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Abstract
This paper presents results of structural and thermal modeling of a z-axis
rate integrating gyroscope. A strain energy method is used to obtain a
structural model of the device, which is verified using finite element
analysis. Based on a parametric analysis, an appropriate micromachining
technology suitable for the fabrication of the gyroscope is identified. A
sensitivity study shows that the operational modes of the proposed
gyroscope remain matched under thermal and stress fluctuations, whereas a
device with a commonly used H-type suspension shows a 31% frequency
mismatch under thermal loading of 23.67 ◦C or 9 MPa of compressive
stress.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The necessity for low cost and high performance inertial
sensors has been the force driving development of
microelectromechanical (MEM) gyroscopes. By virtue of
sizes and fabrication costs magnitudes lower than their macro-
world counterparts, micromachined gyroscopes offer a wide
range of applications [1], ranging from satellite attitude
sensing to rollover detection in automobiles. By combining
multiple gyroscopes and accelerometers on a single chip,
complete with on-board integrated electronics, full position
and rate sensing can be achieved. Currently, there is
an ongoing effort to design gyroscopes with increasingly
improved sensitivity, bandwidth and resistivity to errors.

Most micromachined gyroscopes sense angular rates
using vibrational elements. A structure is driven into
resonance and rotation induced Coriolis force causes the
transfer of energy from the drive vibrational mode to a
sense vibrational mode. The magnitude of energy transferred
is proportional to the rate of rotation. Inherent in all
micromachined gyroscopes are sensing errors that manifest
themselves in the form of angle random walk and bias drift [1].
In applications where it is necessary to integrate the rate signal
to obtain the position, these errors are also integrated, thus
magnifying the error. In these cases, it is more advantageous
to measure the angle directly in order to avoid the effect of
error integration.

In contrast to a rate gyroscope, which sustains resonance
along a drive axis, an ideal micromachined gyroscope working
in full angle measurement mode consists of a structure in free
vibration. Input rotation induced Coriolis force causes the line
of oscillation to precess. This principle is best illustrated by
the Foucault pendulum, whose precessing plane of oscillation
is often used to illustrate the effect of Earth’s rotation [2].
Although existing devices utilizing vibrational shell designs
[3, 4] can potentially be used for full angle sensing, these
designs have limited sense capacitance due to the restriction
that all electrodes must be incorporated around the perimeter
of the shell.

The device studied in this paper [5] utilizes a vibrational
‘lumped mass system’ with parallel plate electrostatic combs
used for drive and sense (figure 1(a)). This comb configuration
allows electrostatic forces to be applied along four different
axes. Two of these axes, designated as the drive axes, are
designed to apply control forces used for driving, frequency
tuning and energy loss compensation. The other two axes,
designated as the sense axes, are used to detect the
displacement and velocity of the proof mass. The use of
sense combs interwoven between the comb fingers of the proof
mass increases the sense capacitance, and therefore the sense
capabilities, of the device.

The device operates by first driving the proof mass into
forced oscillation. Upon reaching the desired amplitude,
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Figure 1. (a) The studied rate integrating gyroscope uses parallel plate combs for drive and sense. The drive combs are used to apply
control forces to maintain oscillation of the proof mass while the sense combs are used to detect displacement and velocity. Rotation
induced Coriolis force causes the line of oscillation to precess. The precession angle is equal to the angular displacement of the device [5].
(b) A proposed suspension design, consisting of a multiplicity of interconnected rings rigidly attached to an anchored frame, provides
necessary isotropy required for the operation of this device.

the drive force is removed and the energy of the system is
maintained using a specially designed control architecture
[5, 6]. The rotation induced Coriolis force causes the line
of oscillation to precess, which can be calculated from the
detected position and velocity of the proof mass. This
precession angle is equal to the angular displacement of the
device.

In order for the line of oscillation to precess undisturbed,
the gyroscope suspension must be isotropic to allow the
principal axes of elasticity to be arbitrarily located in the
plane of oscillation. Operation of the device with a non-
isotropic suspension results in quadrature error manifested as
an elliptical oscillation pattern that develops as the line of
oscillation precesses away from the principal axes of elasticity
[7]. This results in degraded performance of the gyroscope. A
novel concentric ring suspension consisting of a multiplicity
of concentric rings rigidly attached to an anchored frame is
utilized to satisfy this condition (figure 1(b)).

The principles of operation of the rate integrating
gyroscope are presented in section 2, followed by structural
analysis of the device in section 3. The structural analysis
utilizes a strain energy method to find a closed form expression
for the in-plane stiffness of the suspension along the principal
axes of elasticity, which is verified using finite element
analysis. In addition, a parametric analysis of the suspension
demonstrates the necessity for thick structural layers in order
to prevent excitation of undesirable modes of operation. A
comparative temperature sensitivity study between the ring
suspension and an H-type spring suspension, a suspension
type commonly used in MEMS applications [8], is presented in
section 4. The effect of residual stress on the two suspensions
is discussed. Residual stress is modeled by thermal
loading of the suspensions and, based on the temperature
sensitivity study, the effect of the resulting thermal stress is
found.

x,y,z - Rotating Frame

φ 
x

yz
Ω

Rotating Platform

Line of Oscillation

i,j,k - Inertial Frame

i

j

k,

Figure 2. Mass-spring model of the z-axis angular gyroscope.
{i, j, k} is the inertial coordinate system and {x, y, z} is the
coordinate system attached to the rotating platform. In the absence
of rotation, the inertial and rotating frames coincide. In the presence
of rotation, the line of oscillation would be observed to precess by
an angle φ with respect to the rotating coordinate system (or fixed
with respect to the inertial frame).

2. Gyroscope principles

The gyroscope operates in the first two fundamental in-plane
linear modes, therefore, the device is mathematically modeled
as a lumped mass-spring system (figure 2). The model utilizes
two coordinate systems: {i, j, k}—inertial coordinate system
and {x, y, z}—coordinate system attached to the rotating
platform. If the natural frequency of the system is large
compared to the input rotation, and the stiffness in the z-
direction is much larger than that in the other two orthogonal
directions, then the out-of-plane dynamics can be ignored and
the governing equations of motion are given by [6]

ẍ + ω2
nx − 2�ẏ = 0, ÿ + ω2

ny + 2�ẋ = 0. (1)
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Figure 3. (a) An isotropic suspension allows for the ideal operation of the gyroscope where the line of oscillation precesses undisturbed.
(b) A non-isotropic suspension results in quadrature error manifested as an increasing elliptical oscillation pattern during precession.

If we assume an even mass distribution, then equation (1) can
be written in a matrix form as[
m 0
0 m

] {
ẍ

ÿ

}
+

[
kxx kxy

kyx kyy

] {
x

y

}

+

[
0 −2�

2� 0

] {
ẋ

ẏ

}
=

{
0
0

}
(2)

where m is the mass and if we assume an isotropic suspension,
kxx = kyy and kxy = kyx = 0. Since the stiffness is the
same in the x- and y-directions, any axis in the x–y plane
can be considered a principal axis of elasticity. As a result,
the line of oscillation precesses undisrupted in the presence of
rotation (figure 3(a)), allowing accurate measure of the angle
of precession φ, given by [9]

tan 2φ = 2
(
ω2

nxy + ẋẏ
)

ω2
n(x

2 − y2) + (ẋ2 − ẏ2)
. (3)

In the case of a non-isotropic suspension where kxx �= kyy and
kxy = kyx �= 0, the location of the principal axes of elasticity
is no longer arbitrary. These anisoelasticities disrupt the line
of oscillation as it precesses away from the principal axes
(figure 3(b)), which disrupts the measurements necessary to
determine the precession angle [7]. Thus, an ideal suspension
is one that is both isotropic and robust to environmental
variations that could cause anisoelasticity, such as thermal
fluctuations. These requirements motivate the choice of
concentric rings as a suspension design.

3. Structural analysis

This section develops an analytical model to estimate the
in-plane structural stiffness and confirm the isotropy of the
proposed suspension. Finite element modeling is used to
verify this result and to show the influence of thickness
on the separation of desirable and undesirable resonant
modes.

3.1. Analytical modeling

The model consists of a proof mass suspended above the
substrate using a multiplicity of concentric rings (figure 4(a))

where the number of rings and the ring geometry are chosen to
achieve a desired stiffness value. The rings are interconnected
at 90◦ increments, with the outer ring being rigidly attached
to an anchored frame. If the suspension is isotropic, the
stiffness along both principal axes of elasticity must be the
same (figure 4(b)). By calculating the deflection of the proof
mass in response to a known arbitrary force F at an arbitrary
angle α, an expression for the stiffness is found. In the analysis,
we first solve for the deflection in the case of a single, fixed
ring. Then the total deflection of the proof mass is calculated
by summing the contributions of each subsequent ring using
the reaction forces and moments from the previous ring as the
applied forces and moments, assuming each ring interconnect
is rigid. In a realistic implementation of the device, ring
lengths will be at least two orders of magnitude larger than the
maximum deflection. This validates the use of linear elasticity
theory.

As the first step in the analysis of the overall model, we
consider the deflection contribution of the inner ring. The
inner ring is fixed at its connection points to the second
ring and the rigid connection of the proof mass is modeled
using constraint forces (λ1, λ2, λ3, λ4) (figure 5(a)). If the
interconnects are sufficiently rigid, the suspension has very
high angular stiffness, preventing the proof mass from twisting.
M0 is the moment used to represent this angular deflection
constraint. Due to symmetry, this model can be further
decomposed to a quadrant of the ring (figure 5(b)) where
the fixed end conditions at ends A and B are modeled using
reaction forces and moments (Rx, Ry,M).

The corresponding reactions are calculated [10] as
functions of the constraints and applied force and are used
to find the total strain energy U of the curved member. If the
radius r1 is large compared to the thickness of the ring t, i.e.
r1/t > 10, the bending energy dominates the strain energy
[10], and U can be expressed as

U =
∫ π

4

0

M̂2
A

2EI
r1 dγ +

∫ π
4

0

M̂2
B

2EI
r1 dθ

M̂A = −r1(1 − cos γ )Rx,A − r1 sin γRy,A + MA

M̂B = r1 sin θRx,B + r1(1 − cos θ)Ry,B + MB

(4)
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Figure 4. (a) The gyroscope is modeled as a proof mass suspended by a multiplicity of concentric ring suspension members. The stiffness
of the suspension is calculated by finding the deflection of the proof mass in response to a force F at an arbitrary angle α. (b) The stiffness in
an arbitrary direction, v, can be decomposed into the contributions of the stiffnesses along the principal axes of elasticity, 2kv = (kx + ky) +
(kx − ky) cos 2α. If the suspension is isotropic, kv = kx = ky .

(a) (b)

Figure 5. (a) The inner ring contribution can be calculated from the contributions of each quadrant. The λ and M0 represent constraint
forces and constraint moments due to the rigid attachment of the proof mass. (b) The problem is further decomposed into the contributions
of each quadrant. The deflection is found by differentiating the strain energy calculated from the reaction forces (Rx, Ry , M ).

where M̂A and M̂B are the reaction induced moments at angles
γ and θ from fixed ends A and B, respectively (see figure 5(b)).
Here, the reaction forces and moments are functions of the
applied force F, angle of applied force α, and the constraints
[10]

Rx,A = −.2846F cos α − .1220F sin α + .4880λ1

+ 1.1382λ2 + .7257(M0/r1)

Ry,A = .1220F cos α + .0346F sin α − .1384λ1

− .4880λ2 + .7257(M0/r1)

Rx,B = .0346F cos α + .1220F sin α − .4880λ1

− .1385λ2 − .7257(M0/r1)

Ry,B = −.1220F cos α − .2845F sin α + 1.1381λ1

+ .4880λ2 − .7257(M0/r1)

MA = .0160Fr1 cos α + .0018Fr1 sin α − .0073r1λ1

−.0641r1λ2 + .22577M0

MB = −.0019Fr1 cos α − .0160Fr1 sin α + .0641r1λ1

+ .0076r1λ2 + .2257M0

By Castiliano’s theorem, the deflection of an elastic member
in the direction of the applied force is equal to the change in

strain energy with respect to the applied force [10],

δF,r1 = ∂U

∂F
= r1

EI

∫ π
4

0
M̂A

∂M̂A

∂F
dγ +

r1

EI

∫ π
4

0
M̂B

∂M̂B

∂F
dθ.

(5)

A similar solution is arrived at for each of the four quadrants,
leading to a total of eight unknowns consisting of four λ

constraints and four M0 constraints. By assuming zero
deformation in the constraints, the unknowns are eliminated
by symmetry constraints

δλ1,UR + δλ1,LR = δλ2,UR + δλ2,UL = 0
δλ3,UL + δλ3,LL = δλ4,LL + δλ4,LR = 0

δM0,UR = δM0,LR = δM0,LL = δM0,UL = 0.

Here UR, LR, LL and UL designate the upper right, lower
right, lower left and upper left quadrants of the inner ring,
respectively (see figure 5(a)). Solving the system of equations
simultaneously yields

δF,r1 = r3
1

4EI
(4.017 × 10−4F). (6)

The final step in the analysis is to add the contributions of each
of the subsequent rings using a similar analysis procedure as
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Figure 6. The uniformity of the suspension was confirmed by modeling the system using the FEM package ANSYS. The suspension was
modeled using three dimensional beam elements, while the proof mass was modeled using three dimensional shell elements. The proof
mass was subjected to the same load in the directions of (a) 0, 45 and 60◦. The corresponding radial displacements as shown in (b),
(c) and (d ), respectively, were equal, which confirms the isotropy of the suspension.

for the first ring. We find the contribution of the second ring by
modeling it as rigidly attached where it would be connected to
the third ring. The reaction forces of the inner ring are used as
the applied forces on the second ring. Using the same solution
procedure as for the inner ring, with the simplification that the
second ring is unconstrained (λ = M0 = 0), the deflection of
the top and bottom quadrants of the second ring is

δF,r2 = F

EI

(
0.0002r3

2 cos2 α − 0.0001r2
2 r1 cos2 α

+ 0.0001r3
2 sin2 α

)
. (7)

Letting the spacing between the rings be given as �r = r2−r1,
equation (7) can be written as

δF,r2 = r2
2

4EI
(r2 + �r cos2 α)(4.0104 × 10−4F). (8)

If the spacing is sufficiently small compared to the radius
(�r/r2 � 1), then (8) simplifies to

δF,r2 = r3
2

4EI
(4.0104 × 10−4F). (9)

With this assumption, the same result is found for the left
and right quadrants. Assuming that the bending moment of
inertia (I ) and the modulus of elasticity (E) are identical for all
rings, we see that this deflection varies only with radius when
compared to the deflection of the inner ring, equation (6).
By induction, this expression for the ring deflection will
propagate to each subsequent ring. The generalized stiffness
can be written as force divided by deflection,

kr(r) = 9957.68
EI

r3
. (10)

The total stiffness of the system can be found by summing the
stiffness of all the rings in series

ktot = 9957.68EI∑n
i=1 r3

i

(11)

where n is the number of rings. The final solution is not
a function of α, so it is concluded that this stiffness is
independent of the angle of the applied force, thus verifying
the isotropy of the suspension.

3.2. Finite element modeling

To verify the analytical model, a finite element model was
constructed using the ANSYS multiphysics FEA package.
Since the length to width ratio of the rings is large, the
suspension was modeled using massless BEAM4, three
dimensional beam elements. The proof mass was modeled
using three dimensional shell elements, SHELL93, with a
thickness of 2 µm (a typical structural thickness for surface
micromachining technologies). Using a geometry for a
practical design of the gyroscope, a six ring suspension is
used where the radii of the rings are 303.5, 306.5, 309.5,
312.5, 315.5 and 318.5 µm and the width of each ring was
1 µm. The Young’s modulus was assumed to be 169 GPa
for this analysis. A known force of 1 µN was applied at the
center of the proof mass in three varying in-plane directions
(0, 45 and 60◦). The in-plane radial deflections of the proof
mass were found to be the same in all three cases (figure 6).
Due to the symmetry of the structure, this demonstrates that
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Figure 7. (a) The use of thin structural layers in the design of the suspension results in undesirable out-of-plane modes. (b) The parametric
analysis of the suspension reveals that the out-of-plane stiffness increases as thickness cubed, while the in-plane stiffness is linear. At 12 µm
thickness, the out-of-plane stiffness (point A) is nearly three times larger than the in-plane stiffness (point B). (c) Since mass also increases
linearly, the in-plane natural frequency remains constant while the out-of-plane natural frequency increases linearly.

the suspension is uniformly stiff in all radial directions. The
stiffness, calculated as force divided by deflection, results in
a value of 1.48 N m−1. From the previous section, since the
spacing of the rings in the simulation is sufficiently smaller
than the radii (�r/r � 1), equation (11) can be used to find
the stiffness analytically. Using the same geometries as the
FEA simulation, the analytical expression gives a stiffness
of 1.53 N m−1, yielding a close match to the FEA acquired
results, with a difference of only 4.5%. While some level of
anistropy is to be expected as seen in equation (8), this effect
was observed to be orders of magnitude smaller than the actual
calculated stiffness values.

3.3. Mode separation

For the operation of the gyroscope, it is desirable to design the
device where the operational modes are separated from any

undesirable modes. Surface micromachining has limitations
on the thickness of structural layers and these restrictions yield
a low out-of-plane stiffness, resulting in undesirable out-of-
plane modes (figure 7(a)). It is possible to compensate for this
effect by utilizing thicker structural layers.

A modal analysis based on the same FEA model as in
the previous section is used to identify the effect of varying
thickness on the performance of the device. Since the length
of the rings is large compared to the thicknesses used in
this study, the choice of beam elements is still appropriate.
As thickness (t) increases, the in-plane bending moment
of inertia, and therefore the in-plane stiffness of the rings,
increases linearly (kr = f (t)) (figure 7(b)). In comparison,
the out-of-plane moment of inertia, and thus the out-of-plane
stiffness, increases as thickness cubed (kz = f (t3)). Since
the mass also increases linearly with thickness, the in-plane
natural frequencies remain constant (ωn,r = √

kr/m = const),
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Figure 8. (a) A comparative thermal analysis is done with a device utilizing an H-type suspension. The operational mode resonance
frequencies are identical to those of the ring suspension system through appropriate choices in geometry. (b) The finite element model of the
system is made using three dimensional beam and mass elements for the suspension and proof mass, respectively. The model is subjected to
thermal loading and the prestressed resonant modes are found.

while the out-of-plane natural frequencies increase linearly
(ωn,z = √

kz/m = f (t)) (figure 7(c)). From the simulation,
at an optimal thickness of 12 µm, the out-of-plane stiffness
is almost three times greater than the in-plane stiffness, thus
providing an appropriate mode separation between desirable
and undesirable modes of operation of the gyroscope.

4. Sensitivity analysis

In MEMS gyroscopes, it is necessary to maintain matching
between the drive and sense modes in order to maximize
sensitivity. Even deviations as low as 1% between drive and
sense mode frequencies result in errors as high as 20% in the
output signal gain [11]. An important design consideration
is to choose a suspension that is robust to environmental
effects, such as temperature changes, that can cause modal
mismatch. In this section we compare the effects of thermal
fluctuations on the ring suspension with those on an H-type
suspension (figure 8) commonly used in MEMS gyroscope
designs [8].

4.1. Effect of temperature changes

The effects of temperature changes on the frequency of a
system can be decoupled into three different effects: changes
in the modulus of elasticity, thermal expansion and thermally
induced stresses. The influence of the modulus of elasticity
and thermal expansion on the resonant frequency ωr of the
system, in general, can be approximated as

ωr(Tf ) = ωr(T0) + ωr(T0)T Cf �T (12)

where �T is the change in temperature and T0 and Tf are
the initial and final temperatures, respectively. T Cf is the
temperature coefficient for the resonant frequency, which can
be expressed by [12]

T Cf = 1
2 (T CE − T Ch) (13)

where T CE is the temperature coefficient of Young’s modulus
for fine-grained polysilicon given as [13] −75 ppm ◦C−1 and
T Ch is the coefficient of thermal expansion, 2.0 ppm ◦C−1.

Without some mechanism of stress relief, thermally
induced stresses become the dominating factor in frequency
mismatch. In the case of the H-type suspension, the beams
across the suspension can be assumed to be stress free while
those fixed to the substrate are susceptible to stresses. Under
tensile stress, the drive and sense frequencies are given by [8]

ωdrive = 2

√
Ez0

m

(w

L

)3
(14)

ωsense = 2

√√√√Ez0

m

κ2

12

w

L

(
1 − 2

κ

w

L

cosh
(
κ L

w

) − 1

sinh
(
κ L

w

)
)−1

(15)

where κ = √
12εx and εx is the axial strain. Assuming that

due to rigid attachment to the truss, the length of the anchored
beam is not free to expand, the strain can be approximated as
εx = T Ch�T . Using the same solution methodology [8], the
sense frequency under compressive stress is

ωsense = 2

√√√√Ez0

m

κ2

12

w

L

(
−1 − 2

κ

w

L

cos
(
κ L

w

) − 1

sin
(
κ L

w

)
)−1

. (16)

To capture all these effects, finite element modeling using
ANSYS was done to compare the H-type suspension with
the ring suspension. Each suspension was modeled using
BEAM4 elements with a thickness of 2 µm and a width
of 1 µm. The radii for the ring suspension are identical to
those in the previous model, while an appropriate choice of
95.55 µm for the beam lengths in the H-type suspension was
made to match the same operational mode frequencies as in
the ring suspension. Each proof mass was modeled using
MASS21, three dimensional mass elements. The four proof
mass elements were then coupled using constraint equations.
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Figure 9. (a) Without a form of stress relief, thermal fluctuations cause large frequency mismatches in the H-type suspension, with buckling
occurring at higher positive temperatures. (b) In contrast, the ring suspension allows for stress relief and as a result, the modes of the ring
suspension remain matched during varying temperature changes.

Each system was modeled assuming an effective mass of
4.18 × 10−10 kg. The models were subjected to global heating
temperatures between −100 and 100 ◦C and a static analysis
was run with prestress effects turned on. The prestress effects
stored the stresses from the static analysis, which were then
applied to a modal analysis. Prior to the modal analysis, the
nodal coordinates were updated with the deflections from the
static analysis and Young’s modulus was changed to reflect its
inherent temperature dependence

E(Tf ) = E(T0) + E(T0)T CE�T (17)

where the initial value for Young’s modulus E(T0) was
169 GPa.

From the analysis of the H-type suspension (figure 9(a)),
the drive mode shows slight deviations from its original
frequency of 9676 Hz mostly due to changes in Young’s
modulus. The sense direction shows a low resilience to
stress and exhibits a frequency change of 7639 Hz from its
original value of 9674 Hz under negative temperature changes
(tensile stress), yielding a frequency mismatch of 79% between
drive and sense. In addition, under high positive temperature
changes (compressive stress), the suspension buckles due to
high stresses, resulting in failure of the device. In contrast,
the ring suspension allows for stress relief and disperses
stresses uniformly due to axial symmetry. As a result, the
modes of the ring suspension remain matched to their original
values of 9612 and 9617 Hz in the presence of the same
thermal loading as in the case of the H-type suspension
(figure 9(b)). Isotropic changes in the frequency are a result of
uniform expansion of the suspension and changes in Young’s
modulus and result in a maximum uniform frequency change
of 0.4% in the temperature range for both suspension types.

4.2. Residual stress

Residual stress is a common by-product in many MEMS
fabrication processes, resulting in degraded performance of
micromachined devices. As an example, we consider the case
of the studied gyroscope being fabricated using the Cronos

MUMPS process [14] where heated polysilicon is deposited
on a sacrificial oxide layer. Since the polysilicon is rigidly
attached to the sacrificial layer, one mechanism of residual
stress is thermal stress that develops as the polysilicon cools
to room temperature due to thermal mismatch between the
polysilicon and the oxide. After subsequent release of the
oxide layer, a certain amount of stress remains, which varies
from run to run. The gyroscope utilizes the POLY1 structural
layer, where the residual stress for the MUMPS-42 run, for
example, is given as 9 MPa in compression. Since thermal
stress can be calculated by σ = ET Ch�T , the effect of
residual stress can be modeled by thermally loading the device
to a temperature of 23.67 ◦C. From the previous section, we see
that operational modes of the ring suspension remain matched
under such temperature loading. In contrast, if an H-type
suspension were to be implemented using the same technology
and suspension geometry, the residual stress would result in a
frequency mismatch of 31%.

5. Conclusion

In this paper, we have structurally characterized a MEMS
angular gyroscope by evaluating the stiffness of the novel
ring suspension system and determining the resonant modes
of operation and corresponding resonant frequencies. It has
been demonstrated that the six concentric and interconnected
ring suspension provides the necessary isotropy required for
the operation of the device. Further, we have developed
a close form solution for the stiffness of the suspension,
which is applicable to any suspension of this type, given
any arbitrary number of rings, and confirmed this result
using finite element modeling. It has also been shown
that using a fabrication technology utilizing thick structural
layers shifts the undesirable modes of operation to a
higher frequency range, thus increasing the immunity of the
device to undesirable excitations. A thermal comparison
between the existing device and a device utilizing an H-
type spring suspension shows that the ring suspension is
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significantly more resilient to temperature changes as well as
residual stress effects that develop during fabrication of the
device.
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