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ABSTRACT
Artificial intelligence (AI) and machine learning (ML) 
systems are increasingly used in medicine to improve 
clinical decision-making and healthcare delivery. In 
gastroenterology and hepatology, studies have explored 
a myriad of opportunities for AI/ML applications which 
are already making the transition to bedside. Despite 
these advances, there is a risk that biases and health 
inequities can be introduced or exacerbated by these 
technologies. If unrecognised, these technologies 
could generate or worsen systematic racial, ethnic and 
sex disparities when deployed on a large scale. There 
are several mechanisms through which AI/ML could 
contribute to health inequities in gastroenterology and 
hepatology, including diagnosis of oesophageal cancer, 
management of inflammatory bowel disease (IBD), liver 
transplantation, colorectal cancer screening and many 
others. This review adapts a framework for ethical AI/ML 
development and application to gastroenterology and 
hepatology such that clinical practice is advanced while 
minimising bias and optimising health equity.

INTRODUCTION: ARTIFICIAL INTELLIGENCE AND 
HEALTH EQUITY
Artificial intelligence (AI) and machine learning 
(ML) technologies can leverage massive amounts of 
data for predictive modelling in a wide variety of 
fields and are increasingly used to inform complex 
decision-making and clinical processes in health-
care.1 Examples include computer vision-assisted 
mammograms to improve breast cancer detection,2 
models that predict respiratory decompensation 
in patients with COVID-193 and AI tools which 
predict length of stay, facilitate resource allocation 
and lower healthcare costs.4

In gastroenterology and hepatology, opportu-
nities for AI/ML implementation are burgeoning. 
Recent studies have explored AI applications such 
as computer-aided detection (CADe) for diagnosis 
of premalignant and malignant GI lesions, predic-
tion of treatment response in patients with inflam-
matory bowel disease (IBD), histopathological 
analysis of biopsy specimens, assessment of liver 
fibrosis severity in chronic liver disease, models for 
liver transplant allocation and others.5–8

AI-based systems are increasingly making the 
transition from research to bedside and have the 
potential to revolutionise patient care. However, 
these advances must be matched by corresponding 
regulatory and ethical frameworks developed by 

the Food and Drug Administration (FDA) and other 
agencies that oversee the intended and unintended 
consequences of their use.9 Concerns have already 
been raised regarding the biases and health ineq-
uities that can be introduced or amplified when 
applying computer algorithms in healthcare.10 For 
instance, a commercial algorithm applied to approx-
imately 200 million patients in the USA was racially 
biased—white patients were preferentially enrolled 
in ‘high-risk care management programmes’ 
compared with black patients with similar risk 
scores, resulting in fewer healthcare dollars spent 
on black patients.11 Another study demonstrated 
that an ML algorithm that predicts intensive care 
unit mortality and 30-day psychiatric readmission 
rates had poorer predictive performance for women 
and patients with public insurance.12

Prior to deploying and scaling AI/ML tools, it is 
critical to ensure that the risk of bias is minimised 
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and opportunities to promote health equity are amplified. In 
this work, we identify areas in gastroenterology and hepatology 
where algorithms could exacerbate disparities, and offer poten-
tial areas of opportunity for advancing health equity through AI/
ML. For the purposes of this paper, health equity is centred on 
distributive justice to eliminate systematic racial, ethnic and sex 
disparities.13

FIVE KEY MECHANISMS THROUGH WHICH AI/ML CAN 
CONTRIBUTE TO HEALTH INEQUITIES
Early efforts to promote responsible and ethical applications of 
AI and ML in clinical medicine have revealed several mecha-
nisms through which algorithms can introduce bias and exacer-
bate health inequities (figure 1).10 14 It is essential for researchers 
and clinicians in gastroenterology and hepatology to understand 
these mechanisms as new technologies are being applied to our 
field.

The first theme is disparities in clinical or research problem 
selection14—research questions often target concerns in majority 
populations due to unequal funding availability and/or interest 
in the problem by industry, researchers, funders and grant 
review committees. As a result, we see critical racial, ethnic and 
sex disparities in the research problems that are prioritised and 
funded in AI/ML.14 15

The second theme is bias in data collection,14 where collected 
data may capture a disproportionate share of one population 
group over another. This can result in algorithms that are not 
widely generalisable,14 16–19 especially for individuals from tradi-
tionally under-represented and marginalised groups that are not 
commonly or appreciably represented in research databases.

The third theme is bias due to variable selection.14 Variables 
and outcome measures may appear unbiased on initial evalua-
tion even though they are proxies for, or confounded by, explicit 
or implicit biases against under-represented or marginalised 
groups.

The fourth theme is bias in algorithm development.14 In this 
case, the assumptions made and used by the research team 
lead to inherently biased models or models that are overfitted 
to narrow training data.13 15 17 Additionally, the performance 
metrics of AL/ML model training, such as area under the curve, 
are not inherently optimal for equitable performance in diverse 
populations.14 20

Finally, inequities may result from post-deployment consid-
erations.14 Even a potentially unbiased AI tool may lead to 
biased behaviour when deployed in the clinical setting. It is 
important to consider (1) how a tool will perform in a disease 
that has different conditional distributions in a population and 
(2) the potentially negative human–computer interactions that 
may occur. For instance, providers may follow an AI/ML-gen-
erated treatment recommendation when it confirms their 

biased beliefs but disregard treatment recommendations that 
do not conform to their beliefs.14 21 The impacts of the algo-
rithm should be evaluated in population subgroups to assess 
differences in clinical behaviour, performance and outcomes by 
sociodemographic factors, rather than at the population level 
alone.14

AI IN GASTROENTEROLOGY AND HEPATOLOGY: IMPACTS 
ON HEALTH EQUITY
We have chosen specific clinical examples from the literature 
to illustrate the specific ways existing AI/ML algorithms may 
already exacerbate bias and inequities within the fields of gastro-
enterology and hepatology (table 1).

Oesophageal cancer
Prevention and early recognition of oesophageal cancer is an 
area in which AI may hold particular promise, and there has 
been meaningful research progress in this area. In the USA, the 
vast majority of oesophageal cancer research focuses on technol-
ogies (with and without AI) to improve the early identification 
and treatment of Barrett’s oesophagus and oesophageal adeno-
carcinoma (OAC).22–26 Unfortunately, this emphasis on OAC 
in the USA primarily benefits white populations, who have the 
highest incidence and mortality from OAC.27

Oesophageal squamous cell carcinoma (OSCC) is more 
common than OAC and has a higher incidence and mortality in 
non-white populations in the USA and worldwide.28 29 Specifi-
cally, black individuals in the USA have the highest incidence of 
OSCC at 4.9 per 100 000 people, followed by Asians at 1.9 per 
100 000, and white individuals with the lowest rates at 1.4 per 
100 000. These rates are higher than overall OAC rates and OAC 
rates among non-white individuals in the USA: 2.3 per 100 000 
for white individuals, compared with 0.5 per 100 000 in black 
and Asian individuals.28 Furthermore, AI research in OSCC has 
largely been performed in Asian countries, and thus, it is uncer-
tain whether findings may be generalisable to black individuals 
or other population subgroups globally.30–34

This research disparity may be due to a clinical or research 
problem selection bias (theme 1); both researchers and funders 
should work to ensure more equity in problem selection. 
AI-based tools for early recognition of oesophageal cancer and 
precursor lesions have the potential to save many lives, but in 
the current state will largely impact white patients and not indi-
viduals from under-represented groups. It is imperative that we 
consider inclusive AI/ML research questions to avoid preferen-
tial development of technologies that consistently benefit one 
group over others.

Figure 1  Mechanisms through which AI contributes to health inequities. Adapted from Chen et al.14 AI, artificial intelligence.
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Inflammatory bowel disease
In IBD, AI/ML computer vision tools have been developed for 
endoscopic assessment of disease severity, to distinguish colitis 
from neoplasia, and to differentiate sporadic adenomas from 
non-neoplastic lesions.6 35 AI algorithms have also been trained 
to predict treatment response and assess risk of disease recur-
rence.35–37 AI has the potential to play an important role in IBD 
treatment decisions by predicting response earlier in the treat-
ment course and guiding personalised therapy choices.

However, many AI/ML models developed in IBD have been 
created in largely white populations. For example, one study 
used AI to predict future corticosteroid use and hospitalisation 
in patients with IBD from a cohort of 20 368 patients at the 
Veterans Health Administration (VA).36 The authors concluded 
that their model had the potential to predict IBD flares, improve 
patient outcomes and reduce healthcare costs. They also noted 
that their algorithm would be easy to implement at the point of 
care to individualise and tailor therapies for individual patients. 
The population that was used to derive the model was 93% male 
which may make predictions for female patients with IBD less 
relevant. The algorithm also included race as a predictor, though 
the dataset was racially skewed: the study population was 70% 
white, 8% black, 1.7% other and 19% unknown. This study was 
replicated in a large insurance-based cohort of 95 878 patients—
though women were more adequately represented (57.1%), the 
patient population was still predominantly white (87.7%).38

While IBD was previously thought of as a disease that predom-
inantly affects white individuals, there is now an increasing 
incidence in other racial and ethnic groups in the USA and world-
wide.39–41 In addition, IBD management and outcomes are worse 
for black and Latino patients compared with white patients, 
which should prompt increased research and clinical decision 
support for these groups.42 43 In the VA study, the proportion of 
the population that was Hispanic/Latinx or South and East Asian 
was not included, despite the fact that these groups comprise 
an increasingly large share of the populations with IBD. While 
this study may be beneficial to the patient population served by 
the VA, it suggests that even in very large cohorts, there may be 
entrenched patterns of bias in data collection (theme 2): algo-
rithms that do not include the rich diversity of patients with IBD 

can result in biased systems, care and outcomes, particularly if 
extrapolated to the general population.

Liver transplantation
There are numerous opportunities for AI/ML applications in 
hepatology, including the assessment of hepatic fibrosis progres-
sion, detection of non-alcoholic fatty liver disease, identification 
of patients at risk of hepatocellular carcinoma (HCC) and opti-
misation of organ transplant protocols.6 44 As we explore the 
complex and opaque nature of emerging AI clinical prediction 
tools, it is important to recognise that bias can be encoded even 
in conventional prediction models, including simple, rule-based 
algorithms.

Prior to the adoption of the Model for End-Stage Liver Disease 
(MELD) score in 2002, the liver allocation process was fraught 
with variability, subjectivity and opportunities for manipula-
tion, which resulted in inequities.45 To address these shortcom-
ings and standardise the organ allocation process, the United 
Network for Organ Sharing turned to the MELD—an algo-
rithmic model which predicts 3-month survival rates in patients 
with cirrhosis—as a way to more fairly prioritise patients for 
liver transplantation.46 Variables included in the model appear 
to be objective laboratory values—bilirubin, creatinine, interna-
tional normalised ratio and sodium. Creatinine however under-
estimates renal dysfunction in women, leading to lower MELD 
scores compared with men with similar disease severity. This 
underestimation negatively impacts equitable organ allocation 
for liver transplant.47–49

A similar example occurs with MELD exception points—a 
system where patients with certain conditions that confer 
excess risk beyond that captured by the laboratory variables 
that comprise MELD (such as HCC) may accumulate points 
and advance their position on the transplant waitlist.50 Review 
of data from Organ Procurement and Transplantation Network 
(OPTN) registries shows that at similar listing priority, patients 
with MELD exception points are less likely to die on the wait-
list, more likely to receive a transplant and less likely to be 
women.49 51 52 Part of this discrepancy is because HCC—the 
indication for MELD exception points in approximately 70% 

Table 1  Types of bias observed in artificial intelligence (AI) in clinical medicine

Theme Definition Examples

Problem selection Differential research priority and funding for issues that 
affect marginalised groups.

	► AI has been used extensively to detect Barrett’s oesophagus and oesophageal 
adenocarcinoma, which mainly affects white individuals.

	► In contrast, AI applications in oesophageal squamous carcinoma—which is more 
prevalent in underserved populations—are under-researched.

Data collection Inadequate representation of underserved groups in 
training datasets results in biased algorithms that yield 
inaccurate outputs for these subgroups.

	► A model trained on Veteran’s Health Administration electronic database to predict IBD 
flares may generate incorrect predictions for non-white populations who are under-
represented in the training dataset.

Variable selection Seemingly objective predictor and outcome variables that 
are included in a model may be confounded by or proxies 
for factors that lead to biased results.

	► MELD exception points may appropriately prioritise patients with HCC on the transplant 
waitlist; however, this is confounded by the increased prevalence of HCC in men which 
leads to lower transplant rates for women.

	► The inclusion of serum creatinine in the MELD leads to lower scores and transplant 
priority for women as serum creatinine underestimates renal dysfunction in women.

Algorithm development Models are developed to recreate patterns in the training 
dataset and may not account for systemic biases.

	► Racial and ethnic minorities are less likely to be referred for liver transplant and more 
likely to be offered a lower quality allograft. Predictive models could learn these 
patterns and propagate existing disparities.

Post-deployment 
considerations

Potentially unbiased AI tools may lead to biased outcomes 
when deployed in real life either due to differential 
conditional distribution of outcomes of interests across 
subpopulations.

	► Computer vision has been shown to aid detection of traditional adenomas; however, 
there are limited data on proximal and sessile serrated lesions which are more 
prevalent in black individuals.

HCC, hepatocellular carcinoma; MELD, Model for End-Stage Liver Disease.
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of patients49 52—is two to four times more common in men.53 54 
Therefore, the inclusion of this variable in the model inadver-
tently deprioritises women and perpetuates sex disparities in 
liver transplantation: women are up to 20% less likely to receive 
a liver transplant and 8.6% more likely to die on the transplant 
waitlist.52 55

While conventional prediction models use few variables 
that appear to be transparent, high-capacity ML algorithms 
may employ innumerable variables from large volumes of data 
and identify highly complex non-linear patterns that are less 
comprehensible—that is, black box models—with the promise 
of increased predictive accuracy.44 56 Regardless of the type of 
model used, the variables selected (theme 3) as inputs for these 
models—conventional and AI-based alike—may appear objec-
tive at face value but can unwittingly introduce bias and lead to 
inequitable outcomes as illustrated with the MELD.

Bias due to variable selection is intrinsically related to the intro-
duction of bias during algorithm development. Datasets used 
for predictive modelling may have unintended encoded biases, 
which has the potential to generate biased algorithms in the 
algorithm development phase (theme 4) as ML models aim to fit 
the datasets on which they train. For example, review of OPTN 
registry data reveals that medically underserved groups are less 
likely to be referred for liver transplant, less likely to undergo 
liver transplantation and more likely to receive lower quality 
allografts compared with white patients.57 Predictive models 
trained on such datasets could recreate these biases and amplify 
existing racial and ethnic liver transplantation disparities when 
deployed. Assigning transplant priorities based on predicted 
outcomes from biased models has huge ramifications for health 
equity in organ allocation. Identifying and rectifying biases after 
the model has been deployed can prove to be difficult—it took 
several years to show that an estimated glomerular filtration rate 
equation widely used to assign renal transplant priorities was 
biased against black patients.58 Therefore, it is imperative that 
fairness and potential biases are addressed upfront.

Colorectal cancer screening
Colorectal cancer (CRC) prevention and control are major 
public health contributions by gastroenterologists. Effective 
CRC screening depends significantly on the endoscopist’s ability 
to identify and remove high-risk colon and rectal polyps during 
colonoscopy. Adenoma detection rate (ADR) is a validated 
measure of colonoscopy quality and significant predictor of 
interval CRC risk.59 Wide variability in ADR has been observed 
among endoscopists60: this contributes to suboptimal colonos-
copy efficacy in preventing CRC incidence and deaths. Advances 
in ML have led to the application of computer vision to aid polyp 
detection during colonoscopy with data supporting the use of 
CADe to increase ADR.61 62 Recently, the US FDA approved the 
first AI software based on ML to assist clinicians in the detection 
of colorectal polyps.9 However, when implementing these tools, 
it is important to consider the conditional distributions (theme 
5) of colorectal polyps across subpopulations.

Both proximal (right-sided) and sessile serrated lesions (sessile 
serrated polyps and serrated adenomas) are more challenging 
to detect as they can be flat and subtle compared with tradi-
tional adenomas.63 Data are limited on the sensitivity of CADe 
for proximal and sessile serrated lesions; one study suggests 
lower sensitivity for sessile serrated lesions.64 As black patients 
are more likely to have proximal polyps65–68 and to have sessile 
serrated lesions,69 70 CADe models trained primarily on tradi-
tional adenomas may have higher miss rates for precancerous 

lesions and be less effective for black patients. As black individ-
uals have 20% higher CRC incidence, 40% higher CRC deaths 
and 30% higher interval CRC risk, CADe has the potential to 
exacerbate existing racial disparities if their ability to detect 
high-risk polyps is reduced among black individuals or other 
patient populations.71 72

It is essential to determine whether these AI/ML-powered 
models are also adequately trained to detect the high-risk polyps 
that are more commonly seen in black populations and in other 
populations who also suffer disproportionately from CRC. Opti-
mising and validating these models and their miss rates across 
multiple and diverse populations have the potential to reduce 
variability in colonoscopy quality and improve racial dispar-
ities in CRC, especially as these technologies begin to gain 
FDA approval and are applied to diverse community settings. 
However, it is important to highlight that medically underserved 
and vulnerable populations often face barriers to accessing 
these clinically indicated tests to begin with. For instance, black 
patients are less likely to receive colonoscopy screening/surveil-
lance,73–76 surveillance imaging for HCC77 78 and cross-sectional 
abdominal staging scans for pancreatic cancer.79 This challenge 
further limits the opportunities for AI research to optimise these 
tests for diverse populations and promote health equity.

INCREASING EQUITY IN AI: POTENTIAL SOLUTIONS
It is imperative that we identify and implement pragmatic solu-
tions that emphasise and optimise health equity in AI/ML devel-
opment and application in gastroenterology and hepatology. 
Tools are needed to debias data collection, model training, model 
outputs and clinical application. The recently increased focus 
on equity in healthcare has motivated discussion about how to 
achieve these goals; these approaches are also urgently relevant 
to our field.11 14 20 80 Potential solutions to the equity challenges 
we have highlighted in this piece include incorporating a health 
equity lens early and often in AI/ML research and development, 
increasing the diversity of patients involved in AI/ML clinical 
trials, regulatory standards for reporting, and pre-deployment 
and post-deployment auditing (table 2).

First, a health equity approach to AI/ML requires technically 
diverse research teams that are aware of how bias can creep 
into all aspects of the research continuum. Beyond this, gastro-
enterology and hepatology research teams that employ AI/ML 
methods should engage health equity experts early in their work 
so that potential sources of bias are identified early and are 
addressed in a robust and effective manner.

Second, it is vitally important to increase the diversity of 
patient populations who are involved in algorithm development 
and validation in gastroenterology and hepatology. Data collec-
tion in AI in our field is currently limited by overfitting and spec-
trum bias. Overfitting occurs when models are closely tailored 
to a training set, which can reduce overall generalisability of 
the model when other datasets are used.81 Spectrum bias occurs 
when the datasets used to develop models do not reflect the 
diversity of the population they are meant to serve.81 82 Data-
sets used for AI in gastroenterology and hepatology are often 
collected via retrospective or case–control design which poses 
risk for spectrum bias.81 82 Ideally, all algorithms should be 
developed and tested using a population that reflects the racial, 
ethnic, age, sex and gender diversity of our society to maximise 
generalisability in routine practice. Historically, research studies 
have not been conducted in settings that regularly serve these 
populations resulting in their ongoing exclusion. Therefore, it 
is critical to consider where marginalised populations are being 
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served and how best to reach them, both in AI and non-AI 
contexts. Partnerships between gastroenterology practices, 
clinics and health centres that provide care for these populations 
can be leveraged to extend reach and promote generalisability 
when conducting research studies to advance equity. In addition, 
non-traditional settings where vulnerable populations routinely 
receive services should be considered to diversify representation 
in AI/ML studies and ensure equity in algorithm performance. 
Furthermore, models should be externally validated with new 
patient populations and datasets to limit the potential for spec-
trum bias and overfitting.81

Beyond diversifying the training data, it is crucial that labels 
(or data classifiers) used in prediction models are adequately 
representative of the desired outcome alone and are independent 
of societal inequities.11 It is also important to carefully consider 
the different conditional distributions of labels across subgroups 
and any variations in how they are classified and measured—
these may suggest a need for optimising benchmarks or devel-
oping separate models for different subgroups.83 Some tools like 
Datasheets for Datasets84 or Model Cards for Model Reporting85 
do exist, but identifying the precise cause of bias can be chal-
lenging and requires careful audits by multidisciplinary teams.

A third focus should be on regulatory standards. Mandating 
explicit reporting of descriptive data of the patient populations 
used in AI/ML development—such as race, ethnicity, income, 
insurance and sex—is a necessary step, as long as privacy is 
protected. Doing so enables a clear assessment of appropriate 
representation in the algorithm’s training dataset and the gener-
alisability of its results. This type of descriptive data will also 
provide insight regarding which algorithms and models may not 
represent certain patient groups adequately.

Fourth, there must be robust processes in the pre-deployment 
phase to audit model outputs and ensure equal algorithmic 
performance for diverse patient populations. Sensitivity analyses 
evaluating algorithmic performance in subgroups can identify 
biased models with inequitable outcomes. Pre-emptive efforts to 
adjust models before deployment and mass dissemination protect 
marginalised subpopulations from inequitable outcomes and 
can also have cost-saving implications—the excess cost of racial 
health disparities in the USA is estimated at ~$230 billion over 
a 4-year period.86 For effective impact, the definition of ‘inequi-
table outcome’ set by regulators must be fair, clear, specific and 
quantifiable. Ongoing surveillance in the post-deployment setting 
is also imperative to monitor for unintended consequences of AI/
ML and confirm unbiased algorithmic performance in actuality. 
Of note, access to training data and prediction methodologies of 
most large-scale AI/ML algorithms is frequently restricted, thus 
limiting independent efforts to assess for algorithmic biases and 

how they may have arisen.11 This reality underscores the impor-
tance of deidentified open-access data sharing in accordance 
with FAIR87 data principles—findability, accessibility, interoper-
ability and reusability—which could be highly instrumental in 
promoting health equity by providing insight into which AI/ML 
algorithms could perpetuate and/or exacerbate disparities.

Finally, combining AI/ML models with physician clinical 
decision-making—that is, an augmented intelligence approach 
with a physician-in-the-loop configuration—may be beneficial 
in generating ethical and equitable AI/ML tools.88 Augmented 
intelligence may be of bidirectional utility as AI/ML models can 
standardise approaches where considerable provider variability 
exists while physician interaction can help limit biases that may 
arise from these tools. However, this approach must be done 
with careful consideration as biases can also arise from physician 
interaction with prediction models including automation bias 
(over-reliance on prediction models), feedback loops, dismissal 
bias (conscious or unconscious desensitisation) and allocation 
discrepancy.89

While these efforts can minimise bias and create more ethical 
AI tools, they do not serve as substitutes for repairing medical 
mistrust90 91 and certainly do not obviate the structural changes 
needed to build a more equitable health system.92–94

CONCLUSIONS
We describe five themes to illustrate how AI/ML can lead to ineq-
uities in gastroenterology/hepatology, examples of the impact on 
health equity and several potential actionable solutions to ensure 
equity in AI. By the year 2045, white individuals will comprise 
less than 50% of the US population, thus this work is critical as 
AI/ML becomes more common globally and the USA becomes 
more diverse.95

Our primary limitation was the inability to measure or quan-
tify inequities in each clinical example provided. Though each 
example provided relates directly to a major theme of mecha-
nism of inequities in AI/ML, the degree to which each specific 
example led to bias cannot be directly measured. In addition, 
we did not have access to all of the model information used to 
develop the algorithms discussed nor to robust cost information 
that could enable a review of cost implications of current AI 
approaches. This fact highlights the importance of transparency 
to enable researchers’ access to data and inputs included in each 
algorithm to advance equity. Lastly, the examples provided in 
this paper are not an exhaustive list but rather focus on strong 
and relevant illustrations of how prediction models and AI/
ML algorithms in gastroenterology and hepatology can lead to 
biased systems and inequitable health outcomes.

Table 2  Approaches to eliminate bias in AI/ML

Appropriate research expertise Involve health equity experts in the conception, development and deployment of AI/ML

Diverse study populations Diversify study populations to adequately represent marginalised populations in training datasets. Convenience samples, such as datasets from 
electronic health records, claims data and so on, may not be adequately representative of marginalised groups.

Diverse study settings Expand research locations to non-conventional settings where traditionally under-represented and vulnerable populations can be easily 
reached such as community health centres, faith-based organisations, barbershops, community service organisations and other settings.

Regulatory measures Determine fair, clear, specific and quantifiable regulatory measures of inequitable outcomes. Researchers should be required to report 
descriptive data on study populations by sex, race, ethnicity as long as privacy is protected. Standards should be consistent across regulatory 
bodies, peer-reviewed scientific journals and gastroenterology/hepatology professional societies.

Pre-deployment auditing Mandate auditing processes and sensitivity analyses to assess algorithmic performance across subpopulations in the pre-deployment phases.

Post-deployment auditing Establish auditing processes to assess algorithmic performance across subpopulations in the post-deployment phase and pathways for rapidly 
mitigating bias if discovered in the post-deployment phase.

AI, artificial intelligence; ML, machine learning.
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There are several key strengths of this paper. First, we provide 
clear and actionable solutions to address health equity in AI/ML that 
can be used by researchers and clinicians alike. Second, we provide 
concise themes that illustrate how AI/ML can lead to health inequity 
in gastroenterology matched to specific examples. Our overarching 
goal is to increase attention to an important potential downside of 
AI as its use becomes more prevalent and pervasive in the fields of 
gastroenterology and hepatology.

Here, we adapt a framework to consider equity in AI/ML algo-
rithms used in gastroenterology/hepatology and a platform for discus-
sion around an increasingly relevant topic. In other fields of medicine, 
we have started to reassess prediction models and algorithms and 
incorporate a health equity lens. The field of gastroenterology and 
hepatology has already taken a leading role in clinical applications 
for AI in medicine, and it is therefore especially important that, as a 
field, we take a leading role in ensuring that equity considerations are 
emphasised. This framework will help gastroenterology/hepatology 
researchers and clinicians prioritise equity in AI/ML development, 
implementation, and evaluation so that we can give every patient 
an opportunity to benefit from the technological advances that the 
future brings.

Twitter Tyler M Berzin @tberzin
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