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ABSTRACT OF THE DISSERTATION 

 

 
Quantifying Information Storage in the Rat Hippocampus: Computational Analysis of 

Electron Microscopy Data 
 

by 

Cailey Thekla Bromer 

 

Doctor of Philosophy in Neurosciences 

University of California, San Diego, 2017 

Professor Terrence J. Sejnowski, Chair 
 
 

The importance of memory to consciousness, evolution and self-awareness is 

unparalleled. Since early pivotal studies on hippocampal legions (Scoville, 1957), the 

hippocampus has been recognized as an integral component of the memory formation. 

Decades of research has refined and improved our understanding of this small, yet 

complex, structure (Turner, 1969; Moser, 1998; Fortin, 2002). The hippocampus has been 

implicated in not only in memory formation, but also recall of memory (Smith, 2006; 

Foster, 2006), navigation (Thompson, 1989; Leutgeb, 2005) and time perception (Olton 
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1987; Mankin, 2012), among other things. Today we better understand how activity in 

this region and connections throughout the brain relate to the specific and parcellated 

functions it performs (Bliss, 1993; Leutgeb, 2005; Leutgeb 2007). The aim of this work is 

to understand the memory storage capacity of the brain, and, more specifically, synapses. 

In other words, it aims to quantify how much we can store, and in turn, how much we 

must forget.  

Signal detection theory (Green & Swet, 1966) rose to popularity as a way to 

elucidate the “signal-to-noise” ratio (SNR) in Neuroscience (Schultz, 2007). At its 

simplest, the theory aims to discriminate two stimuli (Stanislaw, 1999). As such, signal 

detection theory has been the basis for discriminating a number of types of sensory 

stimuli (McGill, 1967; Foley, 1981). In our case, the two stimuli being distinguished are 

the synapse strength of two spines with a unique connectivity (Bartol, 2016). In the 

context of this thesis project we demonstrate that the dentate gyrus, a unique area of the 

hippocampus has the capacity to store less information at each of its synapses than does 

CA1. 

 Understanding how information storage capacity varies across species, brain 

region and age, can help further inform not only future research but also machine 

learning algorithms and other algorithms that aim to mimic and replicate the richness of 

the brain (Palm, 1989). 
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CHAPTER 1: 

INTRODUCTION 

 

 The goal of this dissertation has been two-fold. Firstly, it aims to elucidate 

information storage capacity in the hippocampus. Secondly, and in pursuit of the first 

goal, it aims to develop a set of useful tools for the analysis of electron microscopy data 

with a goal of further exploring questions that might be answered by this type of data.  

 

Hippocampus and Memory 

 The mammalian hippocampus is characterized by a “trisynaptic loop”, namely 

referring to the transmission of information from the cortex received by the dentate 

gyrus (1), from dentate to CA3 (2) and from CA3 to CA1 (3) via synaptic connections. 

Information from CA1, the output of the tri-synaptic loop, is then relayed back to 

various parts of the cortex via widespread projections, many of which pass through the 

thalamus en route to their targets. This canonical connectivity model has been 

demonstrated and validated by innumerable experiments and is well-established in the 

field (Amaral 1989; van Strien 2009; Mizuseki 2009). 

 

Spike Timing-Dependent Plasticity 

 In the hippocampus (as well as the cortex) the relative timing of axonal inputs and 

postsynaptic firing are instrumental in determining the strength of a synapse (Song, 

2000; Dan 2004; Caporale 2008).The rules governing this phenomenon, or spike timing-
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dependent plasticity (STDP), can be simplified as follows: when a presynaptic input 

precedes postsynaptic firing, synapses are strengthened; when postsynaptic firing 

precedes presynaptic input synapses weaken. The time that passes between these two 

events is critical for the induction of STDP. First demonstrated experimentally by Bi and 

Poo in 1998, the prevalence of STDP forms the basis for our understanding of the 

capacity for synapses to grow and shrink and is a prominent force in shaping long-

lasting changes in synaptic strength in the hippocampus.  

 STDP, which has been extensively studied and characterized in brain regions 

involved in episodic memory formation, such as cortex and hippocampus, reflects the 

importance of coordinated changes on the presynaptic and postsynaptic sides of the 

synapse. For instance, the size of the active zone and the number of docked vesicles at a 

given synapse (presynaptic metrics) scale with the size of the postsynaptic density 

(PSD), the volume of the spine head and the relative ratio of some neurotransmitter 

receptors (postsynaptic metrics) and the strength of a synapse is related to a number of 

metrics such as spine head volume, postsynaptic density area, the number of docked 

vesicles and the ratio of various neurotransmitters  (Harris and Stevens, 1989; Lisman 

and Harris, 1994; Schikorski and Stevens, 1997; Murthy, 2001; Branco, 2008; Bourne, 

2013).  

 Though the basic premise of STDP is well-established, previous work has fallen 

short in characterizing how precisely STDP processes are controlled. In other words, 

while the demonstrated directional changes in synaptic strength resulting from STDP are 

well-established, the current techniques available in the field have made it impossible to 

characterize the precision in the control of such directional changes. One way to 
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characterize this kind of precision is able to take advantage of so-called “redundant 

synapses”, or, pairs of spine heads sitting on the same dendritic branch, and contacted by 

a single axon. Such synapses offer a unique window to test the relative similarity of the 

strength of spines, which, if only controlled by STDP plasticity processes, should be 

identical in strength given their shared history of presynaptic input and postsynaptic 

firing.  

 

Signal Detection Theory Applied 

 One way to measure the precision of STDP processes is to think of the strength of 

a spine as a “signal” and any unintended variability in strength as “noise”. Using this 

framework, we can apply standards from Signal Detection Theory (described above) to 

quantify the strength of the signal (synaptic strength) relative to the noise (variability in 

spines with identical presynaptic and postsynaptic history). Measuring the strength and 

variability is a challenge in itself; because of the inherent stochasticity built into the 

brain, the observed metrics of synaptic strength are likely to change in the window in 

which they are measured. For instance, a patched cell may be undergoing ongoing 

transcription and translation even while current is being recorded. Similarly, a spine 

responding to Ca2+  or glutamate release changes artificially in the sense that it changes 

without its partner. 

 Electron microscopy data offers a unique opportunity to study STDP, counter-

intuitively, given its static nature. By identifying pairs of spines with shared presynaptic 

and postsynaptic history and measuring their strength, we are able to STDP in 3D 

reconstructions of electron microscopy data. In order to effectively study such synapses, 
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it is necessary to accurately represent them in 3D space, with the goal of accurately 

measuring metrics like spine head volume, which is most positively correlated with 

synaptic strength. In the course of this thesis project, existing software was developed 

and expanded to facilitate this and future studies of static electron microscopy image 

data (Chapter 4). In this dissertation, the metrics of synaptic strength listed here are 

measured and utilized collectively, or independently to represent synaptic strength. 
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CHAPTER 2: 

NANOCONNECTOMIC UPPER BOUND ON THE VARIABILITY OF SYNAPTIC 

PLASTICITY 

 

Abstract 

 

Information in a computer is quantified by the number of bits that can be stored and 

recovered. An important question about the brain is how much information can be stored 

at a synapse through synaptic plasticity, which depends on the history of probabilistic 

synaptic activity. The strong correlation between size and efficacy of a synapse allowed us 

to estimate the variability of synaptic plasticity. In an EM reconstruction of hippocampal 

neuropil we found single axons making two or more synaptic contacts onto the same 

dendrites, having shared histories of presynaptic and postsynaptic activity. The spine heads 

and neck diameters, but not neck lengths, of these pairs were nearly identical in size. We 

found that there is a minimum of 26 distinguishable synaptic strengths, corresponding to 

storing 4.7 bits of information at each synapse. Because of stochastic variability of synaptic 

activation the observed precision requires averaging activity over several minutes. 

 

Introduction 

 

Synapses between neurons control the flow of information in the brain and their 

strengths are regulated by experience. Synapses in the hippocampus are involved in the 
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formation of new declarative memories. Understanding how and why synaptic strengths 

undergo changes in the hippocampus is important for understanding how we remember 

facts about the world. A fundamental question is the degree of precision in the adjustment 

of synaptic strengths in view of the many sources of variability at synapses. In this study 

we provide an upper bound on the variability of synaptic plasticity and quantify a lower 

bound on the amount of information that can be stored at a single synapse.  

Excitatory synapses on dendritic spines of hippocampal pyramidal neurons have a 

wide range of sizes. Anatomical measurements of the spine size, the area of the 

postsynaptic density (PSD), the number of AMPA receptors, the area of the presynaptic 

active zone and the number of docked vesicles in the presynaptic terminal are all highly 

correlated with each other and with physiological measurements of the release probability 

and the efficacy of the synapse (Harris and Stevens, 1989; Lisman and Harris, 1994; Harris 

and Sultan, 1995; Schikorski and Stevens, 1997; Murthy, 2001; Bronco, 2008; Bourne, 

2013). Thus, each of these individual characteristics is a correlate of synaptic strength. The 

sizes and strengths of these synapses can increase or decrease according to the history of 

relative timing of presynaptic inputs and postsynaptic spikes (Bi and Poo, 1998).  

If experience regulates synaptic strength then one might expect that synapses 

having the same pre- and postsynaptic histories would be adjusted to have the same 

strength. But what would be the inherent variability, or conversely the precision, of this 

process? Due to the high failure rate and other sources of stochastic variability at synapses 

one might expect that the precision of changes in the strengths of these synapses in vivo to 

be low. The failure rate at synapses depends inversely on the strength, and therefore the 

size, of the synapse. On this basis the strengths of weaker, and therefore smaller and less 
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reliable synapses, would be expected to be less precisely controlled than the larger and 

stronger synapses, which have a lower failure rate.  

An ideal experiment to test for the precision of the changes in synaptic strength 

would be to stimulate in vivo the axonal inputs to two well-separated spines on the same 

dendrite to insure that they have the same presynaptic and postsynaptic history of 

stimulation. Nature has already done the experiment for us as pairs of spines on the same 

dendrite contacting the same axon satisfy this condition. Prior work suggests that such pairs 

of spines are more similar in size than those from the same axon on different dendrites 

(Sorra and Harris, 1993). Here we evaluated this axon-spine coupling in a complete 

nanoconnectomic three-dimensional reconstruction from serial electron microscopy 

(3DEM) (Harris, 2015) of hippocampal neuropil. We determined the similarity of synapses 

among pairs of spines and set an upper bound on the variability and the time window over 

which pre- and postsynaptic histories would need to be averaged to achieve the observed 

precision. 

 

Results 

 

In a 6 x 6 x 5 mm3 complete 3DEM from the middle of stratum radiatum in 

hippocampal area CA1 (Mishchenko, 2010; Kinney, 2013; see Materials and Methods). 

We identified 449 synapses, 446 axons and 149 dendrites, which except for one identified 

branch point, are likely to originate from different neurons based on the size of the 

reconstructed volume and the obtuse branching angles of dendrites from these neurons 

(Ishizuka, 1995; Megıas, 1997). We measured spine head volume and surface area, surface 
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area of the postsynaptic density (PSD) adjacent to the presynaptic active zone, and spine 

neck volume, neck length and neck diameter at the 287 spines that were fully contained 

within the volume. We also quantified the number of vesicles at the 236 spines and 

presynaptic boutons that were fully contained within the volume. The strong correlations 

between these metrics, the skewed shape of the frequency histograms, and the number of 

synapses per unit of volume (Figures 1–3), are consistent with previous observations 

(Harris and Stevens, 1989; Schikorski and Stevens, 1997; Sorra, 2006; Bourne and Harris, 

2011; Bourne, 2013; Bell, 2014). To reduce error, we averaged over multiple independent 

spine volume measurements for each spine (Figure 3—figure supplement 1). We 

determined that the relationship between PSD area and spine head volume did not differ 

significantly across different dendrites (Figure 1—figure supplement 1). The correlation 

between spine head area and spine head volume accounted for 99% of the variance, despite 

the wide range in spine head shapes and dimensions (Figure 1A), which suggests that the 

accuracy of our measurements matched the precision of the spine. We also measured spine 

neck length, diameter, and volume and found a weak trend between the neck diameter 

(Figure 1D) and spine head volume but no correlations between neck length (Figure 1E) 

and spine head volume, consistent with previous studies (Harris and Stevens, 1989; 

Tønnesen, 2014). 

 Next, we analyzed spine volumes according to their axonal connectivity and 

dendrite origin. Pairs of spines on the same dendrite that received input from the same axon 

(‘axon-coupled’), were of the same size and had nearly identical head volumes (Figure 4). 

We compared this sample of 10 axon coupled pairs on the same dendrite (Figure 4B, pairs 

a-j) to those identified on dendrites from the two additional animals (Bourne, 2013), for a 
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total of 17 axon-coupled spine pairs. When plotted against one another, the paired head 

volumes were highly correlated with slope 0.91, and despite the small sample size, were 

highly significantly different from random pairings of spines (Figure 4C and Figure 4—

figure supplement 1A, KS test p=0.0002). Similarly, there was a strong positive correlation 

between their paired neck diameters (Figure 4D), PSD areas (Figure 4E), and number of 

presynaptic docked vesicles (Figure 4F). These features of axon-coupled spines from the 

same dendrite spanned the distribution of the overall spine population (Figure 3). In 

contrast, the spine neck lengths (Figure 4G), and neck volumes (Figure 4—figure 

supplement 1B) of the pairs were not well-correlated indicating that regulation of neck 

length and neck volume are not important for synaptic strength. 

 The coupled triplet of synapses (Figure 4C, gray points ‘k, l, m’) are on three 

different spines along a single dendrite and receive synaptic input from a single multi-

synaptic bouton. A larger central spine between two similar in size (Figure 4B, ‘k, l, m’) 

produces one same size pair (‘k’ ) and two different size pairs (‘ l’, ‘m’). This unusual 

configuration is probably driven by processes, such as competition for available resources 

that differ from the other pairs (Sorra and Harris, 1993; Sorra, 1998). As one possibility, 

perhaps the size of the larger postsynaptic spine was influenced by the larger size of the 

available pool of presynaptic vesicles in close proximity to its active zone. Excluding this 

triple synapse, the median value of the coefficient of variation of volume differences 

between pairs was CV = 0.083 and was as precise for small synapses as it was for large 

ones (Figure 5). This precision (i.e. low CV) suggests that accurately maintaining the size 

of every synapse, regardless of size and strength, could be important for the function, 

flexibility and computational power of the hippocampus. 
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 This near-identical size relationship does not hold for axon-coupled spines on 

different dendrites (Figure 6B, CV = 0.39, n = 127, example Figure 6A), nor for non-axon-

coupled spines on the same or different dendrites (Figures 6E,F, example Figure 6D) – all 

cases which would have had different activation histories. The volumes of axon-coupled 

different-dendrite spines are no different from the volumes of random pairs when plotted 

against one another (KS test p=0.94, Figure 4—figure supplement 2A, and Figures 6B,C) 

and the distribution of their sizes was no different from the whole population (KS test 

p=0.41). The number of docked vesicles for pairs on different dendrites (Figure 6—figure 

supplement 1B) is not different from random pairings (KS test p=0.08), nor are the neck 

diameters (Figure 6—figure supplement 1C, KS test p=0.06), nor the neck lengths (Figure 

6— figure supplement 1D, KS test p=0.75). The size difference of pairs of axon-coupled 

spines on the same or different dendrites shows a weak trend with separation distance along 

the axon or dendrite (Figure 6—figure supplement 2). The sizes of pairs of axon-coupled 

spines on the same or different dendrites is unaffected by proximity of glia processes to the 

synapses (Figure 7) (Ventura and Harris, 1999; Witcher, 2007), or location of mitochondria 

in the axon (Billups and Forsythe, 2002). 

 We found that spine head volumes ranged in size over a factor of 60 from smallest 

to largest while the CV of any given size was 0.083 and was constant across the range of 

sizes. Measurements of these of 20 pairs allowed us to estimate the number of distinct spine 

sizes, and by extension synaptic strengths, that can be reliably distinguished across this 

range. Signal detection theory holds that at a Signal-to-Noise Ratio (SNR) of 1, a common 

detection threshold used in psychophysical experiments, an ideal observer can correctly 

detect whether a signal is higher or lower than some threshold 69% of the time (Green and 



 

 

11 

Swets, 1966; Schultz, 2007). Put another way, if random samples are drawn from two 

Gaussian distributions whose areas overlap by 31%, an ideal observer will correctly assign 

a given sample to the correct distribution 69% of the time. Using this logic, we found that 

~26 different mean synaptic strengths could span the entire range, assuming CV = 0.083 

for each strength level, and a 69% discrimination threshold (Figure 8, see Materials and 

methods). These 26 distinct strength levels can be represented with 4.7 bits of information 

(i.e. 24.7 » 26) which means 4.7 bits of information that can be stored at each synapse as 

synaptic strength. At a discrimination threshold of 76% (corresponding to SNR = 2) there 

would be ~23 distinct strengths and 4.5 bits of information. 

 To explain the high precision observed in spine head volumes, we propose that time 

window averaging smooths out fluctuations due to plasticity and other sources of 

variability including differences in the age of the synapses. To set a lower bound on 

averaging time, we chose to examine neurotransmitter release probability as a single source 

of variability. Let us first consider release caused by single action potentials, ignoring 

short-term plasticity. Release of this type can be analyzed using a binomial model in which 

n presynaptic action potentials, each with a probability pr of releasing one or more vesicles, 

leads to a mean number of releases = n*pr having variance s2 = n*pr*(1pr). The coefficient 

of variation around the mean is CV = s/ = sqrt [(1pr)/(n*pr)] and can be compared with the 

measured values. Therefore, the number of spikes that are needed to reduce the variability 

to achieve a given CV is n=(1pr)/(pr*CV2). Table 1 gives averaging time windows T = 

n/R, where R is spiking rate of the presynaptic axon, for representative values of pr and a 

range of spiking rates.  
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Accounting for other known sources of variability at dendritic spines would require 

even longer time windows. In particular, the impact of short-term plasticity during bursts 

of action potentials on the length of the time-window is complicated by the interplay of 

facilitation and depression. Synapses with a low initial pr (and corresponding long time-

window in Table 1) exhibit marked facilitation and slowly depress during bursts 

(Kandaswamy, 2010; Nadkarni, 2010) which would shorten the time-window. But 

synapses with a high initial pr (and short time-window) only weakly facilitate, if at all, and 

quickly depress, which would lengthen the time-window. 

 

Discussion 

 

Previous upper bounds on the variability of spine volume in the hippocampus, 

based on the whole spine volume (Sorra and Harris, 1993; O’Connor, 2005), 

underestimated the precision by including the spine neck volume (Figure 4—figure 

supplement 1A), which was not correlated between pairs of spines in our volume (Figure 

4—figure supplement 1B). Our dense reconstruction included a complete inventory of 

every synapse in the reconstructed volume and in this respect was unbiased. Additional 

pairs of synapses from two other rats confirmed that this finding is not confined to a single 

brain. Of course, additional measurements in the hippocampus and other brain regions 

would be needed to confirm and extend this finding. The very high statistical significance 

of the finding (Figure 4C, KS test p=0.0002) despite a relatively small number of pairs in 

our sample implies a large effect magnitude, which would be much smaller if many more 

samples were needed to reach the same level of significance. To make this p value concrete, 
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if 17 random pairs were chosen from all 287 synapses in the reconstructed volume, there 

is only a one in 5000 chance that the spine heads would be as precisely matched as the 17 

axon-coupled pairs discovered here.  

Previous studies have shown that there is a high correlation of the size of the spine 

head with the PSD area and numbers of docked vesicles (Harris and Stevens, 1989; Lisman 

and Harris, 1994; Harris and Sultan, 1995; Schikorski and Stevens, 1997; Murthy, 2001; 

Branco, 2008; Bourne, 2013). Since the correlations between the head sizes of axon-

coupled pairs of spines is high, the high correlation between the PSD areas and numbers 

of docked vesicles observed in axon-coupled spines is not surprising (Figures 4E and 4F). 

However, it was unexpected to find that the spine neck diameters were also highly 

correlated between axon-coupled pairs of spines (Figure 4D r2=0.70), since the correlation 

between spine head volumes and spine neck diameters is not statistically significant (Figure 

1D). Thus, there are at least two geometric aspects of the spine geometry that are under 

tight control of synaptic plasticity, which may reflect different aspects of synaptic function. 

The diameter of the spine neck may reflect the need for trafficking of materials between 

the spine shaft and spine head, which is known to be regulated by LTP and LTD (Araki, 

2015). 

Complementing our observations and analysis in the hippocampus, highly 

correlated pr at multiple contacts in the neocortex between the axon of a given layer 2/3 

pyramidal neuron and the same target cell has been reported (Koester and Johnston, 2005). 

Our estimate of synaptic variability, based on spine head volume, is an order of magnitude 

lower. In a recent connectomic reconstruction of the mouse cortex, the similarity in the 

volumes of axon-coupled pairs of dendritic spines were statistically significant (Kasthuri, 
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2015). This observation is further evidence for the high precision of synaptic plasticity and 

suggests that the same may be true in other brain areas.  

The axon-coupled pairs of synapses that we studied were within a few microns of 

each other on the same dendrite, which raises the question of how far apart the two synapses 

can be and still converge to the same size. Related to this question, two synapses from the 

same axon on two different dendrites of the same neuron might not share the same 

postsynaptic history. These questions cannot be answered with our current data due to the 

small dimensions and the fact that the position in the neuropil from which our 

reconstruction was taken makes it highly unlikely that any of the dendrites, other than the 

one branch point captured in the volume, belong to the same neuron (Ishizuka, 1995). 

Synaptic tagging and capture, in which inputs that are too weak to trigger LTP or LTD can 

be ‘rescued’ by a stronger input to neighboring synapses if it occurs within an hour (Frey 

and Morris, 1997; O’Donnell and Sejnowski, 2014), is much less effective when the 

synapses are on different branches (Govindarajan, 2011), which would tend to make two 

synapses from the same axon on different dendritic branches less similar. Probing these 

questions will require reconstructing a larger extent of hippocampus when a single axon 

can contact multiple dendritic branches of the same neuron (Sorra and Harris, 1993) or of 

other cells, such as layer 5 pyramidal cells, which can have 4–8 connections between pairs 

of neurons (Markram, 1997). 

An unusual triple synapse from a single axon (Figure 4B, ‘k, l, m’) was excluded 

from the analysis because the presynaptic terminal was a single large varicosity filled with 

vesicles (i.e. an MSB) shared by three synapses, unlike the other pairs that had isolated 

presynaptic specializations (n=9), or an MSB shared by two synapses (n=8). It is possible 
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that the large, central spine had an effectively larger pool of vesicles by virtue of proximity, 

whereas the two synapses on the outside had a more limited population to draw from, and 

the size of the postsynaptic spine was influenced by the size of the available pool. More 

examples are needed before we can reach any conclusions. Regardless of the explanation, 

our estimate of the variability would not be greatly affected by including these 3 additional 

pairs of synapses in the analysis.  

How can the high precision in spine head volume be achieved despite the many 

sources of stochastic variability observed in synaptic responses? These include: 1) The low 

probability of release from the presynaptic axon in response to an action potential (Murthy, 

2001); 2) Short-term plasticity of release of neurotransmitter (Dobrunz, 1997); 3) 

Stochastic fluctuations in the opening of postsynaptic NMDA receptors, with only a few 

of the 2–20 conducting at any time (Nimchinsky, 2004); 4) Location of release site relative 

to AMPA receptors (Franks, 2003; Ashby, 2006; Kusters, 2013) 5) Few voltage-dependent 

calcium channels (VDCCs) in spines that affect synaptic plasticity (smallest spines contain 

none) (Mills, 1994; Magee and Johnston, 1995); 6) VDCCs depress after back propagating 

action potentials (Yasuda, 2003); 7) Capacity for local ribosomal protein synthesis in some 

spines while others depend on transport of proteins from the dendrites (Ostroff, 2002; 

Sutton and Schuman, 2006; Bourne, 2007; Bourne and Harris, 2011); 8) Homeostatic 

mechanisms for synaptic scaling may vary (Turrigiano, 2008; Bourne and Harris, 2011); 

9) Presence or absence of glia (Ventura and Harris, 1999; Witcher, 2007; Clarke and 

Barres, 2013); and 10) Frequency of axonal firing (Callaway and Ross, 1995). 

One way that high precision can be achieved is through time averaging. Long-term 

changes in the structure of the synapse and the efficacy of synaptic transmission are 
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triggered by the entry of calcium into the spine. A strategy for identifying the time-

averaging mechanism is to follow the calcium. Phosphorylation of calcium/calmodulin-

dependent protein kinase II (CaMKII), required for spike-timing dependent plasticity 

processes, integrates calcium signals over minutes to hours and is a critical step in enzyme 

cascades leading to structural changes induced by long-term potentiation (LTP) and long-

term depression (LTD) (Kennedy, 2005), including rearrangements of the cytoskeleton 

(Krama ´r, 2012). The time window over which CaMKII integrates calcium signals is 

within the range of time windows we predict would be needed to achieve the observed 

precision (Table 1). Similar time windows occur in synaptic tagging and capture, which 

also requires CaMKII (Redondo and Morris, 2011; de Carvalho Myskiw, 2014). These 

observations suggest that biochemical pathways within the postsynaptic spine have the 

long time scales required to record and maintain the history of activity patterns leading to 

structural changes in the size of the spine heads. 

The information stored at a single synapse is encoded in the form of the synaptic 

strength, which reflects the pre- and postsynaptic history experienced by the synapse. But 

due to the many sources of variability, this information cannot be read out with a single 

input spike. This apparent limitation may have several advantages. First, the stochastic 

variability might reflect a sampling strategy designed for energetic efficiency since it is the 

physical substrate that must be stable for long-term memory retention, not the read out of 

individual spikes (Laughlin and Sejnowski, 2003). Second, some algorithms depend on 

stochastic sampling, such as the Markov Chain Monte Carlo algorithm that achieves 

estimates by sampling from probability distributions, and can be used for Bayesian 

inference (Gamerman and Lopes, 2006). Each synapse in essence samples from a 
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probability distribution with a highly accurate mean, which collectively produces a sample 

from the joint probability distribution across all synapses. A final advantage derives from 

the problem of overfitting, which occurs when the number of parameters in a model is very 

large. This problem can be ameliorated by ‘drop out’, a procedure in which only a random 

fraction of the elements in the model are used on any given trial (Wan, 2013; Srivastava, 

2014). Drop out regularizes the learning since a different network is being used on every 

learning trial, which reduces co-adaptation and overfitting.  

We are just beginning to appreciate the level of precision with which synapses are 

regulated and the wide range of time scales that govern the structural organization of 

synapses. The upper bound on the variability that we have found may be limited by errors 

in the reconstruction and could be even lower if a more accurate method could be devised 

to compute the volume of a spine head, neck diameter, PSD area, number of docked 

vesicles, or other salient features of dendritic spines. Much can be learned about the 

computational resources of synapses by exploring axon-coupled synaptic pairs in other 

brain regions and in other species. 

 

Materials and Methods 

Reconstruction of Neuropil 

Three separate 3DEM data sets were used in this study. Each of these data sets has 

been used for other purposes in prior studies. Images were obtained from serial thin 

sections in the middle of stratum radiatum of hippocampal area CA1 from three adult male 

rats (55–65 days old) (Mishchenko, 2010; Bourne, 2013). One set of images was used to 

make a dense model of 6 x 6 x 5 mm3 of hippocampal neuropil and processed as previously 
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described in a study of the extracellular space (Kinney, 2013). In this data set, we identified 

13 axon-coupled synaptic pairs on 11 dendrites (Figure 4—figure supplement 3 and Figure 

4—figure supplement 4). The other two sets of images were part of a prior study (Bourne, 

2013) in which subsets of dendrites and axons had been reconstructed. In this data set, we 

identified 7 axon-coupled synaptic pairs on 4 dendrites for a total of 20 axon-coupled 

dendrite-coupled spine pairs. To perform an accurate and robust geometric analysis of the 

dendrites, dendritic spines, axons, and glial processes, it was necessary to correct the 

reconstructed surface meshes for artifacts and make them into computational-quality 

meshes as described elsewhere (Kinney, 2013; Edwards, 2014). 

The postsynaptic densities (PSDs) and presynaptic active zones (AZs) were 

identified in the serial section transmission electron microscopy (ssTEM) images by their 

electron density and presence of closely apposed presynaptic vesicles. We devised a 

method to segment the PSD-AZ features in the electron micrographs and mark their pre- 

and post-synaptic locations as subregions of the membrane in the final 3D mesh. To 

accomplish this, contours were hand-drawn on each serial section micrograph closely 

encompassing, as a single closed contour, the pre- and post-synaptic extent of the electron 

dense region. Taken together, the stack of contours for a given PSD-AZ forms a 3D capsule 

which encloses the entire feature. VolRoverN (Edwards, 2014) was used to reconstruct the 

3D surface of the capsule enclosing each PSD-AZ pair in 3D. Because these capsules 

enclose the intracellular domain of both the PSD and AZ they also overlap with the pre- 

and post-synaptic membrane associated with these subcellular features. Each of these 

closed capsules was then used as a ‘3D lasso’ to tag mesh triangles of the pre- and post-

synaptic membrane contained within the lasso, marking the enclosed membrane area as a 
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synaptic contact region—PSD postsynaptically and AZ presynaptically. Figure 3—figure 

supplement 1A shows a postsynaptic contact area labeled in red on a dendritic spine. 

The reconstructed neuropil models were then visualized and analyzed using 

Blender, a free, open-source tool for 3D computer graphics modeling (http://blender.org). 

A total of 449 synaptic contacts were found in the dense reconstructed volume of neuropil. 

We excluded a number of synapses from the analysis if they were partially clipped by the 

edge of the data set (142), or were shaft synapses (20) leaving 287 valid synapses on 

dendritic spines in the dense model. An additional 70 spines were excluded from the 

analysis of axon-coupled spines as the axon which contacted these spines did not contact 

any other spines within the reconstructed volume. Example visualizations of the spines and 

axons, generated using Blender, are shown in Figure 2A,B, Figure 3—figure supplement 

1A, Figure 4A,B, Figure 4—figure supplement 3, Figure 4—figure supplement 4, Figure 

6A,D, Figure 7B,D,F,H. 

 

Segmentation of dendritic spines 

Blender’s functionality is user-extensible via a Python interface for creating add-

ons. We created a Python add-on for Blender that enabled the selection of the mesh 

triangles of the dendrite corresponding to the spine head and whole spine of each individual 

spine. Our add-on tagged each selected set of triangles with metadata for the spine name 

and geometric attributes of the head, whole spine, and neck as described below. The 

selection of the spine head was made by hand based on a standardized procedure in which 

the junction between the head and neck was visually identified as half-way along the 

concave arc as the head narrows to form the neck (see Figure 3—figure supplement 1A). 
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To select the whole spine, a similar visual judgment was made to locate the junction where 

the neck widens as it joins the dendritic shaft. 

Once the appropriate area was selected, the tool was designed to automatically 

create the convex hull of the selected region. The closed mesh formed by the Boolean 

intersection of the convex hull and the dendrite was used to determine the measured volume 

of the spine head or whole spine. The volume of the neck was calculated by taking the 

difference between these two measurements. Areas were computed from the selected 

regions for spine head and whole spine. Active zone and postsynaptic density areas were 

calculated using regions that had been determined during the hand-drawn reconstruction 

phase described above. Distances between spine heads along the axon were calculated as 

the Euclidean distance between the centroids of the PSD/AZ regions. Distances between 

whole spines along the dendritic shaft were calculated as the Euclidean distance between 

the spine necks to shaft junctions. Glial classification, mitochondria classification and 

shape classification were performed by hand using set criteria. 

 

Estimation of measurement error of spine head volume 

Some error in the measurement of spine head volume is expected to occur in the 

human judgment required to segment the dendritic spines into whole spine, head, and neck. 

To estimate this error, the valid spines in the dense model were segmented and measured 

a total of four times per spine (twice each by two people). The standard error of the mean 

in spine head volume decreases with volume and is less than 5% for the majority of spines 

with a median error of about 1% (Figure 3— figure supplement 1). The head volumes in 

the other two data sets were only measured once. 
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Segmentation of synaptic vesicles and estimation of docked vesicles 

Synaptic vesicles in the presynaptic terminals, totaling 31,377 in number, were 

identified along with their 3D locations within the dense reconstruction. Of the 449 

presynaptic terminals, we excluded 193 terminals from the analysis due to truncation at the 

edge of the volume, and 20 terminals at shaft synapses, leaving 236 valid terminals. A 

visualization of all the synaptic vesicles in the reconstruction is shown in Figure 2A. 

Positive identification of docked vesicles in these ssTEM data sets is problematic 

due to the thickness of the sections and density of the staining. To estimate docked vesicles, 

we counted the number of vesicles whose centers were located within 100 nm of the 

presynaptic membrane across from the postsynaptic density of a given spine. Of the 31,377 

vesicles, 3437 were labeled as docked according to this criterion which yielded estimates 

in good agreement with previous estimates (Harris and Sultan, 1995; Schikorski and 

Stevens, 1997; Figures 2B–D). An en face view of the docked vesicles at one synapse is 

shown in Figure 2B. 

 

Statistical analysis 

All statistical analysis and plots were generated using Python 2.7 

(http://python.org) with NumPy, SciPy, and Matplotlib. The distributions of spine head 

volume, spine head area, spine neck volume, PSD area, and AZ area were highly skewed 

with a long tail at larger values (Figure 1). Consequently, all regression analysis was 

performed using Pearson’s linear regression on the data after applying a log-normal 

transformation (r2 values shown in Figures 1–6). 
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The coefficient of variation (CV) of the population of spine pairings (Figures 4 

and 6) was calculated as the median value of the CVs of each individual pair. The CV of 

each individual pair is simply the standard deviation of the volumes of the pair divided by 

the mean volume of the pair (Figure 5).  

Population distributions were highly skewed making it necessary to make 

comparisons of distributions using non-parametric methods. We used the two-sample 

Kolmogorov-Smirnoff (KS) test to make these comparisons in Figures 4 and 6. 

 

Estimation of number of distinguishable spine sizes and bits of precision in spine size 

To estimate the number of distinguishable spine sizes and corresponding bits of 

precision we calculated the number of distinct Gaussian distributions of spine sizes, each 

with a certain mean size and standard deviation that together would cover and span the 

entire range of spine head sizes seen in Figure 4A. Figure 5 demonstrates that it is 

reasonable to assume that the CV of each these sub-distributions is a constant value of 

0.083. From this CV, the spacing between the mean values of each sub-distribution can 

be chosen to achieve a total of 31% overlap with adjacent sub-distributions giving a 69% 

discrimination threshold. A 69% discrimination threshold is commonly used in the field 

of psychophysics and corresponds to a Signal-to-Noise Ratio (SNR) of 1 (Green and 

Swets, 1966; Schultz, 2007). 

The 69% confidence interval, z, of a Gaussian distribution is given by: 

z = sqrt(2 )* erf- 1(0.69) 

The spacing, s, of adjacent intervals of mean, , is given by: 

s = µ * 2 * CV * z 
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The number, N, of such distributions that would span the factor of 60 range of 

spine sizes is: 

N = log(60) / log(1 + 2 * CV * z) 

N = 26.3 

The number of bits of precision implied by N distinguishable distributions is given by: 

bits = log2(N) 

bits = 4.72 

Figure 8 shows that ~26 distinguishable distributions can cover the entire range of 

spine sizes, implying that there are ~4.7 bits of precision in the spine size. 

All data and software tools described here are available at: 

http://www.mcell.cnl.salk.edu/models/hippocampus-spine-analysis-2015-1 

 

 
Acknowledgments 
 

We are grateful to Dr. Mary Kennedy, Dr. Charles Stevens, Dr. Cian O’Donnell, 

and Dr. Krishnan Padmanabhan, for discussions on many aspects of synaptic spines and 

CaMKII, Josef Spacek, and Dylan Yokoyama for data acquisition, and Libby Perry and 

Robert Smith for serial sectioning and image acquisition. This research was supported by 

NIH grants NS21184, MH095980, and NS074644 (Kristen Harris), NS44306, P41-

GM103712, MH079076 and the Howard Hughes Medical Institute (T. Sejnowski). 

  



 

 

24 

 Chapter 2, in full, is a reprint of the material as it appears in eLife, 2015. Bartol 

T.M., Bromer C., Kinney J., Chirillo M.A., Bourne J.N., Harris K.M. & Sejnowski T. J. 

The dissertation author was a primary investigator and co-author of this paper. 

 
 

  



 

 

25 

 
 
 

 
 

Figure 2.1: Correlations among metrics of dendritic spine morphology. Strong 
correlations were found between (A) Spine head area and spine head volume, (B) PSD 

area and spine head volume, and (C) Spine head area and PSD area. (D) Weak correlation 
was found between spine neck diameter and spine head volume. No correlation was 

found between (E) spine neck length and spine head volume and (F) spine neck diameter 
and spine neck length. Regression lines in red and error bars for each data point represent 

SEM based on multiple tracers who also edited each spine. Equations are based on the 
log-log distributions, with r2 values indicated, and n=287 complete spines. 



 

 

26 

 
Figure S2.1-1: Area of postsynaptic density plotted against spine head volume. Nine 

individual dendrites all have similar slopes that are not significantly different showing the 
uniformity of this comparison across dendrites. Error bars, regression lines and equations 

as described in Figure 1. 
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Figure 2.2: Presynaptic docked vesicle numbers are correlated with PSD areas, spine 
head volumes, and neck diameter, but not with neck length. (A) All 31,377 presynaptic 
vesicles. (B) En face view of the 24 docked vesicles (gray spheres) viewed through an 

axon (green) onto the PSD (red) of example spine (yellow). (C) Number of docked 
vesicles is correlated strongly with both PSD area and (D) spine head volume, weakly 

with (E) neck diameter, but is not correlated with (F) spine neck length. Regression lines, 
SEM (from multiple tracers), and r2 are as in Figure 1 n = 236 complete axonal boutons, 
each associated with one of the 287 complete spines. One human tracer marked PSDs and 

vesicles, hence no SEM for these two metrics 
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Figure 2.3: Morphometric analysis of 287 complete spines in reconstruction. 
Distributions of (A) spine head volumes, (B) PSD areas, (C) docked vesicles, (D) spine 
neck volumes, (E) spine neck diameters, and (F) spine neck lengths are highly skewed 

with a long tail. 
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Figure S2.1-1: Spine measurement and estimation of measurement error. (A) Example 
segmentation of spine head (yellow), neck (gray), and PSD area (red). (B) Histogram of 

the measurement error across all spines measured. (C) Measurement error plotted against 
spine head volume. 
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Figure 2.4: Spine head volumes, PSD areas and neck diameters, but not neck lengths, are 
highly correlated between pairs of axon-coupled same-dendrite spines. (A) Visualization 

of a pair of spines (gray necks) from the same dendrite (yellow) with synapses (red, 
indicated by white arrows) on the same axon (black stippling) with presynaptic vesicles 
(white spheres). (B) All axon-coupled same-dendrite spine pairs (colors as in A, pair c is 

elaborated in A). Strong correlations with slopes near 1 (dashed diagonal line) occur 
between paired (C) spine head volumes (slope = 0.91), (D) neck diameters (slope = 0.93), 

(E) PSD areas (slope = 0.74), and (F) docked vesicles (slope = 0.91); but not (G) spine 
neck lengths (slope = 0.48). Larger values from each pairing are plotted on the X axis. 

Regression lines (red) include the 10 a-j pairings (blue points) and 7 pairs from 2 
additional animals (green points in (C)), but do not include triplet bouton pairings (k-m, 

gray points). 
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Figure S2.4-1: Analysis of whole spine volume and spine neck volume of axon-coupled 
same dendrite spines.(A) Whole spine volumes of pairs of axon-coupled spines on the 

same dendrite are highly correlated and significantly different from random pairs (KS test 
p = 0.018). (B) Correlation of neck volumes of pairs of axon-coupled spines on the same 
dendrite are not significantly different from random pairs (KS test p = 0.74). Larger value 
in each pair is plotted on the X axis. Regression lines shown in red. Equations are based 

on regression of log-log distributions, with r2 values indicated. 
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Figure S2.4-2: Analysis of spines paired randomly. Distributions represent random 
pairings of (A) spine head volumes, (B) PSD areas, (C) docked vesicles, (D) neck 

volumes, (E) neck diameters, and (F) neck lengths, from the population of complete 
spines in the reconstruction. Larger value in each pair is plotted on the X axis. Regression 
lines shown in red. Error bars for each data point are not shown for clarity. Equations are 

based on regression of log-log distributions, with r2 values indicated. 
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Figure S2.4-3: Axon-coupled same dendrite pairs a–f. Large white arrows indicate the 
red PSDs of the spine pairs, the edited necks are dark gray, and the axons are stippled 
black with vesicles inside. These illustrate how the axon weaves through the neuropil, 

synapses with two spines yet passes by others 
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Figure S2.4-4: Axon-coupled same-dendrite pairs g-m, illustrated in same way as 

in Figure 4 (S3)  



 

 

35 

 
 

 
 
 
Figure 2.5: CV of axon-coupled spines on the same dendrite does not vary with spine 
size. There is no significant correlation, which implies that paired small synapses are as 
precisely matched as paired large synapses. 
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Figure 2.6: Paired spine head volumes are not correlated when they are not both axon 
and dendrite coupled. (A) Representative visualization and (B) plot showing lack of 

correlation between spine head volumes of all pairs of axon-coupled spines on different 
dendrites (n=127). (C) Similarly, randomly associated pairs of spine head volumes were 

not correlated. (D) Representative visualization and plots show lack of correlation 
between spine head volumes from randomly selected pairs (n=127) of non-axon-coupled 
spines (E) on the same or (F) different dendrites. Color scheme and regression analyses 

as in Figure 4. 
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Figure S2.6-1: Morphologies of PSD, docked vesicles, and necks are not correlated 

when spines are not both axon and dendrite coupled. There is no correlation between (A) 
PSD areas, (B) docked vesicles, (C) neck diameters, and (D) neck lengths, in pairs of 

axon-coupled spines on different dendrites. 
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Figure S2.6-2: Difference in volume between pairs of axon-coupled spines exhibits a 

weak trend with separation distance. Differences in spine head volumes plotted 
against: A) Distance along the axon for axon-coupled spines on the same dendrite; B) 
Distance along the axon for axon-coupled spines on different dendrites; C) Distance 
along the axon for randomly paired spines; D) Distance along the dendrite for axon-

coupled spines on the same dendrite; E) Distance along the dendrite for axon-coupled 
spines on different dendrites; F) Distance along the dendrite for randomly paired spines 
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Figure 2.7: Proximity of the glial cell to axon-coupled dendritic spines on either the 
same or different dendrites. Proximity of astrocytic glial processes is not significantly 

correlated with spine head volumes of axon coupled pairs. (A) Histogram of spine head 
volume for spines that contain a spinule that is engulfed within the glial process (‘ 

spinule’). (B) Representation of an engulfed spinule. (C) Histogram of spine head volume 
for spines that are surrounded by and making contact with a glial process (‘ensheathed’). 
(D) Representation of ‘ensheathed’ spine. (E) Histogram of spine head volume for spines 
that are proximal but not contacting a glial process (“‘ adjacent”’). (F) Representation of 
“‘adjacent”’ spine. (G) Histogram of spine head volume for spines that are distant from 

any glial process. (H) Representation of a spine “‘distant”’ from the glial process. The KS 
p value is shown on each inset and indicates that none of these distributions differ from 

the distribution for the whole population of spines. 
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Figure 2.8: Distinguishable spine sizes. Over the factor of 60 range in spine head volumes 
from the data set there are 26 distinguishable intervals of spine sizes with a discrimination 
probability of 69% for each interval based on signal detection theory (Green and Swets, 
1966; Schultz, 2007). The graph illustrates how distinct Gaussian distributions of spine 
sizes, each with a certain mean size and standard deviation, covers the entire range of spine 
head sizes on a log scale. The CV of each distribution is a constant value of 0.083 (Figure 
5) and the intervals are spaced to achieve a total of 31% overlap with adjacent intervals 
giving a 69% discrimination threshold (see Materials and Methods). Note that the constant 
CV observed in the data set (Figure 5) means that the intervals appear uniform in width 
and spacing on a logarithmic scale. This is a form of non-uniform quantization which 
efficiently encodes the dynamic range of synaptic strengths at constant precision. 
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CHAPTER 3: 

QUANTIFYING INFORMATION STORAGE IN THE HIPPOCAMPUS: LESSONS 

FROM DENTATE GYRUS 

 

 

Abstract 

 

 Reconstruction of synapses on dendritic spines of hippocampal CA1 pyramidal 

cells revealed a capacity to store ~4.7 bits of information at each synapse, across the 

population range of synapses. This prediction was based on the properties of a set of 

dendritic spines found to share the same presynaptic axon and postsynaptic dendrite. 

The degree to which these spine pairs were similar in size was assumed to reflect how 

tightly controlled synaptic strength can be under conditions where spike-timing 

dependent plasticity (STDP) dominates. Here, spine pairs with the same pre-post 

connectivity were explored for another cell type in the hippocampus, the dentate 

granule cell. Under control conditions, the similarity in size between the axon-coupled 

spine pairs was less in dentate MML than in CA1 stratum radiatum. The resulting 

information storage capacity per synapse in MML was calculated to be ~3.2 bits (30% 

less than CA1). In the dentate MML we also assessed the effect of long-term 

potentiation (LTP) induced by delta-burst stimulation delivered to the medial perforant 

pathway in the angular bundle in vivo. At 30 minutes following induction of LTP, the 
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distribution of synapse sizes shifted in both directions, producing a higher frequency of 

smaller than average, as well as larger than average spine head and synapse sizes. These 

findings suggest that the growth of potentiated synapses was homeostatically 

counterbalanced by heterosynaptic long-term depression at neighboring synapses. Thus, 

the shift in distribution increases the available number of strengths, while having 

negligible impact on the precision of control over size for paired spines in MML. The 

results of this study elucidate the significance of functionally distinct brain regions and 

states in terms of information storage capacity. 

 

Introduction 

 

Evidence for Hebbian plasticity, and in particular, spike-timing-dependent 

plasticity (STDP) in the hippocampus and cortex is abundant (Bi and Poo, 1998; 

Caporale and Dan, 2008). The STDP literature highlights the importance of the timing of 

axonal input to spines relative to postsynaptic cell depolarization. Notably, the shifts in 

synapse size that occur in response to STDP are correlated across a number of metrics 

including  spine head volume, postsynaptic density area (PSD), AMPAR complement 

and docked vesicle number (Harris and Stevens, 1989; Lisman and Harris, 1994; 

Schikorski and Stevens, 1997; Murthy, 2001; Branco, 2008; Bourne, 2013). 

In populations of spines where Hebbian plasticity (STDP) dominates and a 

skewed distribution of spine dimensions is present, pairs of spines sharing a dendritic 

branch and an axonal input tend to be similar in size (Chicurel and Harris, 1992). The 

tendency for spines with this shared activation history to have similar size and strength is 
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most likely not an accident, but rather a reflection of the shared Hebbian processes at 

work. In the cortex, spines that share a presynaptic and postsynaptic partner appear 

similar in size in a number of studies (Sorra and Harris, 1993; Kasthuri, 2015; Markram, 

1997). Our recent work quantified the similarity in spine size for spines with a shared 

presynaptic and postsynaptic history in rat CA1 s. radiatum and demonstrated that the 

information storage capacity at these synapses is much higher than previous estimates 

(Bartol, 2016). 

We applied information theory  (or signal detection theory, more specifically) to 

estimate the number of possible states that a dendritic spine can assume on hippocampal 

pyramidal cells in CA1 (s. radiatum). Information theory is often used in computing. We 

know that a binary bit in a computer has 2 possible values (0 or 1), but it can only have 

one of these states at a given time. To assess how many unique states a dendritic spine 

can assume, we calculated the coefficient of variation for the differences between two 

spines that share the same activation history, based on sharing the same pre and 

postsynaptic partners (same pre-post connectivity). For the hippocampal area CA1 

population, we found that axon-dendrite coupled spines presumed to have the same 

activation history had a CV of 0.10 (N=3). We applied the principles of information 

theory to the full range of observed spine sizes (60 in CA1 s. radiatum) to calculate the 

number of distinguishable synaptic states, keeping in mind that these calculations 

represent the lower limit. The outcome of the information theory calculation yielded 26 

distinct states for spines in hippocampal area CA1 (Bartol, 2016). If we assume that each 

spine in the population can grow or shrink to occupy any size in the observed range, then 

this calculation states that every spine has the capacity to store 4.7 bits of information in 
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its size (a metric for strength). In other words, under these assumptions, the calculated 

information storage capacity is assigned to each spine in the population. 

Our current work explores the information storage capacity at dentate granule cell 

synapses, in the middle molecular layer (MML). The dentate gyrus is a unique region of 

the hippocampus. It is one of the few brain regions capable of generating newborn 

neurons in adulthood in mammals (i.e. neurogenesis) and the plasticity of neurons here is 

influenced by their relative age (Snyder, 2001; Saxe, 2006). Learning paradigms 

implemented in the dentate gyrus have revealed a low threshold for intrinsic plasticity in 

addition to any synaptic plasticity that is induced (Lopez-Rojas, 2016). In addition to 

these functional differences to neurons in other regions of the brain, dentate granule cells 

have a very different dendritic arbor compared to CA1 or cortical pyramidal cells, most 

notably the absence of an apical trunk dendrite and basilar dendrites. The chalice-shaped 

arbor of dentate granule cells is associated with poor back-propagation of action 

potentials (Krueppel, 2011). For these various reasons, the degree of correlation in the 

strengths of the synapse pairs sharing a presynaptic and postsynaptic history may be less 

than in other brain regions. By exploring and quantifying the capacity for information 

storage across the hippocampus, we can begin to explore how the diverse functions of 

hippocampal regions intersect with plasticity processes in these regions.  

Information theory was applied here to new data from the dentate gyrus MML to 

assess whether the information storage capacity at each synapse was the same or different 

than in CA1 s. radiatum. Toward this end, the dynamic range in spine sizes  was 

measured in MML, as well as the CV for spines with shared activation history (same pre-

post connectivity). Further, we tested whether the observed shift in spine head sizes in 
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LTP had a functionally significant influence on the precision of axon-spine size coupling 

or dynamic range in spine sizes that affected the number of distinct functional states, and 

thus capacity to store information at the synapse (as measured in bits). We find that by 

using the larger dynamic range observed in LTP we see a shift information storage 

capacity between control and LTP hemispheres. Moreover, we presume that LTP in the 

CA1 region would shift the information storage capacity in a similar manner to what we 

observe in the dentate. 

 

Results 

 

Spine head distributions and information stored at the synapse differ between CA1 and 

MML 

In data from the middle molecular layer of dentate gyrus (MML), we sampled 205 

spine heads from the control hemispheres and 189 spine heads from LTP hemispheres. 

We demonstrated in our previous work that spine head volume, PSD area and vesicle 

number are highly correlated. For the purposes of this study we chose to focus on spine 

head volume because it is the most accurately measured of these correlated metrics. This 

accuracy of measurement is due to our ability to reconstruct spine heads in 3D space in 

Blender. While the PSD area and vesicle number are easily estimated from the 

Reconstruct (.ser) files, the ability to take multiple measurements of the spine head 

volume in a more computationally accurate representation enables improved quality of 

measurements. We found that the distribution of spine head volume in MML was 
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significantly different from that in CA1 as measured by the Kolmogorov-Smirnoff (KS) 

test (Fig. 1).  

Repeating our analysis of pairs of spines sharing the same dendritic branch and 

same axonal input, or SDSA pairs (example pairs from CA1 and dentate are shown in 

Fig. 2), we identified, measured and plotted the volumes of such pairs (n=16) from the 

MML (Fig. 3). We found that when plotted against one another, the slope of the paired 

spine volumes was lower in the MML (0.66) than in CA1 (0.91). A greater variability in 

paired spine sizes was also evidenced by the higher coefficient of variation for SDSA 

pairs in this area (CV = 0.42 +/- 0.066) compared to CA1 (CV = 0.10 +/- 0.037). These 

data indicate that there is less concordance in spine head size, and thus synaptic efficacy, 

for dentate SDSA pairs than for CA1 SDSA pairs. The measured CV for the pairs of 

spine head volumes is an important component in estimating distinguishability of spine 

sizes using signal-detection theory (Bartol, 2016; Green and Swets, 1966; Schultz, 2007). 

It allows us answer the question of how well two spine heads with different sizes can be 

distinguished if they are drawn from two distributions with different means but the same 

CV 

We set the threshold for an ideal observer at 69%, corresponding to a signal-to-

noise ratio of 1. This gives us an estimate for the the minimum spacing between 

distinguishable spine head volumes; and knowing the range of volumes we can then 

calculate the total number of distinguishable volumes. The number of bits of information 

that can be stored is the logarithm base 2 of this number. We calculated ~3.2 bits of 

information capacity in control synapses in MML based on the observed CV (0.44) and 

range of available sizes (270). Compared to CA1 (4.7 bits, Bartol 2016), this outcome 



 

 

47 

represents an almost 30% lower information storage capacity in the dentate gyrus granule 

cell. 

 

LTP stimulation in the MML shifts the distribution of spine heads but not information 

stored at the synapse 

In the LTP hemispheres, which showed an average of 41.0% potentiation (Fig. 

4A,4B), we sampled 189 spines and demonstrated that the distribution of these spine 

heads was significantly different from spine heads in the same region in the control 

hemispheres. Using the spine head volume measurements, we found that the shift in the 

distribution of spine head volume in the LTP condition in MML was significantly 

different as measured by the Kolmogorov-Smirnoff (KS) test (S. Fig. 4), with an increase 

in both tails of the distribution. In other words, following LTP induction, some spines 

grew much larger than in the control hemisphere, and appear to have been 

counterbalanced by an increase in the number of small spines (Fig. 4E, 4F). We observed 

additional differences in the LTP and control spine populations. First and foremost, we 

observed variation in the number of synapses per micron (Fig. 4D). We also noted that 

the discrepancy in measurements (4 measurements taken by two people) was only notable 

in LTP condition, which we believe is suggestive of the fluctuating nature of these spines 

at the 30 minute time point (Fig. 4C). 

In the MML control hemispheres we observed 10 SDSA  pairs, with a regression 

slope for the paired volumes of 0.72. The CV for the observed pairs was 0.44, and the 

range of spine sizes (observed only in the control hemispheres) was 78. Using this CV 

and range, specific to the control condition, we calculated 7. 4 distinguishable spine sizes 
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for the control condition, slightly lower than our calculation across both hemispheres 

(above) (Fig. 5A, 5C). This results in 2.9 bits of information storage capacity in the 

control hemisphere, given the smaller range of observed spine sizes. 

In the LTP hemispheres, we observed 6 SDSA pairs and plotted the paired spine 

head volumes with a regression slope of 0.35 (Fig. 5B, 5D). A nearly identical coefficient 

of variation was observed under the LTP condition as compared to control condition in 

MML (CV =.40 +/- 0.106). However, the shift in the distribution of spine sizes increased 

the range of available sizes (270). Applying signal detection theory as above, we 

calculated that the information stored at the synapse in the MML was affected by the shift 

in the underlying distribution of spine head volumes under LTP conditions and calculated 

9.4 distinguishable sizes for 3.2 bits per synapse. Importantly, this increase in information 

is enabled by the shift in the distribution rather than a shift in the similarity in the strength 

of paired spines. 

 

 

Does spine shape matter? 

In CA1 s. radiatum data, SDSA spine pairs are not only similar in size, but also in 

shape. In order to quantify the relative similarity of SDSA spine pairs to one another, as 

compared to other spines of similar volume, we devised a new method to quantitatively 

evaluate spine shape. Spines were centered, rotated and scaled in 3D space. The Jaccard 

Distance was calculated by taking the intersection of the two spines from the union. This 

numerical measure from 0 to 1, normalized for size and rotation, allows for a quantitative 

comparison of spines’ shape. In Fig. 6 we plotted the Jaccard distance for random spine 
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comparisons (Fig. 6A), as well as those spines sharing axonal input in CA1 (Fig. 6B). 

Interestingly, the slope of the line was not influenced by connectivity in CA1, where the 

slope does not differ significantly from random as a result of connectivity. We also 

plotted random spine comparisons in MML control and LTP conditions (Fig. 6C, 6D). 

The relationship between spine head shape and Jaccard distance is stronger in MML, and 

varies slightly in response to condition. The stronger relationship between spine head 

shape and Jaccard distance in the MML of dentate gyrus is in keeping with our 

hypothesis that there is indeed a relationship between spine head volume and spine head 

shape, and that the precision of control over this relationship is related to the degree of 

STDP precision. 

 

Discussion 

 

In the current study, we provide evidence that the information storage capacity at 

the synapse in dentate gyrus MML, the site where the predominant stream of information 

from cortex arrives in the hippocampus is about 3.2 bits per synapse, compared to 4.7 bits 

per synapse in CA1 s. radiaturm. This difference could be functionally accounted for by a 

number of factors. The first factor is the variable age of neurons in the dentate that results 

from neurogenesis, including the hypothesized “retirement” of older neurons in this 

region from participation in Hebbian learning processes (Snyder, 2001; Mongiat, 2011). 

The second is the lower basal rate of activity in dentate gyrus as compared to CA1 

(Chawala, 2005; Neunuebel, 2012). The third is that dendritic response properties and the 

efficiency of action potential back-propagation differ in the dentate gyrus granule cells 
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compared to CA1 pyramidal cells (Schmidt-Hieber, 2007; Krueppel, 2011; Brunner, 

2016). 

We hypothesize that the second and third factors contribute most to the 

discrepancy in our measurement of information storage capacity across the hippocampal 

regions. The combined effect of these two factors is to vastly decrease the impact and 

importance of the back-propagating action potential (bAP) in the dentate granule cell 

relative to the pyramidal cells of CA1. Lower activity rates in granule cells are believed 

to shape the response to the deluge of information received from the entorhinal cortex 

and to aid in pattern separation (Neunuebel, 2012). It may be that this relatively low 

firing rate also makes STDP processes less effective or relevant in the dentate gyrus 

compared to CA1 and other hippocampal regions. Similarly, response properties of 

granule cells in the dentate gyrus privilege dendritic computation over somatic bAP 

(Krueppel, 2011). These various factors decrease the impact of the bAP at the synapse as 

the spine receives presynaptic input. The lower information per synapse observed in this 

brain region might suggest simply that our metric for comparison, namely SDSA pairs, 

does not sufficiently capture the plasticity processes at play in this region where the 

influence STDP processes is reduced except where the effect of the bAP is enhanced by 

neuromodulators (Yang and Dani, 2014). In other words, granule cell SDSA synapses 

may not share presynaptic and postsynaptic histories as much as CA1 pairs as a result of 

privileging of dendritic computation in the granule cells. 

We believe that neurogenesis plays less of a role in the observed difference in 

information storage capacity at the synapse between CA1 and dentate than the above 

factors. Although we are not able to know definitely the age of the neurons in a static 
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image representation, we do know that the technique used for the selection dendritic 

spines should ensure that the dendrites are similar in age across animal and condition (see 

Methods). Mature granule cells are believed to be involved in STDP processes, while 

newborn cells are not. Our analysis presumes our selected dendrites fall into the former 

category, and are able to participate in STDP processes.  

We found that while the precision of control over spine size was not influenced by 

condition,  the amount of information stored by synapses in the dentate gyrus MML 

region was was greater in the LTP hemispheres alone than under control hemispheres in 

isolation. In particular, our study demonstrates that LTP induction dramatically shifts the 

distribution of spines head sizes, thereby increasing capacity for information storage in 

the region temporarily. This increase is indeed likely temporary, as the spines in these 

series may still be in flux 30 minutes following LTP stimulation. The degree to which 

spines are in flux is evidenced by higher rates of variability in measurements of spines in 

the LTP series compared to control; the boundaries between spine head and neck are 

more difficult to identify in these two LTP series compared to control series in the same 

region. The very similar CV for spine pairs with a shared activation history in MML 

across control and LTP hemispheres suggests that the mechanism of plasticity is not 

altered by stimulation. Rather, the effective decrease in information storage observed in 

the control hemispheres is a result of the increased range of observed sizes in the LTP 

condition, not observed in control hemispheres. We chose to use this range for our overall 

calculation of information storage capacity per synapse in MML, as we believe the limits 

of the range of possible sizes provides the best predictor of information storage in the 

brain. We believe that in CA1, a stimulation paradigm paradigm would also likely 
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increase the observed range of sizes, and consequently the distinguishable spine sizes for 

a given CV. Even using the maximum range of spine sizes in the dentate gyrus MML did 

not bring the calculated information storage capacity close to that of CA1, the difference 

between regions lies in the CV of paired spines (CA1 = 0.10, dentate = 0.42).  

With respect to spine shape, we observe a difference in correlation with spine 

head volume across our two regions of interest: CA1 s. radiatum and dentate MML. The 

flatter relationship between size and shape in CA1 may suggest that the precision of spine 

head size dominates in this region, where dendritic computations are less important 

relative to bAP as compared to dentate. Perhaps then, in dentate, the computations 

performed by spines are influenced by their shape, and the relationship between the 

volume and shape is more important. Further exploration of this relationship will be 

enabled by the tools developed in the context of this project. 

The implications of our findings are twofold. Firstly, our findings suggest the 

need for further exploration of information storage capacity at synapses throughout the 

brain. Is there variability across cortical regions and between cortex and hippocampus? Is 

the dentate an aberration from the precision observed in CA1 or does the capacity for 

information storage at the synapse fall across a range? And, if STDP processes are not 

dominant in the dentate, how can we better capture the precision of control over spine 

size in this area, and others like it? Secondly, the shift in spine head volumes following 

LTP induction bears further exploration. The “lognormal” distribution of spine head 

sizes, and other metrics throughout the brain have been well documented (Buzsaki, 

2014). How this long-tail distribution of spine sizes responds to activity, such as LTP 

induction, and how the observed shift in distribution supports the underlying 
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computations is less understood. How might this temporary shift in  the distribution of 

spine sizes (increase in both larger and smaller spines) and information storage capacity 

serve to accommodate the underlying computational processes occurring at individual 

spines? The answers to these questions will further inform our understanding of 

computation in the brain, and its relationship to a well-characterized form of plasticity: 

STDP.  

 

Methods 

 

Surgery and electrophysiology 

Data were collected from two young-adult male Long-Evans rats aged 179 and 

121 days at the time of LTP induction and perfusion. They had been surgically implanted 

as previously described (Bowden,  2012) with wire stimulating electrodes separately into 

the medial and lateral perforant pathways running in the angular bundle in the LTP 

hemisphere, and in the medial perforant pathway only in the control hemisphere (only 

medial path data are described in this paper). Wire field EPSP recording electrodes were 

implanted bilaterally in the dentate hilus. Two weeks after surgery, baseline recording 

sessions (30 min) commenced, with animals being in a quiet alert state during the 

animals’ dark cycle. Test pulse stimuli were administered to each pathway 1/30 s as 

constant current biphasic square-wave pulses (150 µs half-wave duration), alternating 

between the three stimulating electrodes.  The test pulse stimulation intensity was set to 

evoke medial path waveforms with fEPSP slopes >3.5 mV/ms in association with 

population spike amplitudes between 2-4 mV, at a stimulation current ≤ 500 µA. On the 
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day of LTP induction, after stable baseline recordings were achieved, animals received 30 

min of test pulses followed by delta-burst stimulation (DBS) delivered to the ipsilateral 

medial perforant path, while the contralateral hippocampus served as a control. The LTP-

inducing DBS protocol consisted of five trains of 10 pulses (250 µs half-wave duration) 

delivered at 400 Hz at a 1 Hz interburst frequency, repeated 10 times at 1 min intervals 

(Bowden, 2012). Test pulse stimulation then resumed until the animal was sacrificed. The 

initial slope of the medial path fEPSP (mV/ms) was measured for each waveform and 

expressed as a percentage of the average of the last 15 min of recording before DBS. 

 

Perfusion and fixation  

At 30 minutes after the commencement of DBS, animals were perfusion fixed 

under halothane anesthesia and tracheal supply of oxygen. The perfusion involved brief 

(~20 sec) wash with oxygenated Krebs-Ringer Carbicarb buffer (concentration in mM; 

2.0 CaCl2, 11.0 D-glucose, 4.7 KCl, 4.0 MgSO4 , 118 NaCl, 12.5 Na2CO3, 12.5 NaHCO3, 

pH = 7.35–7.4, osmolality = 300–330 mmol/kg), followed by 2% formaldehyde and 2.5% 

glutaraldehyde (both aldehydes from Ladd Research, Williston, VT) in 0.1M cacodylate 

buffer (pH = 7.35-7.4) containing 2 mM CaCl2 and 4 mM MgSO4 for ~1 hr (~1900 ml of 

fixative was used per animal). The brains were removed from the skull at about 1 hour 

after end of perfusion, wrapped in several layers of cotton gauze and shipped on ice in the 

same fixative from the Abraham Laboratory in Dunedin, New Zealand, to the Harris 

Laboratory in Austin, Texas by overnight delivery (TNT Holdings B.V., Amsterdam, The 

Netherlands). 
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Tissue processing and serial sectioning 

The fixed tissue was then cut into parasagittal slices (70 µm thickness) with a 

vibrating blade microtome (Leica Microsystems, Buffalo Grove, IL) and processed for 

electron microscopy as described previously (Harris, 2006; Kuwajima, 2013 Methods 

Mol Biol).  Briefly, the tissue was treated with reduced osmium (1% osmium tetroxide 

and 1.5% potassium ferrocyanide in 0.1M cacodylate buffer), followed by microwave-

assisted incubation in 1% osmium tetroxide under vacuum. Then the tissue underwent 

microwave-assisted dehydration and en bloc staining with 1% uranyl acetate in ascending 

concentrations of ethanol. The tissue was embedded into LX-112 epoxy resin (Ladd 

Research) at 60°C for 48 hr before being cut into series of ultrathin sections at the 

nominal thickness of 45 nm with a 35° diamond knife (DiATOME, Biel, Switzerland) on 

an ultramicrotome (Leica Microsystems). The serial ultrathin sections from MML (region 

of molecular layer ~125 µm from top of granule cell layer in dorsal blade of the 

hippocampal dentate gyrus) were collected onto Synaptek® Be-Cu slot grids (Electron 

Microscopy Sciences, Hatfield, PA, or Ted Pella, Redding, CA) coated with Pioloform 

(Ted Pella), and stained with a saturated aqueous solution of uranyl acetate followed by 

lead citrate (Reynolds, 1963). 

 

Imaging and alignment 

The serial ultrathin sections were imaged, blind as to condition, with either a 

JEOL JEM-1230 TEM (Tokyo, Japan) or a transmission-mode scanning EM (tSEM; 

Zeiss SUPRA® 40 field-emission SEM with a retractable multi-mode transmitted 
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electron detector and ATLAS package for large-field image acquisition; Oberkochen, 

Germany; Kuwajima, 2013 PLoS). On the TEM, sections were imaged in two-field 

mosaics at 5,000× magnification with a Gatan UltraScan 4000 CCD camera (4,080 pixels 

× 4,080 pixels; Pleasanton, CA), controlled by DigitalMicrograph software (Gatan). 

Mosaics were then stitched with “Photomerge” function in Adobe Photoshop (San Jose, 

CA). The serial TEM images were first manually aligned in RECONSTRUCT™ 

(http://synapseweb.clm.utexas.edu/software-0; Fiala, 2005) and later with Fiji with the 

TrakEM2 plugin (http://fiji.sc; Saalfeld, 2012; Cardona, 2012; Schindelin, 2012). On the 

tSEM, each section was imaged with the transmitted electron detector from a single field 

encompassing 32.768 µm × 32.768 µm (16,384 pixels × 16,384 pixels at 2 nm/pixel). 

The scan beam was set for a dwell time of 1.3-1.4 ms, with the accelerating voltage of 28 

kV in high-current mode. Serial tSEM images were aligned automatically using Fiji with 

the TrakEM2 plugin. The images were aligned rigidly first, followed by application of 

affine and then elastic alignment. Images from a series were given a five-letter code to 

mask the identity of experimental conditions in subsequent analyses with 

RECONSTRUCT™. Pixel size was calibrated for each series using the grating replica 

image that was acquired along with serial sections. The section thickness was estimated 

using the cylindrical mitochondria method (Fiala and Harris, 2001). 

 

 

Reconstructions 

Spine heads and postsynaptic densities (PSDs) were identified in by their electron 

density and presence of closely apposed presynaptic vesicles. Contours were drawn using 
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Reconstruct software on serial images for each spine head. For spines making a synaptic 

contact a second contour was drawn, closely encompassing, as a single closed contour, 

the pre- and postsynaptic extent of the electron dense region. For each of the 4 series 

presented here (N = 2 x condition), all spines on three dendrites of similar caliber were 

traced. Caliber has previously been shown to scale with dendrite cross-section and 

microtubule count, which is a more reliable feature (Fiala, 2001; Bourne and Harris, 

2011; Bowden, 2008). The microtubule count ranged from 30-35 for this sample and 

represents the average for dendrites found in this region. 

Blender, a free, open-source, user-extensible animation tool was used in 

conjunction with 3D models generated in Reconstruct. We enhanced our Python add-on 

to Blender, “Neuropil Tools” (Bartol, 2016) to better facilitate the processing of the 3D 

reconstruction and evaluation of spines. The additions encompassed in Processor Tool 

were as follows: 

a. The software allows for the selection of traced objects from Reconstruct (.ser) 

files by filter, allowing the user to select only desired contour traces (in this case spine 

head and PSD contours for three dendrites per series) 

b. At the press of a button, the tool generates 3D representations of selected contours 

in Blender. This step calls software from VolRoverN (Edwards, 2014) from Blender, 

which generates “mesh objects” by the addition of triangle faces between contour traces 

c. Smoothing and evening of the surface of spine objects is accomplished by calling 

the GAMer (http://fetk.org/codes/gamer/) software  

d. In a few cases, the formation of triangles was uneven and required additional 

manipulation by Blender tools and repeating of step C before proceeding to step E 
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e. Lastly, postsynaptic density (PSD) areas are assigned as metadata (represented by 

red triangles) on reconstructed spine heads; the assignment is performed based on the 

overlap of PSD and spine head contours (described above) in 3D space 

 

Segmentation and Evaluation of Spines 

Dendritic spines were segmented as previously described (Bartol, 2016) using the 

“Neuropil Tools” analyzer tool. The selection of spine head from spine neck, and from 

spine neck to dendritic shaft, were made using the same standardized criterion as before 

(visually identified as half-way along the concave arc as the head narrows to form the 

neck). Spines were excluded if they were clipped by the edge of the dataset. In order to 

ensure the accuracy of the measurements, segmentation and spine head volume 

evaluation were completed four times (twice each by two people) and averaged. A further 

check was added at this step, whereby spine heads with an SEM>=0.2 microns for all 

four measurements were visually evaluated by an expert, and any discrepancy in the 

segmentation was corrected. Interestingly, the only spines with an SEM larger than 0.2 

microns were in the LTP condition. We believe this occurs because of the spines 

undergoing LTP are likely to be in transition at the 30 minute time point, and as such, the 

delineation between spine head and spine neck are more difficult for the human eye to 

see. In the two control condition series, further evaluation by an expert was performed, 

adjustments were made accordingly to better represent this view (Table 1). 

 

Identification of Same-Dendrite-Same-Axon (SDSA) Pairs 
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Identification of spines sharing an axonal input and dendritic branch was 

performed in Reconstruct. Beginning in the center of each of three dendrites,axons were 

traced bidirectionally to the next synaptic contact from about 10 initial contact points. If 

the second contact was a spine from the same dendritic branch, the two spine heads were 

labeled an SDSA pair. This process was repeated in all four series (N=2 x condition).  

 

Statistical Analysis 

Statistical analysis and plots were generated using Python 2.7 with NumPy, SciPy 

and Matplotlib. Cumulative distributions (CDFs) were generated and plotted using spine 

head volume measurements output from Blender. Kolmogorov-Smirnoff (KS) test, a 

nonparametric test, was used for comparing distributions due to the skewed (non-normal) 

distribution of the data. The coefficient of variation (CV) for SDSA pairs was calculated 

from the standard deviation of the pair divided by the mean volume of the pair. The 

average CV for each series or condition was the average of the CV of included pairs. 

 

Estimation of number of distinguishable spine sizes and bits of precision in spine size 

To estimate the number of distinguishable spine size and bits of precision we 

calculated the number of distinct Gaussian distributions of spine sizes, each with a certain 

mean size and standard deviation that together would cover and span the entire range of 

spine head sizes for each series or condition. Given the CV, the spacing between the 

mean values of each sub-distribution can be chosen to achieve a total of 31% overlap 

with adjacent sub-distributions giving a 69% discrimination threshold. A 69% 
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discrimination threshold is commonly used in the field of psychophysics and corresponds 

to a Signal-to-Noise (SNR) of 1. 

 

The 69% confidence interval, z, of a Gaussian distribution is given by: 

z = sqrt(2)*erf−1(0.69) 

The spacing, s, of adjacent intervals of mean, μ, is given by: 

s = μ*2*CV*z 

The number, N, of such distributions that would span the factor of 50 range of spine sizes 

is: 

N = log(50)/log(1+2*CV*z)) 

Where the CV = 0.44 (control) and 0.40 (LTP)  

N = 7.4, N = 9.4 

The number of bits of precision implied by N distinguishable distributions is given by: 

bits = log2(N) 

bits = 2.887 (control), bits = 3.23 (LTP) 
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Figure 3.1: Distributions of spine head volumes differ across hippocampal regions 

under control condition. A) Example of spine head volume measurement using 
Neuropil Tools (spine head represented in gray, spine neck in purple, PSD area in red) B) 

Cumulative distribution function plot showing that the two spine populations are 
significantly different as measured by head volume (KS test p-value = 4.20e-07) C) 

Histogram of spine head volume in dentate gyrus MML (n = 205 synapses) D) Histogram 
of spine head volume in CA1 (n = 287 synapses). 
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Figure 3.2: Depiction of “Same Dendrite Same Axon” (SDSA) spines in dentate 

gyrus MML (A,C,E) and CA1 s. radiatum (B,D,F). A) Representative EM of one spine 
in a pair of SDSA spines in MML B) Representative EM of one spine in a pair of SDSA 

spines in CA1 C) Example SDSA pair represented in Blender (MML) D) Example SDSA 
pair represented in Blender (CA1)   E) Largest, median and smallest SDSA pairs in MML 

F) Largest, median and smallest SDSA pairs in CA1  
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Figure 3.3: Spine head volume for pairs of spines sharing a presynaptic and 

postsynaptic history is more similar in CA1 s. radiatum compared to dentate gyrus 
MML A) spine head volumes dentate gyrus MML (slope = 0.66, CV = 0.42), gray points 

represent a quadruplet of spines sharing a dendritic branch and a single axonal input 
(N=2) B) spine head volumes CA1 s. Radiatum (slope = 0.91, CV = 0.10), gray points 
represent a triplet of spines sharing a dendritic branch and single axonal input (N=3) C) 

Distinguishable spine sizes in dentate gyrus MML (9.4) D) Distinguishable spine sizes in 
CA1 s. radiatum (27.4)  
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Figure 3.4: Acute induction of LTP in the middle molecular layer (MML) of the 
dentate gyrus of adult rat by stimulation of the angular bundle in vivo shifts the 

distribution of spine head volumes. Graphs illustrate change relative to baseline 
stimulation prior to induction of LTP by delta-burst stimulation in A) Control and B) LTP 
conditions. Control animals received test pulses only to the contralateral medial perforant 

pathway throughout the experiment and Representative waveforms [INSET] during 
baseline stimulation and following delta-burst stimulation. Scale is for both LTP and 
Control waveforms C) To test the accuracy of spine head volume metrics, SEM was 

calculated across 4 measurements for each spine. The number of spines where the SEM 
across measurements was greater than 0.02 microns was much higher in LTP condition 
(59 and 55) even after expert evaluation (39 and 37) compared to control D) Bar plot 
showing the frequency of SDSA synapses per micron relative to the total number of 

synapses E) Histogram of spine head volume for spines in the dentate gyrus MML under 
E) control condition and F) LTP condition   
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Figure 3.5: Spine head volume for pairs of spines sharing a presynaptic and 

postsynaptic history is similar in dentate gyrus MML under control and LTP 
conditions. A) spine head volumes dentate gyrus MML under control conditions  (slope 
= 0.723, CV = 0.44) B) spine head volumes dentate gyrus MML under LTP conditions 
(slope = 0.355, CV=0.40) C) Distinguishable spine sizes in dentate gyrus MML under 

control condition (7.4) D) Distinguishable spine sizes in dentate gyrus MML under LTP 
condition (9.4)  
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Figure 3.6: The relationship between spine head volume and shape varies across the 
hippocampus. Plots of Jaccard distance as a function of volume (SDSA pairs are 

represented in red in all plots) for A) random spine pairs in CA1 s. radiatum (slope = 
0.0113) and B) axonally connected spine pairs in CA1 s. radiatum (slope =0.0140). C) 
random spine pairs in dentate MML control condition (slope = 0.0359) and D) random 

spine pairs in dentate MML LTP condition (slope = 0.0367) 
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Figure S3-1: No significant difference in distribution of spine head volume occurs 
between dendrites within animal A) blue and red lines represent the distribution of 
spine head volume in three dendrites in the control and LTP condition respectively in 

Rat1 B) blue and red lines represent the distribution of spine head volume in three 
dendrites  in the control and LTP condition respectively in Rat2 
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Figure S3-2: No significant difference exists in whole spine or spine neck 

populations in the control or LTP condition Histograms of A) spine neck volume and 
B) whole spine volume for the population of spines in dentate gyrus MML in the control 

condition. Histograms of C) spine neck volume and D) whole spine volume for the 
population of spines in dentate gyrus MML LTP condition. E) Cumulative distribution 

function plot showing that the two spine populations are significantly different as 
measured by spine neck volume (KS test p-value = 0.003) F) Cumulative distribution 

function plot showing that the two spine populations are significantly different as 
measured by whole spine volume (KS test p-value = 0.019) 
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Figure S3-3: CV varies with spine size in the LTP condition but not the control 
condition. A) The combined SDSA pairs plotted against spine head volume, a slight 

increase in CV is seen with size when control and LTP pairs are aggregated B) CV for 
control SDSA pairs does not increase with spine head size C) CV for LTP SDSA pairs 

shows some relationship with size 
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Figure S3-4: Control and LTP spine population distributions are significantly 

different from one another. Cumulative distribution function plot showing that the two 
spine populations are significantly different as measured by head volume (KS test p-value 

= 4.20e-07) 
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CHAPTER 4: 

DEVELOPING TOOLS FOR THE ANALYSIS OF ELECTRON 

MICROSCOPY DATA 

 

Abstract  

 

Improvements in imaging technology and computation in the last two decades 

have facilitated collection of large amounts of microscopy data and lowered barriers to 

collecting and storing such data. However, tools for evaluation and analysis of 

microscopy data have lagged behind, creating a bottleneck in utilization of existing 

datasets to address key questions in biology. As part of a larger pipeline, we have 

developed a set of tools for rigorous quantitative analysis of morphometric data generated 

from microscopy images, specialized for analysis of brain tissue. This software package, 

Neuropil Tools, is an add-on to Blender (https://www.blender.org/; an open access 

animation tool) with dependencies on existing software packages (CellBlender and 

VolRoverN, and GAMer) and is available for public use and distribution according to the 

GNU public license. 

 

Introduction 

 

The problem of accurately representing electron microscopy data in 3D has long 

plagued the field of Neuroscience and microscopy. A number of tools are available to 
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facilitate the tracing and naming of individual spines, axons and intracellular 

components, including Reconstruct, IMod, TrakEM2, SWIFT-IR, FIJI, NeuroMorph and 

iLastik (Cardona 2012; Jorstad 2015). Such tools have built in capabilities to visualize 

traced objects in 3D as well as tools to measure spine head volume, PSD area and other 

metrics of interest.  However, existing tools lack the ability to measure volume and PSD 

area of reconstructed 3D data. The need for morphometric analysis of this nature has 

remained an unmet need for researchers.  

Beyond the need for improved quality of measurements, expediting analysis of 

available electron microscopy data can greatly enhance use of the existing resources. 

While work on automatic segmentation of 2D images is ongoing, and currently unable to 

match human tracing work, facilitating generation of 3D analysis can make use of 

painstaking work on traces, and can identify and correct human errors made during the 

segmentation process. 

Neuropil Tools is an open-source software package designed to aid in conversion 

of 2D electron microscopy images to 3D “mesh objects” for analysis of area, diameter 

and volume of neuronal components (github.com/mcellteam/neuropil_tools). The tool is 

under development and is encompassed in the larger CellBlender software package 

(github.com/mcellteam/cellblender), which utilizes Blender (blender.org), a state-of-the-

art open-source 3D content creation and visualization tool. Its current capabilities include 

construction of computational quality mesh objects from labelled trace files (currently 

accepts .ser file format), and a set of tools to accurately, and in a semi-automated manner, 

measure volume, area, diameter, and length of spine heads and spine necks. The tool will 

be expanded to include analysis of various cellular components such as ER and 
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mitochondria. Such a tool greatly facilitates the speed of data processing and increases 

the accuracy of neuromorphic measurements. Moreover, the mesh objects generated 

using this tool are of computational quality and are automatically annotated with 

necessary metadata making them ready for use in simulations of biochemical reaction 

dynamics using MCell (mcell.org) and other 3D reaction/diffusion simulators such as 

VCell (vcell.org).  Neuropil Tools is composed of several subcomponents, namely the 

“Processor Tool”, “Spine Head Analyzer Tool”, and “Connectivity Tool”. 

 

Methods and Materials 

 The tool assembled for this work relies on existing software packages and 

algorithms as well as new and original code. It aims to make complex functions available 

in a user-friendly and open-access interface. Ideally, such a tool will be utilized by 

numerous researchers and present a standard in the field for quality of 3D representations 

of neurons. Outlined below is information on the tools and algorithms utilized in this 

software package. 

 

CellBlender 

 Neuropil Tools is a powerful package that draws on previously developed 

software to go above and beyond the capabilities of other morphometric analysis 

packages such as Neuromorph. Many of the functionalities in Neuropil Tools depend on 

another add-on built by our group, which is designed to visualize molecular scale 

simulations created by MCell. CellBlender creates the capacity for labelled regions and 
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other data to be stored on the triangles associated with each mesh, diminishing the clutter 

in the Blender workspace and ensuring that information is not lost or misplaced. 

 

VolRoverN 

 VolRoverN surpasses existing methods for mesh generation, using an algorithm 

for the aggregation of traces into 3D objects that ensures manifoldness, water-tightness 

and lack of self- and object-object intersections, as well as geometric accuracy. 

Incorporating the functionalities in VolRoverN into Neuropil Tools enhances the user 

experience and ease of use, but Neuropil Tools relies fundamentally on the algorithms 

employed by VolRoverN 

 

 

Results 

 

Processor Tool 

This tool handles the initial intake of segmented traces from RECONSTRUCT 

and preparation of quality meshes from these objects. Figure 1 depicts a TEM image of 

hippocampal Neuropil in which dendritic spines have been hand-traced in Reconstruct. 

On the right are a number of dendritic spines represented in 3D space in Neuropil Tools, 

with postsynaptic density (PSD) regions in red. At the click of a button, the user can 

navigate to and select a Reconstruct file (.ser) from a menu, and select any number of 

traced objects to be imported, reconstructed, and analyzed in batch. The series of steps 

performed automatically with no further human intervention includes mesh generation, 
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smoothing, and tagging of synaptic contact regions (PSD post-synaptically, and active-

zone pre-synaptically). A first pass of mesh generation is performed by creating a series 

of connected triangular tiles spanning the original traces in 3D space. The section 

thickness (distance between traces) is read automatically by the tool and meshes are 

generated according to this spacing. Next, computational quality meshes are generated by 

remeshing and smoothing this first pass meshes. In the final step, the patches of mesh 

triangles on an object corresponding to synaptic contact regions are automatically 

identified and tagged with metadata obtained from the RECONSTRUCT trace files (Fig 

13).  

 

Spine Head Analyzer Tool 

 The Spine Head Analyzer component of Neuropil Tools is specialized for the 

analysis of neuromorphic reconstructions. The user is able to select a spine of interest 

from a list, and to select the border of the spine head (L) and and whole spine (R) as 

shown (the eventual pipeline will incorporate an algorithm that identifies inflection points 

like those below automatically, reducing the need for human input). Following the 

selection of these regions (Fig 14), the morphometric analysis of the whole spine, spine 

head, and spine neck is performed automatically by the tool. The morphometric data are 

stored as metadata attached to the object in Blender and can be output as a text file for 

convenient post-processing. 

 

Connectivity Tool:  
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This tool facilitates exploration, visualization, and analysis of the connectivity 

among the axons and dendrites within a reconstructed block of neuropil. With this tool 

one can quickly find, for example, the axon that makes contact with a particular spine, or 

all the dendrites contacted by a particular axon. Reports of the morphometric data for all 

objects in the dataset can be generated, collated by their connectivity. 

 

Discussion 

 

 Neuropil Tools (Figure 3) differs from other available software packages, such as 

Neuromorph, in the several ways (Jorstad, 2015). Firstly, Neuropil Tools generates high 

quality meshes directly from tracing software output (.ser file). To our knowledge, other 

existing tools are for 3D representations of 2D electron microscopy images are limited to 

importing existing 3D mesh objects. Secondly, Neuropil Tools uses user-given trace 

names in its representations of mesh objects and their connectivity, which it integrates 

automatically from the .ser trace files. In other existing packages like Neuromorph, all 

naming of objects is manual. Thirdly, morphometric calculations of volume, diameter and 

length are calculated at the press of a button, achieved by behind the scenes, consistently 

performing algorithms rather than by human intervention, as is the case in other software 

packages. Lastly, anatomically relevant regions, such as the PSD of spine, can be 

automatically tagged using metadata from the trace files, whereas in other packages, 

region labeling is done by hand in the software package and is thus far less accurate. For 

all of these reasons the Neuropil Tools software package is a useful and necessary 
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addition to the field, and should be improved and updated to remain consistent with 

advances in microscopy and automatic segmentation (tracing) of 2D images. 
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Figure 4.1: Electron microscopy image traces are used to generate 3D objects A) 
representative spine head traces from Reconstruct series in dentate B) Spine heads 

reconstructed using Neuropil Tools are pictured in 3D space in Blender. 
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Figure 4.2: The boundary between the A) spine head and B) spine neck are selected by 
the user in Neuropil Tools. Volume, surface area and diameter are then automatically 

calculated by the click of a button. 
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Figure 4.3: Example of the Neuropil Tools interface with CA1 dendrite visible. 
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CHAPTER 5: 

CONCLUSIONS 

 

The primary focus of this dissertation work is to establish a framework for 

thinking about information storage capacity at the synapse, and to set benchmarks by 

quantifying information stored in each synapse in the hippocampus. This research lays 

the groundwork for additional experimental studies regarding the precision of control of 

STDP processes in the hippocampus and cortex. Also following from this work is a need 

to experimentally probe whether the variability in information stored at the synapse 

between CA1 and dentate gyrus is the result of neurogenesis and other unique properties 

of the dentate, or if some other form of plasticity is dominant of STDP in the region. 

Understanding how such differences might relate to the specified functions of these two 

regions is also in order. All of the work described above (Chapter 2 and 3) was enabled 

by the concurrent development of software to aid in the accurate, timely and consistent 

analysis of electron microscopy data (Chapter 4). 

The work in Chapter 2 utilized data cleaned and represented in 3D space by Dr. 

Justin Kinney over the course of his work in Dr. Sejnowski’s lab, and an observation by 

Dr. Thomas Bartol regarding the notable similarity in size of spines with shared 

presynaptic and postsynaptic history in CA1. The author of the dissertation came on 

board the project and assisted in developing the “Spine Head Analyzer” component of 

Neuropil Tools. The dissertation author was also responsible for the measurement of 

spine head volumes, and assisted with developing and carrying out the analysis strategy 

and generation of the manuscript. Demonstrated consistency in synaptic strength in 
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spines sharing a presynaptic and postsynaptic input, presumed to arise after averaging 

over sources of stochasticity built into the system, was notable. Using a signal detection 

framework to assess just how consistent the control over synaptic size is (using spine 

head volume as a proxy for synaptic strength) enabled us a means of comparison across 

brain regions. 

Chapter 3 consists of a follow up study to the work presented in Chapter 2. 

However, rather than beginning with a dense reconstruction, we began working from four 

sparsely traced series from the dentate gyrus MML layer. Further axon tracing was done 

in the context of this project for the purposes of identifying pairs on the same axonal 

branch with a shared axonal connection. Many of the additions to Neuropil Tools, 

including the “Processor Tool” module described in Chapter 4 were made during this 

phase of the dissertation research. Using two animals we were able to test the how the 

distribution of the spine population differed by head volume, as well as calculate how 

many bits of information were stored at the synapse in this region (using the same signal 

detection framework applied in Chapter 2), under both control and LTP stimulation 

conditions. This work provides impetus for additional replication of the signal detection 

application in diverse brain regions, to understand whether the dentate gyrus is unique in 

holding fewer bits of information at its synapses in MML, or if there is widespread 

variation across the cortex and hippocampus. A secondary analysis was included as part 

of this chapter, namely the “Jaccard Distance” analysis. The justification for this analysis 

was to test for the relationship between shape and volume, or shape and connectivity, as 

we noticed our original 10 pairs in the CA1 data were similar to one another in shape. 
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Chapter 4 is an explanation of the Neuropil Tools software package add-on to 

Blender that was developed and utilized as part of this work. 

In total, this work bridges multiple specialties within the Neuroscience world, 

from molecular level imaging, to application of computational algorithms. It provides a 

baseline for comparatively, and quantitatively, evaluating information storage within and 

across brain regions, and furthers our understanding of the brain as a computational unit. 
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