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ABSTRACT OF THE DISSERTATION

Stochastic Yield Analysis of Rare Failure Events in

High-Dimensional Variation Space

by

Xiao Shi

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2020

Professor Lei He, Chair

As semiconductor industry kept shrinking the feature size to nanometer scale, circuit

reliability has become an area of growing concern due to the uncertainty introduced by

process variations. For highly-replicated standard cells, the failure event for each individual

component must be extremely rare in order to maintain sufficiently high yield rate. Existing

yield analysis approaches works fine at low dimension, but less effective either when there are

a large amount of circuit parameters, or when the failure samples are distributed in multiple

regions. In this thesis, four novel high sigma analysis approaches have been proposed.

First, we propose an adaptive importance sampling (AIS) algorithm. AIS has several it-

erations of sampling region adjustments, while existing methods pre-decide a static sampling

distribution. At each iteration, AIS generates samples from current proposed distribution.

Next, AIS carefully assigns weight to each sample based on its tilted occurrence probability

between failure region and current failure region distribution. Then we design two adaptive

frameworks based on Resampling and population Metropolis-Hastings (MH) to iteratively

search for failure regions.

Second, we develop an Adaptive Clustering and Sampling (ACS) method to estimate the

failure rate of high-dimensional and multi-failure-region circuit cases. The basic idea of the

algorithm is to cluster failure samples and build global sampling distribution at each iteration.

Specifically, in clustering step, we propose a multi-cone clustering method, which partitions
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the parametric space and clusters failure samples. Then global sampling distribution is

constructed from a set of weighted Gaussian distributions. Next, we calculate importance

weight for each sample based on the discrepancy between sampling distribution and target

distribution. Failure probability is updated at the end of each iteration. This clustering and

sampling procedure proceeds iteratively until all the failure regions are covered.

Moreover, two meta-model based approaches are proposed for high sigma analysis. The

Low-Rank Tensor Approximation (LRTA) formulate the meta-model in tensor space by

representing a multi-way tensor into a finite sum of rank-one tensor. The polynomial degree

of our LRTA model grows linearly with circuit dimension, which makes it especially promising

for high-dimensional circuit problems. Then we solve our LRTA model efficiently with a

robust greedy algorithm, and calibrate iteratively with an adaptive sampling method. The

meta-model based importance sampling (MIS) method utilizes Gaussian Process meta-model

to construct quasi-optimal importance sampling distribution, and performs Markov Chain

Monte Carlo (MCMC) simulation to generate new samples from the proposed distribution.

By updating our global Importance Sampling estimator in an iterated framework, MIS leads

to better efficiency and higher accuracy than traditional importance sampling methods.

Experiment results validate that the proposed approaches are 3 orders faster than Monte

Carlo, and more accurate than both academia solutions such as importance sampling and

classification based methods, and industrial solutions such as mixture IS used by Intel.
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CHAPTER 1

Introduction

1.1 Background

The scale of semiconductor industry has been migrating to the end of Moore’s Law in

the past few decades. The leading Foundries TSMC and Samsung have announced their

5-nanometer manufacturing process [Moo19], respectively. Manufacturer favors the latest

technology because it is associated with emerging applications such as high-end mobile and

high-performance computing. TSMC says that its 5-nm process offers a 15 percent speed gain

or a 30 percent improvement in power efficiency. Samsung claims a 10 percent performance

improvement or a 20 percent efficiency improvement. However, in modern IC manufacturing,

it has become increasingly challenging to maintain high-precision and high-reliability.

Circuit variations can be categorized into two groups. [GP08] On the one hand, “pro-

cess variations” or “static variations” include the variations occur during the manufacturing

process (e.g. mask misalignment, stepper focus, etc). On the other hand, “environmental

variations” or “dynamic variations” denote those occur during circuit operation that vary

over time (e.g. temperature, power supply voltage, etc). In this thesis, we only focus on pro-

cess variations, which play a dominating role among the sources that introducing uncertainty

to circuit behavior [EBSLM97, CCS04].

Moreover, process variations have become a more important issue as semiconductor tech-

nology scales down. The performance characteristics of a MOSFET device is defined by the

physical and electrical parameters, including threshold voltage (Vth), channel length (L),

channel width (W) and oxide thickness (Tox), etc. It is straightforward to see that large

variations on these parameters can be converted into large amount of variations in circuit

1



behavior(e.g., leakage power, timing delay, output swing, etc.), and thereby more likely to

fail various circuit performance specifications.

1.2 Motivation

In order to analyze the impact of process variations, automated tools are required at pre-

silicon phase. As semiconductor technology scales down to smaller feature size, process

variation effects resulting in circuits targeting a lower yield, which is more susceptible to

reliability issues. For example, an SRAM array typically contains millions of replicated

components such as SRAM bit cell, sense amplifier and peripheral circuit, which are designed

to be exactly the same circuit parameters. Since a single failure can cause catastrophic failure

of the entire SRAM array, each replicated component must be extremely robust under process

variations so that the overall yield rate of SRAM array can meet the design specification.

Generally, the requirement of SRAM bit cell failure rate need to be less than 10−8 to 10−6

(6-7 sigma). However, traditional deterministic methods such as [SR09, Li10] cannot solve

problems with this dimension. Therefore, it is urgent for circuit designers to sought to

statistical yield analysis tools.

To enable circuit designers to sketch the stochastic behavior of a complex system under

the impact of process variations, many existing methodologies have been proposed in the

past few years [Nas01, LLGP04, DQSC08, VWG06, GYH11]. In general, previous works

are based on the assumption that target design is linear circuit or the target specification

follows the Gaussian distribution. However, the major challenge for existing methods has

two aspects:

• Strong non-linearity: the circuit responses of modern custom circuit blocks have strong

nonlinear relationships with input parameters. Therefore, traditional first-order and

second-order reliability methods are not applicable. It is extremely challenging to

accurately model the stochastic behavior of custom circuits.

• High dimensionality: the target circuit cases for existing yield analysis methods are
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memory standard cells, which are relatively small-scale. However, there is increasing

demand from market to perform yield analysis on various analog circuits, such as

amplifiers and comparators.

1.3 Organization of the Dissertation

The research presented in this dissertation mainly focuses on process variation modeling and

analysis using numerical and statistical techniques. The remaining parts of this dissertation

are organized as follows:

• Chapter 2: Adaptive Importance Sampling for Fast Yield Analysis

An improved importance sampling method is presented for the failure analysis of mem-

ory circuits where circuit failure is a rare event.

• Chapter 3: Adaptive Clustering and Sampling for Fast Yield Analysis

Adaptive Clustering and Sampling (ACS) explicitly uses spherical clustering algorithm

to locate the clusters of failure samples and considers those clusters as failure regions.

Moreover, it also modifies mixture importance sampling to apply the mean-shift tech-

nique to multiple failure regions.

• Chapter 4: Meta-Model based High-Dimensional Yield Analysis using Low-

Rank Tensor Approximation

A novel and efficient polynomial-based meta-model with tensor structure is presented

in this chapter to tackle the challenging high-dimensional yield analysis problem.

• Chapter 5: Meta-Model based Importance Sampling Algorithm

A novel Gaussian Process meta-model based approach is proposed in this chapter to

build up quasi-optimal importance sampling density.

• Chapter 6: Conclusion

The conclusion and future works are discussed.
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CHAPTER 2

Adaptive Importance Sampling for Fast Yield Analysis

2.1 Introduction

As microelectronic devices shrink to nano-meter scale, process variation has become a grow-

ing concern for efficient circuit sizing and design. For highly-replicated memory circuits or

analog modules, the tolerable failure probability is extremely small. In order to achieve a

robust design, we need to establish very accurate estimation of failure probability for each

circuit component. Conventional circuit simulation approaches perform worst case analysis

(WCA) or build analytical model to deterministically estimate the failure probability. It is,

however, infeasible in the rare-event scenario.

In general, the probability estimation of rare event is achieved by sampling methods.

Among those methods, Monte Carlo (MC) approach remains the gold standard, which re-

peatedly generates samples and evaluates circuit performance with transistor-level SPICE

simulation. However, MC is extremely time-consuming under the rare-event scenario because

millions of simulations are required to capture one single failure event.

Prior Works. In order to avoid expensive MC simulations, more efficient approaches

have been proposed to sample from the likely-to-fail regions. We can group these methods

into three major categories:

(1) Classification: Boundary Searching (BS) method in this category has been developed

to speed up the failure probability estimation through constructing the whole boundary

of the failure region. Then failure probability can be estimated by computing the hyper-

volume of the failure region without extra simulations. For example, Statistical Blockade

(SB) [SR07] applies a classifier to filter the more likely-to-fail MC samples and only simulate
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these samples. A safety margin is applied in [SR07] to decrease the classification error. More

recently, Recursive SB [SWCR08] and RE-scope [WXK+14] construct conditional classifier

and SVM-based nonlinear classifier, respectively. However, training such efficient classifiers

is expensive in high dimension and the complexity grows exponentially as failure probability

decreases.

(2) Meta-modeling: Modeling methods are employed in recent works to build circuit eval-

uators in replacement of circuit simulators. It maps the variation parameters into the circuit

metrics. Evaluating meta-models is much faster than running circuit simulators, which

drastically reduces computational complexity during yield estimation. For example, the ap-

proaches in [WLY+18, YYW14] build surrogate models based on Gaussian process regression

and radial basis function network, respectively. Moreover, the approach in [SYH+19] utilizes

low-rank tensor approximation (LRTA) method to train an efficient meta-model. However,

the estimation accuracy is highly sensitive to the accuracy of the meta-model, which gener-

ally requires massive number of training samples.

(3) Importance Sampling: Importance Sampling (IS) has been proposed based on the in-

sight that drawing samples in the likely-to-fail regions with a distorted sampling distribution

can improve the estimation accuracy and meanwhile accelerate the estimation convergence.

The choice of distorted distributions has a significant impact on the performance of IS. For

example, Mixture Importance Sampling (Mix-IS) [KJN06] mixes three distributions: a uni-

form distribution, the original distribution and a shifted distribution centered at the failure

region. The approaches in [DQSC08], [QTD+10] simply shift the center of sampling distri-

bution toward the minimum L2-norm point of a set of failure samples, while the method

in [WGCH14] shifts the sample mean to the centroid of failure samples. In order to tackle

multi-failure-region problems, approaches in [WBH16], [WYL+16] attempt to construct mul-

tiple mean shift vectors to obtain full coverage of different failure regions. However, all these

methods construct a static likely-to-fail region to sample from, which makes them vulnerable

to poor initializations.

In this chapter, we present an efficient and accurate adaptive importance sampling (AIS)

method for the failure probability estimation of various circuit cases. At each iteration,
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AIS generates samples from a family of partial distributions. Next, AIS carefully assigns

weight to each sample according to its tilted probability density between target distribution

and current sampling distribution. Then AIS updates sampling distribution to prevent

weight degeneracy, which tends to discard low-weight samples and regenerate high-weight

samples. Unlike conventional static importance sampling approaches, this procedure can

proceed iteratively to search for failure regions.

Although the idea of AIS was initially developed in the statistics field, it was previously

unknown how to adapt AIS to the circuit failure probability estimation problems. In gen-

eral, our major contribution is presented in three aspects: first, a primary difficulty with

AIS algorithm is to initialize the parameterized sampling distribution. To solve this issue,

hyperspherical presampling is performed in order to collect a number of failure events and

sketch initial sampling distribution. Second, we select the circuit failure event distribution as

the AIS target distribution, which bridges the gap between AIS algorithm and circuit yield

analysis problem. Moreover, we develop two distinct sampling distribution adaptation meth-

ods, including Resampling method to sample with replication from partial distributions, and

population Metropolis-Hastings (MH) to iteratively replace distribution with accept/reject

criteria. To the best of our knowledge, this is the first work on successfully developing

adaptive importance sampling method for circuit failure probability estimation.

2.2 Background

2.2.1 Rare Event Analysis

Let f(X) denote multivariate probability density function (PDF) of circuit process variation

X. Let Y be the performance merit of interest, such as memory read/write time, amplifier

gain, etc. Y usually requires expensive transistor-level circuit simulation to evaluate.

In general, it is of great interest to estimate the probability that Y belongs to a subset S

of the entire parametric space. For example, under circuit failure rate estimation scenario, a

tiny subset S can denote the “failure region” which includes all the failed samples. Thereby,

6



we introduce indicator function I(X) to identify pass/fail of Y :

I(X) =

0, if Y /∈ S

1, if Y ∈ S
(2.1)

Then the probability Pfail can be calculated as:

Pfail = P (Y ∈ S) =

∫
I(X) · f(X)dX (2.2)

Note that the integral in Equation (2.2) is intractable because I(X) is unavailable in

analytical form. Conventionally, MC method enumerates a sample set {xi}Ni=1 according to

f(X) and evaluates their indicator function values to generate an unbiased estimation P̂fail:

P̂fail = P̂ (Y ∈ S) =
1

N

N∑
i=1

I(xi)
N → +∞−−−−−→ P (Y ∈ S) (2.3)

2.2.2 Importance Sampling

When S denotes a rare event, such as circuit failure, standard MC becomes infeasible because

it requires millions of simulations to capture one single failure event. To avoid massive MC

simulations, IS has been introduced to sample from a “distorted” sampling distribution g(X)

that tilts towards the failure region S.

Figure 2.1: 1D illustrative plot of mean-shift importance sampling. Failed samples are more

likely to be captured with appropriate shift vector.

As shown in one-dimensional illustrative Figure 2.1 , g(X) contains more statistically

likely-to-fail samples. Here failure probability Pfail can be expressed as:

7



Pfail = P (Y ∈ S) =

∫
I(X) · f(X)

g(X)
· g(X)dX (2.4)

=

∫
I(X) · w(X) · g(X)dX (2.5)

where w(X) denotes the importance weight between original PDF f(X) and shifted g(X).

w(X) compensates for the discrepancy between f(X) and g(X). Then the unbiased IS

estimator P̂IS,fail can straightforwardly collect samples {xj}Mj=1 from g(X):

P̂IS,fail = P̂ (Y ∈ S) =
1

M

M∑
i=1

w(xj)I(xj)
M → +∞−−−−−→ P (Y ∈ S) (2.6)

We notice that IS sample set {xj}Mj=1 in Equation (2.6) has much smaller size than MC

sample set {xi}Ni=1 in Equation (2.3) because failure in g(X) is not a rare event. Theoretically,

the optimal sampling distribution gopt(X) is the failure event distribution π(X):

gopt(X) = π(X) =
I(X) · f(X)

Pfail
(2.7)

However, gopt(X) cannot be evaluated with Equation (2.7) directly because the analytical

expression of I(X) is unknown and Pfail is the target failure probability to be estimated. In

practice, most existing approaches attempt to shift the sample mean toward either pass/fail

boundary [DQSC08], centroid of a cluster of failure samples [WGCH14], or centroids of

multiple clusters [WBH16]. However, current mean-shift IS implementations suffer from two

major drawbacks:

First, existing IS approaches consist of two stages: a presampling stage and an importance

sampling stage. Generally speaking, presampling is to construct initial sampling distribution

and importance sampling is to evaluate Pfail. However, these algorithms are vulnerable to

poor initial conditions. It is extremely time-consuming to construct a desired shift vector in

the Presampling stage.

Moreover, the importance weight w(X) is substantially biased because the huge discrep-

ancy between f(X) and g(X). In this way, only a few samples contribute to the failure

probability calculation. It is the main challenge to obtain consistent estimation.
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2.3 Adaptive Importance Sampling Algorithm

In this section, we present our Adaptive Importance Sampling (AIS) approach. It adaptively

improves the sampling distribution by searching for failure regions through an adaptive

sampling strategy.

2.3.1 Algorithm Description

The objective of AIS is to approximate the target failure event distribution, π(x), by con-

structing a mixture of partial distributions. Since the analytical expression of π(x) is un-

available, we cannot directly draw samples from it. Our novel approach is to “learn” from

the past simulations and construct a sequence of adaptive sampling distributions.

The pseudo-code of AIS algorithm is summarized in Algorithm 1. First of all, AIS starts

with N initial sample points {µ(0)
i }Ni=1. The first sampling distribution is defined as a mixture

density g(0)(x) built from N partial Gaussian distributions q
(0)
i (x) with location parameters

µ
(0)
i and covariance matrices Σi. At each iteration t, we independently draw N samples x

(t)
i

from the N partial distributions q
(t−1)
i (x). Next, we compute the importance weight wi,t of

each sample x
(t)
i by evaluating the ratio of target density π(x) and mixture density g(t−1)(x).

Thus our failure probability estimator can be expressed as the average of all the impor-

tance weights. Then we update the location parameters µ
(t)
i based on normalized samples

weights {w̄i,t}Ni=1 through a carefully designed sampling distribution adaptation process. It

can balance sample weights and thus prevent weight degeneracy. This sampling and adap-

tion procedure can proceed iteratively until the discrepancy between the target distribution

and sampling distribution is not reduced anymore.

2.3.2 Parameter Tuning

One major challenge in implementing our AIS algorithm is that the selection of parameters

can significantly affect the efficiency of our iterative search procedure. Properly chosen

parameters can lead to higher sample diversity, faster convergence, and better capability
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Algorithm 1: AIS Algorithm

Initialization:

1. Set iteration index t = 0, construct N partial Gaussian distributions

q
(0)
i (x) = q

(0)
i (x|µ(0)

i ,Σi) i = 1, · · · , N

where µi is the location parameters and Σi is the covariance matrices.

2. Set initial sampling distribution

g(0)(x) =
1

N

N∑
i=1

q
(0)
i (x)

repeat

Update iteration index t = t+ 1 .

1. Sample Propagation:

Draw a new set of N samples {x(t)i }Ni=1 in the parametric space:

x
(t)
i ∼ q

(t−1)
i (x|µ(t−1)

i ,Σi) i = 1, · · · , N

2. Weighting:

Compute incremental importance weights:

wi,t =
π(x)

g(t−1)(x)
=

f(x)I(x)
1
N

∑N
i=1 q

(t−1)
i (x)

i = 1, . . . , N

3. Estimation:

Update the unbiased estimator:

P̂fail,t =
1

tN

t∑
j=1

N∑
i=1

wi,t i = 1, . . . , N

4. Normalization:

Normalize importance weights:

w̄i,t =
wi,t∑N
i=1wi,t

i = 1, · · · , N

5. Sampling Distribution Adaptation: Update location parameters

{µ(t−1)
i }Ni=1 based on

normalized weight {w̄i,t−1}Ni=1, and generate improved sampling distribution

g(t)(x)

until Relative standard deviation (FOM): ρ =

√
σ2
P̂fail

P̂fail
;
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to explore parametric space. In this section, we mainly discuss initial location parameters,

partial distributions and covariance matrices.

2.3.2.1 Initial Location Parameters µ
(0)
i

As our AIS algorithm is driven by its adaptive mechanism to explore failure regions, it is

worthwhile to develop a good initial experimental design. Here we propose a hyperspherical

presampling method to capture more failure samples with minimum number of simulations.

The main concept is to collect failure samples distributed on multiple hyperspherical surfaces,

and use them as initial location parameters.

As shown in Figure 2.2, we start with original distribution, which denotes a unit hyper-

sphere in parametric space. We notice that most likely no failure event is captured under

original distribution. To cover multiple failure regions, we gradually increase the radius of

hypersphere until N failure samples are captured. Here variable N, which denotes the number

of partial distributions in Algorithm 1 can be arbitrarily user-defined. The trade-off between

estimation accuracy and algorithm complexity is obvious: we can achieve higher estimation

accuracy as N increases at the expense of longer simulation runtime. In our experiments, we

choose N to be 128 and collect 1000 samples on each hypersphere.

Passed Samples

Failed Samples

Failure Region

X2

X1

Figure 2.2: Hyperspherical presampling. Samples on outer spherical surfaces are smaller

dots, denoting smaller probability to be captured.

An alternative view of our hyperspherical presampling method is to project high di-
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mensional samples onto surface of multiple hyperespheres, which is a dimension reduction

process. This process is capable of accelerating the exploration in entire open space while

maintaining the sample diversity.

2.3.2.2 Partial Distribution q
(t)
i (x)

In each iteration of our AIS algorithm, sampling distribution g(t)(x) is constructed by aver-

aging out the partial distribution q
(t)
i (x) to approximate the target failure event distribution

π(x). This concept is equivalent to the methodology in Kernel Density Estimation (KDE),

where each q
(t)
i (x) represents the kernel function. For different applications, there exists

various parameterized distributions as kernel functions, such as Gaussian distributions, Beta

distributions [Che99] and Boltzmann distributions [DCB+10]. According to the Gaussian

nature of circuit variables, we place a multivariate Gaussian distribution centered at each of

the location parameters, which indicates a probability mass in the parametric space.

2.3.2.3 Covariance Matrices Σi

Another parameter can be tuned is the covariance matrices Σi of aforementioned partial

distribution q
(t)
i (x). In practice, due to weak correlation between different circuit variables,

this covariance matrices is diagonal or can be jointly approximate diagonalized. For matrices

entries with larger values, corresponding circuit dimensions tend to present higher freedom

to explore failure regions. Matrices entries with smaller values, on the contrary, concentrate

sample points and achieve faster convergence. In our AIS implementation, our covariance

matrices are not adapted between iterations, but values change among different entries to

control the freedom of different circuit dimensions.

2.4 Sampling Distribution Adaptation

As explained in Section II, standard IS suffers from weight degeneracy during the estimation.

Due to the mismatch between sampling distribution and target distribution, a few samples
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may have extremely large weight values while others are trivial. In this case, the failure

probability estimation is highly dependent on a small sample set, which makes the estimator

unstable and fail to converge.

In this section, we propose two different sampling strategies to update the sampling distri-

bution. The first Resampling method samples with replication from the partial distributions.

Distributions with larger weights tend to generate more samples in the next iteration. The

second population Metropolis-Hastings (MH) method updates partial distributions through

an accept/reject rule. Then we compare these two methods in terms of simulation cost and

failure region coverage.

2.4.1 Resampling

Our first method is driven by multinomial resampling technique to iteratively improve partial

distributions. The main idea is to replicate distributions with larger weights and eliminate

those with smaller weights.

Figure 2.3 is an illustrative view for certain iteration t. It demonstrates the adjustment of

normalized weight {w̄i,t}Ni=1 and sampling distribution g(t)(x) after resampling for N times.

The specific steps are as follows. After sample set {x(t)i }Ni=1 is generated from Sample Propa-

gation step, we first locate the partial distributions {µ(t)
i }Ni=1 centered at {x(t)i }Ni=1. Then we

resample {µ(t)
i }Ni=1 with replication according to their normalized weights {w̄i,t}Ni=1. Thus we

can obtain new sampling distribution g(t)(x) by averaging out current partial distributions

{q(t)i (x|µ(t)
i ,Σi)}Ni=1. In the sample generation step of iteration (t+1), a set of updated random

measure will populate in the region of large weights. In this way, this resampling approach

effectively mitigates weight degeneracy, and guarantees each sample uniformly contribute to

the estimator.

2.4.2 Population Metropolis-Hastings Sampler

Our second method updates the sampling distribution from a different perspective, which is a

population MH sampler. The intuitive idea of population MH is to repeatedly replace a “bad”
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Figure 2.3: Illustrative figure of Resampling-based AIS at iteration t.

partial distribution with a new one by an accept/reject criterion. Figure 2.4 illustrates the

improvement of {w̄i,t}Ni=1 and sampling distribution g(t)(x) after two replacement operations.

In practice, for each iteration, we repeat this procedure for T times, where T is a pre-defined

parameter that can be tuned.

Algorithm 2 summarizes the detailed steps of our population MH sampler. At certain iter-

ation t, we first select a “bad” partial distribution to be removed. The probability of selecting

µ
(t)
k is proportional to the reciprocal of importance weight 1

wi,t
. In the next generation step, we

draw a new candidate location parameter µnew from previous sampling distribution g(t−1)(x).

The MH acceptance ratio is given by α = min{1, π(µnew)/g(t−1)(µnew)

π(µ
(t)
k )/g(t−1)(µ

(t)
k )
}. In the Statistics com-

munity [Bro98], the transition kernel K(µnew|µ(t)
k ) is defined as the conditional probability

of replacing selected µ
(t)
k with µnew, which is formulated as K(µnew|µ(t)

k ) = g(t−1)(µnew)α. We
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Figure 2.4: Illustrative figure of population MH-based AIS at iteration t.

use this transition kernel to satisfy the convergence criterion, which will be shown in Section

V.

We notice that partial distributions with smaller weights are prone to be replaced, and

thus sample points tend to move toward failure regions through a random walk. It is also

worth noting that our population MH sampler will reduce to a standard MH when the

number of population is one.

15



Algorithm 2: Population Metropolis-Hastings Sampler

Input: Current samples {x(t)i }Ni=1, Normalized weights {wi,t}Ni=1.

Output: New location parameters set {µ(t)
i }Ni=1.

Initialization:

Set {µ(t)
i }Ni=1 = {x(t)i }Ni=1 and iteration index τ = 1.

while τ < T do

Update iteration index τ = τ + 1 .

1. Selection:

Select a “bad” location parameter µ
(t)
k from a discrete PDF:

µ
(t)
k ∼

1∑N
i=1

1
wi,t

N∑
i=1

1

wi,t
δ(µ− µ(t)

i )

where δ(µ) is impulse function.

2. Generation:

Draw a new candidate location parameter

µnew ∼ g(t−1)(x)

3. Replacing:

Define acceptance ratio

α = min{1, π(µnew)/g(t−1)(µnew)

π(µ
(t)
k )/g(t−1)(µ

(t)
k )
}

Generate a random uniform number r in [0, 1].

if r ≤ α then

accept new candidate µ
(t)
k = µnew

else

reject new candidate µ
(t)
k = µ

(t)
k

end

end
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2.4.3 Comparison between Resampling and population MH

In this section, we compare Resampling method and population MH in terms of simulation

cost and failure region coverage.

First, we notice that Resampling method exhibits inherit simplicity by “replicating” the

partial distributions with higher importance weights and generating more sample points

from these distributions. This procedure is easy to implement and does not require extra

simulations. On the contrary, our population MH sampler seeks to “replace” the low-weight

partial distributions with new ones according to a MH accept/reject rule. The calculation

of acceptance ratio α involves the probability density of target distribution, which need

SPICE simulation to evaluate. Specifically, for T AIS iterations, the total simulation runs

of Resampling method are NT , while population MH requires (N + T )T runs.

However, the major drawback of Resampling method is loss of sample diversity [EMLB17].

That is, the whole sample set is generated from one or a few partial distributions. Our pro-

posed multinomial Resampling method disregards the spatial information of failure regions,

and eliminates partial distributions in an uncensored way, which greatly reduces the diversity

of sample points. We also notice that each Resampling step is irreversible: if a less important

partial distribution is discarded in an intermediate iteration, it is most unlikely to revisit

this region in the following iterations. For circuit cases with multiple failure regions, our

Resampling method tends to aggregate the samples in a small region and may neglect other

failure regions. On the contrary, for our population MH sampler, the weighting procedure is

not deterministic but instead a stochastic process carried out by using a series of acceptance

tests. In this way, the location parameter of new candidate distribution satisfies the failure

event distribution, which guarantees full coverage of multiple failure regions.
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2.5 AIS Estimator Analysis

2.5.1 Unbiasedness and Variance of AIS Estimator

We first derive that our AIS estimator P̂fail keeps the unbiasedness of standard importance

sampling estimator. It guarantees the expectation of estimation is equal to the failure prob-

ability Pfail.

E[P̂fail] = E[
1

TN

T∑
t=1

N∑
i=1

wi,t] (2.8)

=
1

N

N∑
i=1

E[
f(x)I(x)

1
N

∑N
j=1 q

(t)
j (x|µ(t)

j ,Σj)
] (2.9)

=
1

N

N∑
i=1

∫
f(x)I(x)

1
N

∑N
j=1 q

(t)
j (x)

q
(t)
i (x)dx (2.10)

=

∫
f(x)I(x)

1
N

∑N
j=1 q

(t)
j (x)

[
1

N

N∑
i=1

q
(t)
i (x)]dx (2.11)

=

∫
f(x)I(x)dx = Pfail (2.12)

Next, we demonstrate that proposed AIS estimator P̂fail always has a lower or equal vari-

ance than the standard IS estimator P̂IS,fail. Mathematically, the variance of two estimators

can be expressed as:

V ar(P̂IS,fail) =
1

N2

N∑
i=1

(

∫
f 2(x)I2(x)

qi(x)
dx− P 2

fail) (2.13)

V ar(P̂fail) =
1

N2

N∑
i=1

(

∫
f 2(x)I2(x)
1
N

∑N
j=1 qj(x)

dx− P 2
fail) (2.14)

By subtracting Equation (2.13) and (2.14), we prove that V ar(P̂fail) is always smaller or

equal by deriving the following inequality:
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N∑
i=1

∫
f 2(x)I2(x)
1
N

∑N
j=1 qj(x)

dx (2.15)

=
N∑
i=1

∫
f 2(x)I2(x)

N−1
N

1
N−1

∑N−1
j=1 qj(x) + 1

N
qN(x)

dx (2.16)

≤
N∑
i=1

∫
(

(N − 1)/N
1

N−1
∑N−1

j=1 qj(x)
+

1/N

qN(x)
)f 2(x)I2(x)dx (2.17)

≤
N∑
i=1

∫
(

1

N

N−1∑
j=1

1

qj(x)
+

1

N

1

qN(x)
)f 2(x)I2(x)dx (2.18)

=
N∑
i=1

∫
(

1

N

N∑
j=1

1

qj(x)
)f 2(x)I2(x)dx (2.19)

=
N∑
i=1

∫
f 2(x)I2(x)

qi(x)
dx (2.20)

With the unbiasedness and less variance of estimation, we theoretically prove that AIS

always has better performance than standard IS method. It is validated by the accuracy

and efficiency comparison in Section VI.

2.5.2 Weight balancing

In this section, we investigate how our AIS estimator outperforms other IS based estima-

tors in terms of weight balancing. As we explained in Section II, one major challenge of

conventional IS technique occurs when the probability density discrepancy between original

distribution f(X) and sampling distribution g(X) is too large. These overwhelming fluctua-

tions in importance weight w(X) can be prevented by our sampling distribution adaptation

steps. To quantitatively analyze this feature, we introduce Effective Sample Size (ESS),

which reflects the degree of weight degeneracy. ESS is extensively defined as [KLW94]:

ESS =
1∑N

i=1(w̄i,t)
2

(2.21)

which involves only the normalized weights {w̄i,t}Ni=1.
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As we have introduced in Section IV, our Resampling scheme generates more samples from

partial distributions with larger weights and eliminates distributions with smaller weights.

Thus {w̄i,t}Ni=1 is naturally balanced. On the other hand, our population MH sampler con-

structs a stochastic process, which is equivalent to draw samples from the failure event distri-

bution. Ideally, optimal {w̄i,t}Ni=1 satisfy w∗ = 1
N

. An alternative view is that our entire AIS

sample set {x(t)i , wi,t}NTi=1 has equivalent influence on the estimator P̂fail = 1
TN

∑T
t=1

∑N
i=1wi,t.

To this end, both of sampling distribution adaption methods can be applied to prevent weight

degeneracy and maintain the robustness of AIS estimator.

2.5.3 Convergence Criteria

The proposed convergence criteria, varied with different distribution adaptation schemes,

determine the stability of failure probability estimation.

For Resampling-based AIS, the weighting procedure is provided by a deterministic func-

tion. Therefore, the consistency of convergence is naturally inherent [LBD15].

For MH-based AIS, the location of partial distribution {µ(t)
i }Ni=1 is generated from a

stochastic process, by applying a series of transition kernel K(µnew|µ(t)
k ) to replace µ

(t)
k con-

ditionally with µnew. The goal is to prove that the probability density of drawing new

candidate µnew is equivalent to sampling from failure event distribution π(x), written as

p(µnew) = π(µnew).

In order to derive the convergence criterion, we first introduce the Lemma of detailed

balance condition:

K(µnew|µ(t)
k )π(µ

(t)
k ) = K(µ

(t)
k |µnew)π(µnew) (2.22)

This Lemma indicates that the transition rate from µ
(t)
k to µnew is equal to the transition

rate from µnew to µ
(t)
k in a stationary state. The proof of detailed balance condition is given

by substituting the expression of K(µnew|µ(t)
k ) in Equation (2.22), we have
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K(µnew|µ(t)
k )π(µ

(t)
k ) (2.23)

= cg(t−1)(µnew)min{1, π(µnew)/g(t−1)(µnew)

π(µ
(t)
k )/g(t−1)(µ

(t)
k )
}π(µ

(t)
k ) (2.24)

= cg(t−1)(µ
(t)
k )min{1, π(µ

(t)
k )/g(t−1)(µ

(t)
k )

π(µnew)/g(t−1)(µnew)
}π(µnew) (2.25)

= K(µ
(t)
k |µnew)π(µnew) (2.26)

Next, we derive the convergence criterion

p(µnew) =

∫
K(µnew|µ(t)

k )p(µ
(t)
k )dµ

(t)
k (2.27)

=

∫
K(µnew|µ(t)

k )π(µ
(t)
k )dµ

(t)
k (2.28)

=

∫
K(µ

(t)
k |µnew)π(µnew)dµ

(t)
k (2.29)

= π(µnew)

∫
K(µ

(t)
k |µnew)dµ

(t)
k (2.30)

= π(µnew) (2.31)

We notice that this convergence criterion requires the assumption of “ergodic” property

of population MH, which means that sample points can visit any state in the failure regions.

It ensures that our MH sampler will converge to a stationary state. That is, the PDF of

p(µnew) will approach π(µnew) as t→∞.

In conclusion, both of our sampling distribution adjustment methods converge to the

stable target distribution π(x) when sufficient simulations are provided. These methods mo-

tivate the adaptation mechanism of our AIS algorithm. Compared with conventional static

IS estimator, the setup time for presampling can be drastically reduced. In practice, we trun-

cate this sampling procedure with limited simulations, while preserving failure probability

estimation within a pre-decided confidence interval.
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2.6 Experiment Result

The proposed Resampling-based AIS (R-AIS) and population MH-based AIS (MH-AIS)

methods are validated on both memory and analog circuits. They are first evaluated on

a typical 6T SRAM bit cell circuit with 54 variables, then on a two-stage amplifier circuit

with 126 variables for analog yield analysis. We implement MC as ground truth for accuracy

comparison. We also perform different methods, including High Dimensional Importance

Sampling (HDIS) [WGCH14], Hyperspherical Clustering and Sampling (HSCS) [WBH16]

for comparison purpose. We run HSPICE with SMIC 40nm model. All the experiments are

performed on a Linux server with Intel Xeon X5675 CPU @3.07 GHz and 94 GB RAM.

2.6.1 Experiments on 6T SRAM Bit Cell

BL BLB

MN5

MN6

MN1

MP4MP2

MN3

WL

Figure 2.5: The schematic of typical 6T SRAM bit cell.

In this experiment, a typical 6-transistor SRAM bit cell is used to test the accuracy and

efficiency of the proposed AIS methods. Figure 2.5 shows the schematic of the SRAM bit cell.

Four transistors MN1, MP2, MN3 and MP4 form two cross-coupled inverters and utilize

two steady states to store either “0” or “1”; transistor MN5 and MN6 control accessing

to the storage cell during read, write or standby operations. Without loss of generality, we

take SRAM read failure as the failure mechanism of interest. During read operation, after

the bit line BL and BLB is precharged, the bit line voltage VBL and VBLB decrease due
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Figure 2.6: Evolution comparison of failure prob. and FOM vs. the number of IS simulations.

Efficiency comparison in Figure 2.6(b) considers only IS simulations (without Presampling

simulations).

to the current IBL and IBLB through the access transistors and pull-down transistors. The

SRAM read failure occurs when the voltage difference between BL and BLB is too small to

be captured by sense amplifier at the end of read operation. The process variations of each

transistor are modeled by 9 parameters including threshold voltage Vth0, gate oxide thickness

tox, Mobility µ0, etc. In total, the number of parameters is 54. And all these parameters are

treated as mutually independent and standard normal [DM03].

2.6.1.1 Accuracy Comparison

In order to evaluate the accuracy, Figure of Merit, ρ, is employed to characterize the accuracy

and confidence of our estimation. It is defined as:

ρ =

√
σ2
P̂fail

P̂fail
(2.32)
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Table 2.1: Accuracy and efficiency comparison on 54-dimensional SRAM bit cell circuit

MC HSCS HDIS R-AIS MH-AIS

Failure prob.(error) 1.66e-5(0%) 1.77e-5(6.6%) 2.01e-5(22.1%) 1.67e-5(0.6%) 1.69e-5(1.8%)

Presampling 0 4500 8000 3000 3000

IS 1e7 38750 14480 1430 1925

Total (speedup) 1e7(1×) 43250(231×) 22480(445×) 4430(2257×) 4925(2030×)

where P̂fail denotes the estimation of failure probability and σP̂fail
denotes the standard

deviation of P̂fail. In fact, we can declare one estimate is (1 − ε)100% accurate with (1 −

δ)100% confidence when ρ < ε
√
log(1/δ). Here we use ρ < 0.1 to indicate the estimation

reaches a steady state with 90% confidence interval. ρ has been extensively used in the

literature [WGCH14], [WBH16].

The evolutions of failure probability estimation and calculation of FOM are plotted in

Figure 2.6. From Figure 2.6(a), we notice that the estimation of HDIS, HSCS, R-AIS and

MH-AIS methods all converge. The stable estimation value is reached when the FOM is

smaller than 0.1, which is denoted by the dashed line in Figure 2.6(b). The numerical

comparison is illustrated in Table 2.1. The ground truth MC result is 1.66e-5 (4.26σ).

Among these methods, our proposed R-AIS and MH-AIS are more accurate with less than

2% relative error, while the results of HSCS and HDIS have 6.6% and 22.1% relative error,

respectively. This stable estimation is guaranteed by our carefully designed convergence

criterion.

2.6.1.2 Efficiency Comparison

Figure 2.6(b) illustrates the efficiency of our proposed algorithm. We notice that both

R-AIS and MH-AIS have faster convergence speed compared with other algorithms. It is

attributed to their dynamic search process, which is far more efficient than sampling from

static distribution. Specifically, in the Impotance Sampling (IS) stage, R-AIS and MH-AIS

method can reach a steady state with 90% confidence interval within only 1430 and 1925 IS

24



simulations. We notice that MH-AIS is slightly slower because it requires extra simulations

to evaluate the weight of new candidates. On the contrary, HSCS and HDIS need 38750

and 14480 IS simulations to reach the same FOM value, respectively. Thus our methods can

obtain 7-27× speedup w.r.t HSCS and HDIS method in the IS stage.

Apart from IS simulations, we note that all importance sampling based approaches need

extra presampling simulations to initialize the sampling distribution. To be specific, as

indicated in Table 2.1, two AIS methods need only 3000 presampling simulations, while

HSCS and HDIS need 4500 and 8000 times.

In total, Table 2.1 reveals that R-AIS achieves 2257× speedup over Monte Carlo, 9.8×

over HSCS, and 5.1× over HDIS, while MH-AIS is 2030× faster than Monte Carlo, 8.8×

than HSCS, and 4.6× than HDIS.

2.6.2 Experiments on Two stage Amplifier
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Figure 2.7: Multiple failure region coverage test (failed samples/passed samples/sample mean

are colored separately)

Next, we evaluate the performance of proposed AIS methods on analog circuit. A sim-

plified schematic of the two-stage operational transimpedance amplifier (OTA) consisting of

master-slave structure for low supply voltage application is presented in Figure 2.8. The

slave stage consists of the tail current transistor (MP5), the differential pair (MP1 and

MP2) and the current-mirror load (MN1 and MN2). The master stage should copy the

tail current source and the transconductance transistor of the slave stage (i.e. MP3, MP4,

MP6 and MN3 are the replicates of MP1, MP2, MP5 and MN1). In order to save voltage
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Figure 2.8: The schematic of two-stage amplifier circuit.

margin, transistor MP5 and MP6 should operate in linear region.

Compared with the experiment on 6T SRAM, the estimation of Pfail for OTA circuit is

more troublesome because it has various failure mechanisms which lead to multiple failure

regions. In our experimental setting, we consider four performance specifications, including

voltage gain margin, gain bandwidth, phase margin and 3dB bandwidth. For this amplifier

circuit, there are in total 126 variation parameters.

Table 2.2: Accuracy and efficiency comparison on 126-dimensional two-stage amplifier circuit

MC HSCS R-AIS MH-AIS

Failure prob.(error) 1.5e-3(0%) 1.26e-3(16%) 7.82e-4(47.9%) 1.52e-3(1.3%)

Presampling # sim. 0 7000 3000 3000

Importance Sampling # sim. 458700 49290 956 2093

Total # sim. (speedup) 458700(1×) 56290(8×) 3956(116×) 5093(90×)

2.6.2.1 Comparison of Visualized Failure Regions

In order to investigate the different performance among aforementioned methods, we project

the sample points onto two most important dimensions, Vth0 of MP1 and Vth0 of MN6,
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generating a visualized scatter plot. Figure 2.7 demonstrates the multiple failure regions in

2D parametric space for different methods. Two disjoint failure regions are clearly displayed

in Figure 2.7(a) with MC sampling. We notice that it consists of a major failure region in

the bottom-right corner and a minor one in the upper-left.

In Figure 2.7(b), we notice that HDIS cannot capture any failure samples with limited IS

simulations. The reason is that mean-shift IS cannot deal with multi-failure-region circuits.

HDIS locates the shifted sample mean (green triangle) at the centroid of failure samples

drawn in the presampling stage. For circuits with multiple failure regions, it is infeasible to

find a single sample mean that is close to all failure regions.

Figure 2.7(c) shows that HSCS method with multiple mean-shift vectors can detect both

of the failure regions. It is mainly attributed to its directional K-means algorithm to group

the failure samples and take multiple min-norm points as target of IS shift vectors. As

a static mixture IS method, HSCS is highly dependent on presampling to determine the

sampling distribution. It is, however, challenging to detect the failure region boundaries

when the number of simulations is limited. With biased shifted means, we notice that HSCS

requires more simulations and has larger relative error.

R-AIS is able to search for the failure regions through a resampling procedure, and the

majority of samples are located around important failure region boundaries. However, R-AIS

does not exhibit very stable performance. Figure 2.7(d) depicts a special case that R-AIS

fails to find both of the failure regions. Due to the reduction of sample diversity, we notice

that the minor region in the upper-left disappears during the resampling iterations.

In Figure 2.7(e), MH-AIS achieves best performance among these methods. It can suc-

cessfully search for both failure regions with only a few iterations. The adaptation of popula-

tion MH sampler provides the flexibility to search for failure regions in the entire parametric

space, which makes it suitable for more complex circuits with multiple failure regions.
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Figure 2.9: Evolution comparison of failure prob. and FOM vs. the number of IS simulations.

Efficiency comparison in Figure 2.9(b) considers only IS simulations (without Presampling

simulations).

2.6.2.2 Accuracy and Efficiency Comparison

In order to validate the accuracy of our algorithm, we plot the evolution of failure probability

estimation and FOM vs. number of IS simulations in Figure 2.9. To generate ground truth,

MC takes 4.59e5 simulations to obtain confident estimation of Pfail at 1.5e-3 (3.18σ). We

notice that only HSCS and MH-AIS methods can successfully estimate failure probability,

while HDIS fails to discover any failure sample and R-AIS converges to a wrong failure

probability. The FOM of our MH-AIS method descends to 0.1 within 5093 simulations

(including 3000 presampling simulations), which represents a 11× speedup over HSCS and

90× speedup over MC method.
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2.7 Conclusion

In this chapter, we present an adaptive importance sampling method to efficiently esti-

mate the rare event failure probability of memory and analog circuits. AIS first applies

hyperspherical presampling to construct initial sampling distribution. We also develop two

distinct sampling distribution adaption schemes to search for failure regions and balance sam-

ple weights. Experiments on SRAM bit cell circuit indicate that AIS method can achieve

three order of magnitude speedup over MC and 4-10× over other state-of-the-art methods.

On another two-stage amplifier circuit, AIS is 90× faster than MC method, while other

approaches fail to converge to correct failure probability.
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CHAPTER 3

Adaptive Clustering and Sampling for Fast Yield

Analysis

3.1 Summary

In this chapter, we present an accurate and efficient algorithm based on Adaptive Clustering

and Sampling (ACS) method to estimate the failure rate of high-dimensional and multi-

failure-region circuit cases. The basic idea of the algorithm is to cluster failure samples

and build global sampling distribution at each iteration. Specifically, in clustering step, we

propose a multi-cone clustering method, which partitions the parametric space and clusters

failure samples. Then global sampling distribution is constructed from a set of weighted

Gaussian distributions. Next, we calculate importance weight for each sample based on

the discrepancy between sampling distribution and target distribution. Failure probability

is updated at the end of each iteration. This clustering and sampling procedure proceeds

iteratively until all the failure regions are covered.

Our main contribution is summarized in three aspects: first, we initialize our ACS al-

gorithm with hyperspherical presampling method, which reduces dimension by sampling

from a set of hyperspherical surfaces. Second, we propose an adaptive scheme to explore

high-dimensional space and search for failure regions. As iteration continues, each partial

IS estimator provides a better estimation, and global sampling distribution will tilt toward

failure region. Moreover, our estimator is adapted parallelly in different directions, which

can effectively improve sample diversity.
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3.2 Algorithm Description

Algorithm 3 summarizes the main steps of proposed ACS method. The objective of this

algorithm is to iteratively explore multiple failure regions in different directions and update

failure rate at the end of each iteration. In the initialization step, we collect M samples

{X(0)
i }Mi=1 by hyperspherical presampling, and group these samples into k clusters {C(0)

j }kj=1

using our multi-cone clustering algorithm. At each iteration t, we construct a local sampling

distribution g
(t−1)
j (x) in each cluster C

(t−1)
j based on the samples that assigned to it. Our

global sampling distribution g(t−1)(x) is built from a weighted mixture of all the local sam-

pling distributions {g(t−1)j (x)}kj=1. Next we generate M new samples {X(t)
i }Mi=1 from g(t−1)(x),

and calibrate the cluster sets {C(t)
j }kj=1. At the end of each iteration, we update failure prob-

ability estimation by averaging all the partial IS estimators P̂fail,t = 1
tM

∑t
l=1

∑M
i=1wi,l up

to present. This iteration proceeds iteratively until our estimation converge to certain con-

fidence interval.

3.2.1 Hyperspherical Presampling

One major challenge in implementing our ACS algorithm is to generate some initial samples

that can locate multiple failure regions. In practice, an effective initialization method can

help improve sample diversity, convergence speed, and capability to explore parametric space.

It is quite difficult to recover from a set of poor starting samples, and the adaptation may

converge to a local optimum in the parametric space.
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Algorithm 3: ACS Algorithm

Initialization:

1. Set iteration index t = 0, generate initial failure sample set {X(0)
i }Mi=1.

2. Assign failure samples {X(0)
i }Mi=1 to cluster set {C(0)

j }kj=1.

Repeat

Update iteration index t = t+ 1.

1. Cluster sampling distribution:

(a) Construct Gaussian distribution as sample proposal:

q
(t−1)
i (x) = N(X

(t−1)
i ,Σ)

(b) Calculate probability density for N
(t)
j failure samples:

βi,t−1 = f(X
(t−1)
i )I(X

(t−1)
i ) i = 1, ..., N

(t)
j .

(c) Construct local distribution g
(t−1)
j (x):

g
(t−1)
j (x) =

1∑Nj

i=1 βi,t−1

Nj∑
i=1

βi,t−1 · q(t−1)i (x)

2. Sample propagation:

Generate M samples from global distribution g(t−1)(x):

X
(t)
i ∼ g(t−1)(x) =

1∑M
i=1 βi,t−1

k∑
j=1

∑
Xi∈C

(t)
j

βi,t−1 · g(t−1)j (x)

3. Cluster calibration:

Re-cluster failure samples {X(t)
i }Mi=1 into new set{C(t)

j }kj=1 and update {N (t)
j }kj=1.

4. Failure probability calculation:

(a) Compute incremental importance weight:

wi,t =
π(x)

g(t−1)(x)
=
f(x)I(x)

g(t−1)(x)
i = 1, ...,M.

(b) Update unbiased estimator using all samples up to present iteration:

P̂fail,t =
1

tM

t∑
l=1

M∑
i=1

wi,l

Until Relative standard deviation (FOM): ρ =

√
σ2
P̂fail

P̂fail
≤ 0.1
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Figure 3.1: Incremental hyperspherical presampling (for finding initial samples to enable

local exploration)

In order to develop a good initialization, as demonstrated in Figure 3.1, we implement

a hyperspherical presampling procedure. This procedure starts with circuit nominal dis-

tribution, which indicates a unit hypersphere in parametric space. The radius of this unit

hypersphere denotes the variance of circuit parameters. To cover multiple failure regions, we

gradually increase the radius of hypersphere until M failure samples are captured. Our pre-

sampling method is a dimension reduction process by restricting the samples on a union of

hyperspherical surfaces. This method can accelerate the exploration in the high dimensional

space while maintaining sample diversity.

In Algorithm 1, the number of initial failure samples, M, can be arbitrarily user specified.

We note that there exists a trade-off between estimation accuracy and algorithm complexity:

the larger M is, the higher estimation accuracy we can achieve while sacrificing simulation

runtime. In our experiments, we collect 100 samples on each hypersphere until 10% or more

samples fail.
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3.2.2 Multi-Cone Clustering

After we collect a set of failure samples located on several discrete hyperspherical surfaces

with different radius, we need to cluster these samples with the boundary of multiple disjoint

failure regions. Conventional clustering algorithms apply techniques such as graph-based

methods, density-based methods and boundary-based methods. They group sample points

into optimal clusters by evaluating the Euclidean distance between sample pairs, as defined

in (8).

EuclideanDistance(X(1), X(2)) = ‖X(1) −X(2)‖ (3.1)

However, clustering samples that are randomly distributed in high dimensional open

space is challenging. As the dimension of parametric space increases, the ratio of Euclidean

distance between nearest and farthest neighbors is closer to 1. In such cases, the nearest

neighbor problem becomes ill-defined and qualitative clustering methods are unapproachable.

Figure 3.2: Partition the space into non-overlapping cones along radial directions.

Alternatively, at each iteration, we cluster the sample points based on their directions

rather than Euclidean distance. We partition the high-dimensional space into a union of

disjoint cones, while maintaining whole space coverage. For each cone-shaped subspace, we
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build a nonlinear mapping from sample space to feature space. As illustrated in Figure

3.2, all distinct sample points in each cone are projected to the unit hypersphere surface in

the radial direction. We note that the location of images projected on the unit hypersphere

describes the direction of sample points. The distance metric of each sample pair is evaluated

by the cosine distance of direction vectors, as defined in (9).

CosineDistance(X(1), X(2)) = 1− X(1) ·X(2)

‖X(1)‖‖X(2)‖
(3.2)

As shown in Algorithm 4, a k-means based algorithm is implemented to cluster the failure

samples {Xi}Mi=1 according to their direction. The algorithm proceeds as follows. We first

generate k unit length vectors {Vj}kj=1 as initial direction vectors arbitrarily, where k is a user

specified parameter. Each sample Xi is then assigned to the closest cluster Cλi according to

the cosine distance. Next, the direction vector of each cluster is updated to the average of

associated sample vectors. This assignment and update procedure is repeated until cluster

membership stabilizes.

Although k-means algorithm has advantages of its simplicity to implement and efficiency,

it searches for clusters in a greedy fashion, which makes it sensitive to bad initialization and

outliers. In our experiment, we start from multiple set of initial direction vectors, and

minimize sum of cosine distance as error function. Thus, our clustering result is more robust

and more prone to converge to global optimum rather than local optimum.

We also note that the number of clusters, k, can be tuned to improve the effectiveness

of our k-means algorithm. Larger k always improves the cluster cohesiveness by decreasing

squared error, but this comes at the expense of higher computational cost. We explore this

trade-off by utilizing different k values. In practice, k is fixed as
√
M , where M is the number

of failure samples to be clustered.
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Algorithm 4: Multi-cone Clustering Algorithm

Input:

Failure sample set: {Xi}Mi=1

Initial cluster number: k

Output:

Cluster label for samples: {λi}Mi=1

Initialization:

Randomly initialize k unit length direction vectors

{Vj}kj=1 and corresponding empty clusters {Cj}kj=1.

Repeat

1. For each sample Xi, calculate cosine distance with all the direction vectors {Vj}kj=1:

CosineDistance(Xi, Vj) = 1− Xi·Vj
‖Xi‖‖Vj‖ .

Update λi = argmin
j

CosineDistance(Xi, Vj) and assign Xi to cluster Cλi .

2. For each cluster Cj, update its direction vector:

Vj = 1
|Cj |
∑

X∈Cj
X.

where |Cj| denotes the number of samples in cluster Cj.

Until

Sample labels {λi}Mi=1 remain unchanged.
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3.3 ACS Estimator Analysis

3.3.1 Unbiasedness of ACS Estimator

In this section, we prove that our ACS estimator P̂fail is unbiased between iterations. The

unbiasedness of estimator is evaluated by its expected value. It guarantees the estimation

built from random measure {X(t)
i , wi,t}Mi=1 is consistent, and it converges to failure probability

Pfail.

E[P̂fail] = E[
1

tM

t∑
l=1

M∑
i=1

wi,l] (3.3)

=
1

tM

t∑
l=1

M∑
i=1

E[
f(x)I(x)

g(l−1)(x)
] (3.4)

=
1

tM

t∑
l=1

M∑
i=1

∫
f(x)I(x)

g(l−1)(x)
g(l−1)(x)dx (3.5)

=
1

tM

t∑
l=1

M∑
i=1

∫
f(x)I(x)dx = Pfail (3.6)

3.3.2 Adaptation of ACS Estimator

The ACS methodology is based on an iterative process which proceeds parallelly in multiple

disjoint clusters. With the adaptation of ACS estimator, our sampling distribution g(t)(x)

gradually evolves to accurately approximate the target probability density π(x). As demon-

strated in Algorithm 1, this procedure consists of three main stages: generating samples

from sampling distribution (sampling), calculation of the incremental importance weight for

each of the samples (weighting) and updating the parameters to define the new sampling

distribution for next iteration (adapting). Figure 3.3 shows the flow diagram of the stages

in ACS.

The adaptive mechanism of ACS is driven by the uncertainty in the partial IS estimators,

which can be quantified by their variance. To be specific, each sample forms a sample

proposal q
(t)
i (x) that can describe local features of the target distribution π(x). In order to

obtain a discrete probability distribution that approximates target distribution, we introduce
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Figure 3.3: Flow diagram that shows the adaptation of ACS estimator. The target distribu-

tion are shown by solid lines, while the sampling distributions are plotted with dashed lines.

The initial sampling distribution gradually tilts toward target distribution by reweighting

sample proposals.

incremental importance weight wi,t = π(x)

g(t−1)(x)
, which quantifies the discrepancy between

target distribution π(x) and current sampling distribution g(t−1)(x). Then we average out

all the sample proposals q
(t)
i (x) based on their wi,t and generate new sampling distribution

g(t)(x) for next iteration. This concept is very similar to the methodology in Kernel Density

Estimation (KDE) method, where each q
(t)
i (x) represents a kernel. As iteration continues,

more observations will be added to target distribution π(x) to make it closer to real failure

region distribution. And our sampling distribution approximates the target distribution

π(x) through a random walk, as shown in Figure 3.3. With this ACS adaptation scheme,

our sampling distribution can search to achieve full failure region coverage, and focus on the

most important failure boundaries.

38



3.3.3 Comparison with other IS estimators

In comparison with conventional static IS with deterministic mixture, our ACS algorithm

has two primary advantages. First of all, our ACS estimator can spread out throughout

the parametric space while maintaining sample diversity. To be specific, a major challenge

for other AIS methodologies in statistics community is the diversity of samples is prone to

degenerate as iteration proceeds. These approaches utilize a resampling scheme to sample

with replication from a series of sample proposals. Resampling method tilts to approximate

failure event distribution. However, this random walk is generated globally in a greedy

fashion, which may focus on the major failure regions and neglect the minor ones. And it also

yields higher computational complexity. Our ACS estimator, on the contrary, is completely

parallelized in different directions, and the evaluation of failure probability is also performed

in parallel. It accelerates the convergence of our estimation and all the failure regions on

different directions are separately protected between iterations.

Moreover, ACS estimator outperforms other IS based estimator in terms of Effective

Sample Size (ESS). ESS is defined as:

ESS =
1∑M

i=1(w̄i,t)
2

(3.7)

where w̄i,t is the normalized incremental importance weight for each sample in all iterations.

It reflects the number of samples that contribute to corresponding estimator. Our ACS

estimator bias the sampling distribution to the samples with larger w̄i,t. In the next iteration,

more samples with larger weight will be generated. Thus w̄i,t is naturally balanced and it is

more likely to converge to optimal w∗ = 1
M

, which maximizes ESS to M . In this case, each

sample uniformly contributes to the estimator and the estimator is stabilized.

3.4 Experiment Result

In this section, we first evaluate our proposed ACS method on a typical SRAM bit cell with

18 variables. More realistically, we verify ACS on high-dimensional SRAM column with

576 variables. We also implement different methods, including MC, HSCS [WBH16] and
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Table 3.1: Accuracy and efficiency comparison on 18-dimensional SRAM bit cell

MC HSCS AIS Proposed

Failure prob.(error) 1.24e-5(0%) 1.18e-5(4.6%) 1.32e-5(6.1%) 1.22e-5(1.5%)

Presampling # sim. 0 7000 3000 1100

Importance Sampling # sim. 1e7 8688 5111 1736

Total # sim. (speedup) 1e7(1X) 15688(637X) 8111(1233X) 2836(3526X)

Figure 3.4: Evolution comparison of failure prob. and FOM on SRAM bit cell
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AIS [SLYH18], and compare from both accuracy and efficiency perspective. The experiment

environment is HSPICE with SMIC 40nm model.

3.4.1 Experiments on 6T SRAM Bit Cell

WL

BL
BLB

VDD

GND

MN1

MN3

MN2

MP5MP6

MN4

Figure 3.5: The schematic of typical 6T SRAM cell

Figure 3.5 shows the schematic of a typical 6-transistors SRAM bit cell. Four transistors

MN1, MP5, MN2 and MP6 form two cross-coupled inventers and utilize two steady states

‘0’ and ‘1’ to store data in the memory cell. The other two access transistors MN3 and MN4

work as switches for read and write operation. In this experiment, we consider various failure

mechanisms, including reading failure, writing failure and data retention failure. We will

compare different methods (MC, HSCS, AIS, proposed) in terms of accuracy and efficiency.

3.4.1.1 Accuracy Comparison

To verify the accuracy of proposed ACS algorithm, Figure of Merit (FOM), ρ, is applied to

represent the accuracy convergence and confidence of estimation. The definition of FOM is:

ρ =

√
σ2
P̂fail

P̂fail
(3.8)

where P̂fail indicates failure probability and σP̂fail
indicates the standard deviation of P̂fail.

We define one estimation has (1 − ε)100% accuracy with (1 − δ)100% confidence when
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ρ < ε
√
log(1/δ). In our experiment, we draw a dashed line when ρ reaches 0.1 to indicate

the 90% accuracy with 90% confidence, which is an extensively used ρ value in the literature

[WBH16, SLYH18].

We compare the convergence of failure probability estimation and FOM calculation in

Figure 3.4. We observe that the estimation of MC, HSCS, AIS and proposed ACS all converge

when sufficient simulations are allowed. As illustrated in Table 3.1, the ground truth MC

estimation is 1.24e-5 (4.37σ). Among these methods, the proposed ACS algorithm is most

accurate with only 1.5% relative error, while the results of HSCS and AIS have 4.6% and

6.1% relative error, respectively.

3.4.1.2 Efficiency Comparison

The efficiency of MC, HSCS, AIS and ACS is shown in Figure 3.4. We notice that ACS has

the fastest convergence among these algorithms. It is attributed to our unbiased estimator,

which is updated parallelly in disjoint clusters. It is far more efficient than static sampling

distribution in HSCS and global resampling scheme in AIS. To be specific, as shown in Table

3.1, our ACS method converge to 90% confidence with only 1736 IS simulations, while HSCS

and AIS need 8688 and 5111 IS simulations to obtain the same FOM value. In addition, the

proposed ACS algorithm requires 1100 presampling simulations. In comparison, HSCS and

AIS need 7000 and 3000 times, respectively. This result demonstrates that proposed method

is less sensitive to initial states. In total, ACS algorithm can achieve 3526X speedup over

MC, 5X over HSCS and 3X over AIS.

3.4.2 Experiments on SRAM Column Circuit

A simplified schematic of SRAM column consisted of 32 bit cells is shown in Figure 3.6.

Compared with a single bit cell in the previous low-dimensional experiment, we consider the

impact of peripheral circuit and generate a more accurate estimation of failure probability.

The configuration in Figure 3.6 demonstrates the worst-case scenario of read operation, in

which accessed bit CELL < 0 > stores “0” and other idle bits store “1”. In this case, the
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leakage current through idle bits (storing complementary value to the accessed bit) increases

read access time and impedes a successful read. In our experiment, we simulate various

SRAM failures in reading, writing and standby mode. There are in total 576 variation

parameters in this test case, which is a high-dimensional problem.

0 1

BL BLB

WL<0>

WL<1>

WL<31>

1 0

1 0

WL

BL BLB

VDD

GND

 

Figure 3.6: The schematic of 576-dimensional SRAM column circuit

3.4.2.1 Comparison of Visualized Failure Regions

In order to investigate the different performance in high-dimensional circuit case, we project

the sample points on two most important dimensions, V th0 of MN1 and V th0 of MN3.

Figure 3.7 shows the visualized multiple failure regions in 2D parametric space for different

methods. Based on MC sampling in Figure 3.7(a), three disjoint failure regions are clearly

displayed. We notice that it contains two major failure regions and a minor one in the lower

right corner. Here green dot denotes the mean value for original distribution on these two

dimensions.

As shown in Figure 3.7(b), HSCS groups failure samples into clusters, and utilizes min-

norm points to generate shifted Gaussian distributions that cover multiple failure regions.

The location of min-norm points are depicted as black triangles in Figure 3.7(b). It is, how-

ever, less effective on high-dimensional circuit, as it is challenging to locate the min-norm

points on the failure boundary. With biased min-norm points, we note that majority of cap-

tured samples are not generated in failure regions. Thus it requires more simulations in both

presampling and IS steps. In Figure 3.7(c), AIS converges to wrong Pfail value because only

two failure regions are notified. The minor failure region in the lower right corner disappears
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during iterations. It is due to the unbalanced weights for each sample. Samples with smaller

weights are more prone to be eliminated in the global resampling procedure. The proposed

ACS algorithm successfully searches for all three failure regions after a few iterations. And

we notice that the whole sample set is focused on the most important failure boundary,

which dominates the failure probability estimation. Therefore, ACS method outperforms

other methods in terms of failure region exploration and convergence speed.
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Figure 3.7: Multiple failure region coverage test (failed samples/ accepted samples/ sample

mean are colored)
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Table 3.2: Accuracy and efficiency comparison on 576-dimensional SRAM column

Monte Carlo HSCS AIS Proposed

Failure prob.(error) 1.60e-5(0%) 9.82e-6(error) 2.23e-6(error) 1.55e-5(3.1%)

Presampling # sim. 0 18000 5000 2000

Importance Sampling # sim. 1e7 28699 11253 2878

Total # sim. (speedup) 1e7(1X) 46699 16253 4878(2050X)

3.4.2.2 Accuracy and Efficiency Comparison

In this section, we compare the evolution of the failure probability and FOM in Figure 3.8.

The ground truth failure probability is estimated by brute-force MC. Among HSCS, AIS and

ACS algorithms, only our ACS method is capable of converging to gold failure probability.

HSCS converges to wrong failure rate with much slower speed because static deterministic

mixture IS estimator cannot work in high-dimensional case. AIS also cannot generate correct

failure rate estimation. For multi-failure-region SRAM column circuit, some less important

failure regions are neglected by AIS global resampling process, which leads to smaller failure

probability.

To be specific, as shown in Table 3.2, the gold failure probability estimated by MC is

1.6e-5 (4.3σ) with 10 million simulations. Only ACS algorithm succeeds in giving accurate

estimation with 3.1% relative error. The number of simulations in presampling and IS steps

are 2000 and 2878, respectively. Therefore, the proposed ACS algorithm can obtain 2050X

speedup w.r.t MC.

3.5 Conclusion

In this chapter, we present an Adaptive Clustering and Sampling method to efficiently es-

timate the rare-event failure probability of SRAM circuits. This method first applies hy-

perspherical presampling to generate a set of initial samples in high dimension. Next, an

iterative clustering and sampling scheme is performed to search for failure regions and update

45



Figure 3.8: Evolution comparison of failure prob. and FOM on SRAM Column

estimation. The experiments demonstrate that proposed algorithm can provide extremely

high accuracy and efficiency. Experiments on SRAM bit cell indicate that ACS achieves

3526X speedup over MC and 3-5X over other state-of-the-art methods. On SRAM column

circuit in high dimension and with multiple failure regions, ACS is 2050X faster than MC

method, while other IS based approaches fail to provide reasonable accuracy.
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CHAPTER 4

Meta-Model based High-Dimensional Yield Analysis

using Low-Rank Tensor Approximation

4.1 Summary

In this chapter, we propose a novel and efficient polynomial-based meta-model with tensor

structure to tackle the challenging high-dimensional yield analysis problem. The specific

contributions include:

• Derivation and formulation our meta-model in tensor spaces. The proposed meta-

model is constructed with canonical decomposition. It represents a multi-way tensor

in high-dimensional space into a finite sum of rank-one tensors. As tensor rank is in-

dependent of circuit dimension, our model successfully bridges the gap between circuit

complexity and model scalability.

• An efficient yet effective greedy solver with sparse constraints. It is a constructive

algorithm to successively minimize along tensor rank, thus heuristically converge to

optimal solution. Moreover, the sparsity induced by circuit dimension is treated by

considering regularized problems.

• An adaptive sampling scheme to reduce circuit simulation. We separate the whole

sampling procedure into a series of incremental sampling iterations. With carefully

designed sample weights, our sampling strategy is able to collect more informative

ones around failure boundaries.
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4.2 Polynomial-based Meta-Modeling

When Pfail is an extremely small value, standard MC becomes inefficient because it requires

millions of simulations to capture one single failure event. In order to reduce computational

cost, we attempt to construct an efficient meta-model using relatively small amount of SPICE

simulations with reasonable budget. This mapping between d-dimensional input variable and

meta-model response can be written as:

X ∈ Rd 7→ M(X) ∈ R (4.1)

Figure 4.1 shows an illustrative global meta-modeling process with 2-dimensional input

variable. In order to obtain an accurate meta-model, we need to choose appropriate model

structure M and sampling strategy. In the yield analysis scenario, samples located near

failure region boundaries, which separate the “0”, “1” values of indicator function I(X), are

of more interest.

SPICE

Simulation

Simulation

Simulation

Figure 4.1: The construction process of meta-model which maps between input variable and

output performance

Our proposed work focuses on the category of polynomial-based meta-model, because of

its flexibility to model various functions and simplicity to implement. For example, Polyno-

mial Chaos Expansions (PCE) [Sud08] has been extensively used in the context of uncertainty

quantification. The key concept of PCE is to expand the model response onto a series of
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orthonormal polynomial basis along each dimension:

Ŷ =MPCE(X) =
d∏
i=1

(
ni∑
k=0

α
(i)
k φ

(i)
k

)
(4.2)

However, PCE suffers from the problem of “curse of dimensionality”. We note that the

number of unknown coefficients in Equation (4.2) is
∏d

i=1(ni + 1), which increases exponen-

tially with input dimension d. Generally, the number of required simulations is 2-3 times the

number of unknowns, which is infeasible for high-dimensional circuit cases. Alternatively, we

exploit the tensor-product structure of the polynomial basis, which can reduce the number

of coefficients by order of magnitude.

4.3 Low-rank Tensor Approximation Formulation

In order to construct a non-intrusive meta-model Y =M(X) described in Section 2.2, our

LRTA method formulates it into a highly-compressed tensor format. We first introduce some

basic definitions of tensor subsets. The high-dimensional tensor space can be represented

as S = S1 ⊗ · · · ⊗ Sd. In order to model circuit performance metric Y in space S, LRTA

considers a sequence of approximations in rank-one tensor subset T1 ⊂ S, which is defined

as:

T1 =

{
v(X) =

(
⊗di=1w

(i)
)

(X) =
d∏
i=1

w(i)(Xi);w
(i) ∈ S i

}
(4.3)

where X is a d-dimensional multivariate circuit variable, and w(i) is a univariate function of

Xi.

We note that tensor space has the property that S = span(T1), such that each element in

S can be expressed as a linear combination of rank-one tensors vl(X), as shown in Equation

(4.4):

S =

{
Y =

∑
l∈In

blvl(X); vl ∈ T1, bl ∈ R

}
(4.4)

where bl denotes the l-th normalization constant for the corresponding rank-one component.

In practice, we truncate this canonical decomposition expression with small R and suffi-
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cient accuracy. Such decomposition is thereby named as Low-Rank Tensor Approximations:

Ŷ R =MR(X) =
R∑
l=1

blvl(X); vl ∈ T1, bl ∈ R (4.5)

Generally, the optimal tensor rank R is not known as priori. An appropriate parameter

tuning procedure will be later discussed in Section 4.3.

Next, we expand each rank-one tensor vl(X) to a polynomial representation

vl(X) =
d∏
i=1

w
(i)
l (Xi) =

d∏
i=1

(
ni∑
k=0

z
(i)
k,lφ

(i)
k (Xi)

)
(4.6)

where φ(i) is a set of orthonormal polynomial basis function for the i-th circuit variable,

{z(i)k,l} is the corresponding set of coefficient to be solved, and ni is the maximum degree of

polynomial expansion. Intuitively, properly chosen polynomial basis families will accelerate

the convergence of our LRTA method. In this paper, we utilize Hermite polynomial basis

because each circuit variable is modeled as Gaussian variable [XK02]. Another excellent

insight is that the number of unknown coefficients of each rank-one tensor vl(X) is
∑d

i=1(ni+

1), which grows linearly with dimension d. This property makes LRTA particularly promising

for dealing with high-dimensional circuit problems.

By substituting Equation (4.6) into Equation (4.5), our proposed LRTA meta-model is

formulated as:

Ŷ =MR(X) =
R∑
l=1

bl

(
d∏
i=1

(
ni∑
k=0

z
(i)
k,lφ

(i)
k (Xi)

))
(4.7)

Compared with the conventional PCE format described in Section 2.2, our LRTA con-

struction partitions a single large-size minimization problem with a sequence of smaller ones.

However, solving for {bl} and {z(i)k,l} is non-trivial. In the next section, we propose a novel

adaptive solver with a greedy scheme and sparsity constraints.

The overall algorithm of LRTA yield analysis method is summarized in Algorithm 1.
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Algorithm 5: Framework of LRTA Yield Analysis Method

Input: Maximum tensor rank R,

Maximum polynomial degree ni

Output: Failure probability estimation P̂fail

1. Construct LRTA meta-model

Ŷ =MR(X) =
R∑
l=1

bl

(
d∏
i=1

(
ni∑
k=0

z
(i)
k,lφ

(i)
k (Xi)

))

2. Use Proposed Adaptive Solver to compute coefficients {bl} and {z(i)k,l}

3. Use LRTA Meta-model to compute failure probability

P̂fail =
1

N

N∑
i=1

I
(
MR(X) ∈ S

)

4.4 Proposed Adaptive Solver

4.4.1 Implementation with Greedy Algorithm

In our LRTA algorithm, the meta-model responseMR(X) is constructed from heuristically

accumulating R rank-one tensor components. Our greedy algorithm consists of two major

steps. In the correction step, at certain iteration l, rank-one tensor vl attempts to minimize

the mismatch between current meta-model responseMl−1(X) and realistic observations Y .

For each vl, the polynomial coefficients {zl} are determined by an Alternating Minimiza-

tion approach. In the following normalization step, we update the entire set of previous

normalization coefficients {b1, . . . , bl} by solving a minimization problem. Our algorithm

iterates between these steps until pre-defined rank R is reached. Implementation details are

as follows.

Correction step. Let Rl−1(X) denote the approximation residual after the (l − 1)-th

iteration:

Rl−1(X) = Y −Ml−1(X) (4.8)

In the next iteration, a new rank-one tensor vl works as a correction function which
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approximates the residual:

vl = argmin
γ∈T1

‖Rl−1 − γ‖2 (4.9)

Here the solution of Equation (4.9) is calculated by an Alternating Minimization ap-

proach. Along each dimension i ∈ {1, ..., d}, we introduce a series of minimization problems

to solve for z
(j)
l , while coefficients on other dimensions remain unchanged. To be specific,

each polynomial coefficient z
(j)
l is determined as:

z
(j)
l = argmin

ζ∈Rnj+1

∥∥∥∥∥∥Rl−1 −

(∏
i 6=j

w
(i)
l

) nj∑
k=0

ζ
(j)
k φ

(j)
k

∥∥∥∥∥∥
2

(4.10)

Equation (4.10) has a classical form of minimization problem with (nj + 1) unknowns,

which can be solved directly using Least Square method.

Normalization step. Once a new rank-one correction vl is constructed at the l-th

iteration, we need to calibrate all the previous normalization constant b = {b1, . . . , bl}. It is

computed by solving a series of minimization problem:

b = argmin
β∈Rl

∥∥∥∥∥Y −
l∑

m=1

βmvm

∥∥∥∥∥
2

(4.11)

As iteration continues, the size of vector b increases along with iteration lable l. We

also notice that bl can represent the significance of tensor component. If particular bl is

negligible, corresponding tensor component vl can be discarded without sacrificing accuracy.

This procedure further decreases tensor rank R and thus reduces model complexity.

4.4.2 Sparse Constraint

In realistic high-dimensional yield analysis application, the contribution of different circuit

variables {Xi}di=1 w.r.t. performance metric Y varies drastically. The majority of circuit

variables only have weak influence on performance. Thus polynomial coefficient set {zl}

contains large amount of zero elements or elements with extremely small magnitude. As a

consequence, Equation (4.10) can be improved by adding a `1-norm constraint ‖ζ‖1 ≤ δ. As

`1-norm is strictly convex, we can equivalently rewrite it as a generalized LASSO [Tib96]
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problem:

z
(j)
l = argmin

ζ∈Rnj+1

∥∥∥∥∥∥Rl−1 −

(∏
i 6=j

w
(i)
l

) nj∑
k=0

ζ
(j)
k φ

(j)
k

∥∥∥∥∥∥
2

+ λ‖ζ‖1 (4.12)

which is a convex optimization problem. Here λ is a suitable regularization factor. In our

implementation, problem (4.12) is solved by least angle regression algorithm [EHJ+04], which

is a commonly used stagewise procedure for accelerating LASSO problems.

4.4.3 Generic Cross Validation for Parameter Tuning

In our LRTA meta-model formulated with polynomial basis, the tensor rank R and polyno-

mial degree ni are pre-defined. Intuitively, the selection of parameter pair {R, ni} exhibits

a trade-off between approximation accuracy and model complexity. In this section, we pro-

pose a 3-fold Cross Validation (CV) scheme to explore parametric space and select optimal

parameter pair. The overall procedure is demonstrated as follows:

• Partition whole sample set Q into three test sets with equivalent samples Ui, i =

{1, 2, 3}. Then training sets consist of corresponding remaining samples Vi = QnUi,

i = {1, 2, 3}.

• Execute our adaptive solver on each training set Vi with tuned parameters ranging

from 1 ≤ R ≤ Rmax and 1 ≤ ni ≤ nmax. For each parameter pair {R, ni}, we compute

their mean square errors ε̄R,ni
comparing with the evaluations from the test sets Ui.

Optimal parameter pair {R, ni}op is thereby selected with minimum ε̄R,ni
.

• Execute adaptive solver on the whole sample set Q with optimal {R, ni}op.

4.4.4 Improvement via Adaptive Sampling

Classical deterministic sampling approaches generate random samples over the entire para-

metric space. However, it is more desirable to capture more informative samples which

induce larger prediction error or locate near failure boundaries. The performance of pro-

posed solver can be improved if we utilize “important” samples to set up the rank-R tensor.
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Here we partition the whole sampling procedure into T incremental sampling processes. It

starts from an initial sample set Q, and a new sample set Qc is sequentially added in each

iteration by our adaptive sampling framework, which is summarized in Algorithm 2.

Algorithm 6: Adaptive Sampling Algorithm

Initialization: Generate M -element initial sample set Q from the multivariate

PDF of process variations p(X)

for t = 1, 2, ...,T do

1. Metamodeling:

Construct t-th iteration LRTA meta-model M(t)(X)

with current sample set Q(t)

2. Weighting:

(a) For each sample X
(t)
i in Q(t), generate a discrete

Gaussian sampling distribution N
(t)
i

(b) Assign weight function w
(t)
i to each distribution N

(t)
i

w
(t)
i =

∣∣Y −M(t)(Xi)
∣∣ · p(Xi)

3. Sampling:

(a) Average out N
(t)
i based on w

(t)
i to construct new

sampling distribution G(t) = 1/
(∑

w
(t)
i

)
·
∑
w

(t)
i N

(t)
i

(b) Generate Mc new samples Q(t)
c from distribution G(t)

(c) Update sample set Q(t+1) = Q(t) ∪Q(t)
c

end
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Figure 4.2: Flow diagram of adaptive sampling scheme. The LRTA model is calibrated with

multiple iterations of sampling distribution adjustments. Our sampling strategy adaptively

reweights past samples and tends to focus on distributions with higher weight.

Figure 4.2 is an illustrative flow diagram that demonstrates our adaptive sampling scheme.

The concept is very similar to the methodology in Kernel Density Estimation (KDE), where

each N
(t)
i represents a kernel. As iteration proceeds, new samples are prone to locate around

kernels with larger weight w. Here w is a fused metric, whose first term quantifies meta-model

accuracy and second term evaluates sample importance. In practice, after a few iterations,

our sampling distribution will tilt toward the failure region boundaries, thus improve the

prediction quality.

4.5 Experimental Results

The proposed LRTA method is first evaluated on a typical SRAM bit cell with 18 variables.

More realistically, we validate our LRTA on a high-dimensional SRAM column with periph-
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eral circuits, which has in total 597 variables. We also implemented MC as ground truth,

and obtained codes for Hyperspherical Clustering and Sampling (HSCS) [WBH16] and Adap-

tive Importance Sampling (AIS) [SLYH18] for comparison. The experiment environment is

HSPICE with SMIC 40nm model.

4.5.1 Experiments on 6T SRAM Bit Cell

Figure 4.3 shows the schematic of typical 6T SRAM bit cell. Four transistors form two

cross-coupled inverters and use two steady states to store data in the cell. The other two

transistors control accessing to the storage cell during read and write operations. In our

experiments, we simulate various types of SRAM failures in reading, writing and standby

mode. We evaluate different methods (MC, HSCS, AIS, proposed) to compare accuracy and

efficiency.

WL

BL
BLB

VDD

GND

MN1

MN3

MN2

MP5MP6

MN4

Figure 4.3: The schematic of typical 6T SRAM cell

4.5.1.1 Accuracy Comparison

In order to verify the accuracy of proposed LRTA method, we introduce Figure of Merit ρ

to characterize the accuracy convergence and confidence of estimation, which is defined as:

ρ =

√
σ2
P̂fail

P̂fail
(4.13)
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where P̂fail is the estimation of Pfail and σP̂fail
denotes its standard deviation. With this

definition, we can declare one estimation has (1− ε)× 100% accuracy with (1− δ)× 100%

confidence when ρ < ε
√
log(1/δ). In our experiments, the dashed line indicates ρ reaches

0.1, which represents estimation reaches a steady state with 90% confidence. The estimated

failure probability is thereby defined as the corresponding 90% confidence stable value.
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Figure 4.4: Evolution comparison of failure prob. and FOM on 18-dimensional SRAM bit

cell

Table 4.1: Accuracy and efficiency comparison on 18-dimensional SRAM bit cell

MC HSCS AIS Proposed

Failure prob. 1.24e-5 1.18e-5 1.32e-5 1.27e-5

Relative error golden 4.8% 6.4% 2.4%

# Sim. runs 6.3e6 9019 5962 1000

Speedup 1X 698X 1056X 6300X

Figure 4.4(a) demonstrates the evolution of failure probability estimation. We first notice
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that the failure rate estimations from HSCS, AIS and proposed LRTA all converge to ground-

truth MC value when sufficient simulations are allowed. As shown in Table 4.1, ground-truth

MC estimation is 1.24e-5 (4.37σ). Our proposed LRTA method is the most accurate one

with only 2.4% relative error, and HSCS and AIS approaches have 4.8% and 6.4% relative

error, respectively.

4.5.1.2 Efficiency Comparison

Then we compare different methods in terms of efficiency. Evolution of Pfail convergence

and FOM evaluation are plotted in Figure 4.4, the following observations can be made:

• First, sampling-based methods, such as HSCS and AIS, are highly sensitive to the

sampling distribution. We can observe that the Pfail estimation curve changes abruptly

as discrete failure sample is added to the sample set. In contrast, our LRTA method

performs a global approximation, which can provide very consistent estimation as

sample set grows.

• Second, the FOM curve of our LRTA method is monotonically decreasing, while HSCS

and AIS fluctuate before asymptotically reaching 90% confidence. It is attributed to

better stability of our estimation. This feature accelerates our estimation procedure

and exhibits better convergence property.

• From Table 4.1, our LRTA method is capable of achieving 90% confidence estimation

by using 1000 samples to construct an effective meta-model, while MC requires 6.3

million to generate golden estimation. In comparison, HSCS and AIS need 9019 and

5962 simulations, respectively. As a conclusion, LRTA method can achieve 6300X

speedup over MC, 9.0X over HSCS and 5.9X over AIS.
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4.5.2 Experiments on SRAM Column Circuit
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Figure 4.5: The schematic of 597-dimensional SRAM column with peripheral circuits

A simplified schematic of SRAM column circuit consisting of 32 bit cells and a sense amplifier

is shown in Figure 4.5. There are 597 circuit variables in this case, which is a high-dimensional

problem. Compared with the single bit cell low-dimensional setup in the previous section,

we consider a more realistic scenario with the impact of peripheral circuits, thus generate

a more accurate failure rate estimation. As an illustrative example, the worst case of read

operation is configured in Figure 4.5, in which accessing bit CELL¡0¿ stores “0” and other

idle bits store “1” without loss of generality. In this case, the leakage current through all

the idle bits tends to increase read access time and impede successful read. Various failure

mechanisms are considered in our experiments, including reading failure, writing failure and

data retention failure.
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4.5.2.1 Accuracy and Efficiency Comparison

In order to validate the accuracy and efficiency of LRTA method, we plot the evolution

of Pfail and FOM in Figure 4.6. The ground truth MC requires 8.6 million simulations

to generate confident estimation, which is 1.60e-5 (4.3σ). Among other algorithms, only

our LRTA method is capable of converging to golden failure probability with 4.4% relative

error. HSCS method converges to wrong failure rate with much slower speed because static

deterministic Gaussian mixture cannot effectively cover failure regions in high-dimensional

parametric space. The resampling procedure applied in AIS tends to neglect less important

failure regions in high dimension, which leads to smaller Pfail. Contrasting to HSCS and

AIS, LRTA method has much faster convergence speed by iteratively collecting important

samples to calibrate our global meta-model. We observe that our LRTA method can achieve

very promising estimation with 4000 simulations, which exhibits 2150X speedup w.r.t. MC.
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Figure 4.6: Evolution comparison of failure prob. and FOM on 597-dimensional SRAM

column with peripheral circuits
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4.5.2.2 Computational Complexity vs. Dimensionality

In this section, we investigate the relationship between computational cost and circuit di-

mension for different methods. Our experiment setting changes circuit scale by varying the

number of bit cells in the SRAM column. It starts from one bit cell and a sense amplifier

with 39 variables, then progressively increases the number of variables by sequentially adding

bit cell to the column, up to 32 bit cells with 597 variables.
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Figure 4.7: Comparison of required SPICE simulations versus circuit dimension for different

methods. HSCS and AIS fail to converge to golden MC estimation as circuits scale up.

Figure 4.7 shows the comparison of simulation runs versus circuit dimension. It reveals

that sampling based methods such as HSCS and AIS are less efficient and fail to converge

because of “curse of dimensionality”. On the contrary, the simulation cost of LRTA grows

roughly linearly with the dimension, which is consistent with the number of polynomial basis

in our compressed tensor expansion. We notice that proposed LRTA method becomes more

competitive as dimension increases, and appears to be the only effective one when circuit

dimension is larger than 300.

61



4.6 Conclusions

In this paper, we propose a meta-model based method using low-rank tensor approximation

to efficiently estimate high-dimensional circuit failure probability. We first apply canonical

tensor decomposition to formulate a LRTA meta-model. Next, we implement a robust solver

using an efficient greedy algorithm with sparse constraints. To further reduce circuit simu-

lations, an adaptive sampling framework is designed to select more informative samples and

maintain reasonable estimation accuracy. The experimental results show that the proposed

LRTA method can provide extremely high accuracy and efficiency. For SRAM bit cell with

18 variables, LRTA achieves 6300X speedup over MC and 6-9X over other state-of-the-art

methods. For 597-dimensional SRAM column with peripheral circuits, LRTA is 2150X faster

than MC method, while other approaches fail to converge to correct failure probability. Ex-

periments also demonstrate that the simulation cost of proposed LRTA method increases

linearly with circuit dimension, which is appealing for high-dimensional circuit problems.
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CHAPTER 5

Meta-Model based Importance Sampling Algorithm

5.1 Motivation

Our motivation to design MIS algorithm is to preserve the strong points of other adaptive

importance sampling algorithms (such as AIS[SLYH18] or PMC [CGMR04]), while exploiting

the freedom given by meta-model to develop optimal sampling strategy. Our meta-model

is initialized with Latin Hypercube Sampling (LHS) method, and updated iteratively. For

each intermediate meta-model, we utilize it to approximate optimal sampling distribution,

and enrich the sample set by performing Markov Chain Monte Carlo (MCMC) sampling.

We construct intermediate IS estimators for each meta-model and use Deterministic Mixture

(DM) approach to come up with the final global estimator. Compared with static IS, this

DM strategy presents advantages in terms of stability and variance. Besides, no additional

IS simulations are needed to estimate failure probability.

5.2 Gaussian Process assisted Density Approximation

In order to approximate the optimal IS sampling density gopt(x) described in Section II,

our MIS method utilizes a series of iterative GP meta-models. We choose GP model due

to its flexibility for various types of circuit responses and simplicity to implement. Another

good property is that it has a built-in error estimator to evaluate the variance of GP predic-

tions, which characterizes the accuracy of model fitting. In literature, GP models have been

extensively applied as emulators or surrogates for black-box functions [SWMW89].

A typical GP meta-model is defined by a mean function µ(X) and a covariance matrix
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K(X):

M(X) ∼ GP (µ(X),K(X)) (5.1)

Here X = {x1, . . . ,xn} stands for a training set of size n, and K is a kernel matrix with

expression of:

K =


k(x1,x1) · · · k(x1,xn)

...
. . .

...

k(xn,x1) · · · k(xn,xn)

 (5.2)

For a new sample point x∗, GP outputs a prediction [y, y∗] in the form of a jointly normal

distribution:

y
y∗

 ∼ N
µ(X)

µ(x∗)

,
K(X,X) + σ2

εI K(X,x∗)

K(x∗,X) K(x∗,x∗)

 (5.3)

The prediction can be further formulated as a Gaussian random variable:

P (y∗|X,y,x∗) = N
(
µ(x∗), σ

2(x∗)
)

(5.4)

The predictive mean and variance are as follows:

µ(x∗) = µ(x∗) +K(x∗,X)(K(X,X) + σ2
εI)−1(y − µ(X)) (5.5)

σ2(x∗) = K(x∗,x∗)−K(x∗,X)(K(X,X) + σ2
εI)−1K(X,x∗) (5.6)

With aforementioned GP meta-model, our MIS algorithm is able to approximate optimal

IS sampling density gopt(x). First, we apply GP to construct a probabilistic classification

function π(x), which assembles the indicator function I(x). We note that the value of ideal

indicator function is either 0 or 1. Our π(x), on the other hand, is an probabilistic function

in continuous form. The mathematical expression of π(x) is written as:

π(x) = Φ

(
µ(x)− Tspec

σ(x)

)
(5.7)

where Φ(·) is the cumulative distribution function of standard normal distribution and Tspec

represents the threshold of design specification.
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Next, we introduce quasi-optimal sampling distribution g(x) defined as:

g(x) =
π(x)f(x)∫
π(x)f(x)dx

(5.8)

We notice that Equation (5.8) has the exact same format as gopt(x), but in a probabilistic

perspective. For a particular GP meta-model, sampling from corresponding quasi-optimal

distribution has the highest possibility to obtain “important” samples, which locate on failure

region boundaries.

5.3 Adaptive Sampling Strategy

According to Equation (5.8), the effectiveness of sampling distribution is strongly dependent

on the accuracy of our GP meta-model. However, it is challenging to directly train such

GP that can characterize indicator function I(x). And the computational cost explodes

as circuit complexity increases. To address this issue, we propose to improve our model

accuracy through a stepwise adaptive sampling strategy.

Our sampling scheme starts with LHS method. It is extensively applied as a space-filling

sampling method, which samples from evenly partitioned multidimensional parametric space.

Next, our MIS adaptive sampling strategy is depicted in Figure 5.1. It consists of two

major steps. In the sample propagation step, at certain iteration T , we first construct

quasi-optimal intermediate sampling distribution gT (x) based on our GP model. Then we

implement MCMC sampling to choose the next most informative sample point xT . The

Metropolis-Hasting sampler we applied here is detailed in Algorithm 1. Note that gener-

ation and acceptance of samples are independently performed, which enables us to obtain

vectorized result. In the following model calibration step, we enrich our training sample set

with xT , and calibrate our meta-model, as shown in Figure 5.1(b). Our adaptive sampling

procedure iterates between these two steps until the failure probability estimation converge

to a stable value with specific confidence interval. In this way, our GP meta-model is refined

immediately after sample propagation, providing highest flexibility to explore rare failure

regions with limited budget.
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Figure 5.1: The calibration of GP model through adaptive sampling strategy. The dark

crosses are training sample set, and red triangle represents the next sample from MCMC

simulation. The dark gray lines show the mean value of GP models, and light gray lines

indicate posterior distributions of trained GP model. Dashed lines mark the 95% confidence

interval of GP model, which is proportional to prediction variance.

5.4 MIS Estimator Analysis

The major contribution of our MIS algorithm is that we develop a novel estimator. It is

generated by updating a series of intermediate estimators, which can successively provide

estimation from a cloud of iterative sampling distributions. Compared with sampling from

a single IS distribution, we can eliminate the time-consuming static IS procedure, and can

accurately locate failure region boundaries.

Based on our sampling strategy described in Section III, until certain iteration T , sample

set {xt}Tt=1 has been generated from all the previous sampling distributions {gt(x)}Tt=1. For

66



Algorithm 7: Metropolis-Hastings sampler

Input: Initial sample x(0), proposal normal PDF p(x),

length of Markov chain M , target PDF gT (x)

Output: xT

i = 0

while i ≤M do

generate a new sample x∗ ∼ p(·|x(i))

calculate acceptance rate

α(i+1) = min

(
1;
gT (x∗)p(x(i)|x∗)
gT (x(i))p(x∗|x(i))

)
generate u ∼ U [0, 1]

if u ≤ α(i+1) then

accept new sample x(i+1) = x∗

else

reject new sample x(i+1) = x(i)

end

end

return xT ∼ gT (x)

current sample point xT , we perform Deterministic Mixture (DM) strategy to construct its

intermediate estimator. We start by constructing the mixture density by averaging previous

sampling distributions 1
T

∑T
t=1 gt(xT ). Thereby, its importance weight w(xT ) is defined as

the ratio between original probability density f(xT ) and mixture density:

w(xT ) =
f(xT )

1
T

∑T
t=1 gt(xT )

(5.9)

This importance weight can actually be regarded as the extension of conventional static

IS importance weight defined in Equation (2.5). Thus the intermediate estimator P̂MIS
fail,T for

iteration T is written as:

P̂MIS
fail,T =

1

T

T∑
t=1

w(xt)I(xt) (5.10)
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As iteration continues, this intermediate estimator keeps updating until the termination

of sampling procedure, giving final global estimation on failure probability.

5.4.1 Adaptation of MIS Estimator

The adaptive mechanism of MIS is driven by the uncertainty from the intermediate estima-

tors. To be specific, each sample xt comes from a corresponding distribution gt(x) that can

describe local features of the original distribution f(x). After we perform SPICE simula-

tion on typical sample point and use it to calibrate our meta-model, a random walk will be

generated toward regions of higher probabilities. That is, regions with larger mismatches or

regions with higher importance. As our meta-model is becoming more and more accurate,

our sampling distribution heuristically approaches failure boundaries, where the importance

weight w(xT ) is largest. Thus more observations are added to the sample set, and our final

sampling distribution is increasingly similar to the ideal failure event distribution gopt(x).

Another good property of our MIS estimator is that the adaptation procedure is inde-

pendent of multiple families of sampling distributions. It means that MIS has the potential

to allow multiple meta-models adapting in parallel, in order to explore different regions.

Therefore, our MIS method can tackle circuit cases with complex failure regions, or with

various failure mechanisms.

5.4.2 Unbiasedness and Variance of MIS Estimator

In this section, we first prove that our MIS estimator P̂MIS
fail is unbiased as iteration pro-

ceeds. The unbiasedness can be validated by its expected value, which guarantees that

P̂MIS
fail converges to the ground truth failure probability:
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E
[
P̂MIS
fail

]
= E

[
1

T

T∑
t=1

w(xt)I(xt)

]

=
1

T

T∑
t=1

E

[
f(x)I(x)

1
T

∑T
t=1 gt(x)

]

=
1

T

T∑
t=1

∫
f(x)I(x)

1
T

∑T
j=1 gj(x)

gt(x)dx = Pfail

(5.11)

Next, we demonstrate that proposed MIS estimator is strictly superior or equal to static

IS estimator in terms of lower variance. The worst-case scenario of MIS degenerates into

static IS, which occurs at iteration T = 1. Mathematically, the variance of two estimators

is given by:

V ar(P̂MIS
fail ) =

1

T 2

T∑
i=1

(∫
f 2(x)I2(x)
1
T

∑T
j=1 gj(x)

− P 2
fail

)
(5.12)

V ar(P̂ IS
fail) =

1

T 2

T∑
i=1

(∫
f 2(x)I2(x)

gi(x)
− P 2

fail

)
(5.13)

By subtracting Equation (5.12) and (5.13), we prove that V ar(P̂MIS
fail ) is always smaller

by deriving the following inequality:

1
1
T

∑T
j=1 gj(x)

=
1

T−1
T

1
T−1

∑T−1
i=1 gi(x) + 1

T
gT (x)

≤ (T − 1)/T
1

T−1
∑T−1

i=1 gi(x)
+

1/T

gT (x)

≤ T − 1

T

1

T − 1

T−1∑
i=1

1

gi(x)
+

1

T

1

gT (x)

=
1

T

T∑
i=1

1

gi(x)

(5.14)

With the unbiased estimation and lower variance, our MIS method shall exhibit better

stability and convergence. It is validated by the accuracy and efficiency comparison in the

experiments of Section IV.
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5.5 Experiment Results

In this section, our proposed yield analysis algorithm is first tested on a typical 6T SRAM

bit cell with 36 variables. For analog yield analysis, we then validate our MIS on a two-

stage operational transimpedance amplifier (OTA) with 84 variables. We implement MC as

ground truth for accuracy comparison. To show the efficiency of MIS, we also implement sev-

eral state-of-the-art approaches including Hyperspherical Clustering and Sampling (HSCS)

[WBH16] and Adaptive Importance Sampling (AIS) [SLYH18]. The SPICE model is SMIC

40nm transistor model. All the experiments are performed on Linux server with Intel Xeon

X5675 CPU @3.07 GHz and 94 GB RAM.

5.5.1 Experiments on 6T SRAM bit bell

The schematic of typical 6T SRAM bit cell is shown in Figure 5.2. Four transistors MP1,

MN2, MP3 and MN4 form two cross-coupled inverters and use two steady states (either ‘0’

or ‘1’) to store data in this cell. The other two transistors MN5 and MN6 work as switches

to control access to the storage cell during reading, writing and standby operations. Taking

reading failure as an example, it occurs when the voltage difference between BL and BLB

is too small to be captured by sense amplifier in a certain period. The performance of the

circuit is characterized by the delay of discharging bitline, which should be smaller than

a given threshold for reading success. We implement different methods to compare their

accuracy and efficiency.

5.5.1.1 Accuracy Comparison

To evaluate the accuracy of difference methods, we introduce Figure of Merit (FOM), ρ, to

characterize the convergence and confident interval of our estimation. Its definition is:

ρ =

√
σ2
p̂fail

p̂fail
(5.15)

where p̂fail represents the failure probability and σp̂fail denotes its standard deviation. To

clarify, if an estimator terminates with ρ ≤ ε
√
log(1/δ), we can claim that p̂fail is (1− ε)×
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Figure 5.2: The schematic of typical 6T SRAM bit cell

100% accurate with (1− δ)× 100% confidence. To guarantee the accuracy of estimation, we

set ρ = 0.1 as the convergence criterion to reveal that the estimation reaches 90% accuracy

level with 90% confidence interval. It is depicted as dashed line in Figure 5.3. We observe

that the estimation of HSCS, AIS and proposed MIS all succeed to match the ground truth

value when sufficient simulations are available.

More detailed comparison of those approaches is illustrated in Table 5.1. We note that

the proposed MIS algorithm provides the most accurate estimation with only 3.2% relative

error, while HSCS and AIS have 4.6% and 6.1% relative error, respectively. It is because

MIS iteratively improves the optimal sampling distribution by searching for failure region,

and accurately determine the failure boundaries through Gaussian Process model to avoid

misclassified samples.

Table 5.1: Accuracy and efficiency comparison on 36 dimensional SRAM bit cell

MC HSCS AIS MIS

Failure prob. 1.24e-5 1.18e-5 1.32e-5 1.20e-5

Relative error golden 4.6% 6.1% 3.2%

# Sim. runs 6.3e6 9019 5962 1413

Speedup 1X 698X 1056X 4458X
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Figure 5.3: Evolution comparison of failure prob. and FOM on SRAM bit cell

5.5.1.2 Efficiency Comparison

Figure 5.3 shows the efficiency of MC, HSCS, AIS and MIS. The proposed MIS algorithm

can provide fastest convergence. It is attributed to the adaptive sampling strategy applied

in MIS, which is far more efficient than static sampling method in HSCS and resampling

scheme in AIS. As detailed in Table 5.1, HSCS and AIS require 9019 and 5962 samples

converge to golden reference, respectively. With 4458X, 6.4X and 4.2X speedup over MC,

HSCS and AIS method, MIS obtains a higher accuracy with only 1413 simulations.

5.5.2 Experiments on Two-Stage Amplifier

In this section, we verify that the proposed method is capable of handling problems on an

analog circuit with multiple performance metrics. Figure 5.4 shows the circuit schematic of

two-stage OTA using master-slave structure for low supply voltage application. The slave

stage consists of the tail current transistor (MP5 ), the differential pair (MP1 and MP2 ) and

the current-mirror load (MN1 and MN2 ). The master stage replicates the tail current source

and the transconductance transistor of the slave stage circuit (i.e. MP3, MP4, MP6 and MN3
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are the copies of MP1, MP2, MP5 and MN1, respectively). MP5 and MP6 operate in linear

region to save voltage margin. A robust OTA design should satisfy multiple specification

requirements. In our experiments setting, we consider various performance specifications,

including voltage gain margin, gain bandwidth, phase margin and 3dB bandwidth. There

are in total 84 variation parameters in this case.
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Figure 5.4: The schematic of two-stage operational transimpedance amplifier

5.5.2.1 Comparison of Visualized Failure Regions

In order to compare the capability of locating multiple failure regions, we project the sample

points onto two most important dimensions, which are the threshold voltage of MN6 and

MP1. Figure 5.5 shows the visualized sample points in 2D parametric space for different

methods. Here gray dots denote passed samples and multi-colored triangles are samples with

different failure schemes. Based on ground truth MC sampling result shown in Figure 5.5(a),

we notice that the failure regions are overlapped and have complex non-convex boundaries.

In Figure 5.5(b), HSCS method performs K-means algorithm to group samples into clus-

ters, and generates a set of min-norm points as centroids for each cluster. Then it performs

multiple spherical sampling to shift sample mean to these min-norm points. Although it is

able to cover the majority of failure regions, the spherical sampling strategy lacks flexibility
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Figure 5.5: Multiple failure regions coverage comparison. (samples with different failure

schemes are colored triangles, dark crosses in HSCS denote the shifted mean)
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to characterize the boundaries. Also, we observe that large proportion of samples fall in the

passed regions, which makes it inefficient.

Figure 5.5(c) displays the failure samples collected with AIS method. We notice that AIS

cannot detect all the failure regions, which gives relatively smaller failure probability. This

property is caused by weight degeneracy during resampling procedure. As iteration proceeds,

samples with smaller weights are more likely to be neglected, which leads to missing failure

regions on the right hand side.

As shown in Figure 5.5(d), our MIS method considers each performance metric sepa-

rately. We first build four initial GP meta-models between each performance metric and

input variation vector in a parallel fashion. Next, for each meta-model, we approximate its

failure event indicator function {I(0)i (x)}4i=1 and generate intermediate sampling distribution

{g(0)i (x)}4i=1. At each iteration t, four samples are collected from each intermediate distribu-

tion, formulating a mixture sampling distribution G(t)(x) by averaging out {g(t)i (x)}4i=1. This

concept is actually very similar to the methodology in Kernel Density Estimation (KDE)

[Sil18]. As displayed in Figure 5.5(d), the whole sample set of MIS is generated by incremen-

tally sampling from all the previous intermediate sampling distribution g
(t)
i (x). We notice

that the MIS sample set is able to capture all the boundaries for different failure schemes,

preventing biased estimation on Pfail as seen in AIS.

Another observation from Figure 5.5 is that, for this amplifier circuit with multiple failure

schemes, our MIS is prone to sample from the distinct boundaries for different performance

metrics. That is, our formulated mixture sampling distribution has slight density deviation

compared with the optimal sampling distribution. The optimal distribution, which is ideal

failure event density, is shown as colored triangles in MC. However, instead of training

complex global meta-model, our experiment result verifies that training separate meta-model

can speed up with order of magnitude. We notice that among all these methods, MIS requires

the smallest number of sample points to guarantee all failure-region coverage. Proposed GP

meta-model is extremely simple to train with minimum sacrifice in sampling efficiency.
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5.5.2.2 Accuracy and Efficiency Comparison

We evaluate proposed MIS and other methods (MC, HSCS, AIS) and compare their efficien-

cies and accuracies on two-stage amplifier to validate the improvement of proposed method.

Table 5.2 shows the analysis performance comparison of Monte Carlo, HSCS, AIS and

proposed MIS. According to results of Monte Carlo, the standard failure probability of two-

stage amplifier is higher than SRAM bit cell case since its multi-performance requirements

and more complex failure regions. Under this situation, the yield analysis accuracy and

efficiency of both HSCS and AIS are diminished with over 10% relative error and under

100X speedup rate, while proposed method remains relatively stable performance of 8%

relative error and 589X speedup.

The comparison validates that MIS can be adapted to wide-range failure probability and

multiple performances yield analysis. This extendability is contributed by building separate

meta-models for each specification to locate sampling areas instead of brute fail/success

classification, which will be further evaluated and analyzed in next section.

5.2X

26X

(b) Figure of Merit

(a) Failure Probability

Figure 5.6: Evolution comparison of failure prob. and FOM on Two-stage OTA
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Table 5.2: Accuracy and efficiency comparison on 84 dimensional Two-Stage OTA

MC HSCS AIS MIS

Failure prob. 1.5e-3 1.68e-3 1.05e-3 1.60e-3

Relative error golden 12% 30% 6.7%

# Sim. runs 458700 56290 11316 2156

Speedup 1X 8X 41X 213X

(b) Initial sample set (c) Iteration 20 (d) Iteration 40 (e) Iteration 60(a) Monte Carlo

Figure 5.7: 2D visualized plot of proposed adaptive sampling strategy. Here contour lines

denote boundaries of different OTA phase margin threshold. Blue crosses are current sample

set to calibrate contour lines, while gray crosses stand for all previous samples.

5.5.2.3 MIS Adaptation for Poor Initialization

In this section, we demonstrate that the adaption of MIS enables it to recover from poor

initialization states. Here we take the amplifier phase margin as target metric. Figure 5.7(a)

displays the ground truth MC contour plot, where colored contour lines represent different

threshold for phase margin. Among these contour lines, the black one with 55.5 marked on

it is the failure region. In Figure 5.7(b)-(e), we show the evolution of contour lines generated

from intermediate GP meta-model. The incremental sample set used to calibrate model is

also depicted. To be specific, Figure 5.7(b) shows a poor initial sample set generated from

space-filling LHS method. As iteration proceeds, most samples, through a random walk, have

the trend to approach the failure region boundary. Other few samples are generated near the

regions where prediction mismatch is largest. After 60 iterations, our meta-model prediction

is very similar compared with golden MC, which implies that it can output accurate indicator

function I(x). Our sampling distribution is thus stabilized around failure region boundaries,
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providing constant and robust estimation.

5.6 Conclusions

In this chapter, we propose a meta-model based importance sampling (MIS) to tackle the

challenging circuit reliability problems with multiple disjoint failure regions. We first apply

Gaussian Process meta-model to construct quasi-optimal sampling distribution. Next, we

design a novel adaptive sampling strategy to generate new samples from a set of intermediate

distributions, and update the failure probability at the end of each iteration. The exper-

imental results demonstrate that the proposed MIS algorithm can provide extremely high

accuracy and efficiency. For SRAM bit cell with 36 variables, MIS achieves 4458X speedup

over MC and 4-6X over other state-of-the-art methods. For 84-dimensional two-stage OTA

with multiple failure schemes, MIS is 213X faster than MC, while other approaches fail to

provide a reasonable accuracy.
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CHAPTER 6

Summary

As the microelectronic devices scale down to nanometer, various memory and analog circuits

are more vulnerable to process, voltage and temperature (PVT) variations. Therefore, circuit

parameters can deviate significantly from their nominal values specified by designers, which

make the circuit performance merits may fail the design specifications under the nominal

condition. The scale of circuit yield analysis problem is a high-sigma problem, which cannot

be solved by traditional deterministic approaches. Instead, people turn to statistical circuit

simulation method. It helps circuit designers to debug circuits in the pre-silicon phase

considering PVT variations, which can dramatically shorten the required time to market.

This dissertation thesis present several pieces of research works related to statistical yield

analysis.

In Chapter 2, we propose an adaptive importance sampling (AIS) algorithm. AIS has

several iterations of sampling region adjustments, while existing methods pre-decide a static

sampling distribution. We design two adaptive frameworks based on Resampling and popu-

lation Metropolis-Hastings (MH) to iteratively search for failure regions. The experimental

results of AIS method exhibit better efficiency and higher accuracy. For SRAM bit cell with

single failure region, AIS method uses 2-27× fewer samples and reaches better accuracy when

compared to several recent methods. For a two-stage amplifier circuit with multiple failure

regions, AIS method is 90× faster than Monte Carlo and 7-23.× over other methods. For

charge pump circuit and C2MOS master-slave latch circuit, AIS method can reach 6-18×

and 4-6× speedup over other methods, respectively.

In Chapter 3, we develop an Adaptive Clustering and Sampling (ACS) method. ACS

proceeds iteratively to cluster samples and adjust sampling distribution, while most existing
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approaches pre-decide a static sampling distribution. By adaptively searching in multiple

cone-shaped subspaces, ACS obtains better accuracy and efficiency. This result is vali-

dated by our experiments. For SRAM bit cell with single failure region, ACS requires 3-5X

fewer samples and achieves better accuracy compared with existing approaches. For 576-

dimensional SRAM column circuit with multiple failure regions, ACS is 2050X faster than

MC without compromising accuracy, while other methods fail to converge to correct failure

probability in our experiment.

In Chapter 4, we develop a meta-model using Low-Rank Tensor Approximation (LRTA)

to substitute expensive SPICE simulation. The polynomial degree of our LRTA model grows

linearly with circuit dimension. This makes it especially promising for high-dimensional cir-

cuit problems. Our LRTA meta-model is solved efficiently with a robust greedy algorithm,

and calibrated iteratively with an adaptive sampling method. Experiments on bit cell and

SRAM column validate that proposed LRTA method outperforms other state-of-the-art ap-

proaches in terms of accuracy and efficiency.

In Chapter 5, we develop a novel meta-model based importance sampling (MIS) method.

MIS utilizes Gaussian Process meta-model to construct quasi-optimal importance sampling

distribution, and performs Markov Chain Monte Carlo (MCMC) simulation to generate

new samples from the proposed distribution. By updating our global Importance Sampling

estimator in an iterated framework, MIS leads to better efficiency and higher accuracy. For

SRAM bit cell with single failure region, MIS uses 4-6X fewer samples and reaches better

accuracy when compared to several recent methods. For a two-stage amplifier circuit with

multiple failure schemes, MIS is 213X faster than MC without compromising accuracy, while

other methods fail to cover all failure regions in our experiment.
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