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Abstract 

The generative capacity of language entails an ability to 
flexibly combine concepts with each other. Conceptual 
combination can occur either by using an attribute of one 
concept to describe another (attributive combination) or by 
forming some relation between two concepts to create a new 
one (relational combination). Prior research has addressed 
whether common or distinct processes support these two 
putatively different types of combinations. We turn the 
question around and ask whether the consequences of these 
combination types on our conceptual system might differ, by 
comparing semantic memory networks before and after 
participants perform either attributive or relational conceptual 
combinations. We find a general effect on the semantic 
networks: the structure of network decreases after participants 
conceptually combine some of the concepts in the network. 
However, the relational combination manipulation has a 
greater effect. Furthermore, only the relational combination 
manipulation leads to an increase in the network’s 
connectivity. 

Keywords: Conceptual combinations; Semantic Networks 

Introduction 

Language generation involves the ability to combine 

concepts into novel combinations (Boylan, Trueswell, & 

Thompson-Schill, 2017). Investigating how individuals 

combine concepts can shed unique light on different aspects 

of conceptual knowledge, including the cognitive 

mechanisms that enable the generative and flexible use of 

language. For example, consider the noun-noun 

combination robin hawk: while some interpret this 

combination as “a red-breasted hawk”, applying the 

attribute “red-breast” of the robin to the hawk; others 

interpret this combination as “a hawk that preys on robins”, 

applying a thematic, relational role between robins and 

hawks (Wisniewski, 1996). While these two types of 

conceptual combination mechanisms—attributive and 

relational—are studied via behavioral and neurocognitive 

means (Boylan et al., 2017; Estes, 2003), whether these two 

mechanisms are similar or distinct remain an open question. 

Furthermore, the effect of these mechanisms on semantic 

memory structure has not yet been studied. In this paper, we 

apply a computational network science methodology to 

examine the effects of attributive and relational mechanisms 

on semantic memory structure. Specifically, we will focus 

on conceptual combinations in noun-noun compounds. 

     Noun-noun compounds contain a modifier noun 

followed by a head noun. The modifier noun can be either 

“attributive” (as in zebra clam, where zebra denotes the 

attribute “striped”) or “relational” (as in mountain lake, 

where “mountain” is an object bearing a spatial relation with 

“lake”). An attributive based conceptual combination 

involves applying an attribute from the modifier noun to 

describe the head noun, such as zebra clam (“a clam that has 

stripes”) A relational based conceptual combination, 

however, cannot be paraphrased this way -  tennis ball is not 

“a ball that is tennis”, but rather “a ball for playing tennis” 

(Downing, 1977; Gagné & Shoben, 1997). 

     An open theoretical issue is whether attributive and 

relational mechanisms are similar or distinct; and if distinct, 

how these mechanisms are applied (Estes, 2003; Gagné, 

2000; Gagné & Shoben, 1997; Rogers & McClelland, 

2004). We address this issue from a novel perspective: we 

apply a network science methodology to represent and 

compare semantic memory networks before and after 

participants conceptually combine some of the concepts in 

the network with other concepts in either an attributive or a 
relational manner. Such an approach allows us to examine, 

for the first time, in what way conceptual combinations 

affect semantic memory structure, and how it differs based 

on attributive or relational mechanisms. We posit that such a 

conceptual combination manipulation will have 

restructuring effects on the semantic network, by changing 

or creating new connections between concepts in the 

network. 

     Recent studies have used computational network science 

to represent the structure of semantic memory (memory for 

knowledge and facts, Jones, Willits, & Dennis, 2015), using 

network science tools, as a semantic network and analyze its 

properties (for a review, see Borge-Holthoefer & Arenas, 

2010). A semantic network comprises a set of nodes and 

edges, where nodes correspond to words or concepts and 

edges connect pairs of nodes and signify some sense of 

relations between the connected nodes. Of the various 

network models developed in network science theory, the 

network model that has been widely used to examine 

complex systems is the Small World Network (SWN) 

model. A SWN is a network that is characterized by both 

high local connectivity and short global distances between 

nodes, allowing for efficient transfer of information. This 

network type is known as a small world network because 

every node is relatively close to other nodes. Analyses of 

different languages have consistently shown how different 

linguistic systems exhibit such SWN characteristics, 

characteristics which are now considered fundamental in 

facilitating efficient and quick retrieval of linguistic 

information (Borge-Holthoefer & Arenas, 2010). Common 

parameters of network structure include - the networks 

657

mailto:yoedk@sas.upenn.edu)
mailto:sschill@psych.upenn.edu


clustering coefficient (CC), the average shortest path length 

(ASPL), and the modularity index (Q). 

     The CC measures the network’s connectivity. It refers to 

the probability that two neighbors of a node will themselves 

be neighbors (i.e., a neighbor is a node i that is connected 

through an edge to node j). The ASPL and Q index measure 

the global structure of the network. The ASPL measure 

refers to the average shortest number of steps needed to be 

taken between any two pair of nodes. The Q measure 

examines how a network breaks apart (or partitions) into 

smaller sub-networks. The larger the modularity measure, 

the more the network comprised of sub-networks (Newman, 

2006). A SWN is characterized by having a high CC and a 

short ASPL. To examine whether a specific network is a 

SWN, the statistical properties of empirical data are 

compared to those of a random null network with the same 

number of nodes and edges. 

     Previous work has conducted such analysis to examine 

cognitive phenomena such as language development, 

bilingualism, memory search and retrieval, and creative 

ability (Borge-Holthoefer & Arenas, 2010). For example, 

Kenett et al. (2014) found that low and high creative 

individuals show different semantic network structure. The 

semantic network of high creative individuals exhibited 

lower ASPL and Q values, and higher CC values compared 

to that of the low creative individuals. This was the case 

despite both networks having an equal number of nodes, 

edges and average number of edges per node. Thus, 

semantic networks analysis can be applied to examine 

differences in semantic memory structure related to different 

conditions such as attributive or relational combinations.  

     Some current theories of semantic memory posit that 

conceptual representations are not invariable across people 

or across time, but rather dynamically change contingent on 

context (e.g., task demand, stimulus modality) and 

individual differences (e.g., processing preferences), with 

short- and long-term effects on the structure of semantic 

memory (Yee & Thompson-Schill, 2016). Such a dynamic 

perspective describes an experienced-based, distributed, 

semantic memory system that allows for flexible, generative 

language. We apply semantic network analysis to examine 

how the process of combining concepts changes the 

semantic network and whether such effects depend on the 

different mechanisms (attributive or relational) applied in 

such combinations (see also Schilling, 2005). 

     Here, we present preliminary results of an on-going 

study where we examine and compare the structure of 

semantic memory networks before and after an attributive or 

relational conceptual combinations task. We operationalize 

the effects of the different conceptual combination 

mechanisms on semantic memory structure as differences in 

quantitative measures of the semantic network before and 

after the conceptual combination task. Specifically, we 

focus on global measures of the network’s structure (ASPL 

and Q) and connectivity (CC). We predict that any possible 

differences between these two mechanisms will be 

manifested in the post-manipulation networks. 

Materials & Methods 

Participants 

Participants (N = 26) were recruited from the University of 

Pennsylvania as part of a larger on-going research study on 

conceptual combinations and semantic memory structure. 

Participants were 55% female, average age of 22.6 years 

(SD = 3.9) and with an average 16.4 years of education (SD 

= 3). Participants were randomly assigned to the attributive 

combinations (AC) or relational combinations (RC) 

conditions (N = 13 in each group). This study was approved 

by the University of Pennsylvania Institutional Review 

Board. 

Design Overview 

We characterized the semantic network of participants using 

their free association responses obtained twice, before and 

after completing a conceptual combination task that was 

biased (using both detailed instructions and a priming 

manipulation) to elicit either attributive or relational 

interpretations. With this procedure, we were able to assess 

the main effect, within subjects, of conceptual combination 

(by comparing the structure of the semantic networks at 

both time points) as well as the interaction, between 

subjects, of the type of conceptual combination on network 

change. We also collected a number of measures of 

cognitive ability that will be used in planned analyses of 

individual differences in these effects. We will first describe 

the conceptual combination task we used to manipulate the 

type of combination process (attributive or relational). We 

will then describe the method we applied to represent the 

semantic networks (before and after the conceptual 

combination task). 

Conceptual Combination Task 

Participants were presented with 25 noun-noun 

combinations and were required to come up with an 

interpretation for each combination (Wisniewski & Love, 

1998). They were also asked to indicate how familiar they 

were with each combination and how hard it was for them to 

retrieve the interpretation they gave. In order to examine the 

effect of attributional and relational combination 

mechanisms on semantic memory, we used ambiguous 

noun-noun combinations—combinations that can either 

have an attributive or relational interpretation—and we 

primed the participants to generate either attributional or 

relational interpretations. This was achieved both by an 

instruction manipulation and by an initial noun-noun 

combination priming phase (Wisniewski, 1996). Our task 

comprised the following parts: instruction manipulation, 

priming phase, and ambiguous conceptual combination task. 

Participants performed this task between two sessions of 

semantic network estimation (a week apart; see Semantic 

Network Estimation). This allowed us to examine the effect 

of the different conceptual combination mechanisms on 

semantic memory structure. 
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     During the instructions stage, both participant groups 

received the same general description of the task. They were 

then told that there are different strategies that people use to 

combine concepts together and were given either 

attributional or relational instructions. In the attributional 

instructions, participants were told that one such strategy 

entails applying one dominant attribute of one word to 

explain the other. In the relational instructions, participants 

were told that one such strategy entails relating both words 

in some way. Participants read three ambiguous noun-noun 

combinations in which the specific required interpretation 

was emphasized. For example, participants read ant apple. 

In the attributive instructions participants were told that this 

could mean ‘a small apple’ but not ‘apple with ants on it’. In 

the relational instructions participants were told that this 

could mean ‘apple with ants on it’ but not ‘a small apple’. 

     In order to increase the difference between the two 

experimental conditions, we followed these instructions 

with an attributive or relational priming phase in the 

conceptual combination task, following from Wisniewski 

(1996), which showed that noun-noun combinations can be 

primed to generate either attributive or relational 

interpretations. We presented participants with ten modifier-

head noun-noun combinations, where the head noun 

remained constant but the modifier noun either primed an 

attributive combination or a relational combination (e.g. 

razor insult for the attributive combination condition vs. 

girlfriend insult for the relational combination condition). 

     Finally, participants completed the ambiguous noun-

noun conceptual combination task for 25 word-pairs. In 

order to select stimuli not only that were ambiguous (in that 

they elicited attributive and relational interpretations across 

subjects) but also that were flexible (in that the percentage 

of attributive and relational interpretations could be affected 

by an instructional manipulation), we conducted a norming 

study via Amazon’s Mechanical Turk (AMT). The AMT 

surveys were conducted on a larger pool of 50 noun-noun 

pairs, divided into two surveys of 25 noun-noun pairs each. 

We conducted three different variations of these surveys 

with 20 AMT participants in each survey. In the first 

variation (baseline condition), participants were presented 

with the noun-noun pairs and asked to generate an 

interpretation to it. These interpretations were then 

classified as either attributive or relational by two 

independent judges (inter-rater agreement > .8). This 

variation allowed identifying ambiguous noun-noun pairs, 

classified as pairs that ranged from 30%/70% to 50%/50% 

interpretations. The second and third AMT variations 

 

Figure 1: 2D visualization of the pre- and post- AC and RC semantic networks 
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(biased conditions) manipulated task instruction, as 

described above, to examine how much these noun-noun 

pairs could be “pushed” into one type of interpretation. 

These interpretations were similarly rated as attributive or 

relational by two independent judges (inter rater agreement 

> .8). Finally, we examined the effect of the instruction 

manipulation on biasing the interpretations. We calculated a 

percent signal change, which quantified the percentage 

change in interpretations of an ambiguous word-pair from 

the baseline condition to the biased interpretation condition. 

This was calculated for both types of interpretations for all 

noun-noun combinations. 

     Based on the AMT surveys, 25 noun-noun combinations 

were chosen. These combinations were chosen so that the 

modifier-nouns were comprised from five different semantic 

categories (animals, fruits and vegetables, nature, food, and 

home). All of the modifier nouns, and none of the head 

nouns, were included in the semantic network analysis as 

described below. The average ambiguity of these word pairs 

was 54%/46% attributive/relational interpretations. Percent 

signal change from baseline to biased attributive 

interpretations was 28% and biased relational interpretations 

was 42%. No significant differences were found between 

the percent signal change for attributive vs. relational 

interpretations (p < .4). 

Semantic Network Estimation 

The semantic networks of the AC and RC groups were 

computed using the computational approach developed by 

Kenett et al. (2011). Participants in both groups performed a 

continuous free association task twice, once before and once 

after the conceptual combination task. Participants were 

presented with a cue word and had one minute to generate 

as many associative responses they could for that cue word. 

Participants generated free associations to a list of 50 cue 

words. These 50 cue words consisted of five categories used 

in the conceptual combination task, including the five 

modifier nouns for each category and five other category 

members. Thus, the a priori structure of the semantic 

network consists of five (category) communities. 

  The semantic network of these 50 cue words was 

computed and compared between the pre- and post- AC and 

RC conditions: First, the data were preprocessed to 

standardize responses and fix any spelling mistakes. Second, 

the associative correlation between any pair of cue words 

was calculated using Pearson’s correlation. This resulted in 

a 50 x 50 matrix where each cell denotes the association 

correlation between node i and node j. Finally, the planar 

maximally filtered graph filter was used to remove spurious 

correlations (Kenett et al., 2014). This produced an 

adjacency (connectivity) matrix that represents the 

associative correlations between any pair of nodes. As our 

focus is on the structure of the networks, the association 

correlations were binarized to equal one. Thus, the resulting 

semantic networks are unweighted (all weights equal one) 

and undirected (symmetrical relations). Constructing 

semantic networks for different groups (pre- and post- AC 

and RC) that are comprised from the same nodes (50 cue 

words) and with an equal number of edges (288 edges) 

allows comparing between them. Furthermore, the average 

degree, the average amount of edges per node in all 

networks was equal (average of 5.76 edges per node). 

     Analyses were performed with the Brain Connectivity 

Toolbox for Matlab (Rubinov & Sporns, 2010). The 

clustering coefficient (CC; measuring network connectivity) 

and the average shortest path length (ASPL; measuring 

global distances) were calculated (Boccaletti, Latora, 

Moreno, Chavez, & Hwang, 2006). The network’s CC and 

ASPL were evaluated qualitatively against the equivalent 

parameters in a random network with the same number of 

nodes and edges (CCrand and ASPLrand, respectively). Lastly, 

the modularity (Q) index was calculated (Newman, 2006). 

In order to assess the reliability (i.e., statistical significance) 

of observed differences across time points and across 

subject groups, we used a bootstrap method (Efron, 1979) to 

simulate and then compare partial networks for each of the 

conditions. We reasoned that if the networks differed from 

each other, then any partial network consisting of the same 

nodes in the networks should also be different. Furthermore, 

the bootstrap method makes it possible to generate many 

simulated partial semantic networks, allowing for statistical 

examination of the difference between them. The 

bootstrapping procedure involves random selection of half 

of the nodes comprising the networks. Partial networks were 

constructed for each condition (pre- and post- AC and RC) 

separately for these selected nodes. This method is known 

as the without-replacement bootstrap method (Bertail, 

1997). Finally, for each partial network, the CC, ASPL, and 

the Q index were computed. This procedure was simulated 

with 10,000 realizations. The difference between the 

bootstrapped partial networks on each network parameter 

was then tested using a mixed model analysis of variance 

(group [AC, RC] x time [pre, post]). 

Procedure 

Participants completed all tasks using the Qualtrics software 

on two different sessions a week apart. In the first session, 

participants completed the free-association task. In the 

second session, participants first completed the conceptual 

combination task and then the free association task. In the 

free association task, participants were instructed to 

generate, in one minute, as many different responses they 

could think of to a cue word. In each trial, the cue word was 

presented in the center of the screen with a response box 

below it, where participants typed their responses. Below 

the response box appeared a timer, counting down from 60 

seconds. After 60 seconds elapsed, a new trial immediately 

began. Cue words were presented randomly and after 25 cue 

words participants had a short break. In the conceptual 

combination task, participants were first instructed on the 

task with the task manipulation instruction (attributive or 

relational). Next, a short practice was conducted with the 

experimenter, who gave feedback on the participant’s 

interpretations. Stimuli used in the practice were not used in 
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the task itself. In each trial the noun-noun combination 

appeared in the center of the screen with a response box 

below it. Participants were instructed to write their 

interpretations in the response box. Underneath the response 

box the participant had to choose how familiar s/he was 

with the noun-noun compound on a five point Likert scale 

(ranging from extremely familiar to not familiar at all) and 

how easy it was for them to generate the interpretation on a 

seven point Likert scale (ranging from extremely easy to 

extremely difficult). Participants were randomly assigned to 

the attributive and relational conditions. The stimuli were 

randomly presented. 

Results 

We computed the semantic networks for the pre- and post- 

AC and RC conditions based on the procedure outlined 

above. Next, we computed and compared the different 

network measures for all four networks (Table 1). To 

visualize the networks, we used the force-directed layout of 

the Cytoscape software (Shannon et al., 2003) to plot the 

graphs (Figure 1). In these 2D visualizations, nodes (cue 

words) are represented as circles and links between them are 

represented by lines. Since these networks are unweighted 

and undirected, the links merely convey symmetrical 

relations between two nodes. The grayscale of the nodes 

relate to the five semantic categories used in our study. 

     The network analysis revealed both general and specific 

differences between the pre- and post- AC and RC 

networks. In regard to structural properties of the networks, 

ASPL and Q, the post session led to lower ASPL and Q 

values, which was stronger for the RC network. In regard to 

connectivity property of the network, CC, the post session 

led to different effects in the AC and RC networks: while 

the AC network had a lower CC value, the RC network had 

a higher CC value, compared to the first session (Table 1). 

 

Table 1: Network measures for the pre- and post- AC and 

RC networks 

 

 AC-Pre AC-Post RC-Pre RC-Post 

CC .702 .699 .697 .701 

ASPL 2.930 2.814 3.223 3.034 

Q .578 .565 .583 .560 

CCrand .103 .125 .131 .176 

ASPLrand 2.331 2.341 2.339 2.338 

 

The bootstrapping analysis revealed a significant main 

effect of time (pre, post) for ASPL and Q, due to decreased 

values for the post-session (all p’s < .001). This analysis 

also revealed for all measures a significant interaction 

between group and time (all p’s < .001). For ASPL and Q, 

this effect resulted from a stronger effect for the RC group 

(all p’s < .001) and for the CC resulted from an increase in 

CC for the RC group and a decrease in CC for the AC group 

in the post-session (all p’s < .001).  

Discussion 

In this work, we applied a computational network science 

approach to examine the dynamic effects of conceptual 

combination mechanisms on the structure of semantic 

memory. We found general and specific effects on the 

network: In both groups, the post manipulation network 

exhibited lower structural properties of global distances and 

modularity, which was more pronounced in the RC group. 

Furthermore, while the AC post-manipulation network 

exhibited lower connectivity, the RC post-manipulation 

network exhibited higher connectivity. Thus, our results 

indicate that the relational combination manipulation has a 

greater effect on semantic memory structure than an 

attributive combination manipulation.  

    Notably, both networks have the same nodes, amount of 

edges, and average degree (number of edges per node). 

Thus, these differences reflect both a global task-induced 

effect on semantic networks and a local effect of relational 

combination manipulation on semantic memory structure. 

Both lower ASPL and Q have been related to higher 

creative ability (Kenett et al., 2014), thus indicating the 

creative effect of conceptual combinations on semantic 

memory. This stronger effect, combined with higher CC, in 

the RC group, suggests that relational combinations may 

demand the generation of novel contexts in which both 

nouns relate to each other, thus leading to higher re-

structuring of the network. More fine grained examination is 

needed in order to test specific effects on these networks. 

     Our findings are in line with current theories of semantic 

memory, which view it as a dynamic system (Schilling, 

2005; Yee & Thompson-Schill, 2016). Such theories argue 

that both context (task demands) and individual differences 

(processing style) lead to short- and long-term changes in 

semantic memory structure. Our current study applies 

semantic network analysis to examine how a conceptual 

combination task affects the structure of semantic memory 

and whether it is affected differently based on a specific 

conceptual combination mechanism. We show how 

manipulating concepts in the semantic network (through a 

conceptual combination manipulation) changes the structure 

of the network. We will also examine how individual 

differences affect the structure of semantic memory, based 

on the behavioral measures we are collecting in our on-

going study. Our findings are also related to recent studies 

investigating how relational versus attributive based 

categories differentially effect cognitive processing, such as 

typicality effects and learning (Asmuth & Gentner, 2017; 

Gentner & Kurtz, 2005; Rein, Goldwater, & Markman, 

2010). For example, Asmuth and Gentner (2017) show how 

relational nouns are more “mutable” (affected by context) in 

memory than entity nouns. Thus, our approach offers a 

quantitative method to examine such behavioral findings.  

    Finally, there are a few limitations to this study. First, our 

study currently has a small sample size, which can affect the 

reliability of our results. We are currently continuing to 

collect data to conduct these analyses with a larger sample 

size in each group to strengthen our results. Furthermore, 
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our research computed semantic networks aggregated at the 

group-level. It is possible that within these aggregated 

group-based networks there are further individual 

differences that relate to semantic memory structure and 

conceptual combinations. Future research needs to examine 

the effects of conceptual combinations on semantic memory 

structure at the individual-level (Benedek et al., 2017). 

     In conclusion, the work reported here is a first step at 

harnessing computational network science to investigate the 

effects of different conceptual combination mechanisms on 

semantic memory structure. We plan to continue and 

increase sample size and examine how our findings relate to 

various behavioral measures we are also collecting, such as 

creative ability, intelligence and personality traits. Overall, 

our results demonstrate that semantic networks can be 

applied to study group-level effects of different conceptual 

combination mechanisms and contribute to the growing 

body of literature demonstrating their efficacy in 

understanding high-level cognition. 
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