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ADDENDUM
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ABSTRACT
The study of traditional populations provides a view of human-associated microbes unperturbed
by industrialization, as well as a window into the microbiota that co-evolved with humans. Here
we discuss our recent work characterizing the microbiota from the Hadza hunter-gatherers of
Tanzania. We found seasonal shifts in bacterial taxa, diversity, and carbohydrate utilization by the
microbiota. When compared to the microbiota composition from other populations around the
world, the Hadza microbiota shares bacterial families with other traditional societies that are rare
or absent from microbiotas of industrialized nations. We present additional observations from the
Hadza microbiota and their lifestyle and environment, including microbes detected on hands,
water, and animal sources, how the microbiota varies with sex and age, and the short-term effects
of introducing agricultural products into the diet. In the context of our previously published
findings and of these additional observations, we discuss a path forward for future work.
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The seasonality of the Hadza microbiota

We recently characterized the gut microbiota of the
Hadza hunter-gatherer population.1 The Hadza live
in the Central Rift Valley in Tanzania and have his-
torically subsisted on five groups of foraged and
hunted foods: berries, honey, baobab, tubers, and
meat.2 The Hadza experience two main seasons: wet
(November toApril) and dry (May toOctober). These
seasons are accompanied by shifts in available food
and activities. For example, while hunting occurs
throughout the year, meat is taken more often in the
dry season when water sources are more predictable
and ambush-hunting, as opposed to encounter-hunt-
ing, can be practiced more frequently. Conversely,
more honey is eaten during the wet season. Fiber-
rich tubers are eaten throughout the year.

We found that the composition of sampled
gut microbial communities from the Hadza

corresponded with seasonality. Fecal samples
were taken during the dry season in 2013, the
following wet season in 2014, and the following
dry season in 2014. Of 350 fecal samples, 188
were used in the primary analysis, each from a
different individual to avoid bias from repeated
sampling of the same individual. The composi-
tion of the wet season community was distinct
from that of both dry seasons, whereas the dry
season compositions of 2013 and 2014 were sta-
tistically indistinguishable from one another.
Samples taken from a previous study of the
Hadza microbiota during the early wet season
in 20133 were consistent with this pattern.

To understand this cyclic pattern, we tracked
operational taxonomic units (OTUs) across the sea-
sons. We found that OTUs from the phylum
Firmicutes exhibited relative stability across seasons
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compared to the Bacteroidetes, a phylum inwhich half
of OTUs were lost during the wet season and reap-
peared during the following dry season. Both in the
full dataset of 188 individuals, and in a subset of
individuals sampled longitudinally across the three
studied seasons, shifts in OTU abundance occurred
primarily in four bacterial families: Prevotellaceae,
Succinovibrionaceae, Paraprevotellaceae, and
Spirochaetaceae. The seasonal pattern of one family,
the Prevotellaceae, is shown in the cross-sectional
population in Figure 1A.

We also discovered differences in carbohydrate
utilization capacity of theHadza gutmicrobiota across
seasons. The analysis of genes encoding carbohydrate-
active enzymes (CAZymes)4 present in metagenomic
data from the same Hadza individuals sampled across
three seasons revealed a cyclical pattern of CAZyme
diversity, with higher diversity observed during the
dry season. There were no differences between the
dry seasons in consecutive years, but samples from
the wet season had lower levels of CAZymes that
degrade carbohydrates from animal, plant, and
mucin sources. These seasonal shifts in the microbio-
ta’s capacity to process different types of

carbohydratesmay reflect seasonal dietary differences.
While broad seasonal dietary trends have been docu-
mented among the Hadza,2 a more thorough and
nuanced analysis of how specific dietary patterns con-
nect to gut microbiota dynamics is needed.

Comparisons between the Hadza and an American
cohort from the Human Microbiome Project5

revealed significant differences. The Hadza gut
microbes possess higher levels of genes encoding
plant-degrading enzymes whereas genes encoding
enzymes targeted to animal and mucin degradation
were enriched in the American cohort. This distinc-
tion is consistent with differences in diet between
Americans and Hadza. The Hadza diet is rich in
microbiota-accessible carbohydrates (MACs) found
in plant-based dietary fiber, however the MAC-poor
American diet6,7 selects for gut microbes well adapted
to forage on intestinal mucus.8–10

A microbiota conserved across traditional
populations is lost in industrialized nations

We combined the Hadza microbiota data with
data from 18 different populations from 16

Figure 1. Seasonally volatile bacterial families in the Hadza are prevalent in traditional populations and diminished in the
industrialized microbiota.
A. The number of OTUs from the Prevotellaceae family observed per sample in 188 Hadza fecal samples, partitioned by season
(2013-Dry, n = 41; 2014-Wet, n = 77; 2014-Dry, n = 70). Data rarefied to 11,000 OTUs.
B. Relative abundance of Prevotellaceae family in samples populations in rural Malawi, Tanzania (Hadza hunter-gatherers),
metropolitan area in USA, and Amazonas in Venezuela.
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countries, comprising a variety of lifestyles
including hunter-gatherer, agrarian, and
industrialized.11–16 When combined into a Bray-
Curtis dissimilarity PCoA plot, reflecting the
degree of shared taxa between samples, microbial
composition data from industrialized cohorts
separated from the traditional cohorts, the first
principal component capturing a gradient of
modernization. An examination of the bacterial
families that differed in abundance across these
populations revealed that traditional popula-
tions tended to have higher levels
of Prevotellaceae, Succinovibrionaceae,
Paraprevotellaceae, and Spirochaetaceae, whereas
industrialized cohorts had higher levels of
mucus-consuming Verrucomicrobia and
Bacteroidaceae. As an example, we show the
abundance of Prevotellaceae across four coun-
tries (Figure 1B), which reveals variation that is
striking for two reasons. Firstly, while differences
between the microbiotas from industrialized and
traditional populations may have been expected,
the conservation of higher levels of
Prevotellaceae and other taxa across geographi-
cally separated traditional populations suggests
that these organisms have evolved as particularly
well-adapted to its human host. Rather than
being a feature of a specific geographical envir-
onment, the global pervasiveness and association
of these microbes with a lifestyle that defined
humans for much of our existence as a species
suggests the functions associated with these taxa
may have shaped human biology, and appear to
have been lost through industrialization.
Secondly, the bacterial families that differentiate
traditional and industrialized populations also
exhibit seasonal volatility in the Hadza. This
finding indicates that volatility in abundance
may serve as a marker of microbes that are vul-
nerable to eradication via various perturbations
including those associated with modernization.
We will refer to taxa that have been lost or
have become rare within the industrialized intest-
inal ecosystem as the VANISH (Volatile and/or
Associated Negatively with Industrialized
Societies of Humans) taxa. Their ecological role
and interactions with the host are open and
important questions. In the remaining text,
VANISH will specifically refer to the

families Prevotellaceae, Succinovibrionaceae,
Paraprevotellaceae, and Spirochaetaceae.

The Hadza and their environment: microbes
associated with hands, animals, and water
sources

Environmental exposure to microbes varies across
lifestyles and certainly between traditional and
industrialized populations. We were curious
whether aspects of the Hadza lifestyle, particularly
interaction with the natural environment through
hunting, foraging, and drinking untreated, surface
water sources may serve as a reservoir of bacterial
diversity for the microbiota. We were fortunate to
have access to additional samples that we assessed
for bacterial composition, and we focused our
analysis on the gut-associated bacterial families
identified as seasonally volatile and conserved in
traditional societies.

The skin on the right hand of individuals was
sampled using swabs during the dry season. A
PCoA plot of weighted Unifrac distance of hand
and fecal samples shows a separation by body site,
consistent with observations in industrialized popu-
lations that also distinguish samples by body site
(Figure 2A).17,18 In addition, the hand samples (dry
season), are clustered closer to the fecal samples
taken from the dry season than fecal samples from
the wet season. Although hand samples from the wet
season were not available as a point of comparison,
the data suggest a degree of concordance between the
hand and fecal samples by season. Examining the
VANISH microbial families, 57% of hand samples
had Prevotellaceae,12% had Paraprevotellaceae, 5%
had Succinivibrionaceae, and 2% at Spirochaetaceae
(each at least 1% abundance). The majority of sam-
ples had detectable reads from the genus
Bifidobacterium, with 27% of samples comprised of
at least 1% Bifidobacterium, which could be due to
interaction with infant stool.

Using information about daily activities corre-
sponding to a subset of the samples, we addressed
whether aspects of lifestyle could drive shifts in the
hand microbial composition. Figure 2B shows a
PCoA plot of unweighted Unifrac distances
between hand samples from the entire cohort;
one individual sampled at several different points
is shown in color. On a non-hunting day, this
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individual’s hand microbiota clustered with the
majority of the hand samples from the cohort.
However, on two separate hunting days, one in
which he butchered a lesser kudu (Tragelaphus
imberbis), another in which he butchered an
impala (Aepyceros melampus), his hand microbiota
is an outlier to the group (Figure 2B). It should be
noted that we do not have samples on hunting
days prior to the kills, and therefore cannot be
certain that this effect was due to contact with
the animal versus other aspects of hunting days.

Notably, the hand sample from a day he harvested
honey (from honey bee Apis mellifera scutelata) is
also an outlier, yet distinct from samples taken on
hunting days (Figure 2B, blue circle). These data
indicate each touchpoint on a forager’s landscape
may affect the hand microbiota.

The data are consistent with the Hadza gaining
exposure to distinct subsets of microbes via hunting
and foraging. Although we are not statistically pow-
ered to answer the question directly of whether this
exposure in the environment contributes to

Figure 2. Microbes associated with hands, animals, and water sources in the Hadza environment.
A. PCoA of weighted Unifrac distances of hand samples and fecal samples from Hadza. Fecal samples, green; hand samples, orange;
closed circles, dry season; open triangles, wet season. Ellipses show .95 confidence level.
B. PCoA of unweighted Unifrac distances of hand samples. Colored dots represent samples acquired from the same subject; grey
dots from remaining individuals. Colors indicate activities engaged in when sample was taken.
C. Composition of microbiota from water sources, summarized at the family taxonomic level. Families shown are limited to those
present at greater than 1% in sum total of water samples.
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individuals’microbial ecosystems, we analyzed honey
samples taken from bee hives and stool, fur, and
stomach swabs from animals in the environment.
We were interested in determining whether these
sources contained microbes found in the Hadza gut.
To this end we inferred sequence variants from 16S
amplicon sequencing data using the DADA2 method
to enable matching exact sequences (amplicon
sequence variants, or ASVs), rather than comparing
OTUs, each of which contains a range of sequence
variants.19 We identified the ASVs shared in Hadza
gut samples during the dry season (restricting our
analyses to ASVs present in at least 10% of samples
to improve confidence) that were taxonomically
assigned to VANISH families and looked for them in
the animal and honey samples. Interestingly, we found
that of the shared Hadza gut ASVs from the four
bacterial families, the majority were also present in at
least one animal sampled (23/37 Prevotellaceae ASVs,
4/5 Spirochaetaceae ASVs, 5/8 Paraprevotellaceae
ASVs, 2/3 Succinivibrionaceae ASVs). Animals
sampled include dik dik (Madoqua sp.), lesser kudu
(Tragelaphus imberbis), impala (Aepyceros sp.), hyrax
(Heterohyrax brucei), zebra(Equus sp.), cow (Bos
tauras), and vervetmonkey (Chlorocebus pygerythrus);
these ASVs were most often identified in the animal
fecal samples. A similarly high rate ASV occurrence
was observed in the bee hive samples (29/37
Prevotellaceae ASVs, 4/5 Spirochaetaceae ASVs, 6/8
Paraprevotellaceae ASVs, 2/3 Succinivibrionaceae
ASVs). While not conclusive, these results support
the hypothesis that interaction with animals and bee
hives provides an environmental reservoir of the
VANISH microbial families, a hypothesis that war-
rants detailed follow-up.

With a sanitized water supply serving as a major
characteristic of an industrialized society, we won-
dered whether the water sources available to the
Hadza and other animals on the landscape may
serve as an additional source of gut-colonizing
microbes. We sampled water during the dry season
from the surrounding area of the Hadza camps
including streams, a well, and the dry riverbed. The
samples varied in composition, but several had high
levels of Prevotellaceae, one sample was 10%
Spirochaetaceae, and several had low levels of
Paraprevotellaceae (Figure 2C). When examining
the same shared ASVs from the Hadza gut from the

four VANISH families, nearly all were found in at
least one water source (32/37 Prevotellaceae ASVs, 5/5
Spirochaetaceae ASVs, 7/8 Paraprevotellaceae ASVs,
2/3 Succinivibrionaceae ASVs). To address the possi-
bility of contamination of water samples during sam-
ple preparation, we used an updated version of
SourceTracker20 to compare the probabilistic contri-
bution of fecal samples into water samples proximally
located on the plate, relative to the contribution of
randomly sampled proximally located fecal samples
located on separate plates, and did not see any differ-
ence (p > 0.05, Wilcoxon test). While we are not
equipped with sufficient data nor study design to
explore the question of transmission, we found that
Hadza gut bacteria that annually become undetectable
and then re-appear are also present in the surround-
ing environment, offering the possibility that the
Hadza gut is repopulated via environmental sources.

Hadza microbial diversity increases with age

We wished to investigate the development of the
Hadza microbiota in the context of industrialized
and other traditional populations, an important
topic in light of known variation in human micro-
biota development.21 We analyzed the fecal samples
from the adult Hadza1 with additional samples
obtained from Hadza children. When the OTUs of
these samples are plotted together, we observed an
increase in microbial diversity as the Hadza age
(Figure 3A), particularly during the first few years
of life, as has been reported in other traditional and
industrialized cohorts.11 Interestingly, we do not see
decreasing levels of diversity in the elderly Hadza as
has been reported in some industrialized cohorts,22

although our sample size of elderly individuals is
small. In industrialized cohorts the age-associated
decline in diversity was most pronounced for elderly
living in institutions, who are more segregated from
free-living younger individuals. This difference may
be due to the fact that the elderly Hadza continue to
live in close proximity with the rest of the camp,
which may help retain access to food, activities, and
microbes characteristic of younger individuals. A
large study of healthy Chinese individuals showed
little difference between individuals from age 30 to
100, and no decrease in alpha diversity.23 Future
studies that investigate the relationships between
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diet, lifestyle and immune status are needed to deter-
mine whether specific microbial profiles are linked
with healthy aging.

We compared Hadza samples to data from other
traditional cohorts and industrialized cohorts during
the first few years of life (Figure 3B). Plotting Bray-

Figure 3. Hadza microbial diversity increases with age and diverges from industrialized populations.
A. Number of OTUs detected in rarefied samples plotted by age. Trendline showing loess non-parametric regression line, standard
error in grey.
B. Bottom: A scatterplot with axes Bray-Curtis dissimilarity principal coordinate 1 and Log2-transformed age (log2(age + 1)) of
microbial community compositions described at the family taxonomic level. The circles are colored by the country from which the
subjects were sampled, and diameters based on relative abundance of Bifidobaceriaceae within the sample. Loess regression was
applied to samples from industrialized and traditional populations using PCo1 coordinates and Log2-transformed age with curves
plotted according to the populations with 95% pointwise confidence interval bands. Top: Overlapping density plots (industrialized in
black, traditional in red) representing the moving average of the relative abundance of families within the respective samples along
the Log2-transformed age x-axis and min-max scaled across both populations to allow for direct comparison.
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Curtis dissimilarity, a metric of shared species
between samples, we observe a high degree of simi-
larity between populations early in life; however,
cohorts with different lifestyles diverge with increas-
ing age (Figure 3B, bottom panel). This divergence
may reflect any number of differences between tra-
ditional and industrialized societies including higher
consumption of complex carbohydrates, lower anti-
biotic use, and environmental exposure to a more
diverse set of microbes in traditional populations
relative to industrialized populations. Interestingly,
the Hadza diverge almost immediately, and earlier
relative to the other traditional and industrialized
populations. Bifidobacteriaceae, a family commonly
associated with the gut of breast-fed babies, occurs at
high abundance and prevalence early in life then
declines with age in both the traditional and indus-
trialized cohorts (Figure 3B). In traditional popula-
tions, the VANISH families show a similar pattern of
having low prevalence early in life and then increas-
ing with age (Figure 3B, top panel).

Limited sex differences in the Hadza
microbiota

We explored differences between samples taken from
male and female Hadza, since sexual division of labor
characterizes the central-based foraging Hadza.
Previous studies have described differences in diet
between men and women,24 which is reflected in
different dental wear patterns.25 We therefore won-
dered if sexual division of labor and potential macro-
nutrient differences in diet documented among the
Hadza resulted in differences in microbiota composi-
tion. Applying PCoAof weightedUnifrac distance did
not statistically distinguish between male and female
samples when using more Hadza samples than pre-
vious reports (Figure 4A).3 Interestingly, there was no
difference between sexes when the data was subdi-
vided by camp, despite different degrees of accultura-
tion and sexual division of labor across camps.
Consistent with the previous study, we observed a
difference in the abundance of the genus Treponema
between sexes, but not the genus Blautia (p = 0.031,
p = 0.13, respectively, Wilcoxon test). However, when
applying an unbiased approach using a statistical
method for relative abundance data with multiple-
hypothesis correction,26 the only genus significantly
different was Dialister (Figure 4C, FDR < 5%;

p = 0.0059, post-hocWilcoxon test). When restricting
the analysis to only samples taken during the early wet
season, we found the only significantly different genus
to be Faecalibacterium (Figure 4D, FDR < 5%;
p = 0.017, post-hoc Wilcoxon test). Therefore the
characterization of the Hadza gut microbiota substan-
tially differing by sex may need to be reconsidered.

The introduction of maize into the Hadza diet

Dietary perturbation has been shown to substantially
influence the humanmicrobiota.27–29 TheHadza con-
sume a diet that is primarily composed of tubers,
baobab, berries, honey, and hunted meat. This diet is
distinct from the typical diet of industrialized societies.
While it is difficult to isolate the effect of diet versus
other lifestyle and geographical differences that distin-
guish the Hadza from other populations, we were able
to sample individuals that underwent a temporary but
significant shift in diet. In the Ukamako camp, indivi-
duals were consuming primarily baobab, roots, ber-
ries, and honey until they received a large bag of un-
milledmaize on January 30th, 2014 (“Day 0”). During
the days following, maize was consumed for breakfast,
lunch, and dinner. We analyzed fecal samples in the
days leading up to and following the maize arrival for
twelve individuals; eight of these individuals were
sampled in all five sequential days prior to and during
maize consumption.

Analysis of unweighted Unifrac distances
revealed a shift in the first principal component
in the 24 hrs and 48 hrs post-maize consumption,
relative to the days pre-maize consumption in
most individuals (Figure 5A, 5B). When we quan-
tified unweighted Unifrac distances between each
time interval within the eight individuals sampled
for five consecutive days, the microbiota perturba-
tion induced by the maize diet became apparent.
Day 0 and Day 1 (pre-maize and post-maize)
samples exhibited a larger distance compared to
Day −2 and Day 0 (two pre-maize time points)
(Figure 5C, p = 0.0078, Wilcoxon paired test).

An analysis of alpha diversity revealed an increase
in observed OTUs 24 hrs after the maize arrival (Day
0 vs. Day 1, p = 0.016,Wilcoxon paired test), while the
second day was not significantly different from the
two preceding days (Figure 5D). These data are con-
sistent with observations from a short-term controlled
feeding experiment that found a greater perturbation
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in the first 24 hours than in the days following.28

While more sampling is needed to address potential
longer-term changes to the microbiota, these data
suggest a change in diet produces rapid changes in
the microbiota in the Hadza.

Conclusion

The gut microbiota has emerged as a critical
modulator and indicator of human health and

disease. While many associative and causal links
have been established between the microbiota and
health outcomes, the microbial taxa, functionality,
and metabolic states that are either protective or
drive the development of disease are poorly
understood. Looking to populations across the
world that have been minimally affected by
industrialization can serve as a model for identi-
fying critical organisms and functionality that
have been lost in industrialized populations.

Figure 4. Limited sex differences in the Hadza microbiota.
A. MDS plot of weighted Unifrac distance of Hadza fecal samples; pink, female; blue, male. Populations not significantly different
(p-value = 0.328, permuted F-statistic).
B. Genus Treponema abundance by sex; p-value = 0.031, Wilcoxon test.
C. Genus Dialister abundance by sex; significant with FDR < 5% across all genera with ANCOM test; p-value 0.0059, Wilcoxon test.
D. Genus Faecalibacterium abundance by sex from samples taken from the early wet season to match sampling season from
previous report; significant with FDR < 5% across all genera with ANCOM test; p-value 0.017, Wilcoxon test.
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Through an analysis of the microbiota from the
Hadza hunter-gatherers and integrating their data
with other populations, Smits et. al identified
bacterial families that have been maintained in
traditional societies across the world but are
diminished or lost with modernization. These
bacterial taxa are candidates for future study
toward a better understanding of the co-specia-
tion of humans and gut microbes, and of what
has been disrupted in recent times.

Despite seasonal fluctuations of bacterial taxa,
the Hadza are able to maintain a diverse micro-
biota over sequential years with species returning
during the dry season that were undetectable in
the wet season. These microbes may be present in
the gut below our level of detection or they may be
absent and then reintroduced to the gut, perhaps
from reservoirs in the environment. In working
toward a better understanding of the regional spe-
cies pool, this study serves as a first survey of the

Figure 5. The introduction of maize into the Hadza diet.
A. PCoA of unweighted Unifrac distances of fecal samples taken during maize introduction. Samples labeled by collection date.
Maize introduction on Day 0, 1/31/14. Day −4, 1/26/14; Day −2, 1/28/14; Day 1, 1/31/14; Day 2, 2/1/14.
B. PC1 from PCoA of unweighted Unifrac distance plotted by subject. Points per sampling time. Red dots are pre-maize (Day −4, −2,
0), teal dots are post-maize (Day 1, Day 2).
C. Unifrac distance between time intervals. * p-value = 0.0078, Wilcoxon paired test.
D. Observed OTUs per rarefied sample, grouped by collection date. * p-value = 0.016, Wilcoxon paired test.
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Hadza environmental microbiota and the concor-
dance with the organisms appearing in the gut.
Though the analysis is limited by sample number
and interval to make broad claims, it provides case
studies of how the environment may impact the
cycle of the Hadza microbiota. Forthcoming stu-
dies will provide more granularity by season, activ-
ity, and environmental site and how these
correspond to the Hadza-resident microbiota.

In addition to the influence of the seasons and
the environment, we have observed how the
microbiota changes with age and how it compares
across sex. We observed short-term changes asso-
ciated with the introduction of maize into the diet,
an important area to examine as industrialization
brings with it dramatic changes in diet. We hope
this work serves a snapshot of the state of the
Hadza microbiota in the context of environment,
diet, and lifestyle that can inform our understand-
ing of the microbiota across a diverse set of
populations.

Methods

Data was generated and analyzed as previously
described.1 Samples were sequenced with either
2x150bp or 2x250bp reads. To analyze all samples
together, all sequences were trimmed to 150nt.
DADA2 analysis was done without trimming,
using only the samples with 2x250bp reads.
Diversity analyses and ordination was performed
using the R package phyloseq. DADA2 analysis
was performed using the R package dada2. An
updated form of SourceTracker https://github.
com/biota/sourcetracker2 was used to examine
contamination in sample preparation.
Comparison was performed between the contribu-
tion to the water samples from the eight closest
wells on the plate, relative to eight fecal samples
sampled randomly from the remaining plate loca-
tions. Distance comparison between sexes was per-
formed using the adonis function in the R package
vegan. Genera comparisons between sexes were
done using the R package ancom.R. The data
used in this study have been deposited in the
Qiita microbial study management platform (pro-
ject ID 11358, 16S data type ID 4944) and in the

European Nucleotide Archive (ENA) under the
accession ERP109605 and includes all 16S data
from the original study.1 The original data was
first made available in the same Qiita project
(16S data type ID 3753, metagenomic data type
ID 3755) and in the NCBI Sequence Read Archive
(SRA) under the project IDs PRJNA392012 (16S
amplicon), PRJNA392180 (shotgun metagenome).
A previous version of the manuscript can be found
on bioRxiv.30
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