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2Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of 
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Abstract

The HOX genes encode a family of transcription factors that are dysregulated in several 

malignancies and have been implicated in oncogenesis and cancer cell survival. Disruption of 

HOX protein function using the peptide HXR9 has shown anti-tumor effects against melanoma, 

lung cancer, and renal cancer. In this report we evaluated the expression of all 39 HOX genes in a 

panel of six malignant B-cell lines, including multiple myeloma cells, and found different levels of 

expression of HOX family members suggesting that they also play a role in malignant B-cell 

survival. We show that disrupting HOX function using the peptide HXR9 induces significant 

cytotoxicity in the entire panel of cell lines. Importantly, we found that the cytotoxic effects of 

HXR9 can be enhanced by combining it with ch128.1Av, an antibody-avidin fusion protein 

specific for the human transferrin receptor 1 (CD71). Iron starvation induced by the fusion protein 

contributes to the enhanced effect and involves, at least in part, the induction of a caspase-

independent pathway. These results demonstrate the relevance of the HOX proteins in malignant 

B-cell survival and suggest that our therapeutic strategy may be effective in the treatment of 

incurable B-cell malignancies such as multiple myeloma.

Keywords

antibody fusion protein; HOX genes; cytotoxicity; transferrin receptor; hematopoietic 
malignancies; HXR9

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Manuel L. Penichet M.D., Ph.D., Division of Surgical Oncology, Department of Surgery, UCLA, 10833 Le Conte 
Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, Phone: 310 825-1304, Fax: 310 825-7575, 
penichet@mednet.ucla.edu. 

Supplementary information is available at the Leukemia website (www.nature.com/leu/index.html).

Conflicts of Interest
None of the authors have any conflicts of interest to disclose at this time.

HHS Public Access
Author manuscript
Leukemia. Author manuscript; available in PMC 2013 August 15.

Published in final edited form as:
Leukemia. 2010 September ; 24(9): 1555–1565. doi:10.1038/leu.2010.142.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/leu/index.html


Introduction

Multiple myeloma (MM) is a malignant plasma cell disorder that accounts for 

approximately 10% of all hematological malignancies and is the second most frequent blood 

cell cancer in the United States (US), after non-Hodgkin’s lymphoma (1). According to the 

American Cancer Society, in the US there were 20,580 estimated new cases for 2009 and 

about 10,580 myeloma deaths (2). Since 2001, the overall survival rate of myeloma has 

increased dramatically due to the advent of new therapies including thalidomide and its 

derivative lenalidomide as well as the proteosome inhibitor bortezomib (3). With or without 

autologous stem cell transplantation, combination therapies of these new drugs with 

corticosteroids (such as dexamethasone and prednisone), alkylating agents (such as 

melphalan), or anthracyclines have dramatically improved survival of myeloma patients 

(reviewed in (4)). However, some of these combination therapies are associated with severe 

toxicities and no complete cures have been reported (4). Therefore, the continued 

development of novel agents for the treatment of MM is a necessity.

Early genetic studies in Drosophilia melanogaster led to the discovery of the HOX genes 

and their role in determining embryonic identity along the anterior-posterior axis (5). 

Various HOX genes have also been suggested to act as oncogenes and may play a central 

role in both carcinogenesis and leukemic transformation (6–8). The HOX genes have been 

found to be aberrantly expressed in both myeloid and lymphoblastic leukemic cells (7–9). 

HOXC5 and HOXC6 were previously found to be expressed in biopsies of Non-Hodgkin’s 

lymphoma patients (10). In addition, abnormal HOXA expression has been observed in the 

malignant plasma cells isolated from a subset of MM patients (11). HOX genes are a family 

of homeobox containing genes that encode DNA binding transcription factors that have key 

regulatory roles (7). There are 39 mammalian HOX genes that are organized into four 

paralogue clusters A–D (11 genes for HOXA, 10 genes for HOXB, 9 genes for HOXC, and 9 

genes for HOXD) located on four different chromosomes (7). Due to the large number of 

genes and considerable functional overlap, defined roles for each gene remain unknown. 

The altered expression of HOX genes in tumorigenesis has been implicated in the 

dysregulation of cell cycle progression, terminal differentiation, metastasis, and 

angiogenesis making them potential targets for cancer therapy (6–8).

In order to better understand the role of HOX genes in neoplastic progression a small, 

membrane permeable peptide (HXR9) was developed to inhibit the interaction between the 

HOX proteins and a second transcription factor PBX (12). The interaction of PBX with the 

HOX proteins increases their DNA-binding affinity and thus enhances the transcriptional 

activity of the HOX proteins (13). More importantly, the disruption of the HOX/PBX dimer 

has been shown to be cytotoxic in solid tumors such as melanoma, renal cell carcinoma, and 

non-small-cell lung cancers in vitro and in vivo (12, 14, 15).

We have previously reported the cytotoxic effects of a mouse/human chimeric antibody 

fusion protein that consists of an IgG3 antibody specific for the human transferrin receptor 1 

(TfR1, CD71) that is genetically fused to chicken avidin (ch128.1Av, previously known as 

anti-hTfR1 IgG3-Av) in malignant B cells including myeloma (16–19). The TfR1, through 
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its interaction with iron-loaded transferrin (Tf), is responsible for iron uptake by cells (20). 

Iron is a required co-factor for many key cellular enzymes including the ribonucleotide 

reductase that is needed for DNA synthesis (20). For this reason, the TfR1 is highly 

expressed on the surface of many cancer cells including MM and in some cases its 

expression level can be associated with tumor stage and poor prognosis (20). Thus, the TfR1 

has been extensively used as a therapeutic target (20, 21). ch128.1Av was initially 

developed to serve as a general delivery vector for biotinylated anti-cancer agents to target 

malignancies that overexpress the TfR1. However, ch128.1Av alone was found to be 

cytotoxic through the induction of lethal iron starvation due to a significant decrease in cell 

surface TfR1 expression (17, 19). This intrinsic activity can be enhanced through its 

conjugation with biotinylated toxins (22) or by its combination with non-biotinylated agents, 

including gambogic acid (a xanthone used in traditional Chinese medicine) (19) and the 

chemotherapeutic agent cisplatin (23). Importantly, ch128.1Av was recently shown to 

inhibit the NF-κB pathway (23), which is constitutively activated in MM and as been 

identified as one of the most important pathways driving myeloma development and 

progression (24).

Despite the suggested central role of the HOX genes in the development of certain 

hematopoietic malignancies, a complete evaluation of HOX gene expression in malignant B 

cells, especially myeloma, has not been conducted. Previous studies are limited to the study 

of HOXA gene expression in MM (11) and HOXC (specifically HOXC4, HOXC5, and 

HOXC6) in non-Hodgkin’s lymphoma (10). Therefore, the goals of this study were to 

evaluate the expression of all 39 HOX genes in a panel of malignant B cells, including 

myeloma, and explore the functional consequences of blocking their activity using the 

HXR9 peptide in these cells. Here we show that HXR9 is highly cytotoxic to all cells tested, 

including U266 myeloma cells that are resistant to apoptosis due to the high expression level 

of the survival protein Bcl-XL (25). We also show that ch128.1Av enhances the effects of 

HXR9 alone and that the mechanism of synergy is due, at least in part, to the induction of a 

caspase-independent pathway mediated by iron deprivation. Our studies indicate that the 

HOX genes can be targeted for therapy of B-cell malignancies including myeloma due to the 

abnormal expression of some of these genes.

Materials and Methods

Human cell lines

The following human cell lines were purchased from ATCC (American Type Culture 

Collection, Manassas, VA): IM-9 (an EBV-transformed lymphoblastoid cell line isolated 

from the peripheral blood of a patient with multiple myeloma), ARH-77 (an EBV-

transformed lymphoblastoid cell line isolated from the peripheral blood blood of a patient 

with plasma cell leukemia), U266 (myeloma cell line), and RPMI-8226 (myeloma cell line). 

MM.1S (myeloma cell line) was a kind gift from Drs. Kenneth Anderson and Darminder 

Chauhan (Harvard University). The above cell lines were maintained in RPMI 1640 

(Invitrogen Corporation, Carlsbad, CA) supplemented with 100 U/ml penicillin, 10 µg/ml 

streptomycin, and 10% (v/v) heat inactivated fetal bovine serum (FBS) (Atlanta Biologicals, 

Atlanta, GA). The human myeloma cell line KMS-11 was a kind gift from Lawrence Boise 
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(University of Miami) and was cultured in Iscove’s Modified Dulbecco’s Medium (IMDM; 

Invitrogen) supplemented with 100 U/ml penicillin, 10 µg/ml streptomycin, and 10% FBS. 

All cell lines were grown in 5% CO2 at 37○C.

Peptides and antibody fusion protein

Both the HOX-PBX-targeted HXR9 peptide and the control peptide CXR9 have been 

described previously (12, 14). HXR9 is a peptide consisting of the previously identified 

hexapeptide sequence that binds to PBX and nine C-terminal arginine residues (R9) that 

facilitate cell entry. CXR9 is a control peptide that lacks a functional hexapeptide sequence 

but includes the R9 sequence. Both peptides were synthesized using conventional column-

based chemistry and purified to at least 80% (Biosynthesis Inc., Lewisville, TX).

The ch128.1Av fusion protein contains chicken avidin genetically fused to the CH3 domains 

of a chimeric mouse/human IgG3 and has been described previously (16, 17). ch128.1Av, 

containing the variable regions of the murine monoclonal anti-human TfR IgG1 antibody 

128.1 (16, 26), was purified from cell culture supernatants using affinity chromatography 

(16, 27). Fusion protein integrity and purity was assessed by non-reducing SDS-PAGE 

analysis using 5% phosphate gels. Purified ch128.1Av was dialyzed into buffer (150 mM 

NaCl, 50 mM Tris-HCl, pH 7.8) and protein concentration was determined by bicinchoninic 

acid based protein assay (BCA Protein Assay, Pierce Biotechnology, Inc., Rockford, IL). 

The antibody fusion protein was stored at −80○C in snap frozen aliquots.

Semi-quantitative PCR

HOX or iron-related gene expression relative to the housekeeping control gene 

glyceraldehyde 3-phosphate dehyrdrogenase (GAPDH) was determined by semi-quantative 

real time PCR. Total RNA from each cell line was extracted using the RNeasy Mini Kit 

(Qiagen, Valencia, CA). cDNA was then prepared using the SuperScript III First-Strand 

synthesis System for RT-PCR (Invitrogen, Carlsbad, CA). Semi-quantitative reverse 

transcriptase-PCR was performed using the Stratagene MX4000 real-time PCR Machine 

(Stratagene, La Jolla, CA), which measures product accumulation during the exponential 

phase of the reaction. The Brilliant SYBR Green QPCR Master Mix (Sigma Aldrich Co., St. 

Louis, MO) and oligonucleotide primers (sequences provide in Supplementary Table S1) 

designed to facilitate the unique amplification of each HOX and iron-related gene were 

used. For the analysis of changes in iron-related gene expression, changes above 2-fold are 

considered to be relevant changes.

To obtain accurate counts of HOX gene expression relative to GAPDH, the Ct value for 

GAPDH in a given cell line was subtracted from each of the Ct values of the HOX genes 

(dCt). This quantity was used in the formula V= (2dCt)*1000 to provide actual counts of 

gene expression (V) relative to GAPDH. This data was then Log base 2 (Log2) transformed 

using the Excel software and subject to clustering based on a Eucledian distance algorithm 

with centroid linkage for both genes and cell lines provided by the Gene Cluster program 

version 3.0 (28) and visualized using Java Tree View software (29).
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Proliferation assay and morphology study

The effect of HXR9 on cell proliferation was determined by the [3H]-thymidine 

incorporation assay as previously described (22). Briefly, cells were treated in triplicate with 

various concentrations of HXR9 or the control peptide (CXR9) for a total of 48 hours and 

radioactivity determined. Data is expressed as a percent of the [3H]-thymidine incorporation 

of control cells. For morphological analysis, cells were treated with 50 µM HXR9 or CXR9 

for 48 hours. Cell images were captured using a Zeiss Axiovert 40 CFL PlasDIC Inverted 

Microscope using a 20X objective (Mikron Instruments Inc., San Marcos, CA) and a Canon 

PowerShot A620 digital camera (Mikron Instruments Inc.).

Cytotoxicity of the combination treatments

In order to determine the cytotoxic effect of the combination of the ch128.1Av and HXR9, 

cell proliferation and the level of apoptosis were measured simultaneously in the same cell 

population. IM-9 cells were seeded in 24-well plates at a density of 1.6 × 105 cells per well 

in a total volume of 1.6 mL and treated with 20 µM HXR9, 2.5 nM ch128.1Av, or the 

combination of both agents for a total of 48 hours. For the proliferation assay, cells were 

gently mixed and 100 µL was transferred to one well of a 96-well plate (in triplicates) and 

the amount of [3H]-thymidine incorporation was determined as described above. The cells 

remaining in the 24-well plate were used to determine the level of apoptosis using the 

Vybrant® Apoptosis Assay Kit #2 (Invitrogen Corporation, Carlsbad, CA) following 

procedures suggested by the manufacturer. This kit consists of the Annexin V Alexa Fluor 

488 conjugate and propidium iodide (PI) stain. Samples were analyzed on a BD-LSR 

Analytic Flow Cytometer (BD Biosciences, San Jose, CA) in the UCLA Jonsson 

Comprehensive Cancer Center and Center for AIDS Research Flow Cytometry Core 

Facility.

In order to determine the dependence of caspases or iron in HXR9-mediated cell death 

(alone and combined with ch128.1Av), IM-9 cells were pretreated with 50 µmol/L Z-VAD-

FMK methyl ester (Enzo Life Sciences Inc., Plymouth Meeting, PA) for 1 hour before the 

addition of the other treatments or treated simultaneously with 25 µM ferric ammonium 

citrate (FAC; Sigma Aldrich Co.) and assayed as described above for proliferation and 

induction of apoptosis.

Synergy study of the combination treatment

IM-9 cells were treated simultaneously with various concentrations of ch128.1Av (2.5, 5, 

10, 20, or 30 nM) and HXR9 (10 or 20 µM) for a total of 48 hours. Cytoxicity of each agent 

alone and in the combination treatment was monitored using the [3H]-thymidine 

incorporation assay as described above. The degree of synergism between the two 

compounds was determined using the CalcuSyn Software (BioSoft, Ferguson, MO) that was 

developed by Chou and Hayball (30), The combination index (CI) for each combination was 

calculated at a non-constant ratio. By this method, CI equal to 1 indicate an additive effect, 

less than 1 indicate synergism, and greater than 1 indicate antagonism (30).
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Caspase activity assays

IM-9 cells were seeded at a density of 104 cells per well of black, clear-bottomed 96-well 

tissue culture plates (ThermoFisher Scientific, Fremont, CA). Cells were treated with 2.5 

nM ch128.1Av, 20 or 40 µM HXR9, or the combination of 2.5 nM ch128.1Av and 20 µM 

HXR9 for various times. After treatment cells were assayed for caspase activity using 

fluorogenic substrates in a one-step assay as described previously (22, 31). Fluorogenic 

substrates (all from Axxora Life Sciences, Inc., San Diego, CA) specific for caspase-2 (Ac-

VDVAD-AMC), caspase-9 (Ac-LEHD-AMC), caspase-8 (Ac-IETD-AMC), and caspase-3 

(Ac-DMQD-AMC) were used. The plate was then read at excitation and emission 

wavelengths of 380 and 460 nm, respectively, using a DTX880 Multimode Detector 

(Beckman Coulter). Background fluorescence, measured in wells containing only medium 

and one-step assay buffer with substrate, was subtracted from each sample. To calculate the 

fold increase in activation of each caspase, the average relative fluorescence intensity of the 

treated wells was divided by the average relative fluorescence intensity of the control wells.

Human colony forming (progenitor) assay

The colony forming assay was performed as described previously (19, 22). Bone marrow 

mononuclear cells (BMMC) were purchased from StemCell Technologies, Inc. (Vancouver, 

British Columbia, Canada) and plated in quadruplicate according to the manufacturer’s 

instructions. Mononuclear cells were seeded in 35 mm dishes in MethoCult GF H4434 

(‘Complete’ Methylcellulose Medium with Recombinant Cytokines and Erythropoietin; 

StemCell Technologies) in the presence of various concentrations of HXR9, 2.5 nM 

ch128.1Av, or the combination of 20 µM HXR9 with 2.5 nM ch128.1Av for 14 days at 37 

°C in 5% CO2. Control treatments consisted of non-treated cells as well as those treated with 

diluent alone (buffer as the diluent for ch128.1Av or water as the diluent for HXR9 or 

CXR9). Colonies were identified and counted using an Olympus CK2 inverted microscope 

(Olympus America Inc., Center Valley, PA) and the criteria defined by StemCell 

Technologies for each colony type. Colony types identified were: CFU-E (colony forming 

unit-erythroid, mature erythroid progenitors), BFU-E (burst forming unit-erythroid, more 

primitive progenitor than CFU-E), CFU-GM (colony forming unit-granulocyte/macrophage, 

more mature than CFU-GEMM) and CFU-GEMM (colony forming unit granulocyte/

erythroid/macrophage/ megakaryocyte).

Statistical analysis

All statistical analyses were done using Microsoft Excel 2000 SR-1 Standard. p values < 

0.05 were considered to be significant and were calculated using the Student’s t test 

(unpaired samples, two-tailed, unequal variance).

Results

HOX gene expression in a panel of human malignant B-cell lines

In order to fully evaluate the expression of all HOX genes in malignant B cells, including 

myeloma cells, we examined the mRNA levels of HOXA-D (39 genes) in a panel of six cell 

lines by semi-quantitative PCR. Analysis of the HOXA genes (Supplementary Data, Figure 
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S1) shows high levels of expression in all cell lines, although the expression of each gene 

varies among the cell lines. The HOXB genes (Supplementary Data, Figure S1) are 

expressed in general at low levels except for HOXB4 and to a lesser extent HOXB5. 

HOXC11 shows high expression in all cell lines and HOXC4 is expressed at exceptionally 

high levels in IM-9 cells (Supplementary Data, Figure S2). Expression of the other HOXC 

genes is low. Overall the expression of the HOXD genes is very low in all cell lines tested 

(Supplementary Data, Figure S2). Clustering analysis (Figure 1) of the HOX gene 

expression data for all six cell lines shows that the B-cell lymphoblastoid cell lines, ARH-77 

and IM-9, demonstrate the most similar HOX gene expression pattern. KMS-11, U266, and 

MM.1S are similar to each other, with RPMI 8226 showing the most different pattern of 

HOX gene expression. These data show that many of the HOX genes are highly expressed in 

malignant B cells and therefore, suggest that the HOX genes represent meaningful 

therapeutic targets.

Cytotoxicity of HXR9 against malignant B-cell lines

In order to block HOX protein transcriptional activity, we used the membrane-permeable 

peptide HXR9 that blocks the interaction of the HOX proteins with PBX, a second 

transcription factor that binds to the HOX proteins and enhances their DNA binding activity 

(12). HXR9 demonstrated dose-dependent anti-proliferative effects in all 6 of the cells lines 

tested (Figure 2A). The sensitivities varied slightly among the cell lines with ARH-77 and 

IM-9 being the most sensitive, RPMI 8226 and MM.1S demonstrating modest sensitivity, 

and U266 and KMS-11 being the least sensitive. As expected, the control peptide showed no 

anti-proliferative effects (Figure 2B). Cells treated with 50 µM HXR9 also showed changes 

in morphology including cell shrinkage and fragmentation consistent with the induction of 

cell death (Supplementary Data, Figure S3). These data suggest that HOX protein activity is 

important for malignant B-cell survival and interference with this function results in 

malignant cell death.

Synergistic effects of HXR9 and ch128.1Av

In order to explore the potential of enhancing the anti-tumor effect of HXR9, we evaluated 

the cytotoxic effects of the HXR9 peptide combined with ch128.1Av. We have previously 

shown that ch128.1Av at concentrations of 10 nM and above has a dramatic intrinsic in vitro 

cytotoxic activity against malignant B cells (17, 19) that can be enhanced through the 

combination treatment with other anti-cancer agents (19, 23). The combination of 20 µM 

HXR9 and a suboptimal dose of 2.5 nM ch128.1Av in IM-9 cells showed a greater anti-

cancer effect compared to either agent alone (Figure 3). HXR9 alone showed a small 

increase in the induction of apoptosis compared to control cells, but as expected at the low 

concentration used, the effect of ch128.1Av was minimal. The simultaneous combination of 

the two agents demonstrated a dramatic increase in apoptosis as evidenced by the increase in 

Annexin V positive cells in both the upper and lower right quadrants (Figure 3). It is 

important to note that there is a shift to the right of the “healthy” population (lower left 

quadrant) in cells treated with the combination treatment compared to control cells, 

indicating that numbers shown in the right quadrants do not adequately reflect the effect of 

the combination treatment and that apoptosis is being induced in most if not all of the treated 

cells. In order to evaluate whether the enhanced effects of the combination treatment were 
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synergistic or additive, combination index (CI) analysis was performed and showed that the 

combination of the two compounds resulted in synergistic anti-proliferative effects at all 

concentrations tested (Table 1) as evidenced by CI values that are less than 1. The synergy 

between the two compounds was stronger with the use of 20 µM HXR9 compared to 10 µM. 

In addition, longer incubation times (greater than 24 hours) were required for the synergistic 

effects to be apparent in IM-9 cells (data not shown). This is most likely due to the fact that 

the effects of ch128.1Av take time to occur and are visualized mostly after 24 hours. The 

effects of HXR9 in IM-9 cells alone can be observed within 30 minutes (data not shown).

In order to determine if the enhanced effects of the combination treatment of HXR9 and 

ch128.1Av also occurred in other cell lines, we examined the effects in the myeloma cell 

lines U266 and KMS-11. U266 has demonstrated low sensitivity to the cytotoxic effects of 

ch128.1Av alone (17, 22) as well as to several other therapeutics; resistance to the latter has 

been associated with a high level of Bcl-XL expression (25). KMS-11 also shows low 

sensitivity to the fusion protein (Daniels et al., in preparation), but is more sensitive than 

U266 cells. Therefore, high doses (500 and 100 nM) of ch128.1Av and longer incubation 

times were required for the enhanced effects to occur. In both cell lines, the combination of 

500 nM ch128.1Av with either 100 or 60 µM HXR9 for 96 hours showed a significant 

enhancement of anti-proliferative effects when compared to either agent alone (Figure 4). 

Enhanced effects were also observed with the combination of 100 nM ch128.1Av and 60 

µM HXR9 in both cell lines (Figure 4). These findings indicate that the enhanced effects of 

the combination treatment are observed in multiple cell lines, including those that are highly 

resistant to other therapeutics.

Mechanism of synergy

Since the combination of HXR9 and ch128.1Av results in synergistic cytotoxic effects 

compared to either agent alone, we wanted to explore the mechanism of this synergy. Due to 

the high sensitivity of IM-9 cells to ch128.1Av, we chose to use this cell line for the 

mechanistic studies. We first examined the activation of various caspases to determine their 

role in the cell death induced by HXR9 alone and combined with ch128.1Av. Treatment of 

IM-9 cells with HXR9 alone resulted in only low levels of caspase activation within the first 

three hours of treatment (Figure 5A). Caspases 2 and 3 showed the highest levels of 

activation by HXR9, while caspase 9 was not activated at all. As expected and shown 

previously (22), ch128.1Av alone at longer time points induced the activation of all caspases 

tested, especially caspase 2 (Figure 5B). Interestingly, the combination treatment resulted in 

the activation of caspases at about half the level they were with ch128.1Av alone, suggesting 

that a caspase-independent pathway is involved in HXR9-mediated cell death as well as the 

cell death induced by the combination treatment. In order to explore this further, we 

determined the effect of caspase blockade on the cytotoxicity induced by the combination 

treatment. Z-VAD-FMK (Z-VAD) was used to block the activation of all caspases. As 

previously shown, Z-VAD only partially blocked the anti-proliferative effects of ch128.1Av 

alone (Figure 6A) (17). Z-VAD also partially blocked the anti-proliferative effects of HXR9 

alone (Figure 6A), but had no effect on the level of apoptosis (Figure 6B). For the 

combination treatment, Z-VAD partially protected the cells from the induction of apoptosis 

(Figure 6B). These results are consistent with the morphology of treated cells 
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(Supplementary Data, Figure S4). Therefore, a caspase-dependent pathway involving 

caspase-2 is activated upon treatment with both ch128.1Av and HXR9. However, caspase-

independent pathways or pathways involving other proteases may also be involved since cell 

death still occurs in the absence of caspase activation.

Since ch128.1Av targets the TfR1 and has been previously shown to lead to iron starvation 

due to decreased cell surface TfR1 levels (17, 18), we explored the role of iron in the 

mechanism of synergy of the combination treatment. Iron supplementation using ferric 

ammonium citrate (FAC) was able to block the anti-proliferative effects of ch128.1Av as 

expected, however, it did not block the effects of HXR9 alone (Figure 6A). In fact, it sightly 

enhanced the cell death of HXR9 alone (Figure 6B). Interestingly, FAC significantly 

blocked the anti-proliferative and apoptotic effects of the combination treatment (Figure 6A 

and 6B). These data were corroborated by the cell morphology of treated cells 

(Supplementary data, Figure S4). Taken together these data suggest that iron starvation 

induced by ch128.1Av plays a role in the synergistic effects of the combination treatment.

The role of iron and other stress-related pathways was further explored by gene expression 

analysis using semi-quantitative PCR. The genes selected for this analysis have been shown 

to be significantly modulated in IM-9 cells treated with 10 nM ch1281.Av for 24 hours as 

determined previously by microarray analysis (Rodriguez et al., manuscript in preparation), 

and are also listed in the IronChip V5.0 genes (European Molecular Biology Laboratory), a 

gene expression array composed of genes involved in iron uptake, storage and recycling, as 

well as genes involved in a number of interlinked pathways (32–34). Of the seven genes that 

were tested, no changes in gene expression were detected in cells treated with 20 µM HXR9 

alone (Figure 7). As expected TfRC (CD71), MT2A (metallothionein 2A), and GADD45A 

(growth arrest and DNA-damage-inducible protein alpha) were shown to be upregulated in 

cells treated with 2.5 nM ch12.1Av alone (Figure 7). As shown in Figure 7, cells treated 

with both agents showed upregulation of FDXR (ferredoxin reductase), TFRC, and TM7SF2 

(transmembrane 7 superfamily member 2, 3β-hydroxysterol Δ14-reductase). No changes in 

expression were observed with any of the treatments for P4HA1 (prolyl 4-hydroxylase α 

subunit), which has been shown to be increased in hypoxic conditions (35) and in the small 

intestines of iron-deficient rats (36) or PSAP (prosaposin) a precursor for the lysosomal 

saposins that are required for the degradation of sphingolipids and inhibition of metastasis 

(37).

Toxicity to normal hematopoietic progenitor cells

Since both HXR9 and ch128.1Av were evaluated for their therapeutic potential against B-

cell malignancies, their effect on normal hematopoiesis was also studied. The human 

colony-forming assay was used to determine the toxic effects of either treatment alone or in 

combination as evidenced by the inhibition of the development of colonies of different blood 

cell progenitor types in a semi-solid medium. Data between diluent alone and untreated cells 

was not significantly different (data not shown). The HOX proteins are known to play a role 

in hematopoiesis (38), thus it is expected that treatment with HXR9 alone would 

demonstrate toxicity to progenitor cells. As shown in Table 2, the toxicity of HXR9 is dose-

dependent and also donor dependent. A previous study showed that 1 nM ch128.1Av 
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decreases colony formation in this assay (19), therefore, it is not surprising that 2.5 nM also 

showed toxic effects as reported here (Table 2). The combination treatment showed toxicity 

as well, which is greater than either agent alone as evidenced by the further decrease of the 

formation of each colony type.

Discussion

The HOX genes are important in development as well as normal hematopoiesis. Disruption 

of normal HOX expression during blood cell development due to either translocations or 

irregular gene expression has been shown to lead to leukemogenesis (38). However, 

dysregulation of these genes has not been fully evaluated in malignant B cells. Therefore, 

we evaluated the expression levels of all 39 HOX genes in a panel of malignant B cells, 

including myeloma cells. We found that all of the cell lines tested showed high levels of 

HOXA6, HOXA3, HOXB4, and HOXC11. A previous study focusing on the HOXA genes 

showed that the malignant plasma cells in 9.4% (3 out of 32) of multiple myeloma patients 

tested showed abnormal HOXA gene expression (11). This study showed aberrant 

expression of HOXA4, HOXA7, and HOXA9 each in one patient. Our study confirms that the 

HOXA genes are abnormally expressed, however, the individual genes differ in each cell line 

tested. Our study shows aberrant expression of HOXA6 and HOXA3 in all cell lines tested. 

Other HOXA genes are highly expressed in certain cell lines but not all six. In addition, 

HOXB4 and HOXC11 showed high expression in all cell lines. HOXB4 is a positive 

regulator of hematopoietic stem cell renewal (39). Its expression is induced by the NF-Y 

transcription factor that regulates the transcription of numerous cell cycle control and 

proliferation-related genes (40). ZHX-2 is a negative regulator of NF-Y and its reduced 

expression has been shown to be associated with poor survival in MM patients (41). 

Therefore, it has been previously suggested that the loss of ZHX-2 leads to the upregulation 

of HOXB4 that allows myeloma cells to develop stem-cell like attributes and resistance to 

chemotherapy (41). Our results are consistent with this hypothesis and suggest that the 

targeting of the HOX genes (specifically HOXB4) may be a meaningful therapeutic option 

for aggressive, chemoresistant MM. The heterogeneity of expression between the cell lines 

(as shown in this report), as well as the heterogeneity of expression between our cell lines 

and cells previously isolated from patients (11), cannot be explained at this time. Although 

different HOX genes may be critical for malignant B-cell survival and their expression may 

vary from patient to patient, the fact that HXR9 targets multiple HOX genes suggests that 

HXR9 will be effective without regards to which HOX gene is aberrantly expressed.

Our data show that the panel of cell lines tested demonstrates variable sensitivities to HXR9. 

The most sensitive cell lines are IM-9 and ARH-77, which are both Epstein Barr Virus 

transformed. KMS-11 and U266 were the least sensitive, but not resistant to the cytotoxic 

effects of HXR9. HOXB5 was not expressed in the most sensitive cell lines, however, 

specific HOX genes associated with HXR9 sensitivity could not be identified. IM-9 cells 

treated with HXR9 showed very low caspase activation even when treated with 50 µM, a 

dose that induces a high level of cell death (Supplementary Data Figure S3). In addition, the 

caspase inhibitor Z-VAD only slightly rescued the cells from the effects of HXR9 alone. 

This suggests the possible involvement of other caspase-independent cell death pathways in 

HXR9-mediated cytotoxicity in malignant B cells. Caspase activation was higher in cells 
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treated with the combination treatment compared to HXR9 alone, most likely due to the 

activation of caspases by ch128.1Av. This is corroborated by the fact that Z-VAD partially 

protected cells from the effects of the combination treatment indicating that the role of 

ch128.1Av in the mechanism of synergy is significant.

Interestingly, we have observed a slight increase in cytotoxicity when FAC was added to 

IM-9 cells in the presence of HXR9. Although further studies are needed to understand this 

phenomenon, iron-induced oxidative stress (42, 43) might reduce HOX protein expression 

and/or activity as described for ethanol-induced oxidative stress that decreases the 

expression of several HOX genes in certain neuronal cells (44). As shown previously the 

exogenous addition of iron through the addition of FAC was able to rescue cells from the 

cytotoxic effects induced by ch128.1Av alone (17, 22). Iron supplementation also partially 

protected IM-9 cells from the effects of the combination treatment suggesting that the iron-

related stress induced by ch128.1Av plays a significant role in the synergy between the two 

compounds. The role of iron-induced stress by ch128.1Av was further confirmed by the 

semi-quantitative PCR analysis. Upregulation of TFRC, which encodes the TfR1, most 

likely occurs as a cellular response to low iron levels caused by TfR1 degradation that 

occurs with ch128.1Av treatment (17). Metallothionein 2A (MT2A) is involved in metal 

homeostasis and protection from oxidative stress (45) and its upregulation may also be in 

response to the iron deprivation induced by ch128.1Av (17, 22). The growth arrest and 

DNA-damage-inducible, alpha (GADD45α) protein is upregulated in response to many 

stress stimuli and drug therapies (46). Since iron is a key element in most of the cytochrome 

enzymes involved in the oxidative phosphorylation of the citric acid cycle (47), GADD45α, 

a p53 target gene (46), may be upregulated in IM-9 cells (p53 wildtype (48)) due to the 

metabolic stress that results from iron deprivation. Interestingly, the increase in GADD45α 

and MT2A levels observed with ch128.1A alone were not detected in cells treated with the 

combination treatment. HXR9 and ch128.1Av together in IM-9 cells induced the expression 

of TfRC (as did ch128.1Av alone) as well as FDXR and TM7SF2. FDXR, another p53 

target gene, encodes for ferredoxin reductase and is a mitochondrial respiratory chain 

protein that has been shown to contribute to apoptosis induced by 5-fluorouracil through the 

induction of oxidative stress in the mitochondria (49). FDXR has also been shown to be 

upregulated in response to irradiation or UV treatment (50). The transmembrane 7 

superfamily member 2 (TM7SF2, 3β-hydroxysterol Δ14-reductase) is localized to the 

endoplasmic reticulum and is involved in cholesterol biosynthesis (51). Its relation to iron or 

the induction of apoptosis is unknown, but its upregulation by the combination treatment 

may be a result of endoplasmic reticulum-induced stress that has not yet been elucidated. 

Although the above studies focus on IM-9 cells, we also found an enhancement of 

cytotoxicity with the combination of HXR9 and ch128.1Av in two MM cells lines (U266 

and KMS-11), which both show lower sensitivities to either agent alone. Further studies are 

needed to evaluate the mechanism of this enhancement in these two cell lines. However, our 

data suggest the utility of using our approach to for the treatment of resistant B-cell 

malignancies, including MM.

With the evaluation of any potential therapeutic, the toxicity to normal cells is always a 

concern. Since the two agents in this study are being evaluated as potential treatments for 

hematopoietic malignancies, especially B-cell malignancies including MM, the effects on 
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normal hematopoietic cells were evaluated. The colony forming assays show that HXR9 

alone significantly inhibited hematopoietic progenitor colony formation. These effects were 

dose dependent and are consistent with previous data that showed decreased proliferation of 

CD133+ cells upon treatment with 60 µM HXR9 (12). Although this suggests that a transient 

myelosuppression may result in vivo in response to HXR9 treatement, no toxicities were 

observed in previous studies in mice that were treated daily with 15 mg/kg doses of HXR9 

for 10 days, conditions where anti-tumor effects were also observed (12). Blood counts in 

these mice were within the expected ranges and no toxicity to the liver was observed. Since 

HXR9 is a small peptide it is expected that its half-life in vivo would be very short due to the 

rapid clearance through the kidneys. This may be an advantage since any myelosupression 

that may occur would be very short in duration or possibly non-existent.

Significant toxicity to human progenitor cells was also observed with the treatment of 2.5 

nM ch128.1Av. These results are consistent with a previous report that showed toxicity of 

the antibody-fusion protein using this assay (19). As discussed in a previous report (22), 

early hematopoietic progenitor cells express low to no TfR1 (52–55). As these early 

progenitors differentiate into late progenitor cells they acquire TfR1 expression (52, 54). 

Thus, if the BMMC are treated continuously with ch128.1Av for 14 days, it is expected that 

the toxicity would be greater due to the increase in TfR1 expression as the cells differentiate 

into late progenitor cells. If the BMMC are treated with ch128.1Av for a short period prior 

to differentiation (1 hour in liquid culture), and then allowed to grow for 14 days in the 

semi-solid MethoCult medium, the effect on the early progenitor population could be 

evaluated and it was previously shown that under these conditions, ch128.1Av did not 

inhibit colony formation (22). In addition, no toxic effect on early progenitor cells was 

observed in the Long-Term Culture-Initiating Cell (LTC-IC) assay (Daniels et al., 

manuscript in preparation). Thus, the effect of ch128.1Av is on the late progenitor 

population, which could be repopulated by the early progenitors upon treatment cessation.

The present study shows dysregulation of the HOX genes through gene expression analysis 

of all 39 HOX genes in a panel of six malignant B-cell lines. This analysis validates the use 

of HOX proteins as potential targets for myeloma therapy. To this end, we disrupted HOX 

protein function through the use of a synthetic peptide (HXR9) that blocks the interaction of 

the HOX proteins with one of its co-transcription factors. Anti-cancer activity was observed 

in all cell lines tested, confirming that the HOX proteins can be successfully targeted for 

malignant B-cell therapy. This study also shows that the activity of HXR9 can be enhanced 

by its combination with ch128.1Av. Taken together, this study shows that the HOX proteins 

are important for malignant B-cell survival and inhibition of their function through the use 

of HXR9 alone or combined with ch128.1Av shows great utility as potential treatments for 

B-cell malignancies, including myeloma, in humans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Hierarchical clustering of differential expression of HOX genes in a panel of 
hematopoietic malignant B cells
The clustergram shows expression of an array of HOX genes for each cell line in the panel. 

Linkage trees represent similarities among data points for either groups of genes (left) or cell 

lines (below). The colormap represents expression counts relative to GAPDH in a Log base 

2 scale. Values range from -4 (blue), indicating gene expression lower than that of GAPDH, 

to 4 (yellow), indicating gene expression higher than that of GAPDH.
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Figure 2. Anti-proliferative effects of HXR9 in malignant B cells
A) Cells were treated in triplicate with various concentrations of HXR9 for 48 hours. The 

[3H]-thymidine incorporation assay was used to monitor cell proliferation. Least sensitive 

cell-lines, U266 and KMS-11 (top panel); sensitive cell lines, IM-9, ARH-77, RPMI 8226, 

and MM.1S (bottom panel). B) Specificity of HXR9 was confirmed by testing all cell lines 

with the control peptide CXR9. Cells were treated with 50 µM CXR9 or HXR9 for 48 hours. 

Data is expressed as a percent of the [3H]-thymidine incorporation of control cells. Standard 
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deviation is indicated for each treatment. Data is representative of two independent 

experiments.
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Figure 3. Combination treatment of HXR9 and ch128.1Av increases the level of apoptosis in 
IM-9 cells
Apoptosis was measured by flow cytometry analysis of IM-9 cells stained with Alexa flour 

488 labeled Annexin V and counterstained with PI after 48 hours with each indicated 

treatment. Percentage of cells is shown in the corner of each quadrant. Results are 

representative of four independent experiments.
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Figure 4. Enhanced anti-proliferative effects of HXR9 and ch128.1Av in U266 and KMS-11 cells
Cells were treated in triplicates with the indicated concentrations of HXR9, ch128.1Av, or 

the various combinations of the two compounds for 96 hours. Cytotoxicity was determined 

by the [3H]-thymidine incorporation assay. Results are representative of two independent 

experiments. * p-value < 0.05 when compared to both agents alone used at the same 

concentrations.
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Figure 5. Caspase activation in IM-9 cells treated with HXR9 alone and in combination with 
ch128.1Av
A) Caspase activity in IM-9 cells treated with 40 µM HXR9 or 20 µM HXR9 alone at 

various time points. At each time point cells were lysed and caspase activation was 

determined using flourogenic caspase substrates: Ac-IETD-AMC (caspase-8), Ac-LEHD-

AMC (capase-9), Ac-DMQD-AMC (caspase-3), or Ac-VDVAD-AMC (caspase-2). B) Cells 

treated with 2.5 nM ch128.1Av, 20 µM HXR9, or the two in combination at the times 

indicated. Fold activation is expressed as the ratio of treated cells over buffer alone treated 

cells. Data are representative of three independent experiments.
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Figure 6. Effects of caspase inhibition and iron supplementation on the cytotoxicity of HXR9 and 
its combination with ch128.1Av
IM-9 cells were treated with 2.5 nM ch128.1Av, 20 µM HXR9, or their combination for 48 

hours; pre-treated with 50 µM ZVAD for 1 hour followed by the above treatments; or treated 

simultaneously with 25 µM FAC and the above treatments. A) [3H]-thymidine incorporation 

was used to monitor proliferation. Data are shown as the percent of control cells and 

represent the mean of triplicate samples. Error bars represent the standard deviation (* p < 

0.05, ** p < 0.001). B) Apoptosis in cells treated as in A) was measured by flow cytometry 

analysis of cells stained with Annexin V and counterstained with PI after 48 hours. 
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Percentage of cells is shown in the corner of each quadrant. Results are representative of two 

independent experiments.
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Figure 7. Expression analysis of a subset of iron and stress-related genes in IM-9 cells treated 
with HXR9, ch128.1Av, or the combination treatment
IM-9 cells were treated with 2.5 nM ch128.1Av, 20 µM HXR9, or the two agents in 

combination for 48 hours in triplicate at which time mRNA was isolated, cDNA 

synthesized, and the expression of each gene analyzed by semi-quantitative PCR. The 

average fold change of the triplicate wells relative to control cells is shown for each gene.
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Table 1

Combination Index analysis of ch128.1Av combined with HXR9 at a non-constant ratio in IM-9 cells.

[ch128.1Av] nM [HXR9] µM Fa CI Description

2.5 20 0.987 0.503 Synergism

5 20 0.997 0.382 Synergism

10 20 0.980 0.551 Synergism

20 20 0.986 0.515 Synergism

30 20 0.983 0.541 Synergism

2.5 10 0.781 0.862 Moderate Synergism

5 10 0.852 0.705 Moderate Synergism

10 10 0.899 0.609 Synergism

20 10 0.906 0.764 Moderate Synergism

30 10 0.928 0.667 Synergism

Analysis was performed using the Calcusyn software (BioSoft). Fa = fraction affected as tested by the [3H]-thymidine incorporation assay, CI = 
combination index. Descriptions are based on CI values and the recommendations of BioSoft: < 0.1 = very strong synergism, 0.1–0.3 = strong 
synergism, 0.3–0.7 = synergism, 0.7–0.85 – moderate synergism, 0.85–0.9 = slight synergism.
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Table 2

Toxicity to hematopoietic progenitors cultured in MethoCult for 14 days in the presence of HXR9 alone and in 

combination with ch128.1Av.

Colony Type Donor 1 Donor 2 Donor 3

Control (Buffer alone)

CFU-E 31 ± 3.3 12 ± 4.9 19 ± 3.6

BFU-E 40 ± 5.7 16 ± 6.4 28 ± 5.0

CFU-GM 54 ± 5.2 29 ± 0.6 38 ± 3.3

CFU-GEMM 5 ± 0.8 3 ± 0.6 6 ± 3.4

50 µM HXR9

CFU-E 4 ± 3.0** 4 ± 2.2* 2 ± 1.9**

BFU-E 5 ± 2.6** 5 ± 2.8* 3 ± 1.6**

CFU-GM 6 ± 1.7** 8 ± 1.6** 6 ± 2.6**

CFU-GEMM 0 ± 0.0* 1 ± 1.0* 1 ± 0.8*

20 µM HXR9

CFU-E 14 ± 2.2** 10 ± 2.2 5 ± 1.9**

BFU-E 24 ± 5.4* 8 ± 1.9 8 ± 1.5**

CFU-GM 52 ± 5.5 21 ± 2.2* 21 ± 5.3**

CFU-GEMM 3 ± 1.4 1 ± 0.6* 1 ± 0.8*

10 µM HXR9

CFU-E 17 ± 2.2** 9 ± 2.2 9 ± 3.8*

BFU-E 30 ± 6.7 12 ± 4.7 16 ± 3.4*

CFU-GM 60 ± 9.0 27 ± 2.1 21 ± 5.8*

CFU-GEMM 4 ± 3.4 3 ± 1.3 4 ± 3.5*

2.5 nM ch128.1Av

CFU-E 13 ± 9.8* 4 ± 0.8* 8 ± 3.7*

BFU-E 26 ± 7.4* 3 ± 1.4* 7 ± 1.8**

CFU-GM 26 ± 4.5** 14 ± 3.9* 18 ± 2.8**

CFU-GEMM 1 ± 1.4* 0 ± 0.0* 0 ± 0.0*

Combination
(20 µM HXR9 + 2.5 nM ch128.1Av)

CFU-E 3 ± 1.0** 4 ± 2.2* 4 ± 3.6*

BFU-E 3 ± 1.6** 2 ± 2.7* 4 ± 2.7**

CFU-GM 5 ± 2.3** 8 ± 2.2** 11 ± 0.6**

CFU-GEMM 0 ± 0.0* 0 ± 0.5* 1 ± 0.5*
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CFU-E: colony forming units-erythroid; BFU-E: burst forming units-erythroid; CFU-GM: colony forming units-granulocyte/machrophage; CFU-
GEMM: colony forming units-granulocyte/erythrocyte/macrophage/megakaryocyte. Data represents the mean of quadruplicates ± the standard 
deviation

**
p < 0.001,

*
p < 0.05 compared with control cells treated with diluent alone.
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