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ABSTRACT  

The design and engineering of composite materials is one strategy to satisfy the materials 

needs of systems with multiple orthogonal property requirements. In the case of rechargeable 

batteries with lithium metal anodes, the system requires a separator with fast lithium ion transport 
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and good mechanical strength. In this work, we focus on the system polystyrene-block-

poly(ethylene oxide) (SEO) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Ion 

transport occurs in the salt-containing poly(ethylene oxide)-rich domains. Mechanical rigidity 

arises due to the glassy nature of polystyrene (PS). If we assume that the salt does not interact with 

the PS-rich domains, we can describe ion transport in the electrolyte by three transport parameters 

(ionic conductivity, 𝜅, salt diffusion coefficient, 𝐷, and cation transference number, 𝑡+
0) and a 

thermodynamic factor, 𝑇f. By systematically varying the volume fraction of the conducting phase, 

𝜙c between 0.29 and 1.0, and chain length, 𝑁 between 80 and 8000, we elucidate the role of 

morphology on ion transport. We find that 𝜅 is the strongest function of morphology, varying by 

three full orders of magnitude, while 𝐷 is a weaker function of morphology. To calculate 𝑡+
0  and 

𝑇f, we measure the current fraction, 𝜌+, and the open circuit potential, 𝑈, of concentration cells. 

We find that 𝜌+ and 𝑈 follow universal trends as a function of salt concentration, regardless of 

chain length, morphology, or 𝜙c, allowing us to calculate 𝑡+
0  for any SEO/LiTFSI or PEO/LiTFSI 

mixture when 𝜅 and 𝐷 are known. The framework developed in this paper enables predicting the 

performance of any block copolymer electrolyte in a rechargeable battery. 

 

MAIN TEXT  

Introduction 

Polymer membranes that selectively transport small molecules are used in a variety of 

applications including gas separations1,2, water purification3,4, fuel cells5–7, and battery 

electrolytes8–13. Beyond tuning the chemistry, branching, or size of the polymer, heterogeneous 

materials with novel properties can be created by adding components such as a second polymer 

block14–16 or nanoparticles17,18. Understanding how the additional phase (or phases) impacts the 
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material properties is important for designing nanostructured materials with improved transport 

capabilities. Nanophase-separated block copolymer electrolytes have been applied to enable 

secondary batteries with lithium metal anodes19. Recharging a battery with a lithium metal anode 

often results in the formation of dendrites that are detrimental to battery performance and 

safety20,21. Nanostructured block copolymer electrolytes are capable of transporting ions and 

suppressing lithium dendrites simultaneously in lithium metal batteries10,22. These systems 

comprise mechanically rigid domains composed of a polymer such as polystyrene (PS) and soft 

domains capable of transporting lithium ions such as polyethylene oxide (PEO) mixed with 

bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Sax and Ottino developed simple 

expressions for quantifying the effect of nanostructure on gas diffusion using an effective 

medium theory23. These expressions serve as a starting point for quantifying ionic conductivity 

in block copolymer electrolytes.   

It is well understood that the diffusion of molecules through nanostructured materials 

depends strongly on morphology24–26. In Fig. 1, we present schematics of the experimentally 

observed morphologies of a polystyrene-block-poly(ethylene oxide) (SEO) electrolyte as a 

function of composition27–29. We use the volume fraction of the conducting domain (i.e. salt 

dissolved in PEO), 𝜙c, to quantify composition. For 𝜙c = 0 or 𝜙c = 1, the system is a 

homopolymer of the non-conducting (PS) or conducting phase (PEO), respectively. As 𝜙c is 

increased from 0 to 1, we observe the following sequence of morphologies: PEO-rich spheres on 

a body centered cubic lattice (BCC), PEO-rich cylinders on a hexagonal lattice (HEX), double 

gyroid comprising a PEO-rich network in a PS-rich matrix (GYR), alternating PS- and PEO-rich 

lamellae (LAM), double gyroid comprising a PS-rich network in a PEO-rich matrix (GYR’), PS-

rich cylinders on a hexagonal lattice (HEX’), and PS-rich spheres on a body centered cubic 
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lattice (BCC’). (The prime in our notation denotes that PEO/LiTFSI is the majority component.) 

A BCC morphology is not expected to conduct ions because the salt-containing domains are 

isolated. Similarly, a membrane with BCC’ morphology will not be mechanically robust because 

the rigid PS-rich domains are not interconnected. Thus, neither BCC nor BCC’ morphologies are 

particularly interesting for battery applications, and much research attention has been focused on 

morphologies where 𝜙c is close to 0.5 (i.e. GYR, LAM, and GYR’). Recent computational 

studies by Shen, Brown, and Hall have shown that the lamellar morphology is optimal for ion 

diffusion30. The purpose of this paper is to experimentally characterize ion transport through 

different morphologies.  

 

Figure 1. SEO morphologies as a function of conducting phase volume fraction, 𝜙c, with 

polystyrene (PS) depicted in red and poly(ethylene oxide) (PEO) with LiTFSI depicted in blue. 

As 𝜙c increases from 𝜙c = 0 (PS homopolymer) to 𝜙c = 1 (PEO homopolymer), the observed 

morphologies are: BCC – body centered cubic spheres of PEO in a PS matrix, HEX – 

hexagonally packed cylinders of PEO in a PS matrix, GYR – minority gyroid of PEO in a matrix 

of PS, LAM – alternating lamellae of PS and PEO, GYR’ – minority gyroid of PS in a matrix of 

PEO, HEX’ – hexagonally packed cylinders of PS in a matrix of PEO, BCC’ – body centered 

cubic spheres of PS in a matrix of PEO. At low 𝜙c, the electrolytes are rigid due to the 
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continuous PS matrix but poor ionic conductors. At high 𝜙c, the electrolytes are highly 

conductive due to the continuous PEO matrix but not very rigid.  

 Complete electrochemical characterization of ion transport enables prediction of time-

dependent salt concentration and potential gradients across a battery electrolyte during dc 

polarization31,32. A desirable electrolyte will have small salt concentration and potential gradients 

within the electrolyte at large current densities. Predicting the magnitude of these gradients in a 

homogeneous (single phase) electrolyte requires knowledge of three transport coefficients: ionic 

conductivity (𝜅), salt diffusion coefficient (𝐷), and the cation transference number with respect 

to the solvent velocity (𝑡+
0). It also requires a thermodynamic factor defined as 𝑇f = 1 +

d ln 𝛾+− 

d ln 𝑚
, 

where 𝛾+− is the mean molal activity coefficient of the salt and 𝑚 is the salt molality in mol kg-

1.31,33. Fully characterizing transport in a nanostructured electrolyte will, in principle, require 

measuring many more transport and thermodynamic factors. The presence of polystyrene makes 

SEO/LiTFSI a four-component system (PS, PEO, Li+, TFSI-). The presence of nanophase 

separated domains adds additional complexity. In this paper, we make the simplifying 

assumption that knowledge of three transport coefficients and the 𝑇f is adequate to describe ion 

transport in block copolymer electrolytes. We examine the effect of morphology and 𝜙c on each 

transport coefficient and 𝑇f. We find that 𝑇f exhibits a surprisingly complex dependence on 

morphology. This dependence is outside the scope of simple effective medium theories. Our 

approach uses concentrated solution theory31 to develop a complete picture of ion transport based 

on our assumptions. The theory may be used to make testable predictions32,34 and, in turn, 

validate or invalidate our assumptions. In principle, similar approaches may be applied to other 

problems associated with simultaneous diffusion of small molecules through nanostructured 

media. 
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Experimental Section 

Polymer Synthesis and Characterization 

All electrochemical and morphological characterization was carried out at 90 °C. The SEO 

copolymers in this study were synthesized, purified, and characterized using methods described in 

refs 28,35. The polymers are referred to as SEO(x-y) for block copolymers and PEO(y) for PEO 

homopolymers, where x and y are the number-averaged molecular weights of PS, 𝑀PS, and PEO, 

𝑀PEO, in kg mol-1, respectively. The volume fractions of each block of the copolymers are 

calculated by:  

𝜙EO =
𝑣EO

𝑣EO+
𝑀PS𝑀EO
𝑀S𝑀PEO

𝑣S

 ,      (1) 

where 𝑣EO and 𝑣S are the volumes of ethylene oxide (0.0682 nm3) and styrene monomers (0.167 

nm3) and 𝑀EO and 𝑀S are the molar masses of ethylene oxide (44.05 g mol-1) and styrene (104.1 g 

mol-1). Monomer volumes were calculated by 𝑣i =
𝑀i

𝜌i𝑁A
, where 𝑁A is Avogadro’s number. The 

densities of the PEO and PS blocks at 90 °C are 𝜌PEO = 1.07 g cm-3 and 𝜌PS = 1.03 g cm-3, 

respectively36. The overall degree of polymerization, 𝑁, was calculated by 𝑁 =  𝑁PS  + 𝑁PEO 

where  

𝑁𝑖 =
𝑀i

𝜌i𝑁A𝜈ref
         (2) 

and 𝜈ref was fixed at 0.1 nm3. The neat copolymers are completely transparent and colorless.  

Electrolyte Preparation 

 The block copolymer and salt mixtures were prepared by freeze-drying using methods 

described in ref 37, except for SEO(240-260) and SEO(200-222) which were prepared by solvent 

casting38. All electrolyte and cell preparation was performed in an argon-filled glovebox 

maintained with water and oxygen concentrations below 1 ppm each. The molar ratio of lithium 
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ions to ethylene oxide (EO) moieties, 𝑟 = [Li]/[EO], is used in this study to quantify salt 

concentration. 𝑟 is related to the salt molality, 𝑚, by Eqn. 3,  

𝑚 =
𝑟

𝑀EO
.         (3) 

Note that 𝑚 is the molality of the PEO domains in our nanostructured electrolyte (i.e. moles of salt 

per kg of PEO) and it is calculated assuming that all of the salt resides in the PEO domains39–41. 

We determine the volume fraction of the salty PEO domain, 𝜙c, using 

𝜙c =
𝜈c

𝜈c+(
𝑀PS𝑀EO
𝑀S𝑀PEO

)𝜈S

 ,         (4) 

where 𝜈c is the volume of the conducting phase per EO monomer and is given by 𝜈c =
𝑀PEO

𝜌c𝑁A
 

where 𝜌c is the density of the conducting domain at a specific salt concentration. 𝜌c as a function 

of 𝑟 was taken from ref 42 and we assume that the density of the conducting domain does not 

depend on 𝜙c for the SEO electrolytes. In general, 𝜙c increases with increasing salt 

concentration. 

The electrolytes used in this study are listed in Table I. For each polymer we list 𝑀PS, 𝑀PEO 

and 𝑁. For each electrolyte we list 𝑟, 𝜙c, and the morphology at 90 °C. Information about 

morphology is generally based on small angle X-ray scattering (SAXS) experiments. We include 

the neat polymers for completeness. The morphologies of SEO(4-22.4), SEO(5.1-12.8), SEO(3.8-

8.2), and SEO(9.4-4) are given in ref 29. We have taken electrochemical and morphological data 

from previous studies on PEO(5) and a variety of other SEO/LiTFSI systems listed in Table I, and 

we list the relevant references next to the polymer name. Most of the electrolytes studied in this 

work exhibit the ordered morphologies presented in Fig. 1. Many of the short-chained (i.e. low-𝑁) 

polymers are disordered (DIS) in the neat state and at low salt concentrations. The disordered 

morphology is characterized by fluctuating PEO-rich and PS-rich domains but with no long-range 
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order43. These fluctuations give rise to a characteristic broad scattering peak. The disordered 

systems listed in Table I give way to ordered morphologies with the addition of salt. All of the 

electrolytes are ordered when 𝑟 > 0.05. The effect of added salt on the morphology and 

thermodynamics of block copolymer electrolytes is an active research topic28,29,44–46, but is not the 

focus of this study. In most cases, a single morphology is present at each salt concentration. In 

SEO(4.0-22.4), we observe coexisting ordered morphologies as indicated in Table I.   

Table I. List of electrolytes used in this study. The polymer name, molecular weight of 

polystyrene block (𝑀PS) in kg mol-1, molecular weight of poly(ethylene oxide) block (𝑀PEO) in 

kg mol-1, number of repeat units (𝑁) calculated from Eqn. 2, salt concentration (𝑟), conducting 

phase volume fraction (𝜙c) calculated from Eqn. 4, and morphology are listed. Some 

electrochemical data was taken from other works, and we report the reference for those 

electrolytes next to the polymer name. An (’) indicates that PEO is the majority phase and an (*) 

indicates that the morphology for that salt concentration was not determined experimentally but 

assumed based on 𝜙c.  
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Polymer 𝑀PS 𝑀PEO 𝑁 𝑟 ϕc Morphology  Polymer 𝑀PS 𝑀PEO 𝑁 𝑟 ϕc Morphology 

PEO(5)38,42  0 5.0 77 neat 1 -      0.250 0.78 HEX' 

    0.005 1 -      0.300 0.80 HEX' 

    0.010 1 -  SEO(74-98)47 74 98 2707 neat 0.56 LAM 

    0.020 1 -      0.085 0.61 LAM 

    0.040 1 -  SEO(6.0-7.0)47 6.0 7.0 205 neat 0.53 LAM 

    0.060 1 -      0.085 0.58 LAM 

    0.080 1 -  SEO(200-222) 200 222 6653 neat* 0.52 LAM 

    0.100 1 -      0.085* 0.57 LAM 

    0.120 1 -  SEO(240-260)38 240 260 7885 neat 0.51 LAM 

    0.140 1 -      0.020* 0.52 LAM 

    0.160 1 -      0.035* 0.53 LAM 

    0.180 1 -      0.050* 0.54 LAM 

    0.210 1 -      0.085* 0.57 LAM 

    0.240 1 -      0.100* 0.57 LAM 

    0.270 1 -      0.120* 0.58 LAM 

    0.300 1 -      0.150* 0.60 LAM 
SEO(4.0-22.4) 4.0 22.4 411 neat 0.84 DIS      0.200* 0.62 LAM 

    0.005 0.85 DIS      0.250* 0.64 LAM 

    0.010 0.85 DIS      0.300* 0.66 LAM 

    0.025 0.85 HEX'  SEO(16-16)48,49 16 16 505 neat 0.49 LAM 

    0.050 0.86 HEX'      0.030 0.51 LAM 

    0.075 0.87 HEX'/BCC'      0.060 0.53 LAM 

    0.100 0.87 HEX'/BCC'      0.080 0.54 LAM 

    0.150 0.89 BCC'      0.110 0.56 LAM 

    0.200 0.90 BCC'      0.150 0.58 LAM 

    0.250 0.90 BCC'      0.180 0.59 LAM 

    0.300 0.91 BCC'      0.210 0.61 LAM 
SEO(5.1-12.8) 5.1 12.8 280 neat 0.71 DIS      0.240 0.62 LAM 

    0.005 0.71 DIS      0.270 0.63 LAM 

    0.010 0.71 DIS      0.300 0.64 LAM 

    0.025 0.72 GYR'  SEO(352-166)50 352 166 8232 neat 0.31 HEX 

    0.050 0.74 HEX'      0.085 0.36 HEX 

    0.065* 0.74 HEX'  SEO(247-116)50 247 116 5769 neat 0.31 HEX 

    0.075 0.75 HEX'      0.085 0.36 HEX 

    0.100 0.76 HEX'  SEO(54-23)50 54 23 1225 neat 0.29 HEX 

    0.150 0.78 HEX'      0.085 0.34 HEX 

    0.200 0.79 HEX'  SEO(9.4-4.0) 9.4 4.0 213 neat 0.29 DIS 

    0.250 0.81 HEX'      0.010 0.29 HEX 

    0.300 0.82 HEX'      0.025 0.30 HEX 

    0.350* 0.83 HEX'      0.040* 0.31 HEX 
SEO(3.8-8.2) 3.8 8.2 188 neat 0.67 DIS      0.050 0.32 HEX 

    0.005 0.68 DIS      0.065* 0.33 HEX 

    0.010 0.68 DIS      0.075 0.33 HEX 

    0.025 0.69 DIS      0.100 0.34 HEX 

    0.050 0.70 GYR'      0.150 0.37 HEX 

    0.075 0.72 HEX'      0.200 0.39 HEX 

    0.100 0.73 HEX'      0.250 0.41 HEX 

    0.150 0.75 HEX'      0.300 0.43 HEX 

    0.200 0.77 HEX'      0.350* 0.45 HEX 
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Electrochemical Characterization 

SEO samples for electrochemical measurements were prepared by placing electrolytes in 

annular silicone spacers with inner diameters of 3.18 mm and hand-pressing them into pellets. 

Samples were hot-pressed at 90 ºC to create a uniform, non-porous films. The polymer sample was 

sandwiched between stainless steel or lithium electrodes of known thickness. The total cell 

thickness was measured using a micrometer before attaching nickel current collectors and sealing 

the cell in polypropylene-lined aluminum pouch material. At this point the cells were removed 

from the glovebox for testing. The inner diameter of the spacer and the thickness measurements 

allow for determination of the cell constants 𝐴 and 𝐿, the electrochemically active area and distance 

between electrodes, respectively. 

Ionic conductivity of samples with blocking electrodes (stainless steel), 𝜅, was measured 

by ac impedance spectroscopy at 90 ºC using a BioLogic VMP3 potentiostat with an amplitude of 

80 mV and frequency range of 1 MHz to 100 mHz. The bulk resistance, 𝑅b, was determined by 

fitting an equivalent circuit and used to calculate 𝜅 from Eqn. 5, 

𝜅 =
𝐿

𝑅b𝐴
 . (5) 

Prior to measurement, cells were annealed at 120 ºC for at least 12 hours on a custom-built 

temperature-controlled heating stage.  

Cells with lithium electrodes were used to measure the current fraction, 𝜌+, as described in 

refs 42,51. Our methods follow those pioneered by Bruce and Vincent52,53. Lithium cells were 

annealed for at least four hours at 90 °C followed by at least four conditioning cycles. Conditioning 

cycles allowed the interfacial resistance to reach a stable value that did not change with time or as 

current was passed. The bulk resistance (i.e. conductivity) remained within the reported 

experimental error bars throughout the conditioning cycles. Each cycle consisted of passing current 
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at +20 μA cm-2 for 4 h followed by -20 μA cm-2 for 4 h. 𝜌+ is measured in an experiment where a 

constant voltage, Δ𝑉, is applied across the cell to obtain the ratio of the current measured at steady 

state, 𝑖ss, to the initial current given by Ohm’s law, 𝑖Ω, corrected for the change in potential drop 

across the electrolyte due to the change in current over the experiment. The equation used to 

calculate 𝜌+ is given by: 

𝜌+ =
𝑖ss

𝑖Ω

(Δ𝑉−𝑖Ω𝑅i,0𝐴)

(Δ𝑉−𝑖ss𝑅i,ss𝐴)
 , (6) 

where 𝑅i,0 and 𝑅i,ss are the interfacial resistance measured by ac impedance spectroscopy before 

the experiment and once steady state is reached, respectively. 𝜌+ is equal to the cation transference 

number for an ideal electrolyte at infinite dilution. Because this is never the case for practical 

electrolytes, we avoid calling this quantity “the transference number” as is commonly done in the 

literature and instead refer to it as “the current fraction”51,54. We measured the ionic conductivity 

of the cells with non-blocking (i.e. lithium) electrodes, 𝜅nb, and calculated 𝑖Ω using Eqn. 7: 

𝑖Ω =
Δ𝑉

𝐿/𝜅nb +𝑅i,0𝐴
 . (7) 

The same cells were used to measure the diffusion coefficient of the salt, 𝐷, in a restricted 

diffusion experiment following methods described in refs38,42. We measure the open circuit 

potential, 𝑈, over time as the salt concentration gradient relaxes and fit the data to Eqn. 8 to obtain 

𝐷: 

−
d ln 𝑈

d𝑡
=

𝜋2𝐷

𝐿2 . (8) 

Concentration cells of SEO electrolytes were prepared by placing an annular silicone spacer 

of 0.5 or 1.0 mm thickness onto a lithium electrode. The electrolyte was then hot pressed into the 

spacer at 90 °C to create a uniform film. Next, another electrode/spacer assembly was made with 

an electrolyte of the same SEO polymer but different salt concentration. The two assemblies were 
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then pressed together and aligned in such a way that the two electrolytes were in physical contact. 

We then measured the open circuit potential, 𝑈, of the cells at 90 °C once thermal equilibrium was 

achieved. The cells were made with one electrolyte fixed at a reference salt concentration of 𝑟 = 

0.065. The salt concentration of the second electrolyte was varied between 𝑟 = 0.005 and 𝑟 = 0.35 

to obtain the quantity 
d𝑈

d ln 𝑚
.  

Results and Discussion 

This work focuses on the electrochemical properties of nanostructured electrolyte films 

with thicknesses in the range of 250 to 500 μm. The relationship between conductivity and 

morphology in confined polymer films (<10 μm thick) has been studied in detail55–58. The typical 

length scale (domain spacing) of the ordered morphologies in block copolymers range from 10 to 

100 nm. For all practical purposes, the electrolytes are isotropic comprising many randomly 

oriented grains. Coherent order is generally restricted to grains with a characteristic length of a 

few μm59. The morphologies depicted in Fig. 1 only show the structure within a grain.  

In Fig. 2a and 2b, we present 𝜅 as a function of salt concentration for many of the 

polymers listed in Table I on a semi-log plot. The SEO electrolytes containing 3-dimensional (3-

d) conducting pathways (BCC’, HEX’, GYR’) are shown in Fig. 2a. The conductivity of the 

homopolymer, PEO(5), is shown for comparison. The inset of Fig. 2a highlights the conductivity 

trends at low salt concentration (𝑟 ≤ 0.05). All three SEO copolymers presented in Fig. 2a are 

disordered in the neat state. The addition of salt results in the formation of ordered morphologies. 

The dominant morphology of each electrolyte is indicated by the schematic in the legend above 

the plots. For SEO(22.4-4.0), a HEX’ phase emerges when salt is added. Additional salt results 

in the coexistence of HEX’ and BCC’ phases and further salt added results in a BCC’ phase. For 

SEO(3.8-8.2) and SEO(5.1-12.8), the addition of salt results in a GYR’ morphology and further 
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salt addition results in a HEX’ morphology. These phase transitions are discussed thoroughly in 

ref 29. The dependence of conductivity on salt concentration of all of the copolymers discussed in 

Fig. 2a is remarkably similar. At low salt concentrations, conductivity increases with increasing 

salt concentration due to the increase in charge carrier concentration. It is well known that the 

addition of salt slows down segmental relaxation of the PEO chains, and this results in a 

conductivity maximum in the vicinity of 𝑟 = 0.1060. Qualitatively similar behavior is seen in 

electrolytes based on PEO homopolymer; the slight dip in conductivity in the vicinity of 𝑟 = 0.13 

in the PEO(5) data in Fig. 2a is a peculiarity of 5 kg mol-1 PEO homopolymer. The data obtained 

from different copolymers in Fig. 2a is relatively similar despite the differences in morphology 

discussed above. There is little difference in the conductivity of disordered and ordered block 

copolymer electrolytes, most apparent at 𝑟 = 0.025 in the inset of Fig. 2a. We attribute this to the 

presence of large concentration fluctuations in the disordered state. It appears as if the salt 

molecules are localized in the PEO-rich fluctuations in the disordered state and this leads to ion 

transport that is not very different from that observed in weakly ordered block copolymer 

electrolytes. In all of the electrolytes discussed in Fig. 2a, ion transport occurs through the matrix 

phase of the block copolymer. It is evident that the morphology of the dispersed polystyrene 

domains has relatively little impact on ionic conductivity on SEO electrolytes with 3-d 

conducting pathways.  

In Fig. 2b, we show conductivity versus salt concentration for SEO electrolytes with 2-d 

(LAM) and 1-d conducting pathways (HEX). We first consider the values of 𝜅 in the low 𝑟-limit. 

We see the same general trend in Figs 2a and 2b: 𝜅 increases with 𝑟 at low salt concentrations. 

At high salt concentration, 𝜅 appears to approach a plateau. The conductivity of SEO(16-16) is 

about an order of magnitude lower than that of PEO(5) while that of SEO(9.4-4.0) is about two 
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orders of magnitude lower than that of PEO(5). These drops correspond to transitions from 3-d 

(homopolymer) to 2-d (LAM) to 1-d (HEX) conducting pathways. The conductivity of 

SEO(240-260) lies between SEO(16-16) and PEO(5). This effect has been previously discussed 

in studies of symmetric block copolymer electrolytes11,37,47.  

 

Figure 2. Conductivity, 𝜅, of PEO and various SEO electrolytes as a function of 𝑟, the molar 

ratio of lithium ions to ether oxygens for the polymers listed in the figure. The color of the 

symbol denotes the morphology: black/homopolymer, blue/BCC’, cyan/coexisting BCC’ and 

HEX’, green/HEX’, gold/GYR’, teal/LAM, red/HEX, purple (open)/DIS. The dominant 

morphology across the range of salt concentrations is indicated by the schematic in the legend 

above the plots. The volume fraction of the neat polymer, 𝜙EO, is listed in the legend and the 

conducting phase volume fraction, 𝜙c, of each electrolyte is given in Table 1. (a) 𝜅 vs 𝑟 for 

PEO(5) and SEO electrolytes with 3-d conducting morphologies. The inset is a magnified view 
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of the low salt concentration region. (b) 𝜅 vs 𝑟 for PEO(5) and SEO electrolytes with 2-d and 1-d 

conducting morphologies.  

The conductivity of SEO/LiTFSI electrolytes is a complex function of both chain length, 

quantified by 𝑁, and composition, quantified by 𝜙c. In Fig. 3 we focus on the effect of chain 

length at two fixed compositions: 𝜙𝑐 = 0.58 ± 0.03 and 𝜙𝑐 = 0.35 ± 0.01 corresponding to LAM 

and HEX morphologies, respectively. The salt concentration in these electrolytes is held fixed at 

𝑟 = 0.085. For both morphologies, 𝜅 increases by nearly an order of magnitude when 𝑁 increases 

from 200 to 2000. Ion transport through block copolymer electrolytes is affected by many factors 

including 𝜙c, the geometry of the conducting phase, the extent to which PS monomers are 

present in the PEO-rich conducting domains, the width of the interface between the PS-rich and 

PEO-rich domains37, and the grain size61. The similarity of the data from LAM and HEX phases 

in Fig. 3 suggests a common origin for the observed increase in 𝜅 with 𝑁. The geometry of the 

conducting phase and 𝜙c are more or less fixed within the two data sets in Fig. 3. The presence 

of a large interfacial region between PS and PEO-rich domains will slow down the motion of 

ions that are located in the vicinity of the interface. The width of this interface decreases with 

increasing segregation strength (which increases with 𝑁), resulting in increased conductivity. 

Increasing 𝑁 also results in a dramatic decrease in polymer diffusion which is necessary for 

eliminating defects. We thus expect smaller grains in samples with higher chain length: smaller 

grains also lead to an increase in conductivity in samples with 2-d or 1-d conducting 

pathways50,61. Defects are not expected to play an important role in electrolytes with 3-d 

conducting pathways. 
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Figure 3. Conductivity, 𝜅, of SEO electrolytes with LAM morphologies and HEX morphologies 

as a function of chain length, N. The salt concentration is fixed at 𝑟 = 0.085 for all samples. The 

conducting phase volume fraction, 𝜙c, is 0.58 ± 0.03 for the LAM electrolytes and 0.35 ± 0.01 

for the HEX electrolytes. For both LAM and HEX morphologies, conductivity increases by 

nearly an order of magnitude from 𝑁 = 200 to 𝑁 = 2000.  

 The Nernst-Einstein relationship is often invoked to relate conductivity and the self-

diffusion coefficient of the ions31. This relationship is only applicable to ideal electrolytes in the 

dilute limit. (In ideal electrolytes, the salt dissociates completely to yield non-interacting ions 

and the salt activity coefficient of ideal electrolytes is unity.) It is well understood that polymer 

electrolytes do not behave ideally, even at very low salt concentrations38,42,62. In addition, the salt 

diffusion coefficient relevant to ion transport in electrolytes is a mutual diffusion coefficient, 𝐷. 

There may thus be little correlation between 𝜅 and 𝐷. In Fig. 4a we present 𝐷 as a function of 𝑟 
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for the polymers with 3-d conducting domains listed in Table I, with PEO(5) included for 

comparison. To a good approximation, 𝐷 of block copolymer electrolytes with BCC’, HEX’, 

GYR’ morphologies is independent of salt concentration and not very different from that of 

PEO(5). In Fig. 4b, we present 𝐷 as a function of 𝑟 for 2-d and 1-d conducting morphologies. 

For the LAM morphologies, we again see that 𝐷 is not a strong function of 𝑟. Similar to the trend 

observed for 𝜅, we find that there is a significant increase in 𝐷 for SEO(240-260) compared to 

SEO(16-16). There is a four-fold increase in 𝐷 of SEO(9.4-4.0) when 𝑟 increases from 0.06 to 

0.1. We see a similar step change in conductivity in this copolymer around the salt concentration 

r = 0.1. We do not have a definitive explanation for these observations in low 𝜙𝑐 electrolytes; 

SAXS data across this concentration range shows no discernable change in morphology.  

 

Figure 4. Salt diffusion coefficient, 𝐷, of PEO and various SEO electrolytes as a function of 𝑟, 

the molar ratio of lithium ions to ether oxygens for the polymers listed in the figure. The color of 
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the symbol denotes the morphology: black/homopolymer, blue/BCC’, cyan/coexisting BCC’ and 

HEX’, green/HEX’, gold/GYR’, teal/LAM, red/HEX, purple (open)/DIS. The dominant 

morphology across the range of salt concentrations is indicated by the schematic in the legend 

above the plots, which is identical to the legend in Fig. 2. The volume fraction of the neat 

polymer, 𝜙EO, is listed in the legend and the conducting phase volume fraction, 𝜙c, of each 

electrolyte is given in Table 1. (a) 𝐷 vs 𝑟 for PEO(5) and SEO electrolytes with 3-d conducting 

morphologies. The inset is a magnified view of the low salt concentration region. (b) 𝐷 vs 𝑟 for 

PEO(5) and SEO electrolytes with 2-d and 1-d conducting morphologies.  

It is useful to define 𝜅 and 𝐷 for model nanostructured electrolytes and use these 

definitions to normalize our data11,16,63. We define a model nanostructured electrolyte as one 

where salt does not interact with the polystyrene chains and the PEO-rich nanodomains can be 

approximated as homopolymer electrolytes. In addition, model electrolytes comprise randomly 

oriented grains with negligible inter-grain resistance. We use the term “model” instead of “ideal” 

to avoid implying that the electrolytes are thermodynamically ideal. The thermodynamic 

interactions between the salt and EO monomer unit in a model nanostructured electrolyte are 

identical to those in PEO homopolymer, which do not behave ideally at any salt concentration. 

To calculate 𝜅 or 𝐷 in a model morphology, we must consider how ions move within a grain and 

geometric factors that affect inter-grain transport of a given morphology. The baseline for our 

analysis is a homogeneous electrolyte sandwiched between parallel electrodes which are used to 

apply an electric field across the electrolyte. In a model nanostructured electrolyte, the ion moves 

in a tortuous path because it can only reside in a conducting domain. For 3-d conducting 

morphologies (i.e. GYR’, HEX’, BCC’), the hinderance to ion motion is quantified by a 

tortuosity factor, 𝜏. The values of 𝜏 for these morphologies taken from the literature are given in 
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Table II. LAM and HEX phases do not have tortuous paths within a grain and 𝜏 = 1. Morphology 

influences ion transport in these systems due to the fact that the effectiveness of each grain 

depends on the orientation of the grain relative to direction of the electric field. We use the 

morphology factor, f, to quantify this effect. Sax and Ottino pioneered the use of effective 

medium theory to calculate 𝑓 in the context of diffusion of small molecules in nanostructured 

media23. Their results have frequently been applied to block copolymer electrolytes in the 

literature 11,30,47,48. The values of 𝑓 for LAM and HEX phases taken from ref 64 are listed in Table 

II. When transport occurs through the matrix phase (i.e. BCC’, HEX’, GYR’), we assume that 𝑓 

= 1. The numerical values of 𝑓 and 𝜏 reported in Table II are taken from refs 30,65. 

We define the conductivity, 𝜅m, and salt diffusion coefficient, 𝐷m, of model 

nanostructured electrolytes in Eqns. 9 and 10:   

𝜅m(𝑟) =
𝑓

𝜏
ϕc𝜅PEO(𝑟), (9) 

𝐷m(𝑟) =
𝑓

𝜏
𝐷PEO(𝑟), (10) 

where 𝜅PEO(𝑟) and 𝐷PEO(𝑟) are transport coefficients of the PEO homopolymer at a specific salt 

concentration where it is assumed that the molecular weight of the PEO homopolymer is large 

enough so that ion transport properties are independent of molecular weight66,67. Physical 

justification for the inclusion of 𝜙c in Eqn. 9 but not Eqn. 10 can be found in ref 63. Next, we 

define normalized transport coefficients, denoted by a subscript 𝑛, in Eqns. 11 and 12: 

𝜅n(𝑟) =
𝜅

ϕc𝜅PEO(𝑟)
, (11) 

𝐷n(𝑟) =
𝐷

𝐷PEO(𝑟)
. 

(12) 

Both 𝜅n and 𝐷n equal 𝑓𝜏−1 for a model morphology. In Fig. 5a and 5b we present 𝜅n and 𝐷n, 

respectively, as a function of volume fraction with 𝑟 = 0.05, 0.15 and 0.30. We include the 
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homopolymer for completeness where 𝜙c = 𝜅n = 𝐷n = 1 by definition. The vertical lines 

separate different morphologies observed within a volume fraction range, and the solid black line 

represents the value of 𝑓𝜏−1.  

Table II. Morphology factor, 𝑓, and tortuosity, 𝜏, for the morphologies of interest. 

Morphology f 𝛕 

BCC’ 1 (3-𝜙𝑐)/2 

HEX’ 1 2-𝜙𝑐 

GYR’ 1 5/4 

LAM 2/3 1 

HEX 1/3 1 

 

 

Figure 5. (a) Normalized conductivity, 𝜅n, and (b) normalized salt diffusion coefficient, 𝐷n, as a 

function of conducting phase volume fraction, 𝜙c, for 𝑟 = 0.05 (red circles), 𝑟 = 0.15 (blue 

squares), and 𝑟 = 0.30 (green triangles). The vertical lines and illustrations indicate the volume 

fraction range where each morphology is observed. For a model morphology, 𝜅n = 𝐷n = 𝑓𝜏−1. 

We plot 𝑓𝜏−1 as a black line based on the values of 𝑓 and 𝜏 given in Table II.  
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 We discuss the data in Fig. 5a starting with the low salt concentration data set, 𝑟 = 0.05. 

In this salt concentration regime, the normalized conductivity spans three orders of magnitude. 

At low 𝜙c values (i.e. the HEX morphology), 𝜅n is a factor of 40 below 𝑓𝜏−1. However, more 

reasonable agreement between 𝜅n and 𝑓𝜏−1 is observed once 𝜙c exceeds 0.4. Qualitatively 

similar behavior is seen at an intermediate salt concentration, 𝑟 = 0.15; however, at low values of 

𝜙c (𝜙c < 0.45), 𝜅n is still a factor of 3 below 𝑓𝜏−1. At a high salt concentration, 𝑟 = 0.30, we see 

reasonable agreement between 𝜅n and 𝑓𝜏−1 even at the lowest value of 𝜙c. It is evident that 

conductivity through block copolymers with low values of 𝜙c depends strongly on salt 

concentration. The measured conductivity approaches that expected for a model nanostructured 

electrolyte as salt concentration is increased. This observation appears to suggest that grain 

connectivity increases with increasing salt concentration61. An interesting observation is that 𝜅n 

is significantly larger than unity (i.e. 𝜅n = 4) for 𝜙c values of 0.67 and 0.79. This implies that the 

intrinsic conductivity of PEO-rich domains in the block copolymer is higher than that of PEO 

homopolymer electrolytes. Molecular dynamics studies have shown evidence for large ion 

clusters consisting of >100 ions in concentrated PEO/LiTFSI electrolytes68. It is not 

unreasonable to hypothesize that the PS domains impact the size and nature of the salt 

aggregates, resulting in increased conductivity. Recent coarse-grained simulations of ion 

transport through block copolymer electrolytes by Seo et al. suggest similar effects69.  

 In Fig. 5b, we see that 𝐷n has similar behavior to 𝜅n, except that the decay in 𝐷n versus 

𝜙c compared to that of 𝜅n is slightly less severe, especially for the HEX morphology at 𝑟 = 0.05. 

In general, 𝐷n tends to be close to the value of 𝑓𝜏−1 at high values of 𝑟 and high values of 𝜙c. 

The value of 𝐷n does not vary much with salt concentration compared to 𝜅n. This is because 𝐷 is 

a much weaker function of salt concentration than 𝜅 (compare Fig. 2 and 4).  
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The current ratio, 𝜌+, is an important electrolyte property as the product of 𝜅𝜌+ dictates 

the performance of an electrolyte in the limit of small applied potentials51–53,70,71. In Fig. 6, we 

present 𝜌+ for all of the polymers listed in Table I. Regardless of composition and chain length, 

all systems in this study show the same general trend of 𝜌+ with salt concentration: 𝜌+ decreases 

with increasing salt concentration until 𝑟 is approximately 0.15 and then increases until 𝑟 = 0.30. 

We fit a universal curve which can be used to predict the current ratio for any SEO or 

PEO/LiTFSI electrolyte as a function of salt concentration. The fit is shown by the black curve in 

Fig. 6 and is given by Eqn. 13,  

𝜌+ = (0.18 ± 0.01) − (1.7 ± 0.1)𝑟 + (6.3 ± 0.5)𝑟2. (13) 

Equation 13 was determined by a least-squares fit through the data in Fig. 6 and the coefficients 

are given with one standard deviation. Equation 13 can be used to predict the current fraction for 

any SEO or PEO/LiTFSI electrolyte and is valid in the salt concentration range 0.01 < 𝑟 < 0.30.  
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Figure 6. Current fraction, 𝜌+, for PEO(5) and various SEO electrolytes as a function of 𝑟, the 

molar ratio of lithium ions to ether oxygens. The color of the symbol denotes the morphology: 

black/homopolymer, blue/BCC’, cyan/coexisting BCC’ and HEX’, green/HEX’, gold/GYR’, 

teal/LAM, red/HEX, purple (open)/DIS. The dominant morphology across the range of salt 

concentrations is indicated by the schematic in the legend. Presence of the non-conducting phase 

does not have a significant impact on the value of 𝜌+ and we are able to fit a universal curve 

through the data (black line). The solid curve is given by 𝜌+ = 0.18 − 1.7𝑟 + 6.3𝑟2.  

 The current fraction is often equated to the cation transference number with respect to the 

solvent velocity, 𝑡+
0 . Much work, however, suggests that there is little correspondence between 

𝜌+ and 𝑡+
0 , especially in polymer electrolytes which exhibit behavior of non-ideal solutions even 

at low salt concentrations38,42,62,72. To calculate 𝑡+
0 , we use Eqn. 14,  

𝑡+
0 = 1 + (

1

𝜌+
− 1)

(𝑧+𝜈+)𝐹𝐷𝑐ϕc

𝜅nb
(

𝑑𝑈

𝑑 ln 𝑚
)

−1

, 
(14) 

where 𝑧+ is the charge on the cation and 𝜈+ is the number of cations in the dissociated salt, 𝐹 is 

Faraday’s constant (96,485 C mol-1), and 𝑐 is the molar salt concentration in the conducting 

domain31,38,73. The quantity 𝑐𝜙c is equivalent to the moles of salt per unit of total volume (i.e. 

both the conducting and non-conducting domain). c is calculated by Eqn. 15, 

𝑐 =
𝜌PEO𝑟

𝑀EO+𝑟MLiTFSI
 , (15) 

where 𝑀LiTFSI is the molar mass of LiTFSI (287.08 g mol-1). 

 Ion transport in a block copolymer electrolyte is governed by numerous transport 

coefficients as discussed in the Introduction. Equation 14 is strictly applicable to model 

nanostructured electrolytes. The limitations of this approach are evident in Fig. 5 where 

deviations from model behavior are seen especially in the low 𝜙c and low 𝑟 limit.    
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Calculating 𝑡+
0  from Eqn. 14 requires measurement of 𝜅, 𝐷, 𝜌+, and (

𝑑𝑈

𝑑 ln 𝑚
)

−1

. In 

principle, 𝜅 is an intrinsic property of the electrolyte and does not depend on the electrodes used 

to measure it by ac impedance spectroscopy. In practice, we find some differences in the 

conductivity measured with blocking electrodes, 𝜅, compared to that measured with non-

blocking electrodes, 𝜅nb, at some salt concentrations. We compare these values in Fig. 7 for (a) 

SEO(4.0-22.4), (b) SEO(5.1-12.8), (c) SEO(3.8-8.2), and (d) SEO(9.4-4.0). The general trends 

discussed above in the context of Fig. 2 apply to the data in Fig. 7. The largest difference 

between 𝜅 and 𝜅nb is seen in SEO(9.4-4.0) at 𝑟 = 0.10. However even for this electrolyte, 𝜅 and 

𝜅nb are within experimental error for 𝑟 ≥ 0.15. Differences between 𝜅 and 𝜅nb may arise for 

block copolymer electrolytes due to differences in the morphology of the block copolymer at the 

electrode-electrolyte interface or differences in thermal history (see Experimental section). We 

note in passing that discrepancies between 𝜅 and 𝜅nb are found in many instances throughout the 

literature but without discussion51,74–76. For consistency, we use 𝜅nb for the conductivity in Eqn. 

14 for calculating 𝑡+
0  in SEO(4.0-22.4), SEO(5.1-12.8), SEO(3.8-8.2), and SEO(9.4-4.0) because 

measurement of 𝐷, 𝜌+, and (
𝑑𝑈

𝑑 ln 𝑚
)

−1

 must be done in a cell with lithium electrodes.  
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Figure 7. Conductivity, 𝜅, measured by ac impedance spectroscopy for (a) SEO(4.0-22.4) which 

exhibits a BCC’ morphology over most salt concentrations, (b) SEO(5.1-12.8) which exhibits a 

HEX’ morphology over most salt concentrations, (c) SEO(3.8-8.2) which exhibits a HEX’ 

morphology over most salt concentrations, and (d) SEO(9.4-4.0) which exhibits a HEX 

morphology over most salt concentrations. We compare data obtained using 

lithium/polymer/lithium cells (non-blocking electrodes, red circles) and stainless 

steel/polymer/stainless steel cells (blocking electrodes, black squares) for each system. 
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In Fig. 8, we present 𝑈 as a function of the logarithm of the salt molality, ln 𝑚, measured 

in concentration cells for SEO(9.4-4) and SEO(5.1-12.8) using a reference electrolyte salt 

molality, 𝑚r, of 1.47 mol kg-1 (𝑟 = 0.065). The slope of 𝑈 at a given value of ln 𝑚 is independent 

of the reference salt concentration. Choosing a different reference salt concentration results in a 

vertical shift of 𝑈77. Therefore, we can include data from previous studies by plotting 𝑈(ln 𝑚) 

with a vertical offset, 𝑈′, such that 𝑈′(ln 𝑚) = 𝑈(ln 𝑚) + 𝐶. We solve for the constant, 𝐶, by 

setting 𝑈′(ln 𝑚) = 0 at 𝑚 = 1.47 mol kg-1 where 𝑈(ln 𝑚) is given by a polynomial fit through 

the data. For SEO(16-16), 𝑈(ln 𝑚) was reported in ref 49 with 𝑚r = 0.681 (𝑟 = 0.030) and we 

obtained 𝐶 = 43.0 mV. For SEO(240-260), 𝑈(ln 𝑚) was reported in ref 38 with 𝑚r = 1.93 (𝑟= 

0.085), and we obtained 𝐶 = -17.5 mV. For PEO(5), 𝑈(ln 𝑚) was reported in ref 42 with 𝑚r = 

1.36 (r = 0.060), and we obtained 𝐶 = 14.6 mV.  

We find that 𝑈 is remarkably consistent across all five systems with 𝜙c varying from 0.3 

to 1 and 𝑁 varying from 80 to 8000. This suggests that the presence of polystyrene does not 

affect the potential of the concentration cell, and a universal relationship can be used to 

determine 
d𝑈

d ln 𝑚
 for any SEO or PEO/LiTFSI mixture, regardless of morphology, 𝜙c, or 𝑁. We 

fit a single curve through the data in Fig. 8 to obtain the function: 

𝑈 = (25 ± 5) − (74 ± 7)(ln 𝑚) − (33 ± 2)(ln 𝑚)2 − (4.6 ± 2)(ln 𝑚)3. (16) 

Equation 16 was determined by a least-squares fit through the data in Fig. 8 and the coefficients 

are given with one standard deviation. The coefficients are given with one standard deviation. 

Equation 16 is used to calculate 
d𝑈

d ln 𝑚
, which is the last piece of information needed to calculate 

𝑡+
0  according to Eqn. 14. Uncertainty in using Eqn. 16 to calculate 

d𝑈

d ln 𝑚
 is greater near the 
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bounds of the data set, especially at the lower bound, so we limit use of Eqn. 16 to the range -

0.80 <  ln 𝑚 < 1.9 (i.e. 0.02 ≤ 𝑟 ≤ 0.3). 

 

Figure 8. Open circuit potential, 𝑈, of concentration cells plotted against the natural log of the 

salt molality, ln 𝑚, where 𝑚 is in mol kg-1. Each data set is vertically offset by a constant such 

that 𝑈 = 0 at ln 𝑚 = 0.39 (i.e. 𝑟 = 0.065). We fit a universal curve through the data (black line), 

given by Eqn. 16: 𝑈 = 25 − 74(ln 𝑚) − 33(ln 𝑚)2 − 4.6(ln 𝑚)3.  

We next consider the effect of morphology and 𝜙c on 𝑡+
0  at salt concentrations ranging 

from 𝑟 = 0.05 to 𝑟 = 0.30 in Fig. 9a. We calculate 𝑡+
0  from Eqn. 14 for SEO(4-22.4), SEO(5.1-

12.8), SEO(3.8-8.2) and SEO(9.4-4) electrolytes using 𝜅nb reported in Fig. 7, 𝐷 reported in Fig. 

3, 𝜌+ given by Eqn. 13, 𝑐 given by Eqn. 15, and 
d 𝑈

d ln 𝑚
 given by taking the derivative of Eqn. 16. 

𝑡+
0  has been reported elsewhere for PEO(5), SEO(16-16), and SEO(240-260) electrolytes; 

however, we recalculate it using the universal relationships presented in this work for 𝜌+ and 𝑈. 
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We use 𝜅 presented in Fig. 2 for these systems because measurements of 𝜅nb were not available. 

We plot 𝑡+
0  as a function of 𝜙c in Fig. 9a at various salt concentrations. At low values of 𝜙c, 𝑡+

0  is 

negative. Increasing 𝜙c results in a maximum around 𝜙c = 0.6 for all salt concentrations. At low 

salt concentrations (e.g. 𝑟 = 0.05), 𝑡+
0  is a weakly decreasing function of 𝜙𝑐 above 𝜙𝑐 = 0.6, and 

the maximum is relatively shallow. At intermediate salt concentrations (e.g. 𝑟 = 0.20), 𝑡+
0  

decreases rapidly above 𝜙c = 0.6, reaching a minimum in the vicinity of 𝜙c = 0.8. At high salt 

concentrations (e.g. 𝑟 = 0.30), the behavior is similar to that seen at low salt concentrations. If 

the SEO electrolytes behaved as model nanostructured electrolytes, then 𝑡+
0  would be 

independent of 𝜙c and equal to that of homopolymer electrolytes, represented in Fig. 9a by the 

values at 𝜙c = 1. The horizontal dashed lines in Fig. 9a show the behavior expected for model 

electrolytes at each salt concentration.  

 

Figure 9. (a) Cation transference number, 𝑡+
0 , and (b) thermodynamic factor, 𝑇f, of various SEO 

morphologies as a function of conducting phase volume fraction, 𝜙c, at salt concentrations 

ranging from 𝑟 = 0.05 to 𝑟 = 0.30. 𝑡+
0  and 𝑇f are calculated based on Eqn. 14 and 17, respectively. 
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Error bars on the first data point of each data series represent the average percent error for the 

entire data set. The horizontal dashed lines represent the value of 𝑡+
0  and 𝑇f predicted for model 

nanostructured electrolytes. 

A negative transference number implies the presence of negatively charged ion clusters 

(containing both Li+ and TFSI- ions) which are more mobile than free cations. Molinari et al. 

showed that large ion clusters with a net negative charge appeared more frequently in 

PEO/LiTFSI electrolytes than ion clusters with a net positive charge68, providing computational 

evidence for this hypothesis. 𝑡+
0  is negative and significantly lower than other morphologies for 

the hexagonally packed PEO cylinders (SEO(9.4-4)) across all salt concentrations (see the range 

0.32 < 𝜙c < 0.43 in Fig. 9a), indicating that negatively charged ion clusters especially dominate 

in this system. Electrolytes with values of 𝑡+
0  in the vicinity of unity are expected to operate with 

minimal salt concentration gradients.  

We calculate the thermodynamic factor, 𝑇f = 1 +
d ln 𝛾+− 

d ln 𝑚
, for these systems from Eqn. 

17: 

𝑇f = −
𝑧+𝜈+

(𝜈++𝜈−)

𝐹

2𝑅𝑇(1−𝑡+
0 )

(
d 𝑈

d ln 𝑚
), (17) 

where 𝑅 is the ideal gas constant and 𝜈− is the number of anions in the dissociated salt. As with 

Eqn. 14, Eqn. 17 only applies to model nanostructured electrolytes. We plot 𝑇f as a function of 

𝜙c in Fig. 9b. Here we see a clear trend with increasing salt concentration. At low salt 

concentrations, 𝑇f is a weak function of 𝜙c. At high salt concentrations, 𝑇f exhibits a pronounced 

maximum in the lamellar region (𝜙c between 0.55 and 0.65). The amplitude of the maximum 

increases systematically with increasing salt concentration. For a thermodynamically ideal 

electrolyte (nanostructured or homopolymer), 𝑇f = 1. It is clear that the SEO electrolytes are far 

from thermodynamic ideality, especially at high salt concentrations. In theory, 𝑇f of model 
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nanostructured electrolytes should be independent of 𝜙c and equal to that of the homopolymer 

PEO electrolyte at the same salt concentration. The dashed horizontal lines represent the 

theoretical value for model nanostructured electrolytes. These horizontal lines emanate from the 

data points at 𝜙c = 1 in Fig. 9b.  

 The error bars on the first data point in each series in Fig. 9 represent the average percent 

error for that particular data set. The uncertainty is propagated from the measurements of 𝜅, 𝜌+, 

𝐷, and 𝑈, where the error for 𝜌+ and 𝑈 is obtained from the standard deviations of the fit 

coefficients from the fits in Figs. 6 and 8. Note that we have used a single function to describe 

the dependence of 𝜌+ and 𝑈 on salt concentration irrespective of the electrolyte. While the 

percent errors of 𝑡+
0  and 𝑇f are relatively large, the general trends that we have noted above are 

consistent across all of the salt concentrations and block copolymer compositions covered in this 

work.  

The thermodynamic factor plays an important role in ion transport as it relates the salt 

concentration gradient, ∇𝑐, to the electrochemical potential gradient of the electrolyte, ∇𝜇e. This 

can be seen by combining Eqns. 12.12 and 12.13 of ref 31 to obtain the expression: 

c∇𝜇e = [(𝜈+ + 𝜈−)𝑅𝑇 (1 −
𝑑 ln 𝑐0

𝑑 ln 𝑐
) ∇𝑐] 𝑇f, 

(18) 

where 𝜇e = 𝜈+𝜇+ + 𝜈−𝜇_ is the electrochemical potential of the electrolyte, 𝜇+ and 𝜇− are the 

electrochemical potentials of the cation and anion, respectively, and 𝑐0 is the solvent 

concentration. The product of the salt concentration and the gradient of the electrochemical 

potential of the electrolyte, c∇𝜇e, is the driving force per unit volume for transport of the salt. It 

is evident from Eqn. 18 that, for a fixed concentration gradient (∇𝑐), an electrolyte with a large 

value of 𝑇f will have a relatively strong driving force to relieve the concentration gradient.  
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We conclude this section by reviewing the literature on ion transport in nanostructured 

block copolymer electrolytes. Irwin et al. examined the relationship between morphology and 𝜅 

by blending different amounts of PS and PEO homopolymer with a symmetric SEO block 

copolymer doped with LiTFSI to obtain LAM, HEX, bicontinuous microemulsion, and 

disordered phases24. Their results suggest that reducing long range order and thus resistance 

across grain boundaries results in increased conductivity, which is consistent with the trend of 

normalized conductivity with salt concentration in Fig. 5a. Morris, Gartner, and Epps have used 

tapered block copolymer electrolytes to demonstrate the relationship between conductivity and 

the glass transition temperature78. Park and coworkers have demonstrated that introducing 

strongly interacting end groups to block copolymers can be used as a tool to tune morphology 

while holding 𝑁 and 𝜙c constant79. The resulting LAM and GYR morphologies show similar 

conductivities, in agreement with Fig. 5a and previous work80. Interestingly, end-group 

functionalization has a substantial impact on 𝜌+
81. In an early study, Cho and coworkers used 

amphiphilic dendrons containing linear PEO doped with lithium triflate salt which exhibit 

thermally accessible phase transitions to probe the structure-conductivity relationship25. 

Conductivity increases by a factor of six across the 1-d HEX to 3-d GYR transition in this 

system, which is a two times larger increase than predicted by effective medium theory. Osuji 

and coworkers have demonstrated that a magnetic field can be used to align the conducting 

domains of a PEO-based liquid crystalline diblock copolymer electrolyte, and they compared the 

conductivity of aligned systems relative to systems with randomly oriented grains. They find a 

ten-fold increase in conductivity for the HEX morphology26 and two-fold increase for the LAM 

morphology82, suggesting that deviations from model nanostructured electrolyte behavior are far 

more prominent in the HEX morphology with randomly oriented grains. These results are 
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consistent with our observation of unexpectedly low conductivity for the HEX morphology in 

SEO (see Fig. 5a).  

Conclusions   

 The nature of small molecule transport through polymer membranes is complicated when 

the membrane consists of two (or more) distinct phases. For the simplest case where the small 

molecule is insoluble in the second phase, we can perhaps make the simplification that the inert 

phase only serves to divert the paths of the small molecules. For a block copolymer electrolyte 

doped with a lithium salt, this simplification allows us to assume a three component system 

(solvent, cation, and anion) wherein ion transport is governed by the ionic conductivity, 𝜅, salt 

diffusion coefficient, 𝐷, cation transference number with respect to the solvent velocity, 𝑡+
0 , and 

thermodynamic factor, 𝑇f and the role of the insulating phase is quantified by the tortuosity, 𝜏, and 

morphology factor, 𝑓. Such a system is termed a model nanostructured electrolyte. We use this 

framework to fully characterize ion transport in a library of SEO/LiTFSI electrolytes (summarized 

in Table I) with different conducting phase volume fractions, 𝜙c, and chain lengths, 𝑁. By 

systematically varying 𝜙c and 𝑁 to obtain electrolytes with different morphologies and measuring 

the transport properties, we can begin to elucidate the role of the insulating (PS) phase.  

Our results show that 𝜅 and 𝐷 are strong functions of morphology while the current 

fraction, 𝜌+, and 
d𝑈

d ln 𝑚
 from concentration cells do not depend on morphology. The quantities 𝜌+ 

and 
d𝑈

d ln 𝑚
 are required to calculate 𝑡+

0  and 𝑇f. We fit universal curves through data from 

PEO/LiTFSI and multiple SEO/LiTFSI systems for these parameters. These fits should apply to 

any SEO/LiTFSI or PEO/LiTFSI mixture. Measurements of 𝜅 and 𝐷 from SEO block copolymer 

electrolytes with different morphologies can be presented on the same plot using a normalization 

scheme presented in Eqns. 11 and 12. We compare experimental measurements of the 
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normalized quantities 𝜅n and 𝐷n to predictions based on values of 𝜏 and 𝑓 for model 

nanostructured electrolytes in Table II (see Fig. 5). Experimental data for 𝑡+
0  and 𝑇f based on the 

assumption of model electrolytes are given in Fig. 9. Deviations from model behavior are most 

evident at low salt concentrations in 𝜅n (see Fig 5a). Conversely, the largest deviations from 

model behavior are seen at high salt concentration for 𝑇f (see Fig 9b). This suggests that, at low 

salt concentration, the structure of the block copolymer (including morphology, grain 

boundaries, defects, etc.) results in ion transport through the conducting domain that is 

fundamentally different than that which occurs in PEO homopolymer with the same salt 

concentration. Conversely, at high salt concentrations, the presence of the PS domains result in 

thermodynamic interactions of the salt which are fundamentally different than that which occurs 

in PEO homopolymer at the same salt concentration.  

The framework developed in this paper enables predicting the performance of any block 

copolymer electrolyte in a rechargeable battery. Further work32,34 is required to test these 

predictions.  

 

LIST OF SYMBOLS 

𝐴 electrochemical active area of a cell (cm2) 

BCC body centered cubic morphology with PEO-rich spheres 

BCC' body centered cubic morphology with PS-rich spheres 

𝑐 salt concentration in the conducting phase (mol cm-3) 

𝑐0 solvent concentration in the conducting phase (mol cm-3) 

𝐶 constant offset applied to 𝑈 versus ln 𝑚 data (mV) 

𝐷 salt diffusion coefficient (cm2 s-1) 

𝐷m salt diffusion coefficient of a model nanostructured electrolyte (cm2 s-1) 

𝐷n normalized salt diffusion coefficient 

DIS disordered morphology 

𝑓 morphology factor 

𝐹 faraday’s constant (96,485 C mol-1) 

GYR double gyroid morphology with a minority PEO phase 
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GYR' double gyroid morphology with a minority PS phase 

HEX hexagonally packed cylinders morphology with PEO-rich cylinders 

HEX' hexagonally packed cylinders morphology with PS-rich cylinders 

𝑖Ω initial current density calculated using Ohm’s law (mA cm−2) 

𝑖ss current density measured at steady-state during dc polarization (mA cm−2) 

𝐿 electrolyte thickness (cm) 

LAM lamellar morphology with alternating PS- and PEO-rich domains 

LiTFSI bis(trifluoromethane)sulfonimide lithium salt 

𝑚 molality of the conducting domain (mol kg-1) 

𝑚r molality of the conducting domain of the reference electrolyte in a 

concentration cell (mol kg-1) 

𝑀EO molar mass of an ethylene oxide monomer (44.05 g mol-1) 

𝑀LiTFSI molar mass of LiTFSI (287.08 g mol-1) 

𝑀PEO number averaged molecular weight of PEO (kg mol-1) 

𝑀PS number averaged molecular weight of PS (kg mol-1) 

𝑀S molar mass of a styrene monomer (104.1 g mol-1) 

𝑁 number of repeat units in a polymer or block copolymer chain 

𝑁𝐴 Avogadro’s number (6.022×1023 mol-1) 

𝑁i number of repeat units of component i in a block copolymer chain 

PEO poly(ethylene oxide) 

PS polystyrene 

𝑟 molar ratio of lithium ions to ethylene oxide moieties, 𝑟 = [𝐿𝑖]/[𝐸𝑂] 

𝑅 ideal gas constant (8.314 J mol-1 K-1) 

𝑅b bulk resistance of the electrolyte measured by ac impedance spectroscopy (Ω) 

𝑅i,0 interfacial resistance measured by ac impedance spectroscopy before dc 

polarization (Ω) 

𝑅i,ss interfacial resistance measured by ac impedance spectroscopy at steady-state 

during dc polarization (Ω) 

SAXS small angle X-ray scattering 

SEO polystyrene-block-polyethylene 

SEO(x-y) SEO with 𝑀PS = x kg mol-1 and 𝑀PEO = y kg mol-1 

𝑡 time (s) 

𝑡+
0  transference number of the cation with respect to the velocity 

of the solvent 

𝑇 temperature (K) 

𝑇f thermodynamic factor 

U open circuit potential of a concentration cell (mV) 

U' open circuit potential of a concentration cell offset by a constant, 𝐶 (mV) 

∆𝑉 dc potential drop applied across a symmetric cell (mV) 

𝑣c volume of the conducting phase per ethylene oxide monomer (nm3) 

𝑣EO volume of the ethylene oxide monomer at 90 °C (0.0682 nm3) 

𝑣S volume of the styrene monomer at 90 °C (0.167 nm3) 
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𝑧+ charge number of the cation 

 

GREEK 

𝛾+− mean molal activity coefficient of the electrolyte 

𝜅 ionic conductivity of an electrolyte (S cm-1) 

𝜅m ionic conductivity of a model nanostructured electrolyte (S cm-1) 

𝜅n normalized ionic conductivity 

𝜅nb ionic conductivity of an electrolyte measured in a cell with non-blocking 

electrodes (S cm-1) 

𝜇+, 𝜇− electrochemical potential of the cation and anion, respectively (J mol-1) 

𝜇e electrochemical potential of the electrolyte (J mol-1) 

𝜈+, 𝜈− number of cation and anions, respectively, in the dissociated salt  

𝜌+ current fraction 

𝜌c density of the conducting phase (g cm-3) 

𝜌PEO density of PEO at 90 °C (1.07 g cm-3) 

𝜌PS density of PS at 90 °C (1.03 g cm-3) 

𝜏 tortuosity factor 

𝜙c volume fraction of the conducting phase in a salty block copolymer 

𝜙EO volume fraction of PEO in a neat block copolymer 
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