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Gliding motions of a rigid
body: the curious dynamics
of Littlewood’s rolling hoop
Antonia Bronars and Oliver M. O’Reilly

Department of Mechanical Engineering, University of California
at Berkeley, Berkeley, CA 94720-1740, USA

OMO, 0000-0003-3773-4967

The celebrated mathematician John E. Littlewood
noted that a hoop with an attached mass rolling on
a ground plane may exhibit self-induced jumping.
Subsequent works showed that his analysis was
flawed and revealed paradoxical behaviour that can
be resolved by incorporating the inertia of the hoop. A
comprehensive analysis of this problem is presented
in this paper. The analysis illuminates the regularity
induced in the model of the hoop when its mass
moment of inertia is incorporated, shows that the
paradoxical motions of the hoop are consistent with
the principles of mechanics and demonstrates the
simplest example in the dynamics of rigid bodies that
exhibits self-induced jumping.

1. Introduction
Studies on the dynamics of planar rolling motions
and sliding motions of homogeneous cylinders, disks
and spheres have played an important role in the
development of the field of mechanics. The geometric
centre and mass centres of these rigid bodies are
coincident and it is easy to show that sliding motions on
horizontal planes inevitably evolve to rolling motions at
constant speed. When the centre of mass and geometric
centre are distinct, non-planar motions are considered or
the geometry of the lateral surface of the rigid body is
asymmetric, then the motions often become complex and
may include self-induced jumping motions [1–5], spin
reversals [6], oscillations [7,8] and multiple transitions
back and forth from rolling to sliding [9,10].

A remarkably simple example that illustrates some
of the aforementioned complexities is discussed on page
37 of Littlewood’s Miscellany [11]. Consider a rough
weightless circular hoop to which a mass is attached and
that is free to move on a horizontal plane. Suppose the
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hoop is initially set in motion. Then, according to Littlewood [11], the hoop will lift off the ground.
His explanation for the jumping, that the weight follows the path of a cycloid, is ingenious.
However, he disputes this explanation by commenting that he expects the hoop to slip before the
jump occurs. According to Littlewood, the hoop problem, which is not to be found in textbooks,
was regularly posed to engineering students at the University of Cambridge by Herbert A. Webb
(1862–1961).1

In the late 1990s, Littlewood’s hoop attracted the attention of Tokieda [12] who was the first to
point out that gliding motions of the hoop would occur. Gliding motions are defined as motions
where the normal force (and consequently the friction force) on the hoop vanishes. Tokieda also
noted that experimental evidence for jumping motions were realizable using a hula-hoop with
a battery inserted into the hoop to mimic the mass particle.2 However, Tokiedo analysis was
incomplete. In response, works by Butler [16] and Pritchett [13] showed that jumping was not
possible and including the inertia of the hoop might enable an explanation for the jumping
motions of the hoop observed in practice. Subsequently, analysis by Theron & du Plessis [17]
explained the gliding motions discussed by Tokieda [12] and numerical works by Lubarda [18],
Theron & Maritz [19] and Yanzhu & Yun [20] showed a wide range of rolling, sliding and jumping
(hopping) motions of a hoop with an added mass when the inertia of the hoop was considered.
All of these works complement earlier independent work by Ivanov [21,22] who discovered
periodic motions of a heavy cylinder with an attached mass. The motions he discovered consist
of a sequence of rolling motions, jumps and impacts.

The dynamics of the weightless circular hoop with an attached mass (which we refer to as
Littlewood’s hoop) are paradoxical. The paradox has been partially resolved by an analysis where
the inertia of the hoop is included. However, despite the large number of papers on the topic, the
precise manner by which the added inertia of the hoop regularizes the problem is not clear. Our
analysis reveals a vastly different dynamical system when the inertia of the hoop is included in the
model. We are able to demonstrate that the rigid body consisting of a heavy circular hoop and an
attached mass can roll in perpetuity, exhibit multiple transitions between rolling and sliding, and,
after a transition to sliding, may even jump. When the inertia is ignored, we are easily able to show
that the hoop will initially roll but will quickly lose traction. However, because the inertia of the
hoop is ignored, the normal force (and the friction force) on the sliding body must vanish. Thus,
the hoop will move over the rough ground plane without experiencing any frictional resistance
to its motion. These are the gliding motions first discussed by Tokieda [12]. In other words, while
vanishing of the normal force is a necessary (but not sufficient) condition for the hoop to jump,
the possibility that it would simply glide seems to have escaped Littlewood.

In addition to Littlewood’s book, our analysis of the circular hoop with an attached mass was
inspired by a large number of recent works on the self-induced jumping of rigid bodies in motion
on surfaces [1–5,9]. In relation to these works, the mechanics problem Littlewood contemplated
is one of the simplest examples where spontaneous (or self-induced) jumping is likely to occur.
While our work on the circular hoop synthesizes the earlier studies [12,13,15–20], we also provide
new perspectives and new results on the dynamics of this system.

An outline of the paper is as follows. In §2, the equations of motion for a heavy circular object
with an attached mass in motion on a rough horizontal surface are presented. Criteria for stick–
slip behaviour and spontaneous (self-induced) jumping are also discussed. The results of our
simulations of the system showing jumping and transitions from rolling to sliding and vice versa
are discussed at the end of §2. We then turn to Littlewood’s problem where the inertia of the
rigid body is ignored. The equations of motion for this system are easily obtained by specializing
the results for the heavy rigid body. As discussed in §3, the resulting equations of motion are
integrable. With appropriate initial conditions, we find that the hoop and attached mass can roll.
After a finite period of time, the rolling motion will transition to gliding, and, after a finite period

1We must also express our admiration for the students who answered Webb’s question correctly.

2Other demonstrations can be found in [13–15].



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190440

...........................................................

of time, the attached mass will reach the horizontal ground plane. Furthermore, the path of the
attached mass during the gliding phase will either be a parabolic curve or a straight line.

2. The governing equations for the rigid body
We consider the classic problem of a rigid body composed of a circular disc with a rigidly attached
particle of mass m2 (cf. figure 1) moving on a rough surface. The axisymmetric body has a mass
moment of inertia Izz, mass m1 and an outer radius R. The particle of mass m2 is located at a
distance � from C. Owing to the presence of the particle of mass m2, the centre of mass X̄ of the
rigid body of mass m = m1 + m2 is no longer located at the geometric centre C of the circular disc.
The moment of inertia of the rigid body of mass m relative to X̄ is

I = Izz + m1m2

m1 + m2
�2. (2.1)

Our notation and the methodology we use to develop the equations of motion for the rigid body
follow [23]. We shall assume that the rotational motion of the rigid body of mass m is such that it
has a fixed axis of rotation and that the body moves with a single instantaneous point of contact
XP on a rough horizontal plane. Thus, the kinematics of the rigid body can be captured by a single
angle of rotation θ and a coordinate η.

We define a fixed right-handed Cartesian basis {E1, E2, E3 = E1 × E2} and a right-handed
corotational basis {e1, e2, e3 = E1 × E2}:

e1 = cos (θ) E1 + sin (θ) E2 and e2 = cos (θ) E2 − sin (θ) E1. (2.2)

The position of the instantaneous point of contact XP relative to the centre of mass X̄ of the rigid
body has the representation

πP = −RE2 − he2, (2.3)

where
h = m2

m1 + m2
�. (2.4)

To apply the results of our analysis to the problem considered by Littlewood, we simply need to
set Izz = 0, � = R, h = R and m1 = 0.

The position vectors of the centre of mass and the geometric centre C of the disc have the
respective representations

x̄ = x̄E1 + ȳE2 and x = xE1 + yE2, (2.5)

where x = x̄ − he2. When the body is in motion on the plane, y is constant. To describe the
dynamics of the rigid body when it is sliding, it is convenient to define the following coordinate:

η = x + Rθ . (2.6)

The velocity vector of the point XP when the body is in motion on the plane has several
representations:

vP = η̇E1

= (
ẋ + Rθ̇

)
E1

= ( ˙̄x + (R + h cos (θ)) θ̇
)

E1 + ( ˙̄y + h sin (θ) θ̇
)

E2. (2.7)

Thus, η̇E1 is the slip velocity of the rigid body. The kinetic energy T and potential energy U of the
rigid body have the representations

T = m
2

( ˙̄x2 + ˙̄y2
)

+ I
2
θ̇2

= 1
2

(
I + (m1 + m2)

(
R2 + h2 + 2Rh cos (θ)

))
θ̇2
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e1q
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R

C

XP

m2

X̄

Figure 1. Schematic of a body moving on a rough horizontal surface. The point XP is the instantaneous point of contact of the
bodywith the ground plane. Because of the addedmassm2, the geometric centre C of the circular body is not the centre ofmass
X̄ of the composite body. (Online version in colour.)

+ m1 + m2

2

(
η̇2 − 2η̇θ̇ (R + h cos (θ))

)
and U = m2g� cos (θ) . (2.8)

The expression for the kinetic energy of the rolling rigid body can be obtained from (2.8)1 by
setting the slip speed η̇ = 0. When Izz �= 0, the mass matrix associated with the kinetic energies of
the rolling rigid body and the sliding rigid body are always strictly positive.

In the sequel, we shall non-dimensionalize time t, the normal force N, friction forces Ffstatic and
Ffdynamic and parameters of the systems as follows:

t → τ =
√

g
R

t, η → η̂ = η

R
, m1 → m̂1 = m1

m2
,

� → �̂ = �

R
, h → ĥ = h

R
= �̂

1 + m̂1
, Izz → Îzz = Izz

m2R2 , I → Î = I
m2R2 = Îzz + m̂1�̂

2

1 + m̂1
,

N → N̂ = N
m2g

, Ffstatic → F̂fstatic = Ffstatic

m2g
, Ffdynamic → F̂fdynamic =

Ffdynamic

m2g
. (2.9)

Using m2 to non-dimensionalize the mass enables us to analyse Littlewood’s problem by setting
Î = 0, �̂ = 1 and m̂1 = 0.

(a) Equations of motion for the rolling rigid body
The resultant force F acting on the rolling rigid body is composed of a normal force NE2 and
a static friction force Ff = Ffstatic E1 acting at XP and a gravitational force −mgE2 acting at X̄.
The equations of motion for the rigid body are obtained from a combination of the constraint
equations vP = 0, F = m ¨̄x and the moment balance Iθ̈ = (πP × (Ff + N)) · E3. After some algebraic
manipulations, the equations of motion for the rigid body of mass m = m1 + m2 when the body is
rolling can be expressed as the following set of equations:

η̇ = 0 and θ̈ = fR
(
θ , θ̇

)
, (2.10)

where the function

fR
(
θ , θ̇

) = (m1 + m2) Rh sin (θ) θ̇2 + m2g� sin(θ )
I + (m1 + m2)

(
R2 + h2 + 2Rh cos (θ)

) . (2.11)

In addition, expressions for the normal force N = NE2 and the static friction force Ff = Ffstatic E1
acting on the rolling rigid body can be found:

N = (m1 + m2) g − m2�
(

sin (θ) fR
(
θ , θ̇

) + cos (θ) θ̇2
)

,

Ffstatic = − (m1 + m2) (R + h cos (θ)) fR
(
θ , θ̇

) + m2� sin (θ) θ̇2. (2.12)
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Figure 2. (a) The θ − θ ′ plane showing the loci of points where |Ffstatic | = μsN. The curves shown correspond to μs =
0.1, 0.25, 0.5 and 1.0. The arrows indicate the direction of increasing μs. As μs → ∞ the curve asymptotes to the locus of
points (labelled n) where N = 0. Level sets of the total energy are also shown. (b) Phase portrait of the equations of motion
(2.10) for the rolling rigid body. The curves labelled f correspond to the locus of points |Ffstatic | = μsN whereμs = 0.5, and
the curve labelled n corresponds to the locus of points where the normal force vanishes (i.e. N = 0). For the results shown in
this figure, (m1/m2)= 1, � = R and Izz = m1R2. (Online version in colour.)

For the rigid body to maintain contact, we require N > 0 and the satisfaction of the static friction
criterion: ∣∣Ffstatic

∣∣ ≤ μsN, (2.13)

where μs is the static coefficient of friction.
The total energy T + U of the rolling rigid body is conserved during a motion. With the help of

the static friction criterion and the condition that N > 0, regions N and R of the θ − θ ′ − η′ state
space can be defined:

N = {(
θ , θ ′, η′) |N > 0

}
,

R= {(
θ , θ ′, η′) | ∣∣Ffstatic

∣∣ ≤ μsN and N > 0
}

. (2.14)

Here, the ′ denotes the derivative with respect to τ : e.g. θ ′ = dθ/dτ . If the initial conditions for
the rigid body are such that they lie in R, then the body will roll initially. As can be seen from
figure 2a, as μs increases, the region R of the θ − θ ′ plane increases in size as μs increases to the
region N where N > 0. The hatched areas shown in figure 2a,b correspond to regions of the θ − θ ′
plane where N < 0. The regions R and N depend on the values of m̂1 and Î, while the region R
additionally depends on the value of μs.

The dynamics of the rolling rigid body are easily visualized with the help of a phase portrait
of (2.10) in the θ − θ̇ plane that is shown in figure 2b. The trajectories in this portrait correspond
to level sets of the total energy of the rigid body. As anticipated, (2.10) has a pair of equilibria:
an unstable equilibrium (θ = 0, θ ′ = 0) where m2 is at its highest point and a stable equilibrium
(θ = π , θ ′ = 0) where m2 is closest to the ground plane. The set of points where the friction criterion
is violated and the normal force vanishes are also shown in the figure. Clearly, it is possible to set
the rigid body in motion in such a manner that N vanishes immediately.3 The motions that are of
particular interest here are those where the rigid body is rolling initially and N > 0. In this case, we
observe from the phase portrait that the body will either slip before N vanishes or will continue

3For instance, if the initial conditions for the rigid body were (θ(τ0) = 0, θ(τ0) = 4).
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to roll indefinitely.4 To explore the possibility of N vanishing or the possibility of a transition from
slipping to rolling, the equations for a sliding rigid body must be examined.

(b) Equations of motion for the sliding rigid body
When the body is sliding, then the friction force is dynamic and opposes the slip velocity vP:

Ff = Ffdynamic E1 = −μkN
η̇

|η̇|E1. (2.15)

The equations of motion for the sliding rigid body can be obtained from a combination of the
constraint equation vP · E2 = 0, F = m ¨̄x, and the moment balance Iθ̈ = (πP × (Ff + N)) · E3. After
some algebraic manipulations and reorganization, a pair of differential equations for η and θ can
be found:

M

[
η̈

θ̈

]
+

[
mh sin (θ) θ̇2

−mRh sin (θ) θ̇2

]
=

⎡
⎣−μk

(
(m1 + m2) g − m2� cos (θ) θ̇2) η̇

|η̇|
m2g� sin(θ )

⎤
⎦ , (2.16)

where

M=
[

m −m (R + h cos (θ)) − μkm2� sin (θ)
η̇
|η̇|

−m (R + h cos (θ)) I + m
(
R2 + h2 + 2Rh cos (θ)

)
]

. (2.17)

We also note that, in the absence of friction, the mass matrix M would be symmetric as expected.
The expression for the normal force N that was used to expand and manipulate the expression for
Ffdynamic in (2.16) is

N = (m1 + m2) g − m2�
(

sin (θ) θ̈ + cos (θ) θ̇2
)

, (2.18)

where θ (t) satisfies (2.16). We emphasize that the equations of motion assume that N > 0. The
motion of the sliding rigid body dissipates the total energy. In addition, the dynamics in this case
can be visualized by examining the orbits of (2.16) in the θ − θ̇ − η̇ space.

(c) Stick–slip transitions
Stick–slip transitions for the rigid body occur when there is insufficient static friction to maintain
rolling (i.e. the static friction criterion is violated). In this case, the motion of the disc is no longer
governed by (2.10) but instead by (2.16). The sign of Fstatic at the instant of slip is used to determine
the initial slip direction. Simulation of the motion using (2.16) proceeds until η̇ drops below a
threshold (≈ 10−9) and the simulations are then performed using (2.10).

(d) Spontaneous jumping
For spontaneous jumping of the rigid body to occur at the instant, it is necessary that the normal
force N vanishes. The expressions (2.12)1 and (2.18) for the rolling and sliding cases, respectively,
are used to determine the instances when jumping occurs. A sufficient condition for jumping to
occur when N vanishes is that the vertical velocity ˙̄y of the centre of mass is strictly positive.
When the body is in motion on the horizontal plane, we have that ˙̄y = −h sin(θ )θ̇ and ˙̄x = η̇ − (R +
h cos(θ ))θ̇ . Thus, the quadrants in the θ − θ̇ plane where sin(θ )θ̇ < 0 are the possible locations of
the spontaneous jumping.5 From the expression for ˙̄x, we observe that if the body loses contact
while rolling to the right (i.e. θ̇ < 0), then the jump will be to the right (i.e. ˙̄x > 0) and vice versa.

4A video showing a simulation of a rolling motion that oscillates back and forth about the stable equilibrium configuration is
given in the electronic supplementary material for this paper.
5Our results here extend those that of Yanzhu & Yun [20].
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dq
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L

L

Figure 3. Representation of the motion of a rigid body that slides, rolls, slides and then jumps. (a) State space representation
for the sliding (labelled s) and rolling phases (labelled r) before the lift-off (labelled L) occurs. (b) The loci x(t) of the geometric
centre and x̄(t) of the mass centre X̄ of the rigid body during the sliding, rolling, sliding and airborne stages of the motion.
For the results shown in this figure, (m1/m2)= 1, � = R, Izz = m1R2, μs = 0.5, μk = 0.4, θ (0)= (π/2), θ ′(0)= 2 and
η′(0)= 0. An animation of the results shown in (b) can be found in the electronic supplementary material. (Online version
in colour.)

(e) Free-flight and impact
While the body is in motion on the plane, y = R. Once the body was launched, the sole force
acting on the body is gravity and the angular velocity of the body is constant. Thus, the path
of the centre of mass X̄ will be a parabola and the geometric centre C will rotate about X̄ at a
constant rate. Once, the height y of C, declines to a value of R, then the rigid body will impact
with the surface. In our work, we limit our analysis to the instant just before the impact and do
not consider the post-impact dynamics of the rigid body.6

(f) A representative example
A representative example of a motion of the rigid body that has a slip–stick transition followed
by a stick–slip transition before an eventual free-flight stage is shown in figure 3. The initial
conditions for the motion of the rigid body are (θ (0) = (π/2), θ ′(0) = 2, η′ = 0) and μs = 0.5. As
can be seen from figure 2b, for this set of initial conditions, there is insufficient static friction to
maintain rolling and the rigid body slides. A transition to rolling and back to sliding occurs before
the body loses contact with the ground plane. As anticipated from our earlier discussion, the jump
in the motion of the centre of mass is to the left and during the free-flight stage, the path of the
centre of mass is parabolic.

Related examples where the body has a single stick–slip transition before jumping and a single
sliding phase before jumping were also found. In the interests of brevity, they are not presented
here. We also emphasize that it is possible to give the body a set of initial conditions so that rolling
persists for all time. Similarly, it is possible for the body to have phases of rolling motions and
sliding motions without ever jumping off the ground plane. Closely related numerical studies
of the behaviour of the rigid body can be found in Lubarda [18] and Theron and Maritz [19].
The qualitative discussion of the dynamics of the rigid body presented with its accompanying
phase portrait that is presented in this section complements these works by providing another
perspective on their simulations.

3. Littlewood’s problem
On page 37 of Littlewood’s Miscellany [11], one finds the following problem: ‘A weight is attached to
a point of a rough weightless hoop, which then rolls in a vertical plane, starting near the position

6Readers interested in the impact dynamics are referred to Ivanov [2,21,22].
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of unstable equilibrium. What happens, and is it intuitive?’ Littlewood continues, ‘The hoop lifts
off the ground when the radius vector to the weight becomes horizontal. I don’t find the lift
directly intuitive; one can, however, “see” that the motion is equivalent to the weight’s sliding
smoothly under gravity on the cycloid that it describes, and it is intuitive that it will sooner or
later leave that.’ He concludes with the remark: ‘In actual practice the hoop skids first.’

The case considered by Littlewood assumes that Î = 0, � = R and m1 = 0.7 In our analysis,
we first consider the rolling case and then consider the sliding case. Our conclusions differ
significantly from Littlewood’s. First, we find that the hoop cannot lift off the ground when
θ = ±(π/2). Second, because the inertia of the hoop is ignored, we are able to show in two
ways that the rigid body cannot support a normal force and so the body glides rather than
slides. Finally, based on our earlier results in the present paper, the jumping motions Littlewood
describes can only occur if the inertia of the hoop is considered and they do not necessarily occur
when θ = ±(π/2).

The most comprehensive treatment of Littlewood’s hoop in the literature to date is by Theron
& du Plessis [17]. These authors corrected errors in the earlier works [12,13,16]. In this work, we
are able to provide a different qualitative perspective on their analytical results. Our work also
clearly illuminates the singular behaviour of Littlewood’s hoop compared to the rigid body where
the inertia of the hoop is considered. We also provide a clearer interpretation of how the balance
laws provide a system of determinate equations to determine the motion of Littlewood’s hoop
compared to [17].

(a) Rolling motions
When Î = 0, � = R and m1 = 0, the equations of motion (2.10) for the rolling rigid body simplify to

2 (1 + cos (θ)) θ
′′ = (

1 + θ ′θ ′) sin (θ) . (3.1)

Observe that the differential equation is identically satisfied by (θ (τ ) = π , θ̇ (τ )) (i.e. the particle of
mass m2 is in contact with the ground) and has an equilibrium when (θ (τ ) = 0, θ̇ (τ ) = 0) (i.e. the
particle of mass m2 is a distance 2R directly above the point XP of contact). In contrast to the case
where Izz �= 0, the mass matrix associated with the kinetic energy is singular when θ = π . For the
rolling rigid body, the configuration manifold is a circle and the coordinate θ fails to parametrize
the entire circle.8 The presence of the singularity also implies that the equations of motion do not
accommodate the case where the particle of mass m2 is in contact with the ground. The phase
portrait of (3.1) is shown in figure 4. Qualitatively, there are dramatic differences between the
trajectories in this portrait compared to those shown in the phase portrait when m1 �= 0 shown in
figure 2b. In particular, the stable equilibrium at θ = ±π found earlier when m1 �= 0 has vanished.

The equations of motion (3.1) have a first integral corresponding to the dimensionless total
energy of the rigid body:

e = T + U
m2gR

= (1 + cos (θ)) θ ′θ ′ + cos (θ) . (3.2)

This conservation of energy enables us to solve for θ (τ ) using a standard procedure:

sin
(

θ (τ )

2

)
= α

2
e((τ−τ0/2)) − e0 − 1

4α
e(−(τ−τ0/2)). (3.3)

7We can also relax the assumption that � = R and assume that the mass particle does not lie next to the rim of the circular
body. The results for this case are qualitatively similar to those for � = R and little is gained by adding this additional feature
to the model.
8Our perspective on coordinate singularities is based on the recent work [24].
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Figure 4. Phase portrait of the equations of motion (3.1) for the rolling rigid body. The shaded region corresponds to the states
(θ , θ ′, η′) ∈ R where the normal force is positive and the static friction criterion is satisfied. The regionR shrinks to zero
asμs → 0. The curves labelled f correspond to the locus of points where the static friction criterion is violated (i.e. |Ffstatic | =
μsN) and the curve labelled n corresponds to the locus of points where the normal force vanishes (i.e. N = 0). For the results
shown in this figure,μs = 0.5. (Online version in colour.)
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Figure 5. (a) The regionRof the phase portrait of (3.1) showing the labels of the regions andboundarieswhereN> 0 and the
static friction criterion is satisfied. (b) The phase portrait of the equations ofmotion (3.1) for the rolling rigid body.Motions of the
rigid body where N vanishes before slipping correspond to solutions labelled Type I and motions that slip before N vanishes are
classified as Type III. When θ ′

s = ±1, N = 0 andwhen θ = ±θs, Ff = ±μsN. For the results shown in this figure,μs = 0.5
and θs = 26.5651◦. (Online version in colour.)

The constants e0 and α are determined by the initial conditions:

e0 = (1 + cos (θ (τ0))) θ ′ (τ0) θ ′ (τ0) + cos (θ (τ0)) ,

α = sin
(

θ (τ0)

2

)
+ 1√

2

√
e0 − cos (θ (τ0)). (3.4)

Suppose the initial conditions of interest are such that neither θ (τ0) �= π nor the initial conditions
(θ (τ0), θ ′(τ0)) lie on the stable Ws manifold (or separatrices) of the equilibrium (θ , θ ′) = (0, 0) (cf.
figure 5a).In this case, we now demonstrate using (3.3) that sin((θ (τ )/2)) → ±1 in a finite time.
The first set of solutions to see this behaviour are motions with the initial conditions (θ (τ0) =
θ0, θ ′(τ0) = 0). For this pair of initial conditions, e0 = cos(θ0) and (3.3) simplifies to

sin
(

θ (τ )

2

)
= sin

(
θ0

2

)
Cosh

(
τ − τ0

2

)
. (3.5)
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Thus, θ (τ ) → π in a finite interval of τ − τ0. The second case to consider are solutions with initial
conditions (θ (τ0) = 0, θ ′(τ0) = θ ′

0). In this instance, it is straightforward to show that

sin
(

θ (τ )

2

)
= θ ′

0 Sinh
(

τ − τ0

2

)
, (3.6)

and, thus, θ (τ ) → π in a finite interval of time. For completeness, we consider the case where
the initial conditions lie on the stable Ws and unstable Wu manifolds of the equilibrium point
(θ , θ ′) = (0, 0). For these initial conditions, e0 = 1, and (3.3) can be used to show that

sin
(

θ (τ )

2

)
= sin

(
θ0

2

)
e(±(τ−τ0/2)), (3.7)

where the − and + cases pertain to initial conditions on Ws and Wu, respectively. In conclusion,
apart from motions whose initial conditions lie on the stable manifold Ws of the equilibrium
(θ , θ ′) = (0, 0), the solutions to (3.1) imply that the rigid body will roll in such a manner that θ → π

in a finite time.
Our conclusions about the behaviour to the solutions to (3.1) have ignored consideration of the

normal force and friction force. The expressions for the dimensionless normal force and friction
force can be obtained from (2.12):9

N̂ = cos2
(

θ

2

) (
1 − θ ′θ ′) ,

F̂fstatic = (
θ ′θ ′ − 1

)
cos

(
θ

2

)
sin

(
θ

2

)
. (3.8)

Thus, for contact, we require that |θ ′| < 1. The locus of points where the static friction criterion is
violated is given by the values of θ = θs which satisfy

μs =
∣∣∣∣tan

(
θs

2

)∣∣∣∣ . (3.9)

The region R of the θ − θ ′ − η′ state space for this problem is easily constructed:

R= {(
θ , θ ′, η′) |θ ∈ (−θs, θs) , θ ′ ∈ (−1, 1) , and η′ = 0

}
. (3.10)

This region is shown in figure 5.
Based on the results of our forthcoming analyses, it is convenient to categorize motions of the

rigid body into three types. Referring to figure 5a, Type I are motions where N vanishes before the
static friction criterion has been violated, Type II are motions where N vanishes just as the static
friction criterion is invalidated and Type III are motions that eventually leading to slipping with
N > 0. With the help of the definition of θs and e, the motions of the rigid body can be classified to
terms of e and μs:

Type I: 1 + 2 cos(θs) < e < 3;
Type II: e = 1 + 2 cos(θs); and

Type III: cos(θs) < e < 1 + 2 cos(θs).

Representative examples of these solutions in the phase portrait of the equations of motion (3.1)
are shown in figure 5b. Apart from initial conditions that lie on Ws, the trajectories (θ , θ ′) all exit
the region R in a finite period of time. Thus, rolling motions do not persist.

(b) The possibility of jumping
Loss of contact is a necessary, but not sufficient, condition for jumping to occur. For jumping
to occur, we require that N ↘ 0 and that ˙̄y > 0 at the instant when the normal force vanishes.

9As anticipated because I = 0, the resultant moment of this pair of forces about m2 vanishes.
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However,
˙̄y = −Rθ̇ sin(θ ) and ˆ̄y′ = −θ ′ sin (θ) . (3.11)

After examining the phase portraits shown in figures 4 and 5b, we conclude that when N ↘ 0,
θ ′ sin(θ ) > 0 and thus, ˙̄y < 0. Hence, spontaneous jumping without prior slipping for this rigid
body does not occur. That is, the Type I and Type II motions do not lead to jumping. If jumping is
possible, then it must occur for Type III motions. However, these motions of the rigid body exhibit
slipping while N > 0. Thus, to establish any conclusions for the motions, we need to examine the
equations of motion for the sliding rigid body.

Turning to Littlewood’s comments about the rolling hoop, we recall that he stated that the hoop
would jump when θ = ±(π/2). For θ to reach this value, we note from the static friction criterion
(cf. (3.9)) that μs > 1. However, even if μs > 1, our analysis shows that ˙̄y < 0 when N vanishes
and so jumping cannot occur. Littlewood also points out that he expects the hoop to slide before
jumping. We now turn to examining the interesting dynamics of the sliding rigid body.

(c) Gliding motions
The governing dimensionless equations of motion for the sliding rigid body are found by
simplifying (2.16) and employing the dimensionless time variable τ :

M̂

[
η

′′

θ
′′

]
+

[
sin (θ) θ ′θ ′

− sin (θ) θ ′θ ′

]
=

[
−μkN̂s
sin(θ )

]
, (3.12)

where s = (η′/|η′|) is the slip direction and the dimensionless mass matrix M̂ is

M̂=
[

1 −1 − cos (θ)

− cos (θ) − 1 2 (1 + cos (θ))

]
. (3.13)

The dimensionless normal force is given by

N̂ = N
m2g

= 1 −
(

sin (θ) θ
′′ + cos (θ) θ ′θ ′

)
. (3.14)

To integrate (3.12), we need to introduce the expression for N̂ and then derive a set of differential
equations for θ and η. The mass matrix M̂ associated with the kinetic energy for the sliding body
is non-invertible when θ = 0, ±π . Consequently, we anticipate issues when attempting to analyse
the equilibrium configuration where θ = 0 and θ = ±π . For future reference, we note that N̂ = 1
for these configurations.

After inverting M̂ and solving for η
′′

and θ
′′
, we find the pair of equations

η
′′ = 1

1 − cos (θ)

(
sin (θ)

(
1 − θ ′θ ′) − 2μkN̂s

)
,

θ
′′ = − 1

sin (θ)

(
−1 + cos (θ) θ ′θ ′ + μk (cot (θ) + cosec (θ)) N̂s

)
. (3.15)

With the help of (3.14), we remarkably find that (3.15)2 reduces to an equation for N̂:

N̂ (1 − μks (cot (θ) + cosec (θ))) = 0. (3.16)

Thus, solutions to the equations of motion (3.12) are possible only when N̂ = 0. In this case the
body is said to be gliding on the ground plane. Because there is no friction force, the energy of
the rigid body is constant during this motion. In 1997, Tokieda [12] was the first to observe that
gliding motions occur. The first detailed analysis of these motions was published four years later
by Theron and du Plessis [17].

An alternative method to establish that N must vanish is to consider the moment balance:
Iθ̈ = (πP × (Ff + N)) · E3. For the system of interest, I = 0 and Ff is an assumed linear function of N.
It is then straightforward to show that N and, consequently, Ff must vanish. This conclusion also
applies for the more general case where the particle is not located on the rim: � ∈ (0, R). We define
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a motion of a rigid body on a surface with a vanishing normal force as a gliding motion. For such
motions, the balance of linear momentum for the rigid body can then be used to conclude that
the trajectory of the centre of mass (i.e. the particle of mass m2) is either a parabola or a straight
vertical line.

We take this opportunity to note that Littlewood’s hoop is not the only problem in the
dynamics of rigid bodies where a constraint forces or moment vanishes even when the constraint
is satisfied. For instance, consider a pendulum in motion on a vertical plane. It is easy to show that
the normal force exerted by the plane on the pendulum vanishes (cf. [23, Section 2.4]). A second
example is a rigid body dynamics model for the eye where the rigid body is subject to Listing’s
constraint. It can be shown that the constraint moment needed to enforce the constraint vanishes
for certain motions (cf. [25,26]). As with a rolling or gliding Littlewood’s hoop, the balance laws,
constraints and prescriptions for the constraint forces and constraint moments for these problems
provide a determinate system of equations to determine the motion of the system that satisfies
the constraints and the constraint forces and constraint moments.

The equations of motion for the rigid body when N̂ = 0 can be determined from (3.12) by
setting N̂ = 0:

sin (θ) θ
′′ + cos (θ) θ ′θ ′ − 1 = 0 and η

′′ =
(
1 − θ ′θ ′) sin (θ)

1 − cos (θ)
. (3.17)

This pair of differential equations correspond to the respective E2 and E1 − e1 components of
the balance of linear momentum F = mā where F = −mgE2. As discussed earlier, the balance of
angular momentum has been used to show that N and, consequently, Ff vanishes. As anticipated
from our earlier remarks, the differential equations (3.17) are not defined when θ = 0, ±π . The
differential equation (3.17)1 for θ has a first integral w = w(θ , θ ′) and the equations of motion (3.17)
conserve the total energy es = es(θ , θ ′, η′) and the linear momentum in the horizontal direction
v = v(θ , θ ′, η′):

w = 1
2

sin (θ) θ ′θ ′ − θ ,

es = (1 + cos (θ)) θ ′θ ′ + cos (θ) + 1
2

(
η′η′ − 2η′θ ′ (1 + cos (θ))

)
,

v = η′ − θ ′ (1 + cos (θ)) . (3.18)

Using the integral w, the phase portrait of (3.17)1 is readily constructed (cf. figure 6a). From the
phase portrait, we observe that the angle θ does not oscillate about θ = π . However, concomitant
with the conservation of the energy es, θ ′ becomes unbounded as θ → ±π .

To determine the finite amount of time it takes for θ → ±π , we exploit the fact that the sole
force acting on rigid body is a gravitational force and, thus, the trajectory of m2 will be either be
a parabola or a straight vertical line. To elaborate, we denote the initial value of (θ (τ ), θ ′(τ ), η′(τ ))
and the dimensionless time τ by (θ0 = θ (τ0), θ ′

0 = θ ′(τ0), η′
0 = η′(τ0)) and τ0, respectively. Then,

using the dimensionless variables,

ˆ̄x (τ ) = ˆ̄x0 + (
η′

0 − θ ′
0 (1 + cos (θ0))

)
(τ − τ0) ,

ˆ̄y (τ ) = 1 + cos (θ (τ ))

= 1 + cos (θ0) − θ ′
0 sin (θ0) (τ − τ0) − (τ − τ0)

2

2
. (3.19)

Thus, after a finite interval of time τg − τ0, ˆ̄y(τ1) = 0 and θ (τg) = π :

τg − τ0 = −θ ′
0 sin (θ0) ±

√
θ ′

0θ
′
0 sin2 (θ0) + 2 (1 + cos (θ0)). (3.20)

When the initial conditions for the motion are such that η′
0 − θ ′

0(1 + cos(θ0)) = 0, the path of m2
will be a vertical line.
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Figure 6. (a) Phase portrait of the equation of motion (3.17)1 for θ (t) for the gliding rigid body. (b) Combined phase portrait
for the rigid body assuming transitions to and from rolling. The shaded region corresponds to the regionR of state space for
the rolling rigid body. For the results shown in the figure,μs = 0.5. (Online version in colour.)
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Figure 7. (a) Phase portrait of a motion that initially rolls and then glides along with the corresponding time trace of η′(τ ).
(b) The corresponding path of the mass particle m2 during the rolling (blue) and gliding (red) phases of motion. As τ → τg,
θ → π . For the solution shown in this figure, θ (0)= 0, θ ′(0)= 0.5, μs = 0.5, τs ≈ 1.6094 and τg ≈ τs + 1.2868. An
animation of the results shown in (b) can be found in the electronic supplementary material data. (Online version in colour.)

(d) Transitions from rolling to gliding
The dynamics of the rigid body can be analysed by composing a dynamical system as follows.
We suppose that an initial condition starts in the region R defined previously. Thus, the dynamics
of the rolling rigid body are governed by (3.1). At time τ = τs, the trajectory exits R, a transition
to gliding occurs. At the instant where gliding starts, η′ = 0, θ (τ ) is governed by (3.12)1, and η(t)
is governed by (3.17)2. From our earlier remarks, we can conclude that θ → π in a finite time
τg − τs (cf. (3.20)). These dynamics are summarized in the phase portrait shown in figure 6b and
an example of the motions described here is shown in figure 7. From this figure, we note that the
path of m2 during rolling is a cycloid and the path is a parabola when the rigid body is gliding.
We also note from the time trace of η′(τ ) for this example that, even though η′ vanishes for an
instant, there is insufficient static friction to maintain rolling and gliding persists.
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(e) Transitions to and from gliding
The dynamics of the gliding body can be understood by examining the trajectory (θ (τ ), θ ′(τ ), η′(τ ))
in a three-dimensional state space S. In order for the body to transition from gliding to rolling, we
need η′(τ ) = 0 when (θ (τ ), θ ′(τ )) ∈R. Thus, the trajectory needs to intersect the region R on the
plane η′ = 0 in the state space S. When this happens, the body transitions from gliding to rolling.
Referring to figure 6b, we observe that, apart from the case where the intersection lies on the stable
manifold to the equilibrium point (θ = 0, θ ′ = 0), all of the trajectories on R exit this region and
the body will start gliding. If the trajectory does not intersect R, then gliding persists and θ → ±π

in finite time.

4. Conclusion
We have explored the dynamics of the simplest known example of a single rigid body that exhibits
self-induced jumping. While this behaviour was first mentioned by Littlewood, an analysis of his
model leads to paradoxical behaviour of a body that can roll but cannot support the normal force
needed to slide and cannot jump. As can be appreciated by comparing the phase portraits shown
in figures 2b and 4 and 6, by incorporating the inertia of the rigid body, we find a dramatically
different dynamical system describing the motion of the rigid body. In particular, we confirm
the self-induced jumping and transitions from rolling to sliding motions observed by others. The
self-induced jumping exhibited by the rigid body is the simplest example of this phenomenon in
classical mechanics.

Data accessibility. Electronic supplementary material, videos for figures 3 and 7 are included in this paper. A
third video shows a motion of the rolling rigid body where the body oscillates about its stable equilibrium
configuration.
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