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Abstract: Genome-wide association studies (GWAS) have identified common polymorphisms in or near GC, CYP2R1, 
CYP24A1, and NADSYN1/DHCR7 genes to be associated with circulating levels of 25-hydroxyvitamin D [25(OH)D] 
in European populations. To replicate these GWAS findings, we examined six selected polymorphisms from these 
regions and their relation with circulating 25(OH)D levels in 1,605 Hispanic women (629 U.S. Hispanics and 976 
Mexicans) and 354 non-Hispanic White (NHW) women. We also assessed the potential interactions between these 
variants and known non-genetic predictors of 25(OH)D levels, including body mass index (BMI), sunlight expo-
sure and vitamin D intake from diet and supplements. The minor alleles of the two GC polymorphisms (rs7041 
and rs2282679) were significantly associated with lower 25(OH)D levels in both Hispanic and NHW women. The 
CYP2R1 polymorphism, rs2060793, also was significantly associated with 25(OH)D levels in both groups. We found 
no significant associations for the polymorphisms in the CYP24A1. In Hispanic controls, 25(OH)D levels were signifi-
cantly associated with the rs12785878T and rs1790349G haplotype in the NADSYN1/DHCR7 region. Significant 
interactions between GC rs2282679 and BMI and between rs12785878 and time spent in outdoor activities were 
observed. These results provide further support for the contribution of common genetic variants to individual vari-
ability in circulating 25(OH)D levels. The observed interactions between SNPs and non-genetic factors warrant con-
firmation.

Keywords: Circulating levels, Hispanics, genetic polymorphisms, SNPs, genotype-phenotype correlation, vitamin D

Introduction

Vitamin D deficiency is a common health prob-
lem worldwide [1] and has been implicated in a 
wide range of diseases beyond bone disease, 
e.g., diabetes, cardiovascular disease, multiple 
sclerosis, and some cancer types, with the evi-
dence being most consistent for colorectal can-
cer ([2] and reviewed in [1, 3, 4]).

Known determinants of an individual’s vitamin 
D status, which is measured by circulating 
25-hydroxyvitamin D (25(OH)D) levels, include 
sunlight exposure, and vitamin D from diet and 
supplements. Twin studies and family-based 
studies suggest that genetic factors also con-
tribute to a significant proportion of the inter-
individual variability in vitamin D status [5-7]. 

http://www.ijmeg.org
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There have been three published genome-wide 
association studies (GWAS) of vitamin D status 
(circulating 25(OH)D levels and vitamin D insuf-
ficiency) in adults (http://www.genome.gov/
gwastudies/). The two GWAS conducted in pop-
ulations of European ancestry found significant 
associations with several single nucleotide 
polymorphisms (SNPs) located within or near 
vitamin D metabolic pathway genes [8, 9]. 
These genes include the GC gene (encoding 
vitamin D binding protein, formerly known as 
group-specific component), the CYP2R1 gene 
(encoding 25-hydroxylase, an enzyme that cat-
alyzes the conversion of vitamin D to 25(OH)D), 
the CYP24A1 gene (encoding 24-hydroxylase, a 
key enzyme in vitamin D inactivation), and the 
NADSYN1/DHCR7 gene region (encoding nico-
tinamide adenine dinucleotide synthetase and 
7-dehydrocholesterol reductase, respectively. 
The latter converts 7-dehydrocholesterol to 
cholesterol and thus modulates the availability 
of 7-dehydrocholesterol in the skin). In the third 
GWAS, conducted in U.S. Hispanics, polymor-
phisms in these four genes or genomic regions 
were not associated with 25(OH)D levels at a 
genome-wide significance level [10]. However, 
that study had a much smaller sample size and 
used a family-based design, which typically has 
reduced power due to overmatching on geno-
type [11, 12]. 

The associations between polymorphisms in 
the GC, CYP24A1, and CYP2R1 genes and cir-
culating 25(OH)D have been supported by sev-
eral candidate gene studies [13-18]. However, 
with a few exceptions [16-19], those studies 
have focused primarily on populations of 
European descent. The NADSYN1/DHCR7 
region was replicated in a candidate gene study 
of a Chinese population [18]. Further replica-
tion is needed in other populations, including 
Hispanics who are at a greater risk of vitamin D 
deficiency than non-Hispanic Whites [20]. 

The aim of this study was to replicate the GWAS-
identified polymorphisms in Mexican women, 
and U.S. Hispanic and non-Hispanic White 
(NHW) women living in California. Hereafter, the 
Mexican and U.S. Hispanic women are referred 
to as Hispanics. In addition, in a subset of study 
participants, we assessed the interactions 
between the SNPs and non-genetic determi-
nants of circulating 25(OH)D.

Materials and methods

Study population

This analysis from the Breast Cancer Health 
Disparities Study [21] includes participants 
from two population-based case-control stud-
ies who completed an in-person interview and 
provided a blood or mouthwash sample. All 
study participants signed written informed con-
sent. The study was approved by the institution-
al review board of the Cancer Prevention 
Institute of California and each participating 
institution in Mexico. 

The San Francisco Bay Area Breast Cancer 
Study (SFBCS) [22, 23] included women aged 
35-79 years from the San Francisco Bay Area 
diagnosed with a first primary histologically 
confirmed invasive breast cancer between April 
1997 and April 2002; controls were identified 
by random-digit dialing and frequency-matched 
to cases based on the expected race/ethnicity 
and 5-year age distribution. A total of 1,105 
cases and 1,318 controls completed the inter-
view and 93% of cases (750 Hispanics and 276 
NHWs) and 92% of controls (916 Hispanics and 
298 NHWs) provided a blood or mouthwash 
sample. 

The Mexico Breast Cancer Study (MBCS) [24, 
25] included women aged 28-74 years from 
Mexico. Eligible cases were diagnosed with 
either a new histologically confirmed in situ or 
invasive breast cancer between January 2004 
and December 2007 at 12 participating hospi-
tals from three main health care systems; con-
trols were randomly selected from the catch-
ment area as the cases and frequency matched 
to cases based on 5-year age distribution, 
membership in health care institution, and 
place of residence. A total of 1,000 cases and 
1,074 controls completed the interview. Blood 
was collected from 85% of cases and 93% of 
controls. 

Data collection 

Both studies administered similar structured 
questionnaires in English or Spanish to collect 
information on demographic background, life-
style factors, menstrual and reproductive his-
tory, supplement use, and other breast cancer 
risk factors. The interview also included mea-
surements of weight, height, hip and waist 
circumferences.
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Additionally, the SFBCS collected information 
on sunlight exposure, including lifetime resi-
dential history; lifetime history of time spent in 
outdoor activities (occupational or recreational 
physical activities, outdoor chores, walking and 
bicycling for transportation); as well as sun 
avoidance behaviors. Usual dietary vitamin D 
intake in the reference year (defined as the cal-
endar year before diagnosis for cases or before 
selection into the study for controls) was 
assessed using a modified Block Food 
Frequency Questionnaire [26, 27]. Annual aver-
age ultraviolet (UV) exposure at the residence 
at the time of diagnosis (cases) or selection 
into the study (controls) was estimated using 
the GIS (geographical information systems)-
based ANUSPLIN model, as described else-
where [28]. Several summary variables of resi-
dential UV exposure were created: mean at the 
point residence; and mean, median, minimum 
and maximum, and standard deviation (SD) 
within a 20 km radius of the residence. Skin 
pigmentation was measured using a Minolta 
Chromameter, with measures ranging from 0 
(perfect black) to 100 (perfect white), and con-
stitutive pigmentation was calculated as the 
average of two measurements taken at the 
upper inner arm, an area usually not exposed to 
the sun [23]. For 206 Hispanic cases, no skin 
pigmentation measurements were taken.

A second short questionnaire was administered 
at the time of blood collection (except for 206 
Hispanic cases), with a median time between 
interview and blood draw of 10 months for 
cases and 9 months for controls. This question-
naire updated information on current weight, 
menstrual and reproductive history, and out-
door activities during six months prior to blood 
collection. 

Measurement of circulating 25(OH)D

In the MBCS, blood samples were processed 
within 1 hour of blood draw and serum was 
stored at -70°C until 25(OH)D measurement by 
liquid chromatography-tandem mass spec-
trometry at Quest Diagnostics Nichols Institute 
(San Juan Capistrano, CA). The intra-assay and 
inter-assay coefficients of variation (CVs) were 
6.4-12.6% and 8.0-14.4%, respectively. The 
assay sensitivity was 4 ng/mL (1 ng/mL=2.496 
nmol/L). 25(OH)D measurements were avail-
able for a random sample of 574 cases and 
649 controls.

In the SFBCS, blood samples were transported 
to the laboratory on ice, processed within 3 
hours of blood draw, and stored at -70°C until 
25(OH)D analysis. Serum total 25(OH)D in con-
trols was measured using chemiluminescent 
immunoassay from Nichols Institute Diagno- 
stics (San Clemente, CA). The intra-assay and 
inter-assay CVs were 3.0-4.5% and 6.4-14.5%, 
respectively. The assay sensitivity was 4 ng/
mL. For cases, plasma 25(OH)D level was mea-
sured using an iodinated RIA kit from DiaSorin 
(Stillwater, MN) with a two-step procedure [29]. 
The intra-assay and inter-assay CVs were 8.6-
12.5% and 8.2-11.0%, respectively. The assay 
sensitivity was 1.5 ng/mL. 25(OH)D measure-
ments were available for 670 cases (440 
Hispanics and 230 NHWs) and a subset of 358 
controls (223 Hispanics and 135 NHWs). 

Genotyping

DNA was extracted from either blood or mouth-
wash samples. Whole Genome Amplification 
(WGA) was applied to the mouthwash-derived 
DNA samples prior to genotyping. Six SNPs 
were selected from among those that passed 
the genome-wide significance level (p<10-8) in 
the two prior GWAS (described above). 
Redundant SNPs (r2 of at least 0.7 in HapMap-
MEX panels) were excluded, with priority given 
to SNPs that were identified by both GWAS 
(rs2282679 and rs7041 in GC; rs12785878 
and rs1790349 in DHCR7/NADSYN1; rs20- 
60793 in CYP2R1; rs6013897 in CYP24A1) 
(Table 1). The six SNPs and 104 Ancestral 
Informative Markers (AIMs) were genotyped 
using a custom Illumina GoldenGate 1536 SNP 
OPA (Illumina Inc, San Diego, CA) [21]. Overall, a 
genotyping call rate of 99.93% was attained 
(99.65% for whole-genome amplified samples). 
For the 132 duplicate samples that were includ-
ed as an internal quality control, the concor-
dance rate was 99.996% as determined by 
193,297 matching genotypes among sample 
pairs [21].

Statistical analysis

Because different measurement methods were 
used between the MBCS and SFBCS and 
between cases and controls in the SFBCS, cir-
culating 25(OH)D was standardized according 
to the mean and SD in each of the following 
groups: MBCS controls, MBCS cases, SFBCS 
Hispanic controls, SFBCS Hispanic cases, 
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Table 1. Linkage Disequilibrium (Measured by r2) Between the GWAS-identified SNPs and Those Selected in the Study
Nearby gene SNPs1 p value reported in GWAS LD in Hapmap-CEU panel LD in Hapmap-MEX panel
GC rs2282679 2.0x10-30 [9]; 1.9x10-109 [8]

rs7041 4.1x10-22 [9]; 6.31x10-59 [8] r2=0.6 with rs2282679 r2=0.2 with rs2282679
rs3755967 2.4x10-75 [8] r2=1.0 with rs2282679 r2=1.0 with rs2282679
rs17467825 6.7x10-74 [8] r2=1.0 with rs2282679 Not available
rs1155563 3.8x10-25 [9]; 2.4x10-73 [8] r2=0.8 with rs2282679 r2=0.7 with rs2282679
rs2298850 2.0x10-71 [8] r2=0.95 with rs2282679 r2=0.8 with rs2282679

DHCR7/NADSYN1 rs12785878 2.1x10-27 [8]
rs7944926 9.0x10-16 [8] r2=1.0 with rs12785878 r2=1.0 with rs12785878
rs12800438 2.5x10-15 [8] r2=1.0 with rs12785878 r2=0.96 with rs12785878
rs3794060 3.4x10-15 [8] r2=1.0 with rs12785878 r2=1.0 with rs12785878
rs4945008 4.6x10-15 [8] r2=0.95 with rs12785878 Not available
rs4944957 8.7x10-15 [8] r2=1.0 with rs12785878 r2=0.96 with rs12785878
rs1790349 1.8x10-6 [9] r2=0.5 with rs12785878 r2=0.1 with rs12785878
rs3829251 8.8x10-7; 3.4x10-9 in combined meta-analysis [9] r2=0.9 with rs1790349 r2=0.7 with 1790349
rs11234027 3.4x10-3; 3.4x10-9 in combined meta-analysis [9] r2=0.9 with rs1790349 r2=0.7 with 1790349

CYP2R1 rs2060793 2.9x10-5; 2.9x10-17 in combined meta-analysis [9]; 1.7x10-11 [8]
rs10741657 3.3x10-20 [8] r2=1.0 with rs2060793 Not available
rs1993116 2.9x10-17; 2.9x10-17 in combined meta-analysis [9] r2=0.98 with rs2060793 r2=0.9 with rs2060793
rs12794714 1.8x10-9 [8] r2=0.5 rs2060793 r2=0.7 with rs2060793
rs10500804 2.7x10-9 [8] r2=0.5 with rs2060793 r2=0.9 with rs2060793
rs7116978 5.0x10-9 [8] r2=0.8 with rs2060793 r2=0.9 with rs2060793

CYP24A1 rs6013897 7.2x10-10 [8]
1SNPs that were selected for genotyping in the present study are highlighted in bold.
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SFBCS NHW controls and SFBCS NHW cases, 
with standardized 25(OH)D calculated as [mea-
sured 25(OH)D minus group mean] divided by 
group SD. 

Hardy-Weinberg equilibrium (HWE) was tested 
for each control group using the Pearson good-
ness-of-fit statistic. Multiple testing-adjusted 
HWE p-value was obtained using the Benjamini 
and Hochberg procedure in SAS MULTTEST 
[30]. Multiple linear regression models were fit 
to examine associations between each SNP 
and standardized 25(OH)D levels. SNPs were 
analyzed assuming a co-dominant model. An 
additive model was also assessed. Individual 
ancestry was computed using the STRUCTURE 
program [31, 32] based on 104 AIMs [21]. 
Percent Native American ancestry according to 
a two-founding population model was included 
as a continuous covariate in all regression 
models, in addition to age at blood draw (con-
tinuous), season at blood draw (spring: March 
21-June 20; summer: June 21-September 20; 
fall: September 21-December 20; December 
21-March 20), and body mass index (BMI) 
[weight (kg)/height2 (m), continuous]. 
Associations between SNPs and 25(OH)D lev-
els were analyzed separately in Hispanic con-
trols, Hispanic cases, NHW controls and NHW 
cases. No significant differences in associa-
tions by disease status were detected in either 
Hispanics or NHWs, and we therefore pooled 
cases and controls within each ethnic group. 
Secondary analyses were performed on the 
non-standardized levels of 25(OH)D within each 
of the following groups: Mexican controls, 
Mexican cases, U.S. Hispanic controls, U.S. 
Hispanic cases, NHW controls and NHW cases. 
A generalized linear model framework with nat-
ural log link and a gamma distribution was 
applied. Results on the genotype-25(OH)D 
associations were similar (data not shown). 

Haplotype analysis was performed for the two 
GC SNPs and the two SNPs in the NADSYN1/ 
DHCR7 region. Estimated haplotype frequen-
cies and individual haplotype probabilities were 
obtained using the TagSNP software [33]. 
Gene-gene interactions between polymor-
phisms in or near the GC, CYP2R1 and CYP24A1 
genes and the NADSYN1/DHCR7 region were 
examined by stratified analysis. Statistical 
interactions were assessed by including cross-
product terms in regression models. 

Associations between 25(OH)D levels and BMI, 
total vitamin D intake, residential UV exposure, 
outdoor activity during the 6 months prior to 
blood draw, and constitutive skin pigmentation 
were analyzed in the SFBCS only. Gene-envir- 
onment interactions were examined between 
the significant non-genetic predictors of 25(OH)
D levels and the SNPs.

Of the 2,251 women with measured 25(OH)D 
levels, 184 (153 from the MBCS and 31 from 
the SFBCS) were excluded due to missing geno-
type data. We also excluded 108 women with 
missing data on covariates that were adjusted 
for in the analysis. The final analysis included 
976 women from the MBCS and 983 from the 
SFBCS, for a total of 1,605 Hispanics and 354 
NHWs.

Results

Characteristics of study participants

Participant characteristics are summarized in 
Table 2. Overall, vitamin D deficiency (defined 
as ≤20 ng/mL as in [34]) was present in 44% of 
the study participants and was more prevalent 
in breast cancer cases than in controls in both 
the MBCS and SFBCS. Hispanic cases and con-
trols from the SFBCS both had a higher preva-
lence of vitamin D deficiency than their NHW 
counterparts. In the SFBCS, Hispanic women 
had darker constitutive skin pigmentation and 
spent less time in outdoor activities than NHW 
women. The SFBCS Hispanics had higher 
dietary vitamin D intake than NHWs, but were 
less likely to take vitamin D supplements and 
therefore had lower total vitamin D intake. 

The genes, corresponding SNPs and their minor 
allele frequencies (MAFs) in controls are pre-
sented in Table 3. No significant departure of 
observed genotype frequencies from HWE 
expectations was found for any of the SNPs 
[false discovery rate (FDR) p-value>0.05], 
except for rs12785878 in Mexican controls. 

Associations between circulating 25(OH)D lev-
els and SNPs

The associations between the SNPs and stan-
dardized 25(OH)D levels are shown in Table 4 
for Hispanic and in Table 5 for NHW controls 
and cases. In both ethnic groups, associations 
did not differ significantly between cases and 
controls for any of the six SNPs, thus cases and 
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Table 2. Circulating 25(OH)D Levels and Covariates by Study, Ethnicity and Case-control Status1

Mexico Breast Cancer Study (MBCS) San Francisco Bay Area Breast Cancer Study (SFBCS)
Controls
N=564

Cases
N=412

Hispanic controls
N=215

NHW controls
N=130

Hispanic cases
N=414

NHW cases
N=224 P value5

Vitamin D deficient (<20 ng/mL), % 27.3 47.3 52.0 27.7 63.5 48.2 <0.01

Age at blood draw (years), mean (SD) 50.3 (8.9) 52.6 (9.7) 52.8 (11.6) 56.8 (14.0) 59.5 (11.2) 61.1 (12.3) <0.01

Body mass index at blood draw (kg/m2), mean (SD)2 30.7 (5.4) 29.8 (5.9) 29.7 (5.5) 26.8 (6.3) 29.5 (8.8) 27.2 (5.1) <0.01

Percent Native American ancestry, mean (SD) 0.71 (0.2) 0.66 (0.2) 0.46 (0.2) 0.05 (0.1) 0.42 (0.2) 0.05 (0.1) <0.01

Time between interview and blood draw (months), median 10 7 18 5

Dietary vitamin D intake (IU/day), mean (SD) 283.0 (216.0) 248.3 (154.6) 254.0 (150.7) 247.3 (146.7) 0.09

Total vitamin D intake (IU/day), mean (SD) 426.0 (385.1) 509.8 (346.6) 341.4 (252.5) 503.2 (370.6) <0.01

Outdoor activities (hours/week), mean (SD)3 3.5 (4.6) 5.0 (4.8) 3.2 (4.6) 4.0 (3.7) <0.01

Constitutive skin pigmentation, mean (SD)4 34.7 (4.3) 39.6 (4.2) 34.5 (3.9) 38.6 (3.4) <0.01
1N=1959 women with measured 25(OH)D levels, after excluding those with missing covariates, including season at blood draw, age at blood draw, body mass index (BMI), and genetic ancestry. 2For 190 SFBCS Hispanic cases who had miss-
ing BMI at blood draw, BMI in the reference year was used instead. 3For 190 SFBCS Hispanic cases, no information was collected on outdoor activities within the 6 months prior to blood collection. 4Skin pigmentation measured at the upper 
inner arm, not taken for the 190 SFBCS Hispanic cases and missing for another 13 women. 5P values are for chi square tests for categorical variables and for ANOVA tests comparing mean values for continuous variables.

Table 3. Genes, SNPs, and Allele Frequencies in Controls, by Study and Ethnicity

Nearby gene SNP Chromosome 
location Region Major/Minor 

Allele

MAF1

in MBCS2 
controls

HWE
p-value3

MAF
in SFBCS4  

Hispanic controls

HWE
p-value3

MAF
in SFBCS

NHW controls

HWE
p-value3

GC rs7041 4q12-q13 coding G/T 0.50 0.04 (0.21) 0.47 0.78 (0.93) 0.44 0.58 (0.87)
GC rs2282679 4q12-q13 intron A/C 0.19 0.50 (0.84) 0.21 0.05 (0.21) 0.30 0.68 (0.89)
NADSYN1 rs12785878 11q13.4 intron T/G 0.56 <0.001 (0.01) 0.48 0.24 (0.47) 0.31 0.89 (0.94)
NADSYN1/DHCR7 rs1790349 11q13.4 Intergenic A/G 0.17 0.13 (0.34) 0.20 0.04 (0.21) 0.15 0.19 (0.44)
CYP2R1 rs2060793 11p15.2 5’ upstream G/A 0.36 0.69 (0.89) 0.38 0.84 (0.94) 0.38 0.51 (0.84)
CYP24A1 rs6013897 20q13 intergenic TT/A 0.42 0.08 (0.23) 0.34 0.97 (0.97) 0.21 0.07 (0.23)
1Minor allele frequency (MSF). 2Mexico Breast Cancer Study. 3Hardy-Weinberg Equilibrium (HWE) p-value from a 1df chi-square test (false discovery rate p-value in parenthesis). 4San Francisco Bay Area 
Breast Cancer Study.
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Table 4. Associations Between Circulating 25(OH)D Levels and Genotypes in Hispanic Cases and Controls from the Mexico Breast Cancer Study 
and the San Francisco Bay Area Breast Cancer Study

Cases and Controls Combined Controls Cases

Genotypes N
25(OH)D (ng/mL) 

Mean (SD)
Adjusted

beta (SE)1

Adjusted
P value1 N

25(OH)D (ng/mL)
Mean (SD)

Adjusted
Beta (SE)1

Adjusted
P value1 N

25(OH)D (ng/mL)
Mean (SD)

Adjusted
Beta (SE)1

Adjusted
P value1 Pinteraction

2

rs7041

    GG 419 21.8 (7.7) 216 23.6 (7.0) 203 19.8 (7.9)

    GT 764 20.6 (7.3) -0.15 (0.06) 0.01 362 22.2 (7.3) -0.20 (0.08) 0.02 402 19.1 (7.0) -0.09 (0.09) 0.29

    TT 422 19.4 (7.2) -0.33 (0.07) <10-4 201 21.3 (7.3) -0.34 (0.10) 0.0004 221 17.8 (6.7) -0.32 (0.10) 0.001

Per copy of T allele -0.17 (0.03) ptrd<10-4 -0.17 (0.05) ptrd=4x10-4 -0.16 (0.05) ptrd=0.001 0.73

rs2282679

    AA 1005 21.4 (7.7) 516 23.1 (7.5) 489 19.6 (7.4)

    AC 529 19.5 (6.8) -0.23 (0.05) <10-4 227 21.4 (6.2) -0.28 (0.08) 0.0002 302 18.2 (6.9) -0.18 (0.07) 0.01

    CC 71 16.7 (6.4) -0.56 (0.12) <10-4 36 17.7 (7.4) -0.65 (0.17) 0.0001 35 15.8 (5.0) -0.43 (0.18) 0.02

Per copy of C allele -0.25 (0.04) ptrd<10-4 -0.30 (0.06) ptrd<10-4 -0.19 (0.06) ptrd=0.002 0.21

rs12785878 185 22.3 (6.6) 189 19.4 (7.0)

    TT 374 20.8 (6.9) 353 22.6 (7.8) 0.09 (0.09) 0.33 410 18.9 (7.4) -0.07 (0.09) 0.42

    TG 763 20.6 (7.8) 0.01 (0.06) 0.87 241 22.0 (7.0) -0.05 (0.10) 0.59 227 18.6 (6.9) -0.10 (0.10) 0.31

    GG 468 20.4 (7.1) -0.07 (0.07) 0.29 185 22.3 (6.6) 189 19.4 (7.0)

Per copy of G allele -0.04 (0.03) ptrd=0.26 -0.03 (0.05) ptrd=0.50 -0.05 (0.05) ptrd=0.32 0.86

rs1790349

    AA 1100 20.8 (7.5) 527 22.6 (7.2) 573 19.2 (7.3)

    AG 454 20.0 (7.3) -0.11 (0.06) 0.05 227 21.7 (7.4) -0.07 (0.08) 0.34 227 18.3 (6.8) -0.14 (0.08) 0.07

    GG 51 20.6 (6.9) -0.07 (0.14) 0.63 25 23.3 (6.2) 0.01 (0.20) 0.95 26 18.0 (6.6) -0.13 (0.20) 0.52

Per copy of G allele -0.08 (0.05) ptrd=0.08 -0.05 (0.07) ptrd=0.49 -0.11 (0.07) ptrd=0.08 0.39

rs2060793

    GG 618 19.9 (6.8) 315 21.5 (6.4) 303 18.3 (6.9)

    GA 747 21.0 (7.8) 0.20 (0.05) 0.0002 356 23.0 (7.7) 0.25 (0.08) 0.001 391 19.3 (7.4) 0.15 (0.08) 0.05

    AA 240 20.8 (7.6) 0.21 (0.08) 0.005 108 22.6 (7.9) 0.21 (0.11) 0.05 132 19.4 (7.2) 0.20 (0.10) 0.05

Per copy of A allele 0.13 (0.04) ptrd=0.004 0.14 (0.05) ptrd=0.005 0.11 (0.05) ptrd=0.03 0.72

rs6013897

    TT 614 20.7 (7.9) 294 22.4 (7.7) 320 19.1 (7.8)

    TA 736 20.7 (7.3) 0.005 (0.05) 0.93 351 22.4 (7.3) 0.02 (0.08) 0.84 385 19.0 (7.0) -0.02 (0.08) 0.77

    AA 255 20.1 (6.4) -0.14 (0.07) 0.06 134 21.9 (6.1) -0.10 (0.10) 0.35 121 18.2 (6.1) -0.19 (0.11) 0.09

Per copy of A allele -0.06 (0.04) ptrd=0.11 -0.04 (0.05) ptrd=0.46 -0.08 (0.05) ptrd=0.14 0.66
1Using standardized 25(OH)D levels as the dependent variable; multiple regression models adjusted for age at blood draw (continuous), body mass index (BMI, at blood draw if available; if not, BMI at interview for controls and BMI in the 
reference year for cases, continuous), season of blood draw (4 categories), and genetic ancestry (continuous). 2Interaction between the genotypes and case-control status.
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Table 5. Associations Between Circulating 25(OH)D Levels and Genotypes in non-Hispanic White Cases and Controls from the San Francisco Bay 
Area Breast Cancer Study

Cases and Controls Combined Controls Cases

Genotypes N 25(OH)D (ng/mL) 
Mean (SD)

Adjusted 
beta (SE)1

Adjusted 
P value1 N 25(OH)D (ng/mL) 

Mean (SD)
Adjusted 

beta (SE)1
Adjusted 
P value1 N 25(OH)D (ng/mL) 

Mean (SD)
Adjusted 

beta (SE)1
Adjusted 
P value1 Pinteraction

2

rs7041
    GG 115 24.5 (10.5) 42 26.8 (11.0) 73 23.2 (10.1)
    GT 177 22.5 (8.4) -0.27 (0.12) 0.02 61 25.0 (10.1) -0.22 (0.19) 0.24 116 21.2 (7.1) -0.29 (0.15) 0.05
    TT 62 23.1 (8.5) -0.30 (0.15) 0.05 27 27.5 (7.6) -0.15 (0.25) 0.56 35 19.8 (7.7) -0.42 (0.20) 0.04
Per copy of T allele -0.17 (0.07) ptrd=0.02 -0.09 (0.12) ptrd=0.45 -0.23 (0.10) ptrd=0.02 0.32
rs2282679
    AA 182 23.9 (9.9) 62 26.4 (10.6) 120 22.6 (9.4)
    AC 144 22.6 (8.5) -0.28 (0.11) 0.01 57 26.1 (9.6) -0.22 (0.18) 0.22 87 20.3 (6.9) -0.32 (0.14) 0.02
    CC 28 22.6 (7.0) -0.24 (0.20) 0.22 11 23.9 (7.8) -0.58 (0.32) 0.07 17 21.8 (6.5) -0.06 (0.25) 0.81
Per copy of C allele -0.19 (0.08) ptrd=0.02 -0.26 (0.13) ptrd=0.06 -0.16 (0.10) ptrd=0.12 0.62
rs12785878
    TT 185 23.2 (9.0) 62 26.0 (9.5) 123 21.8 (8.4)
    TG 145 23.0 (9.1) -0.06 (0.11) 0.58 55 25.0 (9.7) -0.14 (0.18) 0.42 90 21.8 (8.5) 0.003 (0.14) 0.98
    GG 24 25.0 (11.2) 0.02 (0.21) 0.92 13 30.7 (11.8) 0.56 (0.30) 0.06 11 18.3 (5.5) -0.49 (0.31) 0.11
Per copy of G allele -0.02 (0.08) ptrd=0.77 0.11 (0.13) ptrd=0.39 -0.10 (0.11) ptrd=0.36 0.17
rs1790349
    AA 263 23.4 (9.2) 95 26.0 (10.0) 168 21.9 (8.3)
    AG 82 22.8 (9.4) -0.04 (0.12) 0.72 30 26.0 (9.9) 0.07 (0.21) 0.75 52 20.9 (8.6) -0.11 (0.16) 0.48
    GG 9 24.8 (8.3) -0.01 (0.33) 0.98 5 28.1 (9.5) 0.16 (0.44) 0.72 4 20.6 (4.6) -0.21 (0.50) 0.68
Per copy of G allele -0.03 (0.10) ptrd=0.76 0.07 (0.16) ptrd=0.65 -0.11 (0.14) ptrd=0.43 0.37
rs2060793
    GG 140 22.5 (9.1) 51 26.9 (10.2) 89 19.9 (7.3)
    GA 162 23.3 (8.8) 0.13 (0.11) 0.22 58 24.8 (9.0) -0.17 (0.18) 0.62 104 22.5 (8.7) 0.30 (0.14) 0.03
    AA 52 25.3 (10.2) 0.38 (0.16) 0.02 21 27.7 (11.6) 0.12 (0.25) 0.34 31 23.7 (9.0) 0.52 (0.21) 0.01
Per copy of A allele 0.18 (0.07) ptrd=0.02 0.01 (0.12) ptrd=0.91 0.27 (0.10) ptrd=0.005 0.09
rs6013897
    TT 227 23.4 (9.3) 85 25.7 (10.1) 142 22.1 (8.5)
    TA 112 23.2 (8.8) 0.001 (0.11) 0.99 36 28.8 (7.8) 0.23 (0.19) 0.23 76 20.5 (8.1) -0.12 (0.14) 0.39
    AA 15 21.9 (10.7) -0.21 (0.26) 0.42 9 19.2 (12.7) -0.50 (0.33) 0.14 6 26.0 (5.2) 0.45 (0.42) 0.29

Per copy of A allele -0.04 (0.09) ptrd=0.63 -0.05 (0.14) ptrd=0.74 -0.02 (0.13) ptrd=0.85 0.92
1Using standardized 25(OH)D levels as the dependent variable; multiple regression models adjusted for age at blood draw (continuous), body mass index (BMI, at blood draw if available; if not, BMI at interview 
for controls and BMI in the reference year for cases, continuous), season of blood draw (4 categories), and genetic ancestry (continuous). 2Interaction between the genotypes and case-control status.
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controls were combined. In both groups, the 
less common alleles at the two GC loci (rs7041 
and rs2282679) were associated with signifi-
cantly lower 25(OH)D levels, and the A allele of 
the CYP2R1 polymorphism (rs2060793) was 
significantly associated with higher 25(OH)D 
levels. The magnitudes of the associations 
were similar for Hispanic and NHW women. 
Overall, the three SNPs individually accounted 
for 0.6-3.5% of the inter-individual variability in 
circulating 25(OH)D levels, with the R2 varying 
between Hispanic and NHW women and 
between women with or without breast cancer 
(data not shown).

We did not observe significant associations 
between 25(OH)D levels and SNPs rs12785878 
and rs1790349 in the NADSYN1/DCRH7 gene 
region or SNP rs6013897 near CYP24A1, for 
either Hispanic women (Table 4) or NHW 
women (Table 5).

The two GC SNPs were in weak LD in Hispanics 
(r2=0.24) and remained statistically significant 
after mutual adjustment (β=-0.19 for the 
rs7041 TT genotype, p for trend=0.02; β=-0.44 
for the rs2282679 CC genotype, p for trend<10-

4), suggesting independent associations with 
25(OH)D levels for the two SNPs. In NHW 
women, a stronger LD (r2=0.50) between the 
two SNPs and a much smaller sample size pre-
cluded the examination of the independent 
associations for the two SNPs. The GC haplo-
type analysis did not provide better prediction 
than the single SNP analysis in either Hispanics 
or NHWs (data not shown). 

The two SNPs in the NADSYN1/DHCR7 region 
had r2=0.14 and 0.19 in Hispanic and NHW 
women, respectively. Compared to the most 
common rs12785878T_rs1790349A haplo-
type, the rare rs12785878T_rs1790349G hap-
lotype was significantly associated with 25(OH)
D levels in Hispanic, but not NHW, control 
women. The difference in associations between 
Hispanic and NHW controls was statistically 
significant (p=0.02). Associations did not differ 
significantly by case-control status (Table 6). 

No significant difference by self-reported eth-
nicity was observed for the associations bet- 
ween 25(OH)D levels and any of the six SNPs, 
nor did the associations differ significantly by 
estimated genetic ancestry (data not shown). 

Hispanics and NHWs were combined in the 
analyses of gene-gene interactions to increase 
statistical power. No significant interactions 
between the GC SNPs and the CYP2R1 
rs2060793 were found, nor did they interact 
significantly with rs6013897 near CYP24A1 or 
the SNPs in the NADSYN1/DHCR7 region (data 
not shown). 

Non-genetic predictors of circulating 25(OH)
D levels

Associations between 25(OH)D levels and 
potential non-genetic predictors in women from 
the SFBCS are shown in Table 7. Various sum-
mary measures of residential UV exposure 
were examined individually and all provided 
similar model prediction [based on Aikaike 
Information Criterion (AIC)]. Mean UV levels 
within a 20 km radius of the residence was 
included in the final model. Models with BMI or 
weight also had similar AIC scores and there-
fore only associations with BMI are presented. 
Among cases and controls combined, we 
observed a significant negative association for 
BMI (p for trend=0.001), and positive associa-
tions for total vitamin D intake (p=0.001) and 
recent outdoor activities (p=0.001). Results 
were similar in the analysis of standardized 
25(OH) levels (data not shown). Associations 
did not differ significantly between cases and 
controls, although the association for outdoor 
activities was significant only in controls. In 
cases, neither stage at diagnosis or time inter-
val between diagnosis and blood collection 
were significant predictors of 25(OH)D levels. 
Adding them in the model did not result in dis-
cernible changes in the associations for other 
predictors (data not shown). Lighter constitu-
tive skin pigmentation was significantly associ-
ated with higher 25(OH)D levels in Hispanic 
controls, but lower levels in NHW controls. 
Constitutive skin pigmentation was not a sig-
nificant predictor of standardized 25(OH)D lev-
els (data not shown). 

Overall, the significant non-genetic factors 
(BMI, total vitamin D intake, outdoor activity, 
and constitutive skin pigmentation) accounted 
for 15% of the variability in circulating 25(OH)D 
levels (22% in controls and 13% in cases), after 
adjusting for season and age at blood draw. 
Each of the three significant SNPs accounted 
for approximately an additional 1% of the 
variability. 
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Table 6. Associations Between Circulating 25(OH)D Levels and Haplotypes in the NADSYN1/DHCR7 Region, by Ethnicity and Case-control Status
Cases and Controls Combined Controls Cases

Ethnicity Haplotype Frequency Adjusted
beta (SE)1

Adjusted
P value1 Frequency Adjusted

beta (SE)1
Adjusted
P value1 Frequency Adjusted

beta (SE)1
Adjusted
P value1 Pinteraction

2

Hispanic T_A 0.47 ref 0.46 ref 0.48
G_A 0.36 -0.02 (0.04) 0.58 0.36 -0.03 (0.05) 0.52 0.35 -0.004 (0.06) 0.95 0.37
G_G 0.17 -0.08 (0.05) 0.1 0.18 -0.04 (0.07) 0.53 0.17 -0.13 (0.08) 0.09 0.64
T_G 0.001 -1.41 (0.70) 0.05 0.002 -1.52 (0.70) 0.03 0.0004 7.76 (23.72) 0.74 0.71

NHW T_A 0.72 0.68 ref 0.74
G_A 0.14 0.01 (0.11) 0.90 0.17 0.13 (0.15) 0.38 0.13 -0.06 (0.15) 0.69 0.39
G_G 0.13 -0.07 (0.11) 0.55 0.14 0.05 (0.18) 0.80 0.12 -0.14 (0.15) 0.33 0.30
T_G 0.01 0.34 (0.37) 0.36 0.009 0.69 (0.70) 0.33 0.01 0.10 (0.45) 0.83 0.48

1Using standardized 25(OH)D levels as the dependent variable; multiple regression models adjusted for age at blood draw (continuous), body mass index (BMI, at blood draw if avail-
able; if not, BMI at interview for controls and BMI in the reference year for cases, continuous), season of blood draw (4 categories), and genetic ancestry (continuous). 2Interaction 
between the haplotypes and case-control status.

Table 7. Associations Between Circulating 25(OH)D Levels and Non-genetic Factors in Cases and Controls from the San Francisco Bay Area Breast 
Cancer Study

Exposure
Cases and Controls Combined Controls Cases

N
25(OH)D (ng/mL) 

Mean (SD)
Adjusted 
beta1,2

Adjusted 
P value1,2 N

25(OH)D (ng/mL) 
Mean (SD)

Adjusted 
Beta1

Adjusted 
P value1 N

25(OH)D (ng/mL) 
Mean (SD)

Adjusted 
Beta3

Adjusted 
P value3 Pinteraction

4

Body mass index (kg/m2)
    <25 244 23.7 (9.6) 103 25.8 (10.2) 141 22.2 (8.8)
    25-29.9 254 20.3 (8.1) -0.09 (0.04) 0.02 116 21.7 (8.7) -0.04 (0.06) 0.58 138 19.2 (7.4) -0.10 (0.05) 0.04
    ≥30 278 17.9 (7.8) -0.18 (0.04) <10-4 119 18.5 (8.3) -0.18 (0.06) 0.003 159 17.5 (7.4) -0.17 (0.05) 2x10-4

ptrd<10-4 ptrd=0.002 ptrd=2x10-4 0.57
Total vitamin D intake from diet and supplements (IU/day)
    <215 242 18.7 (8.6) 106 19.1 (8.9) 136 18.4 (8.3)
    215-499.9 236 19.7 (8.2) 0.05 (0.04) 0.15 99 21.4 (9.5) 0.15 (0.06) 0.01 137 18.4 (6.9) -0.003 (0.05) 0.96
    ≥500 298 22.7 (9.0) 0.14 (0.04) 5x10-4 133 24.2 (9.4) 0.17 (0.06) 0.003 165 21.4 (8.6) 0.12 (0.05) 0.01

ptrd=0.001 ptrd=0.04 ptrd=0.01 0.43
Residential UV exposure (Wh/m2)5

    <4757.0 270 20.8 (9.3) 135 22.3 (10.4) 135 19.3 (7.7)
    4757.1-4827.9 245 21.2 (8.6) -0.01 (0.04) 0.74 85 22.8 (9.7) -0.04 (0.06) 0.50 160 20.3 (7.8) 0.01 (0.05) 0.78
    ≥4828.0 261 19.6 (8.4) 0.001 (0.04) 0.97 118 20.5 (8.0) -0.003 (0.06) 0.96 143 18.9 (8.8) 0.02 (0.05) 0.65

ptrd=0.98 ptrd=0.93 ptrd=0.65 0.40
Recent outdoor activities (hrs/wk)
    0 211 18.0 (8.0) 94 18.4 (8.9) 117 17.7 (7.2)
    0.1-3 156 20.2 (8.8) 0.07 (0.04) 0.09 53 22.2 (10.2) 0.11 (0.08) 0.14 103 19.1 (7.8) 0.03 (0.05) 0.63
    ≥3 409 22.0 (8.9) 0.12 (0.04) 0.001 191 23.4 (9.1) 0.19 (0.06) 8x10-4 218 20.7 (8.5) 0.07 (0.05) 0.14

ptrd=0.001 ptrd=0.001 ptrd=0.13 0.09
Constitutive skin pigmentation (NHWs only)
    Dark 46 24.6 (9.7) 13 34.4 (9.6) 33 20.7 (6.5)
    Intermediate 103 23.7 (8.2) -0.06 (0.07) 0.39 39 25.3 (8.7) -0.34 (0.13) 0.01 64 22.6 (7.8) 0.06 (0.08) 0.43
    Light 190 22.7 (9.5) -0.09 (0.06) 0.17 72 24.8 (9.6) -0.36 (0.12) 0.002 118 21.4 (9.2) 0.01 (0.07) 0.86

ptrd=0.17 ptrd=0.01 ptrd=0.85 0.11
Constitutive skin pigmentation (Hispanics only)
    Dark 213 17.7 (7.9) 104 18.4 (8.7) 109 17.1 (7.0)
    Intermediate 156 18.6 (7.3) 0.07 (0.05) 0.13 74 19.8 (7.4) 0.10 (0.07) 0.15 82 17.4 (7.1) 0.04 (0.06) 0.54
    Light 68 20.3 (9.1) 0.14 (0.06) 0.02 36 21.4 (9.8) 0.16 (0.09) 0.07 32 18.9 (8.1) 0.11 (0.09) 0.20

ptrd=0.01 ptrd=0.04 ptrd=0.21 0.71
1Plasma 25(OH)D levels on the original scale were analyzed using a generalized linear model with natural log link and a gamma distribution, adjusting for season and age at blood draw, ethnicity, in addition to mutual adjustment for covariates 
listed in the table; interaction between ethnicity and constitutive skin pigmentation was also adjusted. 2With further adjustment for case-control status. 3Additional adjustment for stage and time since diagnosis did not alter the results. 4Inter-
action between the exposure of interest and case-control status. 5Within a 20 km radius of the residence at diagnosis (cases) or selection into study (controls).
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Statistical interactions between SNPs and 
non-genetic predictors of circulating 25(OH)D 
levels

Statistically significant interactions were ob- 
served between GC SNP rs2282679 and BMI 
(p for interaction=0.02, Table 8). Specifically, 
25(OH)D level was inversely associated with 
the number of rs2282679_C alleles only in 
women who had a BMI <30 kg/m2. Significant 
interaction was also found between NADSYN1/
DHCR7 SNP rs12785878 and outdoor activity 
(p for interaction=0.005). The rs12785878_G 
allele was associated with increased 25(OH)D 
levels in women who spent less than 2 hours 
per week in outdoor activities, but reduced 25- 
(OH)D levels in those who spent more time in 
outdoor activities. No statistically significant int- 
eraction was observed between any of the 
SNPs and total vitamin D intake (data not 
shown).

Discussion

In this study of 1,605 Hispanic and 354 NHW 
women, several common SNPs identified by 
GWAS as predictors of 25(OH)D levels in popu-

lations of European descent were also signifi-
cantly associated with 25(OH)D levels in 
Hispanics. Specifically, the minor alleles of 
rs7041 and rs2282679 in the GC gene were 
associated with lower levels of 25(OH)D, where-
as the minor allele of the CYP2R1 rs2060793 
was associated with higher 25(OH)D levels. 
Associations did not differ significantly between 
Hispanics and NHWs. In Hispanic controls, cir-
culating 25(OH)D levels were significantly asso-
ciated with the haplotypes of SNPs rs12785878 
and rs1790349 in the NADSYN1/DHCR7 
region. Our study confirms associations bet- 
ween 25(OH)D levels and known non-genetic 
predictors, including BMI, total vitamin D 
intake, outdoor activity, and constituent skin 
pigmentation. Statistically significant interac-
tions were observed between the GC rs22- 
82679 SNP and BMI, and between NADSYN1/
DHCR7 SNP rs12785878 and outdoor activity.

GC is the major binding protein of vitamin D 
metabolites in the circulation and responsible 
for their transportation to target tissue [35]. In 
the GC gene, two non-synonymous SNPs, 

Table 8. Interactions Between Genotypes and Non-genetic Factors in Cases and Controls from the 
San Francisco Bay Area Breast Cancer Study

Genotypes N 25(OH)D (ng/mL)
Mean (SD)

Adjusted
beta1

Adjusted
P value1 Pinteraction

2

rs2282679

Body mass index
<30 kg/m2

AA 348 22.3 (9.4)
AC 246 20.8 (8.1) -0.29 (0.08) 0.0006
CC 34 20.3 (8.3) -0.45 (0.18) 0.01

ptrd<10-4

Body mass index
≥30 kg/m2

AA 199 17.5 (7.7)
AC 130 17.3 (7.4) -0.02 (0.10) 0.83
CC 26 16.0 (6.1) -0.11 (0.19) 0.55

ptrd=0.59 0.02
rs12785878

Outdoor activities
<2 hours/week3

TT 102 18.6 (7.6)
TG 140 18.5 (8.8) 0.16 (0.13) 0.22
GG 51 19.7 (9.1) 0.39 (0.17) 0.02

ptrd=0.03

Outdoor activities
≥2 hours/week3

TT 198 23.0 (8.7)
TG 225 21.7 (8.8) -0.05 (0.10) 0.57
GG 77 18.2 (8.5) -0.31 (0.14) 0.03

Ptrd=0.05 0.005
1Using standardized 25(OH)D levels as the dependent variable; multiple regression models adjusted for age at blood draw 
(continuous), body mass index (BMI, at blood draw if available; if not, BMI at interview for controls and BMI in the reference 
year for cases, continuous), season of blood draw (4 categories), and genetic ancestry (continuous). 2Interaction between the 
genotypes and non-genetic factors. 3Outdoor activities within the 6 months prior to blood collection.
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rs7041 (Glu416Asp) and rs4588 (Thr420Lys, 
which we did not examine) have been associat-
ed with circulating 25(OH)D levels [13]. In 
experimental studies, these two SNPs have 
been linked with altered binding affinity [36] 
and metabolic turnover of the GC protein [37]. 
However, in two GWAS [8, 9], a non-coding SNP, 
rs228679, was an even stronger predictor of 
25(OH)D levels, compared to SNP rs7041. It 
has been speculated that the association of 
rs228679 with 25(OH)D may be due to its tight 
LD with rs4588 (r2=1.0 in HapMap-CEU panel 
and 0.7 in HapMap-MEX panel) [16, 18]. The 
exact mechanism linking changes in GC affinity 
and circulating levels to a change in circulating 
25(OH)D levels is not yet established, although 
an influence on 25(OH)D clearance from the cir-
culation, reabsorption in renal tubules, and/or 
further metabolism into 1,25-(OH)2 have been 
suggested [8, 13, 38]. 

Our finding of a statistically significant interac-
tion between the GC SNP rs2282679 and BMI 
is intriguing. Vitamin D is fat soluble and stud-
ies in animals and humans have shown that 
adipose tissue is the major storage site of 
25(OH)D [39, 40]. A strong inverse association 
between BMI or body fat content and circulat-
ing 25(OH)D levels has been repeatedly 
observed [41-43], consistent with our findings. 
It is biologically plausible that variants in the GC 
gene that affect the efficiency of transporting 
vitamin D to adipose tissue interact with the 
overall body fat content to influence circulating 
vitamin D levels. The same interaction with BMI 
was not observed for the GC SNP rs7401. 
Different effects of the two SNPs (or the true 
functional variants they are in strong LD with) 
on the GC protein could be a potential 
explanation.

Although a previous small study suggested that 
vitamin D supplementation may result in differ-
ential changes in serum 25(OH)D levels accord-
ing to the rs4588 genotypes [44], we observed 
no significant interactions between rs2282679 
(in higher LD with rs4588) and self-reported 
vitamin D intake.

Overall, the role of the GC protein as the major 
transporter of vitamin D in circulation and the 
repeatedly observed associations between 
common GC SNPs and 25(OH)D levels across 
diverse populations, which include NHW ([8, 9, 
14, 15] and references in [13]), African-

Americans [19], Asians [16, 18], and Hispanics 
(in the present study and in [19]), provide com-
pelling evidence for the contribution of the GC 
gene to individual variability of circulating 
25(OH)D levels. 

Compared to the GC gene, CYP2R1, has been 
less well studied as a potential contributor to 
variation of 25(OH)D levels [13, 15, 45-47]. It 
encodes 25-hydroxylase which catalyzes the 
conversion of vitamin D to 25(OH)D. Experi- 
mental data on the functional impact of the 
common polymorphisms in this gene are still 
lacking. Consistent with our results, SNP 
rs206793, located around 2 kilobases up- 
stream of the transcription start site, was asso-
ciated with 25(OH)D levels in the GWAS by Ahn 
et al. [9] and in a candidate gene study of pri-
marily NHW participants [15]. However, in the 
Chinese study by Lu et al. [18], this SNP only 
showed a marginally significant association in 
subgroup analysis. Several SNPs in or near 
CYP2R1 that are in various degrees of LD with 
rs206793 have also been associated with 
25(OH)D levels in some other studies [14, 46, 
48]. Taken together, these findings suggest 
that multiple yet-to-identified “causal” variants 
may exist in the CYP2R1 gene or the chromo-
somal region. 

DHCR7 catalyzes the UV radiation-induced syn-
thesis of vitamin D3 (cholecalciferol) from 
7-dehydroxy cholesterol in the skin after sun 
exposure. SNPs in NADSYN1/DHCR7 region 
were first associated with 25(OH)D levels in the 
two GWAS [8, 9] and later replicated in Chinese 
by Lu et al. [18]. In our study, SNPs rs12785878 
(an intergenic SNP in the region) and rs1790349 
(an intronic SNP in DHCR7) were not significant-
ly associated with 25(OH)D levels. However, a 
statistically significant association was obser- 
ved for the rs12785878T_rs1790349G haplo-
type in Hispanic controls, supporting a role of 
these SNPs as markers of functional variants in 
this region. Although the exact reason is 
unclear, the lack of replication in NHW women 
could be potentially explained by different LD 
structure and a smaller sample size in this 
group. Interestingly, in the controls and cases 
from the SFBCS, we observed a significant 
interaction between the rs12785878 SNP and 
time spent in outdoor activities, a measure of 
sunlight exposure which is required for cutane-
ous vitamin D synthesis. Given the role of 
DHCR7 in modulating the availability of 7-dehy-
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drocholesterol (provitamin-D3), in the skin, it is 
reasonable to postulate that functional vari-
ants in DHCR7 may have different effects on 
vitamin D synthesis in people with different 
sunlight exposure levels. However, because the 
rs12785878 genotype frequencies in the 
Mexican control group showed a significant 
departure from the HWE, our results for this 
SNP should be interpreted with caution. 

The main strengths of this study include the 
large sample size of Hispanic women, and the 
availability of measures of known environmen-
tal determinants of 25(OH)D levels, which 
allowed us to examine important gene-environ-
ment interactions. One limitation of our study is 
that circulating 25(OH)D was measured with 
different assays between the MBCS and 
SFBCS, and between cases and controls in the 
SFBCS. To minimize the variability introduced 
by the different measurement methods, we 
standardized 25(OH)D levels according to group 
means and standard deviations and used this 
variable in the regression analysis. A caveat of 
this approach is that we could not evaluate the 
effects of factors such as ethnicity, skin pig-
mentation and disease status on 25(OH)D lev-
els and their interactions with the SNPs in the 
overall study population. Nevertheless, similar 
conclusions regarding the SNPs and 25(OH)D 
associations could be drawn from the pooled 
analysis on standardized 25(OH)D levels and 
from the stratified analysis on the non-stan-
dardized 25(OH)D levels. 

Our study provides further support for the con-
tributions of common polymorphisms in the 
vitamin D metabolic pathway to variability in cir-
culating 25(OH)D levels and risk of vitamin D 
deficiency among individuals. However, in con-
trast to known non-genetic predictors, these 
common variants accounted for less than 4% of 
the inter-individual variability in 25(OH)D levels. 
Additional variability may be explained by rare 
variants in these genomic regions, by variants 
in genes that regulate the vitamin D pathway, 
and by interactions between genetic and non-
genetic factors.
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