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Metabolite-related dietary patterns 
and the development of islet 
autoimmunity
Randi K. Johnson  1, Lauren Vanderlinden2, Brian c. Defelice3, Katerina Kechris2, 
Ulla Uusitalo  4, oliver fiehn  3,5, Marci Sontag1, tessa crume1, Andreas Beyerlein6,7, 
Åke Lernmark  8, Jorma toppari  9,10, Anette-G. Ziegler7, Jin-Xiong She11, 
William Hagopian12, Marian Rewers13, Beena Akolkar14, Jeffrey Krischer4, 
Suvi M. Virtanen15,16,17, Jill M. norris1 & the teDDY Study Group*

The role of diet in type 1 diabetes development is poorly understood. Metabolites, which reflect dietary 
response, may help elucidate this role. We explored metabolomics and lipidomics differences between 
352 cases of islet autoimmunity (IA) and controls in the TEDDY (The Environmental Determinants of 
Diabetes in the Young) study. We created dietary patterns reflecting pre-IA metabolite differences 
between groups and examined their association with iA. Secondary outcomes included iA cases positive 
for multiple autoantibodies (mAb+). The association of 853 plasma metabolites with outcomes was 
tested at seroconversion to iA, just prior to seroconversion, and during infancy. Key compounds in 
enriched metabolite sets were used to create dietary patterns reflecting metabolite composition, 
which were then tested for association with outcomes in the nested case-control subset and the full 
teDDY cohort. Unsaturated phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, 
glucosylceramides, and phospholipid ethers in infancy were inversely associated with mAb+ risk, 
while dicarboxylic acids were associated with an increased risk. An infancy dietary pattern representing 
higher levels of unsaturated phosphatidylcholines and phospholipid ethers, and lower sphingomyelins 
was protective for mAb+ in the nested case-control study only. characterization of this high-risk infant 
metabolomics profile may help shape the future of early diagnosis or prevention efforts.

Type 1 diabetes affects over 500,000 children globally, making it one of the most common metabolic illnesses 
in children1. Autoimmune destruction of the insulin-producing beta cells in the pancreas results in hyperglyce-
mia and lifelong insulin dependency. Genetic risk factors are well described and likely interact with non-genetic 
risk factors to influence disease progression, though exact pathogenesis remains unclear2. The appearance of 
autoantibodies can be detected as early as 3 months of age and defines the beginning of islet autoimmunity (IA), 
the preclinical stage of the disease3. Efforts to better characterize metabolic dysregulation around the time of 
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seroconversion and prior to the detection of autoantibodies may allow earlier identification of at-risk children 
and better understanding of the processes involved.

Metabolites reflect the interaction of numerous biological factors, including many that may influence the 
development of autoimmune diabetes, such as genetics, microbiome, and dietary intake. Metabolomics differ-
ences between IA cases and controls mostly have been found at the time of seroconversion, but are inconsistent 
across studies conducted in country-specific populations4–7. Previous country-specific studies used different lab-
oratories to measure varying types (primary/polar5, lipids4,7–9, both6,10) and amounts of metabolomics features 
(from 1067 to 5406), and conducted studies at varying ages and stages of the disease course (cord blood4,7,8, at sero-
conversion to IA6, longitudinally5,9,10). Given these methodological differences, it is unclear whether differences in 
study findings are due to technical artefacts, or whether they represent truly different associations by geography 
or other meaningful characteristic. The identification of generalizable metabolic profiles related to the develop-
ment of early stages of the disease across several populations is important and may inform dietary interventions 
to prevent type 1 diabetes, which have so far proven unsuccessful11.

Traditional investigation of diet in the development of type 1 diabetes has examined effects of individual foods 
or food groups and nutrients such as cow’s milk11–13, fatty acids14–18, or vitamin D19–22. However, these approaches 
do not account for the complexity of the diet—the effects of single nutrients and foods are often too small to 
identify, or too highly correlated to be separated from each other23. Examining combinations of foods and metab-
olites may better elucidate the role of diet in IA, as it can account for synergistic or antagonistic effects of foods or 
nutrients contained in the diet, and differences in how they are processed in the body.

We aimed to identify metabolite-related dietary patterns associated with IA in the multinational The 
Environmental Determinants of Diabetes in the Young (TEDDY) study. We conducted a metabolome- and 
lipidome-wide association study to better characterize plasma metabolites and lipids distinguishing cases and 
controls both at the time of the first autoantibody detection, and prior to its development. We created dietary 
patterns summarizing candidate metabolites identified pre-IA, and tested the longitudinal association of those 
metabolite-related dietary patterns with the development of IA.

Methods
teDDY study design. TEDDY is an international consortium that enrolled 8,676 newborn infants with a 
high- or moderate-risk class II HLA genotype between 2004 and 201024. Participants are closely followed for the 
development of IA or type 1 diabetes, with study visits every three months from birth to age 48 months, and every 
three or six months thereafter depending on autoantibody status until the age of 15 years. Participating study 
centers include: Georgia/Florida, Colorado, and Washington in the U.S., and Finland, Sweden, and Germany in 
Europe. IA cases are defined by confirmed autoantibody positivity to either insulin (IAA), GAD (GADA), or IA-2 
(IA-2A) on two consecutive study samples, the first of which defines the case’s event age.

A nested case-control biomarker study was designed using risk set sampling to select three controls per IA 
case (n = 418) that had developed in TEDDY as of May 2012. Eligible controls were autoantibody-negative at the 
case’s event age, and further matched on clinical center, sex, and family history of type 1 diabetes as previously 
described25. Secondary outcomes included cases positive for IAA only or GADA only at IA event time. IA-2A was 
excluded as an outcome since very few cases developed IA2 as their first and only persistent confirmed autoanti-
body at IA case-time. Multiple autoantibody positivity (mAb+) was defined as any subject positive for more than 
one autoantibody at IA event time, or who developed more than one autoantibody during follow-up.

The study methods have been carried out in accordance with the approved guidelines by local Institutional 
Review or Ethics Boards, including: Colorado Multiple Institutional Review Board (#04-0361); Medical College 
of Georgia Human Assurance Committee (2004–2010)/Georgia Health Sciences University Human Assurance 
Committee (2011–2012)/Georgia Regents University Institutional Review Board (2013–2017)/Augusta 
University Institutional Review Board (2017-present) (#HAC 0405380); University of Florida Health Center 
Institutional Review Board (#IRB201600277); Washington State Institutional Review Board (2004–2012)/
Western Institutional Review Board (2013–present) (#20130211); Ethics Committee of the Hospital District of 
Southwest Finland (#Dnro168/2004); Bayerischen Landesärztekammer (Bavarian Medical Association) Ethics 
Committee (#04089); and Regional Ethics Board in Lund, Section 2 (2004–2012)/Lund University Committee 
for Continuing Ethical Review (2013-present) (#217/2004). The study is monitored by an External Evaluation 
Committee formed by the National Institutes of Health. Written informed consents were obtained from a parent 
and/or legal guardian for all participating children. Data described in the manuscript and code book will be made 
available upon request from the NIDDK Central Repository at https://www.niddkrepository.org/studies/teddy.

Metabolomics data pre-processing. Metabolomics abundance measures (metabolites and lipids) were 
obtained for all cases and controls for each available study visit from birth until the case event time. Primary 
metabolites and complex lipids were quantified from citrate plasma using GC-TOF MS and CSH-QTOF MS 
data acquisition, respectively, at the NIH West Coast Metabolomics Center at the University of California, Davis. 
GC-TOF MS data were acquired as previously described26, with data processing and compound identification 
using the BinBase algorithm27, GC-TOF data were sum normalized followed by LOESS (locally weighted scatter-
plot smoothing) normalization. For complex lipids, samples were extracted by methyl-tert-butyl ether/methanol/
water28, followed by chromatogram peak detection and alignments using Mass Profiler Professional (Agilent, 
Santa Clara, CA). Peaks detected in a minimum of 30% of samples were identified and quantification back-filled 
using the Fiehn laboratory’s LipidBlast spectral library, as previously described29. LOESS followed by batch ratio 
(QC samples were used to adjust sample batch median to global study median) normalization was performed 
across all the samples to estimate and remove analytical variance.

Prior to transformation, data quality checks included evaluation at the metabolite- and sample-level 
(Supplemental Fig. 1). Metabolites that were not detected in more than 10% of samples (6 metabolites), or with 
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a coefficient of variation greater than or equal to 100% (286 metabolites) were excluded from further analyses. 
Samples with missing or zero values in greater than 10% of metabolomics features (n = 5) or with values more 
extreme than 4 standard deviations above or below the mean in greater than 30% of metabolomics features (n = 6) 
were removed from analyses. A total of 853 metabolites and lipids and 11,556 samples passed the quality checks. 
All metabolites were transformed using Box-Cox transformation analysis, and scaled30.

Dietary intake and food groupings. Dietary assessment was carried out by 24-hour recall at the first clinic 
visit at 3–4.5 months of age, then by 3-day food record every 3 months until 12 months of age, and then every 6 
months thereafter. TEDDY research staff provided detailed instruction and examples to families regarding com-
pletion of food records, as previously described31. From quantities of foods and dishes consumed, the amounts of 
energy and single foods contained therein were computed using in-house food record processing programs and 
food composition databases unique to each country32. The foods and dishes (e.g. wheat bread, apple-oat meal) 
consumed were quantified into main food groups (ie: cereals, fruits and berries, etc.) and subgroups (ie: wheat, 
rice, oats, citrus fruits, apple, berries, etc.) in grams per day (g/day) of intake. After quantification, the three food 
records were averaged to calculate the mean energy and food intake for each study subject on each study visit. 
Results of detailed harmonization studies of these country-specific food composition databases documented that 
the energy values and food subgroups used in this study were comparable across the TEDDY countries32.

For any food record where a subject was indicated as breast fed, we estimated the amount of breastmilk con-
sumption using an algorithm developed by the Institute of Medicine33. First, we calculated the estimated energy 
requirement based on age and weight. The difference in the estimated energy requirement and the mean energy 
reported on the food record from food and formula was attributed to breastmilk. We calculated the amount 
(grams) of breastmilk consumed to achieve that energy intake using a conversion factor of energy density per 
100 g, as follows: 65.3 kcal/100 g in Finland, 69 kcal/100 g in Germany, 68 kcal/100 g in Sweden, and 70 kcal/100 g 
in the U.S.

Statistical analyses. Statistical analyses are described by aim below. First, we identified plasma metabo-
lites and lipids associated with IA at three different time points, using a metabolome-wide association approach 
in TEDDY’s nested case-control study. Second, we created dietary patterns summarizing candidate metabolites 
identified in infancy. Finally, we tested the longitudinal association of infancy metabolite-related dietary patterns 
with development of mAb+ in the full TEDDY cohort. Figure 1 summarizes the population and data flow for all 
aims and analyses.

Metabolites associated with IA. Conditional logistic regression was used to calculate odds ratios (ORs) for the 
association of each transformed metabolite with the development of IA, adjusting for high-risk HLA genotype 
(DR3-DQA1*05:01-DQB1*02:01/DR4-DQA1*03:01-DQB1*03:02 versus all other), and age at blood draw. 
Some TEDDY subjects follow a long-distance protocol, in which blood is drawn and shipped to clinical centers 
before being processed for biomarker identification. Since plasma primary GC-TOF MS metabolic profiles are 
less stable with centrifugation delay34, we required an additional match for the long distance protocol between 
case and control samples.

Metabolomics analyses were run in three cross-sections. First, we examined metabolite differences between IA 
cases and controls at the first detection of autoantibody positivity (seroconversion), defined as the first of the two 
consecutive autoantibody positive visits for cases. Then, to identify metabolites and lipids that may differentiate 
IA cases and controls prior to the detection of autoantibodies (pre-seroconversion) we selected the most recent 

Figure 1. Data flow diagram summarizing selection and size of analysis population for all aims (numbered). 
From a nested case-control study in TEDDY, we tested the association of 853 metabolites with outcomes at the 
time of seroconversion to IA (sets = 352), the last sample prior to IA (sets = 366), and at infancy (sets = 253). We 
created dietary patterns explaining candidate mAb+ metabolites identified in infancy, when children (n = 529) 
were 9-months of age and autoantibody negative. All subjects with food records at 9-months in the full TEDDY 
cohort (n = 6,537) were scored on the dietary pattern, and the association with development of mAb+ tested. 
IA = islet autoimmunity, mAb+ = multiple autoantibody positive, sets = number of risk sets or matched strata, 
n = number of subjects.
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IA-free visit for cases. Finally, since autoimmunity can begin very early in life and both metabolomics and dietary 
factors are strongly related to age, we identified metabolites distinguishing IA cases and controls prior to the 
appearance of autoantibodies in infancy. The “infancy” cross-section was defined as an IA-free visit at 9 months 
of age for cases. For controls, the visit corresponding to the case visit was selected for all cross-sections. Children 
positive for autoantibodies at 9-months (n = 48 IA cases) and their matched controls were excluded from the 
infancy cross-section (Fig. 1).

We tested the association of each metabolite with the secondary outcomes described above: IAA, GADA, and 
mAb+. We considered p-value < 0.05 significant since traditional approaches for multiple comparison correction 
may be too strict for the unusually highly correlated metabolomics data or inappropriate given the exploratory 
nature of our study aims35. SAS version 9.4 was used for these analyses.

We focused on pathway enrichment, given that metabolites may capture perturbations in many upstream 
biological systems thereby complicating interpretation of individual associations. ChemRICH forms 
non-overlapping groups of metabolites based on chemical similarity and ontology mapping36. It calculated a 
single p-value for each group, and identified the most significant metabolite in each group as the “key compound” 
(http://chemrich.fiehnlab.ucdavis.edu/). Inputs for the ChemRICH analyses included the nominal p-value and 
odds ratio from the individual conditional logistic regression models, and chemical structure information from 
well-characterized known metabolites and lipids (p = 315, see Supplemental Table 1).

Metabolite-related dietary patterns preceding the appearance of autoantibodies. Reduced rank regression (RRR) 
was used to identify dietary patterns reflecting metabolites associated with IA. RRR creates linear combinations of 
foods (dietary patterns) that explain the maximum covariation in a second set of intermediate response variables 
(metabolites)37, thereby capturing disease-related variation in the diet rather than general eating behaviors identi-
fied from other dietary pattern methods38. We focused dietary pattern analysis on the infancy cross-section, since 
it is prior to the beginning of the autoimmune process and all children were the same age. Conducting dietary 
pattern analyses with foods in young children of different ages could be problematic, since not all foods are able 
to be eaten at all ages.

Foods from the food record were combined into 43 subgroups based on nutrient content and culinary usage 
(Supplemental Table 2)32. Intake of various foods varies greatly at 9-months of age, leading to some foods having 
a large proportion of subjects with no reported intake. Therefore, we filtered out food subgroups with a high 
proportion of non-eaters, as a way to deal with inflated zero distributions, as is common in studies using RRR39. 
Food subgroups that were shown to be comparable across TEDDY countries (ie harmonized), and were eaten by 
at least 40% of subjects in infancy were included in the creation of dietary patterns. The resulting dietary patterns 
therefore reflect foods that are most commonly eaten at 9-months among TEDDY study participants. Food sub-
groups were standardized to the age-specific mean and standard deviation of all TEDDY food records for dietary 
pattern analyses. The key compound in each significantly enriched metabolite group (identified by ChemRICH) 
was used as RRR response variables.

The number of dietary patterns needed to best explain the variation in metabolites was selected using the van 
der Voet T2 statistic40. The loadings (or relative weights) of food groups on each dietary pattern and the partial 
correlation with metabolite response variables was used to interpret each dietary pattern.

Metabolite-related dietary patterns and risk of IA. Infancy metabolite-related dietary patterns were first tested 
in the nested case-control study using conditional logistic regression as described above. Then we applied them 
to the full TEDDY cohort at 9 months of age, using the food group loadings to generate one score per pattern for 
each subject with complete food records (n = 6,537). The dietary pattern score is a linear combination of food 
intakes using the reported intake of each food weighted by the factor loadings37. The score indicates how similar 
the reported dietary intake of a subject is to the dietary pattern—with higher scores indicating a diet similar to the 
pattern, and lower scores indicating a diet dissimilar to the pattern.

Cox proportional-hazards models were used to test the association of metabolite-related dietary pattern scores 
at 9-months on risk of mAb+, adjusting for clinical center, high-risk HLA genotype, family history of type 1 
diabetes, total energy intake, and sex. Adjustment factors used in multivariable models were selected based on 
standard adjustments used in the TEDDY study31,41. Time-to-event analyses were performed to evaluate whether 
metabolite-related dietary pattern scores were associated with mAb+ by the age of 6 years. Cases included those 
selected for the nested case-control study plus any additional cases that developed by January 2018, when the pro-
spective data collection was cut for analyses. Given that risk factors for IA may differ by age, we restricted follow 
up to 6 years in the TEDDY cohort to ensure the cohort analysis represented a similarly-aged case-population as 
the nested case-control study. For consistency with the nested case-control study, the time-to-event was defined 
as the time from birth to the appearance of the first persistent confirmed autoantibody among IA cases who devel-
oped a second persistent confirmed autoantibody at any point. Subjects without complete covariate information, 
those developing mAb+ at 9-months (n = 53), or who had no follow-up after 9-months (n = 243) were excluded 
from survival analysis (Fig. 1).

Results
Metabolic dysregulation apparent at seroconversion and infancy. From the nested case-control 
study, there were 352 matched sets with metabolomics measures for 1 case and at least 1 control at seroconver-
sion (mean (SD) case-age = 722 (446) days), 366 sets at pre-seroconversion (mean (SD) = 625 (412) days), and 
253 sets at the 9-month infancy visit (mean (SD) = 283 (14) days) (Table 1). For secondary outcomes, 49% of IA 
cases were positive for IAA, 32% for GADA, and 60% for mAb+. The distribution of secondary outcomes was 
consistent across the seroconversion, pre-seroconversion, and 9-month infancy cross-sections. The majority of 
IA cases were from Sweden (32%) and Finland (28%). IA cases were 55% male, 22% had a first degree relative, and 
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12% had their seroconversion blood-draw following TEDDY’s long distance protocol (Supplemental Table 3). The 
distribution of matched sets by matching factors (clinical center, sex, first-degree relative status, and long distance 
protocol) was similar in the secondary outcomes compared to primary IA. Approximately 9% of the pre-serocon-
version case samples (n = 34) occurred during the 9-month infancy visit.

Conditional logistic regression results from the metabolome-wide association study indicated metabolic dys-
regulation in cases compared to matched controls at seroconversion and during infancy (Supplemental Fig. 2). 
More metabolites and lipids were different by case status when restricting to the mAb+ outcome (p = 130, 15%) 
compared to the IA outcome (p = 64, 7.5%). There were few metabolites associated with the secondary outcomes 
IAA first and GADA first in any cross-section. Therefore, we focused the metabolomics set enrichment analyses 
on the mAb+ outcome, which represented 60% of IA cases and had the largest signal of metabolomics differences 
between cases and controls. ChemRICH identified seven groups of chemically similar metabolites that were sig-
nificantly different among mAb+ cases and controls at seroconversion, one group at pre-seroconversion, and six 
groups in infancy (Fig. 2, Supplemental Table 4).

Of the metabolite groups identified as different between mAb+ cases and controls, only unsaturated phos-
phatidylcholines (PC) were consistently dysregulated in all three analyses (p-value for group in seroconver-
sion = 2.1 × 10−5, pre-seroconversion = 0.013, infancy = 2.2 × 10−20), with the majority of the individual 
metabolites being lower in mAb+ cases compared with controls (OR < 1) (Fig. 2). Similarly, phosphatidyleth-
anolamines (PE) were lower in mAb+ cases (OR < 1) at both seroconversion (p-value = 0.0047) and in infancy 
(p-value = 2.9 × 10−6).

Other than PCs and PEs, distinct metabolite groups distinguished mAb+ cases from their controls at the time 
of seroconversion to primary IA compared to during infancy prior to the appearance of any autoantibodies. At 
seroconversion, mAb+ cases had lower levels of unsaturated triglycerides (p-value = 3.1 × 10−15), amino acids 
(p-value = 0.0074), diglycerides (p-value = 0.014), and aromatic amino acids (p-value = 0.03), and higher levels 
of saturated fatty acids (p-value = 0.0074). In infancy, other phospholipids were significantly protective for mAb+ 
(majority of OR < 1), including sphingomyelins (SM, p-value = 1.1 × 10−8) and phospholipid ethers (EtherPL, 
p-value = 0.0032), along with the glucosylceramides (GlcCer, p-value = 4.4 × 10−5). Three dicarboxylic acids were 
significantly higher in mAb+ cases compared to controls in infancy (OR > 1, p-group = 0.0019).

infant metabolite-related dietary patterns and risk of mAb+. From each of the six groups identified 
by ChemRICH in infancy, we used the key metabolite (most significant one) as a response variable in dietary 
pattern analyses, including: PC (34:3), SM (d41:2) A, PE (34:2), GlcCer (d41:1), adipic acid, and PC (p-32:0) or 
PC (o-32:1) (EtherPL).

Reduced rank regression identified three dietary patterns that explained 8% of the variation in metabolites 
and 29.3% of the food variation. Food groups factor loadings and metabolite variable weights used to interpret 
each dietary pattern are shown in Fig. 3. More extreme factor loadings or variable weights indicate the food or 
metabolite was influential in the dietary pattern. Infants scoring high on Dietary Pattern 1 ate more non-gluten 
containing cereals, onions, vegetable oils, and fat-free milk (positive factor loadings), and less breast milk (neg-
ative factor loadings). This diet corresponded to higher levels of PE (34:2), as indicated by the higher variable 
weight. Infants scoring high on Dietary Pattern 2 ate diets with higher saturated fats, fat-free milk, poultry, and 
infant formula, and lower in potatoes and vegetable oils. This diet corresponded to higher levels of SM (d41:2) 
A, GlcCer (d41:1), and PC (p-32:0) or PC (o-32:1). Finally, 9-month infants scoring high on Dietary Pattern 3 
ate diets higher in breast milk, red meat, potatoes, and cereals, and lower in processed fruits, legumes, and infant 
formula. High scores on Dietary Pattern 3 corresponded to higher levels of PC (34:3) and PC (p-32:0) or PC 
(o-32:1), and lower levels of SM (d41:2) A. The correlation between metabolites and dietary patterns followed 
similar patterns (Supplemental Table 5).

Dietary patterns generated from metabolites and food intake in the nested case-control study were applied to 
the full cohort to generate one metabolite-related dietary pattern score for each dietary pattern on all 9-month 
diet records. Subjects developing mAb+ by age 6 years were more likely to have a first-degree relative (FDR) 
with type 1 diabetes and to have high-risk HLA-DR3/4 genotypes (Supplemental Table 6). Dietary Pattern 3 
was significantly protectively associated with mAb+ in the nested case-control study (OR = 0.67, 95%CI = 0.48–
0.94, Table 2). However, there was no association seen in time-to-event analyses applied to the whole cohort 
and adjusted for clinical center, sex, HLA-DR3/4, and FDR (HR = 0.98, 95%CI = 0.83–1.16, Table 2). No other 
9-month metabolite-related dietary patterns were associated with development of mAb+ in the TEDDY cohort. 
Results did not change in a sensitivity analysis in which we adjusted for an additional 17 covariates that TEDDY 

Cross-section

IA IAA* GADA* mAb+*

n
Case-age†, 
mean (SD) n

% of IA 
cases

Case-age, 
mean (SD) n

% of IA 
cases

Case-age, 
mean (SD) n

% of IA 
cases

Case-age, 
mean (SD)

Seroconversion 352 722 (446) 171 48.6 586 (370) 113 32.1 888 (509) 211 59.9 655 (365)

Pre-Seroconversion 366 625 (412) 180 49.2 505 (366) 116 31.7 786 (445) 224 61.2 541 (346)

Infancy 9-months 253 283 (14) 114 45.1 283 (14) 83 32.8 284 (16) 153 60.5 282 (14)

Table 1. Description of matched sets (1 case and 1, 2 or 3 controls) for metabolomics analyses by outcome and 
cross-section. *Secondary outcomes defined as IAA or GADA as first-appearing and only autoantibody at IA 
case-time (mutually exclusive), while mAb+ indicates IA case developed more than 1 persistent confirmed Ab 
at any point during follow-up. †Age at the time of metabolomics blood draw, in days. n = Number of matched 
sets (each set has 1 case and 1, 2, or 3 controls).
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has identified as associated with development of IA (race-ethnicity, maternal education, maternal age, intro-
duction of probiotics before 28 days, introduction of probiotics at or after 28 days, weight for age z-score at 12 
months, and number of minor alleles for rs2476601, rs2816316, rs11711054, rs10517086, rs4948088, rs1004446, 
rs7111341, rs2292239, rs3184504, rs3825932, rs12708716) (data not shown).

Discussion
We identified dysregulated metabolism at the onset of and preceding stage 1 diabetes (mAb+) in a multi-national, 
prospective type 1 diabetes study. PC and PE metabolite groups were consistently decreased in mAb+ cases 
compared to controls both prior to and at the time of seroconversion. Unsaturated triglycerides and amino acid 
groups were lower among mAb+ cases at seroconversion only, whereas SM, GlcCer, and EtherPL lipids were 
lower among mAb+ cases in infancy only. While an infancy dietary pattern explaining choline- and sphingosine- 
containing lipids was associated with mAb+ in the nested case-control study, this association was not observed 
in the full TEDDY cohort.

Dicarboxylic acids were the only metabolite group we found associated with increased risk of mAb+ in 
infancy. Adipic acid was the key compound of the dicarboxylic acids group. Other dicarboxylic acids associated 
with increased mAb+ risk included the tricarboxylic acid (TCA) cycle intermediaries succinic acid and malic 
acid. While metabolomics studies in Norway and Germany did not identify TCA cycle metabolites5,6, a previous 
study in Finnish children found both succinic acid and glutamic acid were increased in type 1 diabetes cases 0–9 
months prior to autoantibody appearance10. We were not able to examine glutamic acid as its measurement was 

Figure 2. Chemically similar metabolite sets identified as significantly associated with mAb+ by ChemRICH. 
Each row is an individual metabolite, grouped by ChemRICH set and sorted by log(OR) within each set. 
Log(OR) > 0 (red) indicates a positive association between metabolite and mAb+, whereas log(OR) < 0 (blue) 
indicates an inverse association between metabolite and mAb+. Phosphatidylcholines were significantly lower 
in cases compared to controls in infancy (9-month), just prior to seroconversion (PSV), and at seroconversion 
to primary IA (SV). Other phospholipids were significantly lower in cases only in infancy, while other 
metabolite groups, such as unsaturated triglycerides and amino acids, distinguished cases and controls at 
seroconversion. Metabolite groups identified as significant (group p-value < 0.05) in any cross-section are 
shown, along with the corresponding adjusted p-value for the group (group false discovery rate).
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inhibited by the use of citrate tubes for plasma collection and storage in TEDDY. Through their regulation of 
demethylase activity, succinic acid and other TCA cycle intermediaries may be important regulators of DNA and 
histone methylation42, which may have some links to type 1 diabetes pathogenesis43.

The remainder of metabolite groups distinguishing mAb+ cases from controls in infancy belonged to 
lipid classes, some of which have been inconsistently associated with type 1 diabetes endpoints. We identified 
phospholipid dysregulation of PC and PE metabolites prior to mAb+ in infancy and at the time of serocon-
version. While Oresic et al.10 similarly found lower phosphatidylcholines in children who later developed type 
1 diabetes, Pflueger et al. found higher levels of triglycerides and PUFA-containing phosphatidylcholines in 
autoantibody-positive children6. Unsurprisingly, the direction of association is different before and after the 
appearance of autoantibodies, as has been reported for other risk factors for type 1 diabetes, such as erythrocyte 
membrane fatty acid levels15,17 or diabetes susceptibility genes44.

Sphingolipid metabolism plays a role in diabetic pathologies, including regulating beta-cell apoptosis, proin-
sulin and insulin folding in the endoplasmic reticulum, and cytokine secretion45. The evidence supporting this 
connection has been recently extended from animal models into human islet cells46. We identified two sphingo-
lipid groups as significantly lower in infancy for mAb+ cases versus controls, including the SM group, which were 
previously identified in type 1 diabetes metabolomics studies9,10, and the GlcCer group. As a whole, sphingolip-
ids have been characterized as both pro- and anti-inflammatory. Endogenous sphingolipids are metabolically 

Figure 3. Food group loadings and metabolite weights for metabolite-related dietary patterns. In total, the 
three dietary patterns explained 8% of metabolite variation and 29.3% of food variation. For food, the radial axis 
indicates the loading on each dietary pattern (Range: −0.6 to 0.4), and is used to interpret which combinations 
of foods are influential in the dietary pattern. Similarly, the metabolite radial axis indicates the weight of each 
metabolite on each dietary pattern (Range: −0.6 to 0.9), indicating which combination of metabolites are 
explained by each dietary pattern. For example, subjects scoring high on dietary pattern 1 had diets higher 
in non-gluten containing cereals, onions, vegetable oils, and fat-free milk, and lower in breast milk. This diet 
corresponded to higher levels of PE (34:2).

Metabolite-
related dietary 
patterns

Nested Case-Control* 
n = 147 mAb+ cases

Cohort† n = 300 mAb+ 
cases by 6 years

OR 95%CI HR 95%CI

1 0.85 0.68 1.05 0.95 0.83 1.08

2 0.81 0.61 1.08 0.89 0.78 1.02

3 0.67 0.48 0.96 0.98 0.83 1.16

Table 2. Dietary patterns at 9-months of age associated with risk of mAb+ in TEDDY. *Conditional logistic 
regression models adjusted for age at metabolomics blood draw and total energy. †Survival models adjusted 
for clinical center, sex, FDR, total energy, and HLA DR3/4. OR = Odds Ratio, CI = confidence interval, 
HR = Hazard Ratio.
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involved in T-cell regulation, autoimmunity, and inflammation47, yet consumption of dietary sphingolipids have 
been linked to anti-inflammatory responses48. The protective effects of dietary sphingolipids may operate via 
changes in gut microbiota or by activating other cofactors such as peroxisome proliferator-activated receptor 
γ expression49, both of which have been implicated in type 1 diabetes50. While outside the scope of this study, 
targeted characterization of the relationship between sphingolipid dietary intake and metabolite levels in future 
research might help to disentangle reported contrasting effects, which likely depend on other factors such as spe-
cific sphingolipid structure and existing metabolic state.

We identified choline-containing lipid groups (PC, SM, EtherPL) as protective for development of mAb+ at 9 
months of age, consistent with previous studies conducted at birth and 3 months of age7,9,10. Choline is important 
for rapid growth and development in infancy, as a constituent of phospholipid cellular membranes. Additionally, 
it may play a role in insulin resistance or energy metabolism, perhaps through its role as a methyl donor for epi-
genetic changes51.

A metabolite-related dietary pattern reflecting choline-containing foods and metabolites was protective for 
mAb+ in the nested case-control study; however, no dietary pattern at 9-months was associated with develop-
ment of mAb+ by age six years in the full TEDDY cohort. There are several factors that could contribute to the 
lack of dietary pattern association found. First, untargeted metabolomics and 3-day food records may not be 
measured precisely enough to successfully identify disease-related dietary patterns at such a young age where 
variability in both is large. Second, using the most significant metabolite in each group may not be the best 
choice of response variable, which is the variable that determines the ability of reduced rank regression to capture 
disease-related variation in the diet52. Metabolites may reflect other environmental factors, such as medication or 
microbiome, and therefore be poorly correlated with dietary intake. Metabolomics measures were further limited 
because they were quantified from non-fasting samples, which has been shown to differentially impact serum 
metabolic profiles related to dietary factors53.

We identified metabolic dysregulation prior to the detection of autoantibodies that distinguished children 
whose lifetime risk for symptomatic (Stage 3) type 1 diabetes approaches 100%54. Metabolomics differences were 
more apparent when comparing the high-risk mAb+ group to controls than comparing all cases of IA to controls. 
Few differences were identified by the type of first-appearing autoantibody. This metabolomics discovery was 
more comprehensive and generalizes to a broader population than previous studies. However, our exploratory 
approach using nominal p-value cutoffs may necessitate replication of these findings in another study. While 
novel application of dietary patterns summarizing candidate metabolites did not successfully extend outside of 
the nested case-control study, the approach may show promise for future work with targeted measurement of 
disease-related metabolites. Application of these methods that account for complex dietary intake are particularly 
important in type 1 diabetes research, since components of dietary intake are among the leading hypothesized 
environmental factors that act on high-risk genetic background to cause type 1 diabetes.

In the TEDDY study, higher levels of dicarboxylic acids and lower level PCs, SMs, PEs, EtherPLs, and GlcCers 
at 9-months of age was associated with increased risk of mAb+. Characterization of this profile may help shape 
the future of early diagnosis or prevention efforts.

Data Availability
Data described in the manuscript and code book will be made available upon request from the NIDDK Central 
Repository at https://www.niddkrepository.org/studies/teddy.
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