
UC Berkeley
UC Berkeley Previously Published Works

Title
Refolding planar polygons.

Permalink
https://escholarship.org/uc/item/58k4r7mx

Authors
Iben, Hayley N
O'Brien, James F
Demaine, Erik D

Publication Date
2006

Supplemental Material
https://escholarship.org/uc/item/58k4r7mx#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/58k4r7mx
https://escholarship.org/uc/item/58k4r7mx#supplemental
https://escholarship.org
http://www.cdlib.org/

Proceedings of the 2006 Symposium on Computational Geometry

Refolding Planar Polygons

Hayley N. Iben∗ James F. O’Brien∗ Erik D. Demaine∗∗

iben@eecs.berkeley.edu job@eecs.berkeley.edu edemaine@mit.edu

∗University of California, Berkeley ∗∗Massachusetts Institute of Technology

Abstract
This paper describes an algorithm for generating a guaranteed-
intersection-free interpolation sequence between any pair of com-
patible polygons. Our algorithm builds on prior results from link-
age unfolding, and if desired it can ensure that every edge length
changes monotonically over the course of the interpolation se-
quence. The computational machinery that ensures against self-
intersection is independent from a distance metric that determines
the overall character of the interpolation sequence. This decoupled
approach provides a powerful control mechanism for determining
how the interpolation should appear, while still assuring against
intersection and guaranteeing termination of the algorithm. Our al-
gorithm also allows additional control by accommodating a set of
algebraic constraints that can be weakly enforced throughout the
interpolation sequence.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Shape Interpola-
tion

General Terms: Algorithms

Keywords: Polygon interpolation, morphing, shape transforma-
tion, refolding.

1 Introduction
In this paper we describe an algorithm for interpolating, or “mor-
phing,” between two planar, non-self-intersecting polygons. We as-
sume only that the polygons are simple (no initial self-intersections)
and that they form a compatible pair (the same, finite, number
of vertices in both polygons). With these assumptions, our algo-
rithm is guaranteed to always find a continuous interpolation path
between the two input polygons, and every intermediate polygon
along the computed interpolation path is guaranteed to be intersec-
tion free.

Our algorithm is flexible in that it can accommodate substantial
control over the character of the resulting interpolation sequence
through two distinct methods. The first is the specification of a de-
sired distance metric between a polygon pair. The algorithm will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

1

2

3

4

5

6

Figure 1. An intersection-free interpolation sequence generated
using our algorithm. The first and last frames are the two polygons
being interpolated. For this example, all edge lengths were held con-
stant, and the distance metric was the l2-norm on the vector of vertex
positions. The total computation time was 1.6 minutes.

greedily move the polygons towards each other by following the
gradient of this metric and detouring to avoid intersection. Second,
additional algebraic constraints may be specified on the vertices
in the intermediate polygons. The algorithm will attempt to stay
within the tangent space of the constraint set, breaking constraints
only when the constraints become incompatible to the conditions
preventing intersection. In the special case, where the constraints
require that the edge-lengths change monotonically, we can guar-
antee that the constraints never conflict with intersection avoidance.

Our technique builds on recent theoretical results from discrete
and computational geometry, specifically [8] and [21], which show
that any planar collection of polygons and polylines can be “un-
folded” to an “outer-convex” configuration. In the case of a single
polygon, these results imply that any arbitrary polygon can be con-
tinuously deformed into a convex polygon without changing any of
its edge lengths and without self-intersection along the way. The
motions implied by [8] and [21] are difficult to compute directly,
but based on the existence of these motions, other researchers have
shown in [5] that a much simpler class of motions can also unfold
any collection of polygons and polylines to an outer-convex config-

71

uration. The simpler motions are easy to compute, corresponding
to the downward gradient of a “repulsive” energy function based
on the vertex-to-edge distances within the polygon.

Because one can easily interpolate between any two compatible
convex polygons (see e.g. [1]), these unfolding results provide an
obvious way to build a path from one polygon to another. How-
ever, interpolating between two similar polygons by ballooning the
first polygon into a convex shape and then folding it back down
to the shape of the second polygon is probably not useful in most
contexts. This paper builds the theory of polygon unfolding into
an approach to polygon refolding that can be used to generate non-
intersecting interpolation sequences between any two compatible
polygons.

Our algorithm makes use of any valid metric for measuring dis-
tances between pairs of polygons. This metric should have the
properties of a symmetric norm in the space used to describe poly-
gon configurations, and one simple example is the l2-norm on the
vector of concatenated vertex positions. This metric provides a
measure of how “direct” an interpolation is: the most direct inter-
polation simply follows the metric’s gradient exactly. Of course,
directness is not the only desire, because gradient descent may
cause self-intersection. Our algorithm attempts to greedily find
the most direct interpolation path subject to the constraint of no
self-intersection. As the gradient descent attempts to build a path
interpolating between the two polygons, our algorithm uses the re-
pulsive energy function from polygon unfolding to steer around
self-intersections. As demonstrated by Figure 1 and several more
figures in Section 6, the appearance of the resulting motion is pre-
dominantly governed by the distance metric yet still avoids self-
intersection. Although to guarantee convergence of our algorithm
we require that “direct” paths follow the gradient of a distance met-
ric, this condition is not strictly necessary for convergence. Any
reasonable “direction heuristic” that locally determines how to
make a polygon more similar to another would likely also cause
our algorithm to converge.

The user can also specify a set of algebraic, or even semi-
algebraic, constraints to be satisfied by polygons throughout the
interpolation sequence. Our technique satisfies the specified con-
straints if they are consistent with the requirement of non-inter-
section. If the constraints cannot be satisfied, we still guarantee
non-intersection and satisfy the constraints as much as possible in a
locally-greedy least-squares sense. In particular, using the theory of
polygon unfolding, we show that the algorithm can always satisfy
the constraints of fixing the edge lengths throughout the motion,
assuming that corresponding edges have matching lengths in the
two polygons being interpolated. More generally, when the edge
lengths do not match, the algorithm can force every edge length
to change monotonically throughout the interpolation. These con-
straints in particular often lead to pleasing motions, but the user has
the freedom to specify which if any edges should change length
monotonically.

2 Background
The task of interpolating between polygons, also called “polygon
morphing,” is often divided into two subproblems: establishing ver-
tex correspondences and computing vertex paths. In some cases,
for example [19] and [6], researchers have focused primarily on
establishing vertex correspondences while using a simple method,
such as linear interpolation of the vertex positions, to create the in-
termediate polygons. In this paper, we do not discuss algorithms
for finding vertex correspondences. We assume that some other al-
gorithm, or the user, supplies suitable correspondences. So long as

the correspondences order the vertices consistently, our interpola-
tion algorithm is guaranteed to succeed.

Other approaches have focused on more sophisticated interpo-
lating schemes for computing vertex paths. In [18], intermediate
frames between two shapes are computed by linearly interpolating
the vertex angles and the edge lengths, giving better results for rigid
transformations than previous work using vertex positions. The au-
thors of [11] create a multiresolution representation for each input
polygon. Their algorithm interpolates between these representa-
tions to create the intermediate polygons. The method described
in [20] decomposes each input polygon into a planar tree of star-
shaped pieces, called a star skeleton. The points of the star skeleton,
represented in polar coordinates, are linearly interpolated to create
the intermediate shapes. In [2], they decompose the input objects
into compatible triangulations. They then compute transformations
between the triangulations that minimize local distortion. None of
these methods guarantee that the intermediate polygons they gen-
erate will be intersection-free.

Both [13] and [10] generate non-intersecting sequences for lim-
ited types of input. The method in [13] operates on pairs of poly-
gons that have corresponding parallel edges. The method in [10]
operates on simple polylines.

A more general method appearing in [12] embeds the polygons
inside a convex region, generates a pair of compatible triangula-
tions, and then builds a sequence between them by interpolating
the stochastic matrices whose unit eigenvectors encode the triangu-
lations’ geometries. In a related approach, [22] uses the matrix rep-
resentations to generate a morphing sequence where the trajectories
of the interior vertices can be linear with constant velocities, or as
close to linear as possible. This approach enables additional control
over the morph, such as forcing the sequence through an intermedi-
ate triangulation. In [23], they present a method to generate a more
natural-looking morph between compatible triangulations by inter-
polating the angles and edge lengths when computing the interme-
diate mean value barycentric coordinates. This enables morphing
between two stick figures. Like the method we present here, these
methods guarantee that all intermediate polygons will not self in-
tersect, however the types of user control afforded by these systems
differs substantially. The character of the motions created by these
methods also differs dramatically from that of those generated by
our method. Furthermore the methods derived from [12] cannot
implement edge-length or other constraints.

Our algorithm ensures that the computed interpolation sequences
are intersection-free, and it also decouples vertex correspondence
and path computation from intersection avoidance. Intersection
avoidance does, of course, affect the vertex paths, but users are
free to supply a suitable distance metric to generate whatever type
of path they like. The intersection avoidance machinery interferes
as needed to prevent intersection. Thus, one could see our method
either as an independent interpolation method, or as a wrapper to
be used with any of the above methods that generate interesting,
but possibly intersecting, vertex paths. For example, the approach
in [2] produces paths that avoid needless distortion, but that might
intersect. If combined with our method, we expect that the re-
sulting algorithm would produce predominantly “rigid-as-possible”
motions that distort only as needed to avoid intersection.

In addition to methods that operate directly on explicit polygo-
nal representations, several other methods for interpolating shapes
have been described in the literature. For example, both [24] and [7]
interpolate between shapes by interpolating scalar fields that im-
plicitly define the shapes. The authors of [14] and [15] discuss
methods for interpolating volumetric data. A method based on
Minkowski sums appears in [16].

72

3 Unfolding Groundwork

Our method stems from recent results showing that any planar col-
lection of polygons and polylines can be unfolded to an outer-
convex configuration. In an outer-convex configuration, all poly-
gons or polylines that are not contained inside another polygon are
separated from each other, and made either convex (polygons) or
straight (polylines). An unfolding motion preserves edge lengths
and avoids self-intersection. The existence of these unfolding mo-
tions has been demonstrated in both [8] and [21] using two distinct
approaches.

While both imply the existence of unfolding motions, actually
computing the motions directly implied by these proofs can be dif-
ficult. However, the motion implied by [8] has the additional prop-
erty that it is strictly expansive, meaning that the motion strictly
increases the distances between all vertices not sharing an edge.
In [5] it is shown that given the existence of expansive motions,
they can reformulate the unfolding problem as one where one sim-
ply seeks to minimize a suitable energy function. A suitable energy
function is one with the following properties:

Charge — the value of the function is finite for any intersection-
free configuration and approaches +∞ as the system ap-
proaches self-intersection.

Repulsive — the energy function decreases to first order under any
expansive motion.

Separable — as distinct connected components recede from each
other, any energy terms relating them should vanish.

C1,1 — the function should be C1 continuous with bounded cur-
vature.

It can then be shown that a simple optimization strategy, such as
gradient descent, can be used to generate an intersection-free inter-
polation path from any polygon to a convex polygon, and that the
space of valid configurations contains no local minima to get stuck
in. The results also imply that a valid energy function contains no
critical points of any kind at non-outer-convex points in the space of
valid configurations and that the valid configuration space is simply
connected. A detailed convergence proof with step bounds appears
in [5], but in summary, for a single polygon:

1. By charge, the energy function is finite for any valid initial
polygon and the energy function approaches +∞ as the sys-
tem approaches self-intersection, so any path that starts with
a non-intersecting polygon and strictly decreases energy can-
not lead to a self-intersection.

2. By repulsiveness, an expansive direction in configuration
space is a direction that decreases the energy, and from [8] we
know that such a direction always exists unless the polygon
is already convex. Therefore, the gradient can never vanish
except for convex polygons, and there can be no local min-
ima that do not correspond to a convex configuration.

Together these two observations guarantee that any continuous
gradient descent path starting from any valid polygon will converge
to a convexified polygon, and that at no point along the path will
the polygon intersect itself.

Figure 2. The top row demonstrates how using the vertex-position
metric alone will, as expected, generate a sequence with self in-
tersections. The bottom row illustrates how the collision avoidance
machinery alters the vertex motions to avoid self intersection. Com-
putation times were less than one second.

4 Energy and Parameterization
In [5], the authors used an energy function based on the elliptic
distance between edges and vertices because a C2 energy function
facilitates placing an actual bound on the worst-case number of Eu-
ler steps that might be required to convexify a given collection of
polygons and polylines. They also used an angle-based parameter-
ization because it allows them to guarantee that all edge lengths are
preserved exactly.

Here, however, we prefer to use an energy based on Euclidean
distances because we have found that it converges faster in prac-
tice. Additionally, we choose to parameterize using the vertex po-
sitions directly and enforce any desired edge-length preservation
using algebraic constraints. This decision simplifies interpolation
between polygons with different edge lengths, and it also preserves
any symmetries by treating all edges equivalently.

For a polygon with N vertices, let vi with i ∈ [1 . . . N] denote
the positions of the vertices, let ei be the edge between vi and vi+1,
and let li be the edge’s length1. The energy corresponding to the
polygon’s configuration is given by

E =

NX
i=1

NX
j=1

j 6=i,j 6=i−1

1

dist(vi, ej)2
(1)

where dist(vi, ej) is the Euclidean distance between edge j and
vertex i. It is easy to verify that this energy function is charge, sep-
arable, C1,1, and, except for the trivial cases of N ≤ 4, repulsive.

5 Refolding
Our interpolation algorithm relies on the energy-based unfolding
framework to guarantee that it can always construct an intersection-
free sequence between any two polygons. In the worst case, the al-
gorithm will convexify both polygons, trivially interpolate between
the two convex polygons, and produce the sequence begin-polygon
→ convexified-begin-polygon → convexified-end-polygon → end-
polygon.

In most contexts, this worst-case result is not particularly useful,
so the algorithm uses an additional distance metric to generate a
more desirable path. Because the energy function provides a guid-
ing framework, this metric can be quite simplistic and still produce
good results. In fact, many of the examples shown in this paper
were produced using the trivial metric based on the norm of dif-
ferences in vertex positions. That metric would simply move the
vertices on a straight line to their target location. As shown in Fig-
ure 2, this metric alone produces intersecting sequences, but it can
be guided around intersections by an appropriate energy function.

1Index arithmetic is modulo N , so vN+1 is equivalent to v1.

73

We can also include algebraic constraints that should be enforced
throughout the interpolation. These constraints could be simply
bundled into the distance metric, but then the intersection-avoid-
ance machinery would tend to violate them needlessly. Instead,
we combine the projection step that prevents self-intersection with
the projections that preserve the user constraints. In the special
case where the user constraints seek to make edge lengths constant
(or change them monotonically) we can guarantee, based on the
previously described unfolding results, that they will not conflict
with intersection avoidance. However, arbitrary constraints may
conflict with intersection avoidance, so they will only be enforced
to the extent that they do not cause the algorithm to fail.

5.1 The Algorithm
The following pseudo-code describes our algorithm for generating
an interpolation sequence between two polygons, A and B:

1. Establish compatibility and correspondence:

The user, or some heuristic, indicates the desired
correspondence between A and B and renumbers
vertices accordingly. If one of the polygons con-
tains fewer vertices than the other, then additional
vertices are inserted by splitting edges.

2. While A and B are different:

a. Compute the energy for A and B.
b. Use the gradient of the distance metric to de-

termine a direction, D, that would move the
higher energy polygon, H , toward the lower
energy one, L.

c. Optional: Project D to enforce edge-length
or other constraints.

d. If D would move H to a higher energy con-
figuration:

i. Project D so that it is perpendicular to
the energy gradient. (Attempt to honor
any constraints if they are in use.)

e. If D is null:

i. Set D to the direction of the downward
energy gradient at H . (Again, attempt
to honor any constraints if they are in
use.)

f. Move H in the direction D.

3. Output the path taken by A to the common config-
uration and the reverse of the path taken by B.

At each iteration of the while loop, the higher-energy polygon,
H , attempts to move closer to the other, lower-energy one, L. The
projection step in (2.d.i) ensures that H does not move up in en-
ergy and therefore protects against self-intersection. If the direc-
tion from H toward L is the same as the upward energy gradient at
H , the projection would take D to the null vector2. In that case the
algorithm simply moves H downward in energy, which we know
is always possible from [5].

If we assume that the direction used in step (2.b) to compute D
is the gradient of a suitable distance metric, we can guarantee that
the above algorithm will always converge. Informally, we note that
each iteration of the while loop makes either an “approach” move

2Because the gradient of the nonlinear energy function varies over configu-
ration space this situation will occur occasionally.

(bringing A and B closer to one another) or a “descent” move (de-
creasing the energy of H). The descent moves may undo some of
the progress made by approach moves, but the approach moves can-
not undo progress made by the descent moves. The algorithm can-
not fail to converge by taking an infinite number of descent moves
because each decreases the energy toward a minimal value and no
moves ever increase the energy. Similarly, the algorithm should not
be able to take an infinite number of approach moves because each
move decreases the distance between A and B as measured by the
distance metric. A sequence of an infinite number of interleaved ap-
proach and descent moves continually undoing each other cannot
occur because the approach moves cannot undo descent progress.

A more rigorous proof that the algorithm converges is too bulky
to include in this short paper. In addition to guaranteeing that the
step directions exist and lead to convergence, one must also deal
with issues such as avoiding step sizes that converge toward zero.
We refer the reader to [5] where they present a rigorous proof that
the descent steps do converge in bounded time. They also show
that for any two polygons one can establish a minimal step size
that does not “pass over” an intersecting configuration, and allows
us to assert that our algorithm can always take some minimal size
step thus guaranteeing progress and eventual termination. We also
suggest [9] for a discussion of the conditions under which descent
methods generally converge, and [3] or [17] for a general introduc-
tion to relevant numerical methods. For our current implementation
we have found it sufficient to use a fixed step size that has been se-
lected conservatively by the user.

5.2 A Distance Metric
As described above, the interpolation algorithm is designed to work
with a user-supplied distance metric. Given an initial configuration,
S, and a target configuration T , the gradient of the metric indicates
a direction, D, that moves S closer to T in the space of polygon
configurations.

In our implementation, each polygon configuration is represented
as a vector of length 2N that contains the interleaved x and y coor-
dinates of each vertex. The most obvious distance metric is simply
||T − S|| so that D is the unit vector in the direction T − S. If we
were to use this naı̈ve direction alone, the resulting motion would
most often include self-intersections. However, when embedded in
our energy guided algorithm it generates an interpolation sequence
free of self-intersection.

In Section 6 we show results generated using this simple dis-
tance metric and with others. The ability to specify an arbitrary
distance metric, or even a direction heuristic not explicitly tied to
some metric, affords the user with some aesthetic control over the
resulting interpolation sequence. The use of a direction heuristic
not explicitly tied to some metric could also cause the algorithm
to fail. If given the opportunity, the heuristic must cause the two
polygons to converge in a finite number of steps. Further, the direc-
tions generated by the heuristic should not include any extraneous
components or else the energy projection could potentially cancel
the useful portion leaving a non-zero vector that might then fail to
converge. Alternatively, the direction heuristic could be allowed to
include additional spurious components that do not correspond to
the gradient of any distance metric, but the condition in step (2.e)
should then test to see if the projected vector lacks a component
in the direction of the distance metric’s downward gradient, rather
than just testing whether it is null.

5.3 Energy Projection
To avoid self-intersection, each step must move H to an equal- or
lower-energy configuration. This requires that D ·G ≤ 0 where G

74

Figure 3. These images show interpolation between a box with an arm-like protrusion and a rotated version of the box with the arm bent.
These simple examples demonstrate how the direction metric and constraints can affect the computed sequence. The first row shows the result
computed using a vertex position metric. The second row shows the result for the vertex position metric after several distance constraints have
been added. The bottom row uses a metric based on joint angles with no constraints. For each row, the edge lengths were held fixed and less
than two seconds of computation was required.

is the normalized gradient of the repulsive energy function evalu-
ated at H . The algorithm accomplishes this by testing a candidate
direction against the gradient direction. If the dot product is less
than or equal to zero, then the direction is left alone. Otherwise,
the direction is replaced with

D :=
“
I −G GT

”
D (2)

where I is the identity matrix.
Because the gradient is not constant, a finite sized step follow-

ing D may still yield an increase in energy even if D · G ≤ 0.
When this condition occurs, we bias D downward by subtracting
γG from the direction where γ is a small positive number deter-
mined numerically to ensure that the step leads to an equal or lower
energy level. This standard technique, commonly used in numeri-
cal minimization codes, does not adversely affect our convergence
guarantee.

5.4 Constraints
In addition to specifying vertex correspondences and a distance
metric, the user can also control the interpolation by specifying
constraints that should be satisfied by each polygon in the sequence.
One could choose to incorporate user constraints into the direction
given by the distance metric, but the energy gradient projection
done by Equation (2) would tend to violate the constraints need-
lessly. Instead, when the user desires constraints we can attempt to
satisfy both them and the energy constraint simultaneously. If they
cannot all be satisfied simultaneously, then the energy constraint
will be satisfied and the user constraints only as much as possi-
ble. We treat the energy constraint with higher priority because it
is what assures convergence and non-intersection.

We assume that each constraint applies to an individual polygon
P , is differentiable, and can be expressed in the form

Ω (P) = 0 . (3)

For example, we could constrain the edge lengths of a polygon to
be constant with

‖vi − vi+1‖2 − l2i = 0 ∀i ∈ [1 . . . N] (4)

where the vi and li are the vertex positions and edge lengths of P .

If there are M constraints, let J be the M × N matrix whose
rows are the gradient vectors for each of the constraints. If the
initial polygons honor the constraints, then in step (2.c) we can
project D to a direction that will not violate them with

D := D − JT l (5)

where l is solved for using

J JT l = J D . (6)

In general, a finite step in this direction would still allow any non-
linear constraints to be violated by a small amount, and this error
could accumulate to unacceptable levels if not dealt with. If e is
the length M vector whose entries are each of the Ω evaluated at
H , then we can prevent error accumulation by instead solving for l
using

J JT l = J D + α e (7)

where α is a small constant. (See, for example, [4] for a discussion
of constraint stabilization and how α should be selected.)

As before, if the adjusted direction would move upward in en-
ergy, it must be adjusted. However, using Equation (2) could break
the projection done by Equation (7) because, in general, G will not
be orthogonal to all of the constraints (rows of J). To avoid vi-
olating the constraints needlessly, let K be the matrix formed by
appending G as an extra row to J and let f be the vector formed
by appending −γ/α to e. Step (2.d) sets

D := D −KT l (8)

where l was solved for using

K KT l = K D + α f (9)

with some small value used for γ. This value is iteratively increased
until a downward energy step results.

Both Equations (7) and (9) can be solved efficiently using the
conjugate-gradient method. The matrices J JT and K KT may
be under-constrained, over-constrained, or both. When the matrix
is over-constrained, not all of the constraints can be satisfied and
the conjugate-gradient method will produce a solution that satis-
fies them all equally in a least-squares sense. Increasing γ causes

75

Figure 4. This example interpolates between two configurations of interlocked teeth. The top row shows the result computed with the
edge lengths constrained to change monotonically and required 5.0 minutes of computation. The bottom row shows the result computed with
unconstrained edge lengths and required 1.8 minutes of computation.

the energy constraint to have greater importance until it is satis-
fied. Figure 3 shows a simple example computed with and without
additional constraints.

For the special case where all of the user constraints correspond
to edge-length preservation, we know from [5] that Equation (9)
is never over-constrained because an energy-decreasing motion ex-
ists even when the edge lengths are fixed. Thus, for two polygons
with the same edge lengths we can always interpolate between them
while holding the edge lengths constant. When the polygons have
different edge lengths, we can force them to change monotonically
by only including the appropriate row of J or K if omitting that
row would result in the an edge getting further in length from its tar-
get rather than closer. This type of linear-programming approach
could also be used to include other semi-algebraic constraints.

6 Results and Discussion
We have implemented our algorithm and used it to create the ex-
amples shown in this paper. The accompanying video contains an-
imations corresponding to these examples3. Information about the
running times and the methods used to create the examples can be
found in their respective figure captions. The running times for
our C++ implementation were measured in CPU seconds on a 3.06
GHz Pentium IV computer with 1 GB of memory.

The rows of images in Figure 3 illustrate the use of different dis-
tance metrics. As can be seen in the top and bottom rows, metrics
based on the Cartesian coordinates of the vertices and on joint angle
coordinates produce very different results. The middle row shows
how the motion can be modified by adding additional constraints.
In Figure 7, distance constraints were added to maintain the shape
of the six arms and outside box and also to keep the inside box
rigid throughout the motion. Figure 10 illustrates adding distance
constraints to control an animation sequence. Using the directions
based on vertex position differences alone, as illustrated in the top
row, produces an animation that expands unnecessarily. Adding
distance constraints creates a more rigid motion, as shown in the
middle and bottom rows.

A feature of the method is that it preserves spatial and temporal
symmetries. In Figures 1 and 7, the input polygons are symmetric

3The video, in QuickTime format, may be accessed on-line at the following
URL: http://www.cs.berkeley.edu/b-cam/Papers/Iben-2006-RPP .

about a central horizontal axis. It is evident that the animation pre-
serves this symmetry throughout the interpolation. Similarly, the
input for Figure 9 is symmetric about a central vertical axis. Fig-
ures 3 and 4, both demonstrate animations where the input poly-
gons mirror each other and the method creates temporally symmet-
ric sequences.

Our method also enables the user to choose the behavior of the
edge lengths during the animation. The sequence in Figure 1 shows
our method with the constraint that edge lengths are held constant.
The examples in Figures 4 and 5 illustrate the difference between
constraining the edge lengths to change monotonically (top row) or
allowing them to change freely (bottom row). For some examples,
constraining the edge lengths generated pleasing results. However,
in the leaf-plane example the constraint causes an ugly pinch to
form in the leaf-stem/plane-tail. Because a “good” sequence de-
pends on the subjective criteria applied by the user, we feel the
flexibility afforded by our approach is highly desirable. Other ex-
amples using unconstrained edge lengths are pictured in Figures 8
and 9. In Figure 11, we decided based on aesthetic considerations
to morph from T to E with constrained edge lengths while the other
letters’ animations are unconstrained.

Figure 6 shows interpolation between different levels of the two-
dimensional Hilbert curve. The large bottom edge connecting the
two sides of the curve is changing monotonically throughout the
animation, while the rest of the edges are constrained to be constant
length. To maximize visibility, configurations are uniformly scaled
to give a constant image size.

We can also relax the requirement that steps never increase the
energy. As an experiment, we allowed the leaf-plane examples
in Figure 5 to take steps that increase the energy up to a thresh-
old. This modified algorithm still avoids self-intersection, but it
could potentially fail to converge.

One possible problem with our method is that it uses informa-
tion, the energy function gradient, that is local to the current poly-
gon. As a result, we cannot guarantee that the path generated is
globally optimal in any sense: we can guarantee only that we find
a path. In practice, however the algorithm appears to do a good
job finding paths that do not detour needlessly. We have experi-
mented with applying relatively expensive optimization procedures
to, for example, shorten a computed path as much as possible. So
far, we have not observed that this effort produces any significant
improvements. These experiments suggest that the computed paths

76

http://www.cs.berkeley.edu/b-cam/Papers/Iben-2006-RPP

Figure 5. Examples with relaxed energy constraint; see text. In the top row constrained edge lengths, 4.1 minutes computation. In the bottom
row unconstrained edge lengths, 2.0 minutes computation. The leaf and plane outlines were provided by Marc Alexa. Note that these input
objects are not symmetric.

Figure 6. Examples of interpolating with constrained edge lengths between levels of the Hilbert curve. The frames in the top row have 260
vertices and computation time was 2.0 minutes. The bottom row frames have 1026 vertices and required 1.3 hours of computation.

might be at least locally optimal, at all times greedily minimizing
the deviation from the greedy direction given by the distance met-
ric’s gradient. It is tempting to wonder whether properties of the
energy landscape might mean that locally optimality implies some
global property.

The collision avoidance technique presented here provides a
method for generating intersection-free interpolation sequences be-
tween arbitrary, non-intersecting, planar polygons. We can guar-
antee that such a path can be found when used with any suitable
distance metric or direction heuristic. The examples illustrate that
our method can handle a variety of polygons and produce pleas-
ing results. In addition to shape morphing applications in computer
graphics, the facility to include length and other constraints may
allow our work to be useful for other problems, such as finding
efficient, direct motion paths for planar robotic arm manipulators.

There are several directions for improving our results further. Al-
though our C++ implementation is robust and fast, using an adap-
tive time step would likely improve running times. Other areas for
future work include exploring interesting direction heuristics and
adding other types of constraints to the system. It would also be
interesting to explore the extent to which our techniques can be ap-
plied to 3D polygons and tree skeletons. In these contexts, interpo-
lation sequences would, in general, be forced to intersect. However,

non-intersecting solutions between similar objects might be useful
in contexts such as character animation.

Acknowledgments

We thank Jonathan Shewchuk, Jason Cantarella and Carlo Séquin
for helpful discussions. Demaine was partially supported by a NSF
CAREER award CCF-0347776 and DOE grant DE-FG02-
04ER25647. Iben was supported by NSF and GAANN Fellow-
ships. Iben and O’Brien were supported in part by NSF CCR-
0204377, State of California MICRO 04-066 and 05-044, and by
generous support from Pixar Animation Studios, Intel Corporation,
Sony Computer Entertainment America, Apple Computer Inc., Au-
todesk, the Okawa Foundation, and the Alfred P. Sloan Foundation.

References
[1] Oswin Aichholzer, Erik D. Demaine, Jeff Erickson, Ferran

Hurtado, Mark Overmars, Michael A. Soss, and Godfried T.
Toussaint. Reconfiguring convex polygons. Computational
Geometry: Theory and Applications, 20(1–2):85–95, October
2001.

77

Figure 7. In addition to constrained edge lengths, this example has eighteen distance constraints (drawn light gray in the first and last frames).
The total computation time was 1.3 minutes.

Figure 8. This example was created by generating two successive sequences using three key frames. The keys are shown in the first, center,
and last positions. Total computation time was three seconds.

Figure 9. Transforming between two polygons. Unrestricted edge lengths, less than three seconds computation.

[2] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-
as-possible shape interpolation. In Proceedings of ACM SIG-
GRAPH 2000, pages 157–164, July 2000.

[3] Kendall E. Atkinson. An introduction to numerical analysis.
John Wiley & Sons Inc., New York, second edition, 1989.

[4] J. Baumgarte. Stabilization of constraints and integrals of mo-
tion in dynamical systems. Computer Methods in Applied Me-
chanics and Engineering, 1:1–16, 1972.

[5] Jason H. Cantarella, Erik D. Demaine, Hayley N. Iben, and
James F. O’Brien. An energy-driven approach to linkage un-
folding. In Proceedings of the 20th annual Symposium on
Computational Geometry, pages 134–143, June 2004.

[6] Eyal Carmel and Daniel Cohen-Or. Warp-guided object-space
morphing. The Visual Computer, 13:465–478, 1997.

[7] Daniel Cohen-Or, Amira Solomovic, and David Levin. Three-
dimensional distance field metamorphosis. ACM Transactions
on Graphics, 17(2):116–141, 1998.

[8] Robert Connelly, Erik D. Demaine, and Günter Rote.
Straightening polygonal arcs and convexifying polygonal cy-
cles. Discrete & Computational Geometry, 30(2):205–239,
September 2003.

[9] J. E. Dennis and Robert B. Schnabel. Numerical Methods
for Unconstrained Optimization and Nonlinear Equations.
SIAM, Englewood Cliffs, NJ, 1996.

[10] Alon Efrat, Sariel Har-Peled, Leonidas J. Guibas, and T. M.
Murali. Morphing between polylines. In Proceedings of the
twelfth ACM-SIAM Symposium on Discrete Algorithms, pages
680–689, 2001.

[11] Eli Goldstein and Craig Gotsman. Polygon morphing using
a multiresolution representation. In Proceedings of Graphics
Interface, pages 247–254, 1995.

[12] Craig Gotsman and Vitaly Surazhsky. Guaranteed
intersection-free polygon morphing. Computers and Graph-
ics, 25(1):67–75, 2001.

[13] Leonidas Guibas and John Hershberger. Morphing simple
polygons. In Proceedings of the tenth annual Symposium on
Computational Geometry, pages 267–276, 1994.

[14] Taosong He, Sidney Wang, and Arie Kaufman. Wavelet-based
volume morphing. In Daniel Bergeron and Arie Kaufman, ed-
itors, Proceedings of Visualization ’94, pages 85–92, 1994.

[15] John F. Hughes. Scheduled fourier volume morphing. In Pro-
ceedings of ACM SIGGRAPH 1992, pages 43–46, 1992.

[16] Anil Kaul and Jarek Rossignac. Solid-interpolating deforma-
tions: Construction and animation of PIPs. In Proceedings of
Eurographics ’91, pages 493–505, 1991.

[17] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C. Cambridge University Press,
second edition, 1994.

[18] Thomas W. Sederberg, Peisheng Gao, Guojin Wang, and
Hong Mu. 2-d shape blending: an intrinsic solution to the ver-
tex path problem. In Proceedings of ACM SIGGRAPH 1993,
pages 15–18, August 1993.

[19] Thomas W. Sederberg and Eugene Greenwood. A physically
based approach to 2-d shape blending. In Proceedings of ACM
SIGGRAPH 1992, pages 25–34, July 1992.

78

Figure 10. This example interpolates between a letter U and S, demonstrating that adding distance constraints can control the animation
sequence. The first row shows the result computed using the vertex position metric alone, requiring eighteen seconds of computation time.
The middle row shows the animation after adding 41 distance constraints to create a more rigid motion, requiring 5.5 minutes. The bottom row
displays a different motion created using less distance constraints (19), requiring 3.0 minutes. For each row, the edge lengths were constrained
to change monotonically. The middle row may be compared to results shown in [12] and [22].

[20] Michal Shapira and Ari Rappoport. Shape blending using the
star-skeleton representation. IEEE Computer Graphics and
Applications, 15:44–50, March 1995.

[21] Ileana Streinu. A combinatorial approach to planar non-
colliding robot arm motion planning. In Proceedings of the
41st annual Symposium on Foundations of Computer Science,
pages 443–453, Redondo Beach, California, November 2000.

[22] Vitaly Surazhsky and Craig Gotsman. Controllable morph-
ing of compatible planar triangulations. ACM Transactions on
Graphics, 20(4):203–231, 2001.

[23] Vitaly Surazhsky and Craig Gotsman. Intrinsic morphing
of compatible triangulations. International Journal of Shape
Modeling, 9(2):191–201, 2003.

[24] Greg Turk and James F. O’Brien. Shape transformation using
variational implicit functions. In Proceedings of ACM SIG-
GRAPH 1999, pages 335–342, August 1999.

Figure 11. Our final example. Total computation time was less than
a second.

79

	1 Introduction
	2 Background
	3 Unfolding Groundwork
	4 Energy and Parameterization
	5 Refolding
	5.1 The Algorithm
	5.2 A Distance Metric
	5.3 Energy Projection
	5.4 Constraints

	6 Results and Discussion

