(ν),

where Lt(ν) and Kt(ν) are the loans and capital rented at t by firm ν, respectively. Finally,
minimizing a firm ν’s production costs with respect to labor and capital, we obtain the
following demand for inputs.

Nt(ν) = (1− α)
Yt(ν)

At

Et [Qt,t+1R
K
t+1

] (PKt
Pt

)
Wt(ν)
PtAt

α , (3.2.14)

Kt(ν)

At
= α

Yt(ν)

At

Et [Qt,t+1R
K
t+1

] (PKt
Pt

)
Wt(ν)
PtAt

−(1−α)

. (3.2.15)

29Inada conditions ensure that capital utilization, and therefore loan demand, will stay positive throughout
the cycle.
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3.2.5 Bond Market

The equilibrium condition in the bond market can be written as

BH,ft + BG,ft + BCB,ft = 0, ∀f = 1, . . . , F, (3.2.16)

where BG,ft and BCB,ft are nominal bonds held by the government30 and central bank, respec-
tively. We assume that the government and the central bank are the only agents capable
of issuing risk-less claims, and therefore sustain a negative position in bond markets. For
central banks, a negative position can be rationalized, for example, as the outcome of an
interest-bearing policy on excess reserves.31 We define λG,ft and λCB,ft as the fractions of
nominal f -maturity bonds held by the government and central bank, respectively. We assume
that government’s bond portfolio shares {λG,ft } are stochastic and exogenously given, while
those of the central bank {λCB,ft } are determined in equilibrium as a function of the monetary
policy implemented.

3.2.6 Government

The budget constraint of the government is given by

BGt
Pt

=
RGt B

G
t−1

Pt
−
[
ζGt + ζF − ζTt

]
Yt , (3.2.17)

where RGt =
∑F−1

f=0 λ
G,f+1
t−1 Rft is the aggregate return on the government’s bond portfolio BGt−1

and ζGt , ζ
F and ζTt are government’s spending, production subsidy and taxation as a share of

GDP, respectively. We assume ζGt and ζTt follow exogenous processes given by

ζGt =
1

1 + aG exp
(
−uGt

) , ζTt =
1

1 + aT exp
(
−uTt

) ,
where uGt , u

T
t are AR(1) shocks.

3.2.7 Monetary Policy

The term-structure of interest rates, when paired with market segmentation, adds F new
degrees of freedom tied to the nominal yield of risk-free bonds. This implies that a deter-

30Since we assume the government issues bonds across different maturities, BG,ft ≤ 0 for all f = 1 ∼ F .
31For theoretical and empirical analyses of the excess reserve’s roles in conjunction with the federal fund

market and interbank credit market in general, see Frost (1971), Güntner (2015), Mattingly and Abou-Zaid
(2015), Primus (2017), and Ennis (2018) among others.
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minate nominal equilibrium requires the central bank’s monetary policy to be expanded with
F new equilibrium conditions pinning down the nominal yields along the maturity curve. For
simplicity, we assume that the central bank follows policy rules similar in spirit to the Taylor
or money-growth rules of traditional New-Keynesian models. The central bank can state its
policy goals as a function of bond yields, bond portfolio holdings, or a combination of both
at different maturities. We classify the policy options of the central bank into three main
categories:

1. The central bank sets a rule on the bond holding amount of each maturity f , {BCB,ft }.
Then, bond prices (and hence, yields) adjust endogenously.32

2. The central bank sets a Taylor rule on the yield of each f -maturity bond, {Y Df
t } (or

equivalently, on its price Qft ). Then, it adjusts its bond portfolio holdings {BCB,ft } to
meet the target yield.

3. A combination of the previous options at different maturities.

Case 1 resembles textbook money supply rules, whereas not money but long-term bond sup-
plies are controlled by the central bank.33 Case 2 captures a policy avenue often called
‘yield-curve control (YCC)’, which Japan employed in 2016.34 Case 3 is a mix of the previous
options, and includes widely employed rules like the traditional short-term rate target of con-
ventional monetary policy, as we shall see below. In this paper, we want to study the distinct
economic and welfare implications of conventional and unconventional policy interventions.
The specific implementation of the latter type of policies can potentially take the form of
any of the three cases considered. For simplicity, we assume that the fundamental trait that
characterizes unconventional interventions (e.g. QE and LSAP) is its aim to affect the asset
returns along the entire yield curve (as opposed to conventional policy focused on short-term
rates), and hence we adopt a YCC policy rule as the representative unconventional policy of
our framework. Below, we provide a formal characterization of the equations that describe
conventional and YCC policy rules.

32Basically, central bank chooses its bond portfolios across different maturities {λCB,ft }, as well as gross debt
position BCBt , the former of which (portfolio) is usually omitted in traditional New-Keynesian models without
an explicit term-structure.

33For example, Sims and Wu (2021) study the optimal response of central bank bond holdings (BCBt in our
model) to business cycle fluctuations.

34For example, on September 21, the Bank of Japan combined a new long-term interest rate target with its
existing short-term interest rate target to give the bank ‘yield-curve control’, with which the Bank of Japan set
its short-term policy target —a rate paid on bank reserves— at −0.1%, and capped its long-term target rate
—on 10-year government bonds— at approximately zero. For the United States, see Humpage (2016) for the
Fed’s yield-curve control policy during WW2, and possible benefits and costs of the policy.
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Conventional policy We approximate a conventional monetary policy intervention by assum-
ing that the central bank follows a Taylor rule on the short-term rate Y D1

t , while keeping a
passive position on its portfolio of long-term bonds. Formally:

R0
t+1 ≡ Y D1

t = max
{
Y D1∗

t , 1
}
, (3.2.18a)

Y D1∗
t = Y D

1
(

Πt

Π̄

)γπ (Yt
Ȳ

)γy
· exp

(
ε̃Y D

1

t

)
, (3.2.18b)

BCB,ft

AtN̄tPt
=
BCB,f

AN̄P
∀f = 2, . . . , F , (3.2.18c)

where Y D1∗
t follows a Taylor rule with inflation and output targets, and ε̃Y D

1

t is a monetary
policy shock. When Y D1∗

t is below one, monetary policy is constrained by the zero lower
bound (ZLB), as implied by equation (3.2.18a). Equation (3.2.18c) captures the passive
stance on real long-term portfolio bond holdings, adjusted by population and technical growth.

Yield-curve control (YCC) policy YCC policy is defined by the central bank targeting of
bond returns along the entire yield curve. Formally, we model it as the central bank following
an individual Taylor rule for each bond maturity as

Y DGP,1
t = max

{
Y D1∗

t , 1
}
, (3.2.19a)

Y D1∗
t = Y D

f
(

Πt

Π̄

)γ1
π
(
Yt

Ȳ

)γ1
y

· exp
(
ε̃Y D

1

t

)
, (3.2.19b)

Y DGP,f
t = Y D

GP,f
(
Y DSP,f

t

Y D
SP,f

)γfSP [(Πt

Π̄

)γfπ (Yt
Ȳ

)γfy
· exp

(
ε̃Y D

f

t

)]1−γfSP

, f ≥ 2, (3.2.19c)

where Y DGP,f
t is the YCC policy yield of an f -maturity bond, and Y DSP,f

t is the yield that
prevails in a counterfactual economy under the conventional monetary policy described in
equation (3.2.18a–c), and ε̃Y D

f

t is a monetary policy shock to the maturity f yield. Parameters
γfπ and γ

f
y capture the responsiveness of monetary policy to inflation and output, respectively,

and can take distinct values across maturities.
This policy constitutes a generalization of the traditional Taylor rule, and nests the con-

ventional monetary policy regime as a limiting case when γfSP = 1. As γfSP approaches zero,
the rule converges to a YCC policy that only targets inflation and output, and which proves
quite convenient to study the transition from a conventional policy rule towards an YCC
regime.35

35Conventional monetary policy assumes that the central bank passively targets long-term bond holding
amounts (see equation (3.2.18c)), while YCC policy directly controls the yields of long-term bonds, which



79

3.2.8 Market Clearing

Using the bond market equilibrium (equation (3.2.16)), we can express total transfers to the
household from firms, central bank, capital producer, and government as

Λt ≡ ΛFt + ΛCBt + ΛKt − PtTt = PtYt − PtGt −
∫ 1

0

Wt(ν)Nt(ν) dν + St − RSt St−1 − PtIt ,

where Tt and Gt are the government lump-sum taxes and spending, respectively. Combin-
ing equation (??) with the household’s budget constraint (equation (3.2.2)), we obtain the
following usual aggregate market clearing condition.

Ct + Gt + It = Yt .

Next, we present the steady state of the economy and present several comparative statics
exercises where we study the long-run equilibrium effects of distinct degrees of market seg-
mentation and maturity composition of the government’s and central bank’s bond portfolio.

3.3 Steady-State (Long-Run) Analysis

3.3.1 Steady-State Relations

Given the exogenous composition of the central bank’s portfolio
{
λCB,f

}F
f=1

, the bond market
equilibrium (equation (3.2.16)) at the steady state can be expressed as

λHB,f =
λG,f + λCB,f ζCB

1 + ζCB
.

where ζCB = BCB/BG is the steady state share of government bonds in the central bank’s
portfolio.36 Thus, the household’s bond portfolio shares across different maturities are de-
termined by the exogenous parameters {λG,f , λCB,f }Ff=1 and ζCB.

Rearranging the government’s budget constraint (equation (3.2.17)), we can obtain an
expression for the balanced growth path debt-to-GDP ratio as

BGt
PtYt

= −
(

1−
RG

Π · GA · GN

)−1 [
ζG + ζF − ζT

]
.

makes central bank’s long-term bond purchases endogenously determined by the levels of its controlled yields (
seeequation (3.2.19c)).

36Since BG < 0 and BCB > 0 in the steady state, we have ζCB < 0.
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Notice that both a higher return RG on the government’s bond portfolio and a higher deficit
ζG +ζF −ζT lead to a larger equilibrium debt-to-GDP ratio.37 In the former case, an increase
in RG leads to higher debt servicing costs, which in equilibrium are financed by additional
bond issuance.

After some manipulations, we can write the balanced growth path (normalized) output
Y
AN̄

as

Yt

AtN̄t
= ξY

[
(1− ζG)− ξC

(
1−

RG

Π · GA · GN

)−1(
λK

1− λK

)]− η
η+1 (

RK
)− α

1−α , (3.3.1)

as a function of the aggregate government’s rate, RG, the share of household’s savings that
flow into firms as loans, λK, and their associated interest rate, RK.38 For comparative statics,
we assume that ξY > 0 and ξC > 0, which is satisfied under a reasonable model calibration.
Am increase in RK affects output Yt

At N̄t
through two opposite channels. First, an increase in

RK results in a higher rental (loan) cost of capital from the firms’ perspectives, which reduces
aggregate capital and eventually, output.39 On the other hand, a higher RK raises the share
of savings flowing into firms, λK, as households reallocate funds out of the bond market and
towards the issuance of more loans to firms. The increased availability loans then leads to
higher aggregate capital and output levels.

We describe the full set of steady state equilibrium conditions in Appendix Steady-State
Derivations in Section 3.3.1. Next, we explain the model’s calibration and perform several
comparative static exercises that show the effects of the parameters on the equilibrium of
the economy.

3.3.2 Results

Calibration and Yield Curve

Using publicly available data on (i) treasury yields, (ii) federal reserve’s holdings of treasury
bonds, and (iii) U.S Treasury’s outstanding bonds40, we calibrate the parameters of our model
to match the average yield curve for 1990 to 2007 period. For that purpose, we develop a
version of the model with a hundred and twenty distinct maturities, F = 120, which accounts

37A primary deficit ζG + ζF − ζT > 0 and government bond issuance BG < 0 can only be jointly sustained
if RG < Π · GA · GN. This condition is satisfied under our model calibration.

38Coefficients ξY and ξC in equation (3.3.1) are given in Appendix Steady-State Derivations in Section 3.3.1.
39Since firms’ elasticity of substitution between capital and labor is 1, which is finite, replacement of capital

by labor is not enough to prevent the output level from dropping.
40https://fiscaldata.treasury.gov/datasets/monthly-statement-public-debt
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for long-term bonds of up to thirty years duration, with maturity increments measured at a
quarterly frequency.41

Shape parameters κB and κS capture the household’s elasticity of substitution between
bond maturities, and across capital loans and bonds, respectively. Pending a proper empirical
estimation of these parameters, we temporarily calibrate them at κB = 10 and κS = 1 to
reflect our priors on a relatively higher degree of substitution across bond maturities than
across asset classes.42 Figure C.3 illustrates the steady state flattening of the yield curve
as the elasticity of substitution across bond maturities increases, κB → ∞, and the model
converges towards the expectations hypothesis case.

Scale parameters {z f }Ff=1 are then calibrated to match the yield curve’s shape (relative
yields across maturities) while scale parameter zK is calibrated to match the spread between
the short-term rate R0 and the loan rate RK. The detailed calibration procedure for {z f }Ff=1

and zK is described in Appendix Calibrating {z f } and zK in the Steady State. Figure 3.1
shows the distribution of bond portfolio shares across maturities for each agent (household,
government, and central bank) and the associated yield curve. The values used to calibrate zK

and {z f }Ff=1 are reported in Table C.2 and Figure C.2, respectively. Note that the steady-state
preference for the short-term bond, z1, is especially large compared to that for longer-term
maturities, z f for f ≥ 2. This captures the empirical evidence on the historically low yield
of short-term bonds relative to longer-term maturities, and is consistent with theories of the
safety and/or liquidity premium.43

The remaining parameters of the model are frequently present in the macroeconomics
literature, and we calibrate them to commonly accepted values. Table C.1 summarizes the
parameter calibration of our model.

Next, we study the effect of different calibrations on the steady state equilibrium of the
economy.

Government’s Bond Supply and Central Bank’s Bond Demand

Steady state government bond issuance shares {λG,f }Ff=1 are exogenous parameters in our
model, which we calibrate to their observed average value between 1990 and 2007. We
begin our study of steady-state outcomes by considering the effects of alternative issuance
distributions across maturities. Figure 3.2 plots alternative government bond issuance shares
(left panel), and the resulting changes in the yield curve (right panel). The Figure illustrates
that our model generates a positive relationship between the yield Y Df of an f -maturity bond
and its issuance share λG,f , a result which is consistent with previous empirical findings of the

41In cases where data on a specific maturity is missing, we relied on interpolation methods in order to
generate a smooth yield curve with quarterly maturity increments.

42The qualitative results reported in the paper are robust to alternative calibrations of elasticities κB, κS.
43See for example, Krishnamurthy and Vissing-Jorgensen (2012) and Caballero and Farhi (2017).
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Figure 3.1: Steady-state bond portfolios of household, government, and central bank, and
yield curve

literature.44 The effect comes through the relative increase in the supply of f -maturity bonds,
which decreases its equilibrium price and thereby raises its yield. In addition, the change in
government’s issuance shares triggers an endogenous household portfolio reallocation that
affects the equilibrium returns across all bond maturities and loan markets, affecting the
aggregate borrowing costs of the government and the steady-state debt level.

Figure C.4 illustrates a change in the composition of the central bank’s bond portfolio, and
where we observe that central bank’s relative purchase of each maturity is negatively related
with the bond’s yield. This result follows from the central bank being an additional source
of demand in bond markets, and which, under market segmentation, generates asymmetrical
pressures on the price of bonds when the central bank’s demand composition shifts.45

Note that the strength of the yield curve response to changes in {λG,f , λCB,f }Ff=1 depends
on the degree of market segmentation across bond maturities, which is controlled by parame-

44For example, Greenwood and Vayanos (2014) documents that the supply of long-term bonds, relative to
that of short-term maturities, is positively correlated with the term spread.

45For example, Ray (2019) and Droste et al. (2021), based on a preferred-habitat environment developed by
Vayanos and Vila (2021), derive similar implications. Krishnamurthy and Vissing-Jorgensen (2011) empirically
find that QE policies (both QE1 and QE2) affect particular assets differently. QE2, which primarily focused on
treasury bonds, had a disproportionate impact on Treasuries and Agency bonds, relative to mortgage-backed
securities and corporate bonds. Also, D’Amico and King (2013) identify QE programs’ stock and flow effects
on treasury yields, and find supporting evidence for segmented markets and/or imperfect substitution within the
Treasury market.
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Figure 3.2: Government’s bond issuance portfolio and yield curve

ter κB. In the limiting case κB →∞, the expectation hypothesis is restored across maturities
and the government and central bank portfolio shares have no effect on the determination of
the yield curve.

Other Comparative Statics

Figures C.5 and C.6 document the effect of variations on the deficit ratio ζF + ζG − ζT . A
higher steady-state deficit ratio can be sustained by (i) a higher government bond issuance
(holding output constant), or (ii) a lower government borrowing rate, RG, or (iii) a lower
output level (holding bond issuance constant), or any appropriate combination of the previous.
We first consider (i) and observe that it is an impossible option to sustain in the long-run:
if the government issues more debt in order to finance a higher deficit (given a fixed output
level), it raises the government’s effective bond return RG (supply effect in Section 3.3.2),
which results in the issuance of more bonds to finance the additional interest costs, further
raising RG in an ad infinitum loop. Options (ii) and (iii) work together: a higher deficit ratio
brings down output, consumption, and capital, which lowers the deficit size (nominal) and
the government’s bond issuance, pushing down its bond return RG. Capital loan rate RK

responds mildly and the credit spread rK − rHB rises in response. The result that the debt-
to-GDP ratio BG

Y
decreases while the entire yield curve shifts down in response to a higher
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deficit ratio is in line with prior literature including Laubach (2009).46

Figures C.7 and C.8 describe comparative statics of the scale parameter zK, which con-
trols the household’s steady-state preference for capital loans as savings vehicle (see equa-
tion (3.2.6)). A higher zK increases the household’s willingness to issue loans to firms rather
than invest in the bond market, which raise steady-state λK and capital, output, and consump-
tion in response. As households increase their loan issuance, the average marginal propensity
to consume (MPC) drops and the loan rate RK falls due to the increased supply of funds.
Then, the household’s endogenous portfolio reallocation towards bonds shifts the yield curve
downwards, resulting in a widening of the credit spread. This result is specially interesting
and highlights the importance of general equilibrium effects and the endogenous portfolio re-
allocation. Given the initial preference shock towards capital loans, we would have otherwise
expected a narrowing of the credit spread. As RG falls, the government debt-to-GDP ratio
falls too.

Figures C.9 and C.10 describe comparative statics of the shape parameter κS that controls
the degree of market segmentation between bonds and capital and doubles as the elasticity
of loan supply (see equation (3.2.6)). A higher κS reduces λK, the household’s loan share
out of total savings. This in turn, raises the loan rate RK, and reduces capital (as firms
face a higher marginal cost), output, and consumption while raising the average marginal
propensity to consume (MPC). The credit spreads increase, with a higher RK bringing up the
government’s effective bond return RG and the entire yield curve, which results in a higher
debt-to-GDP ratio.

3.4 Short-Run Analysis

3.4.1 Log-linearization

In this section, we present the solution to a first-order log-approximation of our model. We
use lower-case letters to denote the logarithm of normalized variables,47 while hats correspond
to deviations from the respective steady-state. We present the most interesting equilibrium

46Laubach (2009) empirically found that a 1% point increase in the projected debt-to-GDP ratio is estimated
to raise long-term interest rates by roughly 3-4 basis points.

47We normalize non-stationary variables in order to account for trend population and technological growth,
for example

kt ≡ log

(
Kt

At−1N̄t−1

)
, yt ≡ log

(
Yt

AtN̄t

)
, ct ≡ log

(
Ct

AtN̄t

)
, nt ≡ log

(
Nt

N̄t

)
, pKt ≡ log

(
PKt
Pt

)
.

where we divide Kt by At−1N̄t−1 because it is a variable determined at quarter t − 1.



85

equations in this section, and relegate the detailed derivation of the model’s solution to
Derivation and Proofs for 3.

Linearizing the Euler-equation (equation (3.2.9b)) yields the usual dynamic IS equation

ĉt = Et
[
ĉt+1 −

(
r̂St+1 − π̂t+1

)]
, (3.4.1)

where r̂St is the household’s effective savings rate that can be derived from equation (3.2.7)
as

r̂St =
λK
(
RK − RHB

)
RS

λ̂Kt−1 +
(1− λK)RHB

RS
r̂HBt +

λKRK

RS
r̂Kt .

Deviations in r̂St depend on the household’s aggregate bond portfolio return r̂HBt and the loan
rate r̂Kt , both weighted by their relative contribution to the aggregate savings rate. The third
term, λ̂Kt , captures movements in r̂St arising from a portfolio reallocation between bonds and
loans, and is weighted by the credit spread between both asset classes. A linearization of
equation (3.2.5) bring the following expression for the aggregate bond portfolio return,

r̂HBt =

F∑
f=1

λHB,fRf−1

RHB

[
λ̂HB,ft−1 − (f − 1) · ŷ d f−1

t + f · ŷ d ft−1

]
,

where r̂HBt is affected by movements of the current and past yields {ŷ d ft−1, ŷd
f−1

t }Ff=1, which
capture the effects of price revaluation on f -maturity bond returns. The term λ̂HB,ft−1 captures
the effect of portfolio rebalancing across maturities on the aggregate bond return.

Portfolio reallocation across asset classes or maturities is an important determinant of the
effective savings rate, rSt , as seen above. Linearizing equation (3.2.6), we obtain an intuitive
expression for the share of savings λKt allocated to the capital loan market as

λ̂Kt = κS
(

1− λK
) (
ẑKt + Et

[
r̂Kt+1 − r̂HBt+1

])
, (3.4.2)

where λ̂Kt is positively related to the household’s preference for firm loans, ẑKt , and to the
credit spread between the loan rate and the aggregate return on the bond portfolio. Note
that more segmented markets (lower κS) will feature a milder portfolio relocation in response
to movements in the credit spread. Equation equation (3.4.2) also highlights a new monetary
policy transmission channel which is separate form the traditional intertemporal substitution
channel (equation (3.4.1)). By indirectly manipulating the credit spread of the economy
through the aggregate bond portfolio return r̂HBt+1, central banks can shift the flow of savings
towards capital loans, which relaxes the firm’s cash-in-advance constraint on capital utiliza-
tion and increases aggregate employment, output and consumption.
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We provide a complete list of the linearized equilibrium conditions of our model in Ap-
pendix Summary of Conventional Policy Linearized Equations (conventional policy case) and
Appendix Summary of YCC Policy Linearized Equations (YCC policy case).

3.4.2 Welfare

Following Coibion et al. (2012), in Welfare we provide a detailed derivation of the second-
order approximation to the household’s welfare loss around the efficient steady state with
positive trend inflation (Π > 1). We summarize our results in the following Proposition:

Proposition 11. A 2nd -order approximation to the expected per-period welfare loss of the
household is given by

EUt − ŪF = Ω0 + ΩnVar(n̂t) + ΩπVar(π̂t) + t.i.p + h.o.t,

where Ω0, Ωn, and Ωπ are coefficients defined in equation (C.3.40), equation (C.3.41), and
equation (C.3.42), and ŪF is the efficient (flexible-price with transfers) steady-state utility
of the household.

3.4.3 Results

Impulse-Response without the ZLB

First, we present impulse-responses to various shocks when the ZLB does not bind. We
consider: z1

t and zKt (household preferences for bond and loan investments, respectively), εAt
(technology growth shock), εY D

1

t (short-term rate policy shock), and εTt (fiscal shock).

Bond preference shock, z1
t : Figure 3.3 presents an impulse-response to a z1

t shock, which
drives the household’s portfolio demand for the shortest maturity bond. More broadly, a
positive z1

t shock can be interpreted as a flight-to-safety (or liquidity) shock, as the shortest-
maturity bond (federal funds market) usually features the highest degrees of safety and liq-
uidity. The blue and red lines depict the responses under conventional and YCC monetary
policy rules, respectively.

With conventional policy, a hike in z1
t increases the household’s portfolio demand for short

maturity bonds and reduces short rates, which eventually leads the returns on other maturities
and capital loans, as well wage, to fall as the household re-optimizes its portfolio choices and
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t shock
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firms substitute between capital and labor.48 Output falls as labor supply decreases together
with wages, which results in a lower inflation rate. Monetary policy reaction is stabilizing
and boosts aggregate demand (from consumption and investment), but is not sufficient to
prevent a fall in output, which decreases by 4% in response to a one standard-deviation shock
to z1

t .
YCC policy is very effective at insulating the economy from a z1

t shock. The reason is
simple: a z1

t shock modifies the household’s portfolio preferences and asymmetrically affects
the returns and household demand for other assets due to market segmentation. Under YCC
policy, the central bank can easily accommodate fluctuations in household’s bond demand by
modifying the composition of its own portfolio, which leaves the bond yield curve virtually
unchanged. The central bank cannot directly affect the supply of loans to firms, and hence a
relatively stronger preference for short-term bonds leads to an increase in capital loan rates.
Nonetheless, the effect is quantitatively small and output, wages and inflation remain virtually
unchanged.

Fiscal shock, εTt : Figure 3.4 presents an impulse-response to a temporary shock to gov-
ernment tax revenues, εTt . Notice that in traditional models, such shock has no impact on
the economy due to Ricardian equivalence between taxation and bond issuance. With the
inclusion of market segmentation, the relative supply of assets has real economic implications
in our model, and temporary movements in taxation break Ricardian equivalence by altering
the relative government’s bond issuance vis-à-vis existing capital loan supply.

Under conventional policy, a positive εTt shock results in lower issuance of risk-less govern-
ment bonds, which places downward pressure on their returns. This leads to a decrease in the
return on capital loans, wages and inflation as a result of the household’s endogenous port-
folio reshuffling and firms’ substitution across inputs. Monetary policy response to inflation
further decreases short-term rates, which boosts aggregate demand and raises output.49

A YCC rule achieves similar results to conventional policy, and by lowering rates along the
entire yield curve, it reduces the fluctuations in the short-term rate necessary to achieve a
reduction of the effective savings rate of households.

Other shocks: Figure C.11 depicts an impulse response to a capital loan preference shock,
zKt : a positive jump in zKt induces the household to issue more loans to intermediate firms,
raising aggregate capital and pushing down its return. Output and inflation also increase,

48The representative household’s endogenous portfolio choice (as a function of relative rates) is crucial in
generating this phenomenon. For example, if the household’s portfolio weight is fixed as in Ray (2019), the
loan rate would rise in response to a positive z1 shock that reduces the household’s loan issuance supply.

49Under this particular calibration, monetary policy is strong enough to actually offset the negative effects
of a shortage in bonds supply on output.
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and monetary policy tightens in response. YCC policy is more effective in terms of economic
stabilization, but displays a similar response pattern to conventional interventions.

Figure C.12 presents the impulse response to a technology growth shock, εAt : a positive
jump in GAt generates similar effects to those found by prior literature,50 where output rises
while inflation falls. Higher productivity brings up the return on capital, and reduces the
capital stock in the short-run due to the firms becoming more efficient in the use of inputs.
In the long-run, the capital stock returns to the steady state as firms adjust their prices
and consumption demand expands. With YCC policy, output (which is normalized by trend
technology) falls on impact: as inflation falls, the bond yield curve shifts downward and capital
returns and wage decrease compared to conventional policy, which leads the household to
reduce its labor supply. However, actual output (not normalized by technology) increases in
response to a GAt as one would expect.

Figure C.13 presents the impulse response to a monetary policy shock, εY D
1

t : a contrac-
tionary policy shock brings down consumption demand, which in turn reduces firms’ capital
and labor demand. Both output, inflation, capital returns and wages fall in response. On
the other hand, YCC policy almost perfectly insulates the economy from the monetary policy
shock. Following a shock, the central bank shifts up the entire yield curve, and prevents input
prices (capital return and wage), inflation and output from falling.

Impulse-Response at the ZLB

Now, we consider the impulse-response to the previous shocks when the short-term rate is
constrained at the ZLB. We bring the economy to the ZLB by increasing the size of the
shocks appropriately until it binds. For graphical representation purposes, we consider very
large shocks, which might be very unlikely to happen otherwise.

Bond preference shock, z1
t : Figure 3.5 presents the impulse-response to a preference shock

for the short-maturity bond, z1
t . Blue lines depict the response under conventional monetary

policy, and red lines represent the response under the YCC regime. The impulse-responses
are similar to those of Figure 3.3 (the case without ZLB), except for the temporary ZLB
constraint observed a few quarters.

YCC regime achieves almost perfect stabilization. However, note that it generates a
longer ZLB duration than conventional policy: under when the economy enters a ZLB episode
under YCC policy, the central bank increases its purchase of long-term bonds, thus reducing
its yields. This action imposes additional downward pressure on short yields and capital

50For the effects of technology shock in New-Keynesian models, see Ireland (2004).
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loan returns due to the household’s endogenous portfolio reallocation,51 which prolongs the
duration of the ZLB. Note that the YCC regime also insulates the economy more effectively
from adverse shocks, and in theory, it can lift the economy off the ZLB sooner. Nonetheless,
under our model calibration, this effect is weaker compared to the endogenous portfolio effect
described above.

Note that, while the YCC regime helps to insulate the economy from various shocks
(which is good from a welfare perspective, as we shall see in next section), it also generates
prolonged ZLB episodes, thus making the economy more reliant on YCC policies as they are
the most effective at the ZLB. This generates a reinforcing feedback loop in which central
banks become ‘addicted’ to the use of unconventional monetary policy tools.52

Capital loan preference shock, zKt : Figure C.14 represents an impulse-response to a pref-
erence shock for capital loans, zKt . A negative shock to zK induces households to issue less
loans to intermediate firms and invest more in the bond markets. Bond rates fall and the
short-term rate becomes constrained by the ZLB. Output, capital, inflation, and capital loan
returns jump down in response. In contrast, YCC policy is very effective at stabilizing the
economy, but at the expense of longer ZLB spell.

Fiscal shock, εTt : Figure 3.6 presents an impulse-response to a positive εTt shock that
raises government’s tax revenues. In contrast to Figure 3.4 (non-ZLB case), the economy
experiences a recession with conventional policy: with a high enough tax increase shock,
the government significantly reduces its bond issuance, dragging the economy into a ZLB
recession. Output, capital, inflation, and capital loan returns all drop. This experiment
emphasizes stabilizing role of the supply of safe bond at the ZLB, as pointed out by prior
literature as Caballero and Farhi (2017) and Caballero et al. (2021) in the global economy
context. With YCC policy, the central bank shifts down the entire yield curve and lowers the
household’s effective savings rate. This action boosts aggregate demand, and thus output
and capital stock. As a result, inflation and capital returns fall less than in the conventional
policy case. Note also that in this case, the YCC regime generates a longer ZLB episode
than conventional policy due to the same portfolio re-balancing effects previously explained.

51For example, as capital loan return falls, it also reduces wages through the firms’ substitution across inputs,
which in turn reduces inflation falls and increases the likelihood of a binding ZLB.

52Karadi and Nakov (2021) model an environment where quantitative easing (QE) policies are effective in
fighting against financial disruptions in the banking sector, but at the cost of encouraging banks’ ‘addiction’ to
QE. Our framework emphasizes a similar phenomenon, in which the YCC policy generates longer ZLB episodes,
which makes the economy more dependent on YCC policy’s ammunition power in insulating the economy from
the adverse effects of shocks.
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Policy Comparison

In this section, we compare alternative monetary policies using the welfare criterion character-
ized in Proposition 11. We consider three distinct regimes: (i) conventional policy (equations
(3.2.18a–c)), (ii) yield-curve control (YCC) policy (equations (3.2.19a–c)), and (iii) mixed
policy, where the central bank implements an YCC rule when the economy is trapped at
the ZLB, and follows a conventional short-term rate policy otherwise.53 We simulate the
alternative policy regimes following the method described by Carreras et al. (2016) to ac-
commodate an occasionally binding ZLB constraint. Table 3.1 reports summary statistics
from this exercise.

Table 3.1 findings can be summarized as: (i) compared with conventional policy, YCC
and mixed regimes improve welfare by around 0.4% per-quarter steady state consumption,
(ii) YCC and mixed policy prolong ZLB episodes, with higher ZLB frequency and longer ZLB
duration than conventional policy, and (iii) YCC and mixed policy regimes yield fairly similar
results in terms of welfare ad ZLB behavior.

The YCC regime, by easing long-term yields outside the ZLB, imposes additional down-
ward pressure on short-term rates compared to mixed policy, which accounts for the slightly
higher ZLB frequency. Nonetheless, the similarity between YCC and mixed regimes suggests
that the fundamental difference with respect to conventional policy does not lie on the cre-
ation of new ZLB episodes, but rather on the extension of ZLB spells that would occur under
either regimes. Previous literature has noted the non-linear increasing welfare costs of ZLB
duration under conventional policy (see Carreras et al. (2016)). This result does not extend
to unconventional policies that manipulate the entire yield curve as, unlike conventional policy,
they retain the capacity to influence the effective savings rate of households and successfully
stimulate the economy. Rather, those regimes present an interesting outcome in the form
of ‘addiction’ to unconventional policies: by endogenously extending the duration of ZLB
episodes, unconventional policies make themselves even more necessary as the only effective
monetary policy tools at the ZLB.

Finally, our framework does not include any welfare costs associated to the size or compo-
sition of the central bank’s balance sheet, which has been a topic of contentious public debate
as a result of the ballooning Fed and ECB balance sheets following the Great Financial Crisis.
Incorporating various economic and political costs of the central bank’s direct manipulation of
the yield curve might have interesting policy implications, which we leave to future research.54

53For simplicity, we assume that upon ZLB exit, the central bank adjusts its holdings of long-term bonds to
their steady-state levels. For a study of optimal exit strategy from QE policies, see Karadi and Nakov (2021).

54For example, Karadi and Nakov (2021) introduced a small quadratic efficiency cost to QE as a reduced-
form proxy for un-modeled distortions and political costs of maintaining a positive central bank balance sheet.



95

Conventional Policy Yield-Curve Control Mixed Policy
Mean ZLB duration 1.6511 quarters 6.3355 quarters 7.9672 quarters
Median ZLB duration 1 quarters 1 quarters 1 quarters

ZLB frequency 8.2556% 21.8222% 21.6%

Welfare −1.3503% −0.90471% −0.90302%

Table 3.1: Policy comparisons. We define mean and median ZLB duration, respectively, as
the sample mean and median duration, measured in quarters, of a ZLB episode. A ZLB
episode is defined as continuous and uninterrupted period, measured from start to end date,
of a binding ZLB constraint. ZLB frequency is measured as the average number of periods
within our sample with an actively binding ZLB constraint. Welfare is defined as the second
order welfare loss described in Proposition 11, and measured in percents per-quarter of steady
state consumption.

3.5 Conclusion

This paper develops a New-Keynesian model that incorporates the term-structure of financial
markets and an active role for government and central bank’s balance sheet size and ma-
turity structure. We show that market segmentation across assets and maturities and the
household’s endogenous portfolio reallocation are two necessary elements for understanding
of the effects of unconventional monetary interventions. For that purpose, we show how
standard techniques from the international trade literature (see Eaton and Kortum (2002))
can be employed in the macroeconomics literature to parsimoniously accommodate market
segmentation arising from differences in asset return expectations. Our economy, even after
log-linearization, features an equilibrium term-structure that deviates from the so-called ex-
pectation hypothesis, and which allows unconventional monetary policies such as LSAPs to
affect the yield curve and thereby, have some stabilizing powers.

We find that government’s issuance and the central bank’s purchase of different bond ma-
turities act as two major determinants of the yield curve level and slope, and government’s
issuance of risk-less bonds stimulates the economy when conventional monetary policy is
constrained by the ZLB, as documented by previous works on the so-called ‘safe-asset short-
age problems’. We also study different policy regimes, and reveal that yield-curve control
(YCC) interventions where the central bank actively manipulates the entire yield curve are
more stabilizing than conventional policy both in normal times and during ZLB episodes.
However, our YCC policy poses interesting side-effects, as it raises frequency and duration
of ZLB episodes. This result comes from the portfolio balancing channel: the central bank’s
active easing of long-term rates imposes additional downward pressure on short-term rates by
inducing households to endogenously rebalance their portfolios. Therefore, unconventional
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policies are addictive: central banks resort to them as the most powerful tools at the ZLB,
but in doing so perpetuate the ZLB conditions that render conventional policy ineffective.

Now that the balance sheet of central banks dramatically expanded in most advanced
economies as a result of the unconventional policies that were adopted following the 2007
Great Financial crisis, we believe that our framework will be useful to future research looking
into the political economy implications and risks to the taxpayer that originate from an
expanded central bank’s balance sheet.
In addition, we aim to extend our framework to the international macro setting and revisit
global imbalance issues (e.g., Caballero et al. (2008, 2021)) and the global monetary cycles
(e.g., Miranda-Agrippino and Rey (2021)) with endogenous fluctuations in the term-structure
of interest rates.
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Appendix A

Derivations and Proofs for Chapter 1

Derivation of equation (1.1.4): From the definition of (nominal) state-price density ξNt =

e−ρt 1
Ct

1
pt
, we get:

dξNt
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= −ρdt −
dCt
Ct
−
dpt
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. (A.0.1)

Since we have a perfectly rigid price (pt = p̄ for ∀t), the above expression becomes:
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Plugging equation (B.3.2) into equation (C.1.2), we get the following equation (1.1.4).

Et
(dCt
Ct

)
= (it − ρ)dt + Vart

(
dCt
Ct

)
. (A.0.4)

Derivation of equation (1.1.8): From equation (1.1.7), we obtain

d ln Yt =

(
it − ρ+

1

2
(σt + σst )2

)
dt + (σt + σst )dZt . (A.0.5)

From equation (1.1.5), we obtain

d ln Y nt =

(
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2

)
dt + σtdZt . (A.0.6)

Therefore, by subtracting equation (B.3.6) from equation (B.3.5), we obtain
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dt + σstdZt , (A.0.7)



109

which is equation (1.1.8).

Proof of Proposition 1. From equation (1.2.5), {σst} process can be written as

dσst = −(φy)2 (σst )2

2(σt + σst )3
dt − φy

σst
σt + σst

dZt . (A.0.8)

Using Ito’s lemma, we get the process for (σ + σst )2 which is a martingale, as

d(σt + σst )2 = 2(σt + σst )dσst + (dσst )2

= 2(σt + σst )
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−

(φy)2(σst )2
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dZt

)
+ (φy)2 (σst )2

(σt + σst )2
dt

= −2φy(σst )dZt .
(A.0.9)

Therefore, we have E0((σ + σst )2) = (σ + σs0)2. By Doob’s martingale convergence theorem
(as (σ + σst )2 ≥ 0,∀t), we know σst

a.s→ σs∞ = 0 since:

dσst︸︷︷︸
a.s→0

= −
(φy)2(σst )2

2(σt + σst )3︸ ︷︷ ︸
a.s→0

dt − φy
σst

σt + σst︸ ︷︷ ︸
a.s→0

dZt . (A.0.10)

Thus, equation (B.3.10) proves σst
a.s→ σs∞ = 0. From equation (1.2.4) σst

a.s→ σq∞ = 0 leads to
Ŷt

a.s→ 0. Finally, we must have E0(maxt(σ
s
t )2) =∞, since otherwise the uniform integrability

implies E0((σ+σs∞)2) = (σ+σs0)2, which is a contradiction to our earlier result σst
a.s→ 0 since

σs∞ = 0 and σs0 > 0 by assumption in Proposition 1.



110

Appendix B

Appendices to Chapter 2

B.1 Suggestive Evidence

Stock market volatility is commonly viewed in the literature as a proxy of financial and eco-
nomic uncertainty, which Bloom (2009) and later Gilchrist and Zakrajšek (2012), Bachmann
et al. (2013), Jurado et al. (2015), Caldara et al. (2016), Baker et al. (2020), Coibion et al.
(2021) further studied as a driving force behind business cycles fluctuations. In this Section,
we will evaluate these claims and present interesting empirical results. Figure B.3 provides
the first piece of supportive evidence in that direction. Panel B.3a depicts several variables
commonly used in the literature to measure financial uncertainty. The correlation between
series is remarkably high and they all display positive spikes at the beginning and/or initial
months following an NBER-dated recession, which is consistent with the evidence that many
of these episodes were financial in nature.1 Panel B.3b plots Ludvigson et al. (2015) (hence-
forth, LMN) financial and real (i.e. non-financial) uncertainty series. These variables are
positively correlated and display a similar propensity to increase around recessions, though a
different type of crisis (e.g. financial or not) is correlated with a different type of uncertainty
playing the dominant role. For example, the massive spike in real vis-à-vis financial uncer-
tainty following the recent Covid-19 recession, which initially was a health crisis that spilled
into the real economy, can be observed in Panel B.3b.

The patterns displayed in Figure B.3 do not yet constitute a proof of the importance
of financial uncertainty as a driver of the business cycle, as we still should worry about
the possibility of reverse causation running from unfavorable economic conditions towards
uncertainty. We tackle this issue by proposing a simple Vector Autoregression (VAR) with
the structural identification strategy based on the timing of macroeconomic shocks similar to
Bloom (2009). Equation (B.1.1) presents the variables considered and their ordering, with
non-financial series first and financial variables last.2

1See Reinhart and Rogoff (2009) and Romer and Romer (2017) for classification of the past recessions.
Their analysis showed many recessions had roots in financial markets.

2The ordering is also used by Ludvigson et al. (2015), which, using identification strategy based on event
constraints, find that the uncertainty of financial markets tends to be an exogenous source of business cycle
fluctuations, while real uncertainty tends to be an endogenous response to the business cycle fluctuations.
We also have considered alternative specifications and orderings that produced qualitatively similar results (not
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VAR-11 order:



log (Industrial Production)

log (Employment)
log (Real Consumption)

log (CPI)
log (Wages)

Hours
Real Uncertainty (LMN)

Fed Funds Rate
log (M2)

log (S&P-500 Index)

Financial Uncertainty (LMN)


(B.1.1)

Both LMN real and financial uncertainty measures are included to differentiate the effects
of financial volatility shocks from the effects from real uncertainty. For similar reasons, we
include the S&P-500 index in our VAR to empirically distinguish between shocks affecting the
level of financial markets and shocks affecting their volatility. In order to ameliorate possible
concerns about the validity of the structural identification strategy, we estimate our VAR
using monthly data, where the identification assumptions are more likely to hold. Figure B.1
presents the impulse responses to the orthogonalized financial uncertainty shock. Panel B.1a
plots the response of industrial production, which falls by up to 2.5% and displays moderate
persistence following a one standard deviation shock to financial uncertainty. Panel B.1b plots
the response of the S&P-500 Index, which drops up to 12% within the first four months before
gradually recovering. Together, both pictures imply that an increase of financial uncertainty
tends to depress both industrial activity and financial markets.

Figure B.1 also features alternative estimates using common financial uncertainty proxies
such as Bloom (2009) stock market volatility index and 10-years premium on Baa-rated cor-
porate bonds. The responses are generally more muted, and take the opposite sign in the case
of the S&P Index. These results can be explained by the fact that standard proxies contain
information unrelated to financial uncertainty that distorts our estimates (see Jurado et al.
(2015) for a discussion), and therefore we choose LMN as our preferred financial uncertainty
measure. In Appendix B.2, we report additional impulse response estimates. Especially, the
Figure B.5 shows that monetary authorities respond with accommodating interest rate move-
ments to financial uncertainty shocks, while real uncertainty has no statistically significant
effect on either interest rates or stock market fluctuations. We will further discuss optimal
monetary policy response to financial volatility shocks in Section 2.3.

Finally, we can further explore the contribution of financial uncertainty to business cy-
cles fluctuations by looking at Table B.1 in Appendix B.2, which reports the Forecast Error
Variance Decomposition (FEVD) of Industrial Production and the S&P-500 Index. Financial
uncertainty shocks explain close to 5% of the fluctuations in both series, while real uncertainty
explains an additional 2-4% of movements in industrial activity in the medium run. Figure B.2
provides a more graphical illustration of these results by plotting the historical decomposition

reported, provided upon request).
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of the series. We observe the contribution of financial uncertainty rivals that of shocks to
the level of financial variables captured by the S&P-500 shock, and is especially important
in driving industrial production boom-bust patterns during and in the preceding months of
recessionary episodes, as it can be seen during the Global Financial Crisis (2007).

In this Appendix B.1, we have revisited the empirical evidence on financial market volatility
and shown that it acts as a major driving force of the business cycle.
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B.2 Additional Figures and Tables

(a) Response: Industrial Production (b) Response: S&P-500 Index

Figure B.1: Impulse Response Functions (IRFs), selected series. Figures B.1a and B.1b
display the response to a one standard deviation financial uncertainty shock of monthly (log)
Industrial Production and (log) S&P-500 Index series, respectively, using a VAR-11 with
equation (B.1.1) variable composition and ordering. Shaded area indicates 95% confidence
interval around preferred financial uncertainty measure computed using standard bootstrap
techniques.
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(a) Industrial Production
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(b) S&P-500 Index

Figure B.2: Historical Decomposition, selected series. Figures B.2a and B.2b display histor-
ical decomposition of monthly Industrial Production and S&P-500 Index series, respectively,
based on the VAR-11 with equation (B.1.1) variable composition and ordering. Shaded areas
indicate NBER dated recessions (peak trough the through). Variables of interest are de-
trended by subtracting the contribution of initial conditions and constant terms after series
decomposition. Columns report a contribution of each shock to the fluctuations around trend
of the variable considered.
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(a) Financial Uncertainty series
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Figure B.3: Uncertainty series. Figure B.3a displays common measures of financial uncer-
tainty. Figure B.3b displays Ludvigson et al. (2015) (henceforth, LMN) measures of financial
and real economic uncertainty. Shaded areas indicate NBER dated recessions (peak trough
the through). LMN financial and real economic uncertainty series are constructed as the av-
erage volatility of the residuals from predictive regressions on financial and real economic vari-
ables, respectively (See Ludvigson et al. (2015) for the series construction). Bloom (2009)’s
stock market volatility variable is constructed using VXO data from 1987 onward and the
monthly volatility of the S&P 500 index normalized to the same mean and variance in the
overlapping interval for the 1960-1987 period (See Bloom (2009) for the series construction).
The bond risk-premia series is the Moody’s seasoned Baa corporate bond yield relative to the
yield on a 10-year treasury bond at constant maturity. For graphical comparison purposes,
the depicted series have a normalized zero mean and one standard deviation.
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(i) Industrial Production

Horizon Fin. Uncert. Real Uncert. Stock Vol. (Bloom) Baa 10-Yr Premia

h=1 0 0.30 0.21 0.12
h=6 1.27 3.37 2.98 1.36
h=12 4.28 4.38 3.16 1.94
h=36 3.24 1.67 1.98 0.64

(ii) S&P-500 Index

Horizon Fin. Uncert. Real Uncert. Stock Vol. (Bloom) Baa 10-Yr Premia

h=1 0.11 0.08 0.39 0.06
h=6 3.30 0.25 3.26 0.62
h=12 4.77 0.54 10.03 2.16
h=36 6.50 0.91 12.16 2.40

(iii) Fed Funds Rate

Horizon Fin. Uncert. Real Uncert. Stock Vol. (Bloom) Baa 10-Yr Premia

h=1 0.01 0.98 0 0.08
h=6 0.42 0.84 3.11 1.66
h=12 1.47 0.91 4.69 2.30
h=36 2.81 2.05 5.02 3.17

Table B.1: Forecast Error Variance Decomposition (FEVD). The table presents the variance
contribution (in percentage) of financial and real uncertainty shocks to selected series at
different time horizons (in months). The FEVD is constructed using a VAR-11 with equa-
tion (B.1.1) variable composition and ordering. The first two columns report the contribution
of LMN financial and real uncertainty shocks, respectively. The last two columns report al-
ternative VAR specifications where the preferred LMN financial uncertainty measure (column
one) is replaced by common proxies employed in the literature, either Bloom (2009) stock
market volatility measure or the Baa 10-years corporate bond premia, respectively.
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(a) Response: Industrial Production (b) Response: S&P-500 Index

Figure B.4: Impulse Response Functions (IRFs), selected series. Figures B.4a and B.4b
display the response to one standard deviation real uncertainty shock by monthly (log) In-
dustrial Production and (log) S&P-500 Index series, respectively, using a VAR-11 with equa-
tion (B.1.1) variable composition and ordering. Shaded area indicates 95% confidence in-
terval around preferred financial uncertainty measure computed using standard bootstrap
techniques.
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(a) Shock: Financial Uncertainty (b) Shock: Real Uncertainty

Figure B.5: Impulse Response Functions (IRFs), Fed Funds Rate. This Figure displays the
response to a one standard deviation uncertainty (financial or real) shock by monthly Fed
Funds Rate series, using a VAR-11 with equation (B.1.1) variable composition and ordering.
Panel B.5a plots the response to a financial uncertainty shock, and Panel B.5b to a real uncer-
tainty shock. Shaded area indicates 95% confidence interval around preferred financial/real
uncertainty measure computed using standard bootstrap techniques. Additional lines display
alternative impulse responses obtained by substituting preferred LMN financial uncertainty
measure with common proxies employed in the literature.
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Parameter Value Description

ϕ 0.2 Relative Risk Aversion
χ0 0.25 Inverse Frisch labor supply elasticity
ρ 0.020 Subjective time discount factor
σ 0.0090 TFP volatility
g 0.0083 TFP growth rate
α 0.4 1 − Labor income share
ε 7 Elasticity of substitution intermediate goods
δ 0.45 Calvo price resetting probability
φπ 2.50 Policy rule inflation response
φy 0.11 Policy rule output gap response
φrp 0 Policy rule risk premium response
π̄ 0 Steady state trend inflation target

Table B.2: The table presents the baseline parameter calibration used in Sections 2.3 and
2.4.3 of the paper.
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B.3 Derivations and Proofs for Chapter 2

B.3.1 Section 1.1

Derivation of equation (1.1.4): From the definition of (nominal) state-price density ξNt =

e−ρt 1
Ct

1
pt
, we get:

dξNt
ξNt

= −ρdt −
dCt
Ct
−
dpt
pt

+
(dCt
Ct

)2

+
(dpt
pt

)2

+
dCt
Ct

dpt
pt
. (B.3.1)

Since we have a perfectly rigid price (pt = p̄ for ∀t), the above expression becomes:

dξNt
ξNt

= −ρdt −
dCt
Ct

+

(
dCt
Ct

)2

(B.3.2)

= −ρdt −
dCt
Ct

+ Vart

(
dCt
Ct

)
. (B.3.3)

Plugging equation (B.3.2) into equation (C.1.2), we get the following equation (1.1.4).

Et
(dCt
Ct

)
= (it − ρ)dt + Vart

(
dCt
Ct

)
. (B.3.4)

Derivation of equation (1.1.8): From equation (1.1.7), we obtain

d ln Yt =

(
it − ρ+

1

2
(σt + σst )2

)
dt + (σt + σst )dZt . (B.3.5)

From equation (1.1.5), we obtain

d ln Y nt =

(
r nt − ρ+

1

2
(σt)

2

)
dt + σtdZt . (B.3.6)

Therefore, by subtracting equation (B.3.6) from equation (B.3.5), we obtain

dŶt =

(
it −

(
r nt −

1

2
(σt + σst )2 +

1

2
(σt)

2

))
dt + σstdZt , (B.3.7)

which is equation (1.1.8).

Proof of Proposition 1. From equation (1.2.5), {σst} process can be written as

dσst = −(φy)2 (σst )2

2(σt + σst )3
dt − φy

σst
σt + σst

dZt . (B.3.8)

Using Ito’s lemma, we get the process for (σ + σst )2 which is a martingale, as



120

d(σt + σst )2 = 2(σt + σst )dσst + (dσst )2

= 2(σt + σst )

(
−

(φy)2(σst )2

2(σt + σst )3
dt − φy

σst
σt + σst

dZt

)
+ (φy)2 (σst )2

(σt + σst )2
dt

= −2φy(σst )dZt .
(B.3.9)

Therefore, we have E0((σ + σst )2) = (σ + σs0)2. By Doob’s martingale convergence theorem
(as (σ + σst )2 ≥ 0,∀t), we know σst

a.s→ σs∞ = 0 since:

dσst︸︷︷︸
a.s→0

= −
(φy)2(σst )2

2(σt + σst )3︸ ︷︷ ︸
a.s→0

dt − φy
σst

σt + σst︸ ︷︷ ︸
a.s→0

dZt . (B.3.10)

Thus equation (B.3.10) proves σst
a.s→ σs∞ = 0. From equation (1.2.4) σst

a.s→ σq∞ = 0 leads to
Ŷt

a.s→ 0. Finally, we must have E0(maxt(σ
s
t )2) =∞, since otherwise the uniform integrability

says E0((σ + σs∞)2) = (σ + σs0)2, which is a contradiction to our earlier result σst
a.s→ 0 since

σs∞ = 0 and σs0 > 0 by assumption in Proposition 1.

B.3.2 Section 2.2

Section 2.2.1

Here we solve the optimization problems of workers (equation (2.2.5)) and capitalists (equa-
tion (2.2.10)).
Worker’s Optimization : Workers solve the following optimization problem in equation (2.2.5).

max
CW,t ,NW,t

(CW,t
At

)1−ϕ

1− ϕ −
(NW,t)

1+χ0

1 + χ0

s.t. ptCW,t = wtNW,t . (B.3.11)

If we let λtA
ϕ−1
t be the multiplier on the budget constraint, then solution is easy to compute

as follows.

C−ϕW,t = λtpt , A
1−ϕ
t (NW,t)

χ0 = λtwt =
wt
pt
C−ϕW,t =

(wt
pt

)1−ϕ
N−ϕW,t ,

∴ NW,t =
(wt
pt

) 1−ϕ
χ0+ϕ 1

A
1−ϕ
χ0+ϕ

t

1 ≡
(wt
pt

) 1
χ 1

A
1
χ

t

with χ ≡
χ0 + ϕ

1− ϕ , CW,t =
wt
pt
NW,t =

(wt
pt

)1+ 1
χ 1

A
1
χ

t

.

(B.3.12)

Capitalist’s Optimization : Each capitalist with wealth at solves the following optimization



121

in equation (2.2.10).

max
Ct ,ωt
E0

∫ ∞
0

e−ρt logCtdt s.t. dat = (at(it + θt(i
m
t − it))− ptCt)dt+θtat(σt + σqt + σpt )dZt .

(B.3.13)
Putting all the state variables (it , pt , imt , σt , σ

q
t , σ

p
t ) into the vector St , then Hamilton-Jacobi-

Bellman (HJB) equation can be written in the following way.

ρV (at , St , t) = max
Ct ,θt

logCt +
∂V

∂at
(at(it + θt(i

m
t − it))− ptCt) +

1

2

∂2V

∂a2
θ2
t a

2
t (σt + σqt + σpt )2

+
∂V

∂t
+
∂V

∂St

Et(dSt)
dt

+
1

2
Tr
( ∂2V

∂St∂St ′
dStdSt

′

dt

)
.

(B.3.14)
Following Merton (1971), we know the value function has the following form.

V (at , St , t) =
1

ρ
log at + f (St , t). (B.3.15)

The first-order conditions for Ct and θt are easy to compute as follows.

ptCt = ρat and
imt − it

σt + σqt + σpt︸ ︷︷ ︸
Sharpe ratio

= θt(σt + σqt + σpt )︸ ︷︷ ︸ .Price of risk (B.3.16)

If we plug the guessed value function form (equation (B.3.15)) into HJB equation, we get
the following partial differential equation (PDE) for the function f (St , t), verifying our form
in equation (B.3.15) is a reasonable guess.

ρf (St , t) = log
ρ

pt
+

1

ρ
(it + θt(i

m
t − it)− ρ)−

1

2ρ
θ2
t (σt + σqt + σpt )2 +

∂f

∂t

+
∂f

∂St ′
Et(dSt)
dt

+
1

2
Tr
( ∂2f

∂St∂St ′
dStdSt

′

dt

)
with θt =

imt − it
(σt + σqt + σpt )2

.

(B.3.17)
Thus solving the partial differential equation in equation (B.3.17) restores the functional form
f (St , t).

Section 2.2.2

We can easily derive the equilibrium condition in equation (2.2.12) by plugging in θt = 1

to equation (B.3.16). at = ptAtQt holds since all capitalists are identical both ex-ante and
ex-post. Now we prove Lemma 1.

Proof of Lemma 1. First we start by stating capitalist’s nominal state-price density ξNt and
real state-price density ξrt . Nominal state-price density will be relevant to the nominal interest
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rate, while real state-price density matters when we calculate the real interest rate.

ξNt = e−ρt
1

Ct

1

pt
, ξrt = e−ρt

1

Ct
= ptξ

N
t . (B.3.18)

If λt is price of risk ((σt + σqt + σpt ) in this model), the nominal pricing kernel evolves with
the following process.

dξNt
ξNt

= −itdt − λtdZt , ξNt = exp
(
−
∫ t

0

(
is +

1

2
λ2
s

)
ds −

∫ t

0

λsdZs

)
. (B.3.19)

If we apply Ito’s lemma to the relation ξrt = ptξ
N
t in equation (B.3.18), we get the following

process for real pricing kernel ξrt .

dξrt
ξrt

= (πt − it − σpt λt︸ ︷︷ ︸
=−rt

)dt − (σ + σqt )dZt . (B.3.20)

Thus we get the following Fisher identity with the inflation premium in equation (2.2.18).

rt = it − πt + σpt (σt + σqt + σpt ). (B.3.21)

B.3.3 Section 2.2.3

Here we prove the Proposition 11 based on the results above.

Proof of Proposition 11. We start from the pricing decision of intermediate good firms. Since
we have an externality à la Baxter and King (1991), we need to have additional step to
aggregate across each firm. Let firm i take his demand as given and choose the optimal
price pt(i) at given moment t. With Et ≡ (NW,t)

α, we can get the following conditions for
{nt(i), yt(i)}.

nt(i) =
( yt(i)
AtEt

) 1
1−α
, yt(i) = yt

(pt(i)
pt

)−ε
. (B.3.22)

Each firm i chooses pi that maximizes its profit, solving the following optimization.

max
pt(i)

pt(i)
(pt(i)
pt

)−ε
yt − wt

( yt
AtEt

) 1
1−α
(pt(i)
pt

)− ε
1−α
. (B.3.23)

Here all firms charge the same price (pt(i) = pt holds for ∀i). The solution of equa-
tion (B.3.23) combined with this condition yields the following solution. In equilibrium, we
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also know nt(i) = NW,t for ∀i .

w n
t

pnt
=
ε− 1

ε
(1− α)y

−α
1−α
t (AtEt)

1
1−α

=
ε− 1

ε
(1− α)y

−α
1−α
t (At)

1
1−αNW,t

α
1−α

=
ε− 1

ε
(1− α)y

−α
1−α
t (At)

1
1−α

(w n
t

pnt

) α
χ(1−α)

A
−α

χ(1−α)

t .

(B.3.24)

Thus we get the following condition for the real wage.

w n
t

pnt
=
(ε− 1

ε
(1− α)

) χ(1−α)
χ(1−α)−α

y
−χα

χ(1−α)−α
t A

χ−α
χ(1−α)−α
t . (B.3.25)

And then we know the aggregate production is linear, thus yt = AtNW,t due to the externality.
Thus we have:

yt = AtNW,t = At

(w n
t

pnt

) 1
χ 1

A
1
χ

t

= At

(ε− 1

ε
(1− α)

) (1−α)
χ(1−α)−α

y
−α

χ(1−α)−α
t A

1−αχ
χ(1−α)−α
t A

− 1
χ

t .

(B.3.26)

Thus we get the natural level of output y nt and the natural level of real wage w n
t /p

n
t .

y nt =
(ε− 1

ε
(1− α)

) 1
χ

At ,
w n
t

pnt
=
ε− 1

ε
(1− α)At , (B.3.27)

from which we get the following consumption and labor for workers.

NnW,t =
(ε− 1

ε
(1− α)

) 1
χ

, CnW,t =
(ε− 1

ε
(1− α)

)1+ 1
χ

At . (B.3.28)

In equilibrium, consumptions of capitalists and workers add up to the amount of final good
output. If we plug the real wage in equation (B.3.24) into workers’ consumption and the
labor supply decision in equation (B.3.12), we get the following good-market equilibrium
condition, where we define Qnt to be the natural level of detrended stock price. Also from
equation (B.3.16), we see the consumption of capitalists would be Ct = ρAtQt in equilibrium.

ρAtQ
n
t +

(ε− 1

ε
(1− α)

)1+ 1
χ

At =
(ε− 1

ε
(1− α)

) 1
χ

At . (B.3.29)

Thus we get the following expression for Qnt and C
n
t , a natural asset price level and capitalists’

consumption in the flexible price equilibrium.

Qnt =
1

ρ

(ε− 1

ε
(1− α)

) 1
χ
(

1−
(ε− 1)(1− α)

ε

)
,

Cnt = At

(ε− 1

ε
(1− α)

) 1
χ
(

1−
(ε− 1)(1− α)

ε

)
.

(B.3.30)
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Since Qnt is constant, there should be no drift and volatility for its process in the flexible price
economy, thus we have µq,nt = σq,nt = 0. To calculate the natural interest rate r nt , we start
from the capital gain component in equation (2.2.17). If we apply Ito’s lemma, we get the
following capital gain formula.

E
d(ptAtQt)

ptAtQt

1

dt
= πt + µqt︸︷︷︸

=0

+g + σqt︸︷︷︸
=0

σpt + σt(σ
p
t + σqt︸︷︷︸

=0

). (B.3.31)

As dividend yield is always ρ, imposing expectation on both sides of equation (2.2.17) and
combining with the equilibrium condition in equation (2.2.12) yield the following relation.

E(imt ) = ρ+ πt + g + σtσ
p
t = it + (σt + σpt )2. (B.3.32)

Using Lemma 1, we finally express natural rate of interest r nt as a function of structural
parameters and σt , which proves (iii) of Proposition 11.

r nt = it − πt + σpt (σt + σq,nt︸︷︷︸
=0

+σpt ) = ρ+ g − σ2
t . (B.3.33)

For the capitalist’s consumption process in the flexible price case, Since their consumption
Cnt is directly proportional to TFP At , we know

dCnt
Cnt

= gdt + σtdZt =
(
r nt − ρ+ σ2

t

)
dt + σtdZt , (B.3.34)

where we use r nt − ρ+ σ2
t = g from equation (B.3.33).

Section 2.2.4

Proof of Lemma 2. First from Ct = ρAtQt , we get Ĉt = Q̂t . We start from the flexible price
case’s good market equilibrium condition, where we use equation (B.3.12). Here wnt

pnt
is the

real wage level in the flexible price economy.

At

(w n
t

pnt

) 1
χ 1

A
1
χ

t

= ρAtQ
n
t +

(w n
t

pnt

)1+ 1
χ 1

A
1
χ

t

. (B.3.35)

We subtract equation (B.3.35) from the same good market equilibrium condition in sticky
price economy.

At

((wt
pt

) 1
χ −

(w n
t

pnt

) 1
χ
) 1

A
1
χ

t

= Ct − Cnt +
((wt
pt

)1+ 1
χ −

(w n
t

pnt

)1+ 1
χ
) 1

A
1
χ

t

, (B.3.36)

where we divide both sides of equation (B.3.36) by A
1− 1

χ

t (
wnt
pnt

)
1
χ and obtain
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(wt
pt

) 1
χ −

(w n
t

pnt

) 1
χ

(w n
t

pnt

) 1
χ

︸ ︷︷ ︸
= 1
χ
ŵt
pt

=
Cnt

A
1− 1

χ

t (
wnt
pnt

)
1
χ︸ ︷︷ ︸

=1− (ε−1)(1−α)
ε

Ĉt +

(wt
pt

)1+ 1
χ −

(w n
t

pnt

)1+ 1
χ

At

(w n
t

pnt

) 1
χ

︸ ︷︷ ︸
=

(ε−1)(1−α)
ε

(1+ 1
χ

)
ŵt
pt

. (B.3.37)

Thus equation (B.3.37) can be written in the following way, which proves Lemma 2.

1

χ

ŵt
pt

=
(

1−
(ε− 1)(1− α)

ε

)
Ĉt +

(ε− 1)(1− α)

ε

(
1 +

1

χ

)ŵt
pt︸ ︷︷ ︸

=Ĉw (t)

. (B.3.38)

We finally obtain

Q̂t = Ĉt =
(
χ−1 −

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε

)
︸ ︷︷ ︸

>0

ŵt
pt

=

χ−1 −

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε
1 + χ−1︸ ︷︷ ︸

>0

ĈW,t . (B.3.39)

We see that Assumption 1 guarantees that all gaps (asset price, consumptions for both
capitalists and workers, employment, and real wage) co-move with positive correlations. Now
we can use Q̂t and Ĉt interchangeably, and if one gap variable becomes 0, then all other gap
variables become also stabilized and 0.

Proof of Proposition 3. In sticky price equilibrium, we have σpt ≡ 0, as over the small time
period dt a δdt portion of firms get to change their prices and there is no stochastic change
in aggregate price level pt . Thus capitalist’s consumption Ct has the following process, where
we use the equilibrium condition imt = it + (σ + σqt )2.

dCt
Ct

= (imt − πt − ρ)dt + (σt + σqt )dZt

= (it + (σt + σqt )2 − πt − ρ)dt + (σt + σqt )dZt .

(B.3.40)

Thus we have the following two process for lnCt and lnCnt :

d lnCt =
(
it − πt +

(σt + σqt )2

2
− ρ
)
dt + (σt + σqt )dZt , d lnCnt =

(
r nt − ρ+

σ2
t

2

)
dt + σtdZt ,

(B.3.41)
of which the latter is from equation (B.3.34). We get the following Ĉt = Q̂t gap from
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equation (B.3.41):

dQ̂t = dĈt =
(
it − πt −

(
r nt −

(σt + σqt )2

2
+
σ2
t

2

)
︸ ︷︷ ︸

≡rTt

)
dt + σqt dZt

= (it − πt − rTt )dt + (σqt − σq,nt )dZt .

(B.3.42)

As we have risk-premium levels rpt = (σt + σqt )2 in the sticky price case and rpnt = (σt)
2 in

the flexible price economy, we can express rTt as

rTt = r nt −
1

2
(rpt − rpnt ) = r nt −

1

2
r̂ pt , (B.3.43)

where we know that when σqt = σq,nt = 0 holds, then we have r̂ pt = 0 and rTt = r nt .

Proof of Proposition 4. We assume that firms change their prices with instantaneous prob-
ability δdt à la Calvo (1983). If there is price dispersion ∆t , as defined in equation (2.2.7),
across intermediate goods firms, then labor market equilibrium condition can be written as
follows.

NW,t =

∫ 1

0

nt(i)di =
( yt
At(NW,t)α

) 1
1−α
∫ 1

0

(pt(i)
pt

)− ε
1−α
di︸ ︷︷ ︸

≡∆
1

1−α
t

, y(t) =
AtNW,t

∆t

= Ct + CW,t .

(B.3.44)
Plugging equation (B.3.12) and equation (B.3.16) (optimal consumption decisions of workers
and capitalists) into equation (B.3.44), we get the following equilibrium condition.

ρAtQt + At

( wt
ptAt

)1+ 1
χ

= At

( wt
ptAt

) 1
χ 1

∆t

. (B.3.45)

Since a price level (nominal side) does not matter for the allocation of resources in the
flexible price economy, we can regard x̂t to be the log-deviation of xt from the constant price
flexible price equilibrium value of itself. From price aggregator in equation (2.2.4), we get
the log-linearize version easily.

p1−ε
t =

∫ 1

0

pt(i)
1−εdi thus p̂t =

∫ 1

0

p̂t(i)di . (B.3.46)

To get a sense of price dispersion ∆t , we illustrate Woodford (2003)’s treatment of ∆t up to
first-order. Up to the first-order we can regard ∆t ' 1 because ∆t is in nature the second
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order variable, as the following relation shows.

∆̂t

1− α =
1

1− α ln
∆t

∆n
t

= ln

∫ 1

0

exp[−
ε

1− α(p̂t(i)− p̂t)]di ]

= ln

∫ 1

0

[1−
ε

1− α(������
p̂t(i)− p̂t) +

1

2

( ε

1− α

)2

(p̂t(i)− p̂t)2]di

'
1

2

( ε

1− α

)2

V ari(p̂t(i)).

(B.3.47)

Pricing is standard, except that our model is in continuous time. With δdt probability
at time t, individual firm can change the price instantaneously from t to t + dt. From
time-0 perspective, a probability that firm can reset its price for the first time at time t is
δe−δtdt = δdt︸︷︷︸

Change now

· e−δt︸︷︷︸
No change until t

.

At time t, price-changing firm i solves the following optimization to choose pit :

max
pt(i)

1

ξNt pt
Et
∫ ∞
t

e−δ(s−t)ξNs ps

(pt(i)
ps

yi(s|t)−
1

ps
C(yi(s|t))

)
ds, where yi(s|t) =

(pt(i)
ps

)−ε
ys ,

=
1

ξNt pt
Et
∫ ∞
t

e−δ(s−t)ξNs ps

[(pt(i)
ps

)1−ε
ys −

1

ps
C
((pt(i)

ps

)−ε
ys

)]
ds,

(B.3.48)
where C(·) is the nominal cost function for each firm. Let MCs|t and ϕs|t be the nominal
and real marginal cost at time s conditional on price resetting at prior time t. The nominal
pricing kernel has following simple formula due to log-preference of capitalists.

ξNs = e−ρs
1

psCs
,
ξNs ps

ξNt pt
= e−ρ(s−t)Ct

Cs
. (B.3.49)

Thus optimal adjusted price p∗i (t) is given as the following first-order condition. Here ϕs|t ,
a real marginal cost of firms at time s given time t price resetting, appears, where ϕ̄ is
flexible-price (natural) equilibrium level of real marginal cost, which is ε−1

ε
.

p∗i (t) =

Et
∫ ∞
t

e−(δ+ρ)(s−t) ys
Cs

ϕs|t

ϕ̄
pεsds

Et
∫ ∞
t

e−(δ+ρ)(s−t) ys
Cs
pε−1
s ds

. (B.3.50)

If we log-linearize this equation around the steady state equilibrium with the constant price
as in equation (B.3.46), we obtain the following log-linearized p̂∗t expressed as

p̂∗t = (δ + ρ)Et
∫ ∞
t

e−(δ+ρ)(s−t)(ϕ̂s|t + p̂s)ds. (B.3.51)
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We know that the total conditional real cost and real marginal cost can be written as

1

ps
C(ys|t) =

ws
ps

( ys|t

As(NW,s)α

) 1
1−α
, ϕs|t =

ws
ps

( ys|t

As(NW,s)α

) α
1−α 1

As(NW,s)α
. (B.3.52)

A conditional real marginal cost gap at time s conditional on price resetting at time t can be
written as

ϕ̂s|t =
ŵs
ps︸︷︷︸
≡ϕ̂s

−
αε

1− α(p̂∗t − p̂s) = ϕ̂s −
αε

1− α(p̂∗t − p̂s). (B.3.53)

Thus ϕ̂s is the aggregate marginal cost index, and since production becomes linear in aggre-
gate level, it equals the real wage gap. We then characterize the change in aggregate price
gap p̂t , using equation (B.3.46).

dp̂t = δdt(p̂∗t−p̂t) = δdt(δ+ρ)Et
∫ ∞
t

e−(δ+ρ)(s−t)(Θϕ̂s+p̂s−p̂t)ds, where Θ ≡
1− α

1− α+ αε
.

(B.3.54)
As we log-linearize around the steady state equilibrium with constant price, p̂t changes with
a rate of πt ,3 we have

πt =
dp̂t
dt

= δ(δ + ρ)Et
∫ ∞
t

e−(δ+ρ)(s−t)(Θϕ̂s + p̂s − p̂t)ds. (B.3.55)

Since we now have equation (B.3.55) for instantaneous inflation πt . we manipulate this
equation as:

πt + δp̂t = δ(δ + ρ)Et
∫ ∞
t

e−(δ+ρ)(s−t)(Θϕ̂s + p̂s)ds

= δ(δ + ρ)e(δ+ρ)tEt
∫ ∞
t

e−(δ+ρ)s(Θϕ̂s + p̂s)ds

= δ(δ + ρ)(Θϕ̂t + p̂t)dt + δ(δ + ρ)e(δ+ρ)tEt
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds,

(B.3.56)
where we can rewrite the first line of equation (B.3.56) at time t + dt instead of t as

πt+dt + δp̂t+dt = δ(δ + ρ)e(δ+ρ)(t+dt)Et+dt
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds

= δ(δ + ρ)e(δ+ρ)t(1 + (δ + ρ)dt)Et+dt
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds.

(B.3.57)
Due to the martingale representation theorem (see Oksendal (1995)), there exists a measur-
able process Ht such that following holds.

3According to Woodford (2003) and Yun (2005), this assumption is reasonable as it becomes a part of
optimal monetary policy in the presence of price dispersion ∆t . In the case of positive inflation targets, see
Coibion et al. (2012).
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Et+dt
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds = Et
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds +HtdZt , (B.3.58)

which we plug into equation (B.3.57), to obtain

πt+dt + δp̂t+dt = δ(δ + ρ)
(

e(δ+ρ)tEt
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds + e(δ+ρ)tHtdZt

+ e(δ+ρ)t(δ + ρ)dt · Et
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds
)
.

(B.3.59)

We subtract equation (B.3.56) from equation (B.3.59) to get the following expression. We
use dZtdt = 0 to get the second equality. Also σπ,t is defined as an instantaneous volatility
of inflation fluctuation.

dπt + ��δπtdt

= δ(δ + ρ)
(

e(δ+ρ)t(δ + ρ)dtEt
∫ ∞
t+dt

e−(δ+ρ)s(Θϕ̂s + p̂s)ds + e(δ+ρ)tHtdZt − (Θϕ̂t + p̂t)dt
)

= δ(δ + ρ)e(δ+ρ)tHt︸ ︷︷ ︸
≡σπ,t

dZt − δ(δ + ρ)Θϕ̂tdt

+ δ(δ + ρ)
(

(δ + ρ)dtEt
∫ ∞
t

e−(δ+ρ)(s−t)(Θϕ̂s + p̂s − p̂t)ds
)

︸ ︷︷ ︸
=(�δ+ρ)πtdt

.

(B.3.60)
Thus from equation (B.3.60) we get the following continuous time version of New Keynesian
Phillips curve (NKPC).4

dπt = ρπtdt − δ(δ + ρ)Θϕ̂tdt + σπ,tdZt . (B.3.61)

We know in flexible price equilibrium, a real marginal cost is given as ϕ̄, thus ϕ̂t can be
thought of log-deviation of the marginal cost from the flexible price case, which equals the
log-deviation of real wage from the flexible price real wage. Therefore, we obtain:5

ϕ̂t =
ŵt
pt

=
Q̂t

χ−1 −

(ε− 1)(1− α)

ε

1−
(ε− 1)(1− α)

ε

≡
κ

δ(δ + ρ)Θ
Q̂t . (B.3.62)

4This form is exactly the same as the Phillips curve in Werning (2012) and Cochrane (2017) if we take
expectation.

5Here we use log-linearization result of Lemma 2 to represent the real marginal cost gap ŵt
pt

as a function
of capitalists’ consumption gap Ĉt = Q̂t .
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Finally plugging equation (B.3.62) into equation (B.3.61), we represent New-Keynesian
Phillips curve in terms of asset price gap Q̂t . We know κ > 0 due to the Assumption
1.

dπt = (ρπt − κQ̂t)dt + σπ,tdZt , and Etdπt = (ρπt − κQ̂t)dt, (B.3.63)

which proves the proposition 4.6

B.3.4 Section 2.3

Section 2.3.2

Proof of Proposition 6. This result is a direct consequence of Blanchard and Kahn (1980)
and Buiter (1984).

Section 2.3.1

Proof of Proposition 5. From equation (2.3.9), {σqt } process can be written in the following
way.

dσqt = −
φ2(σqt )2

2(σ + σqt )3
dt − φ

σqt
σ + σqt

dZt . (B.3.64)

Using Ito’s lemma, we get the process for (σ + σqt )2 which is a martingale, as seen below.

d(σ + σqt )2 = 2(σ + σqt )dσqt + (dσqt )2

= 2(σ + σqt )
(
−

φ2(σqt )2

2(σ + σqt )3
dt − φ

σqt − σq,n

σ + σqt
dZt

)
+ φ2 (σqt )2

(σ + σqt )2
dt

= −2φ(σqt )dZt .

(B.3.65)

Therefore, we would have E0((σ + σqt )2) = (σ + σq0 )2 where E0 is an expectation operator
with respect to the t = 0 filtration. By the famous Doob’s martingale convergence theorem
(as (σ + σqt )2 ≥ 0,∀t), we know σqt

a.s→ σq∞ = σq,n = 0 since:

dσqt︸︷︷︸
a.s→0

= −
φ2(σqt )2

2(σ + σqt )3︸ ︷︷ ︸
a.s→0

dt − φ
σqt

σ + σqt︸ ︷︷ ︸
a.s→0

dZt . (B.3.66)

Therefore, equation (B.3.66) proves σqt
a.s→ σq∞ = σq,n = 0. From equation (2.3.7) σqt

a.s→
σq∞ = σq,n = 0 leads to Q̂t

a.s→ 0 and πt
a.s→ 0. Finally, we must have E(maxt(σ

q
t )2) = ∞,

otherwise the uniform integrability says E((σ + σq∞)2) = (σ + σq0 )2, which is a contradiction
to our earlier result σqt

a.s→ σq,n since σq∞ = σq,n = 0 and σq0 > σq,n = 0 by assumption in
Proposition 5.

6Since ŷt = ζQ̂t , Phillips curve can be represented in terms of output gap ŷt as in Proposition 4.
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Section 2.4.4

Proof of Proposition 8. First we solve the capitalist’s problem in equation (2.4.15) with τt
subsidy rate on stock market investment.

max
Ct ,θt
E0

∫ ∞
0

e−ρt logCtdts.t.dat = (at(it+θt((1+τt)i
m
t −it))−ptCt−Tt)dt+θtat(σt+σ

q
t )dZt .

(B.3.67)
Putting all the relevant state variables (it , τt , Tt , pt , imt , σt , σ

q
t ) into vector St , then Hamilton-

Jacobi-Bellman (HJB) equation can be written in the following way.

ρV (at , St , t) = max
Ct ,θt

logCt +
∂V

∂at
(at(it + θt((1 + τt)i

m
t − it))− ptCt − Tt)

+
1

2

∂2V

∂a2
θ2
t a

2
t (σt + σqt )2 +

∂V

∂t
+
∂V

∂St

Et(dSt)
dt

+
1

2
Tr
( ∂2V

∂St∂St ′
dStdSt

′

dt

)
.

(B.3.68)
Following Merton (1971), we know the value function has the following form.

V (at , St , t) =
1

ρ
log at + f (St , t). (B.3.69)

The first-order conditions for Ct and θt are easy to compute as follows.

ptCt = ρat and
(1 + τt)i

m
t − it

σt + σqt︸ ︷︷ ︸
Sharpe ratio

= θt(σt + σqt )︸ ︷︷ ︸
Price of risk

. (B.3.70)

Thus compared to the case without τt (equation (B.3.16)), each capitalist invests more in
the stock market, as she gets a higher expected return per unit risk she bears. By plug-
ging the guessed value function form (equation (B.3.69)) into equation (B.3.68), we get
a partial differential equation (PDE) for the function f (St , t), verifying our form in equa-
tion (B.3.69) is a reasonable guess. Here we plug Tt = atτtθt i

m
t that holds in equilibrium into

equation (B.3.68).

ρf (St , t) = log
ρ

pt
+

1

ρ
(it + θt(i

m
t − it)− ρ)−

1

2ρ
θ2
t (σt + σqt )2 +

∂f

∂t

+
∂f

∂St ′
Et(dSt)
dt

+
1

2
Tr
( ∂2f

∂St∂St ′
dStdSt

′

dt

)
with θt =

(1 + τt)i
m
t − it

(σt + σqt )2
.

(B.3.71)
Thus solving the partial differential equation in equation (B.3.71) restores the functional form
f (St , t). In equilibrium, θt = 1 holds and it pins down the risk-premium level as follows.

imt =
it + (σt + σqt )2

1 + τt
, (B.3.72)



132

which is equation (2.4.16). A consumption for capitalists Ct thus evolves with the following
process.

dCt
Ct

= (imt − πt − ρ)dt + (σt + σqt )dZt

=
( it + (σt + σqt )2

1 + τt
− πt − ρ

)
dt + (σt + σqt )dZt ,

(B.3.73)

with which we obtain,

d lnCt =
( it + (σt + σqt )2

1 + τt
− πt −

(σt + σqt )2

2
− ρ
)
dt + (σt + σqt )dZt , (B.3.74)

from which we subtract the second equation (the process for lnCnt ) in equation (B.3.41) and
get the following Ĉt process.

dQ̂t = dĈt =
( it + (σt + σqt )2

1 + τt
− πt −

(σt + σqt )2

2
− r nt −

(σt)
2

2

)
dt + σqt dZt . (B.3.75)

In the ZLB situation described in Section 2.4.1, it = 0 for t ≤ T holds (ZLB) but since the
economy gets after T , we have σqt = σq,nt = 0 for t ≤ T . Plugging these conditions into
equation (B.3.75) with σt = σ̄ and r nt = r n(σ̄) = r for t ≤ T yields equation (2.4.17), thus
proving Proposition 8.

Proof of Proposition 9. We start from equation (2.4.19), the condition that characterizes
equilibrium stock market return imt .

imt =

yt −

=CW,t+
Tt
pt︷ ︸︸ ︷

wt
pt
NW,t

AtQt
+
d(ptAtQt)

ptAtQt

1

dt
= ρ− τt imt +

d(ptAtQt)

ptAtQt

1

dt
. (B.3.76)

Thus we get (1 + τt)i
m
t = ρ+ πt + g + µqt + σtσ

q
t . Due to (1 + τt)i

m
t = it + (σt + σqt )2 with

the subsidy rate τt , we can predict that µqt remains unchanged compared with no subsidy
case, given the levels of it , σ

q
t . Thus the policy does not change {Q̂t} process. To connect

this intuition with the formulas, we start from the following process for Ct , which is different
from equation (B.3.73) since here capitalists do not pay Tt = atθtτt i

m
t amount of lump-sum

taxes.

dCt
Ct

= ((1 + τt)i
m
t − πt − ρ)dt + (σt + σqt )dZt

= (it + (σt + σqt )2 − πt − ρ)dt + (σt + σqt )dZt ,

(B.3.77)

where we use the equilibrium condition (1 + τt)i
m
t = it + (σt + σqt )2 in equation (B.3.72).

Since equation (B.3.77) is the same as equation (B.3.40), the dynamics of Ct with τt = 0,
the policy that subsidizes stock market investment with the lump-sum tax imposed on workers
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does not have any effect on {Q̂t , πt} and {Q̂t , πt} process remains the same as the economy
without τt .

Section 2.4.4

Proof of Proposition 10. A direct fiscal transfer Tt > 0 from capitalists to hand-to-mouth
workers raises the total amount of dividends in the financial market, leading to a lower required
capital gain and a higher Q̂t at the ZLB. Then stock market return imt in this case can be
written in the following way. Here we use the fact that Tt = ϕtptAtQt holds in equilibrium.

imt =

AtNW,t −

=CW,t−
Tt
pt︷ ︸︸ ︷

wt
pt
NW,t

AtQt
+
d(ptAtQt)

ptAtQt

1

dt
= ρ+

Tt
ptAtQt︸ ︷︷ ︸

>0

+
d(ptAtQt)

ptAtQt

1

dt

=︸︷︷︸
Tt=ϕtptAtQt

ρ+ ϕt +
d(ptAtQt)

ptAtQt

1

dt
.

(B.3.78)

Thus we see that a dividend yield rises by ϕt , which leads to the case in which capital gain is
reduced by ϕt given the level of it and σ

q
t . Thus it can mitigate the recession during the ZLB

as the asset price Qt drops less. To derive equation (2.4.21), we start from the following
capitalist’s optimization problem.

max
Ct ,θt
E0

∫ ∞
0

e−ρt logCtdt s.t. dat = (at(it + θt(i
m
t − it))− ptCt −Tt)dt + θtat(σt + σqt )dZt ,

(B.3.79)
where Tt = ϕtat holds in equilibrium. The equilibrium conditions for Ct and θt are exactly
the same as equation (B.3.16) with σpt = 0, thus we would have Ct = ρptAtQt and imt =

it + (σt + σqt )2 in equilibrium. Thus in equilibrium, we get the following wealth process for
capitalists.

dat
at

= (imt − ρ− ϕt)dt + (σt + σqt )dZt , (B.3.80)

which leads to the following consumption process for Ct .

dCt
Ct

= (imt − πt − ϕt − ρ)dt + (σt + σqt )dZt

= (it + (σt + σqt )2 − πt − ϕt − ρ)dt + (σt + σqt )dZt ,

(B.3.81)

with which we derive

d lnCt =
(
it +

(σt + σqt )2

2
− πt − ϕt − ρ

)
dt + (σt + σqt )dZt . (B.3.82)
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If we subtract the process for Cnt in equation (B.3.41), we get the following Ĉt process.

dQ̂t = dĈt =
(
it − πt − ϕt −

(
r nt −

(σt + σqt )2

2
+

(σt)
2

2

))
dt + σqt dZt

= (it − πt − ϕt − rTt )dt + σqt dZt .

(B.3.83)

In the ZLB situation described in Section 2.4.1, it = 0 for t ≤ T holds (ZLB) but since the
economy gets stabilized after T , we have σqt = σq,nt = 0 for t ≤ T . Plugging these conditions
into equation (B.3.75) with σt = σ̄ and r nt = r n(σ̄) = r for t ≤ T yields equation (2.4.21),
thus proving Proposition 10.

B.3.5 Section 2.4.3

Proof of Proposition 7. Central bank solves the following problem in the environment in
Section 2.4.3.7

min
σq,L1 ,σq,L2 ,T̂ ′

E0

∫ ∞
0

e−ρtQ̂2
tdt, s.t.



dQ̂t = −(rT1 (σq,L1︸ ︷︷ ︸
<0

))dt + (σq,L1 )dZt , for t < T,

dQ̂t = −(rT2 (σq,L2︸ ︷︷ ︸
>0

))dt + (σq,L2 )dZt , for T ≤ t < T̂ ′,

dQ̂t = 0, for t ≥ T̂ ′,

rT1 (σq,L1 ) ≡ ρ+ g −
σ̄2

2
−

(σ̄ + σq,L1 )2

2
< 0,

rT2 (σq,L2 ) ≡ ρ+ g −
σ2

2
−

(σ + σq,L2 )2

2
> 0,

,

with Q̂0 = rT1 (σq,L1 )T + rT2 (σq,L2 )(T̂ ′ − T ).
(B.3.84)

With rT1 (σq,L1 ) < 0, rT2 (σq,L2 ) > 0, a gap process is represented in the following ways (for
Ĉt = Q̂t).

dĈt =



−rT1 (σq,L1 )︸ ︷︷ ︸
>0

dt + (σq,L1 )dZt , for t ≤ T,

−rT2 (σq,L2 )︸ ︷︷ ︸
<0

dt + (σq,L2 )dZt , for T ≤ t ≤ T̂ ′,

0, for t ≥ T̂ ′.

(B.3.85)

After T̂ , there is no movement of Ĉt at all. If we let rTs be rT1 (σq,L1 ) for s < T and rT2 (σq,L2 )

for T ≤ s ≤ T̂ ′, then gap process can be written in the following integral form. Here Zt ,

7In the proof, we implicitly assume that rT1 (σq,L1 ) < 0 and rT2 (σq,L2 ) > 0 hold for optimal σq,L1 and σq,L2 so
ZLB binds until T .
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Wt−T , and UT̂−T are independent brownian motion.

Ĉt =



∫ T̂ ′

t

rTs ds︸ ︷︷ ︸
≡Ĉdet(t;T̂ ′)

+(σq,L1 ) Zt︸︷︷︸
∼N(0,t)

, for t ≤ T,

∫ T̂ ′

t

rT (s)ds︸ ︷︷ ︸
≡Ĉdet(t;T̂ ′)

+(σq,L1 )ZT + (σq,L2 ) [Wt−T ]︸ ︷︷ ︸
∼N(0,t−T )

, for T < t ≤ T̂ ′,

ĈT̂ ′ = (σq,L1 )ZT + (σq,L2 ) [WT̂−T ]︸ ︷︷ ︸
∼N(0,T̂−T )

, for T̂ ′ < t.

(B.3.86)

We square each term and take the expectation operator with respect to the information at
t = 0, when central bank solves its commitment problem. We get the following expressions.

E0Ĉt
2

=


Ĉdet(t; T̂

′)2 + (σq,L1 )2t, for t ≤ T,
Ĉdet(t; T̂

′)2 + (σq,L1 )2T + (σq,L2 )2(t − T ), for T < t ≤ T̂ ′,
(σq,L1 )2T + (σq,L2 )2(T̂ ′ − T ), for T̂ ′ < t.

(B.3.87)

If we plug these expressions into central bank’s loss function, then central bank’s commitment
problem can be represented by the following optimization. Now central bank can control
σq,L1 , σq,L2 in addition to its conventional monetary policy tool {it} (including T̂ ′).

min
it≥0,σq,L1 ,σq,L2

E0

∫ ∞
0

e−ρtĈ2
t dt

= min
T̂ ′,σq,L1 ,σq,L2

∫ T̂

0

e−ρtĈdet(t; T̂
′)2dt + (σq,L1 )2

∫ T

0

te−ρtdt︸ ︷︷ ︸
= 1

ρ2−
1

ρ2 e
−ρT−

���T
ρ
e−ρT

+(σq,L1 )2T

∫ ∞
T

e−ρtdt︸ ︷︷ ︸
=�

��1
ρ
e−ρT

+ (σq,L2 )2

∫ T̂ ′

T

e−ρt(t − T )dt︸ ︷︷ ︸
=−������1

ρ
(T̂−T )e−ρT̂

′
+ e−ρT−e−ρT̂ ′

ρ2

+(σq,L2 )2(T̂ ′ − T )

∫ ∞
T̂ ′
e−ρtdt︸ ︷︷ ︸

=���1
ρ
e−ρT̂

′

= min
T̂ ,σq,L1 ,σq,L2

∫ T̂ ′

0

e−ρtĈdet(t; T̂
′)2dt︸ ︷︷ ︸

From deterministic fluctuation

+ (σq,L1 )2 1

ρ2
(1− e−ρT ) + (σq,L2 )2

(e−ρT − e−ρT̂ ′
ρ2

)
︸ ︷︷ ︸

From stochastic fluctuation

.

(B.3.88)
First we get the first-order condition for T̂ ′.
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2 rT2 (σq,L2 )︸ ︷︷ ︸
>0

∫ T̂ ′

0

e−ρtĈdet(t; T̂
′)dt + (σq,L2 )2 1

ρ
e−ρT̂

′
= 0, (B.3.89)

from which we have:∫ ∞
0

e−ρtĈdet(t; T̂
′)dt =

∫ T̂ ′

0

e−ρtĈdet(t; T̂
′‖σq,L1 < 0, σq,L2 < 0)dt < 0. (B.3.90)

The above first-order condition for T̂ ′ shows that the central bank lowers the value of T̂ ′

in the optimum, compared to T̂ , the duration for which it implements forward guidance
only (with σq,L1 = σq,n1 and σq,L2 = σq,n2 ), thus we would have T̂ ′ < T̂ at optimum. The
reason is that in the case central bank only implements a forward guidance without financial
market intervention, we have the following optimization condition, which is derived by plugging
σq,L1 = 0 and σq,L2 = 0 into equation (B.3.89).∫ T̂

0

e−ρtĈdet(t; T̂‖σq,L1 = σq,n1 , σq,L2 = σq,n2 )dt = 0. (B.3.91)

Since we know Ĉdet(t; T̂
′‖σq,L1 = 0, σq,L2 = 0) < Ĉdet(t; T̂

′‖σq,L1 < 0, σq,L2 < 0), from
equation (B.3.84), we infer T̂ ′ < T̂ at optimum by comparing equation (B.3.91) with equa-
tion (B.3.90).
To characterize optimal σq,L1 and σq,L2 , we need variational argument, as σq,L1 and σq.2 affects
the level of rT1 (σq,L1 ), rT2 (σq,L2 ), and Ĉdet(t; T̂ ′) eventually. In specific, we have the following
conditions.

∂rT1 (σq,L1 )

∂σq,L1

= −(σ̄ + σq,L1 ) < 0,
∂rT2 (σq,L2 )

∂σq,L2

= −(σ + σq,L2 ) < 0. (B.3.92)

Finding σq,L1 : If σq,L1 increases, then rT1 (σq,L1 ) falls, changing Ĉdet(t; T̂ ′)’s path as the follow-
ing Figure B.6 indicates (from thick blue to dashed red in Figure B.6). When we differentiate

t

Ĉdet(t; T̂
′)

0 A

B

T

rT2 (σq,L2 )(T̂ ′ − T )

rT1 (σq,L1 )T + rT2 (σq,L2 )(T̂ ′ − T )

r1(σq,L,New1 )T + rT2 (σq,L2 )(T̂ ′ − T )

T̂ ′

Figure B.6: Variation along σq,L1 Increase to σq,L,New1 > σq,L1
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Ĉdet(t; T̂
′) with respect to σq,L1 , we get the following conditions.

Ĉdet(t; T̂
′) =

∫ T̂ ′

t

rTs ds,
∂Ĉdet

∂σq,L1

=

∫ T

t

−(σ̄ + σq,L1 )ds = −(σ̄ + σq,L1 )(T − t),∀t ≤ T.

(B.3.93)
To find optimal σq,L1 , we differentiate the objective function by σq,L1 and get the following
condition.

(σ̄ + σq,L1 )

∫ T

0

e−ρtĈdet(t; T̂
′)(T − t)dt = (σq,L1 )

1− e−ρT

ρ2
, (B.3.94)

from which we can show σq,L1 < 0 must be satisfied at optimum, since:∫ T

0

e−ρtĈdet(t; T̂
′)(T − t)dt =

∫ T

0

(∫ t

0

e−ρsĈdet(s; T̂ ′)ds︸ ︷︷ ︸
<0

)
dt < 0. (B.3.95)

And equation (B.3.94) implies σq,L1 < 0 at optimum.

Finding σq,L2 : If σq,L2 increases, then rT2 (σq,L2 ) falls, changing Ĉdet(t; T̂ ′)’s shape as the
following Figure B.7 indicates (from thick blue to dashed red in Figure B.7). When we
differentiate Ĉdet(t; T̂ ′) with respect to σq,L2 , we get the following conditions.

∂Ĉdet

∂σq,L2

=


∫ T̂ ′

T

−(σ + σq,L2 )ds = −(σ + σq,L2 )(T̂ ′ − T ), ∀t < T,∫ T̂ ′

t

−(σ + σq,L2 )ds = −(σ + σq,L2 )(T̂ ′ − t), T < ∀t < T̂ ′.

(B.3.96)

To find optimal σq,L2 , we differentiate the objective function by σq,L2 and get the following

t

Ĉdet(t)

0 A

B

T

rT2 (σq,L2 )(T̂ ′ − T )

rT2 (σq,L,New2 )(T̂ ′ − T )

rT1 (σq,L1 )T + rT2 (σq,L2 )(T̂ ′ − T )

rT1 (σq,L1 )T + rT2 (σq,L,New2 )(T̂ ′ − T )

T̂ ′

Figure B.7: Variation along σq,L2 Increase to σq,L,New2 > σq,L2
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conditions.

(σ + σq,L2 )
(∫ T

0

e−ρtĈdet(t; T̂
′)(T̂ ′ − T )dt +

∫ T̂ ′

T

e−ρt Ĉdet(t; T̂
′)︸ ︷︷ ︸

>0

(T̂ ′ − t)dt
)

= (σq,L2 )
e−ρT − e−ρT̂

ρ2
,

(B.3.97)

with which the following equation (B.3.98) shows σq,L2 < 0 holds at the optimum.∫ T

0

e−ρtĈdet(t; T̂
′)(T̂ ′ − T )dt +

∫ T̂ ′

T

e−ρt Ĉdet(t; T̂
′)︸ ︷︷ ︸

>0

(T̂ ′ − t)dt

<

∫ T

0

e−ρtĈdet(t; T̂
′)(T̂ ′ − T )dt +

∫ T̂ ′

T

e−ρt Ĉdet(t; T̂
′)︸ ︷︷ ︸

>0

(T̂ ′ − T )dt

= (T̂ ′ − T )

∫ T̂ ′

0

e−ρtĈdet(t; T̂
′)dt︸ ︷︷ ︸

<0

< 0.

(B.3.98)

Thus we proved that during high TFP volatility period (t ≤ T ) and the low TFP volatility
period with the forward guidance (T ≤ t ≤ T̂ ′), a central bank wants to target financial
volatility levels lower than their levels in flexible price economy (σq,L1 < σq,n1 = 0 and σq,L2 <

σq,n2 = 0). This intervention lowers the required risk-premium and boost asset price level Q̂t ,
thus raising the output.

First-order conditions for T̂ ′, σq,L1 , σq,L2 : A deterministic component of capitalists’ con-
sumption gap Ĉt process, Ĉdet(t; T̂

′), is given as (with rT1 (σq,L1 ) and rT2 (σq,L2 ) given in equa-
tion (2.4.9)):

Ĉdet(t; T̂
′) =

∫ T̂ ′

t

rTs ds =


rT1 (σq,L1 )︸ ︷︷ ︸

<0

(T − t) + rT2 (σq,L2 )︸ ︷︷ ︸
>0

(T̂ ′ − T ), for ∀t ≤ T,

rT2 (σq,L2 )(T̂ ′ − t), for T ≤ ∀t < T̂ ′,

(B.3.99)
based on which we obtain the following formula.∫ T̂ ′

0

e−ρtĈdet(t; T̂
′)dt =

∫ T

0

e−ρt [rT1 (σq,L1 )(T − t) + rT2 (σq,L2 )(T̂ ′ − T )]dt

+

∫ T̂ ′

T

e−ρtrT2 (σq,L2 )(T̂ ′ − t)dt.
(B.3.100)
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And we will use the following integration results in this part.

∫ T

0

e−ρt(T − t)dt =
e−ρT

ρ2
+
T

ρ
−

1

ρ2
,

∫ T̂ ′

T

e−ρt(T̂ ′ − t)dt =
e−ρT̂

′

ρ2
+
T̂ ′ − T
ρ

e−ρT −
e−ρT

ρ2
,

∫ T

0

e−ρt(T − t)2dt = −
2

ρ3
e−ρT +

T 2

ρ
−

2T

ρ2
+

2

ρ3
,

∫ T̂ ′

T

e−ρt(T̂ ′ − t)2dt = −
2

ρ3
e−ρT̂

′
+

(T̂ ′ − T )2

ρ
e−ρT −

2(T̂ ′ − T )

ρ2
e−ρT +

2

ρ3
e−ρT .

(B.3.101)
The first condition (first-order condition for T̂ ′) can be written as:

2rT2 (σq,L2 )

∫ T̂ ′

0

e−ρtĈdet(t; T̂
′)dt + (σq,L2 )2 e

−ρT̂ ′

ρ
= 0, (B.3.102)

where∫ T̂ ′

0

e−ρtĈdet(t; T̂
′)dt =rT1 (σq,L1 )

[e−ρT
ρ2

+
T

ρ
−

1

ρ2

]
+ rT2 (σq,L2 )(T̂ ′ − T )

1− e−ρT

ρ

+ rT2 (σq,L2 )
[e−ρT̂ ′
ρ2

+
T̂ ′ − T
ρ

e−ρT −
1

ρ2
e−ρT

]
.

(B.3.103)

We plug all the integration and get the following expression for the first-order condition for
T̂ ′.

2rT2 (σq,L2 )
{
rT1 (σq,L1 )

[e−ρT
ρ2

+
T

ρ
−

1

ρ2

]
+ rT2 (σq,L2 )(T̂ ′ − T )

1− e−ρT

ρ

+ rT2 (σq,L2 )
[e−ρT̂ ′
ρ2

+
T̂ ′ − T
ρ

e−ρT −
1

ρ2
e−ρT

]}
+ (σq,L2 )2 e

−ρT̂ ′

ρ
= 0.

(B.3.104)

The above equation (B.3.104) has all of {σq,L1 , σq,L2 , T̂ ′} as rT1 (σq,L1 ) and rT2 (σq,L2 ) are functions
of σq,L1 , σq,L2 , respectively.
The second condition (first-order condition for σq,L1 can be written as:

(σ̄ + σq,L1 )

∫ T

0

e−ρtĈdet(t; T̂
′)(T − t)dt = (σq,L1 )

1− e−ρT

ρ2
, (B.3.105)

where∫ T

0

e−ρtĈdet(t; T̂
′)(T − t)dt =rT1 (σq,L1 )

[
−

2

ρ3
e−ρT +

T 2

ρ
−

2T

ρ2
+

2

ρ3

]
+ rT2 (σq,L2 )(T̂ ′ − T )

[e−ρT
ρ2

+
T

ρ
−

1

ρ2

]
.

(B.3.106)
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Plugging equation (B.3.106) into equation (B.3.105), we get the following first-order condi-
tion for the σq,L1 .

(σ̄ + σq,L1 )
{
rT1 (σq,L1 )

[
−

2

ρ3
e−ρT +

T 2

ρ
−

2T

ρ2
+

2

ρ3

]
+ rT2 (σq,L2 )(T̂ ′ − T )

[e−ρT
ρ2

+
T

ρ
−

1

ρ2

]}
= (σq,L1 )

1− e−ρT

ρ2
.

(B.3.107)
Finally, the first-order condition for the σq,L2 becomes:

(σ + σq,L2 )
(

(T̂ ′ − T )

∫ T

0

e−ρtĈdet(t; T̂
′)dt +

∫ T̂ ′

T

e−ρtĈdet(t; T̂
′)(T̂ ′ − t)dt

)
= (σq,L2 )

e−ρT − e−ρT̂ ′

ρ2
,

(B.3.108)

where∫ T

0

e−ρtĈdet(t; T̂
′)dt = rT1 (σq,L1 )

[e−ρT
ρ2

+
T

ρ
−

1

ρ2

]
+ rT2 (σq,L2 )(T̂ ′−T )

1− e−ρT

ρ
, (B.3.109)

and∫ T̂ ′

T

e−ρtĈdet(t; T̂
′)(T̂ ′−t)dt = rT2 (σq,L2 )

[
−

2e−ρT̂
′

ρ3
+

(T̂ ′ − T )2

ρ
e−ρT−

2(T̂ ′ − T )

ρ2
e−ρT+

2e−ρT

ρ3

]
.

(B.3.110)
Thus the first-order condition for the σq,L2 can be written as:

(σ + σq,L2 )
{[
rT1 (σq,L1 )

[e−ρT
ρ2

+
T

ρ
−

1

ρ2

]
+ rT2 (σq,L2 )(T̂ ′ − T )

1− e−ρT

ρ

]
(T̂ ′ − T )

+ rT2 (σq,L2 )
[
−

2

ρ3
e−ρT̂

′
+

(T̂ ′ − T )2

ρ
e−ρT −

2(T̂ ′ − T )

ρ2
e−ρT +

2

ρ3
e−ρT

]}
= (σq,L2 )

e−ρT − e−ρT̂ ′

ρ2
.

(B.3.111)
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B.4 Welfare Derivation

B.4.1 Efficient Steady State (Efficient Flexible Price Equilibrium) with
a production subsidy

First-Best Allocation

A first-best allocation must be the solution of the following optimization problem.

max
Ct ,NW,t ,CW,t

ω1 log
Ct
At

+ ω2


(CW,t
At

)1−ϕ

1− ϕ −
(NW,t)

1+χ0

1 + χ0

 s.t Ct + CW,t = AtNW,t , (B.4.1)

where ω1 > 0 and ω2 > 0 are two welfare weights attached to capitalists and workers,
respectively, and we assume no price dispersion, thus ∆t = 1. For the expositional purposes,
let us define xt ≡ NW,t and yt ≡ CW,t

At
, then the first-order condition for equation (B.4.1) can

be written as
y−ϕt = xχ0

t ,
ω1

ω2

= xχ0
t (xt − yt). (B.4.2)

Workers’ and Firms’ Problem

Now we introduce a production subsidy τ > 0 given to the firms, assuming that it is financed
through a lump-sum tax on workers. Our objective is to make sure our flexible price equilibrium
(or steady-state) allocation (NnW,t ,

CnW,t
At
,
Cnt
At
) is efficient and satisfies equation (B.4.2). With

the subsidy τ , workers solve the following problem.

max
CW,t ,NW,t

(CW,t
At

)1−ϕ

1− ϕ −
(NW,t)

1+χ0

1 + χ0

s.t. ptCW,t = wtNW,t − ptTt , (B.4.3)

where Tt = τyt is the (real) lump-sum tax amount imposed on workers. The equation (B.4.3)’s
first order condition is written as:

(NW,t)
χ0+ϕ

( wt
ptAt

− τ
)ϕ

=
wt
ptAt

, (B.4.4)

where we express the NW,t that satisfies equation (B.4.4) as a function of a normalized real
wage wt

ptAt
, assuming NW,t ≡ fN( wt

ptAt
). When τ = 0, it returns to equation (B.3.12). Due to

τ , NW,t rises, compared to the amount implied by equation (B.3.12), since (i) workers feel
poorer due to the lump-sum tax Tt , thus a higher marginal utility of consumption induces
them to work more. (ii) eventually firms’ labor demand would rise, which raises the labor
supply of workers.
Since we are dealing with the flexible price economy benchmark, each firm’s optimization is
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changed with the introduction of τ in the following way, with Et = (NW,t)
α.

max
pt(i)

(1 + τ)pt(i)
(pt(i)
pt

)−ε
yt − wt

( yt
AtEt

) 1
1−α
(pt(i)
pt

) −ε
1−α
, (B.4.5)

where pt(i) = pt for ∀i at optimum and the solution of equation (B.4.5) features

w n
t

pntAt
=

(1 + τ)(ε− 1)(1− α)

ε
, (B.4.6)

where we plug equation (B.4.6) into equation (B.4.4) and obtain

NnW,t = fN

( w n
t

pntAt

)
= fN

((1 + τ)(ε− 1)(1− α)

ε

)
,

CnW,t
At

=
w n
t

pntAt
fN

( w n
t

pntAt

)
− τfN

( w n
t

pntAt

)
=
[(1 + τ)(ε− 1)(1− α)

ε
− τ

]
fN

( w n
t

pntAt

)
.

(B.4.7)

Since our goal is to align the allocation implied by equation (B.4.7) with the first-best al-
location implied by equation (B.4.2), NnW,t and

CnW,t
At

in equation (B.4.7) must satisfy equa-
tion (B.4.2) as follows.

(1 + τ)(ε− 1)(1− α)

ε
− τ = fN

((1 + τ)(ε− 1)(1− α)

ε

)−χ0+ϕ

ϕ

. (B.4.8)

Plugging equation (B.4.6) into equation (B.4.4), we get:

(NnW,t)
χ0+ϕ

((1 + τ)(ε− 1)(1− α)

ε
− τ

)ϕ
=

(1 + τ)(ε− 1)(1− α)

ε
. (B.4.9)

Solving jointly equation (B.4.8) and equation (B.4.9), we conclude the optimal τ∗ must
satisfies the following familiar condition.

(1 + τ∗)(ε− 1)(1− α)

ε
= 1.8 (B.4.10)

Therefore, the optimal τ∗ > 0 eliminates mark-up of firms and restores efficiency. With
τ = τ∗, normalized real wage becomes 1 and we get the following benchmark efficient
allocation from equation (B.4.7).

NnW,t ≡ x̄ = (1− τ∗)−
ϕ

χ0+ϕ ,
CnW,t
At
≡ ȳ = (1− τ∗)

χ0
χ0+ϕ ,

Cnt
At

= x̄ − ȳ = (1− τ∗)−
ϕ

χ0+ϕτ∗.

(B.4.11)
The last step is to ensure the welfare weights ω1 > 0 and ω2 > 0 satisfy equation (B.4.2).9

By plugging equation (B.4.11) into the second condition of equation (B.4.2), we obtain

8Therefore, τ∗ is a function of primitive parameters ε and α.
9Since ω1 and ω2 are chosen arbitrarily, we make sure that our allocation with a production subsidy can be

on the efficient frontier, which is generated by a varying set of {ω1, ω2}.
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ω1

ω2

= (NnW,t)
χ0

(
NnW,t −

CnW,t
At

)
= (1− τ∗)−

(χ0+1)ϕ

χ0+ϕ · τ∗. (B.4.12)

Thus, with ω1 > 0 and ω2 > 0 satisfying equation (B.4.12), our allocation with τ = τ∗

is efficient. The next step is to approximate a joint welfare in equation (B.4.1) with those
ω1, ω2 up to a second-order and express it in terms of gap variables and the price dispersion.

Derivation of a Quadratic Loss Function

As we previously defined, let xt ≡ NW (t), yt ≡ CW,t
At

. Their steady-state values (flexible
price equilibrium values) are the ones in equation (B.4.11). From the economy-wide resource
constraint, we express

Ct
At

=
NW,t
∆t

−
CW,t
At

=
xt
∆t

− yt , where ∆ =
(∫ 1

0

(pt(i)
pt

)− ε
1−α
di
)1−α

. (B.4.13)

With equation (B.4.13), we express our social welfare in equation (B.4.1) with ω1 and ω2

satisfying equation (B.4.12) as follows.

U(xt , yt ,∆t) ≡ ω1 log
( xt

∆t

− yt
)

+ ω2

( y 1−ϕ
t

1− ϕ −
x1+χ0
t

1 + χ0

)
, (B.4.14)

which achieves its maximum value Ū when xt = x̄ , yt = ȳ ,∆t = 1.10 A second-order ap-
proximation of equation (B.4.14) around the efficient benchmark allocation (x̄ , ȳ , 1) in equa-
tion (B.4.11) results in the following expression.

Ut − Ū = U∆ · ∆̄ · ∆̂t +
1

2
Uxx · x̄2 · (x̂t)2 +

1

2
Uyy · ȳ 2 · (ŷt)2 +Uxy · x̄ · ȳ · x̂t · ŷt + h.o.t, (B.4.15)

where ∆̄ = 1 since we do not have a trend inflation and partial derivatives (U∆, Uxx , Uyy , Uxy)
are evaluated at the benchmark point (x̄ , ȳ , 1) as follows.

U∆ = −ω2(1− τ∗)
−(χ0+1)ϕ

χ0+ϕ ,

Uxx = −ω2(1− τ∗)
−(χ0−1)ϕ

χ0+ϕ

( 1

τ∗
+ χ0

)
,

Uyy = −ω2(1− τ∗)
−(χ0−1)ϕ

χ0+ϕ

( 1

τ∗
+

ϕ

1− τ∗
)
,

Uxy = ω2(1− τ∗)
−(χ0−1)ϕ

χ0+ϕ
1

τ∗
,

(B.4.16)

where we use the relation between ω1 and ω2 in equation (B.4.12) in the process of derivation.
Since ω2 can be regarded a free parameter, we set ω2 ≡ 1.

10We have Ux = Uy = 0 at (x̄ , ȳ , 1), where Ux and Uy are the partial derivatives with respect to xt and yt ,
respectively.
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Log-Linearization With the price dispersion ∆t , the hand-to-mouth worker’s problem with
τ∗ features the following solution.

(NW,t)
χ0+ϕ

( wt
ptAt

−
τ∗

∆t

)ϕ
=

wt
ptAt

,

CW,t
At

=
( wt
ptAt

−
τ∗

∆t

)
NW,t .

(B.4.17)

Linearizing the first equation around the benchmark allocation yields

N̂W,t =
1− ϕ

1−τ∗

χ0 + ϕ

(̂wt
pt

)
−

ϕτ∗

1−τ∗

χ0 + ϕ
∆̂t . (B.4.18)

Linearizing the second consumption equation yields

ĈW,t =
1 + χ0

1−τ∗

χ0 + ϕ

(̂wt
pt

)
+

τ∗

1− τ∗
χ0

χ0 + ϕ
∆̂t . (B.4.19)

Finally, by linearizing the economy-wide resource constraint (equation (B.4.13)) with Q̂t = Ĉt
and solving jointly with equation (B.4.18) and equation (B.4.19), we can express gaps in real
wage, labor supply, and workers’ consumption as functions of gaps in asset price and price
dispersion as follows.

(̂wt
pt

)
=

τ∗(χ0 + ϕ)

τ∗ −
(
χ0 + ϕ

1−τ∗

)Q̂t +
τ∗
(
χ0 + ϕ

1−τ∗

)
τ∗ −

(
χ0 + ϕ

1−τ∗

)∆̂t ,

x̂t ≡ N̂W,t =
τ∗
(

1− ϕ
1−τ∗

)
τ∗ −

(
χ0 + ϕ

1−τ∗

)Q̂t +
τ∗

τ∗ −
(
χ0 + ϕ

1−τ∗

)∆̂t ,

ŷt ≡ ĈW,t =
τ∗
(

1 + χ0

1−τ∗

)
τ∗ −

(
χ0 + ϕ

1−τ∗

)Q̂t +
τ∗

1−τ∗

τ∗ −
(
χ0 + ϕ

1−τ∗

) .∆̂t

(B.4.20)

Plugging equation (B.4.16) into the second-order approximation equation (equation (B.4.15)),
we get the following expression

Ut − Ū = −(1− τ∗)
−(χ0+1)ϕ

χ0+ϕ ∆̂t −
1

2
(1− τ∗)

−(χ0−1)ϕ

χ0+ϕ

( 1

τ∗
+ χ0

)
(1− τ∗)

−2ϕ
χ0+ϕ (x̂t)

2

−
1

2
(1− τ∗)

−(χ0−1)ϕ

χ0+ϕ

( 1

τ∗
+

ϕ

1− τ∗
)

(1− τ∗)
2χ0
χ0+ϕ (ŷt)

2 + (1− τ∗)
−(χ0−1)ϕ

χ0+ϕ
1

τ∗
(1− τ∗)

χ0−ϕ
χ0+ϕ x̂t ŷt

(B.4.21)

= −(1− τ∗)
−(χ0+1)ϕ

χ0+ϕ ∆̂t −
1

2
(1− τ∗)

−(χ0+1)ϕ

χ0+ϕ

( 1

τ∗
+ χ0

)
(x̂t)

2

−
1

2
(1− τ∗)

χ0(1−ϕ)

χ0+ϕ

(1− τ∗

τ∗
+ ϕ

)
(ŷt)

2 + (1− τ∗)
χ0(1−ϕ)

χ0+ϕ
1

τ∗
x̂t ŷt .



145

Finally by plugging equation (B.4.20) into equation (B.4.21), we get the following expression
for Ut − Ū:

Ut − Ū = γ̃∆∆̂t + γ̃q(Q̂t)
2 + h.o.t with γ̃∆ = −(1− τ∗)

−(χ0+1)ϕ

χ0+ϕ and, (B.4.22)

γ̃q =−
1

2
(1− τ∗)

−(χ0+1)ϕ

χ0+ϕ

( 1

τ∗
+ χ0

) τ∗
(

1− ϕ
1−τ∗

)
τ∗ −

(
χ0 + ϕ

1−τ∗
)
2

−
1

2
(1− τ∗)

χ0(1−ϕ)

χ0+ϕ

(1− τ∗

τ∗
+ ϕ

) τ∗
(

1 + χ0

1−τ∗
)

τ∗ −
(
χ0 + ϕ

1−τ∗
)
2

+ (1− τ∗)
χ0(1−ϕ)

χ0+ϕ
1

τ∗

 τ∗
(

1− ϕ
1−τ∗

)
τ∗ −

(
χ0 + ϕ

1−τ∗
)
 τ∗

(
1 + χ0

1−τ∗
)

τ∗ −
(
χ0 + ϕ

1−τ∗
)
 ,

(B.4.23)

where γ̃∆ < 0 and γ̃q < 0 with our calibrated parameters.

Loss function Finally, we express dynamic loss function as

L0({Q̂t ,∆t}t≥0) = E0

∫ ∞
0

(
Q̂2
t +

γ̃∆

γ̃q
∆t

)
dt, (B.4.24)

and furthermore, we know the following relation from Woodford (2003).

∆̂t =
ε

2Θ
Vari(pt(i)), and

∫ ∞
0

e−ρtVari(pt(i))dt =
1

δ(δ + ρ)

∫ ∞
0

e−ρtπ2
t dt. (B.4.25)

By plugging equation (B.4.25) into equation (B.4.24) and expressing the loss function L as
a function of {Q̂t} and {πt}, we finally obtain

L(({Q̂t , πt}t≥0) = E0

∫ ∞
0

(
Q̂2
t + Γπ2

t

)
dt, with Γ ≡

1

δ(δ + ρ)

ε

2Θ

γ̃∆

γ̃q
> 0, (B.4.26)

which is equation (2.4.1).
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Appendix C

Appendices to Chapter 3

C.1 Derivation and Proofs for 3

C.1.1 Detailed Derivations in Section 3.2

Detailed Derivations in Section 3.2.4

An intermediate firm ν maximizes the discounted stream of profits

max

∞∑
j=0

Et
[
θjQt,t+j ·

[
(1 + ζF ) · Pt+j(ν)Yt+j(ν)−Wt+j(ν)Nt+j(ν)− RKt+jPKt+j−1Kt+j−1(ν)

]]
,

(C.1.1)

where Qt,t+j is the firm’s stochastic discount factor between periods t and t + j and ζF is a
production subsidy. Solving for the optimal resetting price at period t P ∗t , we obtain

P ∗t
Pt

=

Et

[∑∞
j=0 θ

jQt,t+j

(
Pt+j
Pt

)ε+1

Yt+j

(
(1 + ζF )−1ε

ε− 1

)(
MCt+j |t(ν)

Pt+j

)]

Et
[∑∞

j=0 θ
jQt,t+j

(
Pt+j
Pt

)ε
Yt+j

] , (C.1.2)

where subindex t+ j |t represents the value of the variable conditional on the firm having reset
its price last time at period t, and MCt+j |t(ν)/Pt is the real marginal cost of production,
defined as1

MCt+j |t(ν)

Pt+j
=

(
R̃Kt+j ·

PKt+j
Pt+j

)α(
Wt+j |t(ν)

Pt+jAt+j

)1−α

. (C.1.3)

1It can be derived using the optimal demand formula for labor and capital (equation (3.2.14)).
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C.1.2 Detailed Derivation for Aggregation

Using equations equation (3.2.9a), equation (3.2.10), equation (3.2.11) and equation (C.1.3)
we can express firm-specific marginal costs as a function of the aggregate variables as in

MCt+j |t(ν)

Pt+j
= (1− α)

1−α
η+α

(
Ct+j

At+jN̄t+j

) η(1−α)
η+α

(
Yt+j

At+jN̄t+j

) 1−α
η+α

(
R̃Kt+j

PKt+j
Pt+j

)α η+1
η+α (

P ∗t
Pt+j

)− ε(1−α)
η+α

.

(C.1.4)

Similarly, we integrate loan and labor demand across the continuum of firms and obtain the
following expressions for the loan and labor aggregation conditions.

Kt

At−1N̄t−1

= α(1− α)
1−α
η+α · GAt · GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α
(
R̃Kt

PKt
Pt

)−( η(1−α)
η+α )

∆t ,

(C.1.5)

Nt

N̄t
= (1− α)( η

η+α)
(
Ct

AtN̄t

)−α( η
η+α)( Yt

AtN̄t

)( η
η+α)(

R̃Kt
PKt
Pt

)α( η
η+α)

∆
η
η+1

t , (C.1.6)

where ∆t is a measure of price-dispersion that can be recursively defined as

∆t = (1− θ)

(
P ∗t
Pt

)−ε( η+1
η+α)

+ θΠ
ε( η+1

η+α)
t ∆t−1. (C.1.7)

Plugging the equation (C.1.4) and the expressions for Qt+j into the optimal resetting price
equation (equation (C.1.2)), we obtain2

(
P ∗t
Pt

)1+ε
(

1−α
η+α

)

=

Et

∑∞
j=0 (θβ)j (1− α)

1−α
η+α

(
Ct+j

At+j N̄t+j

)−α η+1
η+α
(

Yt+j

At+j N̄t+j

) η+1
η+α
(
Pt+j
Pt

)ε η+1
η+α

(
R̃Kt+j

PKt+j
Pt+j

)α η+1
η+α


Et

[∑∞
j=0 (θβ)j

(
Pt+j
Pt

)ε−1( Ct+j

At+j N̄t+j

)−1( Yt+j

At+j N̄t+j

)] .

(C.1.8)
We can simplify this expression as

P ∗t
Pt

=

(
Ft
Ht

) 1

1+ε( 1−α
η+α)

, (C.1.9)

2We assume (1+ςF )−1ε
ε−1 = 1 at the efficient steady state
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where Ft and Ht are recursively written as

Ft = (1− α)
1−α
η+α

(
Ct

AtN̄t

)−α( η+1
η+α

)(
Yt

AtN̄t

) η+1
η+α
(
R̃Kt

PKt
Pt

)α( η+1
η+α

)
+ θβEt

[
Π
ε
(
η+1
η+α

)
t+1 Ft+1

]
,

Ht =

(
Ct

AtN̄t

)−1 Yt

AtN̄t
+ θβEt

[
Πε−1
t+1Ht+1

]
.

(C.1.10)

Using equation (3.2.13) and equation (C.1.10), we obtain the following equilibrium condition
for price-resetting in our framework.

Ft
Ht

=

(
1− θ

1− θΠε−1
t

)( 1
ε−1 )[1+ε( 1−α

η+α)]
. (C.1.11)

We now rewrite equation (3.2.9b) as

1 = β · Et

 RSt+1

Πt+1GAt+1GN
·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 .

Since RSt+1 depends on bonds return RHBt+1 and loans return RKt+1 while shares of savings that
flow into bonds (1− λKt ) and loans (λKt ) are endogenous, we start from analyzing RHBt+1.
We can rewrite the aggregate return indices as functions of the bond yields {Y Df

t }Ff=1 as

Rjt =

F−1∑
f=0

λj,f+1
t−1

(
Y Df

t

)−f(
Y Df+1

t−1

)−(f+1)
, j ∈ {H,G, CB},

and also the household’s bond portfolio share as

λHB,ft =



Et

 β · z ft
Πt+1 · GAt+1 · GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) · (Y Df−1
t+1

)−(f−1)(
Y Df

t

)−f


ΦB
t



κB

, ∀f ,

ΦB
t =

 F∑
j=1

Et

 β · z jt
Πt+1 · GAt+1 · GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) · (Y Dj−1
t+1

)−(j−1)(
Y Dj

t

)−j

κB

1
κB

.

Now we find the equilibrium condition for the bond shares of the agents. Using bond market
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equilibrium condition (equation (3.2.16)), we obtain

λHB,ft =
BG,ft + BCB,ft

BGt + BCBt
=
λG,ft BGt + λCB,ft BCBt

BGt + BCBt
. (C.1.12)

We can rearrange the previous expression as

λCB,ft = λHB,ft +
(
λHB,ft − λG,ft

)
·
BGt
BCBt

. (C.1.13)

Summing across maturities from f = 2 to F , and using
∑F

f=2 λ
j,f
t = 1−λj,1t , j ∈ {H,G, CB}

we obtain

F∑
f=2

λCB,ft = 1− λHB,1t +
(
λG,1t − λHB,1t

)
·
BGt
BCBt

. (C.1.14)

Plugging equation (C.1.14) into equation (C.1.13) and after some rearrangements, we obtain

λCB,ft =
λHB,ft

(
λCB,1t − λG,1t

)
− λG,ft

(
λCB,1t − λHB,1t

)
λHB,1t − λG,1t

, f > 1. (C.1.15)

Now, we can obtain an expression for central bank’s bond holdings using equation (C.1.14)
as

BCBt =

(
λHB,1t − λG,1t

λCB,1t − λHB,1t

)
· BGt . (C.1.16)

Combining equation (3.2.16) and equation (C.1.16) we obtain

BHt
AtN̄t

= −
(
λCB,1t − λG,1t

λCB,1t − λHB,1t

)
·
BGt
AtN̄t

. (C.1.17)

Combining Lt = λKt St and B
H
t = (1− λKt )St with Lt = PKt Kt , we obtain

BHt
AtN̄tPt

=
1

GAt · GN

(
1− λKt
λKt

)(
PKt
Pt

)(
Kt

At−1N̄t−1

)
. (C.1.18)

Using BHt = −
(
BGt + BCBt

)
, equation (C.1.16), and bond-market equilibrium condition (equa-

tion (3.2.16)), we get the following equation, which is equation (2.3.18).

−
(
λCB,1t − λG,1t

λCB,1t − λHB,1t

)
·

BGt
AtN̄tPt

=
1

GAt · GN

(
1− λKt
λKt

)(
PKt
Pt

)(
Kt

At−1N̄t−1

)
. (C.1.19)
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Conventional Policy in Section 3.2.7

Using bond market equilibrium (equation (3.2.16)) with
∑F

f=2 λ
HB,f
t = 1− λHB,1t , we get

BHt = −
∑F

i=2

(
BG,it + BCB,it

)
1− λHB,1t

. (C.1.20)

With equation (C.1.20), we obtain the equilibrium set of equations:

λHB,ft

1− λHB,1t

=

BG,ft

AtN̄tPt
+
BCB,f

AN̄P∑F
i=2

(
BG,it

AtN̄tPt
+
BCB,i

AN̄P

) , ∀f > 1. (C.1.21)

Combining equation (C.1.18) and equation (C.1.20) yields the following equilibrium equation:

−

∑F
i=2

(
BG,it

AtN̄tPt
+
BCB,i

AN̄P

)
1− λHB,1t

=
1

GAt · GN

(
1− λKt
λKt

)(
PKt
Pt

)(
Kt

At−1N̄t−1

)
, (C.1.22)

where normalized bond positions of the central bank are exogenously given.

Finally, combining equation (C.1.21) and equation (C.1.22) we finally obtain

−

(
BG,ft

AtN̄tPt
+
BCB,f

AN̄P

)
·
(
λHB,ft

)−1
=

1

GAt · GN

(
1− λKt
λKt

)(
PKt
Pt

)(
Kt

At−1N̄t−1

)
, ∀f > 1.

(C.1.23)

Steady-State Derivations in Section 3.3.1

In the steady state, the central bank decides the level of bond holdings of each maturity BCB,f

that it wants to hold. It can be calibrated to match the data of central bank’s balance sheet.
Given

{
λCB,f

}
and the size of its portfolio BCB, which is ζB fraction of total government

bond issuance satisfying BCB = ζCB · BG, we can obtain an steady state expression for the
household bond shares as

λHB,f =
λG,f + λCB,f · ζB

1 + ζB
. (C.1.24)

From the definition of RHB we have

F∑
f=1

λHB,f ·
(
Rf

RHB

)
= 1.
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together with equation (C.2.7) and equation (C.2.8) rearranged as:

λHB,f =

z f ·
Rf

RHB

Φ̃B


κ

, ∀f , with Φ̃B =

[
F∑
j=1

[
z j ·

Rj

RHB

]κ]1/κ

. (C.1.25)

The above equation (C.1.24) and equation (C.1.25) jointly determine the steady state yields
and household shares. Unfortunately, there is no analytical expression for them and we have
to solve for the steady state values numerically. How we proceed, relying on simple iterations:

1. Assume some initial guess for
{
Rf ,guess/RHB

}F
f=1

2. Construct Φ̃B,old using previous guess with Φ̃B in equation (C.1.25)

3. Update estimates on
{
Rf /RBH

}F
f=1

with the following rules

R1,new

RHB
=

1−
F∑
f=2

λHB,f
(
Rf

RBH

)
λHB,1

,
Rf ,new

RBH
=
(
λHB,f

) 1
κ
(
z f
)−1

Φ̃B,old , f > 1

4. Construct new household shares λHB,f ,new by plugging
{
Rf ,new/RHB

}F
f=1

into equa-
tion (C.1.25). Compute the discrepancy between these shares and the true ones found
in equation (C.1.24). If the error is big, set Rf ,guess/RHB = Rf ,new/RHB and repeat
from step 2. until convergence.

Using equation (C.2.32) and equation (C.2.43) we obtain

RHB =
β−1Π · GA · GN

1− λK −
λK

1− λK RK. (C.1.26)

We can rewrite RG as

RG = Ξ · RHB, Ξ =

F∑
f=1

λG,f ·
(
Rf

RHB

)
,

and using equation (C.1.26) it becomes

RG = Ξ ·
[
β−1Π · GA · GN

1− λK −
λK

1− λKR
K

]
. (C.1.27)

We obtain an expression for price dispersion as

∆ =

[
1− θ

1− θΠε( η+1
η+α)

](
1− θΠε−1

1− θ

)( ε
ε−1 )( η+1

η+α)
. (C.1.28)
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From the capital producer’s optimization (equation equation (C.2.44)), we obtain an expres-
sion for PK

PK

P
= β−1 · GA · GN − (1− δ). (C.1.29)

The equilibrium government bonds are obtained from its budget constraint (equation (C.2.20))
and written as

BG

P N̄A
= −

(
1−

RG

Π · GA · GN

)−1 [
ζG + ζF − ζT

]( Y

AN̄

)
. (C.1.30)

The model needs government to be a borrower, so BG < 0 at steady-state. Also, we would
like to match the data in which the government runs primary deficit ζG + ζF − ζT > 0. The
only way to achieve that is by having RG < Π · GA · GN. Plugging BCB = ζCB · BG and
equation (C.1.29) into equation (C.1.19) yields

K

AN̄
= −

(
1 + ζCB

)
· GA · GN ·

(
1

β−1 · GA · GN − (1− δ)

)(
λK

1− λK

)
·
(
BG

AN̄P

)
.

(C.1.31)

By plugging equation (C.1.30) into the previous equation (C.1.31), we obtain

K

AN̄
= ξK

(
1−

RG

Π · GA · GN

)−1(
λK

1− λK

)(
Y

AN̄

)
, (C.1.32)

with ξK =
(

1 + ζCB
) [
ζG + ζF − ζT

]( β · GA · GN
GA · GN − β(1− δ)

)
. (C.1.33)

By plugging the previous equation (C.1.32) into the market clearing condition (equation (C.2.31)),
we obtain the following relation between consumption and output.

C

AN̄
=

[
(1− ζG)− ξC

(
1−

RG

Π · GA · GN

)−1(
λK

1− λK

)](
Y

AN̄

)
, (C.1.34)

with ξC =

[
1−

1− δ
GA · GN

]
ξK.

The steady state representation of firms’ pricing (equation (C.2.14) and equation (C.2.15))
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can be written as

F = ξF

[
(1− ζG)− ξC

(
1−

RG

ΠGAGN

)−1(
λK

1− λK

)]−α( η+1
η+α)(

Y

AN̄

)(1−α)( η+1
η+α) (

RK
)α η+1

η+α ,

(C.1.35)

with ξF = (1− α)
1−α
η+α

[
1− θβΠε η+1

η+α

]−1
(

(1 + ζF )−1ε

ε− 1

)[
GA · GN − (1− δ)β

Π · GA · GN

]α( η+1
η+α)

,

H =
[
1− θβΠε−1

]−1

[
(1− ζG)− ξC

(
1−

RG

Π · GA · GN

)−1(
λK

1− λK

)]−1

. (C.1.36)

Plugging equation (C.1.35) and equation (C.1.36) into firms’ optimal price-resetting equation
(equation (C.1.11)) and rearranging the resulting equation, we obtain

Y

AN̄
= ξY ·

[
(1− ζG)− ξC

(
1−

RG

Π · GA · GN

)−1(
λK

1− λK

)]−( η
η+1 ) (

RK
)−( α

1−α)
, (C.1.37)

with ξY =
(
ξF
)−( η+α

(1−α)(η+1) ) [
1− θβΠε−1

]−( η+α
(1−α)(η+1) )

(
1− θ

1− θ · Πε−1

)( η+α+ε(1−α)
(ε−1)(1−α)(η+1) )

. (C.1.38)

Finally, plugging equation (C.1.32), equation (C.1.34) and equation (C.1.37) into loan ag-
gregation equation and rearranging properly, we obtain the following relation.

ξR
K

= RK
(

1−
RG

Π · GA · GN

)−1(
λK

1− λK

)
(C.1.39)

= α(1− α)
1−α
η+α · GA · GN · ∆

(
GA · GN − (1− δ)β

Π · GA · GN

)−( η(1−α)
η+α ) (

ξK
)−1 (

ξY
)(1−α)( η+1

η+α)
.

As ξR
K
is constant, after plugging equation equation (C.1.27) into equation (C.1.39) and

rearranging the equation, we obtain

RK =

[
1−

ΞξR
K

Π · GA · GN

]−1 [(
1− λK

λK

)
−
β−1Ξ

λK

]
ξR

K

. (C.1.40)

Finally, by plugging equation (C.1.40) into equation (C.1.26), we get

RHB =
β−1Π · GA · GN

1− λK −

[
1−

Ξ · ξRK

Π · GA · GN

]−1 [
1−

β−1Ξ

1− λK

]
ξR

K

. (C.1.41)

Equations equation (C.1.40) and equation (C.1.41) plugged into equation (C.2.40) form a
non-linear equation of the unknown λK. We obtain its value by relying on computational
methods, and then we can back out the rest of the steady state variables. Once we back out
RK and λK, we can back out RHB using equation (C.1.26). After that, we can then simply
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back out bond returns as

Rf = RHB ·
(
Rf

RHB

)
.

Now that we have found the bond returns, we can recursively obtain the bond yields using

Y Df =
[
Rf ·

(
Y Df−1

)f−1
]1/f

,

where Y D0 = 1, which we use to get started with the recursion from f = 1 to F .

Log-linearization

We start by log-linearizing the equations that are common to the conventional policy model
and the QE one, then derive the ones that are different.

Log-linearize equations equation (C.2.26), equation (C.2.27) and equation (C.2.28) to obtain

ĝat = ε̂At , ζ̂
G
t =

aG

1 + aG
· ûGt , ζ̂Tt =

aT

1 + aT
· ûTt . (C.1.42)

Equations (equation (C.2.1) and equation (C.2.2)) with the help of equation (C.1.42) can
be linearized as

ĉt =

[(
1− ζG

)
·
Y

C

] [
ŷt −

1

1 + aG
· ûGt

]
+

[
1− δ

GA · GN
K

C

]
(k̂t − ε̂At )−

K

C
k̂t+1, (C.1.43)

ĉt = Et
[
ĉt+1 −

(
r̂St+1 − π̂t+1

)]
, (C.1.44)

where I used equation (C.1.42) to solve for ζ̂Gt and ĝat .

Plugging equation (C.1.43) into equation (C.1.44) and using equation (C.2.29), we obtain
the following dynamic IS equation for output ŷt .

ŷt = Et

[
ŷt+1 −

[
(1− ζG)−1(1− δ)

GA · GN ·
K

Y

]
(k̂t − ε̂At ) + (1− ζG)−1

[
1 +

1− δ
GA · GN

]
K

Y
k̂t+1

− (1− ζG)−1K

Y
k̂t+2 − (1− ζG)−1C

Y

(
r̂St+1 − π̂t+1

)
+

1− ρG
1 + aG

· ûGt

]
. (C.1.45)

Linearizing the household’s bond portfolio conditions (equation (C.2.7) and equation (C.2.8))
yields

λ̂HB,ft = κBEt
[
ẑ ft − π̂t+1 − ĝat+1 + ĉt − ĉt+1 − (f − 1)ŷ d

f−1

t+1 + f ŷd
f

t − φ̂Bt
]
, (C.1.46)

where
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φ̂Bt = Et (−π̂t+1 − ĝat+1 + ĉt − ĉt+1) +

F∑
j=1

[
βz j

(
Y Dj−1

)−(j−1)

Π · GA · GN ·ΦB (Y Dj)
−j

]κB
ẑ jt

+

F∑
j=1

j

[
βz j

(
Y Dj−1

)−(j−1)

Π · GA · GN ·ΦB (Y Dj)
−j

]κB
ŷ d

j

t (C.1.47)

−
F−1∑
j=0

j

[
βz j+1

(
Y Dj

)−j
Π · GA · GN ·ΦB (Y Dj+1)

−(j+1)

]κB
Et(ŷ d

j

t+1). (C.1.48)

Combining equation (C.1.46) and equation (C.1.48), we obtain the following expression
for λ̂HB,ft :

λ̂HB,ft =

F∑
j=1

Ψf j
1 ẑ

j
t +

F∑
j=1

Ψf j
2 ŷ d

j

t +

F∑
j=1

Ψf j
3 Et

[
ŷ d

j

t+1

]
, (C.1.49)

where

Ψf j
1 =



1−

[
β · z j

(
Y Dj−1

)−(j−1)

Π · GA · GN ·ΦB (Y Dj)
−j

]κB · κB , if f = j ,

−

[
β · z j

(
Y Dj−1

)−(j−1)

Π · GA · GN ·ΦB (Y Dj)
−j

]κB
· κB , if f 6= j ,

Ψf j
2 = j ·Ψf j

1 ,

Ψf j
3 =



−j ·

1−

[
β · z j+1

(
Y Dj

)−j
Π · GA · GN ·ΦB (Y Dj+1)

−(j+1)

]κB · κB , if j = f − 1,

j ·

[
β · z j+1

(
Y Dj

)−j
Π · GA · GN ·ΦB (Y Dj+1)

−(j+1)

]κB
· κB , if j 6= f − 1,

0 , if j = F .

We can put the system of F equation in matrix format as

−−→
λ̂HBt = Ψ1 ·

−→
ẑ t + Ψ2 ·

−→
ŷ d t + Ψ3 · Et

[−→
ŷ d t+1

]
, (C.1.50)

where {Ψ1,Ψ2,Ψ3} are matrices containing elements of
{

Ψf j
1 ,Ψf j

2 ,Ψf j
3

}
, with f representing

rows and j columns.
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Linearizing equations equation (C.2.21) and equation (C.2.29) yields the following expression:

−→
λ̂Gt = Ξ̃ ·

−→
ˆ̃uBt ,
−→
ˆ̃uBt = T B ·

−→
ûBt .

where Ξ̃ is a matrix whose elements Ξ̃f j (f -rows, j-columns) are

Ξ̃f j =


0 , if f = 1 & j = f ,

1− λG,f , if f ≥ 2 & j = f ,

−λG,j , if j 6= f ,

and similarly T B is a matrix containing elements τBf j from equation (C.2.23). By defining
Ξ = Ξ̃ · T B, we can combine the previous two equations to obtain

−→
λ̂Gt = Ξ ·

−→
ûBt . (C.1.51)

Linearizing equation (C.2.25) with the help ofequation (C.1.51) yields

−→
b̂Gt = Ξ ·

−→
ûBt +

−→
1 Fx1 · b̂Gt , (C.1.52)

where
−→
1 Fx1 is a unit vector of size F .

Log-linearizing the household’s stochastic discount factor yields the following formula.

q̂t,t+1 = ĉt − ĉt+1 − π̂t+1 − ĝat+1. (C.1.53)

Log-linearizing ΦS
t in the household’s portfolio between loans and bonds (equation (C.2.41)),

we obtain

φ̂St =Etqt,t+1 +

(
zBRHB

)κS
(zBRHB)

κS
+ (zKRK)

κS
Et r̂HBt+1 +

(
zKRK

)κS
(zBRHB)

κS
+ (zKRK)

κS

(
ẑKt + Et

[
r̂Kt+1

])
.

(C.1.54)

Log-linearizing the household’s portfolio decision between loans and bonds (equation (C.2.40))
and making use of the previous expression (equation (C.1.54)), we obtain

λ̂Kt = κS ·

[ (
zBRHB

)κS
(zBRHB)

κS
+ (zKRK)

κS

] (
ẑKt + Et

[
r̂Kt+1 − r̂HBt+1

])
= κS

(
1− λK

) (
ẑKt + Et

[
r̂Kt+1 − r̂HBt+1

])
. (C.1.55)

By linearizing the formula for the effective savings rate of the household (equation (C.2.12)),
we obtain

r̂St =
λK
(
RK − RHB

)
RS

λ̂Kt−1 +
(1− λK)RHB

RS
r̂HBt +

λKRK

RS
r̂Kt . (C.1.56)
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Log-linearizing the effective bond rates (equation (C.2.11)) of household, government, and
the central bank yields

r̂ jt =

F∑
f=1

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )
−f ·

[
λ̂j,ft−1 − (f − 1)ŷ d

f−1

t + f ŷd
f

t−1

]
, j ∈ {HB,G, CB} ,

(C.1.57)

with which we can express these equations on matrix format as

r̂ jt = Ψj,4 ·
−−→
λ̂jt−1 −Ψj,5 ·

−→
ŷ d t + Ψj,6 ·

−−−→
ŷ d t−1 , j ∈ {HB,G, CB} , (C.1.58)

where
{

Ψj,4,Ψj,5,Ψj,6
}
are 1xF -sized matrices whose elements are defined as follows.

Ψj,4
1f =

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )
−f ,

Ψj,5
1f =


λj,f+1

(
Y Df

)−f
Rj (Y Df+1)

−(f+1)
f , if f < F, j ∈ {HB,G, CB} ,

0 , if f = F,

Ψj,6
1f =

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )
−f f .

By plugging equation (C.1.51) into r̂G in equation (C.1.58), we obtain

r̂Gt = ΨG,4 · Ξ ·
−−→
ûBt−1 −ΨG,5 ·

−→
ŷ d t + ΨG,6 ·

−−−→
ŷ d t−1. (C.1.59)

By plugging equation (C.1.50) into r̂HB in equation (C.1.58), we obtain

r̂HBt = ΨHB,4Ψ1 ·
−−→
ẑt−1 +

[
ΨHB,4Ψ2 + ΨHB,6

]
·
−−−→
ŷ d t−1 + ΨHB,4Ψ3 · Et−1

[−→
ŷ d t

]
−ΨHB,5 ·

−→
ŷ d t .

(C.1.60)

Taking the expectation operator Et on the previous equation (C.1.60), we obtain

Et
[
r̂HBt+1

]
= ΨHB,4Ψ1 ·

−→
ẑt +

[
ΨHB,4Ψ2 + ΨHB,6

]
·
−→
ŷ d t +

[
ΨHB,4Ψ3 −ΨHB,5

]
Et
[−−−→
ŷ d t+1

]
.

(C.1.61)

By plugging equation (C.1.55) and equation (C.1.61) into equation (C.1.56), we now obtain
the expected effective savings rate as follows.3

Et
[
r̂St+1

]
= Ψ7−→ẑ t + Ψ8

−→
ŷ d t + Ψ9Et

[−−−→
ŷ d t+1

]
+ Ψ10r̂Kt+1 + Ψ11ẑKt , (C.1.62)

3Since r̂Kt+1 is determined at quarter t, thus Et(r̂Kt+1) = r̂Kt+1 holds.
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where

Ψ7 = ΨHB,4Ψ1

[
(1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ8 =
[
ΨHB,4Ψ2 + ΨHB,6

] [(1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ9 =
[
ΨHB,4Ψ3 −ΨHB,5

] [(1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ10 =

[
1 + κS(1− λK)

]
λKRK − κS(1− λK)λKRHB

RS
,

Ψ11 =
κSλK(1− λK)

(
RK − RHB

)
RS

.

Plugging back the expression of the household’s expected bonds rate (equation (C.1.61))
into her portfolio decision between loans and bonds (equation (C.1.55)), we obtain

λ̂Kt = κS
(

1− λK
) (
ẑKt + r̂Kt+1

)
−Ψ12 ·

−→
ẑt −Ψ13 ·

−→
ŷ d t −Ψ14 · Et

[−−−→
ŷ d t+1

]
, (C.1.63)

where

Ψ12 = κS(1− λK)ΨHB,4Ψ1,

Ψ13 = κS(1− λK)
[
ΨHB,4Ψ2 + ΨHB,6

]
,

Ψ14 = κS(1− λK)
[
ΨHB,4Ψ3 −ΨHB,5

]
.

If we linearize loan aggregation equation(equation (C.2.19)), we obtain4

k̂t = ĝat +

(
η + 1

η + α

)
ŷt −

(
η(1− α)

η + α

)
Et
[
q̂t,t+1 + r̂Kt+1 + p̂Kt − ĉt

]
. (C.1.64)

By plugging equation (C.1.53) into equation (C.1.64) and using equation (C.1.42) with
rearranging, we obtain

pKt =

(
η + 1

η(1− α)

)
ŷt −

(
η + α

η(1− α)

)[
k̂t − ε̂At

]
+ Et [ĉt+1 + π̂t+1]− r̂Kt+1. (C.1.65)

4We have the first-order price dispersion ∆̂t , generated from the positive trend inflation. We ignore its roles
in most cases other than the welfare derivation. For this issue, see Woodford (2003), Coibion et al. (2012),
and Carreras et al. (2016).
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Combining equation (C.2.29), equation (C.1.43), and equation (C.1.65) we obtain

pKt =

(
η + 1

η(1− α)

)
ŷt −

(
η + α

η(1− α)

)[
k̂t − ε̂At

]
+

[
aG

1 + aG
Y

C

] [
Et [ŷt+1]−

ρG
1 + aG

ûGt

]
+

[
1− δ

GA · GN
K

C

]
k̂t+1 −

K

C
Et
[
k̂t+2

]
+ Et [π̂t+1]− r̂Kt+1. (C.1.66)

If we linearize the supply block (equation (C.2.14), equation (C.2.15), and equation (C.2.16)),
we obtain

f̂t =
[

1− θβΠε( η+1
η+α)

]( η + 1

η + α

)[
ŷt + αEt

[
q̂t,t+1 + r̂Kt+1 + p̂Kt − ĉt

]]
+ θβΠε( η+1

η+α)Et
[
ε

(
η + 1

η + α

)
π̂t+1 + f̂t+1

]
,

(C.1.67)

ĥt =
[
1− θβΠε−1

]
[ŷt − ĉt ] + θβΠε−1Et

[
(ε− 1)π̂t+1 + ĥt+1

]
, (C.1.68)

f̂t − ĥt =

[
1 + ε

(
1− α
η + α

)](
θΠε−1

1− θΠε−1

)
π̂t . (C.1.69)

Plugging equation (C.1.64) into equation (C.1.70) and using equation (C.1.42), we obtain

f̂t =
[

1− θβΠε( η+1
η+α)

] η + 1

η(1− α)

[
ŷt − α ·

(
k̂t − ε̂At

)]
+ θβΠε( η+1

η+α)Et
[
ε

(
η + 1

η + α

)
π̂t+1 + f̂t+1

]
.

(C.1.70)

Plugging equation (C.1.43) into equation (C.1.68)

ĥt =
[
1− θβΠε−1

] [ [
1− (1− ζG)

Y

C

]
ŷt +

[(
1− ζG

) Y
C

]
ûGt

1 + aG
−
[

1− δ
GA · GN

K

C

]
(k̂t − ε̂At )

+
K

C
k̂t+1

]
+ θβΠε−1Et

[
(ε− 1)π̂t+1 + ĥt+1

]
. (C.1.71)

Linearizing the government’s budget constraint (equation (C.2.20)) yields

b̂Gt =
RG

Π · GA · GN
[
r̂Gt − π̂t − ĝat + b̂Gt−1

]
−
[
ζG + ζF − ζT

]( Y

B/P

)[
ŷt +

(
ζG

ζG + ζF − ζT

)(
aG

1 + aG

)
ûGt (C.1.72)

−
(

ζT

ζG + ζF − ζT

)(
aT

1 + aT

)
ûTt

]
. (C.1.73)

Using the steady state equilibrium condition (equation (C.1.30)) with equation (C.1.42)
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and equation (C.1.59), we can express the previous equation (C.1.73) as

b̂Gt =
RG

Π · GA · GN

[
ΨG,4 · Ξ ·

−−→
ûBt−1 −ΨG,5 ·

−→
ŷ d t + ΨG,6 ·

−−−→
ŷ d t−1 − π̂t − ε̂At + b̂Gt−1

]
+

(
1−

RG

ΠGAGN

)[
ŷt +

(
ζG

ζG + ζF − ζT

)(
aG

1 + aG

)
ûGt −

(
ζT

ζG + ζF − ζT

)(
aT

1 + aT

)
ûTt

]
.

(C.1.74)

Linearizing the labor aggregation condition (equation (C.2.18)) yields

n̂t = −α
(

η

η + α

)
ĉt +

(
η

η + α

)
ŷt + α

(
η

η + α

)[
Et(q̂t,t+1) + r̂Kt+1 + p̂Kt

]
. (C.1.75)

Linearizing the capital producer’s optimization condition (equation (C.2.13)) yields

0 = Et
[
q̂t,t+1 + π̂t+1 +

(
PK/P

1− δ + PK/P

)
p̂Kt+1

]
. (C.1.76)

By plugging equation (C.1.44) and equation (C.1.53) into the previous equation (C.1.76)
and rearranging, we get

Et
[
r̂St+1 − π̂t+1

]
=

(
PK/P

1− δ + PK/P

)
Et
[
p̂Kt+1

]
. (C.1.77)

Plugging expressions on the effective savings rate (equation (C.1.62)) and the rental price of
capital (equation (C.1.66)) into equation (C.1.77) we obtain

r̂Kt+1 =−Ψ15 ·
−→
ẑt −Ψ16ẑKt −Ψ17

−→
ŷ d t −Ψ18Et

[−−−→
ŷ d t+1

]
+ Ψ19Et [π̂t+1] + Ψ20Et [π̂t+2]

+ Ψ21Et [ŷt+1] + Ψ22Et [ŷt+2]−Ψ23k̂t+1

+ Ψ24Et
[
k̂t+2

]
−Ψ25Et

[
k̂t+3

]
−Ψ26ûGt −Ψ20Et

[
r̂Kt+2

]
, (C.1.78)

where we defined

Ψ15 =
(

Ψ10
)−1

Ψ7,Ψ16 =
(

Ψ10
)−1

Ψ11,Ψ17 =
(

Ψ10
)−1

Ψ8,Ψ18 =
(

Ψ10
)−1

Ψ9,Ψ19 =
(

Ψ10
)−1

,

Ψ20 =
(

Ψ10
)−1

(
PK/P

1− δ + PK/P

)
,Ψ21 = Ψ20

(
η + 1

η(1− α)

)
,Ψ22 = Ψ20

[
aG

1 + aG
·
Y

C

]
,

Ψ23 = Ψ20

(
η + α

η(1− α)

)
,Ψ24 = Ψ20

[
1− δ

GA · GN ·
K

C

]
,Ψ25 = Ψ20K

C
,Ψ26 = Ψ22 (ρG)2

1 + aG
.

Finally, plugging the effective savings rate (equation (C.1.62)) into the Euler equation (equa-
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tion (C.1.45)), we get

ŷt = Et
[
ŷt+1 + Ψ27π̂t+1 −Ψ28−→ẑ t −Ψ29ẑKt −Ψ30

−→
ŷ d t −Ψ31Et

[−−−→
ŷ d t+1

]
−Ψ32r̂Kt+1 −Ψ33(k̂t − ε̂At ) + Ψ34k̂t+1 −Ψ35k̂t+2 + Ψ36ûGt

]
, (C.1.79)

where we defined

Ψ27 = (1− ζG)−1C

Y
,

Ψ28 = Ψ27Ψ7,

Ψ29 = Ψ27Ψ11,

Ψ30 = Ψ27Ψ8,

Ψ31 = Ψ27Ψ9,

Ψ32 = Ψ27Ψ10,

Ψ33 =
(1− ζG)−1(1− δ)

GA · GN
K

Y
,

Ψ34 = (1− ζG)−1

[
1 +

1− δ
GA · GN

]
K

Y
,

Ψ35 = (1− ζG)−1K

Y
,

Ψ36 =
1− ρG
1 + aG

.

Log-linearization: Conventional Policy Specific Derivations

Linearizing bond market equilibrium condition (equation (C.1.23)) using equation (C.1.42),
we obtain

λ̂HB,ft =

(
BG,f

BG,f + BCB,f

)
b̂g,ft + ε̂At +

1

1− λK λ̂
K
t − p̂Kt − k̂t , f ≥ 2. (C.1.80)

From λHB,1t = 1−
∑F

f=2 λ
HB,f
t we obtain

λ̂HB,1t = −
F∑
f=2

λHB,f

λHB,1
λ̂HB,ft . (C.1.81)

We can rearrange the previous expressions (equation (C.1.80) and equation (C.1.81)) in the
matrix form as

Θ1 ·
−−→
λ̂HBt = Θ2 ·

−→
b̂gt + Θ3 · ε̂At −Θ3 · p̂Kt −Θ3 · k̂t + Θ4 · λ̂Kt , (C.1.82)
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where {Θ1, Θ2} are FxF -sized matrices with elements Θ1
j f (row j , column f ) and {Θ3, Θ4}

are Fx1 vectors with j−element Θ3
j1. We define their elements as

Θ1
j f =

1 , if j = f ,

λHB,f

λHB,1
, if j = 1&f > 1,

Θ2
j f =


BG,f

BG,f + BCB,f
, if j > 1&j = f ,

0 , otherwise,

Θ3
j1 =

{
0 , if j = 1,

1 , otherwise,
, Θ4 =

1

1− λK ·Θ
3.

By inverting Θ1 in equation (C.1.82), we can rewrite equation (C.1.82) as

−−→
λ̂HBt = Θ5 ·

−−→
b̂g,ft + Θ6 · ε̂At −Θ6 · p̂Kt −Θ6 · k̂t + Θ7 · λ̂Kt , (C.1.83)

where

Θ5 =
(

Θ1
)−1

Θ2, Θ6 =
(

Θ1
)−1

Θ3, Θ7 =
(

Θ1
)−1

Θ4.

Plugging the government’s bond portfolio (equation (C.1.52)), the household’s loan share
(equation (C.1.63)), and the rental price of capital (equation (C.1.66)) into equation (C.1.83),
we obtain
−−→
λ̂HBt =Θ8b̂Gt −Θ9ŷt −Θ10Et ŷt+1 −Θ6Etπ̂t+1 + Θ11k̂t −Θ12k̂t+1 + Θ13Et k̂t+2 + Θ14r̂Kt+1

−Θ15
−→
ŷ d t −Θ16Et

[−−−→
ŷ d t+1

]
−Θ17−→ẑt + Θ18ẑKt −Θ11ε̂At + Θ19ûGt + Θ20

−→
ûBt ,

(C.1.84)

where we defined

Θ8 = Θ5 · −−→1Fx1, Θ9 = Θ6

(
η + 1

η(1− α)

)
, Θ10 = Θ6

[
aG

1 + aG
·
Y

C

]
, Θ11 = αΘ9,

Θ12 = Θ6

[
1− δ

GA · GN ·
K

C

]
, Θ13 = Θ6K

C
, Θ14 = Θ6 + κS ·

(
1− λK

)
·Θ7, Θ15 = Θ7Ψ13,

Θ16 = Θ7Ψ14, Θ17 = Θ7Ψ12, Θ18 = κS
(

1− λK
)

Θ7, Θ19 = Θ10 ρG
1 + aG

, Θ20 = Θ5Ξ.

By plugging the household’s optimal portfolio across maturities (equation (C.1.50)) into
equation (C.1.84), we obtain

−→
ŷ d t =Θ21b̂Gt −Θ22ŷt −Θ23Et [ŷt+1]−Θ24Et [π̂t+1] + Θ25k̂t −Θ26k̂t+1 + Θ27Et

[
k̂t+2

]
+ Θ28r̂Kt+1 −Θ29Et

−−−→
ŷ d t+1 −Θ30−→ẑt + Θ31ẑKt −Θ32ε̂At + Θ33ûGt + Θ34

−→
ûBt , (C.1.85)
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where we defined

Θ21 =
[
Θ15 + Ψ2

]−1
Θ8,

Θ22 =
[
Θ15 + Ψ2

]−1
Θ9,

Θ23 =
[
Θ15 + Ψ2

]−1
Θ10,

Θ24 =
[
Θ15 + Ψ2

]−1
Θ6,

Θ25 =
[
Θ15 + Ψ2

]−1
Θ11,

Θ26 =
[
Θ15 + Ψ2

]−1
Θ12,

Θ27 =
[
Θ15 + Ψ2

]−1
Θ13,

Θ28 =
[
Θ15 + Ψ2

]−1
Θ14,

Θ29 =
[
Θ15 + Ψ2

]−1 (
Θ16 + Ψ3

)
,

Θ30 =
[
Θ15 + Ψ2

]−1 (
Θ17 + Ψ1

)
,

Θ31 =
[
Θ15 + Ψ2

]−1
Θ18,

Θ32 =
[
Θ15 + Ψ2

]−1
Θ11,

Θ33 =
[
Θ15 + Ψ2

]−1
Θ19,

Θ34 =
[
Θ15 + Ψ2

]−1
Θ20.

Log-linearization: YCC Policy Specific Derivations

Linearizing the Taylor rule for f -maturity bond (equation (3.2.19c)) yields

ŷ d
GP,f

t = γfSP ŷ d
SP,f

t +
(

1− γfSP
) [
γfππ̂t + ε̃Y D

f

t

]
, f ≥ 2. (C.1.86)

We define a (F − 1)× (F − 1) matrix ΓSP with ΓSPf f = γf+1
SP for f = 1 ∼ F − 1 and ΓSPij = 0

for i 6= j . Also we define T Y D(f≥2), a (F − 1)× L matrix with T Y D(f≥2),f ,l = τY Df+1,l (row f , column

l)5 and a vector of Taylor coefficients −→γπ(f≥2) =
[
γ2
π, . . . , γ

F
π

]′
. If we construct such vectors

as
−−−→

ˆydGPt (f≥2) =
[
ŷ d

GP,2

t , . . . , ŷd
GP,F

t

]′
,
−−−→

ˆydSPt (f≥2) =
[
ŷ d

SP,2

t , . . . , ŷd
SP,F

t

]′
, (C.1.87)

then above equation (C.1.86) can be written in vector form as

−−−→
ˆydGPt (f≥2) = ΓSP

−−−→
ˆydSPt (f≥2) + (I − ΓSP ) ·

[−→γπ(f≥2) · π̂t + T Y D(f≥2) ·
−−→
εY Dt

]
, (C.1.88)

where I is the identity matrix of size F − 1. Since
−−−→

ˆydSPt is the yield vector that prevails
in the counterfactual scenario where the current yield is determined by the conventional

5For large F , we reduce the state-space using a fewer number of monetary policy shocks than F .
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monetary policy, it follows equation (C.1.85), expecting that the economy is driven by the
YCC monetary policy. Thus, we can represent its dynamics as

−−−→
ŷ d

SP

t =Θ21b̂Gt −Θ22ŷt −Θ23Et [ŷt+1]−Θ24Et [π̂t+1] + Θ25k̂t −Θ26k̂t+1 + Θ27Et
[
k̂t+2

]
+ Θ28r̂Kt+1 −Θ29Et

[−−−→
ŷ d

SP

t+1

]
−Θ30−→ẑt + Θ31ẑKt −Θ32ε̂At + Θ33ûGt + Θ34

−→
ûBt ,

(C.1.89)

where coefficients Θi for i = 21 ∼ 34 are the same as the conventional policy case, and
−−−→

ˆydSPt

and
−−−→

ˆydGPt are defined as6

−−−→
ˆydGPt = [ŷ d

GP,1

t ,
−−−→

ˆydGPt
′
(f≥2)]′,

−−−→
ˆydSPt = [ŷ d

GP,1

t ,
−−−→

ˆydSPt
′
(f≥2)]′. (C.1.90)

where ŷ d
GP,1

t follows the Taylor rule rule in equation (3.2.19a) and equation (3.2.19b). Now

that
−−−→

ˆydGPt , not
−−−→

ˆydSPt governs agents’ intertemporal decisions, equation (C.1.79) becomes

ŷt = Et
[
ŷt+1 + Ψ27π̂t+1 −Ψ28−→ẑ t −Ψ29ẑKt −Ψ30

−→
ŷ d t −Ψ31Et

[−−−→
ŷ d

GP

t+1

]
−Ψ32r̂Kt+1 −Ψ33(k̂t − ε̂At ) + Ψ34k̂t+1 −Ψ35k̂t+2 + Ψ36ûGt

]
. (C.1.91)

6There is no ŷ d
SP,1

t in our formulation in equation (3.2.19c). Therefore, we use ŷ d
GP,1

t instead of ŷ d
GP,1

t

in constructing
−−−→

ˆydSPt .
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C.2 Summary of Equilibrium Equations

Equilibrium Equations: Conventional Policy

(i).
Ct

AtN̄t
=
(

1− ζGt
)( Yt

AtN̄t

)
+

(
1− δ

GAt · GN

)(
Kt

At−1N̄t−1

)
−
(
Kt+1

AtN̄t

)
(C.2.1)

(i i). 1 = β · Et

 RSt+1

Πt+1 · GAt+1 · GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 (C.2.2)

(i i i). λHB,1t = 1−
F∑
f=2

λHB,ft (C.2.3)

(iv). −

(
BG,ft

AtN̄tPt
+
BCB,f

AN̄P

)(
λHB,ft

)−1
=

1

GAt · GN

(
1− λKt
λKt

)(
PKt
Pt

)(
Kt

At−1N̄t−1

)
,∀f > 1

(C.2.4)

(v). Y D1
t = max

{
Y D1∗

t , 1
}

(C.2.5)

(v i). Y D1∗
t = Y D

1 ·
(

Πt

Π̄

)γπ (Yt
Ȳ

)γy
· exp

(
ε̃Y D

1

t

)
(C.2.6)

(v i i). λHB,ft =



Et

 βz ft
Πt+1 · GAt+1 · GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) (Y Df−1
t+1

)−(f−1)(
Y Dft

)−f


ΦB
t



κB

, ∀f (C.2.7)

(v i i i). ΦB
t =

 F∑
j=1

Et

 βz jt
Πt+1 · GAt+1 · GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Dj−1

t+1

)−(j−1)

(
Y Djt

)−j

κB

1
κB

(C.2.8)

(ix). λKt =

(
zKt Et

[
Qt,t+1R

K
t+1

]
ΦS
t

)κS
(C.2.9)

(x). ΦS
t =

[(
Et
[
Qt,t+1R

HB
t+1

])κS
+
(
zKt Et

[
Qt,t+1R

K
t+1

])κS] 1
κS (C.2.10)

(xi). Rjt =

F−1∑
f=0

λj,f+1
t−1

(
Y Dft

)−f(
Y Df+1

t−1

)−(f+1)
, j ∈ {HB,G, CB} (C.2.11)

(xi i). RSt =
(

1− λKt−1

)
RHBt + λKt−1R

K
t (C.2.12)

(xi i i). 1 = Et

[
Qt,t+1Πt+1

[
(1− δ) +

PKt+1

Pt+1

]]
(C.2.13)
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(xiv). Ft = (1− α)
1−α
η+α

(
(1 + ςF )−1ε

ε− 1

)(
Ct

AtN̄t

)−α( η+1
η+α

)(
Yt

AtN̄t

) η+1
η+α
(
R̃Kt

PKt
Pt

)α( η+1
η+α

)

+ θβEt

[
Π
ε
(
η+1
η+α

)
t+1 Ft+1

]
(C.2.14)

(xv). Ht =

(
Ct

AtN̄t

)−1 Yt

AtN̄t
+ θβEt

[
Πε−1
t+1Ht+1

]
(C.2.15)

(xv i).
Ft
Ht

=

(
1− θ

1− θΠε−1
t

)( 1
ε−1 )

[
1+ε

(
1−α
η+α

)]
(C.2.16)

(xv i i). ∆t = (1− θ)

(
1− θΠε−1

t

1− θ

)( ε
ε−1 )

(
η+1
η+α

)
+ θΠ

ε
(
η+1
η+α

)
t ∆t−1 (C.2.17)

(xv i i i).
Nt

N̄t
= (1− α)

(
η

η+α

)(
Ct

AtN̄t

)−α( η
η+α

)(
Yt

AtN̄t

)( η
η+α

)(
R̃Kt

PKt
Pt

)α( η
η+α

)
∆

η
η+1

t (C.2.18)

(xix).
Kt

At−1N̄t−1
= α(1− α)

1−α
η+α · GAt · GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α
(
R̃Kt

PKt
Pt

)−( η(1−α)
η+α

)
∆t

(C.2.19)

(xx).
BGt

PtAtN̄t
=

RGt
Πt · GAt · GN

·
BGt−1

Pt−1At−1N̄t−1
−
[
ζGt + ζF − ζTt

]( Yt

AtN̄t

)
(C.2.20)

(xxi). λG,1t =
1

1 +

F∑
l=2

aB,l exp
(
ũB,lt

) (C.2.21)

(xxi i). λG,ft =
aB,f exp

(
ũB,ft

)
1 +

F∑
l=2

aB,l exp
(
ũB,lt

) , ∀f > 1 (C.2.22)

(xxi i i). ũB,ft =

J∑
j=1

τBf ju
B,j
t (C.2.23)

(xxiv). uB,jt = ρBu
B,j
t−1 + εB,jt (C.2.24)

(xxv). BG,ft = λG,ft BGt , ∀f = 1, . . . , F (C.2.25)

(xxv i). GAt = exp(µ+ εAt ) (C.2.26)

(xxv i i). ζGt =
1

1 + aG exp
(
−uGt

) (C.2.27)

(xxv i i i). ζTt =
1

1 + aT exp
(
−uTt

) (C.2.28)

(xxix). uGt = ρG · uGt−1 + εGt (C.2.29)

(xxx). uTt = ρT · uTt−1 + εTt (C.2.30)
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Equilibrium Equations: YCC Policy

(i).
Ct

AtN̄t
=
(

1− ζGt
)( Yt

AtN̄t

)
+

(
1− δ

GAt · GN

)(
Kt

At−1N̄t−1

)
−
(
Kt+1

AtN̄t

)
(C.2.31)

(i i). 1 = βEt

 RSt+1

Πt+1 · GAt+1 · GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 (C.2.32)

(i i i). −

(
λCB,1t − λG,1t

λCB,1t − λHB,1t

)
BGt

AtN̄tPt
=

1

GAt · GN

(
1− λKt
λKt

)(
PKt
Pt

)(
Kt

At−1N̄t−1

)
(C.2.33)

(iv). λCB,ft =
λHB,ft ·

(
1−

∑
i 6={f ,1} λ

CB,i
t − λG,1t

)
− λG,ft ·

(
1−

∑
i 6={f ,1} λ

CB,i
t − λHB,1t

)
(
λHB,1t + λHB,ft

)
−
(
λG,1t + λG,ft

) , f ≥ 2

(C.2.34)

(v). Y D1
t = max

{
Y D1∗

t , 1
}

(C.2.35)

(v i). Y D1∗
t = Y D

1 ·
(

Πt

Π̄

)γ1
π
(
Yt

Ȳ

)γ1
y

· exp
(
ε̃Y D

1

t

)
(C.2.36)

(v i i). Y DGP,ft = Y D
GP,f ·

(
Y DSP,ft

Y D
SP,f

)γfSP [(
Πt

Π̄

)γfπ (Yt
Ȳ

)γfy
· exp

(
ε̃Y D

f

t

)]1−γfSP

, f ≥ 2 (C.2.37)

(v i i i). λHB,ft =



Et

 βz ft
Πt+1 · GAt+1 · GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) (Y Df−1
t+1

)−(f−1)(
Y Dft

)−f


ΦB
t



κB

, ∀f (C.2.38)

(ix). ΦB
t =

 F∑
j=1

Et

 βz jt
Πt+1 · GAt+1 · GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Dj−1

t+1

)−(j−1)

(
Y Djt

)−j

κB

1
κB

(C.2.39)

(x). λKt =

(
zKt · Et

[
Qt,t+1R

K
t+1

]
ΦS
t

)κS
(C.2.40)

(xi). ΦS
t =

[(
Et
[
Qt,t+1R

HB
t+1

])κS
+
(
zKt Et

[
Qt,t+1R

K
t+1

])κS] 1
κS (C.2.41)

(xi i). Rjt =

F−1∑
f=0

λj,f+1
t−1

(
Y Dft

)−f(
Y Df+1

t−1

)−(f+1)
j ∈ {HB,G, CB} (C.2.42)

(xi i i). RSt =
(

1− λKt−1

)
RHBt + λKt−1R

K
t (C.2.43)

(xiv). 1 = Et

[
Qt,t+1Πt+1

[
(1− δ) +

PKt+1

Pt+1

]]
(C.2.44)
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(xv). Ft = (1− α)
1−α
η+α

(
(1 + ςF )−1ε

ε− 1

)(
Ct

AtN̄t

)−α( η+1
η+α

)(
Yt

AtN̄t

) η+1
η+α
(
Et
[
Qt,t+1R

K
t+1

] PKt
Pt

)α( η+1
η+α

)

+ θβEt

[
Π
ε
(
η+1
η+α

)
t+1 Ft+1

]
(C.2.45)

(xv i). Ht =

(
Ct

AtN̄t

)−1 Yt

AtN̄t
+ θβEt

[
Πε−1
t+1Ht+1

]
(C.2.46)

(xv i i).
Ft
Ht

=

(
1− θ

1− θΠε−1
t

)( 1
ε−1 )

[
1+ε

(
1−α
η+α

)]
(C.2.47)

(xv i i i). ∆t = (1− θ)

(
1− θΠε−1

t

1− θ

)( ε
ε−1 )

(
η+1
η+α

)
+ θΠ

ε
(
η+1
η+α

)
t ∆t−1 (C.2.48)

(xix).
Nt

N̄t
= (1− α)

(
η

η+α

)(
Ct

AtN̄t

)−α( η
η+α

)(
Yt

AtN̄t

)( η
η+α

)(
Et
[
Qt,t+1R

K
t+1

] PKt
Pt

)α( η
η+α

)
∆

η
η+1

t

(C.2.49)

(xx).
Kt

At−1N̄t−1

= α(1− α)
1−α
η+α · GAtGN

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α

(
Et
[
Qt,t+1R

K
t+1

]
PKt

Pt

)−( η(1−α)
η+α

)
∆t

(C.2.50)

(xxi).
BGt

PtAtN̄t
=

RGt
Πt · GAt · GN

BGt−1

Pt−1At−1N̄t−1
−
[
ζGt + ζF − ζTt

]( Yt

AtN̄t

)
(C.2.51)

(xxi i). ε̃Y D,ft =

L∑
l=1

τY Df l ε
Y D,l
t (C.2.52)
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C.2.1 Calibrating {z f } and zK in the Steady State

Calibration of
{
z f
}

Here we explain how to calibrate
{
z f
}
to match the yield curve. Based

on data on yields of bonds with different maturities, we calculate each f -maturity bond’s
average holding returns

{
Rf
}
, which we would use as our calibration target.

1. Compute the return ratio
{
RF/R1

}
2. Back out steady state bond shares

{
λHB,f

}
using equation (C.1.24)

3. Normalize z1 = 1 and obtain initial guess for
{
z j,guess

}
. Set z j,old = z j,guess in the

iteration below

4. Construct Φ̃old using the following formula, where the return ratios {Rf /R1} across
maturities are obtained from the data

Φ̃old =

[
1 +

F∑
f=2

[
z j
(
Rf

R1

)]κB] 1
κB

5. Back out new z f ,new , f = 2, . . . , F estimates using:

z f ,new =
(
λHB,f

) 1
κB

(
Rf

R1

)−1

Φ̃old

6. If difference with Φ̃old is large, set z f ,old = z f ,new and start again from the step 4

Calibration of zK For the calibration of zK, first, we need to obtain data on
{
RHB, RK

}
.

1. Guess zK,guess and set zK,old = zK,guess

2. Solve for the steady state values of the model using zK,old . The reason is that we do
not get the data on λK, thus we use the model-dependent value of it

3. Construct Φ̃old using the following formula, where the ratio is the one obtained from
the data

Φ̃old =

[
1 +

[
zK
(
RK

RHB

)]κS] 1
κS

4. Back out new zK,new estimates as

zK,new =
(
λK
) 1
κS

(
RK

RHB

)−1

Φ̃old

where λK comes from the model solution of the step 2

5. If difference with zK,old is large, set zK,old = zK,new and start again from step 4.
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Summary of Conventional Policy Linearized Equations Those are the essential equation
to solve the model, other variables can be found on equations above.

(i). ŷt = Et
[
ŷt+1 + Ψ27π̂t+1 −Ψ28−→ẑ t −Ψ29ẑKt −Ψ30

−→
ŷ d t −Ψ31Et

[−−−→
ŷ d t+1

]
−Ψ32r̂Kt+1 −Ψ33(k̂t − ε̂At ) + Ψ34k̂t+1 −Ψ35k̂t+2 + Ψ36ûGt

]
(i i).

−→
ŷ d t =Θ21b̂Gt −Θ22ŷt −Θ23Et [ŷt+1]−Θ24Et [π̂t+1] + Θ25k̂t −Θ26k̂t+1 + Θ27Et

[
k̂t+2

]
+ Θ28r̂Kt+1 −Θ29Et

[−−−→
ŷ d t+1

]
−Θ30−→ẑt + Θ31ẑKt −Θ32ε̂At + Θ33ûGt + Θ34

−→
ûBt

(i i i). ŷd
1

t = max
{
ŷ d

1∗
t , 0

}
(iv). ŷd

1∗
t = γππ̂t + γy ŷt + ε̃Y D

1

t , ε̃Y D
f

t =

L∑
l=1

τY Df ,l ε
Y Dl

t

(v). r̂Kt+1 =−Ψ15 ·
−→
ẑt −Ψ16ẑKt −Ψ17

−→
ŷ d t −Ψ18Et

[−−−→
ŷ d t+1

]
+ Ψ19Et [π̂t+1] + Ψ20Et [π̂t+2]

+ Ψ21Et [ŷt+1] + Ψ22Et [ŷt+2]−Ψ23k̂t+1

+ Ψ24Et
[
k̂t+2

]
−Ψ25Et

[
k̂t+3

]
−Ψ26ûGt −Ψ20Et

[
r̂Kt+2

]
(v i). b̂Gt =

RG

Π · GA · GN ·
[

ΨG,4Ξ
−−→
ûBt−1 −ΨG,5

−→
ŷ d t + ΨG,6

−−−→
ŷ d t−1 − π̂t − ε̂At + b̂Gt−1

]
+

(
1−

RG

ΠGAGN

)[
ŷt +

(
ζG

ζG + ζF − ζT

)
aG

1 + aG
ûGt −

(
ζT

ζG + ζF − ζT

)
aT

1 + aT
ûTt

]
(v i i). f̂t =

[
1− θβΠε( η+1

η+α)
]( η + 1

η(1− α)

)[
ŷt − α

(
k̂t − ε̂At

)]
+ θβΠε( η+1

η+α)Et
[
ε

(
η + 1

η + α

)
π̂t+1 + f̂t+1

]
(v i i i). ĥt =

[
1− θβΠε−1

] [ [
1− (1− ζG)

Y

C

]
ŷt +

[(
1− ζG

) Y
C

]
1

1 + aG
ûGt

−
[

1− δ
GA · GN

K

C

]
(k̂t − ε̂At ) +

K

C
k̂t+1

]
+ θβΠε−1Et

[
(ε− 1)π̂t+1 + ĥt+1

]
(ix). f̂t − ĥt =

[
1 + ε

(
1− α
η + α

)](
θΠε−1

1− θΠε−1

)
π̂t

(x). uB,jt = ρB · uB,jt−1 + εB,jt , ∀ j = 1, . . . , J

(xi). uGt = ρG · uGt−1 + εGt

(xi i). uTt = ρT · uGt−1 + εTt
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Summary of YCC Policy Linearized Equations Those are the essential equation to solve
the model, other variables can be found on equations above.

(i). ŷt = Et
[
ŷt+1 + Ψ27π̂t+1 −Ψ28−→ẑ t −Ψ29ẑKt −Ψ30

−→
ŷ d t −Ψ31Et

[−−−→
ŷ d

GP

t+1

]
−Ψ32r̂Kt+1 −Ψ33(k̂t − ε̂At ) + Ψ34k̂t+1 −Ψ35k̂t+2 + Ψ36ûGt

]
(i i).

−−−→
ŷ d

SP

t =Θ21b̂Gt −Θ22ŷt −Θ23Et [ŷt+1]−Θ24Et [π̂t+1] + Θ25k̂t −Θ26k̂t+1 + Θ27Et
[
k̂t+2

]
+ Θ28r̂Kt+1 −Θ29Et

[−−−→
ŷ d

SP

t+1

]
−Θ30−→ẑt + Θ31ẑKt −Θ32ε̂At + Θ33ûGt + Θ34

−→
ûBt

(i i i). ŷd
GP,1

t = max
{
ŷ d

1∗
t , 0

}
= ŷ d

SP,1

t

(iv). ŷd
1∗
t = γππ̂t + γy ŷt + ε̃Y D

1

t , ε̃Y D
1

t =

L∑
l=1

τY D1,l ε
Y Dl

t ,

(v). ŷd
GP,f

t = γfSP ŷ d
SP,f

t +
(

1− γfSP
) [
γfππ̂t + γfy ŷt + ε̃Y D

f

t

]
, ε̃Y D

f

t =

L∑
l=1

τY Df ,l ε
Y Dl

t , f ≥ 2

(v i). r̂Kt+1 =−Ψ15 ·
−→
ẑt −Ψ16ẑKt −Ψ17

−−−→
ŷ d

GP

t −Ψ18Et
[−−−→
ŷ d

GP

t+1

]
+ Ψ19Et [π̂t+1] + Ψ20Et [π̂t+2]

+ Ψ21Et [ŷt+1] + Ψ22Et [ŷt+2]−Ψ23k̂t+1 + Ψ24Et
[
k̂t+2

]
−Ψ25Et

[
k̂t+3

]
−Ψ26ûGt

−Ψ20Et
[
r̂Kt+2

]
(v i i). b̂Gt =

RG

Π · GA · GN ·
[

ΨG,4Ξ
−−→
ûBt−1 −ΨG,5

−−−→
ŷ d

GP

t + ΨG,6
−−−→
ŷ d

GP

t−1 − π̂t − ε̂At + b̂Gt−1

]
+

(
1−

RG

Π · GA · GN

)[
ŷt +

(
ζG

ζG + ζF − ζT

)(
aG

1 + aG

)
ûGt

−
(

ζT

ζG + ζF − ζT

)(
aT

1 + aT

)
ûTt

]

(v i i i). f̂t =
[

1− θβΠε( η+1
η+α)

]( η + 1

η(1− α)

)[
ŷt − α

(
k̂t − ε̂At

)]
+ θβΠε( η+1

η+α)Et
[
ε

(
η + 1

η + α

)
π̂t+1 + f̂t+1

]
(ix). ĥt =

[
1− θβΠε−1

] [ [
1− (1− ζG)

Y

C

]
ŷt +

[(
1− ζG

) Y
C

]
1

1 + aG
ûGt

−
[

1− δ
GA · GN

K

C

]
(k̂t − ε̂At ) +

K

C
k̂t+1

]
+ θβΠε−1Et

[
(ε− 1)π̂t+1 + ĥt+1

]
(x). f̂t − ĥt =

[
1 + ε

(
1− α
η + α

)](
θΠε−1

1− θΠε−1

)
π̂t

(xi). uB,jt = ρB · uB,jt−1 + εB,jt , ∀ j = 1, . . . , J

(xi i). uGt = ρG · uGt−1 + εGt , u
T
t = ρT · uGt−1 + εTt
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C.3 Welfare

C.3.1 Deriving a second-order welfare

In order to approximate welfare up to a second-order, we cannot discard ∆̂t , which is price
dispersion’s log-deviation from its steady-state value. Since we have a positive steady-state
inflation, price dispersion becomes of the first-order importance, in contrast to the standard
New-Keynesian models in which zero trend inflation is assumed usually and price dispersion
is the second-order term. In handling this issue when calculating the welfare cost of inflation,
we closely follow the pioneering work of Woodford (2003) and Coibion et al. (2012). First,
we express the necessary building blocks with the price dispersion gap term, ∆̂t .

Step 1: For any variable X, we define X̄ as its steady-state value (with the positive trend
inflation Π > 1) and X̄F as its flexible price steady-state value. Also define (small) letter x̃
as log-deviation of X around X̄F , and x̂ as log-deviation of X around X̄.

Efficient (flexible-price) steady state With optimal production subsidy ζF = (ε − 1)−1

that eliminates the monopolistic competition distortion, there is no distortion in the flexible-
price steady state economy anymore.7 In particular, individual firm’s optimal price resetting
condition (equation (C.1.2)) becomes

1 =
P ∗t
Pt

=
(1 + ζF )−1ε

ε− 1︸ ︷︷ ︸
=1

·
MCt
Pt

=
MCt
Pt

, (C.3.1)

where we use the fact that all firms become identical, and thus MCt(ν) = MCt for all
ν ∈ [0, 1]. Therefore, the real marginal cost becomes 1 for all firms. Plugging the unit real
marginal cost (equation (C.1.3)) into the individual firm’s labor demand (equation (3.2.14))
with Wt(ν) = Wt for ∀ν, we obtain

nt = (1− α)yt

(
R̃Kt P

K
t

Pt

)α(
Wt

PtAt

)−α
= (1− α)yt

(
Wt

PtAt

)−1

, (C.3.2)

which, with the household’s intra-temporal consumption-labor decision (equation (3.2.9a)),
becomes:

nη
−1

t

c−1
t

= (1− α)
yt
nt
, (C.3.3)

which is exactly the social efficiency condition that ensures the household’s marginal rate
of substitution matches with the marginal rate of technical substitution. Therefore, at the
flexible-price steady state, the new constant Φ, which will turn out to enter in the per-period

7A capital producing firm is perfectly competitive and therefore, our economy features no friction if it were
not nominal rigidity nor trend inflation, and satisfies the first welfare theorem in the flexible price steady state.
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welfare later, can be calculated as

Φ ≡ (n̄F )1+ 1
η = (1− α)

ȳF

c̄F
= (1− α)

Ȳ F

C̄F
, (C.3.4)

where n̄F , ȳF , and c̄F are values of normalized labor, output, and consumption, respectively.

Step 2: With equation (C.2.49) and equation (C.2.50), we obtain(
Nt

N̄t

)1−α(
Kt

At−1N̄t−1

)α
= αα(1− α)1−α(GAt · GN)α

(
Yt

AtN̄t

)
∆

(1−α)[ η
η+1

+ α
1−α ]

t , (C.3.5)

which is the aggregate production function with price dispersion ∆t . Plugging steady-state
(with trend-inflation) capital (equation (C.1.32)) and output (equation (C.1.37)) equations
into equation (C.3.5) yields the formula for the steady-state labor, which is given as

N

N̄
= ξNξY

[(
1−

RG

ΠGAGN

)−1
λK

1− λK

] −α
1−α

×

[
(1− ζG)− ξC

(
1−

RG

ΠGAGN

)−1
λK

1− λK

] −η
η+1 (

RK
) −α

1−α ,

with ξN = (1− α)

[
1− θ

1− θΠε η+1
η+α

] η+α
(η+1)(1−α)

(
1− θΠε−1

1− θ

) ε
(ε−1)(1−α)

(
ξK

α · GA · GN

) −α
1−α

. (C.3.6)

From equation (C.1.39), equation (C.1.40), and equation (C.1.41), we observe that equilib-
rium steady state values of RK, λK, and RG do not depend on θ, a degree of price-stickiness.
However,

ξNξY

(1− α)
η

1+η

=

[
GAGN − β(1− δ)

Π · GA · GN

] −α
1−α
(

ξK

αGAGN

) −α
1−α
(

1− θΠε−1

1− θβΠε−1

1− θβΠε 1+η
η+α

1− θΠε 1+η
η+α

) η+α
(η+1)(1−α)

(C.3.7)

is dependent on θ, we see that n̄ 6= n̄F and define logXn ≡ log n̄− log n̄F , which will turn out
to be useful later when we calculate the household’s first-order labor cost.

Step 3: Price dispersion with a positive trend inflation8

Delta method Before we start, we would use this approximation throughout this section.
For a random variable X with E(X) = µX, we have

Var (f (X)) = f ′(µX)2 · Var(X) + h.o.t. (C.3.8)

Price dispersion We use lower-case pt and pt(ν) as logarithms of Pt and Pt(ν). By applying

8Due to the positive trend inflation Π > 1, we have non-zero price dispersion at the steady state.
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delta method to P 1−ε
t = Eν(Pt(ν)1−ε), we obtain

pt =

∫ 1

0

pt(ν)dν︸ ︷︷ ︸
≡p̄t

+
1

2

(
1

1− ε

)
Varν (Pt(ν)1−ε)

Eν (Pt(ν)1−ε)2 + h.o.t. (C.3.9)

where we define p̄t ≡ Eν(pt(ν)). Applying delta method to Varν(Pt(ν)1−ε) term, we have

Varν
(
Pt(ν)1−ε) = (1− ε)2 · [exp((1− ε)p̄t)]2 · Varν(pt(ν)), (C.3.10)

where we define Dt ≡ Varν(pt(ν)). Applying delta method to Eν(Pt(ν)1−ε), we obtain

Eν
(
Pt(ν)1−ε) = exp((1− ε)p̄t)

[
1 +

(1− ε)2

2
Dt

]
. (C.3.11)

Plugging equation (C.3.10) and equation (C.3.11) into equation (C.3.9), we obtain

pt = p̄t +
1− ε

2
·

Dt[
1 + (1−ε)2

2
Dt

]2 , (C.3.12)

which we linear-approximate around Dt = D̄ and get9,10

pt − p̄t =
1− ε

2
·

D̄[
1 + (1−ε)2

2
D̄
]2

︸ ︷︷ ︸
≡Θp

1

+
1− ε

2
·

1− (1−ε)2

2
D̄[

1 + (1−ε)2

2
D̄
]3

︸ ︷︷ ︸
≡Θp

2

·(Dt − D̄)

= Θp
1 + Θp

2(Dt − D̄). (C.3.13)

Now from our original definition of price dispersion ∆t (equation (??)), we take logarithm on
both sides, linear-approximate around D̄, and plug equation (C.3.13) into it to attain

ln ∆t = ln

∫ 1

0

(
Pt(ν)

Pt

)−ε(η+1)
η+α

dν

=
ε(η + 1)

η + α
(pt − p̄t) + ln

(
1 +

1

2

(
ε(η + 1)

η + α

)2

D̄

)
+

1
2

(
ε(η+1)
η+α

)2

1 + 1
2

(
ε(η+1)
η+α

)2

D̄
(Dt − D̄)

(C.3.14)

= Θ∆
1 + Θ∆

2 · (Dt − D̄) + h.o.t,

9In textbook New-Keynesian models, we assume zero inflation at the steady state, which yields D̄ = 0.
10Θp

1 and Θp
2 are defined as in equation (C.3.13).
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where

Θ∆
1 ≡

ε(η + 1)

η + α
·

1− ε
2
·

D̄[
1 + (1−ε)2

2
D̄
]2 + ln

(
1 +

1

2

(
ε(η + 1)

η + α

)2

D̄

)
, (C.3.15)

Θ∆
2 ≡

ε(η + 1)

η + α
·

1− ε
2
·

1− (1−ε)2

2
D̄[

1 + (1−ε)2

2
D̄
]3 +

1
2

(
ε(η+1)
η+α

)2

1 + 1
2

(
ε(η+1)
η+α

)2

D̄
. (C.3.16)

If we define bt as the logarithm of the newly price-resetting firm’s relative price P ∗t /Pt and
b̄ as its steady state value, we might have b̄ 6= 0 due to the trend inflation. Combining
equation (C.1.9) and equation (C.1.11) and linearizing, we obtain

bt ≡ p∗t − pt = b̄ +
θΠε−1

1− θΠε−1︸ ︷︷ ︸
≡M

π̂t = b̄ +M · π̂t , with b̄ =
1

ε− 1
ln

(
1− θ

1− θΠε−1

)
. (C.3.17)

With Dt = Varν(pt(ν)) = Eν((pt(ν)− pt + pt − p̄t)2), we can write it as

Dt =

∫ 1−θ

0

(p∗t − pt)2dν + 2

(∫ 1−θ

0

(p∗t − pt)dν
)

(pt − p̄t) + (1− θ)(pt − p̄t)2

+

∫ 1

1−θ
(pt−1(ν)− p̄t)2dν

= (1− θ)(p∗t − pt)2 + 2(1− θ)(p∗t − pt)(pt − p̄t) + (1− θ)(pt − p̄t)2

+ θDt−1 + θ(p̄t − p̄t−1)2, (C.3.18)

where we use ∫ 1

1−θ
(pt−1(ν)− p̄t)2dν = θDt−1 + θ(p̄t−1 − p̄t)2. (C.3.19)

Conjecture Following Coibion et al. (2012), we conjecture the dynamics of Dt up to a
second-order as11

Dt − D̄ = κDπ̂t +ZD(π̂t)
2 +FD(Dt−1− D̄) +GD(Dt−1− D̄)π̂t +HD(Dt−1− D̄)2. (C.3.20)

With no trend inflation, we would have π = 0 and D̄ = 0, thus Dt becomes the second-order
variable around 0 and we would have κD = 0. However with steady-state inflation π > 0

and the price dispersion measure D̄ > 0, as we see in equation (C.3.20), Dt includes π̂t
term as one of its components, even though κD is of the first-order. Our objective here is
to derive equation (C.3.20) from firms’ optimal pricing behaviors and the price dispersion’s
effects on the aggregate price itself. Plugging equation (C.3.13) and equation (C.3.17) into
equation (C.3.18) and replace (Dt − D̄) with the conjectured form in equation (C.3.20) up

11Following Coibion et al. (2012), we assume κD is of the same order as the shock processes, so that the
first term becomes of a second-order. Then our log-linearized model derivation without price dispersion term is
valid.
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to a second-order,12and comparing coefficients, we obtain the following set of coefficients:

D̄ = (b̄ + Θp
1)2 +

θ

1− θ (π̄)2 (Steady-state value of Dt),

κD =
[
1− 2(1− θ)Θp

2(b̄ + Θp
1) + 2θΘp

2π̄
]−1 [

2(1− θ)M(b̄ + Θp
1) + 2θπ̄

]
,

ZD =
[
1− 2(1− θ)Θp

2(b̄ + Θp
1) + 2θΘp

2π̄
]−1

×
[
(1− θ)M2 + 2(1− θ)MΘp

2κD + (Θp
2)2(κD)2 + θ − 2θΘp

2κD
]
,

FD =
[
1− 2(1− θ)Θp

2(b̄ + Θp
1) + 2θΘp

2π̄
]−1

[θ + 2θΘp
2π̄] , (C.3.21)

GD =
[
1− 2(1− θ)Θp

2(b̄ + Θp
1) + 2θΘp

2π̄
]−1 [

2(1− θ)MΘp
2FD + 2(Θp

2)2κDFD − 2θΘp
2FD

+ 2θΘp
2 − 2θ(Θp

2)2κD
]
,

HD =
[
1− 2(1− θ)Θp

2(b̄ + Θp
1) + 2θΘp

2π̄
]−1 [

(Θp
2)2(FD)2 + θ(Θp

2)2 − 2θ(Θp
2)2FD

]
.

Consumption utility We can second-order approximate the utility of consumption as

u(ct) = log ct = u(c̄F ) + u′c̄F · c̄
F ·
(
ct − c̄F

c̄F

)
︸ ︷︷ ︸

=c̃t+���1
2

(c̃t)2

+
1

2
u′′c̄F · (c̄

F )2 ·
(
ct − c̄F

c̄F

)2

︸ ︷︷ ︸
=���(c̃t)2

+h.o.t

= u(c̄F ) + c̃t + h.o.t. (C.3.22)

Step 4: Labor aggregation and cost
By applying Delta method (equation (C.3.8)) to the labor aggregator, which is(

Nt

N̄t

) η+1
η

=

∫ 1

0

(
Nt(ν)

N̄t

) η+1
η

dν, (C.3.23)

we can obtain13

ñt − Eν(ñt(ν)) =

1
2

(
η+1
η

)
∇

1 + 1
2

(
η+1
η

)2

∇︸ ︷︷ ︸
≡Θn

1

+
1

2

(
η + 1

η

) 1− 1
2

(
η+1
η

)2

∇[
1 + 1

2

(
η+1
η

)2

∇
]3

︸ ︷︷ ︸
≡Θn

2

·(∇t −∇) (C.3.24)

where ∇t ≡ Varν(log nt(ν)). A second-order approximation to the firm ν-specific labor cost

12In the right-hand side of the expression, (pt − p̄t)2 appears and has a second-order term (Dt − D̄)2 from
equation (C.3.13), and we use equation (C.3.20) to replace this term with terms related to (π̂t)

2, (Dt−1− D̄)2,
and π̂t(Dt−1 − D̄).

13In the flexible-price steady-state, there is no heterogeneity among firms and thus, n̄F (ν) = n̄F for ∀ν ∈
[0, 1].
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around the flexible-price steady state yields

η

η + 1

(
Nt

N̄t

) η+1
η

=
η

η + 1
(n̄F )

η+1
η + Φ

[
ñt(ν) +

1

2

(
η + 1

η

)
ñt(ν)2

]
+ h.o.t (C.3.25)

where a constant Φ is from equation (C.3.4). Aggregating equation (C.3.25) over firms
ν ∈ [0, 1] and plugging equation (C.3.19) results in

η

η + 1

∫ 1

0

(
Nt

N̄t

) η+1
η

dν −
η

η + 1
(n̄F )

η+1
η = Φ

[
Eν(ñt(ν)) +

1

2

(
η + 1

η

)∫ 1

0

ñt(ν)2dν

]
= −Φ

(
Θn

1 −
1

2

(
η + 1

η

)
(Θn

1)2

)
+ Φ

[(
1−

(
η + 1

η

)
Θn

1

)
ñt +

1

2

(
η + 1

η

)
ñ2
t

+
1

2

(
η + 1

η

)
(Θn

2)2
(

Varν(ñt(ν))−∇
)2 −

η + 1

η
Θn

2ñt
(

Varν(ñt(ν))−∇
)

+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θn
2)−Θn

2

)(
Varν(ñt(ν))−∇

)
+

1

2

(
η + 1

η

)
∇

]
. (C.3.26)

Labor dispersion From individual firm’s labor and capital demand (equation (3.2.14)) and
the household’s intra-marginal condition (equation (3.2.9a)), we obtain

k̃t(ν) =

(
1 +

1

η

)
ñt(ν) + aggregate, (C.3.27)

where ‘aggregate’ stands for aggregate variables. Therefore, we obtain

ỹt(ν) =

(
1 +

α

η

)
ñt(ν) + aggregate, (C.3.28)

by plugging equation (C.3.27) into an individual firm’s production function ỹt(ν) = αk̃t(ν) +

(1 − α)ñt(ν). From the Dixit-Stiglitz good demand (equation (3.2.11)) and with equa-
tion (C.3.28), we can get

Varν(ñt(ν)) =

(
ε

1 + α
η

)2

Varν(pt(ν)), with ∇ =

(
ε

1 + α
η

)2

D̄. (C.3.29)

Step 5: Constructing a welfare function: Combining the consumption utility (equa-
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tion (C.3.22)) and the labor disutility (equation (C.3.26)), we can construct welfare as

EUt − ŪF

= E

[
c̃t + Φ

(
Θn

1 −
1

2

(
η + 1

η

)
(Θn

1)2

)
−Φ

{(
1−

(
η + 1

η

)
Θn

1

)
ñt +

1

2

(
η + 1

η

)
ñ2
t

+
1

2

(
η + 1

η

)
(Θn

2)2
(

Varν(ñt(ν))−∇
)2 −

η + 1

η
Θn

2ñt
(

Varν(ñt(ν))−∇
)

+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θn
2)−Θn

2

)(
Varν(ñt(ν))−∇

)
+

1

2

(
η + 1

η

)
∇

}]
.

(C.3.30)

with the flexible-price steady state utility given as

ŪF = log c̄F −
η

η + 1
(n̄F )

η+1
η

=
1

η + 1
log

[
(1− ζG)− ξC

(
1−

RG

Π · GA · GN

)−1
λK

1− λK

]
−

α

1− α log(RK) + log(ξY,F )

(C.3.31)

−
η

η + 1
(ξY,F ξN,F )

η+1
η

[(
1−

RG

ΠGAGN

)−1
λKRK

1− λK

]−α(η+1)
(1−α)η

×

[
(1− ζG)− ξC

(
1−

RG

ΠGAGN

)−1
λK

1− λK

]−1

,

where ξY,F and ξN,F are values of ξY (equation (C.1.38)) and ξN (equation (C.3.6)), when
θ = 0, satisfying

(
ξY,F ξN,F

) η+1
η = (1− α)

(
ξK

α · GA · GN ·
GA · GN − β(1− δ)

Π · GA · GN

)−α(η+1)
(1−α)η

(C.3.32)

ξY,F = (1− α)
−1
η+1

(
GA · GN − β(1− δ)

Π · GA · GN

) −α
1−α

(C.3.33)

If we define logXc
14 as the log-difference in consumption between our steady state (with

trend-inflation) and flexible-price steady state, we first check if logXc is determined by exoge-
nous parameters and trend-inflation Π. From equation (C.1.34), we see that logXc = logXy ,
where logXy is the log-difference in output between our steady state (with trend-inflation)
and the flexible-price steady state.

From equation (C.1.37), with the fact that RG, RK, and λK are all independent of price
stickiness θ, logXy can be expressed as (by comparing our steady state value of Y and the

14Then, ĉt = c̃t + logXc holds.
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corresponding value when there is no price stickiness (θ = 0))

logXy = −
(η + α)

(1− α)(η + 1)
log

(
1− θβΠε−1

1− θβΠε 1+η
η+α

)
+

η + α+ ε(1− α)

(ε− 1)(1− α)(η + 1)
log

(
1− θ

1− θΠε−1

)
(C.3.34)

From equation (C.3.6) and equation (C.3.7), we also can calculate logXn = log n̄ − log n̄F

as

logXn =
η + α

(η + 1)(1− α)

[
log

(
1− θΠε−1

1− θβΠε−1

)
+ log

(
1− θβΠε 1+η

η+α

1− θΠε 1+η
η+α

)]
(C.3.35)

With c̃t = ĉt + logXy , ñt = n̂t + logXn, and the stationarity assumption (following Coibion
et al. (2012)), we can get

E
[
c̃t −Φ

(
1−

(
η + 1

η

)
Θn

1

)
ñt

]
= logXy −Φ

(
1−

(
η + 1

η

)
Θn

1

)
logXn. (C.3.36)

Second order terms: With ñt = n̂t + logXn, second-order terms can be collected as

−Φ

[
1

2

(
η + 1

η

)
E
(
n̂2
t

)
+

1

2

(
η + 1

η

)
(Θn

2)2E
((

Varν(ñt(ν))−∇
)2
)

−
η + 1

η
Θn

2E
(
n̂t
(

Varν(n̂t(ν))−∇
))

+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θn
2)−Θn

2 −
η + 1

η
Θn

2 logXn

)
E
(

Varν(n̂t(ν))−∇
) ]]

,

(C.3.37)

which, after we can plug equation (C.3.29) into, becomes

−Φ

[
1

2

(
η + 1

η

)
Var (n̂t) +

1

2

(
η + 1

η

)
(Θn

2)2

(
ε

1 + α
η

)4

E(Dt − D̄)2

−
η + 1

η
Θn

2

(
ε

1 + α
η

)2

Cov(n̂t , Dt)

+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θn
2)−Θn

2

(
1 +

η + 1

η
logXn

))(
ε

1 + α
η

)2

E(Dt − D̄)

]]
.

(C.3.38)

Finally, by plugging equation (C.3.20) into equation (C.3.38), we get the following proposi-
tion. Sine κD is of the same order as shock processes, up to a second-order, we can ignore
covariance terms and the square term of Dt . Therefore, a 2nd -order approximation to the
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expected per-period welfare would be given as

EUt − ŪF = Ω0 + ΩnVar(n̂t) + ΩπVar(π̂t), (C.3.39)

with

Ω0 = logXy −Φ

(
1−

(
η + 1

η

)
Θn

1

)
logXn + Φ

(
Θn

1 −
1

2

(
η + 1

η

)
(Θn

1)2

)
−Φ

1

2

η + 1

η
(logXn)2 −Φ

1

2

(
η + 1

η

)( ε

1 + α
η

)2

D̄,

Ωn = −Φ
1

2

(
η + 1

η

)
, (C.3.40)

Ωπ = −Φ

[(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θn
2)−Θn

2

(
1 +

η + 1

η
logXn

))( ε

1 + α
η

)2 ZD
1− FD

]
,

where

logXy = −
(η + α)

(1− α)(η + 1)
log

(
1− θβΠε−1

1− θβΠε 1+η
η+α

)
+

η + α+ ε(1− α)

(ε− 1)(1− α)(η + 1)
log

(
1− θ

1− θΠε−1

)
,

(C.3.41)

logXn =
η + α

(η + 1)(1− α)

[
log

(
1− θΠε−1

1− θβΠε−1

)
+ log

(
1− θβΠε 1+η

η+α

1− θΠε 1+η
η+α

)]
. (C.3.42)

Coefficients Θn
1,Θn

2 are given in equation (C.3.24) and D̄ is given by jointly solving equa-
tion (C.3.13) and equation (C.3.21). κD, ZD, FD, GD, HD are given in equation (C.3.21).
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C.4 Additional Figures and Tables

f = 1 maturity bond

f = 2 maturity bond

f maturity bond

f = F − 1 maturity bond

f = F maturity bond

One-period loan

Loan Market (Capital Market)

Bond Market (Term-Structure)
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Issue

HouseholdCentral Bank

Monetary policy
({Y Df
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z ft shock
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Figure C.1: Markets, Agents, and Mechanisms: Household invests her wealth in the bond
market or issues loans to intermediate good producers, which in turn rely on loans issued by
the household to rent capital from the capital producer. There are bonds of f = 1 ∼ F

number of maturities issued by the government. With the conventional monetary policy,
central bank controls the shortest maturity yield while not adjusting a purchase amount for
longer-term ones, whereas with the YCC monetary policy, central bank controls all the yields
to target business-cycle variables (in our model, inflation targeting).
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Households
β 0.998 Discount factor
η 1 Frisch labor elasticity
GN 1.015 Population growth rate

Intermediate good firms
µ 0.00375 Technology growth rate
GA 1.003757 Gross technology growth rate
α 0.25 Capital income share
ε 7 Elasticity of substitution between differentiated goods
θ 0.55 Calvo price stickiness parameter
σA 0.0090 Standard deviation of technology shock
δ 0.025 Capital depreciation rate

Term structure
κB 10 Bond maturity shape (volatility) parameter (Fréchet)
κS 1 Capital shape (volatility) parameter (Fréchet)
ρz 0.9 Autoregressive coefficient: maturity scale (mean) (z ft )
ρKz 0.9 Autoregressive coefficient: capital scale (mean) (zKt )
σz 0.001 Standard deviation: maturity scale (mean) (z ft )
σKz 0.001 Standard deviation: capital scale (mean) (zKt )

Government
ζF 0.1667 Government subsidy to firms (optimal)
ζG 0.1533 Government expenditure per GDP
aG 5.5217 Government expenditure coefficient

ζF + ζG − ζT 0.0119 Government deficit per GDP
ζT 0.3081 Government tax revenue per GDP
ρG 0.97 Autoregressive coefficient: government expenditure shock
ρT 0.97 Autoregressive coefficient: government tax revenue shock
σG 0.0037 Standard deviation: government expenditure shock
σT 0.0037 Standard deviation: government tax revenue shock

Central bank
ζCB −0.050 Central bank’s balance sheet per issued bond values
π̄ 0.02

4
= 0.005 Trend inflation (steady-state inflation)

γ1
π 1.5 Taylor coefficient of Y D1

t : to inflation
γf≥2
π 1.5 Taylor coefficient of Y Df≥2

t : to inflation
γy 1.5 Taylor coefficient: to output
γf≥2
y 1.5 Taylor coefficient of Y Df≥2

t : to output
σY D

1
0.0024 Standard deviation: monetary shock (for Y D1

t )
σY D

f≥2
10−8 Standard deviation: monetary shock (for Y Df≥2

t )
τY D IF×F State reduction matrix (for Y Df≥2

t )

Table C.1: Parameter values
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Figure C.2: Calibrated scale parameters of the Fréchet distribution: z f
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Calibrated steady-state parameters
{z f } See Figure C.2 Bond maturity scale (mean) parameters
zK 0.1941 Capital scale (mean) parameter
C
AN̄

2.4905 Normalized consumption
Y
AN̄

4.0118 Normalized output
K
AN̄

21.0701 Normalized capital
C
Y

0.6208 Consumption per GDP
K
Y

5.2521 Capital per GDP
PK

P
0.0459 Normalized rental price of capital

λHB,f See Figure 3.1 Household’s bond portfolio
λK 0.1720 Household’s loan share out of total savings
RK 1.0852 Household’s loan rates
Y Df See Figure 3.1 Equilibrium yield curve

Table C.2: Steady-state values with parameters in Table C.1
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Figure C.3: Variations in κB (scale parameter): when κB →∞, we return to the expectation
hypothesis case, where all the discounted expected returns are equalized, and thus obtain a
flat yield curve in the steady state.
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Figure C.4: Variations in central bank’s bond portfolio across maturities: central bank’s
relative purchase of bonds with different maturities is negatively related with yields, in line
with literatures documenting that the central bank’s bond purchase (such as QEs and LSAPs
in general) reduces an yield for the bond of targeted maturiy in segregated markets.
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Figure C.5: Variations in deficit ratio ζF + ζG − ζT : a higher deficit ratio ends up hurting
the economy: given that it is sustained only when the government issues more treasury
bonds15or its effective bond rate RG falls, a higher deficit ratio reduces output, consumption,
and capital, which leads to drops in the deficit size (nominal) and the government’s bond
issuance, pushing down its bond return RG. A credit spread rises in response.

15If government issues more treasury debts to finance a higher deficit given output, it will raise the gov-
ernment’s effective bond return RG , which forces government to issue more bonds and then pushes up RG , ad
infinitum, which is not sustained in the long run.
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Figure C.6: Variations in deficit ratio ζF + ζG − ζT : a higher deficit ratio ends up hurting
the economy: given that it is sustained only when the government issues more treasury
bonds16or its effective bond rate RG falls, a higher deficit ratio reduces output, consumption,
and capital, which leads to drops in the deficit size (nominal) and the government’s bond
issuance, pushing down its bond return RG. A credit spread rises in response.

16If government issues more treasury debts to finance a higher deficit given output, it will raise the gov-
ernment’s effective bond return RG , which forces government to issue more bonds and then pushes up RG , ad
infinitum, which is not sustained in the long run.
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Figure C.7: Variations in scale parameter zK: given calibrated {z f } and for zK ∈ [0.2, 2], a
higher zK tends to push up λK, the household’s capital loan share out of her total savings,
thus bringing up capital, output, consumption in the steady-state. It reduces an average
marginal propensity to consume (MPC). Interestingly, a positive zK shock shifts down the
entire yield curve, as well as the capital return (the loan rate RK), from the household’s
endogenous fund reallocation, resulting in a higher credit spread.17As RG falls, government
bond share with respect to GDP also falls.

17Therefore, the bond market experiences larger drops in yields than the loan market experiences a falling
loan rate.
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Figure C.8: Variations in scale parameter zK: given calibrated {z f } and for zK ∈ [0.2, 2], a
higher zK tends to push up λK, the household’s capital loan share out of her total savings,
thus bringing up capital, output, consumption in the steady-state. It reduces an average
marginal propensity to consume (MPC). Interestingly, a positive zK shock shifts down the
entire yield curve, as well as the capital return (the loan rate RK), from the household’s
endogenous fund reallocation, resulting in a higher credit spread.18As RG falls, government
bond share with respect to GDP also falls.

18Therefore, the bond market experiences larger drops in yields than the loan market experiences a falling
loan rate.
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Figure C.9: Variations in shape parameter κS: given calibrated {z f } and zK values and for
κS ∈ [0.5, 3], a higher κS tends to reduce λK, the household’s capital loan share out of total
savings. It pushes down capital (as we have a higher RK, rental rate of capital for firms),
output, and consumption while raising an average marginal propensity to consume (MPC).
Credit spreads increase while a higher RK dragging government’s bond return RG and the
entire yield curve up. Government ends up issuing more bonds per output.
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Figure C.10: Variations in shape parameter κS: given calibrated {z f } and zK values and for
κS ∈ [0.5, 3], a higher κS tends to reduce λK, the household’s capital loan share out of total
savings. It pushes down capital (as we have a higher RK, rental rate of capital for firms),
output, and consumption while raising an average marginal propensity to consume (MPC).
Credit spreads increase while a higher RK dragging government’s bond return RG and the
entire yield curve up. Government ends up issuing more bonds per output.
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A.3. Section 3.4.3
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Figure C.11: Impulse response to zKt shock: a positive zK shock incentivizes the household
to issue more loans, raising aggregate capital and pushing down the capital return. It raises
output and inflation,19thus monetary policy rate rises in response. YCC policy turns out to
be better-stabilizing.

19Note that an inflection point arises in the inflation path with the conventional policy, as rising output
and aggregate demand push up inflation, while a lower capital return (and wage) tends to bring it down (two
countervailing forces).
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Figure C.12: Impulse response to εAt shock: a positive technology growth shock generates
similar effects to the prior literature,20where output rises and inflation falls down. A rising
output raises firms’ capital demand and brings up the capital return, while the capital level
actually drops with a better technology. With YCC policy, (normalized) output ironically falls:
as inflation falls, all yields shift down, bringing down both capital return and wage, compared
to the conventional case. Then, the household reduces her labor supply, and normalized
output falls. However, actual output (which is not normalized) increases in response to the
technology shock even in the YCC policy case.

20For example, see Ireland (2004).
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Figure C.13: Impulse response to εY D
1

t shock: a usual contractionary monetary policy shock
pushes down output, inflation, and capital. As firms reduce their inputs demand, capital
return and wage fall, which brings inflation down. On the other hand, YCC policy almost
perfectly insulates the economy from the shock. As the policy shock hits the economy, central
bank shifts up the entire yield curve, which prevents input prices (capital return and wage)
from falling, and inflation slightly increases. Even though a higher real effective savings rate
reduces aggregate demand, a higher wage raises the aggregate labor supply, thus output
remains almost unchanged.
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Figure C.14: Impulse response to zKt shock with ZLB: a big negative shock to zK induces the
household to issue less loans to intermediate firms and invest more in bond markets. Bond
rates fall and the policy rate gets constrained by ZLB. Output, capital, inflation, and capital
return all jump down in response. YCC policy is effective in stabilizing the economy, while
generating a longer ZLB episode as in Figure 3.5.
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