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Cytoplasmic ATP Inhibition of CLC-1 Is Enhanced by Low pH

Pang-Yen Tseng,1 Brett Bennetts,2 and Tsung-Yu Chen1

1Center for Neuroscience and Department of Neurology, University of California, Davis, CA 95616
2St. Vincent’s Institute, Fitzroy, Victoria 3065, Australia

The CLC-1 Cl− channel is abundantly expressed on the plasma membrane of muscle cells, and the membrane po-
tential of muscle cells is largely controlled by the activity of this Cl− channel. Previous studies showed that low in-
tracellular pH increases the overall open probability of recombinant CLC-1 channels in various expression systems. 
Low intracellular pH, however, is known to inhibit the Cl− conductance on the native muscle membrane, contra-
dicting the fi ndings from the recombinant CLC-1 channels in expressed systems. Here we show that in the pres-
ence of physiological concentrations of ATP, reduction of the intracellular pH indeed inhibits the expressed CLC-1, 
mostly by decreasing the open probability of the common gate of the channel.

I N T R O D U C T I O N

The generation of action potentials in excitable cells re-

quires that the magnitude of Na+ current on the surface 

membrane be large enough to overcome the electrical 

shunting current through other membrane conductance. 

Multiple action potentials raise extracellular K+ concen-

trations, leading to a depolarization of membrane poten-

tial, and consequently an inactivation of voltage-gated Na+ 

channels, a mechanism thought to be underlying muscle 

fatigue (Sejersted and Sjogaard, 2000). Recent studies, 

however, showed that fatigue muscles become acidifi ed, 

and this cytoplasmic acidifi cation results in reduced Cl− 

conductance, a major conductance determining the 

membrane potential of muscle cells (Pedersen et al., 2004; 

Pedersen et al., 2005). The decrease of Cl− conductance 

on muscle membranes thus could reduce the shunting 

current on the muscle membrane, providing a mecha-

nism to overcome muscle fatigue (Pedersen et al., 2005).

Low pH has long been known to reduce the Cl− con-

ductance of the surface membrane of intact skeletal 

muscle fi bers (Hutter and Warner, 1967a,b; Palade and 

Barchi, 1977). CLC-1, a member of the CLC channel/

transporter family (Steinmeyer et al., 1991), provides the 

major Cl− conductance in muscle fi ber surface mem-

branes, as evidenced from the disease myotonia congen-

ita caused by CLC-1 mutations (Koch et al., 1992). Previous 

studies of the recombinant CLC-1 channel, however, 

showed that low intracellular pH appeared to increase 

the activity of CLC-1 (Rychkov et al., 1996; Accardi and 

Pusch, 2000), thus contradicting the observation on the 

native muscle cells. CLC-1 has been shown to be inhib-

ited by intracellular ATP through a shift of the common-

gate activation curve (Bennetts et al., 2005). Here we 

show that the ATP inhibition of CLC-1 is enhanced by 

low pH. In the presence of physiological concentration 

of ATP, reducing intracellular pH indeed inhibits the 

activity of recombinant CLC-1 channels. Such an inhibi-

tion may be the underlying mechanism for the low pH–

induced reduction of the Cl− conductance in native 

muscle membranes (Pedersen et al., 2005).

M AT E R I A L S  A N D  M E T H O D S

The human CLC-1 Cl− channel constructed in the pTLN vector 
was used for mRNA synthesis using SP6 mMessage mMachine kit 
(Ambion). The procedures for harvesting and injecting Xenopus 
oocytes were published previously (Chen, 1998; Li et al., 2005). 
From 3–5 d after RNA injections, excised inside-out patch record-
ings were performed, using the Axopatch 200B amplifi er, and the 
Digidata 1320 A/D board controlled by pClamp8 software (Axon 
Instruments, Inc./Molecular Devices). The recording electrodes 
had a tip diameter of 7–9 μm, and had a resistance of 0.4–0.6 MΩ 
when fi lled with a pipette (extracellular) solution containing 
(in mM) 120 NMG-Cl, 1 MgCl2, 10 HEPES, 1 EGTA, pH 7.4. The 
bath (intracellular) solutions had the same ionic components, with 
pH being adjusted to three values (7.4, 6.8, and 6.2) after the de-
sired concentrations of ATP were added. Mg2+-ATP was purchased 
from Sigma-Aldrich. A stock solution of 100 mM was made in dis-
tilled water, and was stored at −20°C. Working solutions of ATP 
were made on the same day of the experiments.

Macroscopic CLC-1 current was elicited using two voltage pro-
tocols (protocol A and B, respectively). In protocol A, the mem-
brane potential was stepped from the 0-mV holding voltage to 
various test voltages from +120 to −140 mV (in −20-mV steps) 
for 300 ms, followed by a tail voltage at −100 mV for 300 ms. The 
initial value of the tail current was determined by fi tting the tail 
current with a double-exponential function. The initial tail cur-
rent of each trace was normalized to the maximal value of the ini-
tial tail current obtained following the most positive test voltage 
in the absence of ATP. The normalized, initial, tail current ob-
tained using protocol A (see Fig. 1) represents the product of the 
open probability (Po) of the fast gate (Po

f) and that of the com-
mon gate (Po

c) at the preceding test voltage (Accardi and Pusch, 
2000; Duffi eld et al., 2003; Bennetts et al., 2005). A second voltage 
protocol (protocol B) was also applied to the same patch immedi-
ately following the protocol A experiment. Protocol B is exactly 
the same as protocol A, except a 400-μs voltage step to +170 mV Correspondence to Tsung-Yu Chen: tycchen@ucdavis.edu
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was inserted between the test voltage and the tail voltage (Accardi 
and Pusch, 2000; Duffi eld et al., 2003; Bennetts et al., 2005). Be-
cause a short, but very positive, voltage step is enough to fully 
open the fast gate (but not altering the common gate, which has 
a slower kinetics), the normalized, initial tail current (see Fig. 2) 
represents Po

c at the preceding test voltage. Dividing the value of 
Po

f × Po
c (from protocol A) by Po

c (from protocol B) also gave an 
estimate of Po

f.
To monitor the change of Po

c upon ATP wash-in and wash-out 
(Fig. 4), the tail current was measured at −120 mV, following a 
+40-mV test voltage and the +170-mV short pulse. Solution ex-
change is achieved by using the SF-77 solution exchanger (Warner 
Instruments) as described in previous studies (Zhang et al., 2006). 
Data analyses and presentations were performed using the combi-

nation of pClamp8 and Origin software (Origin Lab, Co.). Data 
points were presented as mean ± SEM. The V1/2 of the Po-V curve 
was obtained by fi tting the data points to a Boltzmann equation.

R E S U LT S

For every excised patch, we applied voltage protocol 

A and protocol B to examine the functions of CLC-1. 

Fig. 1 A shows recording traces in the absence and pres-

ence of 1 mM cytoplasmic ATP at three pH conditions, 

using voltage protocol A. The normalized value of the 

initial tail current, which represents the overall channel 

Figure 1. Effects of 1 mM cytoplasmic ATP on CLC-1 
at three intracellular pH conditions. (A) Recording 
traces were obtained in the indicated pH and ATP 
conditions using voltage protocol A. (B) Normalized 
current (Inorm) represents the initial, tail current nor-
malized to the maximal initial current in the absence 
of ATP. Each data point is the average from 3–6 
patches. This Inorm value refl ects the product of the 
fast-gate Po and the common-gate Po, namely Po

f × 
Po

c. Solid and open symbols were in 0 and 1 mM 
cytoplasmic ATP, respectively.

Figure 2. Effects of 1 mM 
ATP on the common gate of 
CLC-1. (A) Recording traces 
obtained in the indicated 
conditions using voltage pro-
tocol B. (B) Normalized value 
of the initial tail current 
(Inorm) in each pH condition 
(as shown in A). This Inorm 
value has been widely used to 
represent the Po of the com-
mon gate (Po

c). Dividing the 
Inorm in Fig. 1 B (from proto-
col A) by the Inorm here (from 
protocol B) gives the fast-gate 
Po (Po

f), which is shown in the 
inset of each panel. Solid and 
open symbols were obtained 
in 0 and 1 mM cytoplasmic 
ATP, respectively.
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open probability (namely Po
f × Po

c) is plotted as a func-

tion of the preceding test voltage (Fig. 1 B). It is appar-

ent that ATP shifts the overall voltage-dependent, open 

probability curve to more depolarized potential so that 

the channel is more diffi cult to open at the same voltage 

in the presence of ATP. The effect of ATP is small at the 

neutral pH, but the inhibition becomes large when the 

cytoplasmic pH is reduced.

To further study ATP regulations on the gating func-

tions of CLC-1 we examine the common-gate Po (Po
c), 

which can be directly measured from the initial tail cur-

rent of the recording traces obtained by using voltage 

protocol B (Fig. 2 A). Fig. 2 B shows the voltage depen-

dence of Po
c (Po

c–V curve). ATP has only a small effect on 

the Po
c–V curve of CLC-1 at a neutral pH. At pH 7.4, 1 

mM ATP shifts the V1/2 of the Po
c–V curve by only 10 mV, 

from −38.0 ± 2.6 to −27.6 ± 3.6 mV. However, the 

ATP effect becomes larger when the intracellular pH is 

reduced. At pH 6.2, V1/2 changes from a control value of 

−37.4 ± 3.6 mV (0 ATP) to +79.6 ± 5.6 mV (1 mM ATP). 

On the other hand, ATP has nearly no effect on the fast-

gate Po (Po
f) in all three pH conditions (Fig. 2 B, insets).

To examine the concentration dependence of the ATP 

regulation on the common gate of CLC-1 at various pH 

conditions, we plot the V1/2 of the Po
c–V curves against 

ATP concentrations (Fig. 3). The ATP half-effective con-

centrations are 0.31, 0.40, and 0.12 mM in pH 7.4, 6.8, 

and 6.2, respectively. In the presence of physiological 

concentration of ATP, the shift of the Po
c–V curve in-

duced by lowering intracellular pH is robust. For exam-

ple, in the presence of 1 mM ATP, there is an over 100-mV 

change in the V1/2 from pH 7.4 (−27.6 ± 3.6 mV) to 

pH 6.2 (+79.6 ± 5.6 mV).

Thus, the ATP inhibition on the common gate of 

CLC-1 is enhanced by low pH. This effect is reversible, 

as can be seen from monitoring the ATP wash-in and 

wash-out processes at pH 6.8 (Fig. 4). Examining the ki-

netics reveals that the ATP wash-in process (as well as 

wash-out; unpublished data) cannot be well fi tted to a 

single-exponential function (Fig. 4, red curve), indicat-

ing that there may be multiple steps in this combined 

ATP-pH regulation on the common gate of CLC-1. We 

have also attempted to compare the time courses of 

ATP inhibition (at pH 6.2) at voltages where Po
c values 

are different (−40 vs. +40 mV). When fi tting the fi rst 

5-s trace upon ATP application to a single-exponential 

function, the time constant at +40 mV was �30% larger 

Figure 3. Dependence of the V1/2 of the common-gate Po
c–V 

curve on the ATP concentration in three different pH conditions. 
Each data point is the average from 3–7 patches. Solid curves are 
drawn according to a Michaelis-Menten equation with the ATP half-
effective concentration and the saturated V1/2 value of 0.31 mM 
and −20 mV (pH 7.4), 0.40 mM and +49 mV (pH 6.8), and 0.12 mM 
and +91 mV (pH 6.2).

Figure 4. Reversible ATP inhibition on the CLC-1 
common-gate activity at pH 6.8. Top panels show record-
ing traces by a pulse protocol of +40 mV test voltage 
(300 ms), followed by the short pulse to +170 mV (400 μs), 
and fi nally the tail voltage step at −120 mV. The re-
corded traces were shown around the initial tail current 
for those traces during ATP wash-in (left) and wash-out 
(right). Each recording trace is separated by 2 s, and the 
initial value of the tail current in each trace is plotted 
against time at the bottom panel. The red curve repre-
sents a single-exponential fi t with a time constant of 3.4 s, 
which does not fi t the ATP wash-in process well. Three 
other patches show the same results from such ATP wash-
in and wash-out experiments.
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than that at −40 mV (n = 4). Because the inhibition pro-

cess follows a two-exponential course, it requires more 

extensive study to determine if such a difference truly re-

fl ects a voltage-dependent change of ATP modulations.

D I S C U S S I O N

We have used the Xenopus oocyte expression system to 

determine whether the recombinant CLC-1 channel can 

be modulated by intracellular pH and ATP. We employed 

excised inside-out patch recordings to gain an easy ac-

cess to the cytoplasmic side of the channel. The results 

clearly show an inhibition of CLC-1 by a combined ac-

tion of ATP and low pH; the ATP regulation effect is only 

small at neutral pH but becomes quite large when intra-

cellular pH is reduced. This combined ATP-pH regula-

tion appears to be mostly through the inhibition of the 

common gate, and a physiological concentration of ATP 

(for example, 1 mM) is nearly a saturated concentration 

in this regulation (Fig. 3). Thus, the effect may be viewed 

from another angle; namely, CLC-1 is inhibited by a low 

intracellular pH in the presence of ATP.

In the absence of ATP, a lower intracellular pH indeed 

renders the overall Po of CLC-1 larger mostly due to an 

increase of Po
f, an effect qualitatively similar to the intra-

cellular H+ effect on the fast gate of CLC-0 (Hanke and 

Miller, 1983), another voltage-sensitive CLC Cl− channel. 

However, in the presence of ATP, the overall open prob-

ability of the CLC-1 channel is reduced by low intracel-

lular pH due to the inhibition of Po
c. This fi nding is 

consistent with the inhibition of the Cl− conductance by 

a low intracellular pH in the native muscle membranes 

(Pedersen et al., 2004, 2005).

The effect of ATP regulation on CLC-1 has been re-

ported previously using whole-cell recordings on the 

recombinant CLC-1 channels (Bennetts et al., 2005). In 

this early study, the shift of the Po
c–V curve by saturated 

ATP at neutral pH (pH 7.2) was 50–60 mV. In Fig. 3, our 

excised patch experiments show only a 20-mV change 

of V1/2 at the neutral pH (pH 7.4). One might have con-

sidered that these two studies provide discordant results 

regarding the extent of the shift by ATP. Because the 

shift of the Po
c–V curve is �20, 85, and 130 mV at pH 

7.4, 6.8, and 6.2, respectively (>10 mV shift per 0.1 pH 

unit), we expect a 40–50-mV shift of the Po
c–V curve at 

pH 7.2 for our experiments. Given the very different 

techniques used (whole-cell vs. excised, inside-out patch 

recordings), we consider the discrepancy (50–60 mV vs. 

40–50 mV) between these two studies to be within ex-

perimental error range.

The regulation of the CLC-1 common gating by cyto-

plasmic ATP was thought to result from the ATP binding 

to the cystathionine β-synthase (CBS) domains at the C 

terminus of CLC-1. The CBS domain is conserved through-

out CLC family members (Bennetts et al., 2005), and the 

crystal structures of the C-terminal cytoplasmic portion of 

CLC-0 and CLC-5 have recently been solved in CLC-0 and 

CLC-5 (Meyer and Dutzler, 2006; Meyer et al., 2007). 

Though the structural study demonstrated the binding of 

nucleotides to the C-terminal region of CLC-5 (Meyer 

et al., 2007), no functional effect of ATP regulation of 

CLC-5 has been reported. So far, the inhibition of CLC-1 

by ATP remains the best example of ATP regulations of 

the CLC family members. The results presented in this 

study have demonstrated for the fi rst time a clear, revers-

ible action of ATP on CLC-1 through continuously moni-

toring the ATP wash-in and wash-out processes (Fig. 4).

The wash-in and wash-out processes of ATP regulation 

of the CLC-1 common gate, however, cannot be well fi t-

ted to a single-exponential function (Fig. 4), raising the 

possibility that the combined ATP-pH action may require 

multiple kinetic steps. This is reasonable if the effect re-

quires both ATP binding to its binding site and proton-

ation of certain titratable groups in the channel protein. 

If these two processes are independent (for example, the 

titratable group is outside the ATP-binding pocket), one 

might expect that the apparent ATP half-effective con-

centrations do not show a strong dependence on the 

pH, as indeed revealed in Fig. 3. However, it will require 

more detailed studies to explore the mechanism under-

lying the inhibition of the CLC-1 common gate by the 

combined action of cytoplasmic ATP and pH.
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