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SUMMARY

Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine 

three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation 

in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis 

through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of 

genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We 

then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-

en-Y gastric bypass, identifying regions where both the location and direction of methylation 

change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was 

deemed significant by GWAS alone. Functional analysis of genes associated with these regions 

revealed four genes with roles in insulin resistance, demonstrating the potential general utility of 

this approach for complementing conventional human genetic studies by integrating cross-species 

epigenomics and clinical genetic risk.

INTRODUCTION

Type 2 diabetes mellitus (T2D) is a metabolic disorder with a rapidly increasing worldwide 

prevalence. T2D affects 300 million adults worldwide and that number is predicted to rise to 

above 430 million by 2030 (Chen et al., 2012). Although T2D has a significant genetic risk 

component, as determined genome-wide association studies (McCarthy, 2010), the 

heritability estimate is only 21% when looking across all age groups (Almgren et al., 2011). 

These low heritability estimates, coupled with the rapid increase in worldwide prevalence, 

suggests a strong role for environmental risk factors. As an example, recent work on the 

efficacy of Roux-en-Y gastric bypass (RYGB) as a treatment for obesity has found that this 

procedure can have a profound positive effect on T2D-related metabolic indicators 

(Mingrone et al., 2012).

Epigenetics, the study of non-DNA sequence based information that is replicated during cell 

division, such as DNA methylation, has been suggested as a natural integrator of genetic 

susceptibility and environmental exposure in common disease (Bjornsson et al., 2004). 

Epigenetics has also attracted considerable scientific and lay attention due to its dynamic 

nature, association with common disease (Cui et al., 2003), and reversibility under targeted 

therapies (Sharma et al., 2010).

Most common human diseases are explained to a very limited degree by known individual 

common genetic variants, with ~3.4% of risk profile score explained for psychiatric 

disorders like schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics, 

2014), and ~10.7% for T2D (Consortium et al., 2013). This combination of limited genetic 

causality, environmental influence and persistence over long time periods suggests a likely 

role for epigenetics in common human disease. However, epigenetic studies have their own 
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limitations, including the need in most cases to use cells appropriate to the disease under 

study, confounding effects such as age, and the often considerable difficulty in designing 

replication sets, which are much easier in purely genetic studies because of the universality 

of the sample type (DNA from blood). A number of methodologies have been developed by 

our and other groups to adjust for cell type composition, confounding variables, and 

replication studies (which are typically much smaller) (Houseman et al., 2012; Liu et al., 

2013; Montano et al., 2013).

There have been limited epigenetic analyses of T2D and associated metabolic traits thus far. 

Studies of pancreatic islets have found methylation differences between T2D patients and 

non-diabetic controls (Dayeh et al., 2014). Similar changes have also been found in 

peripheral blood leukocytes from obese humans early after RYGB (Kirchner et al., 2014). 

Two studies examining DNA methylation related to exercise and T2D status found 

epigenetic changes overlapping the TCF7L2 locus (Ronn et al., 2013) (Toperoff et al., 

2012). Finally, one study that examined methylation in skeletal muscle from obese and lean 

subjects at 14 individually-selected loci found that methylation in obese subjects reverted to 

lean methylation levels after RYGB (Barres et al., 2013).

Here, we established an approach utilizing two species to identify candidate genes involved 

in obesity and T2D through epigenetic mechanisms. We first examined the epigenetic 

consequences of a high-fat diet in a carefully controlled experimental mouse obesity setting. 

We then replicated across species—in humans—by analyzing adipose tissue from a cohort 

that both reproduces and reverses a phenotype similar to the obese mouse. The use of 

samples from the same subjects pre- and post-RYGB allows a human isogenic comparison 

of the effect of obesity-induced metabolic disturbances. This cross-species approach exploits 

the power of evolutionary selection, whose mechanisms have survived the 50 million year 

separation between mouse and human, in a more comprehensive manner than simple 

replication from human set to human set, and may better identify functionally important 

environmental targets. We lastly stratified these cross-species obesity-associated regions 

using genetic association data from a large genome-wide association study (GWAS) for 

T2D to more directly link our obesity-derived phenotypes with human T2D. As a result of 

this approach, we are able to identify four genes with roles in insulin resistance, suggesting 

that this cross-species approach provides a powerful experimental system for identifying the 

genomic variation associated with common disease.

RESULTS

Alterations in DNA methylation in mouse adipocytes produced by high-fat diet

To detect DNA methylation differences, we used the Comprehensive High-throughput 

Array-based Relative Methylation (CHARM) method that in its current form can assay over 

5 million CpG sites in mouse and 7.5 million CpG sites in human. In 12 adipocyte samples 

extracted from mouse adipose tissue, we find 232 differentially methylated regions (DMRs) 

correlated with diet status (Table 1). As an example, when comparing adipocytes from high-

fat-fed mice versus low-fat-fed mice, we found hypermethylation overlying the promoter of 

phosphoenolpyruvate carboxykinase 1 (Pck1, Figure 1A). PEPCK, the product of Pck1, 

catalyzes a rate-limiting step in gluconeogenesis, is essential for lipid metabolism in adipose 
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tissue, is known to be regulated by insulin, and has been linked to lipodystrophy and obesity 

in mice (Beale et al., 2004).

In addition to the high-fat versus low-fat analysis, even more DMRs were detected when 

analyzing methylation differences related to the metabolic phenotypes of body weight, 

fasting glucose, and insulin and glucose tolerance test area-under-curve (ITT/GTT AUC) 

values (Table 1, Table S1). One example of a mouse GTT-associated DMR is in the Fasn 

gene, which produces fatty acid synthase. Most DMRs found were significantly associated 

with more than one trait, which is not entirely unexpected as the phenotypes themselves are 

highly correlated (Figure S1).

We additionally examined DNA methylation in pancreatic islets purified from whole mouse 

pancreata and hepatocytes extracted from mouse liver tissue. We found significant 

correlations between methylation and mouse diet and weight in pancreatic islets, and 

correlations between methylation and weight and ITT in hepatocytes (Table S1).

Pooling tissues together and surveying for DNA methylation changes in common across 

tissues yielded no significant results.

Gene ontology for mouse DMRs

We implemented gene set analyses to assess the overall biological importance of the DNA 

methylation changes we observed in mouse adipocytes. The genome-wide significant 

adipocyte DMRs were near genes that were significantly overrepresented in lipid metabolic 

and immune/inflammatory pathways compared to the background list of genes represented 

on our array, with enrichment Q-values < 9.7*10−3 (Table S2). Examining hyper- and hypo-

methylated DMRs separately in high-fat-fed obese mice, we observed that the metabolic 

pathway enrichment was derived from genes near hypermethylated DMRs, while the 

inflammatory pathway enrichment was present mainly in genes near hypomethylated DMRs.

Inflammatory and immune related systems are known to be upregulated in adipocytes 

specifically in both obesity and T2D (Hotamisligil, 2010). Similarly, recent work has shown 

adipose de novo lipogenesis downregulation associated with metabolic dysfunction (Roberts 

et al., 2009). These pathways, however, have not previously been shown to be significantly 

associated with methylation changes in a diet-induced obesity phenotype.

Methylation replication in mice and associated gene expression studies

We then tested for replication of the methylation results at nine DMRs in adipocytes and 

three DMRs in pancreatic islets in an independent set of 18 mice (Figure 2A, Table S3). The 

625 genome-wide significant adipocyte DMRs have FDR Q-values ranging from 0.004 to 

0.05. In order to determine whether our results would replicate throughout this range, we 

examined a subset of DMRs with levels of statistical significance that spanned from the 

most significant to just below the 0.05 cutoff. Mice used in the replication set were also 

reared on a high-fat diet but were separate from those used for CHARM. Nine mouse 

adipocyte DMRs were assayed by bisulfite pyrosequencing. Eight of these regions had at 

least one CpG showing significant differential methylation in the same direction as detected 

by CHARM.
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Although these were fractionated cells under investigation, to further ensure that the results 

were not due to cell-type shifts in the high-fat-fed obese mice resulting from the infiltration 

of immune cells into adipose tissue, we used quantitative PCR to characterize the expression 

of multiple macrophage- and adipocyte-specific markers in our purified adipocyte samples 

from low-fat-fed and high-fat-fed mice. We saw no significant change in the levels of 

expression of the macrophage (inflammatory) markers F4/80, Cd14, or Cd68, and we did 

see the expected obesity-related within-adipocyte changes of the adipocyte markers AdipoQ 

and Ccl2 (Table S4).

To examine whether these methylation changes between high-fat- and low-fat-fed mice 

involved changes in the expression of nearby genes, we used quantitative PCR (qPCR) to 

examine the expression of thirteen genes near genome-wide significant DMRs (Figure 2B). 

We used qPCR to examine mRNA from the same adipocytes and mice that were analyzed 

by CHARM. Of the thirteen genes examined, nine showed significant changes in mRNA 

expression in the opposite direction as methylation changes (Figure 2B).

Furthermore, we assessed whether these DNA methylation changes correlated with 

previously published genome-wide gene expression data in a similar cohort (Xu et al., 

2003). We saw significant inverse correlations between diet-related methylation changes and 

diet-related gene expression changes (Figures S2A and S2B). These results compare 

favorably to other functional analyses of discovered DMRs (Kim et al., 2010). Taken 

together, these data show that we find robustly significant DMRs in mice that correlate with 

metabolic traits, that these DMRs replicate in separate animals, and that methylation at many 

of these regions appears to have a functional effect on gene expression.

Mouse DMRs replicated evolutionarily in human adipose tissue

We reasoned that many functionally relevant DMRs in mice exposed to a high-fat diet serve 

an important metabolic function that would be conserved across species and often 

susceptible to similar environmental cues. Therefore, to determine whether the methylation 

changes observed in mouse adipocytes could be replicated in an evolutionarily divergent 

cohort, we performed CHARM analysis on human subcutaneous adipose tissues from 7 lean 

subjects and 14 obese sex-matched insulin resistant subjects of the same age range, as well 

as 8 obese subjects post-RYGB.

We first examined the replication of mouse adipocyte DMRs in human adipose tissue from 

obese versus lean. We observed very strong overlap between DMRs in human obese versus 

lean tissue and DMRs in high-fat-fed versus low-fat-fed mouse adipocytes (all p<10−15, 

Figure S3A, rightmost five bars), showing that there is a strong correlation between areas 

that are regulated by methylation in metabolic dysfunction in both mice and humans.

Next, in order to determine which mouse methylation changes would replicate in human, we 

determined that out of a total of 625 genome-wide significant mouse adipocyte DMRs, 576 

had homologous regions on the human genome (hg19), calculated via the liftOver UCSC 

tool (Hinrichs et al., 2006), and 497 had human CHARM probes within 5kb. This is a 

remarkably high fraction (86.3%), suggesting that our assay method, CHARM, is highly 

comprehensive, and also that the location of CpG regions is strongly conserved in evolution. 
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Of the 497 conserved DMRs, 249 (50.3%) showed significant differential methylation 

(p<0.05) between obese and lean people (Table S5). These numbers were similar when 

analyzing differential methylation before and after RYGB surgery (227 out of 497). As a 

final restrictive step in using human methylation to validate our mouse results, we 

determined that 170 (68%) of these regions had a consistent direction of methylation change 

between high-fat-fed obese mice and obese humans, such that if a particular region had 

higher methylation in high-fat-fed mice, that region would also have higher methylation in 

obese humans and vice versa.

When more restrictive human methylation significance cutoffs are used, the percentage of 

regions with consistent directionality (true positive rate) rises, but the total number of 

retained regions drops, with 67/77 (87%) directionally consistent at human obesity P-values 

<0.005, and 25/25 (100%) consistent at P-values < 0.0005 (Figure S3B). All 170 

directionally conserved regions were associated with the metabolic phenotypes of fasting 

glucose, GTT, and/or ITT in addition to mouse diet status. Furthermore, 134 of these regions 

had a consistent effect directionality between obesity- and RYGB surgery-related 

methylation (e.g. higher in obesity and pre-surgery and vice versa), and a further 105 had 

post-surgery methylation values that were in between lean and pre-surgery methylation 

values, i.e., regions where methylation in obese subjects appeared to revert towards a lean 

phenotype after surgery (enrichment p=2.8x10−3).

In Figure 3, we present two regions that have significant methylation changes in human 

adipose tissue, are in homologous regions of the genome as mouse DMRs, are directionally 

consistent with the mouse DMRs, and have human post-surgery methylation levels that have 

moved closer to the lean phenotype. These regions are over two genes; ADRBK1 

(adrenergic, beta, receptor kinase 1, Figure 3A), and KCNA3 (potassium voltage-gated 

channel, shaker-related subfamily, member 3, Figure 3B).

We also assessed whether the human adipose DNA methylation changes correlated with 

previously published human genome-wide gene expression data from obese and lean 

individuals (Arner et al., 2012). As with our mouse data, we saw a highly significant inverse 

correlation between obesity-related methylation changes and obesity-related gene expression 

changes (Figure S2A and S2B, right panels).

We performed a similar mouse-human comparison in pancreatic islets using published 

DNAm data from T2D and control subjects (Dayeh et al., 2014), showing that 67% (odds 

ratio= 7.2, p=7.2x10−6) of the mouse pancreatic islet DMRs that replicated in the human 

data had methylation change in the same direction, and that these probes were far more 

associated with human T2D status than the rest of the probes on the array (p = 1.18x10−9, 

Figure S3C), demonstrating that our mouse-derived islet DMRs are enriched for potential 

epigenetic alteration in human T2D. Finally, we also validated multiple mouse hepatocyte 

DMRs in human liver tissue, with 62.5% replicating (Table S3).
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Genetic risk loci association with overlapping regions of human and mouse methylation 
changes

We incorporated data from human GWAS for T2D using two complementary approaches 

that allow further characterization of our candidate obesity-related DMRs. GWAS summary 

statistics were obtained from the DIAGRAM (DIAbetes Genetics Replication And Meta-

analysis) T2D genome-wide association meta-analysis, comprising data from 12 separate 

GWAS studies totaling 12,171 T2D cases and 56,682 controls (diagram-consortium.org). 

We first directly explored the association between genes with obesity-related DMRs and 

genes conferring clinical genetic risk for T2D by calculating statistical enrichment of the 

GWAS regions overlapping our DMRs. We found marginally significant enrichment for 

adipose DMRs among at least marginally significant GWAS signals (GWAS p-value cutoffs 

starting with p<10−6, corresponding to enrichment p-values ranging from 0.0048 to 0.0165, 

Table S6). Given the small number of directly overlapping regions, these results are likely 

strongly influenced by the strength of the TCF7L2 signal. While much of the early literature 

on TCF7L2 focused on its role in pancreatic islets, there is growing evidence that extra-

pancreatic effects may contribute to the T2D phenotype at this locus (Nilsson et al., 2014).

We further examined statistical enrichment in the context of regulatory networks involving 

genes implicated in GWAS. Genes at 23 genome-wide significant GWAS signals (usually 

the gene nearest to the lead SNP) were directly (one-step) connected to genes near DMRs 

either by transcriptional control or direct protein-protein interaction (Figure 4A). This 

amount of interaction represents significantly more than expected by random chance (p = 

0.0206) (Figure S4), and demonstrates how genes implicated by methylation appear to be 

acting in the same pathways as genes implicated by GWAS. Similarly, expanding beyond 

one-step connections, many of the 30 regions implicated by both methylation data and 

GWAS are connected to genes identified by the mouse-only and human-mouse analyses and 

act in the same pathways (Figure 4B).

Given these results, we sought to further filter our obesity-related DMRs down to the subset 

of genes likely associated with T2D. We hypothesize that DMRs that overlap associated 

marker SNPs for T2D can identify genes with epigenetic mechanisms of risk in adipose 

tissue. As many of the DMRs overlapping GWAS T2D loci with low p-values implicate 

genes already known to be involved in T2D, obesity and related phenotypes, we therefore 

selected the subset of DMRs within genetic loci that had at least marginal statistical 

association with T2D clinical risk.

This approach reduced the 170 regions of directionally consistent and evolutionarily 

conserved methylation change in adipose tissue using the SNP-level summary statistics of 

the DIAGRAM analysis. In all, 30 cross-species and directionally conserved adipose DMRs 

directly overlapped with 27 marker SNPs (or close proxies with linkage disequilibrium > 

0.8) that had some evidence of association with T2D (at least p<0.01, Table 2; see Methods). 

We also identified ten regions where conserved pancreatic islet DMRs overlap with 

DIAGRAM SNPs (Table S7).

In these final 30 regions, not only have we connected methylation change to obesity-induced 

metabolic phenotypes across two species, but the association with T2D-associated SNPs 
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also provides a candidate mechanism for the methylation changes observed in human 

obesity and RYGB surgery. These 27 identified SNPs could potentially explain up to 2.69% 

of genetic T2D liability, though only one of these loci reached genome-wide significance in 

DIAGRAM (Morris et al., 2012). Even excluding this GWAS-positive loci (TCF7L2), 

which explains 1.12% of the variance alone, the remaining regions could explain up to 

1.57% of genetic variance in T2D susceptibility. These data suggest that for at least some of 

these loci, genetic variation underlies changes in methylation that are causal for T2D risk. It 

is also possible that these regions are also susceptible to environmental factors that influence 

local methylation and that they therefore serve to integrate genetic and epigenetic effects.

Note that this filtering-based approach is independent of assessing the statistical enrichment 

of T2D GWAS signal, either at SNP- or gene-level, within our cross-species obesity-

associated DMRs, an approach commonly used with GWAS summary statistic data. This 

approach therefore does not diminish the potential function of genes with GWAS-positive 

statistical association for T2D or our DMRs that do not overlap with GWAS-associated 

SNPs for contributing epigenetically to obesity.

We hypothesized that one mechanism by which DNA methylation and genetic variation 

contribute to T2D risk may involve enhancer activity. Using publicly available human 

enhancer maps in 86 independent cell and tissue types (Hnisz et al., 2013), we found that a 

striking proportion of DMRs mapped to adipose nuclei enhancers and super-enhancers 

(which had the largest degree of overlap across all cell types). While the background 

proportion of overlap for CHARM was 17.2% for adipose enhancers and 3.8% for super 

enhancers, 40.6% (69 overlaps, p = 1.58x10−15) and 14.7% (25 overlaps, p=5.72x10−13) of 

the directionally consistent 170 regions, and 53.3% (16 overlaps, p=5.65x10−7) and 20% (6 

overlaps, p=3.24x10−5) of the further 30 GWAS-associated regions above lie in adipose 

enhancers and super enhancers, respectively (Table S8). Thus, a major mechanism for 

methylation-mediated metabolic dysfunction is likely through epigenetic modification of 

enhancers. Note that most of these enhancers were not previously known to be related to 

T2D through conventional GWAS or other methods.

Functional analysis of genes implicated by cross-species methylation

In order to establish that our cross-species method can identify functional genes implicated 

in obesity, insulin resistance, T2D, and related research, we functionally assayed five genes. 

We selected genes with no prior association with metabolic phenotypes and that had 

methylation reversion after RYGB. As RYGB is a targeted, environmental therapy that 

improves multiple deleterious phenotypes including insulin sensitivity, we hypothesized that 

this subset of our results would be the most likely to have an effect on T2D- and obesity-

related phenotypes. We then examined the physiological effect of altering the expression of 

these genes on adipocyte cell culture models using insulin-stimulated glucose uptake assays. 

This procedure can measure the responsiveness of adipocytes to insulin, a phenotype 

disrupted in obesity. We assayed seven 3T3-L1 adipocyte cell lines, each stably expressing 

shRNAs or expression plasmids corresponding to one of the five selected genes or a suitable 

control. In order to mimic the effects of a high-fat diet, genes hypermethylated in high-fat 

adipocytes were knocked down, and genes hypomethylated were overexpressed. Significant 
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changes in glucose uptake were found for four of these five (Figure 5B). Potential roles for 

all of these genes in modulating insulin sensitivity and resistance are considered in the 

Discussion.

DISCUSSION

In mouse, we identified 625 genome-wide significant differentially methylated regions 

(DMRs) that correlate with diet-induced obesity phenotypes in adipocytes. Of these regions, 

249 had significant conserved methylation changes in human obesity, and 170 of these had 

the same direction of methylation change in both species. Thirty of these DMRs also 

overlapped with SNPs or nearby proxies that have been associated with human T2D genetic 

risk. These data show for the first time that DNA methylation changes in metabolic disease 

are conserved across species and that this conservation overlaps genomic regions where 

genetic polymorphisms have been associated with T2D. Our approach combines three lines 

of evidence – epigenetic dysregulation following high fat diet in mouse, epigenetic 

directional consistency in humans, and some evidence for clinical risk of T2D – to identify 

genes likely functionally implicated in the pathogenesis of T2D specifically through 

epigenetic mechanisms related to obesity.

In the present study, while we use nominal P-value significance to identify human 

methylation and GWAS results, we first perform a multiple comparison correction in our 

initial set of mouse DMRs using a false discovery rate algorithm. As there is a growing 

awareness that the cumulative effect of common SNPs with low minor-allele frequency 

scores potentially explain large amounts of phenotypic variability beyond that of genome-

wide significant SNPs identifiable by GWAS (Yang et al., 2010), approaches like ours that 

can use alternative methods to identify significant areas of potential genetic risk are 

necessary. The unique SNPs in these regions potentially account for 2.76% of T2D genetic 

variance, almost half of which is known by purely genetic analysis and may be 

epigenetically mediated.

We observed significant changes associated with four out of five genes assayed by insulin-

stimulated glucose uptake assay, a common indicator of insulin resistance. Screens using 

this assay and performed on sample sets not enriched for genes in gluco-insulinemic 

pathways have found a far smaller percentage of genes that will alter glucose uptake (~10%) 

(Tang et al., 2006), indicating that our method can successfully select potential targets with a 

much higher than random probability of affecting insulin sensitivity.

Three of the genes that we found had altered glucose uptake fell into the classical inverse 

methylation-gene expression correlation: Mkl1, Plekho1 and Tnfaip8l2 were all 

hypomethylated in high-fat-fed mice and obese humans, had increased gene expression in 

corresponding subjects, and, when these genes were overexpressed in cell culture 

adipocytes, exhibited decreased glucose uptake in response to insulin, which would fit with 

the increased insulin resistance commonly observed in obesity and diabetes. While none of 

these genes have previously published roles in insulin resistance, several have suggestive 

links to metabolic phenotypes. Mkl1 is known to be a transcriptional coactivator of serum 

response factor (SRF), which been associated with insulin resistance in skeletal muscle (Jin 
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et al., 2011). Similarly, PLEKHO1 has recently been shown to inhibit AKT/PI3K signaling 

(Zhang et al., 2014), a pathway known to be involved in insulin signaling. With regards to 

the direction of glucose uptake change, we note that insulin signaling induces both positive 

and negative feedback within affected cells (Gual et al., 2005), and without a methylation-

gene expression candidate mechanism it is not possible to determine which feedback loop 

the methylation changes are involved with.

It is worth noting that as these genes did not contain common variants that passed the 

genome-wide significant GWAS threshold, they would not have been identified by GWAS 

alone. Similarly, only four out of these five genes had significant gene expression changes. 

This functional assay illustrates how our method of combining cross-species methylation 

data with GWAS results for common SNPs can implicate genes that would not have been 

detected otherwise.

Recent work in our laboratory has identified regions of the genome where DNA methylation 

acts to mediate a genetic effect on rheumatoid arthritis (Liu et al., 2013), and the 

methylation changes in obese humans could potentially act in an analogous role. Our results 

in obese and insulin-resistant mouse models, however, identify methylation differences even 

between inbred mice, and thus are definitively the result of environmental stimuli rather than 

a genetic underpinning. The fact that we see many of these same methylation changes in 

obese humans, and that these changes are located over regions with known genetic links to 

T2D, implies that DNA methylation levels could be integrating and mediating genetic and 

environmental causes of metabolic disease at specific genomic loci.

It is encouraging that many of the new genes described here show pathway relationships to 

known genetic associations (Figure 4). For example, PRC1, a regulator of cytokinesis, is 

associated with T2D by a genome-wide significant DIAGRAM result, but it has no known 

connection to any other gene implicated by genome-wide significant DIAGRAM loci. Its 

transcription, however, is regulated by FOXO1, an important transcription factor in 

gluconeogenesis, insulin signaling and adipocyte differentiation that we find to be 

differentially methylated in both mouse and human obesity. FOXO1 is in turn regulated by 

TCF7L2, one of the strongest GWAS results. Furthermore, combining genes from all levels 

of this study creates potential regulatory networks that include genes with known 

involvement in T2D but also incorporate closely connected genes with no previously known 

obesity or T2D association that are shown to be involved with obesity and insulin resistance 

in this story (Figure 4B). Some of these genes, such as FASN and APP, appear to be loci in 

this network, and could represent potentially important targets.

There are many approaches for, and important applications of, interrogating the association 

of functional and genetic elements using GWAS summary statistics (Consortium et al., 

2012; Jostins et al., 2012; Nicolae et al., 2010), but our approach is unique in its leverage of 

carefully controlled biological systems to directly integrate cross-species functional 

epigenomics and clinical genetic risk by stratification. This work, of course, does not 

address or diminish the many GWAS associations that are not associated with methylation 

changes. Additionally, it is important to note that while we do not directly address the issue 

of methylation causality in this study, causality is, at the least, multi-tiered. Our new 
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functional data certainly indicates that these epigenetic changes are functionally proximate 

to T2D-relevant phenotypes and therefore important for discovery and for clinical 

translation. Current systems biology literature challenges conventional notions of causality 

as there is both positive and negative feedback in most complex living systems (Noble, 

2012).

The approach described in this study may have broad applicability to identify candidate 

genes that may better dissect mechanisms and potential routes of treatment in common 

human disorders, such as cancer and cardiovascular disease. The accessibility of a limited 

cohort of relevant patients with well characterized clinical materials before and after disease 

exposure is plausible for cross-species replication. This type of analysis can generate a 

reliable, functional candidate disease gene set that can be used to interrogate SNP datasets 

and lend additional support to specific targets that would not ordinarily pass the genome-

wide correction threshold. The end result is a process that can integrate information from 

multiple complementary sources to identify potential targets essential for the pathogenesis of 

common diseases, such as obesity or T2D, that do not involve highly penetrant single genes, 

but rather arise from multiple defects along pathways that integrate genetic, epigenetic, and 

environmental cues.

EXPERIMENTAL PROCEDURES

For full details of all methods (and primer sequences), please see Supplemental 

Experimental Procedures.

Mouse Sample Preparation

All animal protocols were approved by the Institutional Animal Care and Use Committee of 

The Johns Hopkins University School of Medicine. Male C57BL/6 mice were purchased 

from Charles River. Mice were fed a high-fat diet ormatched control low-fat diet. Diet was 

provided for a period of 12 weeks, beginning at 4 weeks of age. At termination of the study, 

animals were fasted overnight, euthanized, and tissues were collected.

Intraperitoneal glucose and insulin tolerance tests

Cohorts of mice (between 20 and 24 weeks of age) were injected with glucose or insulin. 

Animals were fasted overnight (16 h) prior to the glucose tolerance test. For the insulin 

tolerance test, food was removed 2 h prior to insulin injection. Serum samples were 

collected and glucose concentrations determined at six time points after injections.

Mouse Hepatocyte Isolation

A protocol for primary hepatocyte isolation was performed using Collagenase (BD 

Biosciences) and gradient centrifugation as adapted from previously published methods 

(Berry and Friend, 1969; Li et al., 2010).

Mouse Primary Adipocyte Isolation

Mature adipocytes were isolated from mouse fat pads using Collagenase (Sigma) and 

resuspension washes as previously described (Stahl et al., 2002).
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Pancreatic Islet Isolation

Pancreatic islets used for CHARM were isolated as previously described (Hussain et al., 

2000). For the pancreatic islets used in the replication set, whole pancreases were obtained 

from high-fat-fed and low-fat-fed mice, stained for insulin, cryosectioned into 8μm sections, 

and then laser-capture microdissection was used to isolate pancreatic islets.

3T3-L1 transduction and transfection

3T3-L1 cells were transducted with Sigma Mission™ lentiviral particles (Sigma) and 

transfected with overexpression plasmids using Lipofectamine 3000 (Life Technologies) as 

per the respective manufacturers’ protocols.

Cell culture and glucose uptake assay

3T3-L1 cell lines (ATCC) were maintained and differentiated as per manufacturer’s 

protocol, and glucose uptake assays were performed on differentiated knock-down and over-

expression lines.

Clinical Cohort

This study was approved by the Regional Ethics Committee of Stockholm. All participants 

provided informed oral and written consent. Clinical characteristics are shown for the obese 

men before and after RYGB surgery (n = 14, 8, respectively) and non-obese (normal weight) 

men with a similar age range (n = 7). Full information for human subjects can be found in 

Table S9.

Human Sample Surgery and Subcutaneous Adipose Tissue Biopsies

A standard laparoscopic RYGB with a 1 m Roux limb was performed. Subcutaneous 

abdominal adipose biopsies (50–100 mg) were obtained from the obese and non-obese 

(normal weight) subjects. Biopsies were obtained at the beginning of RYGB surgery (obese 

subjects) or elective laparoscopic cholecystectomy (lean subjects). Biopsies taken from the 

obese subjects 6 months after RYGB surgery were obtained after an overnight 12 hour fast 

from the same surgical incision as the initial biopsy.

CHARM DNA methylation analysis

Genomic DNA from all samples was purified with the MasterPure DNA purification kit 

(Epicentre) following the manufacturer’s protocol. Genomic DNA was fractionated, 

digested with McrBC, gel-purified, labeled and hybridized to a CHARM microarray as 

described (Ladd-Acosta et al., 2010). The array design specifications are freely available on 

our website (rafalab.jhu.edu). Subsequent technical pre-processing, normalization and 

correction for batch effects were performed as previously described (Jaffe et al., 2012).

Bisulfite Pyrosequencing

Genomic DNA from each replication sample was bisulfite treated and PCR amplified using 

nested primers. DNA methylation was subsequently determined by pyrosequencing with a 

PSQ HS96 (Biotage) as previously reported (Migheli et al., 2013). Artificially methylated 
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control standards of 0, 25, 50, 75 and 100% methylated samples were created using mixtures 

of purified and SssI-treated whole genome amplified genomic DNA.

Quantitative PCR analysis

Validated primers for all genes were taken from PrimerBank (Wang and Seed, 2003) and 

synthesized by Integrated DNA Technologies (Coralville, IA, USA). RNA was extracted 

with Trizol reagent (Life Technologies, Carlsbad, CA, USA), cDNA was created with 

Quantitect Reverse Transcriptase Kit (Qiagen, Venlo, Netherlands), and quantitative-PCR 

was performed with Fast SYBR Green (Applied Biosystems, Foster City, CA, USA) on a 

7900HT Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). RNA 

levels were normalized to same-sample 18S RNA levels.

GO annotation

We analyzed GO annotation using the GOrilla tool (Eden et al., 2009). Enrichment was 

calculated by comparing genes identified from our analysis to a background of all genes 

detectable on the appropriate array.

Whole-genome gene expression analysis

Whole genome gene expression data for mouse and human analogues of our study was 

downloaded from GEO (Barrett et al., 2013). The mouse data was already pre-processed, 

and the human data was pre-processed using Robust Multi-array Averaging (RMA) from the 

Affy R library (Bioconductor). The gene expression data was then matched against the 

DMRs closest to corresponding genes, the log fold change (logFC) of the gene expression 

was plotted against the average value of the smoothed effect estimate within the DMR, and 

p-values were generated using t-tests based on Pearson’s correlation coefficient.

Enrichment between human and mouse DMRs

The liftOver tool from the UCSC genome browser transformed the coordinates from the 

human DMRs from the hg19 human genome to the mm9 mouse genome, as implemented in 

the rtracklayer Bioconductor package (Lawrence et al., 2009). For each pair of DMR lists, 

one from the two lifted-over human DMRs and another from the 25 mouse trait DMRs 

(Table S1), we calculated the number of DMRs at given within-specific p-value significance 

levels, and also the number that overlapped within 5kb across species. Enrichment tests were 

chi-squared tests based on the number of species-overlapping significant DMRs, then DMRs 

only significant within each species, and finally the number of lifted probe groups that were 

not significant in either species.

Cross-species statistical analysis

We combined significant adipocyte mouse DMRs (at FDR < 5%) across the five traits 

(glucose, GTT, ITT, weight, and diet) by retaining the maximal coordinates over 

overlapping cross-trait DMRs resulting in 625 independent DMRs associated with at least 1 

trait in adipocytes in mouse. These regions were lifted over from the mouse mm9 genome 

build to the human hg19 genome build as implemented in the rtracklayer Bioconductor 

package (Lawrence et al., 2009). These DMRs were annotated to the nearest human charm 
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probe group based on the annotation within 5kb. We then computed a difference and 

corresponding p-value in obese versus lean and then in obese humans pre-versus post RYGB 

surgery using linear regression, and retained the minimum p-value, number of probes with p 

< 0.05, and the slope at the smallest p-value, within each of the mapped DMRs.

DIAGRAM GWAS analysis

We integrated GWAS results into the mouse-human DMRs by obtaining publicly available 

results from the DIAGRAM meta-analysis (http://diagram-consortium.org/downloads.html; 

Stage 1 GWAS: Summary Statistics download).

We estimated the variance in disease susceptibility based on the algorithms provided in the 

Methods section of Morris et al (Morris et al., 2012) and from Wray et al (Wray et al., 2010) 

using 1000 Genomes-derived risk allele frequencies and assuming a disease prevalence of 

8% for a given collection of risk SNPs.

We assessed potential enrichment between the DMRs and the GWAS results using two 

complementary approaches – the first assessed the enrichment in genome location between 

DMRs and the LD blocks from the GWAS (Collado-Torres and Jaffe, 2014), and the second 

assessed enrichment in gene symbols based on all genes directly connected (one-step) to 

genes linked to T2D with genome-wide significance by the DIAGRAM meta-analysis based 

on regulatory networks generated using QIAGEN’s Ingenuity IPA (Ingenuity® Systems, 

www.ingenuity.com)

Data availability

Both raw and processed microarray data has been uploaded to GEO, the Gene Expression 

Omnibus, as series record GSE63981.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide significant methylation changes related to diet-induced obesity in 
C57BL/6 mice
(A) Two genome-wide significant DMRs are hypermethylated in adipocytes purified from 

mice raised on a high-fat diet. Each point represents the methylation level in adipocytes 

from an individual mouse at a specific probe, with smoothed lines representing group 

methylation averages. These points are colored blue for lean mice and red for obese mice. 

(B) Body weight (grams) and glucose tolerance (AUC) are associated with methylation in 

adipocytes at genome-wide significant levels. Each point in the top panels represents one 

probe, with the y-axis representing the Pearson correlation coefficients of the probes with 

the analyzed phenotype. Dotted lines represent the extent of the DMR as generated 

automatically via CHARM. The bottom panels display gene location information for the 

chromosomal coordinates on the x-axis.
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Figure 2. Replication of mouse methylation changes in additional mice, and associated gene 
expression changes
(A) Methylation changes observed after CHARM analysis at two genome-wide significant 

DMRs are replicated using bisulfite pyrosequencing. Red boxes indicate CpGs assayed in 

pyrosequencing. For the lower pyrosequencing plots, the y-axis represents methylation, and 

individual CpGs are plotted along the x-axis. Purple dots represent control DNA artificially 

methylated to have 0, 25, 50, 75 and 100% methylation. (B) Gene expression changes for 

genes near genome-wide significant mouse adipocyte DMRs. RNA levels were normalized 

to same-sample 18S RNA measurements and are displayed as [CT (high-fat samples) – CT 

(low-fat samples)]2. Error bars represent standard error of the CT differences between 

groups. * p<0.05, ** p<0.005, *** p<0.0005. The direction of the genome-wide significant 

CHARM DMR closest to the gene is denoted below the gene names; + and − represent 

regions hyper- or hypomethylated in the high-fat samples, respectively. See also Figure S2 

for whole-genome gene expression correlations, and Tables S4 and S5 for pyrosequencing 

and tissue purification, respectively.
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Figure 3. Overlapping methylation changes in human and mouse adipose tissue
Two genome-wide significant DMRs found in mouse adipocytes over Adrbk1 (A, top) and 

Kcna3 (B, top) are shown along with the corresponding methylation changes in human 

adipose tissue in (A, bottom), and (B, bottom). For the panels denoting methylation, each 

point represents the methylation level from an individual mouse or human at a specific 

genomic location, with smoothed lines representing group methylation averages. Y-axis – 

methylation values. Below each methylation plot is a panel showing genomic coordinates 

for the respective species and any genes at those coordinates. See also Figure S3 for tissue 

and species overlaps, and Tables S6 and S7 for conserved adipose mouse DMRs in human 

and for enrichment between DIAGRAM and conserved DMRs, respectively.
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Figure 4. Diagrammatic representation of the interactions between epigenetically conserved and 
genetically-associated genes implicated in this study
Generated using QIAGEN’s Ingenuity IPA (Ingenuity® Systems, www.ingenuity.com), 

these diagrams represent the connections between genes implicated in our analyses. A) 

Genes with genome-wide significant linkage to T2D in the DIAGRAM meta-analysis were 

connected to genes near directionally conserved cross-species DMRs. Genes with no 

connections were dropped. B) Starting with a set of 23 genes near T2D-associated 

directionally conserved cross-species DMRs, this network was grown by adding genes near 

species-conserved and mouse-only genome-wide significant DMRs in order to represent one 

potential regulatory network. Gene colors explained in within-figure legend. See also Figure 

S4 for the permutation analysis of the enrichment of interactions in Figure 4A.
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Figure 5. Overexpression and shRNA-mediated knock down of selected genes in 3T3-L1 
adipocytes
Selected genes from the set of 30 species conserved and T2D-SNP overlapping adipose 

DMRs were either stably overexpressed (A) or knocked down with shRNA (B). Glucose 

uptake is plotted as fold difference from normal, and significance was determined by two-

way ANOVA modified by Bonferroni correction denoted as follows: * p<0.05, ** p<0.01, 

*** p<0.001. (C) DNA methylation and gene expression levels for high-fat-fed mice and 

obese human versus low-fat-fed mice and lean humans (e.g., “↓“ indicates 

hypomethylation / lower gene expression in high-fat-fed and obese compared to low-fat-fed 

and lean). Bold arrows indicate significant changes.
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Table 1

Genome-wide significant mouse DMRs

Tissue Analysis Q-val < 0.05 Q-val < 0.1

Diet 232 448

Weight 183 288

Adipocytes Fasting Glucose 235 571

GTT 0 3

ITT 294 419

Q-values generated based upon comparison of observed DMR areas to areas generated by 1000 random permutations of phenotype/methylation 
associations. See also Table S1 for a full list of all mouse DMRs.
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Table 2

Mouse-human DMRs with genetic T2D risk loci association

Gene Name Relative location of
DMR

Distance to
TSS

RYGB
Reversion

DIAGRAM
P-value

Tcf7l2 inside intron 43058 − 4.90E-68

Tcf7l2 inside intron 77345 − 4.90E-68

As3mt overlaps 5' 0 + 9.60E-06

Etaa1 inside intron 618 + 4.70E-05

Tnfsf8 overlaps 5' 0 − 0.00029

Plekho1 overlaps exon 4965 + 0.00045

Tnfaip8l2 inside intron 337 + 0.00045

Akt2 inside intron 20427 − 0.00049

DIAGRAM GWAS 0.001 cutoff

Lhfpl2 inside intron 2490 + 0.001

Mkl1 overlaps 5' 0 + 0.0014

BC048644 (Car5a) overlaps exon 146 + 0.0015

Rgs3 downstream 108842 + 0.0019

Fgd3 inside intron 11100 + 0.002

Stau1 overlaps 5' 0 + 0.0022

Tmcc3 inside intron 43772 + 0.0025

Tbx3 inside exon 12714 − 0.0029

Gstz1 inside intron 10332 + 0.0029

Taok3 inside intron 549 + 0.0036

Bnip3 inside intron 1863 − 0.0039

Dlst overlaps 5' 0 + 0.0053

Kcna3 close to 3' 2192 + 0.0064

Cln8 inside intron 3055 + 0.0065

Cd37 exon 2687 + 0.0069

Nfib inside intron 100380 − 0.0071

Pck1 promoter 453 + 0.0072

Pck1 overlaps 5' 0 + 0.0072

Pcx inside intron 59049 + 0.0073

Hoxd3 inside intron 7307 + 0.0084

Cd33 overlaps 5' 0 + 0.0087

Evl exon 157 + 0.0099

Shown are the names of the nearest gene to the mouse and human differential methylation, the position of the DMR relative to the gene, the 
distance to the transcriptional start site (TSS), whether the direction of methylation change (sign of smoothed effect statistic) post-RYGB surgery 
reverts toward lean subject methylation levels (RYGB Reversion), and the p-value of the T2D genetic association in the region. See also Table S7 
for an analogous table with the pancreatic islet results instead and Table S8 for conserved adipose DMRs that overlap with adipose enhancers.

Cell Metab. Author manuscript; available in PMC 2016 January 06.




